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Abstract: The Internet of Medical Things (IoMT) workflow applications have been rapidly growing 
in practice. These internet-based applications can run on the distributed healthcare sensing sys
tem, which combines mobile computing, edge computing and cloud computing. Offloading and 
scheduling are the required methods in the distributed network. However, a security issue exists 
and it is hard to run different types of tasks (e.g., security, delay-sensitive, and delay-tolerant tasks) 
of IoMT applications on heterogeneous computing nodes. This work proposes a new healthcare 
architecture for workflow applications based on heterogeneous computing nodes layers: an appli
cation layer, management layer, and resource layer. The goal is to minimize the makespan of all 
applications. Based on these layers, the work proposes a secure offloading-efficient task scheduling 
(SEOS) algorithm framework, which includes the deadline division method, task sequencing rules, 
homomorphic security scheme, initial scheduling, and the variable neighbourhood searching method. 
The performance evaluation results show that the proposed plans outperform all existing baseline 
approaches for healthcare applications in terms of makespan. 

Keywords: ethereum security; privacy; smart contract; rules; distributed 
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1. Introduction 

Nowadays, the usage of medical devices based on the Internet of Medical Things 
(IoMT) network to deal with healthcare issues has been growing progressively [1]. The IoMT 
is a network that is composed of medical sensors, wireless technology and distributed cloud 
computing technologies [2]. Therefore, the combination of IoMT and healthcare devices 
can improve the quality of human life and provide better care services and create a more 
cost-effective system [3]. Recently, many IoMT-based applications have been developed 
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by different shareholders to deal with other diseases, such as E-healthcare sensor-based 
applications and E-real-time-healthcare applications [4]. These healthcare applications 
have different classes, such as workflow or fine-grained classes, while providing services to 
the users [5]. The IoMT workflow is a complete process where all tasks are dependent on 
each other. At the same time, fine-grained-based applications have only one independent 
task process. For instance, a heartbeat task or ECG monitoring task [6]. 

As mentioned above, the IoMT is a distributed network that combines different 
technologies such as medical devices, wireless technology, and cloud computing. These 
healthcare applications are distributed and implemented in different places (e.g., fog cloud 
nodes). However, they execute onto geographically distributed network [7]. One of the 
main concerns is resource-constraint issues in devices (e.g., limited storage, small CPU, 
and short bandwidth utilization) and cannot execute applications locally [8]. Offloading 
is a way that migrates compute-intensive tasks of applications to distributed computing 
nodes for further execution via wireless technologies (e.g., WiFi, LTE, and others). Cloud 
computing is a crucial paradigm in the IoMT network, which allows devices to offload 
their compute-intensive and rich-resource computing for execution [9]. However, each 
application has different kinds of tasks, e.g., a set of security tasks, delay-sensitive tasks, 
and delay-tolerant tasks). Therefore, except for delay-tolerant tasks, the rest of them cannot 
be used on the remote cloud due to long latency and security risks. Fog computing is an 
extension of cloud computing which brings remote capabilities of the cloud at the edge of 
wireless network which is in proximity to users devices [10]. However, all delay-sensitive 
tasks can perform fog computing, but security tasks have security risks due to open 
wireless networks. Generally, one of the best solutions is offloading a set of security risk 
tasks that often perform at the local device and sending their data to the cloud for further 
execution [11]. The current cloud computing model offers services based on demand with 
some time limitations, for instance, weekly, monthly, yearly, with a set of constraints. Every 
time, the users do not use cloud services. However, services are still paid for due to the 
rent of services in advance [1]. Serverless computing is a new cloud cost model in which 
the cloud provider provides machine resources on-demand and manages the servers on 
their customers’ behalf. Serverless computing does not store resources in volatile memory; 
instead, it performs the computation in brief bursts, with the results saved to a disc. There 
are no computer resources given to an application when it is not in use. The cost of an 
application is determined by the number of resources it consumes. It may be a type of utility 
computing. In the sense that cloud service providers still employ servers to provide code 
for developers, “serverless” is a misnomer. On the other hand, developers of serverless 
applications are not concerned with the container, VM, or physical server capacity planning, 
configuration, management, maintenance, fault tolerance, or scaling. In the literature, 
many studies [2,3,5,7,8,11,12] proposed different systems, architectures, and heuristics-
based IoMT network to solve the offloading and scheduling problem of workflow and 
fine-grained applications. These studies improved devices’ battery lives, offloading cost 
and the obtained Service Level Agreement (SLA) and Quality of Service (QoS) applications 
during their problem formulation. They optimized the energy, makespan and cost of 
applications. However, many challenges still exist which are needed to be overcome in 
the IoMT network. (i) All existing efforts only consider either a workflow application or 
fine-grained application at any one time. However, modern devices can provide support to 
both simultaneously, but existing IoMT systems cannot. (ii) Current studies only focus on 
offloading efforts; they widely ignore the performance of remote computing nodes such as 
fog and cloud, which greatly impacted users’ performances and cost. For instance, existing 
fog and cloud are offered on-demand as-you-pay and services are informed on virtual 
machines. This resource-provisioning model is very costly for fine-grained tasks where 
they need only usage-based services instead of monthly and yearly contract-based services. 
(iii) Existing resource allocation policies of theses studies [2,3,7,9,10,12–14] in the IoMT 
network only make offloading decisions at the user level and based on the threshold. 
However, optimal scheduling and failure aware mechanisms at the distributed computing 
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node level are widely ignored. Due to this, the failure ratio of tasks and deadline of 
applications are missed over a wide range. This paper proposes a novel scheduling system 
for mixing fine-grained and workflow IoMT tasks in distributed and virtual machine-
based mobile edge cloud networks to cope with the issues mentioned earlier. This work 
considers both workflow and fine-grained tasks simultaneously, the proposed serverless 
functions and a virtual machine aware service environment in a distributed mobile edge 
cloud network. The function as a service (FaaS) is a cost-efficient model for fine-grained 
tasks which pay for the execution of tasks rather than provisioning for monthly or yearly 
for not using tasks. For the workflow tasks, the virtual machine-based solution has been 
proposed in the system. Each application is divided into three types of tasks: security 
tasks, delay-sensitive tasks, and delay-tolerant tasks. The proposed IoMT system consists 
of different paradigms such as mobile computing, fog computing, and cloud computing 
based on task types. The study’s goal is to minimize both makespans of applications and 
the cost of the system during problem formulation. In summary, this paper makes the 
following contributions to solve the scheduling problem. 

•	 Initially, the study devises the mathematical model of hybrid work of IoMT applications 
with many objectives. The hybrid workloads consist of fine-grained and workflows 
tasks, and the multi-objective functions are makespan, cost, and energy consumption. 
Each objective function has different weights to optimize the IoMT for each application; 

•	 The study devises three-phase level scheduling methods such as deadline-efficient, 
cost-efficient and energy-efficient ones in the IoMT system to optimize the overall 
system in the network; 

•	 To maintain the security requirements of fine-grained and workflow workloads, 
the fully homomorphism Encryption (FHE)-enabled security is suggested to ensure 
the security in IoMT for all applications; 

•	 To optimize all objectives together, the study devises the deep graph convolutional 
network-enabled weighting scheme to boost and optimize the study’s overall nonlin
ear objective functions in different convolutional networks. 

The sections are organized as follows. Section 2 presents existing studies related to the 
considered problem. Section 3 defines all steps of the problem formulation. Section 4 outlines 
the proposed methods and their solutions. Section 5 illustrates the performance evaluation 
of techniques on different workflow benchmarks. Section 6 presents the conclusion of 
the paper. 

2. Related Work 

For many years, Internet of Medical Things (IoMT) frameworks or systems have 
gained significant traction in various medical sectors. Many different sorts of healthcare 
workloads are taken into account in the IoMT to tackle various scheduling and offloading 
issues. Workflows, applications, services, and fine-grained and coarse-grained models 
are examples of workloads. The IoMT consists of different heterogeneous computing 
nodes where a connection between computers or computer programmes is known as an 
application programming interface (API). It is a form of software interface that provides a 
service to other programmes. An API specification is a document or standard that defines 
how to create such a connection or interface. An API is implemented or exposed by a 
computer system that meets this standard. The term API can be used to refer to either the 
specification or the implementation. As a result, as indicated in Table 1, there are different 
multi-objective techniques for each workload, each with its own set of restrictions and 
security requirements. 
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Table 1. Existing offloading methods. 

Study Workload Constraint Method Environment Security 

[1] Workflow Deadline Weighting Remote Cloud VMs RSA 

[2] Coarse-Grained Resource Constraint Edge VMs DES 

[3] Independent Budget Goal-
Programming Cloudlet VMs CRC32 

[4] Fine-Grained QoS Min-Max Edge VMs DES 

[5] Workflow Deadline VEGA Fog VMs RSA 

[6–8] Workflow Deadline GA Remote Cloud VMs RSA 

[9–14] Coarse-Grained Lateness PSO Fog Container RSA 

[15–20] Coarse-Grained Cost Ant-Colony Fog Container MD5 

[21] Application Deadline Weighting Remote Cloud VMs Athentication 

[22] Services Deadline Evolutionary Remote Cloud VMs Authorization 

[23] API Deadline GA Fog VMs RBS 

[24,25] Model Cost Min-Max Open Fog Cloud VMs 3-DES 

[26] Workflow Tardiness MOEA Edg-Cloud VMs SHA-256 

[27] Workflow Deadline NSGA-II Edge-Cloud VMs SHA-32 

Proposed Workflow, 
Fine-Grained 

Deadline, Cost, 
Energy DGCN Cloud VM, Fog 

Functions FHE 

In the study of [1], the workflow application, deadline constraint, weighting method, 
and remote Cloud VMs along with the RSA security mechanism aware IoMT system 
are suggested. The objective is to offload healthcare data with their deadlines on the 
cloud servers. The study of [2] suggested IoMT-based coarse-grained healthcare work
loads, with resource constraints and the programming aware constraint method on latency 
optimal edge nodes. The study implemented a DES security mechanism for offloaded 
workloads in the system. The goal is to minimize end to end latency. The study of [3] 
suggested IoMT based on the independent healthcare workload, budget objective, goal-
programming multi-objective method, latency optimal cloudlet deployed virtual machines 
and CRC32 security mechanism. The aim is to minimize end to end latency. Refs. [4,5] 
suggested an IoMT system based on workflow that is fine-grained and quality of service 
(QoS) aware, as well as a min-max multi-objective method and distributed edge imple
mented virtual machines and DES and RSA security for healthcare applications. The goal 
is to minimize resource consumption and energy and delay the objectives of the study. 
The vector evaluated genetic algorithm (VEGA) allows dealing with multiple objectives. 
However, the min-max algorithm only achieved good results with the single constraints in 
nondominant solutions on the Pareto frontier. 

The studies [6–8] devised dynamic and secure IoMT systems based on different primi
tives such as workflow applications, deadlines, Genetic Algorithm (GA) on virtual machines 
(VMs), which enable cloud data centers, and RSA-based networks. The purpose of these 
studies is to gain dynamic results for healthcare applications in distributed cloud data centers. 
The studies [9–14] proposed IoMT with a tuple of implementations, such as coarse-grained 
workload, and optimized the objectives’ lateness and energy with particle swarm optimization 
schemes in distributed RSA-enabled fog virtual machines. Particle swarm optimization (PSO) 
is a computational method for solving problems by iteratively improving a potential solution 
against a set of quality criteria. The message digest (MD5) enabled the secure distributed 
cloudlets and fog node aware IoMT systems suggested by [15–20]. The workload considered 
to be coarse-grained is solved by a multi-objective approach and ant-colony is done so with a 
dynamic approach. The objective is to minimize service cost, latency and delay of applications 
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in the IoMT system. The deadline, resource and lateness are considered during offloading 
and resource allocation in the system. 

The applications, services, application programming interface (API) and model-based 
workload have been implemented in [21–27]. The virtual machines, container and server-
less aware resources are offered during workload execution in the system. The min-max, 
Multi-objective Evolutionary Genetic Algorithm (MOGA) and NSGA-II-enabled multi
objective-based techniques suggested to solve the healthcare problems in distributed fog 
cloud nodes. The goal is to optimize different objectives with nondominance and dom
inance schemes with the Pareto frontier tool for different healthcare workloads. These 
studies considered the single constraint during decision in IoMT. The deep convolutional 
neuron network-enabled healthcare system is suggested in [28–31]. The goal is to handle 
multiple objectives such as energy, makespan, and cost of coarse-grained applications 
in the distributed IoT fog cloud network in the system. These studies suggested a dy
namic heuristic based on reinforcement learning where the considered workload is only 
coarse-grained in the system for offloading and resource allocations. 

To the best of our knowledge, a hybrid workload-enabled and secure healthcare monitor
ing sensing framework in a distributed fog cloud network has not been studied yet. The con
sidered problem and system in the present study differ from existing works [1,2,18,22,28–31] 
in the following way. The proposed work considers the hybrid workloads such as workflow 
and the fine-grained model and the proposed mathematical model, whereas the study devises 
the functions and virtual machine aware fog cloud network which was not considered in 
the existing works. The main reason for this is that the research focuses on the cost-efficient 
scheduling and resource-optimal allocations of workload in the distributed fog cloud network. 
Therefore, in the considered problem, the study has three different conflicting objectives: 
makespan, lateness, and energy consumption with cost, deadline, and lateness constraints in 
the IoMT system. The existing multi-objective approaches cannot be applied to hybrid work
loads in the IoMT because all existing objectives require a lot of decision time and resources 
to find optimal solutions for all objectives in IoMT. Therefore, the study considers the deep 
graph-based convolutional network-enabled algorithm framework to solve the supposed 
problem in the IoMT. 

3. Proposed Architecture 

The study proposes a new secure mobile edge cloud architecture to run IoMT workflow 
applications in a distributed environment. The proposed architecture consists of three 
main layers, the application layer, management layer and resource layer, as shown in 
Figure 1. The IoMT workflow applications layer consists of multiple applications where 
each application is composed of three different types of functions. The nodes, such as the 
blue node, show security tasks, the light node shows delay-sensitive tasks, and the red 
node displays delay-tolerant functions. The architecture initially takes the inputs of all 
applications into the management layer. The workflow tasks are annotated as the design 
time in different types, such as security tasks, delay-sensitive tasks, and delay-tolerant tasks. 
The execution time and energy consumption are anticipated in advance before scheduling 
tasks to any node by exploiting the energy profiler and workload execution profiler at 
the design time of applications. These mechanisms of application partitioning and the 
time estimation are already published in our previous work [7]. Therefore, this work only 
focuses on scheduling, not application partitioning and offloading in the current model. 
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Figure 1. Hybrid workload-enabled and secure healthcare monitoring sensing framework in distributed fog cloud network. 

The IoMT agent is an administrator in the management layer that processes the 
requested IoMT workflow applications P = {a1, . . . , aP}. The IoMT agent consists of 
the following components: deadline division, task sequencing, homomorphic security 
scheme, initial scheduling and Variable neighborhood Searching (VNS). The deadline 
division divides the deadline da of all IoMT applications into task deadlines based on 
their execution time on different computing nodes. All the tasks are sorted based on their 
requirements by the sequencing rules. The rules are earliest due date and cost of resources. 
We assigned the priority to each task in the following way: The homomorphic security 
method encrypts and decrypts security tasks locally on the devices. The Denial of Service 
(DoS) and surfing profiling handles and identifies an attack in the network. This way, 
we can save resource and time before offloading and scheduling in the system. Initial 
scheduling maps all tasks based on sorting and security requirements onto heterogeneous 
mobile edge cloud computing efficiently. After that, a VNS-based searching method 
improves the initial solution from candidate solutions. 

The resource layer consists of mobile computing, edge computing and cloud comput
ing. Resource-constrained mobile computing only executes security annotated tasks with 
private keys. Furthermore, delay-sensitive tasks are carried out using edge computing 
which locates the edge of the network with ultra-low latency. Finally, all delay-tolerant 
tasks are carried out using cloud computing. 

Table 2 describes the notation of the mathematical model of the considered problem. 
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Table 2. Mathematical notation of workflow and fine-grained tasks. 

Notation Description 

P The number of IoMT Workflow Applications 
a ath IoMT workflow application of A 

da The deadline of ath application 
V Total number of tasks 
Va Total number of tasks of application a 
i ith task of V 

Te The execution time of a task ii
 
Tc The communication time of a task i
i 
wi The workload of a task i 
di The deadline of a task i 
S Set of security tasks 
L Set of delay-sensitive tasks 

DR Set of delay-tolerant tasks 
M The heterogenous computing nodes (e.g., mobile edge cloud) 
j The jth computing node 

ζ j The processing speed of computing node j 
R The resource of computing nodes 
r The resource particular r 

N Total number of task 
T Set of all tasks 
ti The tth task of T 

M Number of virtual machines 
vj jth virtual machines in a server 
ζ j Speed of jth virtual machine 
pj Power of jth VM 
si Size of each task 

ETi Execution time of task ti 
f m Faster machine 
sm Slower machine 
ETi Processing time of task ti 

E f m Task ti execution time on the faster machine 
i,j
 

Esm
 Task ti execution time on the slower machine i,j 
FTj,k kth task finish time on VM vj 

Fi Finish time of ti 

F f m Task finish time on the faster machine 
i 

Fsm Task finish time on the slower machine i 
Fi Task ti estimate finish time 
di Deadline of task ti 

Ei,j Consumed energy of task ti on VM vj 
Ωvj Total execution time of a set of tasks on VM vj 

Tslack 
i Task ti slack time 

This study considered two types of application workloads with different processes 
such as fine-grained tasks and workflow tasks. 

3.1. Fine-Grained Tasks 

The healthcare fine-grained tasks have their data, deadlines, and required CPU per 
execution during the process. Each fine-grained task is isolated; it needs a separate function 
to run its operation. The fine-grained task shown in Figure 2 has three types of tasks: secure 
tasks, delay-sensitive tasks, and delay-tolerant tasks. 
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Figure 2. Hybrid IoMT workload of tasks. 

The study makes the Problem Formulation of Workflow Tasks in the following way. 
The paper investigates P number IoMT workflows applications, i.e., {a1, a2, . . . , aP}. 

The directed acyclic graph, i.e., a(V, E) illustrates constraint rules of applications, where 
i illustrates a particular task, and e(i, j) ∈ E represents the communication nodes among 
different tasks. There are certain rules in IoMT tasks: (i) a task i should finish before 
starting task j. Furthermore, some tasks use original data and some of them have generated 
data. The notation wi is an original datum of a particular task, and wi,z generated data of 
precedence during execution. Each IoMT application a categorized tasks into three lists: 
(i) security list S = {si = 1, . . . , S ∈ Va}, delay-sensitive tasks (ii) L = {li = 1, . . . , L ∈ Va}, 
and delay-tolerant tasks DR = {dri = 1, . . . , DR ∈ Va}. 

The present paper discusses the scenario of real-life healthcare IoMT applications, 
as shown in Figure 3. In the system model, there are three types of task lists: (1) secure 
tasks, i.e., S = {si = 1, . . . , S ∈ Va}, which must be encrypted and decrypted locally 
by IoMT devices; (2) delay-sensitive tasks, i.e., L = {li = 1, . . . , L ∈ Va}, which must 
be performed on edge nodes because of their latency requirements; (3) delay-tolerant 
tasks, i.e., DR = {dri = 1, . . . , DR ∈ Va}, which are offloaded to the public cloud for 
execution. There are three layers in the system: the edge layer, where all organizations 
such as hospitals, clinics, and any medical centre use different IoMT devices to run IoMT 
applications. These applications secure data locally on their own devices, and delay-
sensitive tasks are offloaded via an access point (e.g., wifi) to the edge layer for execution. 
Furthermore, via the internet, all applications offloaded their tasks to the public cloud. 
The categorized tasks we already defined in detail above. 
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Figure 3. Hybrid IoMT tasks aware system. 

The work takes M types of computing nodes, i.e., M = {j = 1, . . . , jM}. They 
all are distinct by their features (e.g., speed and storage). Each computing node j has 
fixed homogenous virtual machines {VM = 1, . . . , M}. We denote the speed factor of all 
computing nodes in the following way, i.e., ζ j{ζ j1, . . . , ζ j}, whereas the work shows the 
computing nodes resources in the following way, e.g., R = {r = 1, . . . , rR}. We determine 
the execution time of a particular task in the following way. ⎧ ⎪⎪⎨ ⎪⎪⎩ 

wi , yi = 0,ζ j1×VM1 
wiTe = , yi = 1, (1)i ζ j2×VM2 
wi , yi = 2.ζ j3×VM3 

In Equation (1), the vector yi = 0 means the execution of a task in the local machine, 
e.g., yi = 1. It implies the performance of a task on the edge and yi = 2 executions of a task 
in the cloud. 

IoMT workflow applications have relationship and communication time requirements 
due to transferring of data between them. 

ec 

⎧⎨ ⎩ 

Local, zi = 0, 
LAN, zi = 1, (2) 
WAN, zi = 2. 

= {i,j} 
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Equation (2) determines the communication time between constraint tasks in workflow 
while sharing their data for execution. 

wi cTc 
i = × e{i,j}. (3)

Bw 

If two tasks i and j are being carried out in the local machine, there is no communi
cation time between them, i.e., zi = 0. If two tasks i and j are running on an edge LAN 
network, then there is a fixed communication time between them, i.e., zi = 1. Finally, if two 
tasks i and j are being carried out on a cloud WAN network, then there is fixed commu
nication time between them, i.e., zi = 2. The constraint (3) calculates the communication 
time between tasks i, j. We determine the finish time of a general task in the following way. 

FTi = max Te + Tc (4)i i . 
vj ∈pred(vi ) 

Equation (4) calculates the finish time of a task. 
We obtained the makespan of IoMT workflow applications as 

P S∈Va L∈Va DR∈Va E M 
MW =
 ∑∑∑∑∑∑ {FTi(exit)}, (5) 

a=1 si =1 li =1 dri =1 ei,j j=1

MW denotes the makespan of all IoMT workflow applications in Equation (5). 
The paper presents the problem mathematically as follows: 

min MW (6) 

which is subject to 
Equation (6) shows the objective function of each application. 

P S∈Va L∈Va DR∈Va E P 

∑∑∑∑∑ 
a=1 si =1 li =1 dri =1 ei,j

{FTi(exit)} ≤ ∑

(7)a=1 

da, ∀{a = 1, . . . P}. 

Equation (7) denotes the deadlines for completion of tasks of all applications. 

P S∈Va L∈Va DR∈Va M 

∑∑∑∑ wi ≤ ∑
r ∈ R. (8) 
a=1 si =1 li =1 dri =1 j=1 

Constraint (8) shows all the requested workloads of applications that must not exceed 
the limits of resources during execution. 

P 

∑
 
i=1∈Va 

xi = 0, 1, 2, ∀{j = 1, . . . , M}, (9) 

Constraints ((9), (10), and (11)) show that each task to be assigned to one node, 
and each node can execute one task at a time when it is successfully assigned to any 
particular node. 

M P 

∑
xi = 0, 1, 2, ∀
∑
 
j=1 a=1

{i = 1, . . . , Va}, (10) 

xi = {0, 1, 2}. (11) 
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3.2. Problem Formulation of Fine-Grained Tasks 

This study considers T number of fine-grained tasks, i.e., {t = 1, . . . , T}. Each task 
has a workload, e.g., Wt and td deadline. The number of fog cloud functions is represented 
by F = { f 1, f 2, . . . F}. Each function has a memory size of f m. The execution time of 
fine-grained tasks is determined in the following way. 

tw
τT = × j. (12)

ζ f m 

Equation (12) calculates the execution time of a task on the function in node j Therefore, 
the execution cost of all tasks is determined in the following way. 

T F 

∑
 
M 

∑
 
j=1 f =1 

tw 

ζ f m 
× τt. (13)C = ∑ 

1t= 

The functions can run on only computing nodes such as j1 to M. Therefore, the cost of 
the function is to be determined by the memory size and execution time as determined in 
Equation (13). 

3.3. Energy Consumption Computing Nodes 

This study determines the energy consumption due to virtual machines and partic
ular function nodes. Therefore, jw is the energy consumption per watt of node j to run 
virtual machines and functions. The power consumption of nodes is determined in the 
following way. 

T V M F 
E = ∑∑∑∑ τt × jw + Ti

e × jw. (14) 
t=1 v=1 j=1 f =1 

Equation (14) determines the energy consumption due to both the workflow and 
fine-grained tasks in the computing nodes. 

The study examines multi-objective problems such as energy, makespan, and lateness 
of both workflow and fine-grained jobs based on the suggested mathematical formula. 
As a result, multi-objective optimization is a subsection of multiple criteria decision mak
ing that deals with mathematical optimization problems that necessitate simultaneous 
optimizations of many objective functions. The Pareto frontier is used to construct the 
multi-objective problem. The Pareto frontier is an optimal technique for solving the prob
lem restrictions since the study has conflicting aims in the suggested system with various 
resources. No one solution simultaneously optimizes each objective for a nontrivial multi-
objective optimization problem. The objective functions are incompatible in this instance, 
and there are a (potentially infinite) number of Pareto optimal solutions. If there is no 
improvement in a single function value without deteriorating some of the other objective 
values, the key is nondominated, Pareto optimum, Pareto-efficient, or noninferior. All 
Pareto optimum solutions are deemed equally desirable without any additional subjective 
preference information. Many existing multi-objective optimization techniques from many 
problems suggested formulating and solving them. The goal could be to locate a repre
sentative group of Pareto optimal solutions, quantify the trade-offs in achieving several 
objectives, or identify a single solution that satisfies a human decision maker’s subjective 
preferences (DM). 

min Z = MW + C + E. (15) 

Equation (15) shows the objective functions of both workflow and fine-grained tasks. 

4. Proposed Security-Efficient Optimal Solution (SEOS) Algorithm Framework 

This work considers the IoMT workflow applications, where each application has 
three types of tasks: security tasks, delay-sensitive tasks, and delay-tolerant tasks. We 
analyze the heterogeneous computing nodes (e.g., mobile node, edge node and remote 
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cloud node) that are distinct by their speeds and resources. The advised problem is secure 
offloading and scheduling for IoMT workflow applications in heterogeneous computing 
nodes. This section proposes the Security-Efficient Offloading and Scheduling (SEOS) 
algorithm framework, which consists of different components to solve the considered 
problem. Initially, we divide the applications into task deadlines. In the second part, we 
sort all tasks into topological order based on the proposed three sequence rules. The third-
party offloading-based homomorphic encryption method encrypts and decrypts security 
tasks locally on the local devices. Due to precedence constraint requirements, the cypher-
text data of tasks are offloaded to the edge cloud for delay-sensitive tasks. The edge node 
applies computation on cypher-text instead of converting it into plaintext. The final part is 
local searching-based task scheduling, where all tasks are scheduled in different computing 
nodes. We explain the SEOS framework steps in the following algorithm, Algorithm 1. 

Algorithm 1: SEOS. 
Input : P = {a = 1, . . . , aP}, M = {j = 1, . . . , jM}, { f = 1, . . . , F}, 

{t = 1, . . . , T}; 
Output : min Z; 

1 begin 
2 

3 

4 

5 

6 

7 

8 

9 

10 

foreach (a to P & t = 1 to T) do 
Call Deadline Division Methods for workflows applications;
 
Prioritizing of Workflow and Fine-grained;
 
Call Secure Homomorphic Offloading Method;
 
Call Scheduling Method;
 
Calculate Z ← a ← j based on Equation (6);
 
Call Search Z ← Z∗;
 
Call DGCN Scheme;
 

return Z∗; 

11 End-Loop; 

All steps of Algorithm 1 are detailed as follows: 

• Initially, the algorithm takes the input of all IoMT applications and computing nodes; 
• Divide the deadline of all applications into task deadlines; 
• Sort all tasks based on the proposed topological sequences rules; 
• Use the security method to encrypt and decrypt tasks locally; 
• Use the scheduling method to search and schedule all tasks with the optimal makespan. 

4.1. Deadline Division 

The deadline division is a way to divide the application deadline into task deadlines; 
this way, we can achieve the quality of tasks based on their deadlines. For example, we 
split the applications into the following form. 

A daratio = ∑
 , (16) 
a=1 

A Va 

Z 

∑
∑

/eT = Ti

e × ratio, (17)i 
a=1 i=1 

/ cT = Tc 
i × ratio,i (18) 

/edi = min({idj}) − T (ij) − T/i (c)i 

∀i = 1 ∈ Va∃j ∈ successor(i). 
(19) 
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Initially, we obtained the ratio of all applications based on Equation (16), which 
determines the division of the deadline of each application with the makespan of the 
application. This way, we assigned the deadline to each task based on the execution time 
and communication based on executions ((17)–(19)). 

Algorithm 2 divides the deadline of all applications into task deadlines to obtain the 
optimal makespan of each application onto heterogeneous computing nodes. 

Algorithm 2: Deadline division method. 

Input : Z, P = {a = 1, . . . , aP}, da ∈ A; 
1 begin 
2 

3 

4 

5 

6 

foreach (a = 1 ∈ P) do 
ratio = d

Z
a ∈ a; 

/ eT = Ti
e × ratio;i 

/ cTi = Ti
c × ratio; 

edi = min({idj}) − T
/ 
(ij) − Ti

/(c);i 

7 End-Loop; 

4.2. Task Sequencing 

In this section, we introduce task sequencing rules based on the following methods. 
Earliest Due Date (EDD) is exploited to order the tasks in a deadline manner. Each task 
is prioritized via Equations (20) and (21). Smallest Process First (SPF) is exploited when 
the smallest processing task is assigned the highest rank and scheduled before the longest 
process task. Smallest Slack Time First (SSTF) method shows the remaining time between 
finish time and the actual deadline should be smaller when a task i is scheduled on the 
same paradigm. We assigned the priority to each task in the following way: 

Priority(vi) = datai + max Rank(vj), (20) 
vj ∈succ(vi ) 

Priority(vi) = datai, vi ∈ V. (21) 

We assume that the wi is equal to whether ordinal data or generated of the task i 
during priority assignment. Both Equations (20) and (21) define the priority of all tasks 
from entry the task i to exit V by considering all predecessors and successors of the given 
application. Initially, we sort the topological priority of tasks in the following way. 

• All workflow tasks sort out by descending order by their deadlines; 
• All fine-grained tasks sort out by their deadlines. 

We tried all sequences during initial task scheduling until submitted tasks are satisfied 
by the given requirements. 

4.3. Security Aware Offloading Method 

The Homomorphic Encryption [32] is a tool that allows computation on encrypted 
data of tasks. In this way, data of tasks remain private and confidential during offloading 
and scheduling at heterogenous mobile edge cloud networks. FHE encourages security-
sensitive applications to work with sensitive data in untrusted environments. The geo
graphically distributed computation and heterogeneous mobile edge cloud networking; 
secure communication is a good indication related to the applications. 

When the data transfers to the cloud, we use standard encryption methods to secure 
the operations and the data storage. Our basic concept was to encrypt the data to the cloud 
provider before sending it back. However, at every transaction, the last one has to decrypt 
data. Therefore, the client will need to provide the server (cloud provider) with the private 
key to decrypt data before executing the required calculations, affecting the confidentiality 
and privacy of data stored in the cloud. 
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The secure homomorphic Algorithm 3 takes as input a list of security tasks S, which is 
annotated at the time of design. Algorithm 3 has the following steps. Firstly, it encrypts 
all security tasks of all applications locally and offloads them for assistance to external 
computing nodes. Secondly, the computing nodes apply the ciphertext instead of plaintext 
and then return them to the corresponding end-user devices. Finally, it will decrypt the 
results of encrypted tasks locally on the computers. 

Algorithm 3: Secure homomorphic offloading. 

Input : All security tasks (wi, Si = {i = 1, . . . , S ∈ Va}); 
Output : DoS = 0 

1 begin 
2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

foreach (i = 1 S) do 
DoS ← 1 Denial of Service Attack present; 
p ← large integer; 
q ← large integer; 
p  = q; 
n ← p × q ; 
φ(n) = (p − 1) × (q − 1); 
if (DoS = 0) then 

Choose an integer € when 1 < €φ(n); 
if (Ti

e + Ti
c ≤ di) then 

Offloader Engine ;
 
ec(wi ← si) = si

b mod n;
 

else if (ec(wi ← si)! empty) then 
Decrypted all tasks; 
dc(iy) = iy

a mod n; 

End inner loop; 

else 
DoS=1;
 
Waiting for offloading;
 

21 End Main; 

In this paper, we suggest implementing a system for performing operations on en
crypted data without decrypting them, which will produce the same results after calcula
tions as if we were directly operating on the raw data. Homomorphic encryption systems 
are exploited to execute encrypted data operations without understanding the private key 
(without decryption); the client is the sole owner of the secret key. 

In the considered problem, the study considered the homomorphic encryption in 
the following condition. If Enc (a) and Enc (b) are used to estimate Enc (function (a, b)), 
where function can be: +, x, and outwardly practicing the private key. Moreover, additive 
homomorphic encryption considers raw data additions is the Pailler. 

P 

∑
V ∑
Dci(Eci(n) × Eci(m)) = n × m OR Enc(si ⊕ sj) = 
v=1 a=1 

Enc(si) ⊕ Enc(sj). 
(22)

T 

∑
Dct(Ect(n) × Ect(m)) = n × m OR Enc(si ⊕ st) = 
t=1 

Enc(st) ⊕ Enc(st). 
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Equation (22) is called additive homomorphic encryption. 

P 

∑
V ∑
Dci(Eci(n) × Eci(m)) = n + m OR Enc(sx ⊕ sy) = 
v=1 a=1 

Enc(tx) ⊕ Enc(ty). (23) 
∑
TDct(Ect(n) × Ect(m)) = n + m OR Enc(sx ⊕ sy) = 
t=1 

Enc(tx) ⊕ Enc(ty). 

In contrast, Equation (23) is multiplicative homomorphic encryption. An algorithm is 
fully homomorphic if both properties are satisfied simultaneously. 

For the multiplicative homomorphic encryption,let us assume that n = pq, where 
p and q integer primes. Then, we choose a and b keys such that ab = 1, i.e., (mod φ(n)). 
In contrast, b and n represent the public key, and p, q, and a denote the private key. We 
encrypt sensitive tasks in the following way. 

V P 
ec(six) = ∑
∑
 sib 

x mod n. 
v=1 a=1 (24)

T 
ec(six) = ∑
sib 

x mod n. 
t=1 

N 
dc(siy) = ∑
sia 

y mod n.	 (25) 
i=1 

Equations (24) and (25) show the encryption and decryption of a task. We suppose 
that si and sj are plaintexts of task i and j; then, we denote as follows 

b bec(si) ec(sj) = s sj mod n = (si, sj)
bmod n = ec(si, sj). (26)i 

We define the FHE security scheme in Algorithm 3 as follows: 

•	 Let us assume the algorithm takes the si and sj inputs as the security tasks, and they 
require encryption locally on the IoT devices; 

•	 p and q are long integers exploited during the encryption round. n is cross multiplica
tion during block-switching performed from lines 2 to 6; 

•	 € is a small positive number employed for variation in the ordinal 64-bit block of 
encryption. At the same time, gdc and mod functions perform the fully homomor
phic operation; 

•	 The algorithm performs encryption on security tasks from lines 7 to 15. The list was 
added after all were encrypted after applying the security mechanism. The offloader 
engine is a method used inside devices which offloads the ciphertext of tasks to the 
system for further computations. Once the calculation was practiced on ciphertext, 
and the result was sent back to the devices, and they all decrypted on devices with 
their private keys; 

•	 DoS is the profiling that identifies denial of service in the system; if it is 1 it means 
there is a risk of attack else, otherwise it will remain zero. 

4.4. Initial Task Scheduling 

The initial scheduling is not the final scheduling of all tasks, and they can resched
ule heterogeneous mobile edge cloud networks (e.g., heterogeneous computing nodes). 
The initial scheduling depends upon the deadline division component, task sequencing 
and security scheme. We propose the iterative scheduling algorithm, Algorithm 4, which 
shows the process of scheduling tasks under their requirements. 

Algorithm 4 performs the scheduling in the following way: 
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•	 Initially, the algorithm conducts deadline division, which shows the deadline of 
each task; 

•	 All tasks schedule based on given sequences by sequence rules methods; 
•	 All local tasks are encrypted and decrypted by the homomorphic security method 

and executed locally in the devices; 
•	 The delay-sensitive tasks are scheduled at the edge node; this is necessary for all nodes, 

and the requested workload must be less than their resources during processing;. 
•	 All delay-tolerant tasks are to be scheduled at the public cloud for execution; 
•	 The algorithm iteratively allocates all tasks to heterogeneous computing nodes and 

calculates the makespan of each IoMT workflow application at initial scheduling. 

Algorithm 4: Deadline-efficient scheduling. 

Input : Z, P = {a = 1, . . . , aP}, da ∈ P, t = 1, T, f = 1, F; 
1 begin 
2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

foreach (j = 1 in M) do 
Call Deadline Algorithm 2; 
call ordering and prioritizing of tasks; 
foreach (si in S ∈ Va) do 

if (si ≤ di &wi ≤ r ∈ j) then 
Calculate execution time of local tasks based on Equation (4);
 
Call FHE Scheme;
 
Optimize objection based on Equation (6);
 
calculate the objective function in the following way;
 
Z ← vi ← j&t ← f ;
 
Z ← si ← r;
 

foreach (li in L ∈ Va) do 
if (li ≤ di &wi ≤ r ∈ j) then 

Calculate execution time of delay-sensitive tasks based on 
Equation (4);
 

Optimize objection based on Equation (6);
 
Z ← li ← r;
 

foreach (dri in DR ∈ Va) do 
if (dri ≤ di &wi ≤ r ∈ j) then 

Calculate execution time of local tasks based on Equation (4);
 
Optimize objection based on Equation (6);
 
Z ← dri ← r;
 

23 End-Loop; 

4.5. Searching Optimal Solution-Based VNS 

The variable neighborhood Search (VNS) solves the initial scheduling when tasks are 
distributed and allocated to different computing networks. It traverses distant neighbor
hoods of the current obligatory solution, i.e., Z, and proceeds from beyond the new key 
if any improvement is made. Algorithm 5 is a global search iterative algorithm that im
proves the current solution with the new one via variable temperatures. If the temperature 
decreases, the makespan of applications reduces the initial schedule with the new key. 

Algorithm 5 has the following steps to reach the optimal solution: 

•	 The algorithm takes the initial cost of each application with the initial solution C; 
•	 The temperature tmp is a variable whose initial value = 100; it reduces to near zero, 

as tmp minimizes the cost of each application minimizes; 
•	 The set of candidate solutions, i.e., N, and C/ is a new solution with available costs 

compared with the initial solution C; 
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Δ 
•	 The Boltzmann constant, i.e., rand(0, 1) ≤ e tmp is an acceptance method; it allows one 

to replace the original solution with a new one with the minimum exponential rate 
and temperature tmp. The rate of change in Δtmp temperature could be minimized or 
increased depending upon the situation; 

•	 If the solution reached the maximum level, no furthermore improvement is made, 
then the algorithm accepts C∗ as a final solution. 

Algorithm 5: Cost-efficient VNS searching. 

Input : C; 
Output : C∗; 

1 C ← i = 1 ∈ Va ∈ P, t = 1 ∈ T; 
2 f (C) ← Initial Solution ; 
3 C∗ Optimal solution; 
4 α cooling parameter; 
5 tmp ← tempreture = 1000∼500 ; 
6 iter ← 0; 
7 max ← 10 Maximum iterations; 
8 begin 
9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

while (tmp > 0) do 
while (iter ≤ max) do 

C/ ← randomly select neighbor solution C/ ∈ N(C); 
f (C/ )− f (C)Δ ← ;tmp 

if (Δ ≤ 0) then 
C ← C/;
 
if ( f (C/) ≤ f (C)) then
 

Swap current solution with new one; 
C ← C/ 

Δ 
else if (rand(0, 1) ≤ e tmp ) then 

C ← C/; 

else 
Stay with current solution; 

C∗ ← C;
 
iter ← iter + 1;
 
tmp ← tmp × (1 − α);
 

End Conditions; 
return C∗; 

27 End Loop; 

4.6. Energy-Efficient Scheduling 

All the nodes are ordered according to the power consumption in the network. In the 
first step, both fine-grained and workflow applications are scheduled based on their 
deadlines. In the second step, all the tasks are rescheduled based on their execution 
costs. Finally, in the third scheduling, all nodes are rescheduled according to their power 
consumption to minimize their power consumption without violence or service quality 
applications. Algorithm 6 reschedules all tasks based on computing nodes’ energy. In 
contrast, it is no matter if either the energy of node j is consumed due to virtual machines 
or functions for executing the workflow and fine-grained workload. Algorithm 6 ensures 
the energy-efficient scheduling without violating the deadline and cost of applications in 
the system. 
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Algorithm 6: Energy-efficient scheduling. 

Input : {j = 1, . . . , M}; 
1 begin 
2 

3 

4 

5 

6 

7 

8 

foreach (j = 1 in M) do 
Call Algorithm 4 verify the deadline of applications; 
Call Algorithm 5 proves the cost of applications; 
Apply Dynamic Voltage Frequency Scaling method to re-arrange the node 
according to their power consumption; 

Calculate the power consumption of nodes based on Equation (14); 
Schedule all workloads based on Algorithms 4 and 5; 

End of Assignment until all workloads checked respect nodes energy 
consumption; 

4.7. Multi-Objective Deep Graph Convolutional Network-Based Scheme 

These days, for graph-structured aware applications, the usage of deep convolu
tional networks have become extremely popular. As a result, multi-objective decisions 
based on heterogeneous resources and parameters of applications can be made efficiently. 
However, early neural networks could only be implemented with regular or Euclidean 
data, even though many data in the actual world have non-Euclidean graph structures. 
The nonregularity of data structures has driven recent advances in graph neural networks. 
As a result, graph neural networks have developed different variations in recent years, 
with Graph Convolutional Networks (GCNs) being one of them. GCNs are also one of the 
most fundamental graph neural networks variations. 

The study devises the weighting multi-objective nondominant schemes based on the 
deep graph convolutional network. Algorithm 7 shows the process of the proposed method 
with different steps. The algorithm has three layers: the input layer, deep convolutional 
layer, and output layer. According to the given scenario in Figure 4, the algorithm performs 
the following operations. 

Algorithm 7: Multi-objective weighting scheme based on a deep graph convolu
tional network. 

Input : { f = 1, . . . , F, VM} ← {j = 1, . . . , M}, {a = 1 ∈ P, t = 1 ∈ T}; 
1 begin 
2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

weight = {0.1, 0.2, . . . , 0.9}; 
Hl+1 deep convolutional layer; 
foreach (j = 1 in M) do 

The input model takes by model as the graph ; 
The variable features xj for individual node j;
 
Each deep convolutional network layer is the nonlinear function;
 
Hl+1
 = Z ← MW + E + C; 
Calculate the workloads and functions optimization based on Algorithms 

4–6; 
Z ← MW + E + C = {Hl+1 × Weight, . . . Hl+N × Weight}; 
if (Hl+1 = Z ← MW + E + C)>0.6 then 

Calculate the weight sum of all objectives should be optimal than 
existing weight in different convolutional layers; 

Z∗ ← MW + E + C = 
{MW.Hl+1 × Weight + E.Hl+N × Weight + C.Hl+N × Weight}; 

End of Inner Optimization; 

End of sum optimization ; 

16 End of main; 
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Figure 4. Multi-objective deep graph convolutional network-based scheme. 

•	 In the first step, the workload of all applications after initial scheduling will be 
considered an input; 

•	 All objectives have their weights concerning workloads and resources; 
•	 The resources are virtual machines and functions which are assigned based on their 

cost function; 
•	 The deep convolutional network chooses the best optimal weight of all objectives and 

sum them together. If the optimal weight is greater than the existing one, the multi-
objective weight of all objectives is optimal, e.g., Z∗; 

•	 All types of tasks such as delay-sensitive, delay-tolerant and security ones and their 
quality of service must be satisfied as defined in Figure 4. 

•	 Every 10 min, the multi-objective tasks will call to optimize each objective function 
based on the available weights in the network; 

•	 If the algorithm finds no further improvement, it will terminate the network with no 
further improvement in the system. 

5. Performance Evaluation 

This section shows the efficiency and effectiveness of the proposed work via the simu
lation results. Somehow, the simulation results are the same as a real-practice experiment 
in practice. The performance evaluation part consists of many sub-parts such as parameter 
setting, system implementation, component calibrations and result discussion. The paper 
explains sub-parts in detail to ensure an easy understanding of the experiment. 

5.1.	 Parameter Settings 

This subsection shows the experimental setup of the program configuration, lan
guages and computing nodes as shown in Table 3. All parameters are included in the 
implementation part, such as programs and algorithms, in the JAVA, Python and YAML 
languages. There are three computing nodes configured for the proposed architecture. 
For instance, mobile node (e.g., HTC G17 and Samsung 1997), edge node (e.g., Intel 5 laptop, 
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AndroidX86 runtime), and cloud node (e.g., AndroidX86 Amazon). We repeated all experi
ments 50 times with different parameters. Table 3 describes the simulation parameters of 
the experiment. 

Table 3. Simulation parameters. 

Simulation Parameters Values 

Languages JAVA, Python, YAML 
Simulation Time 6 h 

Experiment Repetition 50 times 
Mobile devices HTC G17 and Samsung 1997 

Edge Cloud Intel 5 laptop, AndroidX86 
Public Cloud AndroidX86 Amazon t2.medium 

zi = 1 10–30 ms 
zi = 2 100 ms 

t 1000∼500 

Furthermore, we extended the computing nodes resource specification into a different 
table, Table 4. The main goal of this is to offer the computing capability and resource 
availability of each node in the system. There are three types of resources: a likewise 
mobile node, edge node and cloud node. All nodes are distinct by their speeds and 
resource specifications. All resources of different computing nodes are fixed, and they 
cannot scale up and scale during runtime in the implemented system. 

Table 4. Heterogenous node resource specification. 

Resource Type Storage (GB) Core Speed (MIPS) 

Public Cloud 20,000 1 10,000 

Edge Cloud 50,000 1 5000 

Mobile cloud 100 1 1000 

5.2. Component Calibration 

There are three main layers in the proposed architecture, as shown Figure 1. However, 
the application layer and system layer components are included in the calibration to 
evaluate the performances of the entire system. The features are secure offloading, task 
sequencing, and task scheduling. In addition, the Relative Percentage Deviation (RPD) was 
adopted to measure the performances of the components, as mentioned earlier, to run many 
types of IoMT workflow tasks in the system. The RPD measures in the following way: 

Z − Z∗ 
RPD% = × 100%. (27)

Z∗ 

Equation (27) shows the overall performances of all applications using distributed 
computing (e.g., mobile, edge and cloud nodes). The Z is the initial scheduling in the 
system; however, due to roaming features of applications, the initial solution of scheduling 
could be replaced with optimal scheduling Z∗ during the searching for space in the solution. 
As we mentioned above, all answers are achieved via candidate solutions during global 
searching with limited iterations during the process. The RPD% is the difference between 
the initial and best solutions during the entire process. 

5.3. Iomt Workflow Tasks and Fine-Grained Tasks 

The study implemented both types of workloads such as workflow and fine-grained 
in the simulation configuration file. 

Figure 5 shows the interfaces of the system with the results of workflow dag tasks 
graph during execution in the system. 
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Figure 5. Workflow Interfaces of DAG Graph of different IoMT tasks. 

All tasks are workflows; some have original data, and some share their data for 
processing. All tasks are constrained by their predecessors and successors in the system. 

5.4. Workflow Tasks Generator 

In this paper, we consider only three types of tasks. All workflow applications are real 
IoMT applications, which are open source and available at GitHub: https://github.com/ 
OpenIoMeT/Iomet-wiki accessed on 1 July 2021. Initially, we analyzed all applications in 
DAG graphics with different types of tasks. The initial application is annotating notations 
(e.g., all types of tasks annotated at the design time). After that, we converted the IoMT 
workflow into a DAG graph, where blue nodes are security tasks (e.g., local tasks), light 
yellow nodes are edge tasks, and red nodes are remote tasks, and they have their execution 
time and communication time (e.g., ms and kb) due to precedence constraints. 

5.5. Discussion of Results 

This subsection compares the results of IoMT workflow tasks with the proposed 
framework with its components and existing offloading and scheduling frameworks. 
The discussion of component results starts with the following subsections. 

5.6. Secure Offloading Performance 

After the deadline division for each task, the security aware offloading applies security 
to the list of security tasks locally at the devices. We implemented fully homomorphic 
encryption and decryption methods that convert plaintext of security tasks into ciphertext 
in the application layer. Then, the offloader engine offloads those tasks to the system to 
be carried out further. The other performance means the ciphertext data of tasks are the 
inputs of different tasks in the system. Therefore, it is necessary, and we measured the 
accounts of the offloading method into two environments. The first environment is stable 
where there is no risk of hacking or Denial of Service (DOS) attacks; another environment 
is unstable where some chances of DoS exist in the network during offloading. In this case, 
we compared our proposed secure offloading schemes with the existing best security aware 

https://github.com/OpenIoMeT/Iomet-wiki
https://github.com/OpenIoMeT/Iomet-wiki
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offloading schemes, i.e., baseline 1 and baseline 2. In baseline 1, an RSA-based encryption 
method is implemented, which offloads tasks with encrypted data to the server, and then 
the server decrypts tasks with the key and performs computations. After the calculation 
again, the server encrypted tasks and sent them back to the devices, and then devices 
interpreted all tasks in the original form. This entire process is risky, and we can trust the 
untrusted cloud, and it is not good practice to leave essential data on the server. 

Figure 6a,b show that the proposed component (e.g., secure offloading) of the SEOS 
framework outperforms in any environment compared to the existing secure offloading 
techniques concerning resources and performance. The main reason behind this is that all 
existing baseline approaches only consider the security and require resources; however, 
the proposed secure offloading method encrypted and decrypted all tasks based on their 
deadlines and availability of resources. Furthermore, before offloading to any nodes, we 
anticipated the available network which was either secure or not in the system. Our 
approach can stabilize and be unstable because we care about resource utilization, tasks’ 
QoS and network stability before sending data to the surrogate edge or remote servers. 
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Figure 6. Security aware performances. 

A denial of service (DoS) outbreak happens whenever verifiable applications can not 
access their edge nodes or remote nodes resources for further execution due to either a cyber 
attack or network attack in the system. These nodes may be concerned by any attack and not 
able to respond. A denial of service attack may harm both resources and time even though 
tasks are encrypted. With this consideration, the proposed secure offloading method, including 
encryption decryption and deadline, detects and anticipates any attack before offloading via 
network monitoring and surfing profiling at the local device. It may save our resources and 
time during offloading in all kinds of environments. Therefore, Figure 7a–d show that the 
component of SEOS outperforms in terms of resource utilization and the deadlines of tasks, 
and identifies DoS in advance, in contrast to all existing approaches which considered only 
encryption and decryption and resources without deadlines and availability of DoS attack. 
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Figure 7. Security aware performances. 

Figure 8a,b show that the proposed task sequence rules adopt initial sorting and 
dynamic sorting to maintain the deadline of tasks for the runtime. Therefore, it is necessary 
to execute all tasks under their deadlines with a minimum loss of generosity. 
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Figure 8. Deadline aware performances. 

5.7. Task Scheduling 

Based on security-efficient offloading, sorting with different rules, task scheduling is 
the final phase where all tasks must be completed with precedence and deadline constraints. 
We set four flows of IoMT tasks with different numbers for scheduling. These tasks 
have different types, as we discussed above. The goal of the study is to minimize the 
makespan of all applications. We consider the four various applications with a different 
number of tasks. Each application has three different types of tasks and deadlines with 
constraint rules. Somehow, a few tasks are executed in parallel order, and few tasks are 
performed in the sequencing order; it depends upon the application order. We implemented 
Heterogeneous Earliest Finish Time (HEFT) and genetic algorithm (GA) as the baseline 
1 framework, and Dynamic Heterogeneous Earliest Finish Time (DHEFT) and particle 
Swarm Optimization framework as baseline 2. These frameworks are widely investigated 
for traditional and mobile workflow applications in the literature. These frameworks offer 
different components to run mobile workflow applications in additional steps, such as 
task sequencing and scheduling. We ran all applications with other frameworks (e.g., 
SEOS, baseline 1 and baseline 2), the results of all applications with their objectives can be 
seen in Figure 9a–d. Each application has different requirements, such as security, latency, 
and resources to run its tasks. However, the SEOS outperforms all existing frameworks in 
terms of all makespans and the needs of all applications. 
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Figure 9. Makespan aware performances of all applications. 

The main reason for this is that all existing algorithm frameworks have some races 
in the encryption and decryption format. They consume many resources and time to run 
different types of tasks (Figure 10): (i) Encryption of all tasks locally with the sharing 
key and offloading to the surrogate server for further execution. The server decrypts 
all tasks with a shared key and applies computation on plaintext instead of ciphertext. 
After the calculation, the server again encrypts tasks into ciphertext and send back their 
results. Furthermore, local devices decrypt the result into plaintext with the key. This 
way, the authentication, time and resources are challenging and uses at extending level. 
(ii) All existing studies partition the application into different types of tasks at the runtime 
based on various parameters (e.g., deadline, availability of resources, network contexts). 
However, due to the dynamic environment and load balancing situation in computing, 
these techniques benefit from lower running time and waste of resources. (iii) The loss 
of deadline and failure ratio of tasks in the system becoming very high. Therefore, the 
proposed SEOS partitioned the application at the design level to security, latency and 
resource requirements of all applications efficiently and ran them in the heterogeneous 
computing node during execution. 
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Figure 10. Fine-grained tasks. 

6. Conclusions 

This work proposed a new healthcare architecture based on workflow applications 
based on heterogeneous computing nodes, consisting of different layers: an application 
layer, management layer, and resource layer. The goal is to minimize the makespan of all 
applications. Based on these layers, the work proposed the secure offloading-efficient task 
scheduling (SEOS) algorithm framework, which includes the deadline division method, 
task sequencing rules, homomorphic security scheme, initial scheduling, and variable 
neighborhood searching method. The performance evaluation results show that the pro
posed plans outperform all existing baseline approaches for healthcare applications in 
terms of makespan. The discussion of the results showed that the proposed idea and 
SEOS framework outperformed all IoMT applications’ existing methods in heterogeneous 
computing nodes. The discussion of results and comparison has been made via different 
components based on HSD and ANOVA famous techniques. However, there are few things 
to be improved in the future. 

This work did not consider the mobility aware offloading and scheduling for IoMT 
workflow in a heterogeneous computing node environment. The runtime uncertainty in 
the network contexts, load balancing, failure of tasks situation will be future work of our 
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study. We will design deep reinforcement learning architecture and framework, which will 
include policy, Q-deep learning, and different methods. 
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