

Hybrid Workload Enabled and Secure
Healthcare Monitoring Sensing Framework
in Distributed Fog-Cloud Network

Lakhan, A., Mastoi, Q., Dootio, M. A., Alqahtani, F., Alzahrani, I. R.,
Baothman, F., Shah, S. Y., Shah, S. A., Anjum, N., Abbasi, Q. H. &
Khokhar, M. S.

Published PDF deposited in Coventry University’s Repository

Original citation:
Lakhan , A, Mastoi, Q, Dootio, MA, Alqahtani, F, Alzahrani, IR, Baothman, F, Shah, SY, Shah,
SA, Anjum, N, Abbasi , QH & Khokhar, MS 2021, 'Hybrid Workload Enabled and Secure
Healthcare Monitoring Sensing Framework in Distributed Fog-Cloud Network', Electronics
(Switzerland), vol. 10, no. 6, 1974.
https://dx.doi.org/10.3390/electronics10161974

DOI 10.3390/electronics10161974
ESSN 2079-9292

Publisher: MDPI

This is an open access article distributed under the Creative Commons Attribution License
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

https://dx.doi.org/10.3390/electronics10161974

electronics

Article

Hybrid Workload Enabled and Secure Healthcare Monitoring
Sensing Framework in Distributed Fog-Cloud Network

Abdullah Lakhan 1 , Qurat-ul-ain Mastoi 2,* , Mazhar Ali Dootio 1, Fehaid Alqahtani 3, Ibrahim R. Alzahrani 4,
Fatmah Baothman 5 , Syed Yaseen Shah 6, Syed Aziz Shah 7, Nadeem Anjum 8 , Qammer Hussain Abbasi 9

and Muhammad Saddam Khokhar 1

����������
�������

Citation: Lakhan, A.; Mastoi, Q.-u.-r.;

Dootio, M.A.; Alqahtani, F.;

Alzahrani, I.R.; Baothman, F.; Khokar,

M.S.; Shah, S.Y.; Shah, S.A.; Anjum,

N.; et al. Hybrid Workload Enabled

and Secure Healthcare Monitoring

Sensing Framework in Distributed

Fog-Cloud Network. Electronics 2021,

10, 1974. https://doi.org/10.3390/

electronics10161974

Academic Editors: Calogero Maria

Oddo and Rui L. Aguiar

Received: 15 June 2021

Accepted: 10 August 2021

Published: 17 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil

iations.

1	 Research Lab of AI and Information Security, Benazir Bhutto Shaheed University Lyari,

Karachi 74660, Pakistan; abdullahrazalakhan@gmail.com (A.L.); mazharaliabro@bbsul.edu.pk (M.A.D.);

saddam_khokhar@hotmail.com (M.S.K.)

2 Faculty of Computer Science and Information Technology, University of Malaya,
Kuala Lumpur 50603, Malaysia

3 Department of Computer Science, King Fahad Naval Academy, Al Jubail 35512, Saudi Arabia;
F-alqahtani@rsnf.gov.sa

4 College of Computer Science and Engineering, University of Hafr Al Batin, Al Jamiah,
Hafar Al Batin 39524, Saudi Arabia; ialzahrani@uhb.edu.sa

5 Faculty of Computing and Information Technology, King Abdul Aziz University, Jeddah 21431, Saudi Arabia;
fbaothman@kau.edu.sa

6 School of Computing, Engineering and Built Environment, Glasgow Caledonian University,
Glasgow G4 0BA, UK; syedyaseen.shah@gcu.ac.uk

7 Research Center for Intelligent Healthcare, Coventry University, Coventry CV1 5RW, UK;
Syed.shah@coventry.ac.uk

8 Department of Computer Science, Capital University of Science and Technology, Islamabad 44000, Pakistan;
Nadeem.anjum@cust.edu.pk

9 James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK;
Qammer.Abbasi@glasgow.ac.uk

* Correspondence: quratulain.mastoi@siswa.um.edu.my

Abstract: The Internet of Medical Things (IoMT) workflow applications have been rapidly growing
in practice. These internet-based applications can run on the distributed healthcare sensing sys
tem, which combines mobile computing, edge computing and cloud computing. Offloading and
scheduling are the required methods in the distributed network. However, a security issue exists
and it is hard to run different types of tasks (e.g., security, delay-sensitive, and delay-tolerant tasks)
of IoMT applications on heterogeneous computing nodes. This work proposes a new healthcare
architecture for workflow applications based on heterogeneous computing nodes layers: an appli
cation layer, management layer, and resource layer. The goal is to minimize the makespan of all
applications. Based on these layers, the work proposes a secure offloading-efficient task scheduling
(SEOS) algorithm framework, which includes the deadline division method, task sequencing rules,
homomorphic security scheme, initial scheduling, and the variable neighbourhood searching method.
The performance evaluation results show that the proposed plans outperform all existing baseline
approaches for healthcare applications in terms of makespan.

Keywords: ethereum security; privacy; smart contract; rules; distributed

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1. Introduction

Nowadays, the usage of medical devices based on the Internet of Medical Things
(IoMT) network to deal with healthcare issues has been growing progressively [1]. The IoMT
is a network that is composed of medical sensors, wireless technology and distributed cloud
computing technologies [2]. Therefore, the combination of IoMT and healthcare devices
can improve the quality of human life and provide better care services and create a more
cost-effective system [3]. Recently, many IoMT-based applications have been developed

Electronics 2021, 10, 1974. https://doi.org/10.3390/electronics10161974	 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1833-1364
https://orcid.org/0000-0001-8009-6580
https://orcid.org/0000-0003-0344-1007
https://orcid.org/0000-0001-6470-075X
https://orcid.org/0000-0002-7097-9969
https://orcid.org/0000-0001-7489-0542
https://www.mdpi.com/\gdef 10.3390/electronics10161974{?}type=check_update&version=1
https://doi.org/10.3390/electronics10161974
https://doi.org/10.3390/electronics10161974
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10161974
https://www.mdpi.com/journal/electronics
mailto:Qammer.Abbasi@glasgow.ac.uk
mailto:Syed.shah@coventry.ac.uk
mailto:syedyaseen.shah@gcu.ac.uk
mailto:saddam_khokhar@hotmail.com
mailto:abdullahrazalakhan@gmail.com

Electronics 2021, 10, 1974 2 of 28

by different shareholders to deal with other diseases, such as E-healthcare sensor-based
applications and E-real-time-healthcare applications [4]. These healthcare applications
have different classes, such as workflow or fine-grained classes, while providing services to
the users [5]. The IoMT workflow is a complete process where all tasks are dependent on
each other. At the same time, fine-grained-based applications have only one independent
task process. For instance, a heartbeat task or ECG monitoring task [6].

As mentioned above, the IoMT is a distributed network that combines different
technologies such as medical devices, wireless technology, and cloud computing. These
healthcare applications are distributed and implemented in different places (e.g., fog cloud
nodes). However, they execute onto geographically distributed network [7]. One of the
main concerns is resource-constraint issues in devices (e.g., limited storage, small CPU,
and short bandwidth utilization) and cannot execute applications locally [8]. Offloading
is a way that migrates compute-intensive tasks of applications to distributed computing
nodes for further execution via wireless technologies (e.g., WiFi, LTE, and others). Cloud
computing is a crucial paradigm in the IoMT network, which allows devices to offload
their compute-intensive and rich-resource computing for execution [9]. However, each
application has different kinds of tasks, e.g., a set of security tasks, delay-sensitive tasks,
and delay-tolerant tasks). Therefore, except for delay-tolerant tasks, the rest of them cannot
be used on the remote cloud due to long latency and security risks. Fog computing is an
extension of cloud computing which brings remote capabilities of the cloud at the edge of
wireless network which is in proximity to users devices [10]. However, all delay-sensitive
tasks can perform fog computing, but security tasks have security risks due to open
wireless networks. Generally, one of the best solutions is offloading a set of security risk
tasks that often perform at the local device and sending their data to the cloud for further
execution [11]. The current cloud computing model offers services based on demand with
some time limitations, for instance, weekly, monthly, yearly, with a set of constraints. Every
time, the users do not use cloud services. However, services are still paid for due to the
rent of services in advance [1]. Serverless computing is a new cloud cost model in which
the cloud provider provides machine resources on-demand and manages the servers on
their customers’ behalf. Serverless computing does not store resources in volatile memory;
instead, it performs the computation in brief bursts, with the results saved to a disc. There
are no computer resources given to an application when it is not in use. The cost of an
application is determined by the number of resources it consumes. It may be a type of utility
computing. In the sense that cloud service providers still employ servers to provide code
for developers, “serverless” is a misnomer. On the other hand, developers of serverless
applications are not concerned with the container, VM, or physical server capacity planning,
configuration, management, maintenance, fault tolerance, or scaling. In the literature,
many studies [2,3,5,7,8,11,12] proposed different systems, architectures, and heuristics-
based IoMT network to solve the offloading and scheduling problem of workflow and
fine-grained applications. These studies improved devices’ battery lives, offloading cost
and the obtained Service Level Agreement (SLA) and Quality of Service (QoS) applications
during their problem formulation. They optimized the energy, makespan and cost of
applications. However, many challenges still exist which are needed to be overcome in
the IoMT network. (i) All existing efforts only consider either a workflow application or
fine-grained application at any one time. However, modern devices can provide support to
both simultaneously, but existing IoMT systems cannot. (ii) Current studies only focus on
offloading efforts; they widely ignore the performance of remote computing nodes such as
fog and cloud, which greatly impacted users’ performances and cost. For instance, existing
fog and cloud are offered on-demand as-you-pay and services are informed on virtual
machines. This resource-provisioning model is very costly for fine-grained tasks where
they need only usage-based services instead of monthly and yearly contract-based services.
(iii) Existing resource allocation policies of theses studies [2,3,7,9,10,12–14] in the IoMT
network only make offloading decisions at the user level and based on the threshold.
However, optimal scheduling and failure aware mechanisms at the distributed computing

Electronics 2021, 10, 1974	 3 of 28

node level are widely ignored. Due to this, the failure ratio of tasks and deadline of
applications are missed over a wide range. This paper proposes a novel scheduling system
for mixing fine-grained and workflow IoMT tasks in distributed and virtual machine-
based mobile edge cloud networks to cope with the issues mentioned earlier. This work
considers both workflow and fine-grained tasks simultaneously, the proposed serverless
functions and a virtual machine aware service environment in a distributed mobile edge
cloud network. The function as a service (FaaS) is a cost-efficient model for fine-grained
tasks which pay for the execution of tasks rather than provisioning for monthly or yearly
for not using tasks. For the workflow tasks, the virtual machine-based solution has been
proposed in the system. Each application is divided into three types of tasks: security
tasks, delay-sensitive tasks, and delay-tolerant tasks. The proposed IoMT system consists
of different paradigms such as mobile computing, fog computing, and cloud computing
based on task types. The study’s goal is to minimize both makespans of applications and
the cost of the system during problem formulation. In summary, this paper makes the
following contributions to solve the scheduling problem.

•	 Initially, the study devises the mathematical model of hybrid work of IoMT applications
with many objectives. The hybrid workloads consist of fine-grained and workflows
tasks, and the multi-objective functions are makespan, cost, and energy consumption.
Each objective function has different weights to optimize the IoMT for each application;

•	 The study devises three-phase level scheduling methods such as deadline-efficient,
cost-efficient and energy-efficient ones in the IoMT system to optimize the overall
system in the network;

•	 To maintain the security requirements of fine-grained and workflow workloads,
the fully homomorphism Encryption (FHE)-enabled security is suggested to ensure
the security in IoMT for all applications;

•	 To optimize all objectives together, the study devises the deep graph convolutional
network-enabled weighting scheme to boost and optimize the study’s overall nonlin
ear objective functions in different convolutional networks.

The sections are organized as follows. Section 2 presents existing studies related to the
considered problem. Section 3 defines all steps of the problem formulation. Section 4 outlines
the proposed methods and their solutions. Section 5 illustrates the performance evaluation
of techniques on different workflow benchmarks. Section 6 presents the conclusion of
the paper.

2. Related Work

For many years, Internet of Medical Things (IoMT) frameworks or systems have
gained significant traction in various medical sectors. Many different sorts of healthcare
workloads are taken into account in the IoMT to tackle various scheduling and offloading
issues. Workflows, applications, services, and fine-grained and coarse-grained models
are examples of workloads. The IoMT consists of different heterogeneous computing
nodes where a connection between computers or computer programmes is known as an
application programming interface (API). It is a form of software interface that provides a
service to other programmes. An API specification is a document or standard that defines
how to create such a connection or interface. An API is implemented or exposed by a
computer system that meets this standard. The term API can be used to refer to either the
specification or the implementation. As a result, as indicated in Table 1, there are different
multi-objective techniques for each workload, each with its own set of restrictions and
security requirements.

Electronics 2021, 10, 1974 4 of 28

Table 1. Existing offloading methods.

Study Workload Constraint Method Environment Security

[1] Workflow Deadline Weighting Remote Cloud VMs RSA

[2] Coarse-Grained Resource Constraint Edge VMs DES

[3] Independent Budget Goal-
Programming Cloudlet VMs CRC32

[4] Fine-Grained QoS Min-Max Edge VMs DES

[5] Workflow Deadline VEGA Fog VMs RSA

[6–8] Workflow Deadline GA Remote Cloud VMs RSA

[9–14] Coarse-Grained Lateness PSO Fog Container RSA

[15–20] Coarse-Grained Cost Ant-Colony Fog Container MD5

[21] Application Deadline Weighting Remote Cloud VMs Athentication

[22] Services Deadline Evolutionary Remote Cloud VMs Authorization

[23] API Deadline GA Fog VMs RBS

[24,25] Model Cost Min-Max Open Fog Cloud VMs 3-DES

[26] Workflow Tardiness MOEA Edg-Cloud VMs SHA-256

[27] Workflow Deadline NSGA-II Edge-Cloud VMs SHA-32

Proposed Workflow,
Fine-Grained

Deadline, Cost,
Energy DGCN Cloud VM, Fog

Functions FHE

In the study of [1], the workflow application, deadline constraint, weighting method,
and remote Cloud VMs along with the RSA security mechanism aware IoMT system
are suggested. The objective is to offload healthcare data with their deadlines on the
cloud servers. The study of [2] suggested IoMT-based coarse-grained healthcare work
loads, with resource constraints and the programming aware constraint method on latency
optimal edge nodes. The study implemented a DES security mechanism for offloaded
workloads in the system. The goal is to minimize end to end latency. The study of [3]
suggested IoMT based on the independent healthcare workload, budget objective, goal-
programming multi-objective method, latency optimal cloudlet deployed virtual machines
and CRC32 security mechanism. The aim is to minimize end to end latency. Refs. [4,5]
suggested an IoMT system based on workflow that is fine-grained and quality of service
(QoS) aware, as well as a min-max multi-objective method and distributed edge imple
mented virtual machines and DES and RSA security for healthcare applications. The goal
is to minimize resource consumption and energy and delay the objectives of the study.
The vector evaluated genetic algorithm (VEGA) allows dealing with multiple objectives.
However, the min-max algorithm only achieved good results with the single constraints in
nondominant solutions on the Pareto frontier.

The studies [6–8] devised dynamic and secure IoMT systems based on different primi
tives such as workflow applications, deadlines, Genetic Algorithm (GA) on virtual machines
(VMs), which enable cloud data centers, and RSA-based networks. The purpose of these
studies is to gain dynamic results for healthcare applications in distributed cloud data centers.
The studies [9–14] proposed IoMT with a tuple of implementations, such as coarse-grained
workload, and optimized the objectives’ lateness and energy with particle swarm optimization
schemes in distributed RSA-enabled fog virtual machines. Particle swarm optimization (PSO)
is a computational method for solving problems by iteratively improving a potential solution
against a set of quality criteria. The message digest (MD5) enabled the secure distributed
cloudlets and fog node aware IoMT systems suggested by [15–20]. The workload considered
to be coarse-grained is solved by a multi-objective approach and ant-colony is done so with a
dynamic approach. The objective is to minimize service cost, latency and delay of applications

Electronics 2021, 10, 1974 5 of 28

in the IoMT system. The deadline, resource and lateness are considered during offloading
and resource allocation in the system.

The applications, services, application programming interface (API) and model-based
workload have been implemented in [21–27]. The virtual machines, container and server-
less aware resources are offered during workload execution in the system. The min-max,
Multi-objective Evolutionary Genetic Algorithm (MOGA) and NSGA-II-enabled multi
objective-based techniques suggested to solve the healthcare problems in distributed fog
cloud nodes. The goal is to optimize different objectives with nondominance and dom
inance schemes with the Pareto frontier tool for different healthcare workloads. These
studies considered the single constraint during decision in IoMT. The deep convolutional
neuron network-enabled healthcare system is suggested in [28–31]. The goal is to handle
multiple objectives such as energy, makespan, and cost of coarse-grained applications
in the distributed IoT fog cloud network in the system. These studies suggested a dy
namic heuristic based on reinforcement learning where the considered workload is only
coarse-grained in the system for offloading and resource allocations.

To the best of our knowledge, a hybrid workload-enabled and secure healthcare monitor
ing sensing framework in a distributed fog cloud network has not been studied yet. The con
sidered problem and system in the present study differ from existing works [1,2,18,22,28–31]
in the following way. The proposed work considers the hybrid workloads such as workflow
and the fine-grained model and the proposed mathematical model, whereas the study devises
the functions and virtual machine aware fog cloud network which was not considered in
the existing works. The main reason for this is that the research focuses on the cost-efficient
scheduling and resource-optimal allocations of workload in the distributed fog cloud network.
Therefore, in the considered problem, the study has three different conflicting objectives:
makespan, lateness, and energy consumption with cost, deadline, and lateness constraints in
the IoMT system. The existing multi-objective approaches cannot be applied to hybrid work
loads in the IoMT because all existing objectives require a lot of decision time and resources
to find optimal solutions for all objectives in IoMT. Therefore, the study considers the deep
graph-based convolutional network-enabled algorithm framework to solve the supposed
problem in the IoMT.

3. Proposed Architecture

The study proposes a new secure mobile edge cloud architecture to run IoMT workflow
applications in a distributed environment. The proposed architecture consists of three
main layers, the application layer, management layer and resource layer, as shown in
Figure 1. The IoMT workflow applications layer consists of multiple applications where
each application is composed of three different types of functions. The nodes, such as the
blue node, show security tasks, the light node shows delay-sensitive tasks, and the red
node displays delay-tolerant functions. The architecture initially takes the inputs of all
applications into the management layer. The workflow tasks are annotated as the design
time in different types, such as security tasks, delay-sensitive tasks, and delay-tolerant tasks.
The execution time and energy consumption are anticipated in advance before scheduling
tasks to any node by exploiting the energy profiler and workload execution profiler at
the design time of applications. These mechanisms of application partitioning and the
time estimation are already published in our previous work [7]. Therefore, this work only
focuses on scheduling, not application partitioning and offloading in the current model.

Electronics 2021, 10, 1974 6 of 28

Fog Node Manager

Task Sequencing

1

62 4 53

7 8 9

10

Cloud Node ManagerMobile Node Manager

Fully Homomorphism Method

Initial Scheduling

Fault Aware Scheduling

Hybrid IoMT Workflow and Fine-grained Tasks
Layer

1 62 4 53

7 8 9 10

Mobile Resource
Fog Resource

Cloud Resource

a1

Fine Grained Tasks

Submission

1 3 7 2 4 5 6 9 8 10

Deployed
VM and
Function

Deployed
VM and
Function

Deployed
VM and
Function

System Mobile Fog Cloud Based Management Layer Resource Monitoring

1 3 9 64 5 8 102 7

Virtual
Machine
Manager

Function
Manager

1

3

7

2

4 5

6

9

8

10
1 3 9

2 7

64 5

8 10

Workflow Tasks

P

1

3

7

2

4 5

6

9

8

10 1 3 9

2 7

65

8 10

4

W
or

kf
lo

w
 T

as
ks

F
in

e-
gr

ai
ne

d
T

as
ks

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

F F F

F F

F F F

F F

VM

F

VM

VM

Mobile VM

Fog VM
Cloud
VM

Function

Secure Tasks

Delay Sensitive Tasks

Delay
Tolerant

Tasks

Distributed Heterogeneous Hybrid Resource Provider Computing Nodes

Figure 1. Hybrid workload-enabled and secure healthcare monitoring sensing framework in distributed fog cloud network.

The IoMT agent is an administrator in the management layer that processes the
requested IoMT workflow applications P = {a1, . . . , aP}. The IoMT agent consists of
the following components: deadline division, task sequencing, homomorphic security
scheme, initial scheduling and Variable neighborhood Searching (VNS). The deadline
division divides the deadline da of all IoMT applications into task deadlines based on
their execution time on different computing nodes. All the tasks are sorted based on their
requirements by the sequencing rules. The rules are earliest due date and cost of resources.
We assigned the priority to each task in the following way: The homomorphic security
method encrypts and decrypts security tasks locally on the devices. The Denial of Service
(DoS) and surfing profiling handles and identifies an attack in the network. This way,
we can save resource and time before offloading and scheduling in the system. Initial
scheduling maps all tasks based on sorting and security requirements onto heterogeneous
mobile edge cloud computing efficiently. After that, a VNS-based searching method
improves the initial solution from candidate solutions.

The resource layer consists of mobile computing, edge computing and cloud comput
ing. Resource-constrained mobile computing only executes security annotated tasks with
private keys. Furthermore, delay-sensitive tasks are carried out using edge computing
which locates the edge of the network with ultra-low latency. Finally, all delay-tolerant
tasks are carried out using cloud computing.

Table 2 describes the notation of the mathematical model of the considered problem.

Electronics 2021, 10, 1974 7 of 28

Table 2. Mathematical notation of workflow and fine-grained tasks.

Notation Description

P The number of IoMT Workflow Applications
a ath IoMT workflow application of A

da The deadline of ath application
V Total number of tasks
Va Total number of tasks of application a
i ith task of V

Te The execution time of a task ii

Tc The communication time of a task i
i
wi The workload of a task i
di The deadline of a task i
S Set of security tasks
L Set of delay-sensitive tasks

DR Set of delay-tolerant tasks
M The heterogenous computing nodes (e.g., mobile edge cloud)
j The jth computing node

ζ j The processing speed of computing node j
R The resource of computing nodes
r The resource particular r

N Total number of task
T Set of all tasks
ti The tth task of T

M Number of virtual machines
vj jth virtual machines in a server
ζ j Speed of jth virtual machine
pj Power of jth VM
si Size of each task

ETi Execution time of task ti
f m Faster machine
sm Slower machine
ETi Processing time of task ti

E f m Task ti execution time on the faster machine
i,j

Esm
 Task ti execution time on the slower machine i,j
FTj,k kth task finish time on VM vj

Fi Finish time of ti

F f m Task finish time on the faster machine
i

Fsm Task finish time on the slower machine i
Fi Task ti estimate finish time
di Deadline of task ti

Ei,j Consumed energy of task ti on VM vj
Ωvj Total execution time of a set of tasks on VM vj

Tslack
i Task ti slack time

This study considered two types of application workloads with different processes
such as fine-grained tasks and workflow tasks.

3.1. Fine-Grained Tasks

The healthcare fine-grained tasks have their data, deadlines, and required CPU per
execution during the process. Each fine-grained task is isolated; it needs a separate function
to run its operation. The fine-grained task shown in Figure 2 has three types of tasks: secure
tasks, delay-sensitive tasks, and delay-tolerant tasks.

Electronics 2021, 10, 1974 8 of 28

BP
Sensor

EEG
Sensor

ECG
Sensor

EMG
Sensor

1

2

4

5

3

7

8

9

10

Appointment

6 Doctor
Chatting

Emergency
Call

Report
Collection

Payment Card

Critical Results

Diseases
History

(a) Fine-Grained IoMT Tasks (b) Workflow IoMT Tasks

1

3

7

2

4 5

6

9

8

10Data

Login

BP Sensor

ECG Sensor

EEG Sensor
Diagnosis

Payment

Results

Billing
Info

Reports

Figure 2. Hybrid IoMT workload of tasks.

The study makes the Problem Formulation of Workflow Tasks in the following way.
The paper investigates P number IoMT workflows applications, i.e., {a1, a2, . . . , aP}.

The directed acyclic graph, i.e., a(V, E) illustrates constraint rules of applications, where
i illustrates a particular task, and e(i, j) ∈ E represents the communication nodes among
different tasks. There are certain rules in IoMT tasks: (i) a task i should finish before
starting task j. Furthermore, some tasks use original data and some of them have generated
data. The notation wi is an original datum of a particular task, and wi,z generated data of
precedence during execution. Each IoMT application a categorized tasks into three lists:
(i) security list S = {si = 1, . . . , S ∈ Va}, delay-sensitive tasks (ii) L = {li = 1, . . . , L ∈ Va},
and delay-tolerant tasks DR = {dri = 1, . . . , DR ∈ Va}.

The present paper discusses the scenario of real-life healthcare IoMT applications,
as shown in Figure 3. In the system model, there are three types of task lists: (1) secure
tasks, i.e., S = {si = 1, . . . , S ∈ Va}, which must be encrypted and decrypted locally
by IoMT devices; (2) delay-sensitive tasks, i.e., L = {li = 1, . . . , L ∈ Va}, which must
be performed on edge nodes because of their latency requirements; (3) delay-tolerant
tasks, i.e., DR = {dri = 1, . . . , DR ∈ Va}, which are offloaded to the public cloud for
execution. There are three layers in the system: the edge layer, where all organizations
such as hospitals, clinics, and any medical centre use different IoMT devices to run IoMT
applications. These applications secure data locally on their own devices, and delay-
sensitive tasks are offloaded via an access point (e.g., wifi) to the edge layer for execution.
Furthermore, via the internet, all applications offloaded their tasks to the public cloud.
The categorized tasks we already defined in detail above.

Electronics 2021, 10, 1974 9 of 28

BP
Sensor

EEG
Sensor

EMG
Sensor

1

2

4

5

3

7

8

9

1
0

Appointment

6 Doctor
Chatting

Emergency
Call

Report
Collection

Payment Card

Critical Results

Diseases
History 1

3

7

2

4 5

6

9

8

1
0

Data

Login

BP Sensor

ECG Sensor

EEG Sensor
Diagnosis

Payment

Results

Billing
Info

Reports

Fog Function

Cloud Function
Healthcare
Hardware

Patient at Home/
Hospital

Desktop

Laptop

Mobile

Tablet

Router

Switch

BSC
Mobile
Patient

Sensors

In
ter

ne
t

1 3

9

2 7

5 6

4

8
1
0

1

3
7

2

4
5

6

9

8

1
0

Fog VM

Cloud

VM

IoMT Tasks
Sensors

IoMT Workflow TasksIoMT Fine-grained Tasks

Figure 3. Hybrid IoMT tasks aware system.

The work takes M types of computing nodes, i.e., M = {j = 1, . . . , jM}. They
all are distinct by their features (e.g., speed and storage). Each computing node j has
fixed homogenous virtual machines {VM = 1, . . . , M}. We denote the speed factor of all
computing nodes in the following way, i.e., ζ j{ζ j1, . . . , ζ j}, whereas the work shows the
computing nodes resources in the following way, e.g., R = {r = 1, . . . , rR}. We determine
the execution time of a particular task in the following way. ⎧ ⎪⎪⎨ ⎪⎪⎩

wi , yi = 0,ζ j1×VM1
wiTe = , yi = 1, (1)i ζ j2×VM2
wi , yi = 2.ζ j3×VM3

In Equation (1), the vector yi = 0 means the execution of a task in the local machine,
e.g., yi = 1. It implies the performance of a task on the edge and yi = 2 executions of a task
in the cloud.

IoMT workflow applications have relationship and communication time requirements
due to transferring of data between them.

ec

⎧⎨ ⎩

Local, zi = 0,
LAN, zi = 1, (2)
WAN, zi = 2.

= {i,j}

� �

Electronics 2021, 10, 1974 10 of 28

Equation (2) determines the communication time between constraint tasks in workflow
while sharing their data for execution.

wi cTc
i = × e{i,j}. (3)

Bw

If two tasks i and j are being carried out in the local machine, there is no communi
cation time between them, i.e., zi = 0. If two tasks i and j are running on an edge LAN
network, then there is a fixed communication time between them, i.e., zi = 1. Finally, if two
tasks i and j are being carried out on a cloud WAN network, then there is fixed commu
nication time between them, i.e., zi = 2. The constraint (3) calculates the communication
time between tasks i, j. We determine the finish time of a general task in the following way.

FTi = max Te + Tc (4)i i .
vj ∈pred(vi)

Equation (4) calculates the finish time of a task.
We obtained the makespan of IoMT workflow applications as

P S∈Va L∈Va DR∈Va E M
MW =
 ∑∑∑∑∑∑ {FTi(exit)}, (5)

a=1 si =1 li =1 dri =1 ei,j j=1

MW denotes the makespan of all IoMT workflow applications in Equation (5).
The paper presents the problem mathematically as follows:

min MW (6)

which is subject to
Equation (6) shows the objective function of each application.

P S∈Va L∈Va DR∈Va E P

∑∑∑∑∑
a=1 si =1 li =1 dri =1 ei,j

{FTi(exit)} ≤ ∑

(7)a=1

da, ∀{a = 1, . . . P}.

Equation (7) denotes the deadlines for completion of tasks of all applications.

P S∈Va L∈Va DR∈Va M

∑∑∑∑ wi ≤ ∑
r ∈ R. (8)
a=1 si =1 li =1 dri =1 j=1

Constraint (8) shows all the requested workloads of applications that must not exceed
the limits of resources during execution.

P

∑

i=1∈Va

xi = 0, 1, 2, ∀{j = 1, . . . , M}, (9)

Constraints ((9), (10), and (11)) show that each task to be assigned to one node,
and each node can execute one task at a time when it is successfully assigned to any
particular node.

M P

∑
xi = 0, 1, 2, ∀
∑

j=1 a=1

{i = 1, . . . , Va}, (10)

xi = {0, 1, 2}. (11)

Electronics 2021, 10, 1974 11 of 28

3.2. Problem Formulation of Fine-Grained Tasks

This study considers T number of fine-grained tasks, i.e., {t = 1, . . . , T}. Each task
has a workload, e.g., Wt and td deadline. The number of fog cloud functions is represented
by F = { f 1, f 2, . . . F}. Each function has a memory size of f m. The execution time of
fine-grained tasks is determined in the following way.

tw
τT = × j. (12)

ζ f m

Equation (12) calculates the execution time of a task on the function in node j Therefore,
the execution cost of all tasks is determined in the following way.

T F

∑

M

∑

j=1 f =1

tw

ζ f m
× τt. (13)C = ∑

1t=

The functions can run on only computing nodes such as j1 to M. Therefore, the cost of
the function is to be determined by the memory size and execution time as determined in
Equation (13).

3.3. Energy Consumption Computing Nodes

This study determines the energy consumption due to virtual machines and partic
ular function nodes. Therefore, jw is the energy consumption per watt of node j to run
virtual machines and functions. The power consumption of nodes is determined in the
following way.

T V M F
E = ∑∑∑∑ τt × jw + Ti

e × jw. (14)
t=1 v=1 j=1 f =1

Equation (14) determines the energy consumption due to both the workflow and
fine-grained tasks in the computing nodes.

The study examines multi-objective problems such as energy, makespan, and lateness
of both workflow and fine-grained jobs based on the suggested mathematical formula.
As a result, multi-objective optimization is a subsection of multiple criteria decision mak
ing that deals with mathematical optimization problems that necessitate simultaneous
optimizations of many objective functions. The Pareto frontier is used to construct the
multi-objective problem. The Pareto frontier is an optimal technique for solving the prob
lem restrictions since the study has conflicting aims in the suggested system with various
resources. No one solution simultaneously optimizes each objective for a nontrivial multi-
objective optimization problem. The objective functions are incompatible in this instance,
and there are a (potentially infinite) number of Pareto optimal solutions. If there is no
improvement in a single function value without deteriorating some of the other objective
values, the key is nondominated, Pareto optimum, Pareto-efficient, or noninferior. All
Pareto optimum solutions are deemed equally desirable without any additional subjective
preference information. Many existing multi-objective optimization techniques from many
problems suggested formulating and solving them. The goal could be to locate a repre
sentative group of Pareto optimal solutions, quantify the trade-offs in achieving several
objectives, or identify a single solution that satisfies a human decision maker’s subjective
preferences (DM).

min Z = MW + C + E. (15)

Equation (15) shows the objective functions of both workflow and fine-grained tasks.

4. Proposed Security-Efficient Optimal Solution (SEOS) Algorithm Framework

This work considers the IoMT workflow applications, where each application has
three types of tasks: security tasks, delay-sensitive tasks, and delay-tolerant tasks. We
analyze the heterogeneous computing nodes (e.g., mobile node, edge node and remote

Electronics 2021, 10, 1974 12 of 28

cloud node) that are distinct by their speeds and resources. The advised problem is secure
offloading and scheduling for IoMT workflow applications in heterogeneous computing
nodes. This section proposes the Security-Efficient Offloading and Scheduling (SEOS)
algorithm framework, which consists of different components to solve the considered
problem. Initially, we divide the applications into task deadlines. In the second part, we
sort all tasks into topological order based on the proposed three sequence rules. The third-
party offloading-based homomorphic encryption method encrypts and decrypts security
tasks locally on the local devices. Due to precedence constraint requirements, the cypher-
text data of tasks are offloaded to the edge cloud for delay-sensitive tasks. The edge node
applies computation on cypher-text instead of converting it into plaintext. The final part is
local searching-based task scheduling, where all tasks are scheduled in different computing
nodes. We explain the SEOS framework steps in the following algorithm, Algorithm 1.

Algorithm 1: SEOS.
Input : P = {a = 1, . . . , aP}, M = {j = 1, . . . , jM}, { f = 1, . . . , F},

{t = 1, . . . , T};
Output : min Z;

1 begin
2

3

4

5

6

7

8

9

10

foreach (a to P & t = 1 to T) do
Call Deadline Division Methods for workflows applications;

Prioritizing of Workflow and Fine-grained;

Call Secure Homomorphic Offloading Method;

Call Scheduling Method;

Calculate Z ← a ← j based on Equation (6);

Call Search Z ← Z∗;

Call DGCN Scheme;

return Z∗;

11 End-Loop;

All steps of Algorithm 1 are detailed as follows:

• Initially, the algorithm takes the input of all IoMT applications and computing nodes;
• Divide the deadline of all applications into task deadlines;
• Sort all tasks based on the proposed topological sequences rules;
• Use the security method to encrypt and decrypt tasks locally;
• Use the scheduling method to search and schedule all tasks with the optimal makespan.

4.1. Deadline Division

The deadline division is a way to divide the application deadline into task deadlines;
this way, we can achieve the quality of tasks based on their deadlines. For example, we
split the applications into the following form.

A daratio = ∑
 , (16)
a=1

A Va

Z

∑
∑

/eT = Ti

e × ratio, (17)i
a=1 i=1

/ cT = Tc
i × ratio,i (18)

/edi = min({idj}) − T (ij) − T/i (c)i

∀i = 1 ∈ Va∃j ∈ successor(i).
(19)

Electronics 2021, 10, 1974 13 of 28

Initially, we obtained the ratio of all applications based on Equation (16), which
determines the division of the deadline of each application with the makespan of the
application. This way, we assigned the deadline to each task based on the execution time
and communication based on executions ((17)–(19)).

Algorithm 2 divides the deadline of all applications into task deadlines to obtain the
optimal makespan of each application onto heterogeneous computing nodes.

Algorithm 2: Deadline division method.

Input : Z, P = {a = 1, . . . , aP}, da ∈ A;
1 begin
2

3

4

5

6

foreach (a = 1 ∈ P) do
ratio = d

Z
a ∈ a;

/ eT = Ti
e × ratio;i

/ cTi = Ti
c × ratio;

edi = min({idj}) − T
/
(ij) − Ti

/(c);i

7 End-Loop;

4.2. Task Sequencing

In this section, we introduce task sequencing rules based on the following methods.
Earliest Due Date (EDD) is exploited to order the tasks in a deadline manner. Each task
is prioritized via Equations (20) and (21). Smallest Process First (SPF) is exploited when
the smallest processing task is assigned the highest rank and scheduled before the longest
process task. Smallest Slack Time First (SSTF) method shows the remaining time between
finish time and the actual deadline should be smaller when a task i is scheduled on the
same paradigm. We assigned the priority to each task in the following way:

Priority(vi) = datai + max Rank(vj), (20)
vj ∈succ(vi)

Priority(vi) = datai, vi ∈ V. (21)

We assume that the wi is equal to whether ordinal data or generated of the task i
during priority assignment. Both Equations (20) and (21) define the priority of all tasks
from entry the task i to exit V by considering all predecessors and successors of the given
application. Initially, we sort the topological priority of tasks in the following way.

• All workflow tasks sort out by descending order by their deadlines;
• All fine-grained tasks sort out by their deadlines.

We tried all sequences during initial task scheduling until submitted tasks are satisfied
by the given requirements.

4.3. Security Aware Offloading Method

The Homomorphic Encryption [32] is a tool that allows computation on encrypted
data of tasks. In this way, data of tasks remain private and confidential during offloading
and scheduling at heterogenous mobile edge cloud networks. FHE encourages security-
sensitive applications to work with sensitive data in untrusted environments. The geo
graphically distributed computation and heterogeneous mobile edge cloud networking;
secure communication is a good indication related to the applications.

When the data transfers to the cloud, we use standard encryption methods to secure
the operations and the data storage. Our basic concept was to encrypt the data to the cloud
provider before sending it back. However, at every transaction, the last one has to decrypt
data. Therefore, the client will need to provide the server (cloud provider) with the private
key to decrypt data before executing the required calculations, affecting the confidentiality
and privacy of data stored in the cloud.

Electronics 2021, 10, 1974 14 of 28

The secure homomorphic Algorithm 3 takes as input a list of security tasks S, which is
annotated at the time of design. Algorithm 3 has the following steps. Firstly, it encrypts
all security tasks of all applications locally and offloads them for assistance to external
computing nodes. Secondly, the computing nodes apply the ciphertext instead of plaintext
and then return them to the corresponding end-user devices. Finally, it will decrypt the
results of encrypted tasks locally on the computers.

Algorithm 3: Secure homomorphic offloading.

Input : All security tasks (wi, Si = {i = 1, . . . , S ∈ Va});
Output : DoS = 0

1 begin
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

foreach (i = 1 S) do
DoS ← 1 Denial of Service Attack present;
p ← large integer;
q ← large integer;
p = q;
n ← p × q ;
φ(n) = (p − 1) × (q − 1);
if (DoS = 0) then

Choose an integer € when 1 < €φ(n);
if (Ti

e + Ti
c ≤ di) then

Offloader Engine ;

ec(wi ← si) = si

b mod n;

else if (ec(wi ← si)! empty) then
Decrypted all tasks;
dc(iy) = iy

a mod n;

End inner loop;

else
DoS=1;

Waiting for offloading;

21 End Main;

In this paper, we suggest implementing a system for performing operations on en
crypted data without decrypting them, which will produce the same results after calcula
tions as if we were directly operating on the raw data. Homomorphic encryption systems
are exploited to execute encrypted data operations without understanding the private key
(without decryption); the client is the sole owner of the secret key.

In the considered problem, the study considered the homomorphic encryption in
the following condition. If Enc (a) and Enc (b) are used to estimate Enc (function (a, b)),
where function can be: +, x, and outwardly practicing the private key. Moreover, additive
homomorphic encryption considers raw data additions is the Pailler.

P

∑
V ∑
Dci(Eci(n) × Eci(m)) = n × m OR Enc(si ⊕ sj) =
v=1 a=1

Enc(si) ⊕ Enc(sj).
(22)

T

∑
Dct(Ect(n) × Ect(m)) = n × m OR Enc(si ⊕ st) =
t=1

Enc(st) ⊕ Enc(st).

Electronics 2021, 10, 1974	 15 of 28

Equation (22) is called additive homomorphic encryption.

P

∑
V ∑
Dci(Eci(n) × Eci(m)) = n + m OR Enc(sx ⊕ sy) =
v=1 a=1

Enc(tx) ⊕ Enc(ty). (23)
∑
TDct(Ect(n) × Ect(m)) = n + m OR Enc(sx ⊕ sy) =
t=1

Enc(tx) ⊕ Enc(ty).

In contrast, Equation (23) is multiplicative homomorphic encryption. An algorithm is
fully homomorphic if both properties are satisfied simultaneously.

For the multiplicative homomorphic encryption,let us assume that n = pq, where
p and q integer primes. Then, we choose a and b keys such that ab = 1, i.e., (mod φ(n)).
In contrast, b and n represent the public key, and p, q, and a denote the private key. We
encrypt sensitive tasks in the following way.

V P
ec(six) = ∑
∑
 sib

x mod n.
v=1 a=1 (24)

T
ec(six) = ∑
sib

x mod n.
t=1

N
dc(siy) = ∑
sia

y mod n.	 (25)
i=1

Equations (24) and (25) show the encryption and decryption of a task. We suppose
that si and sj are plaintexts of task i and j; then, we denote as follows

b bec(si) ec(sj) = s sj mod n = (si, sj)
bmod n = ec(si, sj). (26)i

We define the FHE security scheme in Algorithm 3 as follows:

•	 Let us assume the algorithm takes the si and sj inputs as the security tasks, and they
require encryption locally on the IoT devices;

•	 p and q are long integers exploited during the encryption round. n is cross multiplica
tion during block-switching performed from lines 2 to 6;

•	 € is a small positive number employed for variation in the ordinal 64-bit block of
encryption. At the same time, gdc and mod functions perform the fully homomor
phic operation;

•	 The algorithm performs encryption on security tasks from lines 7 to 15. The list was
added after all were encrypted after applying the security mechanism. The offloader
engine is a method used inside devices which offloads the ciphertext of tasks to the
system for further computations. Once the calculation was practiced on ciphertext,
and the result was sent back to the devices, and they all decrypted on devices with
their private keys;

•	 DoS is the profiling that identifies denial of service in the system; if it is 1 it means
there is a risk of attack else, otherwise it will remain zero.

4.4. Initial Task Scheduling

The initial scheduling is not the final scheduling of all tasks, and they can resched
ule heterogeneous mobile edge cloud networks (e.g., heterogeneous computing nodes).
The initial scheduling depends upon the deadline division component, task sequencing
and security scheme. We propose the iterative scheduling algorithm, Algorithm 4, which
shows the process of scheduling tasks under their requirements.

Algorithm 4 performs the scheduling in the following way:

Electronics 2021, 10, 1974	 16 of 28

•	 Initially, the algorithm conducts deadline division, which shows the deadline of
each task;

•	 All tasks schedule based on given sequences by sequence rules methods;
•	 All local tasks are encrypted and decrypted by the homomorphic security method

and executed locally in the devices;
•	 The delay-sensitive tasks are scheduled at the edge node; this is necessary for all nodes,

and the requested workload must be less than their resources during processing;.
•	 All delay-tolerant tasks are to be scheduled at the public cloud for execution;
•	 The algorithm iteratively allocates all tasks to heterogeneous computing nodes and

calculates the makespan of each IoMT workflow application at initial scheduling.

Algorithm 4: Deadline-efficient scheduling.

Input : Z, P = {a = 1, . . . , aP}, da ∈ P, t = 1, T, f = 1, F;
1 begin
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

foreach (j = 1 in M) do
Call Deadline Algorithm 2;
call ordering and prioritizing of tasks;
foreach (si in S ∈ Va) do

if (si ≤ di &wi ≤ r ∈ j) then
Calculate execution time of local tasks based on Equation (4);

Call FHE Scheme;

Optimize objection based on Equation (6);

calculate the objective function in the following way;

Z ← vi ← j&t ← f ;

Z ← si ← r;

foreach (li in L ∈ Va) do
if (li ≤ di &wi ≤ r ∈ j) then

Calculate execution time of delay-sensitive tasks based on
Equation (4);

Optimize objection based on Equation (6);

Z ← li ← r;

foreach (dri in DR ∈ Va) do
if (dri ≤ di &wi ≤ r ∈ j) then

Calculate execution time of local tasks based on Equation (4);

Optimize objection based on Equation (6);

Z ← dri ← r;

23 End-Loop;

4.5. Searching Optimal Solution-Based VNS

The variable neighborhood Search (VNS) solves the initial scheduling when tasks are
distributed and allocated to different computing networks. It traverses distant neighbor
hoods of the current obligatory solution, i.e., Z, and proceeds from beyond the new key
if any improvement is made. Algorithm 5 is a global search iterative algorithm that im
proves the current solution with the new one via variable temperatures. If the temperature
decreases, the makespan of applications reduces the initial schedule with the new key.

Algorithm 5 has the following steps to reach the optimal solution:

•	 The algorithm takes the initial cost of each application with the initial solution C;
•	 The temperature tmp is a variable whose initial value = 100; it reduces to near zero,

as tmp minimizes the cost of each application minimizes;
•	 The set of candidate solutions, i.e., N, and C/ is a new solution with available costs

compared with the initial solution C;

Electronics 2021, 10, 1974	 17 of 28

Δ
•	 The Boltzmann constant, i.e., rand(0, 1) ≤ e tmp is an acceptance method; it allows one

to replace the original solution with a new one with the minimum exponential rate
and temperature tmp. The rate of change in Δtmp temperature could be minimized or
increased depending upon the situation;

•	 If the solution reached the maximum level, no furthermore improvement is made,
then the algorithm accepts C∗ as a final solution.

Algorithm 5: Cost-efficient VNS searching.

Input : C;
Output : C∗;

1 C ← i = 1 ∈ Va ∈ P, t = 1 ∈ T;
2 f (C) ← Initial Solution ;
3 C∗ Optimal solution;
4 α cooling parameter;
5 tmp ← tempreture = 1000∼500 ;
6 iter ← 0;
7 max ← 10 Maximum iterations;
8 begin
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

while (tmp > 0) do
while (iter ≤ max) do

C/ ← randomly select neighbor solution C/ ∈ N(C);
f (C/)− f (C)Δ ← ;tmp

if (Δ ≤ 0) then
C ← C/;

if (f (C/) ≤ f (C)) then

Swap current solution with new one;
C ← C/

Δ
else if (rand(0, 1) ≤ e tmp) then

C ← C/;

else
Stay with current solution;

C∗ ← C;

iter ← iter + 1;

tmp ← tmp × (1 − α);

End Conditions;
return C∗;

27 End Loop;

4.6. Energy-Efficient Scheduling

All the nodes are ordered according to the power consumption in the network. In the
first step, both fine-grained and workflow applications are scheduled based on their
deadlines. In the second step, all the tasks are rescheduled based on their execution
costs. Finally, in the third scheduling, all nodes are rescheduled according to their power
consumption to minimize their power consumption without violence or service quality
applications. Algorithm 6 reschedules all tasks based on computing nodes’ energy. In
contrast, it is no matter if either the energy of node j is consumed due to virtual machines
or functions for executing the workflow and fine-grained workload. Algorithm 6 ensures
the energy-efficient scheduling without violating the deadline and cost of applications in
the system.

Electronics 2021, 10, 1974 18 of 28

Algorithm 6: Energy-efficient scheduling.

Input : {j = 1, . . . , M};
1 begin
2

3

4

5

6

7

8

foreach (j = 1 in M) do
Call Algorithm 4 verify the deadline of applications;
Call Algorithm 5 proves the cost of applications;
Apply Dynamic Voltage Frequency Scaling method to re-arrange the node
according to their power consumption;

Calculate the power consumption of nodes based on Equation (14);
Schedule all workloads based on Algorithms 4 and 5;

End of Assignment until all workloads checked respect nodes energy
consumption;

4.7. Multi-Objective Deep Graph Convolutional Network-Based Scheme

These days, for graph-structured aware applications, the usage of deep convolu
tional networks have become extremely popular. As a result, multi-objective decisions
based on heterogeneous resources and parameters of applications can be made efficiently.
However, early neural networks could only be implemented with regular or Euclidean
data, even though many data in the actual world have non-Euclidean graph structures.
The nonregularity of data structures has driven recent advances in graph neural networks.
As a result, graph neural networks have developed different variations in recent years,
with Graph Convolutional Networks (GCNs) being one of them. GCNs are also one of the
most fundamental graph neural networks variations.

The study devises the weighting multi-objective nondominant schemes based on the
deep graph convolutional network. Algorithm 7 shows the process of the proposed method
with different steps. The algorithm has three layers: the input layer, deep convolutional
layer, and output layer. According to the given scenario in Figure 4, the algorithm performs
the following operations.

Algorithm 7: Multi-objective weighting scheme based on a deep graph convolu
tional network.

Input : { f = 1, . . . , F, VM} ← {j = 1, . . . , M}, {a = 1 ∈ P, t = 1 ∈ T};
1 begin
2

3

4

5

6

7

8

9

10

11

12

13

14

15

weight = {0.1, 0.2, . . . , 0.9};
Hl+1 deep convolutional layer;
foreach (j = 1 in M) do

The input model takes by model as the graph ;
The variable features xj for individual node j;

Each deep convolutional network layer is the nonlinear function;

Hl+1
 = Z ← MW + E + C;
Calculate the workloads and functions optimization based on Algorithms

4–6;
Z ← MW + E + C = {Hl+1 × Weight, . . . Hl+N × Weight};
if (Hl+1 = Z ← MW + E + C)>0.6 then

Calculate the weight sum of all objectives should be optimal than
existing weight in different convolutional layers;

Z∗ ← MW + E + C =
{MW.Hl+1 × Weight + E.Hl+N × Weight + C.Hl+N × Weight};

End of Inner Optimization;

End of sum optimization ;

16 End of main;

Electronics 2021, 10, 1974	 19 of 28

t2

t3

t4

t5

t6

t7

t8

t9

t10

t1

Delay-Sensitive
Tasks

Delay-Tolerant
Tasks

Security Tasks

VM-Functions VM-Function VM-Function

VM
1

VM
2

VM
3

VM
4

VM
5

VM
6

VM
7

VM
8

VM
9

VM
0

v1

v2

v3

v4

v5

v6

v7

v8

v9

0

v1

v2

v3

v4

v5

v6

v7

v8

v9

0

f2

f3

f4

f5

f6

f7

f8

f9

F
10

f1

j1

j2

j3

j4

vj

j6

j7

j8

j9

jo

Multi-Objectives Optimization

a=1 a=2 T
VM F M

Multi-Type Resources

ML Deep Graph convolutional Optimal Multi-Objective Scheduling Algorithm

Optimize Z=MW+C+E

MW: Weight=0.5 to 5
C: Weight=0.3 to 7
E: Weight=0.1 to 6

Weight=0.5 to 5 Weight=0.5 to 5 Weight=0.5 to 5

M
W

: W
ei

gh
t=

0.
5

to
 5

C
: W

ei
g

ht
=

0.
3

to
 7

E
: W

e
ig

h
t=

0.
1

to
 6

Figure 4. Multi-objective deep graph convolutional network-based scheme.

•	 In the first step, the workload of all applications after initial scheduling will be
considered an input;

•	 All objectives have their weights concerning workloads and resources;
•	 The resources are virtual machines and functions which are assigned based on their

cost function;
•	 The deep convolutional network chooses the best optimal weight of all objectives and

sum them together. If the optimal weight is greater than the existing one, the multi-
objective weight of all objectives is optimal, e.g., Z∗;

•	 All types of tasks such as delay-sensitive, delay-tolerant and security ones and their
quality of service must be satisfied as defined in Figure 4.

•	 Every 10 min, the multi-objective tasks will call to optimize each objective function
based on the available weights in the network;

•	 If the algorithm finds no further improvement, it will terminate the network with no
further improvement in the system.

5. Performance Evaluation

This section shows the efficiency and effectiveness of the proposed work via the simu
lation results. Somehow, the simulation results are the same as a real-practice experiment
in practice. The performance evaluation part consists of many sub-parts such as parameter
setting, system implementation, component calibrations and result discussion. The paper
explains sub-parts in detail to ensure an easy understanding of the experiment.

5.1.	 Parameter Settings

This subsection shows the experimental setup of the program configuration, lan
guages and computing nodes as shown in Table 3. All parameters are included in the
implementation part, such as programs and algorithms, in the JAVA, Python and YAML
languages. There are three computing nodes configured for the proposed architecture.
For instance, mobile node (e.g., HTC G17 and Samsung 1997), edge node (e.g., Intel 5 laptop,

Electronics 2021, 10, 1974 20 of 28

AndroidX86 runtime), and cloud node (e.g., AndroidX86 Amazon). We repeated all experi
ments 50 times with different parameters. Table 3 describes the simulation parameters of
the experiment.

Table 3. Simulation parameters.

Simulation Parameters Values

Languages JAVA, Python, YAML
Simulation Time 6 h

Experiment Repetition 50 times
Mobile devices HTC G17 and Samsung 1997

Edge Cloud Intel 5 laptop, AndroidX86
Public Cloud AndroidX86 Amazon t2.medium

zi = 1 10–30 ms
zi = 2 100 ms

t 1000∼500

Furthermore, we extended the computing nodes resource specification into a different
table, Table 4. The main goal of this is to offer the computing capability and resource
availability of each node in the system. There are three types of resources: a likewise
mobile node, edge node and cloud node. All nodes are distinct by their speeds and
resource specifications. All resources of different computing nodes are fixed, and they
cannot scale up and scale during runtime in the implemented system.

Table 4. Heterogenous node resource specification.

Resource Type Storage (GB) Core Speed (MIPS)

Public Cloud 20,000 1 10,000

Edge Cloud 50,000 1 5000

Mobile cloud 100 1 1000

5.2. Component Calibration

There are three main layers in the proposed architecture, as shown Figure 1. However,
the application layer and system layer components are included in the calibration to
evaluate the performances of the entire system. The features are secure offloading, task
sequencing, and task scheduling. In addition, the Relative Percentage Deviation (RPD) was
adopted to measure the performances of the components, as mentioned earlier, to run many
types of IoMT workflow tasks in the system. The RPD measures in the following way:

Z − Z∗
RPD% = × 100%. (27)

Z∗

Equation (27) shows the overall performances of all applications using distributed
computing (e.g., mobile, edge and cloud nodes). The Z is the initial scheduling in the
system; however, due to roaming features of applications, the initial solution of scheduling
could be replaced with optimal scheduling Z∗ during the searching for space in the solution.
As we mentioned above, all answers are achieved via candidate solutions during global
searching with limited iterations during the process. The RPD% is the difference between
the initial and best solutions during the entire process.

5.3. Iomt Workflow Tasks and Fine-Grained Tasks

The study implemented both types of workloads such as workflow and fine-grained
in the simulation configuration file.

Figure 5 shows the interfaces of the system with the results of workflow dag tasks
graph during execution in the system.

Electronics 2021, 10, 1974 21 of 28

Figure 5. Workflow Interfaces of DAG Graph of different IoMT tasks.

All tasks are workflows; some have original data, and some share their data for
processing. All tasks are constrained by their predecessors and successors in the system.

5.4. Workflow Tasks Generator

In this paper, we consider only three types of tasks. All workflow applications are real
IoMT applications, which are open source and available at GitHub: https://github.com/
OpenIoMeT/Iomet-wiki accessed on 1 July 2021. Initially, we analyzed all applications in
DAG graphics with different types of tasks. The initial application is annotating notations
(e.g., all types of tasks annotated at the design time). After that, we converted the IoMT
workflow into a DAG graph, where blue nodes are security tasks (e.g., local tasks), light
yellow nodes are edge tasks, and red nodes are remote tasks, and they have their execution
time and communication time (e.g., ms and kb) due to precedence constraints.

5.5. Discussion of Results

This subsection compares the results of IoMT workflow tasks with the proposed
framework with its components and existing offloading and scheduling frameworks.
The discussion of component results starts with the following subsections.

5.6. Secure Offloading Performance

After the deadline division for each task, the security aware offloading applies security
to the list of security tasks locally at the devices. We implemented fully homomorphic
encryption and decryption methods that convert plaintext of security tasks into ciphertext
in the application layer. Then, the offloader engine offloads those tasks to the system to
be carried out further. The other performance means the ciphertext data of tasks are the
inputs of different tasks in the system. Therefore, it is necessary, and we measured the
accounts of the offloading method into two environments. The first environment is stable
where there is no risk of hacking or Denial of Service (DOS) attacks; another environment
is unstable where some chances of DoS exist in the network during offloading. In this case,
we compared our proposed secure offloading schemes with the existing best security aware

https://github.com/OpenIoMeT/Iomet-wiki
https://github.com/OpenIoMeT/Iomet-wiki

Electronics 2021, 10, 1974 22 of 28

offloading schemes, i.e., baseline 1 and baseline 2. In baseline 1, an RSA-based encryption
method is implemented, which offloads tasks with encrypted data to the server, and then
the server decrypts tasks with the key and performs computations. After the calculation
again, the server encrypted tasks and sent them back to the devices, and then devices
interpreted all tasks in the original form. This entire process is risky, and we can trust the
untrusted cloud, and it is not good practice to leave essential data on the server.

Figure 6a,b show that the proposed component (e.g., secure offloading) of the SEOS
framework outperforms in any environment compared to the existing secure offloading
techniques concerning resources and performance. The main reason behind this is that all
existing baseline approaches only consider the security and require resources; however,
the proposed secure offloading method encrypted and decrypted all tasks based on their
deadlines and availability of resources. Furthermore, before offloading to any nodes, we
anticipated the available network which was either secure or not in the system. Our
approach can stabilize and be unstable because we care about resource utilization, tasks’
QoS and network stability before sending data to the surrogate edge or remote servers.

200 400 600

Number of Tasks

0.0123

0.01235

0.0124

0.01245

0.0125

0.01255

0.0126

0.01265

R
PD

%

Baseline1
SEOS
Baseline2

200 400

Number of Tasks

0.0123

0.01235

0.0124

0.01245

0.0125

0.01255

0.0126

0.01265

R
PD

%

Baseline1
SEOS
Baseline2

(a) Stable Environment (b) Unstable Environment

Figure 6. Security aware performances.

A denial of service (DoS) outbreak happens whenever verifiable applications can not
access their edge nodes or remote nodes resources for further execution due to either a cyber
attack or network attack in the system. These nodes may be concerned by any attack and not
able to respond. A denial of service attack may harm both resources and time even though
tasks are encrypted. With this consideration, the proposed secure offloading method, including
encryption decryption and deadline, detects and anticipates any attack before offloading via
network monitoring and surfing profiling at the local device. It may save our resources and
time during offloading in all kinds of environments. Therefore, Figure 7a–d show that the
component of SEOS outperforms in terms of resource utilization and the deadlines of tasks,
and identifies DoS in advance, in contrast to all existing approaches which considered only
encryption and decryption and resources without deadlines and availability of DoS attack.

Electronics 2021, 10, 1974 23 of 28

200 400

Number of Tasks

0

1

2

3

4

5

6

7

8

O
ff

lo
ad

in
g-

 S
ec

ur
ity

 A
cc

ur
ac

y
%

Baseline1
SEOS
Baseline2

200 400

Number of Tasks

0

1

2

3

4

5

6

7

8

O
ff

lo
ad

in
g-

 S
ec

ur
ity

 A
cc

ur
ac

y
%

Baseline1
SEOS
Baseline2

(a) Deadline Performance (b) Resource Consumption

400 600

Number of Security Tasks

0

1

2

3

4

5

6

7

8

9

10

D
ea

dl
in

e
Fa

ilu
re

 %

Baseline1
SEOS
Baseline2

400 600

Number of Tasks

0

1

2

3

4

5

6

7

8

9

Pe
rf

or
m

an
ce

 o
f

M
ul

tip
lic

at
iv

e
H

om
om

or
ph

ic
 E

nc
ry

pt
io

n

Baseline1
SEOS
Baseline2

(c) DoS Attack (d) Without DoS Attack

Figure 7. Security aware performances.

Figure 8a,b show that the proposed task sequence rules adopt initial sorting and
dynamic sorting to maintain the deadline of tasks for the runtime. Therefore, it is necessary
to execute all tasks under their deadlines with a minimum loss of generosity.

Electronics 2021, 10, 1974 24 of 28

200 400 600

Number of Tasks

0.0123

0.01235

0.0124

0.01245

0.0125

0.01255

0.0126

0.01265

R
PD

%

Baseline1
SEOS
Baseline2

400 600

Number of Tasks

0.01235

0.0124

0.01245

0.0125

0.01255

0.0126

0.01265

0.0127

R
PD

%

Baseline1
SEOS
Baseline2

(a) Initial Sorting (b) Optimal Sorting

Figure 8. Deadline aware performances.

5.7. Task Scheduling

Based on security-efficient offloading, sorting with different rules, task scheduling is
the final phase where all tasks must be completed with precedence and deadline constraints.
We set four flows of IoMT tasks with different numbers for scheduling. These tasks
have different types, as we discussed above. The goal of the study is to minimize the
makespan of all applications. We consider the four various applications with a different
number of tasks. Each application has three different types of tasks and deadlines with
constraint rules. Somehow, a few tasks are executed in parallel order, and few tasks are
performed in the sequencing order; it depends upon the application order. We implemented
Heterogeneous Earliest Finish Time (HEFT) and genetic algorithm (GA) as the baseline
1 framework, and Dynamic Heterogeneous Earliest Finish Time (DHEFT) and particle
Swarm Optimization framework as baseline 2. These frameworks are widely investigated
for traditional and mobile workflow applications in the literature. These frameworks offer
different components to run mobile workflow applications in additional steps, such as
task sequencing and scheduling. We ran all applications with other frameworks (e.g.,
SEOS, baseline 1 and baseline 2), the results of all applications with their objectives can be
seen in Figure 9a–d. Each application has different requirements, such as security, latency,
and resources to run its tasks. However, the SEOS outperforms all existing frameworks in
terms of all makespans and the needs of all applications.

Electronics 2021, 10, 1974 25 of 28

200 400 600

Number of Tasks

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

R
PD

%

Baseline1
SEOS
Baseline2

200 400 600 800

Number of Tasks

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

R
PD

%

Baseline1
SEOS
Baseline2

(a) a1: 500 IoMT Tasks (b) a2: 600 IoMT Tasks

400 600 800

Number of Tasks

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

R
PD

%

Baseline1
SEOS
Baseline2

200 400 600 800

Number of Tasks

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

R
PD

%

Baseline1
SEOS
Baseline2

(c) a3: 700 IoMT Tasks (d) a4: 800 IoMT Tasks

Figure 9. Makespan aware performances of all applications.

The main reason for this is that all existing algorithm frameworks have some races
in the encryption and decryption format. They consume many resources and time to run
different types of tasks (Figure 10): (i) Encryption of all tasks locally with the sharing
key and offloading to the surrogate server for further execution. The server decrypts
all tasks with a shared key and applies computation on plaintext instead of ciphertext.
After the calculation, the server again encrypts tasks into ciphertext and send back their
results. Furthermore, local devices decrypt the result into plaintext with the key. This
way, the authentication, time and resources are challenging and uses at extending level.
(ii) All existing studies partition the application into different types of tasks at the runtime
based on various parameters (e.g., deadline, availability of resources, network contexts).
However, due to the dynamic environment and load balancing situation in computing,
these techniques benefit from lower running time and waste of resources. (iii) The loss
of deadline and failure ratio of tasks in the system becoming very high. Therefore, the
proposed SEOS partitioned the application at the design level to security, latency and
resource requirements of all applications efficiently and ran them in the heterogeneous
computing node during execution.

Electronics 2021, 10, 1974 26 of 28

50 100 150 200 250 300

Number of Fine-Grained Tasks

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

4000

R
PD

%

SEOS
Baseline1
Baseline2

50 100 150 200 250 300 350

Number of Fine-Grained Tasks

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

4000

R
PD

%

SEOS
Baseline1
Baseline2

(a) a1: 200 to 300 Fine-Grained Tasks.

50 100 150 200 250 300 350

Number of Fine-Grained Tasks

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

4000

R
PD

%

SEOS
Baseline1
Baseline2

50 100 150 200 250 300 350 400

Number of Fine-Grained Tasks

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

4000

R
PD

%

SEOS
Baseline1
Baseline2

(b) a2: 400 to 600 Fine-Grained Tasks.

Figure 10. Fine-grained tasks.

6. Conclusions

This work proposed a new healthcare architecture based on workflow applications
based on heterogeneous computing nodes, consisting of different layers: an application
layer, management layer, and resource layer. The goal is to minimize the makespan of all
applications. Based on these layers, the work proposed the secure offloading-efficient task
scheduling (SEOS) algorithm framework, which includes the deadline division method,
task sequencing rules, homomorphic security scheme, initial scheduling, and variable
neighborhood searching method. The performance evaluation results show that the pro
posed plans outperform all existing baseline approaches for healthcare applications in
terms of makespan. The discussion of the results showed that the proposed idea and
SEOS framework outperformed all IoMT applications’ existing methods in heterogeneous
computing nodes. The discussion of results and comparison has been made via different
components based on HSD and ANOVA famous techniques. However, there are few things
to be improved in the future.

This work did not consider the mobility aware offloading and scheduling for IoMT
workflow in a heterogeneous computing node environment. The runtime uncertainty in
the network contexts, load balancing, failure of tasks situation will be future work of our

Electronics 2021, 10, 1974	 27 of 28

study. We will design deep reinforcement learning architecture and framework, which will
include policy, Q-deep learning, and different methods.

Author Contributions: Data curation: A.L.; Formal analysis: Q.-u.-a.M.; Funding acquisition:
M.A.D., Investigation Methodology: F.A.; Project administration: I.R.A.; Software: F.B.; Supervision:
S.Y.S.; Writing—original draft: S.A.S.; Writing: N.A.; review-editing: Q.H.A.; Method: M.S.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This is totally developed and integrated at Research Lab of Artificial Intelligence and
Information Security at Benazir Bhutto Shaheed University Lyari, Pakistan. The study fully funded
by Faculty of Computing and Information Technology, King Abdul Aziz University, Jeddah 21431,
Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the experimental data are generated at the local institution servers.
Therefore, it cannot be made publicly available for other researchers.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References
1.	 Ying Wah, T.; Gopal Raj, R.; Lakhan, A. A novel cost-efficient framework for critical heartbeat task scheduling using the Internet

of medical things in a fog cloud system. Sensors 2020, 20, 441.
2.	 Lakhan, A.; Mohammed, M.A.; Rashid, A.N.; Kadry, S.; Panityakul, T.; Abdulkareem, K.H.; Thinnukool, O. Smart-Contract

Aware Ethereum and Client-Fog-Cloud Healthcare System. Sensors 2021, 21, 4093. [CrossRef]
3.	 Hussain, M.; Wei, L.F.; Lakhan, A.; Wali, S.; Ali, S.; Hussain, A. Energy and performance-efficient task scheduling in heterogeneous

virtualized cloud computing. Sustain. Comput. Inform. Syst. 2021, 30, 100517.
4.	 Liu, C.F.; Bennis, M.; Debbah, M.; Poor, H.V. Dynamic task offloading and resource allocation for ultra-reliable low-latency edge

computing. IEEE Trans. Commun. 2019, 67, 4132–4150. [CrossRef]
5.	 Lakhan, A.; Li, X. Transient fault aware application partitioning computational offloading algorithm in microservices based

mobile cloudlet networks. Computing 2019, 102, 105–139. [CrossRef]
6.	 Marin, R.C.; Gherghina-Pestrea, A.; Timisica, A.F.R.; Ciobanu, R.I.; Dobre, C. Device to Device Collaboration for Mobile Clouds in

Drop Computing. In Proceedings of the 2019 IEEE International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops), Kyoto, Japan, 11–15 March 2019; pp. 298–303.

7.	 Lakhan, A.; Dootio, M.A.; Groenli, T.M.; Sodhro, A.H.; Khokhar, M.S. Multi-Layer Latency Aware Workload Assignment of
E-Transport IoT Applications in Mobile Sensors Cloudlet Cloud Networks. Electronics 2021, 10, 1719. [CrossRef]

8.	 Memon, M.S.; Lakhan, A.; Mohammed, M.A.; Qabulio, M.; Al-Turjman, F.; Abdulkareem, K.H. Machine learning-data mining
integrated approach for premature ventricular contraction prediction. Neural Comput. Appl. 2021. [CrossRef]

9.	 Lakhan, A.; Sajnani, D.K.; Tahir, M.; Aamir, M.; Lodhi, R. Delay sensitive application partitioning and task scheduling in mobile
edge cloud prototyping. In Proceedings of the International Conference on 5G for Ubiquitous Connectivity, Nanjing, China,
4–5 December 2018; Springer: Cham, Switzerland, 2018; pp. 59–80.

10.	 Lakhan, A.; Li, X. Content aware task scheduling framework for mobile workflow applications in heterogeneous Mobile-Edge-
Cloud paradigms: CATSA framework. In Proceedings of the 2019 IEEE Intl Conf on Parallel & Distributed Processing with
Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom), Xiamen, China, 16–18 December 2019; pp. 242–249.

11.	 Guo, S.; Xiao, B.; Yang, Y.; Yang, Y. Energy-efficient dynamic offloading and resource scheduling in mobile cloud computing.
In Proceedings of the IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications,
San Francisco, CA, USA, 10–14 April 2016; pp. 1–9.

12.	 Waseem, M.; Lakhan, A.; Jamali, I.A. Data security of mobile cloud computing on cloud server. Open Access Libr. J. 2016, 3, 1–11.
[CrossRef]

13.	 Khoso, F.H.; Arain, A.A.; Lakhan, A.; Kehar, A.; Nizamani, S.Z. Proposing a Novel IoT Framework by Identifying Security and
Privacy Issues in Fog Cloud Services Network. Int. J. 2021, 9, 592–596.

14.	 Lakhan, A.; Ahmad, M.; Bilal, M.; Jolfaei, A.; Mehmood, R.M. Mobility Aware Blockchain Enabled Offloading and Scheduling in
Vehicular Fog Cloud Computing. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4212–4223. [CrossRef]

15.	 Guo, S.; Liu, J.; Yang, Y.; Xiao, B.; Li, Z. Energy-efficient dynamic computation offloading and cooperative task scheduling in
mobile cloud computing. IEEE Trans. Mob. Comput. 2018, 18, 319–333. [CrossRef]

16.	 Tang, C.; Hao, M.; Wei, X.; Chen, W. Energy-aware task scheduling in mobile cloud computing. Distrib. Parallel Databases 2018,
36, 529–553. [CrossRef]

http://doi.org/10.3390/s21124093
http://dx.doi.org/10.1109/TCOMM.2019.2898573
http://dx.doi.org/10.1007/s00607-019-00733-4
http://dx.doi.org/10.3390/electronics10141719
http://dx.doi.org/10.1007/s00521-021-05820-2
http://dx.doi.org/10.4236/oalib.1102377
http://dx.doi.org/10.1109/TITS.2021.3056461
http://dx.doi.org/10.1109/TMC.2018.2831230
http://dx.doi.org/10.1007/s10619-018-7231-7

Electronics 2021, 10, 1974	 28 of 28

17.	 Wang, T.; Wei, X.; Tang, C.; Fan, J. Efficient multi-tasks scheduling algorithm in mobile cloud computing with time constraints.
Peer- Netw. Appl. 2018, 11, 793–807. [CrossRef]

18.	 Tang, C.; Xiao, S.; Wei, X.; Hao, M.; Chen, W. Energy Efficient and Deadline Satisfied Task Scheduling in Mobile Cloud Computing.
In Proceedings of the 2018 IEEE International Conference on Big Data and Smart Computing (BigComp), Shanghai, China,
15–17 January 2018; pp. 198–205.

19.	 Peng, H.; Wen, W.S.; Tseng, M.L.; Li, L.L. Joint optimization method for task scheduling time and energy consumption in mobile
cloud computing environment. Appl. Soft Comput. 2019, 80, 534–545. [CrossRef]

20.	 Zhou, B.; Dastjerdi, A.V.; Calheiros, R.N.; Buyya, R. An online algorithm for task offloading in heterogeneous mobile clouds.
ACM Trans. Internet Technol. (TOIT) 2018, 18, 23. [CrossRef]

21.	 Liu, L.; Fan, Q.; Buyya, R. A deadline-constrained multi-objective task scheduling algorithm in mobile cloud environments. IEEE
Access 2018, 6, 52982–52996. [CrossRef]

22.	 Schäfer, D.; Edinger, J.; Eckrich, J.; Breitbach, M.; Becker, C. Hybrid task scheduling for mobile devices in edge and cloud
environments. In Proceedings of the 2018 IEEE International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops), Athens, Greece, 19–23 March 2018; pp. 669–674.

23.	 Chen, Z.; Hu, J.; Min, G.; Chen, X. Effective data placement for scientific workflows in mobile edge computing using genetic
particle swarm optimization. Concurr. Comput. Pract. Exp. 2019, 33, e5413. [CrossRef]

24.	 Xu, R.; Wang, Y.; Cheng, Y.; Zhu, Y.; Xie, Y.; Sani, A.S.; Yuan, D. Improved Particle Swarm Optimization Based Workflow
Scheduling in Cloud-Fog Environment. In Proceedings of the International Conference on Business Process Management, Sydney,
Australia, 9–14 September 2018; Springer: Cham, Switzerland, 2018; pp. 337–347.

25.	 Zhang, J.; Qi, L.; Yuan, Y.; Xu, X.; Dou, W. A Workflow Scheduling Method for Cloudlet Management in Mobile Cloud.
In Proceedings of the 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scal
able Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Guangzhou, China, 8–12 October 2018; pp. 932–937.

26.	 Lakhan, A.; Xiaoping, L. Energy Aware Dynamic Workflow Application Partitioning and Task Scheduling in Heterogeneous
Mobile Cloud Network. In Proceedings of the 2018 International Conference on Cloud Computing, Big Data and Blockchain
(ICCBB), Fuzhou, China, 15–17 November 2018; pp. 1–8.

27.	 Zhang, G.; Cheng, S.; Shu, J.; Hu, Q.; Zheng, W. Accelerating breadth-first graph search on a single server by dynamic edge
trimming. J. Parallel Distrib. Comput. 2018, 120, 383–394. [CrossRef]

28.	 Chai, R.; Song, X.; Chen, Q. Joint Task Offloading, CNN Layer Scheduling, and Resource Allocation in Cooperative Computing
System. IEEE Syst. J. 2020, 14, 5350–5361. [CrossRef]

29.	 Nagarajan, S.M.; Deverajan, G.G.; Chatterjee, P.; Alnumay, W.; Ghosh, U. Effective task scheduling algorithm with deep learning
for Internet of Health Things (IoHT) in sustainable smart cities. Sustain. Cities Soc. 2021, 71, 102945. [CrossRef]

30.	 Firouzi, F.; Farahani, B.; Marinšek, A. The convergence and interplay of edge, fog, and cloud in the AI-driven Internet of Things
(IoT). Inf. Syst. 2021, 101840. [CrossRef]

31.	 Ding, D.; Wang, Z.; Han, Q.L.; Wei, G. Neural-network-based output-feedback control under round-robin scheduling protocols.
IEEE Trans. Cybern. 2018, 49, 2372–2384. [CrossRef] [PubMed]

32.	 Gentry, C. Fully homomorphic encryption using ideal lattices. In Proceedings of the Forty-First Annual ACM Symposium on
Theory of Computing, Bethesda, MD, USA, 31 May–2 June 2009; pp. 169–178.

http://dx.doi.org/10.1007/s12083-017-0561-9
http://dx.doi.org/10.1016/j.asoc.2019.04.027
http://dx.doi.org/10.1145/3122981
http://dx.doi.org/10.1109/ACCESS.2018.2870915
http://dx.doi.org/10.1002/cpe.5413
http://dx.doi.org/10.1016/j.jpdc.2017.09.007
http://dx.doi.org/10.1109/JSYST.2020.2991814
http://dx.doi.org/10.1016/j.scs.2021.102945
http://dx.doi.org/10.1016/j.is.2021.101840
http://dx.doi.org/10.1109/TCYB.2018.2827037
http://www.ncbi.nlm.nih.gov/pubmed/29994553

	Hybrid cs
	electronics-10-01974
	Introduction
	Related Work
	Proposed Architecture
	Fine-Grained Tasks
	Problem Formulation of Fine-Grained Tasks
	Energy Consumption Computing Nodes

	Proposed Security-Efficient Optimal Solution (SEOS) Algorithm Framework
	 Deadline Division
	Task Sequencing
	Security Aware Offloading Method
	Initial Task Scheduling
	Searching Optimal Solution-Based VNS
	Energy-Efficient Scheduling
	Multi-Objective Deep Graph Convolutional Network-Based Scheme

	Performance Evaluation
	 Parameter Settings
	Component Calibration
	Iomt Workflow Tasks and Fine-Grained Tasks
	Workflow Tasks Generator
	Discussion of Results
	Secure Offloading Performance
	Task Scheduling

	Conclusions
	References

