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A donor–π–acceptor type series of Triphenylamine–
dicyanovinylene-based chromophores (DPMN1–DPMN11)
was designed theoretically by the structural tailoring of π-
linkers of experimentally synthesized molecules DTTh and
DTTz to exploit changes in the optical properties and their
nonlinear optical materials (NLO) behaviour. Density
functional theory (DFT) computations were employed to
understand the electronic structures, absorption spectra,
charge transfer phenomena and the influence of these
structural modifications on NLO properties. Interestingly,
all investigated chromophores exhibited lower band gap
(2.22–2.60 eV) with broad absorption spectra in the visible
region, reflecting the remarkable NLO response. Furthermore,
natural bond orbital (NBO) findings revealed a strong
push–pull mechanism in DPMN1–DPMN11 as donor and
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π-conjugates exhibited positive, while all acceptors showed negative values. Examination of electronic
transitions from donor to acceptor moieties via π-conjugated linkers revealed greater linear (〈α〉 =
526.536–641.756 a.u.) and nonlinear (βtot = 51 313.8–314 412.661 a.u.) response. It was noted that the
chromophores containing imidazole in the second p-linker expressed greater hyperpolarizability
when compared with the ones containing pyrrole. This study reveals that by controlling the type
of π-spacers, interesting metal-free NLO materials can be designed, which can be valuable for the
hi-tech NLO applications.
.org/journal/rsos
R.Soc.Open

Sci.8:210570
1. Introduction
Nonlinear optical materials (NLO) have a promising role in electro-optics for signal-analysis, fibreoptics,
telecommunication and information technology [1–3]. NLO compounds derived from the organic
framework have become the subject of contemporaneous investigations [4–6], because of their
effortless reaction chemistry, low cost development and ability to tolerate structural modifications to
allow for a unique NLO response. These NLO attributes of materials are underpinned by transfer of
intramolecular charge (ICT) mainly generated from donor to acceptor units via π-conjugated linkers
[7,8]. Experimental and computational data show that the broad second-order NLO response can arise
from assembling robust donor (D) and acceptor (A) groups positioned at opposite sides of a π-linker,
i.e. D–A, D–π–A, D–π–D–π–A and A–π–D–π–A. Compounds, with delocalized π-electrons with D–π–A
configuration, show enhanced charge transfer transitions [9,10].

In the last few years, a significant number of metal-free organic donor–acceptor complexes have been
identified as NLO compounds with π-conjugated linkers that offer a path for better charge transfer of
electrons in the presence of an electric field [11–16]. The literature is replete with unique chemical
structures using charge transfer (CT) between the electron donor and the withdrawal group to build
new donor–π–acceptor systems that can minimize the bandgap and regulate the transitions using
various donor or acceptor moieties with large first hyperpolarizability values (βtotal) [17]. However,
limitations exist in the development of certain essential features for wider acceptability and successful
industrial applications. These include reliable synthesis, cost of manufacturing, ease of substitutions,
tuneable absorption wavelength and the need for rapid skeleton modification [18,19]. We have
previously published improved π bridges through double heteroaromatic rings and demonstrated their
use in Triphenylamine–Dicyanovinylene dyes [17]. This manuscript demonstrates that π bridge
modification is a convenient strategy to augment NLO response and to design novel NLO materials.
The use of charge transfer (CT), between the electron donor and the withdrawal group, to build a new
donor–π–acceptor system is capable of minimizing the bandgap and regulate the transitions using
various donor or acceptor moieties with large first hyperpolarizability values (βtotal) [11,13–15,20–22].
Inspired by these reported strategies, the electronic properties of D–π–A system with the new
pi-conjugated system is introduced in the system consisting of 1H,1’H-2,2’-bipyrrole, 1,4
dihydropyrrolo[3,2-b]pyrrole, indole, 1,4-dihydroimidazo[4,5-d]imidazole, 3H,3’H-4,4’-biimidazole and
benzimidazole referred to as initial π-spacer, and two conjugates, pyrrole and imidazole as second
π-linker between the donor, Triphenylamine (TPA) and acceptor, Dicyanovinylene (DCV). TPA, a donor
unit due to its capacity for electron donation and charge transfer, is used in many hole transport
materials [23,24]. Eleven new D–π–A type, TPA-DCV dyes DPMN1–DPMN11, have been developed
with various configurations of first and second π-conjugates. This empirical evaluation is appropriate
for the estimation of the NLO properties and also for the investigation of the impact on the NLO
activity of various π-conjugated linkers. Density functional theory (DFT) calculations for electronic
characteristics, absorption spectrum, polarizability and first hyperpolarizability values were performed
to compute the newly designed dyes (DPMN1–DPMN11). Hopefully, this research will act as a source
to create new metal-free organic dyes with excellent NLO properties.

1.1. Computational procedure
DFT study was used to execute the electronic properties, charge transfer phenomena and nonlinear
optical (NLO) behaviour of newly designed D–π–A systems (DPMN1–DPMN11). All calculations
were carried out using the Gaussian 09 program [25] at the B3LYP/6–311+g (d, p) functional. Geometric
optimization in entitled dyes (DPMN1–DPMN11) was carried out at the B3LYP/6–311+g (d, p) level.
Frontier molecular orbitals (FMOs), global reactivity parameters (GRP), NLO and NBO (natural bond
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orbital) analysis were performed at the same level. Absorption spectra of these organic dyes were
computed via time-dependent density functional theory (TD-DFT) at Coulomb-attenuated hybrid
exchange-correlation (CAM-B3LYP) level with the aforesaid basis set. Equations (1.1) and (1.2) can be
used for calculating the polarizability 〈α〉 and hyperpolarizability tensors (βtot) of the entitled dyes [26]

ah i ¼ 1=3(axx þ ayy þ azz) ð1:1Þ
and

btot ¼ ½ðbxxx þ bxyy þ bxzzÞ2 þ ðbyyy þ byzz þ byxxÞ2 þ ðbzzz þ bzxx þ bxyzÞ2�1=2 ð1:2Þ

A total of 10 hyperpolarizability tensors, βxxx, βxyy, βxzz, βyyy, βxxy, βyzz, βzzz, βxxz, βyyz and βxyz, were
achieved as an output from Gaussian file in the x, y and z directions [26]. Furthermore, Gauss View
5.0 [27], Avogadro [28] and Chemcraft [29,30] were used for the interpretation of output results.
R.Soc.Open
Sci.8:210570
2. Results and discussion
2.1. Structural modelling of D–π–A moieties
Screening of π-spacers plays a crucial role in donor–pi–acceptor type chromophores for the achievement
of promising NLO response. The purpose of the current work is to design a novel Triphenylamine-
dicyanovinylene-based promising NLO material by structural tailoring with various π-bridges and
predict their photo physical, electronic and NLO behaviour for the latest optoelectronic applications.
Herein, for the theoretical designing, a synthesized metal-free organic dye D1 [31] is used. Our
designed chromophores (DPMN1–DPMN11) are composed of three main parts: (i) Triphenylamine
(TPA) as donor moiety, (ii) first and second pi-spacer that collectively played the role of bridge,
and (iii) dicyanovinylene (DCV) acts as acceptor unit. A total of 11 molecules are designed using six
π-conjugates: (i)(1H,1’H-2,2’-bipyrrole, (ii)1, 4dihydropyrrolo[3,2-b]pyrrole, (iii) indole, (iv)1,4-
dihydroimidazo[4,5-d]imidazole, (v) 3H,3’H-4,4’-biimidazole, (vi) Benzimidazole) as the primary
π-linker and two π-spacers (pyrrole and imidazole) as the second π-linkers as shown in figure 1. The
dihedral angle between C–C–C in the benzene ring of TPA molecule is found to be 117° in all
investigated molecules (DPMN1–DPMN11). The bond angle between C–C–N of 1,4-
dihydropyrrolo[3,2-b]pyrrole attached to pyrole in DPMN1 and imidazole in DPMN2 is found to be
106° and 110°, respectively. In DPMN3 and DPMN4, the C–N–N bond angle of 1,4-
dihydroimidazo[4,5-d]imidazole attached to the TPA side beneze ring is found to be similar at 112°.
The dihedral angles between C–C–N (pyrole) of DPMN3 and in C–N–N (imidazole) of DPMN4 are
noted as 107° and 111°, respectively. In DPMN5, the dihedral bond angle between C–C–N of 1H,1’H-
2,2’-bipyrrole is observed as 106°. A slight increase in bond angle to 110° in C–N–N of imidazole is
noted when 1H,1’H-2,2’-bipyrrole is attached to imidazole unit. 104° dihedral bond angle is marked
in C–N–N of 3H,3’H-4,4’-biimidazole in DPMN6. The dihedral angle of 107° is observed for C–C–N
of pyrol unit in DPMN6. In compound DPMN7, 104° and 111° dihedral angles are found between C–
N–N of 3H,3’H-4,4’-biimidazole and imidazole, respectively. In DPMN8 and DPMN9, five-membered
C–C–N of indole towards the TPA side exhibited a 108° dihedral angle, while benzene ring C–C–C of
indole towards pyrol and imidazole exhibited a 120° dihedral angle. 106° and 110° dihedral angles are
found between C–C–N in DPMN10 pyrole unit and C–N–N in DPMN11 imidazole unit, respectively.

Electronic transitions, (〈α〉 and βtot), NBO analysis, spectral absorption analysis and light-harvesting
efficiency (LHE) are performed by evaluating DFT and TD-DFT calculations for the exploration of
NLO properties.
2.2. Electronic structure
FMO investigation is an excellent strategy for examining chemical stability and optoelectronic properties
in investigated molecules [32]. The FMOs, i.e. HOMO (highest occupied molecular orbital) and LUMO
(lowest unoccupied molecular orbital), play a significant part in absorption spectra and mechanical
modelling of compounds [33]. For evaluating the strength, dynamic stability, softness, hardness and
chemical reactivity of the designed compounds, the band gap (ELUMO–EHOMO) is the most significant
factor [34]. The greater HOMO–LUMO distance within a molecule is associated with less reactivity,
greater stability and hard molecule, while those molecules with small ELUMO–EHOMO energy gap are
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Figure 1. Donor, acceptor and π-conjugated linkers (a). Structures of the studied dyes (DPMN1–DPMN11) (b).
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regarded as more reactive, less stable and soft molecules that are far more polarized and serve as a
finer competitor in offering the best NLO response [35–38]. Keeping in view all these implications, the
band gap between orbitals of DPMN1–DPMN11 chromophores is determined and results are
tabulated in table 1.



Table 1. Energies of molecular orbitals of investigated chromophores.

dye EHOMO ELUMO band gap

DPMN1 −5.15 −2.74 2.40

DPMN2 −5.24 −2.91 2.32

DPMN3 −5.37 −2.91 2.45

DPMN4 −5.45 −3.09 2.35

DPMN5 −5.22 −2.99 2.22

DPMN6 −5.43 −2.98 2.45

DPMN7 −5.44 −3.19 2.26

DPMN8 −5.47 −2.76 2.71

DPMN9 −5.51 −2.97 2.54

DPMN10 −5.59 −2.83 2.77

DPMN11 −5.65 −3.04 2.60
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Data from table 1 reveal that among the pyrrole family, DPMN1 with 1,4-dihydropyrrolo[3,2-
b]pyrrole as the first π-conjugated linker expressed the least band gap (2.407 eV). Other dyes,
DPMN3, DPMN6, DPMN8 and DPMN10 with 1,4-dihydroimidazo[4,5-d]imidazole, 3H,3’H-4,4’-
biimidazole, CS11-indole and CS12-Benzimidazole pi-spacers, respectively, show a remarkably large
energy gap, as shown in table 1. Overall, the increasing bandgap order of these dyes is obtained as:
DPMN1 <DPMN3 <DPMN6 <DPMN8 <DPMN10, which revealed that 1,4-dihydropyrrolo[3,2-
b]pyrrole gives the best outcomes with pyrrole spacer and reduced the energy gap.

Similarly, among DPMN2, DPMN4, DPMN5, DPMN7, DPMN9 and DPMN11 chromophores
containing imidazole as the second π-linker, DPMN11 exhibits the highest energy gap of 2.6 eV, and
then this value starts to diminish in other compounds as π-linkers changes and the least band gap is
examined in DPMN5. The decreasing energy gap order of the following series of dyes having
imidazole is: DPMN11 >DPMN9 >, DPMN4 >DPMN2 >DPMN7 >DPMN5 (table 1). Interestingly, it
is also examined that the dyes with imidazole pi-spacer exhibited a smaller band gap than pyrrole.
This might be due to the fact that imidazole is 100 time more basic than pyrrole due to the presence
of two nitrogen atoms which may enhance the resonance stabilization in the imidazole ring which in
results stabilized the molecule by lowering their band gap. Overall, the highest energy gap observed
is 2.767 eV in DPMN10, while in DPMN5, the lowest band gap 2.224 eV is obtained. The increasing
order of energy gap of all studied chromophores is examined as: DPMN5 <DPMN7 <DPMN2 <
DPMN4 <DPMN1 <DPMN3, DPMN6 <DPMN9 <DPMN11 <DPMN8 <DPMN10. Additionally, the
charge densities on the surface of orbitals are also investigated and pictographs are displayed in
figure 2. For HOMO, the charge densities are concentrated at the entire molecule, while for LUMO, it
is located at DCV (accepter moiety) maximally while partially over the spaces (figure 2).
2.3. Global reactivity parameters
The ELUMO–EHOMO is used to illustrate reactivity and stability by assessing the GRP [36] such as
ionization potential (IP), electron affinity (EA), electronegativity (X ), global hardness (η), chemical
potential (μ), global electrophilicity (ω) and global softness (σ) [36,37,39–41]. The outcomes for studied
chromophores are calculated and are tabulated in electronic supplementary material, table S13. The
following equations [42] are used to calculate these descriptors

IP ¼ �EHOMO ð2:1Þ

and

EA ¼ �ELUMO ð2:2Þ

where IP is the ionization potential (eV) and EA the electron affinity (eV).
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Koopmans’s theorem [43] was used for the calculation of the electronegativity (X), the chemical
hardness (η) and the chemical potential (μ) as

X ¼ [IPþ EA]
2

¼ � [ELUMO þ EHOMO]
2

, ð2:3Þ

h ¼ [IP� EA]
2

¼ � [ELUMO � EHOMO]
2

ð2:4Þ

and m ¼ EHOMO þ ELUMO

2
: ð2:5Þ
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The following equation was used for global softness (σ)

s ¼ 1
2h

: ð2:6Þ

The calculation of electrophilicity index (ω) was reported by Parr et al. [36] as

v ¼ m2

2h
: ð2:7Þ

The electron-donatingand electron-accepting capabilities of compoundswere characterized by ionization
potential and electron affinity amplitudes, respectively. Among entitled compounds, DPMN11 has the
maximum IP value; 5.644 eV, while DPMN1 has the minimum value; 5.151 eV. Moreover, the DPMN7
dye has EA value; 3.19 eV and DPMN1 has the least EA value; 2.744 eV. The IP value shows the energy
required to remove an electron from a molecule. Higher IP values show more stability and chemical
inertness [44]. The IP values of DPMN1–DPMN11 were found to be higher in magnitude than EA values
indicating that the designed compounds contained excellent electron-accepting ability. In order to
understand the stability of molecules, chemical potential values (μ) are considered [45]. The μ relates to
molecular electronegativity, where its negative values show to accept electron easily [37] and χ explain the
electron attraction. η and σ tell us about the behaviour of compounds under study in terms of energy gap
[46]. In our studied chromophores, the negative values of chemical potential reflect the stability of
molecules that is evident by the greater hardness values. The increasing order of global hardness is
represented as: DPMN5 <DPMN7 <DPMN2 <DPMN4 <DPMN1 <DPMN3–DPMN6 <DPMN9 <
DPMN11 <DPMN8 <DPMN10, which is the same as that of the increasing energy gap order of entitled
dyes. This order is in fine agreement with the HOMO–LUMO energy gap proving the fact that molecules
with large ΔE value are considered as hard molecules with greater kinetic stability, less reactivity and
resistance to change in electronic configurations. Global softness is another factor in order to comprehend
reactivity and stability of entitled dyes that is directly related to chemical potential. The increasing order of
softness values given as: DPMN10 <DPMN8 <DPMN11 <DPMN9 <DPMN3 =DPMN6 <DPMN1 <
DPMN4 <DPMN2 <DPMN7<DPMN5, that is total reversal of the increasing energy gap order
representing DPMN10 (0.361402) with least value and less reactivity; however, DPMN5 (0.44964) is the
most reactive molecule with highest softness value among all others. Overall (electronic supplementary
material, table S4), global reactivity descriptors have shown an excellent correlation with HOMO–LUMO
band gap order. It is commonly accepted and well known that low-lying HOMO–LUMO gap might
enhance the NLO response. This statement is valid in our studied systems which shows great promise for
potential use of investigated compounds of their strong NLO response in optoelectronic applications.
2.4. Natural bond orbital analysis
NBO is a very significant tool for charge transfer interactions between empty and filled orbits [26,27]. It is
often assumed that the transferring of charges is shifted from the electron-donating part to the accepter part
in the D–π–A systems. Hence, to understand the charge transfer phenomena of our designed compounds
(DPMN1–DPMN11), NBO analysis was accomplished and results are shown in table 2. This NBO
investigation suggested favourable charge transfer values for all the donor moieties, indicating that our
designed compounds had excellent potential for donation. Meanwhile, the negative values of NBO
charges of all the acceptors revealed that all dyes can accept electrons efficiently. Moreover, the charge
description in π-linkers suggested that they can provide a pathway and facilitated efficient electron
transfer from donor to acceptor, except the DPMN11 that showed a negative value of charge transfer.

Overall, the investigations indicated that charge is successfully migrated from donor towards
acceptor by pi-spacers and a charge separation state was formed as the all donor and π-conjugated
bridge show positive while all the acceptors exhibit negative values. The highest NBO values of charges
for π-conjugated linkers is found in the compound DPMN1 with more charge transfer properties while
least values has been examined for the compound DPMN11. All the other designed dyes show good
agreement with each other (table 2).
2.5. Nonlinear optical properties
Over a decade or more, the organic NLO-based dyes are given much more attention than their inorganic
equivalents. The provoked attention is because of their higher fabrication and shorter response times



Table 2. Results of NBO charges for donor, π-spacer and acceptor for DPMN1–DPMN11.

dyes donor π-linkers acceptors

DPMN1 0.0468 0.2696 −0.3165
DPMN2 0.0549 0.2315 −0.2864
DPMN3 0.0943 0.1886 −0.2828
DPMN4 0.1025 0.1483 −0.2507
DPMN5 0.0388 0.1523 −0.2728
DPMN6 0.0961 0.1694 −0.2655
DPMN7 0.0988 0.1341 −0.2328
DPMN8 0.0764 0.2237 −0.3001
DPMN9 0.1801 0.1863 −0.2667
DPMN10 0.1237 0.1697 −0.2934
DPMN11 0.1280 −0.0144 −0.1136

Table 3. Dipole polarizability data and major contributing tensors (a.u.) of the designed dyes (DPMN1–DPMN11).

dye αxx αyy αzz 〈α〉

DPMN1 1242.45 431.51 255.93 653.30

DPMN2 1245.47 426.74 241.84 638.02

DPMN3 1209.41 424.18 246.01 526.53

DPMN4 1205.67 406.50 244.48 618.88

DPMN5 1206.82 447.52 270.92 641.75

DPMN6 1106.45 439.05 276.16 607.22

DPMN7 1103.19 419.48 275.50 599.39

DPMN8 1024.83 517.77 255.68 599.43

DPMN9 1052.26 502.56 246.97 600.60

DPMN10 1031.42 492.83 255.00 593.08

DPMN11 1048.11 468.83 256.61 591.18
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majorly. For optoelectronic devices, optic memory systems, networking and signal manipulation, NLO
products are extensively employed. Strong expertise in the NLO materials is crucial for the modulation
of valuable complexes [45]. The linear polarizability and hyperpolarizability values of entitled
compounds have been determined, and findings are tabulated in tables 3 and 4, respectively, to assess
the impacts of various π-conjugates and π-spacers on NLO characteristics of DPMN1–DPMN11.

Table 3 reveals, among the pyrrole family, the highest value of 〈α〉 is examined in DPMN1
(653.30 a.u.) which has 1,4-dihydropyrrolo[3,2-b] as π linker, which reduces to 607.22 a.u. in DPMN6,
having 3H,3’H-4,4’-biimidazole conjugated linker; further, it diminishes to 599.43 a.u. in DPMN8,
containing CS11-indole π-linker, which decreases to 593.09 a.u. in DPMN10, comprising CS12-
Benzimidazole as the conjugated π-linker which further apart to 526.54 a.u. in DPMN3 having 1,4-
dihydroimidazo[4,5-d]imidazole as π-conjugated linker. Overall, the increasing order of 〈α〉 value is
obtained as: DPMN3 <DPMN10 <DPMN8 <DPMN6 <DPMN1.
2.6. DPMN1–DPMN11
Similarly, the highest value of 〈α〉 among the chromophores having imidazole as the second pi-spacer is
observed in DPMN5 (641.76 a.u.) having 5,5’-dimethyl-1H,1’H-2,2’-bipyrrole as the conjugated pi-linker,
that lessens to 638.02 a.u. in DPMN2 in which 1,4-dihydropyrrolo[3,2-b]pyrrole is used as the first
π-linker. Further, this 〈α〉 value reduces to 618.89, 600.60, 599.39 and 591.19 a.u. in DPMN4, DPMN9,



Table 4. The computed second-order polarizabilities (βtot) and major contributing tensors (a.u) of DPMN1–DPMN11.

dye βxxx βxxy βxyy βxzz βyzz βzzz βtot

DPMN1 −52 013.951 3284.38 823.96 27.742 7.209 −13.493 51 313.8

DPMN2 64 581.613 −2945.596 −1038.401 −136.688 −1.96 −7.159 63 489.225

DPMN3 −56 540.48 2903.755 554.336 75.867 −7.722 −19.697 56 015.804

DPMN4 70 500.324 −2538.276 −867.096 −95.277 −9.748 4.886 69 603.093

DPMN5 65 805.331 3508.612 −778.622 −21.824 6.745 −25.2004 65 163.773

DPMN6 −41 250.326 1604.353 738.158 −198.575 −35.436 24.174 40 847.257

DPMN7 −53 477.565 2344.521 647.064 101.431 7.115 1.451 52 806.450

DPMN8 −29 903.446 2733.562 −1284.971 66.061 −36.901 −0.8076 314 412.661

DPMN9 −43 099.362 3880.422 −1268.132 92.366 −34.83 −15.713 44 594.584

DPMN10 28 927.61 1699.75 836.19 −62.278 −37.899 1.327 29 837.233

DPMN11 −41 142.33 2444.233 −691.129 13.914 29.707 5.687 41 979.682
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DPMN7 and DPMN11 in which 1,4-dihydroimidazo[4,5-d]imidazole, CS11-indole, 3H,3’H-4,4’-
biimidazole and CS12-Benzimidazole are used as the first π-linkers. The decreasing order of 〈α〉 value
in dyes is observed as: DPMN5 <DPMN2 <DPMN4 <DPMN9 <DPMN7 <DPMN11.

The HOMO–LUMO band gap inversely related with polarizability, greater polarization refers to the
low energy gap. Also, it is evident that a smaller band gap and larger linear polarizability designates
greater hyperpolarizability, hence referring significant NLO response [33]. Equation (2.8) illustrates the
calculation of dipole polarizability

a/ ðMgm
X Þ2

Egm
, ð2:8Þ

Mgm
X represents the transition moment from ground → nth excited state, and Egm refers to transition

energy. A direct relationship of polarization is seen with transition moment square while inversely
related with the transition energy. The transition dipole moment demonstrates the electronic transition
effects and interactions of dyes with certain electromagnetic waves of the given polarization.
Normally, we can say that a molecule with a higher Mgm

X value and minor Egm value will present a
greater hyperpolarizability value. The NLO response of the first hyperpolarizability is related to
intermolecular charge transfer (ICT). An excellent charger transfer is examined from donor to acceptor
via π-linkers. NLO response of DPMN1–DPMN11 with reference to second-order polarizability (β)
values for DPMN1–DPMN11 are investigated and results are displayed in table 4.

The difference in the values of βtot arises due to different kinds of π-linkers and π-spacer used. Among
compounds having pyrrole as π-spacer, DPMN8 with CS11-indole as the first π-linker expressed the
highest value of ßtot 314 412.66 a.u. This value decreased to 56 015.81 a.u. in DPMN3 and became
narrow to 51 313.8 a.u. in DPMN1 as the first pi-spacer changes from 1,4-dihydroimidazo[4,5-
d]imidazole to 1,4-dihydropyrrolo[3,2-b]pyrrole, respectively. This value further decreases to 40
847.26 a.u. and then to 29 837.23 a.u. in DPMN6–DPMN10 as the first π-conjugated spacer changes
from 3H,3’H-4,4’-biimidazole to CS12-Benzimidazole, respectively. The decreasing order for the βtot
values of these dyes is: DPMN8 <DPMN3 <DPMN1 <DPMN6 <DPMN10.

Similarly, among the imidazole family, theDPMN4 has the highest ßtot value of 69 603.093 a.u. having
1,4-dihydroimidazo[4,5-d]imidazole as a π-linker. This value starts to diminish as the pi-linker changes,
so the lowest value examined in DPMN11 is 41 979.682 a.u. The decreasing order of βtot is described as
DPMN11 < DPMN9 , DPMN7 , DPMN2 , DPMN5 , DPMN4. Consequently, it was investigated
that the chromophores with imidazole second spacer expressed significantly larger NLO response
than pyrrole. This might be due to the greater basic nature of imidazole as explained above.
Interestingly, it was also seen that the dye DPMN8 with pyrrole spacer exhibited larger ßtot response.
The first spacer CS11-indole due to its fused ring structure when combined with imidazole may
interrupt the electronic transition in DPMN9, so it shows a lower value than DPMN8.

Overall, a maximum value of βtot, 314 412.661(a.u.) is observed for DPMN8, while the smallest value
is observed for DPMN10 with 29 837.233 (a.u.). Overall, the increasing order for βtot of all dyes is:



Table 5. Computed transition maximum absorption wavelengths (λmax), energy (Ege/eV), oscillator strengths ( fos), transition
moment (Δμgm), LHE and transition natures of entitled compounds. MO, molecular orbital; H, HOMO; L, LUMO.

dye Ege λmax ƒos LHE μgm major MO transitions

DPMN1 2.49 497 2.01 0.9901 5.23 H-1→ L (13%), H→ L (79%)

DPMN2 2.54 488 1.93 0.989 5.93 H-1→ L (15%), H→ L + 1 (67%)

DPMN3 2.62 473 2.15 0.993 4.97 H-1→ L (20%), H→ L (71%)

DPMN4 2.69 460 2.11 0.992 5.85 H-1→ L (23%), H→ L (64%)

DPMN5 2.66 466 1.68 0.980 6.46 H-1→ L (23%), H→ L (61%)

DPMN6 2.87 432 1.84 0.985 4.85 H-1→ L (45%), H→ L (41%)

DPMN7 2.95 420 1.74 0.982 6.11 H-1→ L (41%), H→ L (39%)

DPMN8 2.88 431 1.79 0.984 3.93 H-1→ L (37%), H→ L (51%)

DPMN9 2.89 429 1.78 0.983 5.04 H-1→ L (34%), H→ L (51%)

DPMN10 2.95 420 1.91 0.988 3.07 H-1→ L (48%), H→ L (42%)

DPMN11 2.99 414 1.93 0.988 3.97 H-1→ L (47%), H→ L (39%)

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:210570
10

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 A

ug
us

t 2
02

1 
DPMN10 <DPMN6 <DPMN11 <DPMN9 <DPMN1 <DPMN7 <DPMN3 <DPMN2 <DPMN5 <
DPMN4< DPMN8.

The ßtot values of studied molecules DPMN1–DPMN11 are compared with similar TPV-DCV-based
reported molecules [17]. The highest ßtot value 314 412.661(a.u.) noted in studied molecule DPMN8 is
marked as 175 337 (a.u) higher when compared with the thiazole-based reported molecule ßtot value
139 075 (a.u.) [17]. The results of the remaining pyrole and imidazole-based investigated compounds
(DPMN1–DPMN11) are also found to be in good agreement with reported thiophene and thiazole-
based TPV-DCV compounds. These results provide evidence that investigated compounds, especially
DPMN8 have the potential of being used as the NLO candidiate.

For further attestation of the values, βtot values are also compared with urea (ßtot = 43 a.u.), considered
as an organic reference molecule [46]. It is examined that βtot value of DPMN1, DPMN2, DPMN3,
DPMN4, DPMN5, DPMN6, DPMN7, DPMN8, DPMN9, DPMN10 and DPMN11 are 11193.3,
1476.49, 1302.69, 1618.68, 1515.44, 949.93, 1228.06, 7311.92, 1037.08, 693.89 and 976.27 times higher
than urea, respectively.

All chromophores exhibited excellent hyperpolarizability values which indicate that structural
modification by using efficient π-conjugated linkers between D and A units is a very effective
technique to obtain an appealing NLO response.
2.7. UV–visible spectral analysis
TD-DFT computations are used for the investigation of UV–visible spectrum at CAM-B3LYP with 6-311+
G (d, p) basis set. During TD-DFT computations, the lowest singlet-singlet six energy transitions were
examined (see electronic supplementary material, tables S14–S24). Calculated transition energy (Ege),
oscillator strength ( fos), nature of transitions and maximum absorption wavelength (λmax) are given in
table 5, while the spectra of DPMN1–DPMN11 are displayed in figure 3. Overall, dye compounds
showed the absorbance range in the UV–visible region.

In all the compounds having pyrrole as the second pi-spacer, the highest value of λmax is examined in
DPMN1 (497.67 nm). This value of maximum absorption further decreases as the pi-linker changes and the
least value of maximum absorption is analysed inDPMN10 as 420.27 nm. The decreasing order is found as
DPMN1 >DPMN3 >DPMN6 >DPMN8 >DPMN10. The DPMN1 dye with 4-dihydropyrrolo[3,2-b]
pyrrole as the first pi-conjugated linker shows the maximum red shift among all the pyrrole family.
Similarly, for the dyes having imidazole as the second pi-spacer, the minimum value of λmax investigated in
DPMN11 is 414.28 nm. This value increases as the pi-linker changes, so the largest value of λmax is studied
in DPMN2, having 488.80 nm λmax, which indicates thatDPMN2 is more bathochromic.

The computed absorption values of pyrole and imidazole-based investigated compounds (DPMN1–
DPMN11) are found to be in the range of 414–497 nm which is in good agreement with the reported
experimental 424–497 nm range of thiophene and thiazole-based TPV-DCV molecules [17]. The
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synergy between computed and reported values suggests that the investigated molecules DPMN1–
DPMN11 may produce significant NLO results.

It is evident that most of the transitions (HOMO→ LUMO) of electrons mainly originate from the
donor (TPA) to the acceptor (DCV), including DPMN2, DPMN6, DPMN7, DPMN10 and DPMN11
chromophores. In DPMN2, the HOMO→ LUMO+ 1 transition is different from the entire series of
these dyes in DPMN6, DPMN7, DPMN10 and DPMN11, the transitions occur from HOMO-1 to
LUMO. Another important factor affecting the optical efficiency of chromophores is LHE. The
maximum photocurrent response is displayed by those compounds which have a large LHE value.
Equation (2.9) for LHE calculation [47] of compounds is given below

LHE ¼ 1� 10�f : ð2:9Þ

The above equation represents ‘f’ as the oscillator strength of compounds. The LHE values for the dyes
DPMN1–DPMN11 are displayed in table 5. The highest value of LHE in the following series is 0.993 for
the dyeDPMN3, and it is the largest among all dyes. Oudar & Chemla [45] formulated a two-state model
and it is extensively used in the literature to investigate the NLO response containing the critical excited
and ground state in sum-over-state expression and can be represented by equation (2.10). In this model,
an interaction was formed between the charge transfer transition and second-order polarizability, the
origin of push–pull architecture for modelling remarkable NLO compound

bCT ¼
Dmgmfgm

E3
gm

ð2:10Þ

Here, Δμgm defines the difference between excited and ground state, and dipole moment is directly
related to the second-order polarizability. The oscillator strength from the ground state and the nth
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excited state is expressed by fgm directly related to the ß while E3
gm, which is the transition energy in the

cube, is inversely related to the ß-value [48]. Transition moment and oscillation strength are significant
factors in the β-value description [45], and the NLO materials with large transition moment and
oscillator strength and low energy CT have shown great β-values. The good relationship between
hyperpolarizability and two level model for our compounds is shown in figure 4.

The above consequences stated that manipulating the various kinds of π-bridges gives us a crucial
concept in the modelling of novel D–π–A structures, which gives remarkable NLO results that can
enhance the photoelectric and optical properties.
 .org/journal/rsos

R.Soc.Open
Sci.8:210570
3. Conclusion
Triphenylamine–dicyanovinylene-based (DPMN1–DPMN11) chromophores were theoretically designed
by structural tailoring with various pi-spacers and the influence of these spacers on NLO properties was
examined. The findings reveal that pi-linker expressed promising effect over the D–P–A architecture
which strongly tuned electronic, phtophysical and NLO properties of designed chromophores. All
investigated compounds exhibited the broader absorption spectrum (in the range of 414–497 nm) and
larger LHE with least transitional energy (2.49–2.99 eV). Highest red shift (λmax = 497.67 nm) was
investigated in DPMN1. The FMO studies revealed that HOMO is migrated over TPA and partially
on π-linkers or acceptors. By contrast, most LUMOs are mounted on DCV (acceptor) and partly on π-
conjugates. Moreover, the least band gap 2.22–2.60 eV was studied in DPMN1–DPMN11, respectively.
Additionally, NBO findings elucidated that electrons are efficiently transferred through π-linker from
TPA to DCV, leading to the establishment of a charge transferring state. Examination of electronic
transitions from donor to acceptor moieties via π-conjugated linkers revealed greater linear (〈α〉 =
526.536–641.756 a.u.) and nonlinear (βtot = 51 313.8–314 412.661 a.u.) response. Interestingly, compounds
with imidazole spacer expressed lower band gap and higher NLO properties due to its higher basic
nature when compared with pyrrole. Overall, all the designed dyes have shown conspicuous NLO
response with higher polarizability and first hyperpolarizability values especially DPMN8
exhibit highest ßtot value 314 412.661 (a.u.) which is 175 337 (a.u.) higher when compared with the
thiazole-based reported molecule ßtot value 139 075 (a.u.). It is also examined that the βtot value of
DPMN1–DPMN11 are found to be 693.89–7311.92 times higher than standard urea. These organic
metal-free dyes based on this D–π–A framework are crucial in the area of research and provide new
insight into experiments for the production of high-performance NLO materials.
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