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Abstract 

A simple Explicit Radial Basis Function (RBF) is used to solve the shallow water equations (SWEs) for flows over irregular, 
frictional topography involving wetting and drying. At first we construct the MQ
derivative operators. Next, we obtain numerical schemes to solve the SWEs, by using the gradient of the interpolant to 
approximate the spatial derivative of the differential equation and a third
temporal derivative of the differential equation. Then, we verify our scheme against several idealized one
experiments including dam-break and open channel flows over non
wet-dry fronts over irregular bed topography. Promising results are obtained.
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1. Introduction 

     In the past two decades, many numerical schemes have been proposed based on non
the solution of the shallow water equations (SWEs). High
difference, finite element, and finite volume discretizations, have been developed to reduce the number of 
computational cells and minimize the computational time required to ach
example, significant developments have occurred in the implementation of approximate Riemann solvers, such as
Roe, HLL, or HLLC schemes see e.g. [1,2,3,4,5 and 6
SWEs. However, node connectivity is an important issue when applying mesh
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Radial Basis Function (RBF) is used to solve the shallow water equations (SWEs) for flows over irregular, 
frictional topography involving wetting and drying. At first we construct the MQ-RBF interpolation corresponding to space 
derivative operators. Next, we obtain numerical schemes to solve the SWEs, by using the gradient of the interpolant to 
approximate the spatial derivative of the differential equation and a third-order explicit Runge-Kutta scheme to approximate the 
temporal derivative of the differential equation. Then, we verify our scheme against several idealized one-dimensional numerical 

break and open channel flows over non-uniform beds (involving shock wave behavior), and moving 
dry fronts over irregular bed topography. Promising results are obtained. 
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In the past two decades, many numerical schemes have been proposed based on non-linear conservation laws for 
equations (SWEs). High-order, mesh-based numerical schemes, utilizing finite 

difference, finite element, and finite volume discretizations, have been developed to reduce the number of 
computational cells and minimize the computational time required to achieve results of sufficient accuracy. For 
example, significant developments have occurred in the implementation of approximate Riemann solvers, such as
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hydraulic problems. The accuracy and stability of such methods depend greatly on the quality of the mesh; in 
general this is not a trivial issue, particularly when the boundary geometry is complicated. In this optic, meshless 
methods can be viewed as a good alternative, noting the relative simplicity of their implementation. Development of 
robust meshless methods for the numerical solution of partial differential equations has attracted considerable 
interest over the past twenty years, see e.g [7,8 and 9] . In particular, Fedoseyev et al. [10] and Cheng et al. [11] 
have shown that meshless radial basis functions (RBFs) are attractive options because of the exponential 
convergence of certain RBFs. Various RBFs have been successfully applied to obtain accurate, efficient solutions of 
partial differential equations of engineering interest. This method has been applied to solve inviscid  compressible 
flows [12], natural convection [13], heat conduction [14], three-dimensional incompressible viscous flows [15], long 
waves in shallow water [16], and the vibration analysis of membranes [ 17]. 
In this paper, we examine the application of multiquadric radial basis functions (MQ-RBFs) to the numerical 
solution of the shallow equations for problems involving wetting/drying over complicated, frictional bed 
topography. In the formulation of MQ-RBFs, the radial basis functions represented by the multiquadric functions 

2 2
i1 (x x )  are employed as basis functions to compute weighting coefficients for space differential operators, over 

a global set of computational collocation points [18]. The friction term is included in the momentum equations, and 
discretized by a splitting implicit scheme [6]. A third-order Runge-Kutta algorithm is used for time integration [19].  
It is known that the system of shallow water equations admits non-smooth solutions that may contain shocks, 
rarefaction waves, and, in the case of non-smooth bottom topography, also contain contact discontinuities. To 
perform properly, a numerical method must be nonlinearly stable, because linearly stable methods may develop 
large spurious oscillations and even blow up. To stabilize the proposed MQ-RBF model for slowly varying flows, as 
well as rapidly varying flows involving shocks or discontinuities such as dam-breaks and hydraulic jumps, an 
artificial viscosity technique is used, following [20]. Furthermore, to avoid numerical instability caused by negative 
water depth near wet/dry fronts, the local flow variables are modified, imposing zero discharge when the water 
height became very small. As a consequence, the present numerical scheme ensures preservation of non-negative 
water depth and there is no need to limit the fluxes during simulation. 
The paper is organized as follows: Section 2 outlines the shallow water equations. Section 3 presents the general 
formulation of partial differential problem interpolation using MQ-RBFs. Section 4 describes the application of 
MQ-RBFs to generate the discrete form of shallow water equations. Details are given of the numerical methods used 
to represent the friction term and carry out time integration. Section 5 discusses validation and application of the 
method; several numerical experiments are carried out for previously published benchmark cases in order to confirm 
the potential of the proposed scheme. Section 6 summarizes the main findings. 

 

2. Shallow water equations  

The shallow water equations (SWEs) have wide applications in ocean and hydraulic engineering, in particular with 
regard to river, reservoir, and open channel flows. The SWEs are derived from the Navier-Stokes equations under 
the following simplifying assumptions. First, it is assumed that vertical accelerations are sufficiently small to be 
neglected and that the fluid is homogeneous; the velocity profile can therefore be considered uniform through the 
depth. For a fixed bathymetry zb = zb(x) (see Fig. 1) and neglecting viscous and Coriolis effects, the one-dimensional 
shallow water equations, containing geometrical source terms due to the bottom and friction topography, can be 
written as 

 2 2

( ) ( ) 0

1( ) ( ) ( )
2 b

h hu
t x

hu hu gh gh z C u uft x x

            
 (1) 
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where h = h(x,t)is the water depth, u = u(x,t)is the depth-averaged velocity component and g is the acceleration due 
to gravity. The right hand side of the momentum equation comprises a bed slope term and a bed friction term (in 
which 

12 3C gn hf


 , with n the Manning coefficient). 
 

 

Fig. 1. Definition sketch for shallow water flow. 

The system of shallow water equations is rewritten in a more compact form, as follows: 

 ( ) ( ) ( )
z b

W F W S W S Wt x
      (2) 

where 
T

T

T

z
1/3 T

b

2 2

2

W (h, hu) ;

F(W) (hu, hu 0.5gh ) ;
z

S (W) (0, gh ) andx
S (W) (0, gn || u || uh )





 
  

 

 

Ignoring the right hand side, the system (2) reduces to a homogeneous hyperbolic system with real eigenvalues, 
u gh   and u gh   , and linearly independent eigenvectors. 

3. The multiquadric radial basis function method  

Let be an open domain of dR ,d 1;2 . Suppose U U(x, t) is a function to be approximated in a set of N pairwise 
distinct nodes  1 2 Nx , x ,..., xx . In the RBF meshless scheme the approximation of U at the node ix can be 
written as a linear combination of N RBFs 

 

1

( , ) ( ) (|| ||, )
N

j j
j

U t t x x


    x  (3) 

where  T

1 2 NU( , t) U(x , t), U(x , t),..., U(x , t)x are the function values at node x, 

 T

N1 2( ) (|| x x ||, ), (|| x x ||, ),..., (|| x x ||, )          x is a RBF centered at x, || . || denotes the Euclidean 
norm between nodes x and xj and  T

N1 2, ,...,     are coefficients to be determined. 
One of the most commonly used RBFs is the multiquadric (MQ) RBFs [21]. Here we use the infinitely smooth 
multiquadric radial basis function defined as: 

 2 2
|(|| |, ) 1 ( )j jx x x x        (4) 

where  is a shape parameter that controls the fit of a smooth surface to the data. In the present work we used the 
following selection [22] 
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 0.8
m

N

d
   (5) 

in which dm denotes the smallest nodal distance. The expansion coefficients   in (3) are obtained by solving the 
following linear system of N N algebraic equations of ,( ) i iU x t U  

 U  (6) 

the expansion coefficients are then calculated by 

 1   U  (7) 

where  T

1 2 NU , U ,..., UU is the vector of approximate solutions, i j 1 i, j N( (|| x x ||, ))       is an N N
matrix of RBFs given as: 

 

1 1

1

(|| ||, ) ... (|| 1 ||, )

. .. .. .

(|| ||, ) ... (|| ||, )N N N

N N

x x x xN

x x x x


 
      

 
 
 
 
 
      
 

  

Space derivatives of the interpolant (3) may be readily calculated, due to its linearity. Generally, the first and 
second-order spatial derivatives at the points x can be calculated as 

 
( ) ( )

1

( ) (|| ||, )
k kN

j i jk k
j

t x x
x x

 
   

 U  (8) 

in which k=(1,2) denotes first and second-order derivatives. In a compact matrix form, using equation (7), equation 
(8) can be written as 

 ( ) ( )

( )
k k

k

x x
kx


    


U

U  (9) 

where 

 
( ) ( ) ( ) ( )

1 2( , ) ( , ) ( , )
, ,...,

Tk k k k
N

k k k k

U x t U x t U x t

x x x x

    
      

U  (10) 

and 

 ( )

( ) ( ) ( )
1 2( ) ( ) ( )

, ,...,k

Tk k k
N

x
k k k

x x x

x x x

      
      

 (11) 

4. Discretized form of SWEs by MQ-RBF  

4.1. Convective flux and bottom topography term approximations 

Let us assume that ( ( ))nF xU are known convective fluxes at time t n t  . Using (3), they can be approximated by 

 

1

( ) ( ) (|| ||, )
N

n
j j

j

F W t x x


      (12) 

and in matrix form, these equations become 
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 n nF     (13) 

However, the expansion coefficients are then calculated by 

 1n nF   (14) 

From (12), the partial flux derivative ( )nF W

x




can be written as: 

 

1

(|| ||, )( )
( )

n N
jn

j
j

x xF
t

x x

  
 

 W  (15) 

Then, the compact matrix form of the partial derivative of the flux vector is: 

 ( )
( )

n
n n

x x

F
F

x


    


W

W  (16) 

Applying the same procedure described above for the bottom topography function zb(x), it is easy to obtain its 
discrete form. The topography function can be approximated by 

 ),()()(
1

 j

N

j
j

n
b xxtxz 



 (17) 

and its partial derivative is then expressed as, 

 
x

xx
t

x

xz j
N

j
j

n
b







 



),(
)(

)(

1


  (18) 

In the same way, the compact matrix form of the bottom topography term 
n
zS

b
is given as: 

 ),(
),(

b
tzgh

x

tz
ghS n

bx
n

n
bnn

z x
x





  (19) 

4.2. Addition of friction effects 

To incorporate friction into the present numerical scheme, the friction term is discretized using an operator splitting 
procedure described in [23], which splits the shallow water equations (2) into two equations: 

 
1 2 1/3 1( ) ( || || )

( , ) 0

n n
b

b

hu
S gn u uh

t
hu

Z
t

      
  
 

W

WL

 (20) 

In the first step of the calculation, the upper ordinary differential equation in (21) is approximated by an implicit 
method as [6]: 

 1( )n
n
b

hu hu
S

t





 (21) 

where the friction term 1nSb
 may be expressed using a Taylor series as: 

 1 2( ) (( ) ( ) ) ( ( ) )n n n nb
b b

S
S S hu hu 0 hu

hu
     


 (22) 

Rearranging the above equation leads to the following formula for updating water discharge hu at the new time step 
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1

( )
1 2 || ||

n
n b

f

S
hu hu t

tC u h  
 

 (23) 

In the second step, the value hu is taken to be the initial condition when solving the second equation in (21). 

4.3. Time integration and stability condition 

To date, the forward Euler method has been mainly used as the preferred time stepping scheme for RBF methods. 
However, the forward Euler method is only first-order accurate in time and so may introduce excessive numerical 
dissipation in the computed RBF solutions. To achieve a higher order of accuracy, we use the explicit Runge-Kutta 
method recommended by [19]. The procedure to advance the solution from the time tn to the next time tn+1 is carried 
out as 

 

(1)

(2) (1) (1)

1 (2) (2)

( )

3 1 1
( )

4 4 4
1 2 2

( )
3 3 3

n n

n

n n

t

t

t

  

   

   

W W

W

W W

W L

W W L W

W L W

 (24) 

where n represents the time level, and t is the time step. To achieve stability (for this explicit scheme) the time step 
must meet the following criterion: 

 min

max(|| || )i i

d
t CFL

u gh
 


 (25) 

where the CFL is the Courant number, such that 0 < CFL < 1, and dmin denotes the smallest nodal distance between 
collocation points. 

4.4. Boundary conditions 

In this work, transmissive boundary conditions for open inflow/outflow and reflective boundary conditions for solid 
walls are applied in the simulations. At a transmissive boundary, the flow variables at a collocation point on the 
boundary are set to the same values as at the interior point normal to the boundary. At a reflective boundary, the 
value at a collocation point is simply the mirror image of that at the associated boundary point, so that the normal 
velocity component is zero at the boundary. However, the representation of boundary conditions within a MQ-RBF 
method is less trivial. 

4.5. Artificial viscosity for shock-capturing 

    For particular hydraulic problems involving shock-waves, such as a hydraulic jump or 
dam-break flows, the numerical model is required to represent a steady or unsteady discontinuity, where the 
presence of oscillations in the solution is expected, and sometimes may grow over time. However, by introducing a 
small amount of artificial diffusion, it is possible to damp these oscillations [ 20 and 24]. We therefore augment the 
right hand side of the hyperbolic system (2) with the artificial diffusion term 

 
2

2
( ) hD

x





W

WD  (26) 

where Dh is a tunable viscosity coefficient. The Peclet number is defined as follows: 
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eP 

+ -
i i

min
h

max(λ , λ )
d

D
 (27) 

and it often controls the stability of the numerical solutions [20 and 25]. In the case of convection-dominated flow, 
the Peclet number is large but finite, and the effect of the diffusion term (27) becomes negligible. Therefore, a 
natural and simple way to stabilize the solution is to reduce the Peclet number. 
Using the RBFs interpolation of an arbitrary function (9), the augmented term (27) can be obtained as 

 
min

max( , )
( ) i i

xx
e

d
P

  
W Φ ΦWD . (28) 

5. Results and discussion 

5.1. One-Dimensional Dam-Break Problems 

5.1.1.  Dam break over a wet bed 
    A one-dimensional dam break over a wet, horizontal bed is first simulated to demonstrate the shock-capturing 

capability of the corrected MQ-RBF method using artificial viscosity. The channel is of length 20 m. The initial 
water discharge and depth are given by: 

10 10
( ,0) 0 and ( ,0)

2

if x
hu x h x

otherwise


  


  (29) 

As boundary conditions, a zero discharge and a free boundary are considered at the left and right ends of the 
channel. The analytical solution for this simple dam-break test consists of a backward-propagating rarefaction and a 
forward-moving shock wave. Fig. 2 shows the numerical results of flow after the dam fails, at three different times 
in terms of water surface elevation and discharge. Here, the model domain consists of 800 points. An artificial 
viscosity of 0.001 m2s-1 is applied corresponding to a Peclet number of 300.  Figs 3 and 4 show close-up views of 
the evolving free surface elevation and discharge profiles along the channel at different times. In general, 
satisfactory agreement is achieved between the numerical and analytical solutions, although a very small amount 
Xof numerical diffusion occurs where the surface gradient is steepest. 

 

Fig. 2. Numerical and exact solutions of a dam break on a wet bed, at different times, using a grid of 800 points. Left: free surface elevation 
profiles; right: profiles of water discharge per unit breadth. 
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Fig. 3. Same as Fig. 2, zoom-in, focusing on discontinuities in water level. 

 

Fig. 4. Same as Fig. 2, zoom-in,  focusing on discontinuities in discharge.  

 

 

Fig. 5. Numerical and exact solutions for a dam break on a dry bed, at different times, using a grid with 800 points. Left: free surface elevation 
profiles; right: profiles of discharge per unit breadth. 

5.1.2.  Dam break over a dry bed 
   In this case, the previous wet bed dam-break test is modified to test the capability of the current MQ-RBFs in 
handling wet-dry fronts and small water depths. The previous initial conditions are modified to be 
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 10 10
( ,0) 0 and ( ,0)

0

if x
hu x h x

otherwise


  


 (30) 

i.e., an initial still water level on the left hand side of the dam at x = 10m, and a dry region on the right. In practice, 
the region is considered dry when the water depth is less than 610 m  . Zero discharge, 0hu  , is imposed at the left 
boundary at 0x  ; and a free boundary condition is implemented at the right boundary 20x   m.  The domain is 
again discretized into 800 grid points, and the simulation carried out until 0.6t s after the dam instantaneously fails. 
The artificial viscosity is set to 0.001  m2s-1. Fig. 5 shows the numerical predictions. Again, the numerical predictions 
agree satisfactorily with the analytical solution. No additional treatment is needed to track the wet/dry front because 
the bed is flat and horizontal in this case. 

5.2. Flow over a hump 

   To investigate the ability of the MQ-RBF algorithm to establish steady-state solutions, we apply the numerical 
solver to a series of benchmark test problems for subcritical, and transcritical flows. These problems are widely used 
to test numerical algorithms for the shallow-water equations, e.g. [26,27 and 28]. In these test examples the channel 
length is 25 m and the bottom topography zb(x) is defined as, 

 
20.2 0.05( 10) 8 12

( )
0

b

x if x
Z x

otherwise

    
 


 m (31) 

with the initial water depth and discharge given by 

       2 1,0   2 –  ,0   0 bh x z x and hu x m s   (32) 

Depending on the boundary conditions, the flow can be subcritical or transcritical, with or without a steady shock 
(hydraulic jump). All results are displayed at 200t s using a grid of 800 points, with CFL fixed at 0.6. Analytical 
solutions for the various cases are given by Goutal and Maurel [29] and Xing [27]. 
 Transcritical flow without a shock 
The discharge is prescribed as hu = 1.53 m2s-1 at the upstream inlet boundary, and the water depth is fixed ash = 0.66 
mat the downstream outlet boundary. Fig. 6 shows the close agreement between the predicted and analytical profiles 
of stage, h + zb, and discharge, hu, along the channel. Slight discrepancies in discharge arise from sampling hu as a 
dependent variable, rather than as a flux [28] 
 Transcritical flow with a shock 
To develop a transcritical flow with a shock, the upstream discharge is set to 0.18 m2s-1 and the downstream water 
depth to 0.33 m.  In this case, the Froude number, /Fr u gh , increases to a value greater than unity above the hump as 
the flow becomes transcritical.  Over the downstream face of the hump, a hydraulic jump occurs as a stationary 
surge wave (or hydraulic shock) downstream of which the flow becomes subcritical and the Froude number 
decreases to below unity. Fig. 7 plots stage and discharge profiles along the channel, with the hydraulic jump 
evident in the free surface profile. The numerical predictions are non-oscillatory and in satisfactory agreement with 
the corresponding analytical solutions. 
 Subcritical flow 
In this case, the prescribed upstream discharge is 4.42 m2s-1 and the downstream depth is 2 m.. The flow is 
everywhere subcritical. Fig. 8 depicts the predicted stage and discharge profiles which are again in good agreement 
with the corresponding analytical solutions. 



10 Chaabelasri et al. 

Fig. 6. Steady transcritical flow over a bed hump, without a shock: Predicted and analytical profiles of stage (left) and dis
(right); the topography is colored brown.

Fig. 7. . Steady transcritical flow over a bed hump, with a shock: Predicted and analytical profiles of stage (left) and discharge per unit breadth 
(right); the topography is colored brown.

Fig. 8. . Steady subcritical flow over a bed hump: Predicted and analytical profiles of stage (
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Fig. 6. Steady transcritical flow over a bed hump, without a shock: Predicted and analytical profiles of stage (left) and dis
(right); the topography is colored brown. 

flow over a bed hump, with a shock: Predicted and analytical profiles of stage (left) and discharge per unit breadth 
(right); the topography is colored brown. 

Fig. 8. . Steady subcritical flow over a bed hump: Predicted and analytical profiles of stage (left) and discharge per unit breadth (right); the 
topography is colored brown. 
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5.3.  Drainage over a bed hump 

   A drainage problem where a dam break wave overtops a bed hump, and the downstream face dries out, is now 
used to test the ability of the proposed method to handle drying processes on a non-uniform bed. The problem was 
originally proposed by Gallouet et al. [30], and was also considered by Xing [27]. The flow is computed in a domain 
of length 38 m which contains a triangular hump on an otherwise flat bed. At the left boundary, a free condition is 
applied to the water depth h whereas the discharge is set to zero.  At the right boundary, the depth and discharge are 
both set to zero, corresponding to a dry bed.  Full details of the flow domain and parameters are given by Gallouet et 
al. [30].The bottom topography is given by 

 

0 25.5

25.5 28.5
( )

( 6) 28.5 31.5

0 31.5

b

if x

ax ba if x
z x

ax b a if x

if x


        
 

 m (33) 

where 0.4 / 3a   and 25.5b  .  The initial water height and discharge are 

 h(x,0)=0.75 –zb(x)    and  hu(x,0) = 0 .    (34) 

The computational domain is discretized into 800 grid points, the CFL number is set to 0.6, and the simulation 
carried out for a total duration of 400 s. Fig. 9 shows the evolving stage profiles along the channel at times t = 0.5, 
1.5, 3.5, and 400 s. The outlet boundary condition on the right allows the water to flow freely out of the domain on 
the right, and a dry region develops near the right side of the hump. After a long time, the solution reaches steady 
state, with still water to the left of the hump, and a dry bed to the right. The numerical solutions properly reproduce 
this pattern, and converge to the expected steady state. 

 

Fig. 9. Stage profiles at different times for dam break flow over a hump, where drainage occurs on the downstream slope of the hump. 

5.4. Dam break flow over a triangular hump 

    In this test case, we examine the performance of the proposed scheme with a dam break wave over a triangular 
obstacle downstream of the dam. Fig. 10 shows the reservoir, channel and triangular obstacle geometry, along with 
the location of the measurement gauges. A reservoir containing water of  initial depth 0.75m is connected to a 
rectangular channel with a symmetric triangular obstacle located downstream of the dam. The Manning roughness 
coefficient is n=0.0125 s.m-1/3 throughout. The boundaries are solid walls except for the free outlet at the end of the 
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channel. Experimental data are reported by Shirkhania et al. [31] at gauge points G1,G2,G3,G4, and G5 which are 
located 4, 10, 11, 13, and 20m downstream of the reservoir. We compute the solution using MQ-RBFs with 800 grid 
points. In Fig. 11, we present the time evolution of the computed water depths at the gauge points and compare the 
predicted and measured values. For all gauges located upstream and downstream of the obstacle, the water depth 
and the arrival time of the wave are properly predicted, confirming the capability of the scheme to predict actual 
dam break flooding, albeit at laboratory scale.  

 
Fig. 10. Schematic side view of Shirkhania et al.’s (2016) experimental model showing gauge point locations, for dam break flow over a 

triangular hump. 
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Fig. 11. Dam break over a triangular obstacle: predicted and measured water depthtime histories at gauging points G2, G4, G8, G10, G11, G13 
and G20.  

6. CONCLUSIONS 

   This paper has investigated a simple MQ-RBFs meshless method for solving the shallow water equations 
including bed friction and non-uniform bed elevation terms. The space derivative has been approximated by radial 
basis functions on global collocation points. An explicit 3rd order Runge-Kutta scheme was used for time 
integration. The MQ-RBFs meshless method has been found to be flexible and straightforward to implement. The 
method is particularly attractive in comparison with classical mesh-based methods because it is inherently mesh-free 
and requires no special treatment of the wet-dry interface. The method was tested against several standard 
benchmark problems.  Excellent agreement was obtained between the numerical predictions and analytical solutions 
for one-dimensional dam break bore and rarefaction flows over wet and dry beds. The model was also tested for 
open channel flow over a bed hump, where again close agreement was achieved between the numerical predictions 
and analytical solutions of the stage-discharge profiles along the channel. A drainage test demonstrated the model 
properly reproduced drying processes over non-uniform bed topography. Finally, the method was applied to a 



14 Chaabelasri et al. / Procedia Computer Science 00 (2019) 000–000 

laboratory dam break over an initially dry bed with a triangular hump. The numerical model gives promising 
predictions by comparison with previously published experimental data. 
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