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We consider a finite array of floating flap gates
oscillating wave surge converter (OWSC) in water
of constant depth. The diffraction and radiation
potentials are solved in terms of elliptical coordinates
and Mathieu functions. Generated power and capture
width ratio of a single gate excited by incoming waves
are given in terms of the radiated wave amplitude in
the far field. Similar to the case of axially symmetric
absorbers, the maximum power extracted is shown
to be directly proportional to the incident wave
characteristics: energy flux, angle of incidence and
wavelength. Accordingly, the capture width ratio is
directly proportional to the wavelength, thus giving
a design estimate of the maximum efficiency of the
system. We then compare the array and the single gate
in terms of energy production. For regular waves, we
show that excitation of the out-of-phase natural modes
of the array increases the power output, while in the
case of random seas we show that the array and the
single gate achieve the same efficiency.

1. Introduction
Research on wave energy production by surface-piercing
oscillating wave surge converter (OWSCs) has arisen in
recent years. This is mainly due to the high performance
of these devices in terms of power extraction. Indeed,
the floating flap gate OWSC is able to extract energy
with large efficiency for a broad range of wave
frequencies [1,2]. One disadvantage of such wave energy
converter is the large wave load acting at the bottom

2016 The Author(s) Published by the Royal Society. All rights reserved.
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foundation in extreme wave conditions. This undesired phenomenon can be reduced dividing
the flap into smaller components.

In this paper, we consider an array of neighbouring flap gates in open sea of constant depth
under incoming waves. Solutions for the radiation and scattering potentials are found in terms
of angular and radial Mathieu functions [3–6]. Application of Mathieu functions in fields such
as optics, electromagnetism and ocean surface waves are discussed in [7–10]. Different authors
investigated the wave scattering by a stationary platform of elliptical shape partially immersed
in the fluid domain [11–13], while Chatjigeorgiou & Mavrakos [14,15] solved the wave diffraction
field by arrays of elliptical cylinders. The Mathieu functions have been used also for the solution
of the diffraction problem of waves incident on breakwaters of negligible thickness and finite
width [16]. To study the mechanical behaviour of the flaps in waves, Renzi & Dias [2] developed
a semi-analytical model of the hydrodynamics of a ‘thin-flap’ by a hypersingular integral equation
approach. Michele et al. [17,18] have extended the integral approach of Renzi & Dias [2] to
multiple array of flaps of finite thickness. However, systematic lengthy numerical investigations
are necessary to analyse the parametric dependence of the system response. The present analytical
findings allow explicit parametrical insight.

We consider the response of the array to incident waves of varying frequency and angle of
incidence. We show that both odd and even natural modes of the array can be excited if the waves
are not normally incident to the array [19–22]. The added inertia, radiation damping and exciting
torque have explicit expressions. First, the case of a single gate is considered. Useful expressions
for the generated power and capture width ratio are derived in terms of the amplitude of the
radiated waves in the far field. A closed formula for the maximum power output of a single
gate is obtained: the maximum power output is proportional to twice the incident wave power
multiplied by the wavelength. Consequently, the capture width ratio is directly proportional to
the wavelength. Such a result is of practical interest and could be used in the preliminary design
processes to assess the optimal efficiency of the device. The present findings were previously
obtained from the analysis of the optimum efficiency of axially symmetric absorbers [23,24].
Indeed, we show that a floating flap gate (‘flap’ in the following) OWSC achieves the same
optimum efficiency of a floating cylinder bottom-hinged OWSC having diameter equal to the
flap width. Finally, the array is compared in terms of energy production to the single flap. The
analysis in monochromatic waves shows that linear excitation of the natural modes of the array
allows maximization of the capture width ratio. In the case of random seas represented by the
JONSWAP spectrum [25], the array and the single flap exhibit a similar behaviour in terms of
power extraction.

2. Governing equations
With reference to figure 1, consider an array of Q identical flaps in open sea of constant depth
h. Let a and 2b be, respectively, the width and the thickness of each flap; w = aQ represents the
total width of the array. Define a three-dimensional Cartesian coordinate system with the x- and
y-axes lying on the mean free surface and the z-axis pointing vertically upward. The x-axis is
orthogonal to the array, while the y-axis bisects the array. All the flaps are hinged at the bottom
and oscillate about the horizontal common axis lying on x = 0, z = −h. Monochromatic incident
waves of amplitude A, period T and angular frequency ω= 2π/T form an angle ψ with the x-axis.
Let Gq denote the qth flap and Θq(t) be the angular displacement of Gq, positive clockwise. Each
flap Gq spans a y-width given by

y ∈ [yq, yq+1], yq = (q − 1)a − w
2

, q = 1, . . . , Q. (2.1)

Define Θ(y, t) as the angular displacement function of the array:

Θ(y, t) = {Θ1(t), . . . ,Θq(t), . . . ,ΘQ(t)}. (2.2)

Θ(y, t) is an unknown piece-wise constant function in y ∈ [−w/2, w/2].
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Figure 1. Plan geometry and side view.

We resort to the ‘thin-flap’ approximation of Martin & Rizzo [26] (see also [2,27]), b � a, so
that x± = ±0 indicates the x-coordinate of the rest position of the vertical surface of the flaps. The
horizontal boundary Sq of the flap Gq and the entire horizontal array boundary SA can then be
defined as follows:

Sq = {x = x±, y ∈ [yq, yq+1]} and SA =
Q∑

q=1

Sq. (2.3)

The fluid is assumed inviscid and incompressible and the flow irrotational, hence there exist a
velocity potential Φ(x, y, z, t) which satisfies the Laplace equation in the fluid domain Ω :

∇2Φ = 0, (x, y, z) ∈Ω . (2.4)

On the basis of linearized water-wave theory, the potential Φ(x, y, z, t) satisfies the mixed
boundary condition on the free surface

∂2Φ

∂t2 + g
∂Φ

∂z
= 0, z = 0, (2.5)

and the no-flux condition at the bottom

∂Φ

∂z
= 0, z = −h. (2.6)

For small-amplitude oscillations, the kinematic condition on the surfaces of the array may be
written:

∂Φ

∂x
= ∂Θ

∂t
(z + h), x, y ∈ SA, z ∈ [−h, 0]. (2.7)

Assuming harmonic motion of frequency ω, the time dependence can be factored out:

Φ(x, y, z, t) = Re{φ(x, y, z) e−iωt} and Θ(y, t) = Re{θ (y) e−iωt}, (2.8)
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where θ (y) = {θ1, . . . , θq, . . . , θQ} is the displacement amplitude function of the array. The spatial
potential φ(x, y, z) is decomposed into

φ = φI + φS +
Q∑

q=1

φR
q , (2.9)

in which

φI = − iAg
ω

cosh k0(h + z)
cosh k0h

e−ik0(x cosψ+y sinψ), (2.10)

is the potential of the monochromatic incoming waves with incidence angle ψ , φS is the potential
of the scattered waves by the array and φR

q is the potential of the radiated waves due to the moving
flap Gq while all the other flaps are at rest. In (2.10), k0 represents the wavenumber, i.e. the real
root of the dispersion relation ω2 = gk0 tanh k0h and i is the imaginary unit. Both φR

q and φS satisfy
the Laplace equation (2.4), the mixed boundary condition on the free surface (2.5) and the no-flux
condition on the seabed (2.6). The kinematic boundary conditions on the array surfaces become⎧⎪⎨

⎪⎩
∂φR

q

∂x
= −iωθq(z + h), x, y ∈ Sq, z ∈ [−h, 0],

0, elsewhere on the array
(2.11a)

and
∂φS

∂x
= −∂φ

I

∂x
, x, y ∈ SA, z ∈ [−h, 0]. (2.11b)

Finally, it is required that φR
q and φS remain bounded for

√
x2 + y2 → ∞.

3. Solution for the scattering and radiation problems
Separation of the z-coordinate gives [24]

φR
q

φS

⎫⎬
⎭=

∞∑
n=0

{
ϕR

qn(x, y)

ϕS
n(x, y)

}
Zn(z), (3.1)

where Zn(z) are the normalized eigenfunctions:

Zn(z) =
√

2 cosh kn(h + z)

(h + (g/ω2) sinh2 knh)1/2
,

∫ 0

−h
ZnZm dz = δnm, n, m = 0, 1, . . . (3.2)

and δnm is the Kronecker symbol. In (3.2), kn for n ≥ 1 are the complex roots of the dispersion
relation (see again [24])

kn = ik̄n, ω2 = −gk̄n tan k̄nh, n = 1, . . . , ∞. (3.3)

Following separation of (3.1), the Laplace equation becomes the Helmholtz equation(
∂2

∂x2 + ∂2

∂y2 + k2
n

){
ϕR

qn(x, y)

ϕS
n(x, y)

}
= 0. (3.4)

The boundary conditions on the array (2.11a,b) become, for q = 1, . . . , Q:⎧⎪⎨
⎪⎩
∂ϕR

qn

∂x
= − iωθqfn, on Sq,

0, elsewhere on the array
(3.5a)

and
∂ϕS

n
∂x

= Adn cosψ e−ikny sinψ , on SA. (3.5b)
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ϕR
qn and ϕS

n must be bounded as
√

x2 + y2 → ∞. In the latter expressions, the coefficients fn and dn

are

fn =
∫ 0

−h
(z + h)Zn(z) dz =

√
2(1 − cosh knh + knh sinh knh)

(h + (g/ω2) sinh2 knh)1/2k2
n

, n = 0, 1, . . . (3.6)

and

d0 =
∫ 0

−h

gk0Z0(z) cosh k0(h + z)
ω cosh k0h

dz

= gk0(h + (g/ω2) sinh2 k0h)1/2
√

2ω cosh k0h
, dn = 0 for n ≥ 1. (3.7)

For the above stated boundary value problems in x, y, z, only semi-analytical solutions are
possible. Hence we resort to elliptic coordinates (ξ , η), defined as

x = w
2

sinh ξ sin η and y = w
2

cosh ξ cos η. (3.8)

Curves of constant ξ and η describe, respectively, confocal ellipses and hyperbolas of focal length
w. The suitability of these coordinates lies in the fact that for ξ = 0 the ellipse degenerates into a
segment of width w described by ξ = 0 and η ∈ [0, 2π ]. Hence, the flap boundary conditions are
given on a curve describable by a single coordinate and separation of variables is still possible
(Mei [28]). Substitution of (3.8) into (3.4) yields the two-dimensional Helmholtz equation in
elliptic coordinates: [

∂2

∂η2 + ∂2

∂ξ2 + w2k2
n

8
(cosh 2ξ − cos 2η)

]{
ϕR

qn(ξ , η)

ϕS
n(ξ , η)

}
= 0. (3.9)

Separation of variables

ϕR
qn(ξ , η) =XR

qn(ξ )YR
qn(η) and ϕS

n(ξ , η) =X S
n (ξ )YS

n (η), (3.10)

and substitution in (3.9) yields the following system of linear ordinary differential equations:(
d2

∂ξ2 − λ+ 2τn cosh 2ξ

){XR
qn

X S
n

}
= 0 (3.11)

and (
d2

∂η2 + λ− 2τn cos 2η

){YR
qn

YS
n

}
= 0, (3.12)

where τn = w2k2
n/16 is a non-dimensional parameter, while λ is a separation constant. For n = 0,

τ0 has the physical meaning of the ratio between the array width w and the incident wavelength
2π/k0. Equations (3.11) and (3.12) are known, respectively, as radial Mathieu equation and angular
Mathieu equation [3,5,29]. The radial Mathieu equation plays a similar role as the Bessel equation
in cylindrical coordinates and admits solutions expressed in terms of Hankel–Mathieu functions
(see appendix A for details). The angular Mathieu equation has four classes of solutions expressed
in terms of Fourier series (appendix A). As a result, the most general solution for ϕR

qn and ϕS
n

bounded for ξ → ∞ is given by

ϕR
qn(ξ , η)

ϕS
n(ξ , η)

}
=

∞∑
m=0

{[AR
qnm

AS
nm

]
ce2m(η; τn)He(1)

2m(ξ ; τn) +
[BR

qnm

BS
nm

]
ce2m+1(η; τn)He(1)

2m+1(ξ ; τn)

+
[CR

qnm

CS
nm

]
se2m+2(η; τn)Ho(1)

2m+2(ξ ; τn) +
[DR

qnm

DS
nm

]
se2m+1(η; τn)Ho(1)

2m+1(ξ ; τn)

}
, (3.13)

where ce(η; τn) and se(η; τn) are the even and odd Mathieu functions of the first kind, He(ξ ; τn)
and Ho(ξ ; τn) are the even and odd Hankel–Mathieu functions of the first kind, while A, B, C
and D denote the unknown coefficients which can be obtained applying the boundary conditions
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on the array surface. Let us first change all spatial derivatives from rectangular coordinates to
elliptical coordinates (ξ , η). By the chain rule of differentiation, the boundary conditions on the
array surfaces (3.5a,b) become, for q = 1, . . . , Q⎧⎪⎨

⎪⎩
∂ϕR

qn

∂ξ
= − iωθqfn

w
2

sin η, on Sq,

0, elsewhere on the array
(3.14a)

and
∂ϕS

n
∂ξ

= Adn
w
2

cosψ sin η e−ikn(w/2) cos η sinψ , on SA, (3.14b)

where Sq and SA are now defined in the (ξ , η) frame of reference:

Sq = {ξ = 0, η ∈ [ηq+1; ηq] ∪ [2π − ηq; 2π − ηq+1]}
and SA = {ξ = 0, η ∈ [0; 2π ]},

}
(3.15)

in which

ηq = arccos
[

2(q − 1)
Q

− 1
]

. (3.16)

Application of the boundary conditions (3.14a,b), while resorting to the orthogonal property of
the angular Mathieu functions (A 7), yields the constants in (3.13) of the radiation potential:

AR
qnm =BR

qnm ≡ 0, (3.17)

CR
qnm

DR
qnm

⎫⎬
⎭= −iωθqfnw

∫
Sq

[
se2m+2(η; τn)

se2m+1(η; τn)

]
sin η dη

2πHo(1)
2m+1ξ (0; τn)

(3.18)

and the constants in (3.13) for the scattering potential:

AS
nm =BS

nm ≡ 0, (3.19)

CS
nm

DS
nm

⎫⎬
⎭= wAdn cosψ

∫
SA

[
se2m+2(η; τn)

se2m+1(η; τn)

]
e−ikn(w/2) cos η sinψ sin η dη

2πHo(1)
2m+1ξ (0; τn)

, (3.20)

where the subscript (·)ξ denotes the derivative of (·) with respect to the radial coordinate ξ . The
solutions for ϕR

qn and ϕS
n of (3.13) become

ϕR
qn(ξ , η)

ϕS
n(ξ , η)

}
=

∞∑
m=0

[CR
qnm

CS
nm

]
se2m+2(η; τn)Ho(1)

2m+2(ξ ; τn) +
[DR

qnm

DS
nm

]
se2m+1(η; τn)Ho(1)

2m+1(ξ ; τn). (3.21)

4. Flap motion
The equation of motion of the qth flap coupled with an energy generator at the hinge is formally
equivalent to that of a damped harmonic oscillator:

(−ω2I + C − iωνPTO)θq −
Q∑

p=1

(ω2μ
p
q + iωνp

q )θp = Fq, q = 1, . . . , Q, (4.1)

where I is the moment of inertia of the flap about the hinge, C is the buoyancy restoring torque,
νPTO is the power take-off coefficient,

Fq = −iωρf0
w
2

{∫ 2π+ηq+1

2π−ηq

ϕS
0 (0, η) sin η dη +

∫ ηq

ηq+1

ϕS
0 (0, η) sin η dη

}
(4.2)
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is the exciting torque due to the diffracted waves, while

μ
p
q = ρw

2ω

∞∑
n=0

fn Im

{∫ 2π+ηq+1

2π−ηq

ϕR
pn(0, η) sin η dη +

∫ ηq

ηq+1

ϕR
pn(0, η) sin η dη

}
(4.3)

and

ν
p
q = −ρf0

w
2

Re

{∫ 2π+ηq+1

2π−ηq

ϕR
p0(0, η) sin η dη +

∫ ηq

ηq+1

ϕR
p0(0, η) sin η dη

}
(4.4)

represent, respectively, the added inertia and the radiation damping of the flap Gq due to the unit
rotation of the flap Gp. Equations (4.1) can be written in matrix form:

[(
−ω2I + C − iωνPTO

)
I − ω2M − iωN

]
{θ} = {F}, (4.5)

where {θ} is a column vector of length Q that contains all the angular displacements of the flaps, I
is the identity matrix of size Q × Q, M and N are, respectively, the non-symmetrical added inertia
matrix and the non-symmetrical radiation damping matrix also of size Q × Q:

M =

⎡
⎢⎢⎣
μ1

1 . . . μ
Q
1

...
. . .

...
μ1

Q . . . μ
Q
Q

⎤
⎥⎥⎦ and N =

⎡
⎢⎢⎣
ν1

1 . . . ν
Q
1

...
. . .

...
ν1

Q . . . ν
Q
Q

⎤
⎥⎥⎦ , (4.6)

while {F} is a column vector of size Q which contains the values of the exciting torque on each
flap Gq:

{F} = {F1, . . . , Fq, . . . , FQ}T. (4.7)

Once the θq are evaluated, the average power absorbed over a wave period T = 2π/ω by the array
in monochromatic incident waves is given by

P(ω) = 1
T

∫T

0
νPTO

Q∑
q=1

(
dΘq

dt

)2

dt = 1
2
ω2νPTO

Q∑
q=1

|θq|2. (4.8)

To assess the performance of the array, we refer to the capture width ratio CF defined as the ratio
between the power output P and the incident wave energy flux per unit absorber width:

CF(ω) = P
ECgw

, (4.9)

where

ECg = 1
2
ρgA2 ω

2k0

(
1 + 2k0h

sinh 2k0h

)
(4.10)

is the rate of energy flux.

5. Results and discussion

(a) The case of a single flap
In this section, the case of a single flap (Q = 1) excited by incoming waves having angle of
incidence ψ is considered. For ease of representation, we drop reference to q = Q = 1.
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(i) Solution for the scattering and radiation problems

The solution for the radiation potential (3.21) becomes

ϕR
n (ξ , η) = −iωθ fnw

∞∑
m=0

B(2m+1)
1 Ho(1)

2m+1(ξ ; τn) sin η

2Ho(1)
2m+1ξ (0; τn)

, (5.1)

where B(2m+1)
1 is the first coefficient of se2m+1 (appendix A), while the solution for the scattering

potential (3.21) is given by

ϕS
n(ξ , η) = Adnw cosψ

∞∑
m=0

sem(η; τn)Ho(1)
m (ξ ; τn)

2Ho(1)
m ξ (0; τn)

×
∞∑

j=0

B(m)
j

[
ij−1Jj−1

(
−kn

w
2

sinψ
)

− i−j−1J−j−1

(
−kn

w
2

sinψ
)]

(5.2)

in which Jj is the Bessel function of the first kind and order j. In the case of normal incidence
(ψ = 0), the scattering potential further simplifies:

ϕS
n(ξ , η) = Adnw

∞∑
m=0

B(2m+1)
1 Ho(1)

2m+1(ξ ; τn) sin η

2Ho(1)
2m+1ξ (0; τn)

. (5.3)

The behaviour of the potentials (5.1) and (5.3) can be analysed near the endpoints of the flaps
y = ±w/2. Inversion of (3.8) for ξ = 0 and substitution into (5.1)–(5.3) gives

ϕ(R,S) ∝ sin arccos
2y
w

=
√

1 − 4y2

w2 , (5.4)

Note that due to the range of frequencies of engineering interest sin η∼ sem(η; τn). i.e. near the
endpoints y = ±w/2 the velocity potentials (5.1)–(5.3) have a square-root behaviour [2,27,30] and
the velocity has a square-root singularity. With the solution of the radiation potential (5.1), the
added inertia and the radiation damping are given by

μ= ρw2π

∞∑
n=0

f 2
n Im

⎧⎨
⎩

∞∑
m=0

B(2m+1)2

1 No2m+1(0; τn)

4Ho(1)
2m+1,ξ

(0; τn)

⎫⎬
⎭ (5.5)

and

ν = −ρωw2f 2
0 π Re

⎧⎨
⎩

∞∑
m=0

B(2m+1)2

1 No2m+1(0; τ0)

4Ho(1)
2m+1,ξ

(0; τ0)

⎫⎬
⎭ . (5.6)

To evaluate the exciting torque F for varying ψ , we make use of the three-dimensional Haskind–
Hanaoka relation. First of all, we derive the asymptotic behaviour of the radiation potential in the
far field (ξ → ∞) for unit rotational velocity of the flap:

∞∑
n=0

φR
n ∼ − igAR(η)

ω

cosh k0(h + z)
cosh k0h

√
2

πk0r
ei(k0r−π/4), (5.7)

where r = w eξ /4 is the radius expressed in terms of the radial elliptic coordinate ξ , while

AR(η) = −
∞∑

m=0

4ωB2m+1
1 Z0(0)f0

2gk0wHo(1)
2m+1ξ (0; τn)

sin η (5.8)

represents the angular variation of the radially spreading wave [24]. Let ηI = 3π/2 − ψ denote
the angle of incidence η of the incoming waves. The Haskind–Hanaoka relation gives
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Figure 2. Added inertia μ (continuous line), radiation damping ν (dashed line) and magnitude of the exciting torque |F|
(dotted line) versus incident wave frequencyω. The behaviour of these curves is similar to that of [17].

Table 1. Flap and sea depth characteristics. Note thatw = a for Q= 1. For the case Q= 5,w = 5a.

parameters symbol value

flap width a 3 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

moment of inertia I 5 × 104 kg m2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

buoyancy restoring torque C 7 × 105 Nm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

water depth h 5 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(see eqn (8.6.41) of [24])

F = −4
k
ρgACgAR(ηI + π ) = −4

k
ρgACgAR

(π
2

− ψ
)

= −4
k
ρgACgAR

(π
2

)
cosψ , (5.9)

thus, the exciting torque is equal to the exciting torque due to the incoming waves as if they were
normally incident on the flap (ψ = 0) multiplied by the factor cosψ . It follows from (5.3) that

F = ρωAw2f0d0π cosψ
∞∑

m=0

B(2m+1)2

1 No2m+1(0; τ0)

4Ho(1)
2m+1,ξ

(0; τ0)
. (5.10)

The above expression can also be obtained upon direct substitution of (5.2) into (4.2).
The dependence of the added inertia μ, radiation damping ν and magnitude of the exciting

torque |F| for ψ = 0 on ω is shown in figure 2 for the flap and sea depth characteristics listed in
table 1. The curves shown in figure 2 are in perfect agreement with those of Michele et al. [17]
for a single flap with small finite thickness (see the case for b = 0.1 m of [17]) obtained with the
semi-analytical hypersingular integral equation approach.

(ii) Wave power extraction

We now turn to the evaluation of the generated power P. Newman [23] has shown that the most
general expression of the generated power (see eqn (8.9.26) of [24]) for three-dimensional bodies
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in roll motion is

P = − 1
2k0

ρgA2Cg

[
2
π

∫ 2π

0
|VAR(η)|2 dη + 4Re

{
V∗AR

(π
2

− ψ
)}]

, (5.11)

where Cg is the group velocity, V = −iωθ/A is the complex angular velocity of the flap per unit
incident wave amplitude A and V∗ denotes the complex conjugate of V. The maximum value of
(5.11) occurs when dP/dV = 0, i.e. for

|V| = ω

A
|θ | = π |AR(π/2 − ψ)|∫2π

0 |AR(η)|2 dη
(5.12)

and is equal to

Pmax = 2πECg

k0

|AR(π/2 − ψ)|2∫2π
0 |AR(η)|2 dη

. (5.13)

Consequently, the optimal capture width ratio CFmax from (4.9) is

CFmax = 2π
wk0

|AR(π/2 − ψ)|2∫2π
0 |AR(η)|2 dη

. (5.14)

For axially symmetric bodies having diameter equal to d, Newman [23] has shown that for
normally incident waves

Pmax = 2ECg

k0
and CFmax = 2

dk0
. (5.15)

We now show that the same expressions (5.15) hold for the single flap. Substitution of (5.8) into
(5.13) and (5.14) yields

Pmax = 2ECg cos2 ψ

k0
(5.16)

and

CFmax = 2 cos2 ψ

wk0
, (5.17)

which gives (5.15) for the case ψ = 0. Hence a flap gate OWSC has the same optimal efficiency
of a bottom-hinged cylindrical OWSC having diameter d equal to w. Note that the maximum
generated power does not depend on w and that for a fixed value of the flap width, the
lower the wavenumber the larger the optimal efficiency. Expressions (5.16)–(5.17) are of practical
engineering interest and can be used as a preliminary design criterion to estimate, respectively,
the maximum generated power and the optimal efficiency of a single flap excited by incoming
waves having different angles of incidence ψ .

The expression of Pmax has been obtained without specifying the PTO-coefficient νPTO. Given
that expression (5.13) must represent the maximum of the power P, whose definition is (4.8), we
substitute (5.12) into (4.8) and equate the result to Pmax (5.13). This way, we obtain the optimal
νPTO which maximizes the power output:

νPTO = 2ρgCg

k0π

∫ 2π

0
|AR(η)|2 dη. (5.18)

Now, expression (5.18) is in turn equal to the expression of the radiation damping ν in terms of
the radiated amplitude in the far field (see eqn (8.6.13) of [24] for roll mode only). Hence, (5.18) is
exactly νPTO = ν, which is the condition obtained by maximizing the power output of an absorber
tuned to resonance with the frequency of the incoming waves (see eqn (8.9.8) of [24]).

Radiation damping (5.6) and exciting torque (5.10) can be further simplified for small values of
τ0 = w2k2

0/16, i.e. if the incident wavelength is larger than the total width of the flap. After some
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lengthy but straightforward algebra:

∞∑
m=0

B(2m+1)2

1 No2m+1(0, τ0)

Ho(1)
2m+1,ξ

(0; τ0)
� − 1

πτ0[1/2 + (i/π )(1/τ0 + ln τ0/4 − 1/2)]
, (5.19)

hence (5.6) and (5.10) become

F � − 16ρωAf0d0 cosψ

k2
0[1/2 + (i/π )(1/τ0 + ln τ0/4 − 1/2)]

and ν � 32ρωf 2
0

k2
0{1 + [2/π (1/τ0 + ln τ0/4 − 1/2)]2} .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.20)

For given wave frequencyω, expression (4.8) can be maximized if the single flap OWSC is tuned to
resonance (i.e. I and C are chosen to satisfy the eigenvalue condition C − ω2(I + μ) = 0 for given ω)
and if νPTO is equal to the radiation damping ν [24], hence we get

Pmax = |F|2
8ν

. (5.21)

Substitution of (5.20) in the latter yields:

Pmax = 2ECg cos2 ψ

k0
. (5.22)

Thus, we obtain again equation (5.16) without recurring to expression (5.8) for the angular
variation of the radially spreading wave in the far field AR(η).

(b) The case of multiple flaps
In this section, the results of the analytical model for a sample case of Q = 5 flaps are presented
and discussed. The values of the parameters which characterize each flap and the sea depth are
listed in table 1.

(i) Natural modes and free response

The structure of the angular momentum equation suggests that the array behaves as a linear
damped harmonic oscillator. The eigenfrequencies of the system are then evaluated from the
solution of the nonlinear eigenvalue condition:

det[(−ω2I + C)I − ω2M] = 0, (5.23)

while the related eigenvectors are evaluated by setting θ1 = 1 in the following system:

[(−ω2I + C)I − ω2M]{θ} = 0. (5.24)

As in the case of Sammarco et al. [19] and Michele et al. [17], (Q − 1) out-of-phase natural modes
and one in-phase mode are obtained in the frequency domain of interest. The numerical values
of the eigenfrequencies are listed in table 2. Following the definition of Sammarco et al. [19],
N(ω1), N1 and N3 are the even modes. N2 and N4 are the odd modes which can be excited
only if the direction of the incident waves is not orthogonal to the array surfaces. Solution of
the system (4.5) with νPTO = 0 and A = 1 m gives the response amplitude operator (RAO) of
the array. Two different angles of incidence are considered ψ = 0 rad and ψ = π/6 rad. Figure 3
shows the behaviour of the response of each flap Gq for the different values of ψ . Note that
in the case of normal incidence (figure 3a), θ1 = θ5 and θ2 = θ4 because of the symmetry of the
exciting torque. Indeed, only the even modes are excited (N(ω1), N1 and N3). On the other hand,
if ψ �= 0 also the odd modes can be excited and the peaks related to the excitation of N2 and N4 are
present (figure 3b). Note also that the exciting torque depends on cosψ (equation (5.9)), hence the
amplitude response of each flap decreases if ψ increases. Moreover, the shape of the array motion
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Figure 3. Flap amplitude response versus incident wave frequency for two different values of the angle of incidence ψ .
(a)ψ = 0 rad. (b)ψ = π/6 rad. Forψ = 0, only the even modes are excited, conversely, forψ �= 0, all the out-of-phase
natural modes are excited by incoming waves.

Table 2. Eigenfrequencies of the out-of-phase modes and the first in-phase mode.

ω (rad s−1) period (s) mode

1.63 3.85 N1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.51 4.16 N2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.34 4.69 N3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.02 6.16 N4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.66 9.52 N(ω1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

loses the symmetry with respect to y = 0 if ψ �= 0, i.e. θ1 �= θ2 �= · · · �= θ5. This is because both odd
and even natural modes are excited.

(ii) Wave power extraction in monochromatic waves

We now compare in terms of power extraction: (i) the array of Q = 5 flaps, (ii) a single flap having
the same total width of the array, w = 5a = 15 m and (iii) a single flap out of the five with w = a =
3 m. Consider the first in-phase mode N(ω1) of the array and maximize the power output of the
three systems when the incident wave frequency is equal to the eigenfrequency of N(ω1), i.e. ω≡
ω1 = 0.66 rad s−1. The values of inertia and buoyancy which satisfy the resonance condition for the
three systems are listed in table 3. Maximization of the power output gives three corresponding
values of νPTO, also listed in table 3. Figure 4 shows the behaviour of the capture width ratio
CF of each system versus incident wave frequency ω for two different values of the angle ψ . In
each of the cases, the maximum is located at ω= 0.66 rad s−1 and decreases when ψ increases.
Overall, the capture width ratio of the array is larger than that of the other two systems. This is
because the out-of-phase modes increase the amplitude response and hence the power output.
Note that CF of the single flap with w = 3 m has a narrow peak five times larger than that of the
other systems. However, slightly outside ω= 0.66 rad s−1, CF is almost zero and the flap becomes
inefficient. Now consider the expression for CFmax applied to the single flap having w = 15 m.
Equation (5.17) gives

CFmax(ψ = 0) = 2 cos2 0
wk0

� 1.37 and CFmax

(
ψ = π

6

)
= 2 cos2 π/6

wk0
� 1.03, (5.25)
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Figure 4. Behaviour of the capture width ratio CF of each system versus incident wave frequencyω for two different values of
the angle of incidenceψ . (a)ψ = 0 rad. (b)ψ = π/6 rad. In this case, the power take-off coefficient is optimized for the
in-phase eigenfrequencyω1.

Table 3. Total width w, inertia I and buoyancy C of the systems satisfying the resonance condition forω= 0.66 rad s−1 and
optimal values of PTO-coefficient νPTO.

w (m) I (kg m2) C (N m) νPTO (kg m2 s−1)

array of Q= 5 flaps 15 5 × 104 7 × 105 2 × 105
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

single flap 15 25 × 104 35 × 105 106
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

single flap 3 104 1.25 × 105 14 × 102
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where k0 � 0.098 m−1 is the wavenumber related to ω= 0.66 rad s−1. The numerical values (5.25)
are very close to the maximum values shown in figure 4 for the array of Q flaps. This is because
the array behaves like a single flap when the in-phase mode is resonated.

The generated power can be maximized also in correspondence to the out-of-phase
eigenfrequencies of the array. These modes are nearly trapped and are characterized by the
smallness of the radiation damping [17–19]. By choosing νPTO = 104 kg m2 s−1, we obtain the
behaviour of CF shown in figure 5: optimization of the power output is now extended to a broader
range of frequencies.

(iii) Wave power extraction in randomwaves

Now we investigate the behaviour in random waves of the three configurations analysed in the
previous section. The JONSWAP spectrum Sζ (ω) has been used to simulate the incident wave
field [25]:

Sζ (ω) = αH2
s

ω

(ωp

ω

)4
exp

[
−1, 25

(ωp

ω

)4
]
γ exp[−(ω/ωp−1)2/(2σ )], (5.26)

where

α= 0.0624(1.094 − 0.01915 ln γ )
0.23 + 0.0336γ − 0.185(1, 9 + γ )−1 , σ =

{
0.07 :ω≤ωp

0.09 :ω>ωp
, γ = 3.3, (5.27)

while Hs and ωp are, respectively, the significant wave height and the peak frequency.
Normal incidence of the incoming waves is assumed, ψ = 0. The average absorbed power P̄
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Figure 5. Capture width ratio CF of the array versus incident wave frequencyω for two different angles of incidenceψ . The
PTO-coefficient is optimized for the out-of-phase motion.

can now be defined as [18]:

P̄ = νPTO

∫∞

0

Q∑
q=1

|θq|2ω2Sζ dω, (5.28)

where |θq| is the amplitude response of the qth flap for A = 1 m. Let Pζ indicate the total incident
wave power per unit crest width:

Pζ =
∫∞

0
CgρgSζ dω, (5.29)

the capture width ratio in random seas CFζ of the system can then be written as follows:

CFζ = P̄
wPζ

. (5.30)

Figure 6a shows the behaviour of CFζ of each system versus spectral peak frequency ωp. As in
previous section, the systems are optimized for the in-phase eigenfrequency ω=ω1 = 0.66 rad
s−1. The optimal values of νPTO are those listed in table 3. The maxima of CFζ are smaller than
the maxima of CF for regular waves (figure 4a). This is because the incident wave spectrum does
not couple well with the eigenfrequencies leading to reduction of the efficiency. This occurrence
is evident for the case of the single flap having w = 3 m. Indeed, the high and narrow peak shown
in figure 4a decreases from about CFmax � 6.8 (accordingly to equation (5.17)) to almost 0.45.
Similar phenomena was observed for a different configuration in Michele et al. [18]. Consider
now the behaviour of CFζ for the array and for the single flap having the same width of the array,
w = 15 m. The array is more efficient than the single flap at the higher peak frequencies. As in
monochromatic incident waves, the efficiency benefits of the out-of-phase modes resonance.

First Renzi & Dias [2] and then Michele et al. [17,18] showed that the diffraction wave field
dominates the dynamics and the efficiency of the system for large values of the PTO-coefficient. In
this case, the behaviour of the capture width ratio becomes similar to that of the exciting torque.
Figure 6b shows the behaviour of CFζ of the previous systems but for νPTO values five times
larger than those listed in table 3. The maxima of each curve decrease slightly with respect to
the maxima of figure 6a. On the other hand, the global efficiency of each system increases, as
can be seen by comparing figure 6a with figure 6b for ωp > 0.8 rad s−1. Figure 6b also shows that
the behaviour of CFζ for the array and the single flap having w = 15 m is very similar for a wide
range of peak frequencies. In other words, the benefit of the array out-of-phase modes fades and
both systems are equivalent in terms of power extraction and efficiency. Figure 7 shows CFζ of
the array optimized for the out-of-phase eigenfrequencies versus ωp. The PTO-coefficient is now
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Figure 6. Behaviour of the capturewidth ratio in random seas CFζ of each system versus peak frequencyωp for different values
of νPTO. (a) νPTO optimized for the in-phase eigenfrequencies (see table 3 for the values). (b) νPTO values five times larger than
those listed in table 3. Each system is optimized for the diffraction wave field.
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Figure 7. Behaviour of the capture width ratio in random seas CFζ of the array versus peak frequencyωp. The PTO-coefficient
νPTO = 104 kg m2 s−1 is optimized for the out-of-phase eigenfrequencies.

νPTO = 104 kg m2 s−1. In this case, CFζ is lower than the counterpart CF for monochromatic waves
(figure 5): the narrower the resonant peak in monochromatic waves the larger the difference
between CFζ and CF. We conclude that in random waves is convenient to choose large values
of νPTO in order to increase the bandwidth of CFζ .

6. Conclusion
We analysed the mechanical behaviour of an array of neighbouring flaps OWSC in open sea.
The analytical solution for the radiation and diffraction problems is obtained in terms of Mathieu
functions. The explicit analytical expressions of the added inertia, radiation damping and exciting
torque are derived and compared with those obtained via the hypersingular integral equation
approach, showing excellent agreement between the two models.

Useful parametric expressions for the power output and capture width ratio of a single flap
are given in terms of the radiated wave in the far field. Specifically, the maximum power output
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is shown to be proportional to twice the rate of energy flux multiplied by the wavelength and
the optimal capture width ratio directly proportional to the wavelength. The same results were
obtained for axially symmetric absorbers, thus proving that a floating flap gate OWSC is as
efficient as a floating cylindrical bottom-hinged OWSC.

Solution of the eigenvalue condition for the array of Q flaps gives (Q − 1) out-of-phase natural
modes and infinite in-phase modes. Different angles of incidence of the incoming waves are
considered. In the case of normal incidence, only the even modes can be resonated. Conversely,
if the direction is not normal the odd modes are also resonated and the dynamics of the flaps
becomes more articulated. Differently from the case of one flap in open sea, the output power
of the array can also be maximized in correspondence of the out-of-phase eigenfrequencies. In
regular waves, the array is more efficient than a single flap for a broader range of frequencies. For
random waves represented by the JONSWAP spectrum, the maxima of the capture width ratio
are smaller than the maxima of the capture width ratio in monochromatic waves. In this last case,
the array and the single flap are equivalent in terms of power extraction and efficiency.

The analysis is performed in the framework of ideal fluid, irrotational flow and small
amplitude oscillations. Fluid viscosity and vortex shedding should be considered to evaluate
dissipative phenomena that may modify the behaviour of the device. For this reason, the
development of a nonlinear theory which takes into account all these effects is necessary. This
will also allow the evaluation of the flap response when the natural modes are excited through a
nonlinear mechanism.
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Appendix A

(a) Solution of the angular Mathieu equation
The angular Mathieu equation (3.12) has four classes of periodic solutions with period π or 2π
which can be expressed in terms of Fourier series:

YR
qn

YS
n

}
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Class I =
∞∑

j=0

A2j cos 2jη

Class II =
∞∑

j=0

A2j+1 cos(2j + 1)η

,

YR
qn

YS
n

}
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Class III =
∞∑

j=0

B2j+2 sin(2j + 2)η

Class IV =
∞∑

j=0

B2j+1 sin(2j + 1)η

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 1)

where A2j, A2j+1, B2j+2 and B2j+1 are coefficients depending on τn and the separation constant λ.
Substitution of (A 1) into the angular Mathieu equation (3.12) yields the following recurrence
relation for Class I:

λA0 − τnA2 = 0,

(λ− 4)A2 − τn(2A0 + A4) = 0,

and (λ− 4j2)A2j − τn(A2j−2 + A2j+2) = 0, j = 2, 3, . . . ,

⎫⎪⎪⎬
⎪⎪⎭ (A 2)
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for Class II:

(λ− 1)A1 − τn(A1 + A3) = 0,

and (λ− 4j2 − 4j − 1)A2j+1 − τn(A2j−1 + A2j+3) = 0, j = 1, 2, . . . ,

⎫⎬
⎭ (A 3)

for Class III:
(λ− 4)B2 − τnB4 = 0,

and (λ− 4j2)B2j − τn(B2j−2 + B2j+2) = 0, j = 2, 3, . . . ,

⎫⎬
⎭ (A 4)

and for Class IV:

(λ− 1)B1 − τn(B3 − B1) = 0,

and (λ− 4j2 − 4j − 1)B2j+1 − τn(B2j−1 + B2j+3) = 0, j = 1, 2, . . . .

⎫⎬
⎭ (A 5)

The recurrence relations (A 2)–(A 5) are homogeneous systems in the coefficients A0, A1, . . . and
B1, B2, . . .. Once the eigenvalues (characteristic values) λ= λm, m = 0, 1, . . . of each linear system
are calculated, the corresponding non-trivial solutions of (A 1) are found [3,5,29]:

YR
qn

YS
n

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Class I =
∞∑

m=0

ce2m(η; τn) =
∞∑

m=0

∞∑
j=0

A(2m)
2j (τn) cos 2jη,

Class II =
∞∑

m=0

ce2m+1(η; τn) =
∞∑

m=0

∞∑
j=0

A(2m+1)
2j+1 (τn) cos(2j + 1)η,

Class III =
∞∑

m=0

se2m+2(η; τn) =
∞∑

m=0

∞∑
j=0

B(2m+2)
2j+2 (τn) sin(2j + 2)η,

Class IV =
∞∑

m=0

se2m+1(η; τn) =
∞∑

m=0

∞∑
j=0

B(2m+1)
2j+1 (τn) sin(2j + 1)η,

(A 6)

where ce2m and ce2m+1 represent the even Mathieu functions of the first kind, respectively, of
order 2m and 2m + 1, while se2m+2 and se2m+1 represent the odd Mathieu functions of the
first kind, respectively, of order 2m + 2 and 2m + 1. Since the Mathieu functions satisfy the
orthogonality condition (see again [5])

∫ 2π

0
cemcep dη=

∫ 2π

0
semsep dη= πδmp, (A 7)

after substitution of (A 6) in (A 7), the normalization relations for the Fourier coefficients can be
written as

2A(2m)2

0 +
∞∑

j=1

A(2m)2

2j =
∞∑

j=0

A(2m+1)2

2j+1 =
∞∑

j=0

B(2m+2)2

2j+2 =
∞∑

j=0

B(2m+1)2

2j+1 = 1. (A 8)

Relations (A 8) are used to evaluate the first coefficients of the recurrence relations A(2m)
0 , A(2m+1)

1 ,

B(2m+2)
2 and B(2m+1)

1 as follows:

(i) give an initial value for A(2m)
0 , A(2m+1)

1 , B(2m+2)
2 and B(2m+1)

1 ;
(ii) solve the recurrence relations to evaluate the other coefficients;

(iii) rescale all the coefficients to satisfy normalizations (A 8).

(b) Solution of the radial Mathieu equation
The radial Mathieu equation (3.11) admits solutions expressed in terms of Hankel–Mathieu
functions of the first and second kind [5]. Recalling that the waves must be outgoing at large
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distances from the array, only the Hankel–Mathieu functions of the first kind are taken into
account

XR
qn

X S
n

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
m=0

He(1)
2m(ξ ; τn) =

∞∑
m=0

Je2m(ξ ; τn) + iNe2m(ξ ; τn),

∞∑
m=0

He(1)
2m+1(ξ ; τn) =

∞∑
m=0

Je2m+1(ξ ; τn) + iNe2m+1(ξ ; τn),

∞∑
m=0

Ho(1)
2m+2(ξ ; τn) =

∞∑
m=0

Jo2m+2(ξ ; τn) + iNo2m+2(ξ ; τn),

∞∑
m=0

Ho(1)
2m+1(ξ ; τn) =

∞∑
m=0

Jo2m+1(ξ ; τn) + iNo2m+1(ξ ; τn),

(A 9)

where Je and Jo are called, respectively, even and odd radial Mathieu functions of the first kind,
while Ne and No are called, respectively, even and odd radial Mathieu functions of the second
kind. The expressions of Je, Jo, Ne and No can be written in terms of summations of Bessel
functions [5,29,31]:

Je2m(ξ ; τn) = ce2m(0; τn)

A(2m)
0 (τn)

∞∑
j=0

A(2m)
2j (τn)J2j(u), (A 10)

Je2m+1(ξ ; τn) = − p2m+1
√
τnA(2m+1)2

1 (τn)

∞∑
j=0

(−1)jA(2m+1)
2j+1 (τn)[Jj(v1)Jj+1(v2) + Jj+1(v1)Jj(v2)], (A 11)

Jo2m+2(ξ ; τn) = − s2m+2

τnB(2m+2)
2 (τn)

∞∑
j=0

(−1)jB(2m+2)
2j+2 (τn)[Jj(v1)Jj+2(v2) − Jj+2(v1)Jj(v2)], (A 12)

Jo2m+1(ξ ; τn) = s2m+1
√
τnB(2m+1)

1 (τn)

∞∑
j=0

(−1)jB(2m+1)
2j+1 (τn)[Jj(v1)Jj+1(v2) − Jj+1(v1)Jj(v2)], (A 13)

Ne2m(ξ ; τn) = ce2m(0; τn)

A(2m)
0 (τn)

∞∑
j=0

A(2m)
2j (τn)N2j(u), (A 14)

Ne2m+1(ξ ; τn) = − p2m+1
√
τnA(2m+1)2

1 (τn)

∞∑
j=0

(−1)jA(2m+1)
2j+1 (τn)[Jj(v1)Nj+1(v2) + Jj+1(v1)Nj(v2)],

(A 15)

No2m+2(ξ ; τn) = − s2m+2

τnB(2m+2)
2 (τn)

∞∑
j=0

(−1)jB(2m+2)
2j+2 (τn)[Jj(v1)Nj+2(v2) − Jj+2(v1)Nj(v2)] (A 16)

and No2m+1(ξ ; τn) = s2m+1
√
τnB(2m+1)

1 (τn)

∞∑
j=0

(−1)jB(2m+1)
2j+1 (τn)[Jj(v1)Nj+1(v2) − Jj+1(v1)Nj(v2)], (A 17)

where

v1 = √
τn e−ξ , v2 = √

τn eξ , u = v2 − v1 = 2
√
τn sinh ξ , (A 18)

p2m+1 = ce2m+1 (0; τn) ce′
2m+1

(π
2

; τn

)
, s2m+1 = se2m+1

(π
2

; τn

)
se′

2m+1(0; τn) (A 19)

and s2m+2 = se′
2m+2

(π
2

; τn

)
se′

2m+2(0; τn). (A 20)

In the latter, the prime in ce′ and se′ denotes the derivative of ce and se with respect to η, while Nj
is the Bessel function of the second kind and order j.
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