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Weakly nonlinear theory for a gate-type curved
array in waves
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We analyse the effect of gate surface curvature on the nonlinear behaviour of an
array of gates in a semi-infinite channel. Using a perturbation-harmonic expansion,
we show the occurrence of new detuning and damping terms in the Ginzburg–Landau
evolution equation, which are not present in the case of flat gates. Unlike the case of
linearised theories, synchronous excitation of trapped modes is now possible because
of interactions between the wave field and the curved boundaries at higher orders.
Finally, we apply the theory to the case of surging wave energy converters (WECs)
with curved geometry and show that the effects of nonlinear synchronous resonance
are substantial for design purposes. Conversely, in the case of subharmonic resonance
we show that the effects of surface curvature are not always beneficial as previously
thought.

Key words: coastal engineering, wave–structure interactions

1. Introduction

We examine the nonlinear resonant excitation of an array of curved oscillating gates
in a semi-infinite channel. The gate model is similar to that shown in Mei, Stiassnie
& Yue (2005), though here we consider a generalised weak horizontal displacement of
the gate wetted surface about the vertical plane and the presence of a linear damper
exerting a force proportional to the gate velocity. This gives rise to new terms in the
evolution equation and to richer dynamics than the case of flat undamped gates.

The array spans the entire channel width, thus the model presented here allows
simulation of an infinite periodic array of gates as well (Linton & McIver 2001; Li &
Mei 2003). This particular configuration admits eigenfrequencies and corresponding
homogeneous trapped-mode solutions at the leading order (Mei et al. 1994).
Physically, trapped modes of a gate barrier are described by unforced, self-sustained
fluid oscillations that decay exponentially from the gates and that do not lose
energy through wave radiation (Mei et al. 2005). We remark that the wave trapping
phenomenon is of considerable interest in several applications such as acoustic
resonance in pipes (Hein & Koch 2008), gratings (Porter & Evans 1999), thin elastic
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Weakly nonlinear theory for curved WECs 239

plates (Porter 2007), waveguides (Callan, Linton & Evans 1991; Linton & Ratcliffe
2004), open channels (Evans & Linton 1991), cylinders in a channel (Evans & Porter
1997; Utsunomya & Taylor 1997), edge waves (Blondeaux & Vittori 1995; Li 2007),
Venice gates (Li & Mei 2003; Sammarco, Michele & d’Errico 2013), internal waves
(Kuznetsov 1993; Nazarov & Videman 2009) and wave energy conversion Michele,
Sammarco & d’Errico (2018b).

Linear resonance of trapped modes of a gate barrier in a channel by normally
incident waves is not possible because of orthogonality between the modal matrix
and the forcing terms (Adamo & Mei 2005); hence we need to extend the analysis
to weakly nonlinear waves by taking into account higher-order effects. Similar
considerations apply to edge waves (Guza & Bowen 1976; Rockliff 1978), resonance
of trapped surface waves around a fixed cylinder (Li & Mei 2006), cross-waves
(Lichter & Chen 1987), Faraday waves (Miles 1984; Holmes 1986; Gu & Sethna
1987; Miles & Henderson 1990) and trapped modes for the Venice gates (Mei et al.
1994; Vittori, Blondeaux & Seminara 1996; Sammarco, Tran & Mei 1997b; Sammarco
et al. 1997a).

Here we extend the previous theories by coupling nonlinearity with a small
horizontal deviation of the gate surface with respect to the channel depth. We show
that this small horizontal deviation of the gate surface produces significant changes in
the behaviour of the system. The method of solution adopted here is similar to that
used for the Bragg scattering phenomenon of incident waves by bottom ripples (Kirby
1986; Mei, Hara & Naciri 1988; Mei et al. 2005; Alam, Liu & Yue 2010). Using
perturbation-harmonic expansion up to the third order, we decompose the nonlinear
governing equations in a sequence of linear boundary-value problems of order n and
harmonic m (Mei et al. 2005; Jordan & Smith 2011). Gate shape effects give secular
terms for the first harmonic at the second order, so that three timing with a slow
time scale and a super-slow time scale is necessary (Nayfeh & Mook 1995).

First, we investigate the synchronous resonance mechanism by monochromatic
waves with small amplitude and frequency corresponding to the eigenfrequency of
the trapped mode. Note that synchronous excitation is not possible for flat gates,
because in that case the evolution equation would be damped and unforced. Here, on
the contrary, we obtain products between the gate shape function and the second-order
terms that force the first harmonic at the third order. We derive the corresponding
complex nonlinear evolution equation of the Ginzburg–Landau form (Aranson &
Kramer 2002; Drazin 2002), which describes the time evolution of the resonated
trapped mode. Such an equation is more complicated than that already studied by
Sammarco et al. (1997b,a) and Michele et al. (2018b), because it includes new
additional terms depending on the shape of the array.

Finally, we apply the theory to the case of an array of surge-type wave energy
converters (WECs) with curved geometry. Such bodies oscillate under the action of
incident waves and are capable of absorbing energy with potentially large efficiency.
For an extensive review we refer to Babarit et al. (2012), Dias et al. (2017) and
Babarit (2018). The literature on the hydrodynamic behaviour of gate-type devices is
vast and deeply developed by several authors (Linton & McIver 2001; Mei et al. 2005;
Renzi & Dias 2012, 2013, 2014; Sammarco et al. 2013; Michele et al. 2015; Noad
& Porter 2015; Sarkar, Renzi & Dias 2015; Michele, Sammarco & d’Errico 2016a,b).
Experimental campaigns (Folley, Whittaker & van’t Hoff 2007; Henry et al. 2010;
Wilkinson et al. 2017) and numerical investigations (Renzi et al. 2014; Schmitt &
Elsaesser 2015) are available as well. However, a large part of the theoretical models
developed so far on the dynamics of surging WECs neglects nonlinear contributions.
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FIGURE 1. Plan geometry of the system and side view of the gate in physical variables.

This can be unjustified when trapped modes are resonantly excited by incident
waves. Indeed, Michele et al. (2018b) showed that subharmonic resonance and mode
competition of trapped natural modes significantly increase energy production of a
system of gate-type devices. Furthermore, recent investigations on curved flap-type
gates suggest that using curved structure could further improve the economics of
WECs by maximising wave power extraction in non-resonant configurations (Hodge
et al. 2017; Michele, Renzi & Sammarco 2018a).

We show that nonlinear synchronous resonance of curved WECs yields constructive
interactions in terms of generated power that can be significant for design purposes.
We remark that this mechanism is not possible for linearised theories or flat WECs.
Then we investigate the case of subharmonic resonance and define an optimum
criterion to find the power take-off (PTO) coefficient which maximises power
extraction. Large efficiency is attained, with the capture factor reaching much greater
values than the theoretical maximum of a two-dimensional absorber described by the
linear theory (Mei et al. 2005). However, in this case the performance of curved
gates is sub-optimal with respect to that of flat gates.

2. Governing equations
With reference to figure 1, consider a semi-infinite channel of constant depth h′

and width b′. Define a Cartesian reference system (x′, y′, z′) with the x′ and y′-axes
lying on the undisturbed free surface level and the z′ axis pointing upward. Primes
indicate physical variables. At x′ = 0 rests an array of gates, each with mass M′ and
width a′, allowed to move horizontally (surge) along the channel, under the action
of incident harmonic waves. Each gate is connected to the channel back wall by a
spring–damper system operating in parallel. The spring has elastic constant C′, while
the linear damper has constant damping ν ′ and exerts a force proportional to the gate
velocity. Let us assume incoming waves from x′ → +∞, normally incident to the
gates. Let Gq, q = 1, . . . , Q, denote the qth gate and X′q be the displacement of Gq
positive rightward. Then we can define X′(y′, t′) = {X′1(t

′), . . . , X′q(t
′), . . . , X′Q(t

′)} as
the displacement function of the entire array. The fluid is assumed to be inviscid and
incompressible and the flow irrotational. Hence, the velocity potential Φ ′(x′, y′, z′, t′)
satisfies the Laplace equation in the fluid domain Ω ′(x′, y′, z′). The position of the
wetted gate surface is described by

x′ − X′(y′, t′)− δ′(y′, z′)= 0, (2.1)

where δ′ denotes the deviation of the array surface from x′ = 0. Let A′T � λ
′ be the

scale of the free-surface trapped oscillations, λ′ the wavelength, ω′ the eigenfrequency
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Weakly nonlinear theory for curved WECs 241

of the natural mode and g′ the acceleration due to gravity. Then introduce the
following non-dimensional quantities:

(x, y, z)= (x′, y′, z′)/λ′, Φ =Φ ′/(A′Tω
′λ′), ζ = ζ ′/A′T, t= t′ω′,

(a, b, h)= (a′, b′, h′)/λ′, X = X′/A′T, δ = δ′/δ′g, G= g′/(ω′2λ′),

}
(2.2)

where ζ ′ is the free-surface elevation, δ′g = O(A′T) the length scale for δ′ and G the
non-dimensional eigenfrequency. Let the following length ratios be much smaller than
unity

ε = A′T/λ
′
� 1, µ= δ′g/λ

′
� 1, µ=O(ε). (2.3a−c)

Since the derivatives of δ′ with respect to the coordinates (y′, z′) are of order ε as
well, the latter assumptions imply that the shape of the array must be smooth and
regular.

Using the dimensionless variables (2.2)–(2.3), we derive the following governing
equations, boundary conditions and equation of motion in non-dimensional form. The
Laplace and Bernoulli equations in the fluid domain are, respectively,

∇
2Φ = 0, (2.4)

−
p′

ρ ′ω′2λ′2
=Gz+ εΦt + ε

2 1
2
|∇Φ|2, (2.5)

where ρ ′ is the fluid density, while subscripts denote differentiation with respect to
the relevant variable. The dynamic and mixed boundary conditions on the free surface
read, respectively,

−Gζ =Φt + ε
1
2 |∇Φ|

2, z= εζ , (2.6a,b)

Φtt +GΦz + ε|∇Φ|
2
t + ε

2 1
2∇Φ · ∇|∇Φ|

2
= 0, z= εζ , (2.7)

while the no-flux conditions at the bottom and channel walls require

Φz = 0, z=−h, (2.8)
Φy = 0, y= 0 and y= b. (2.9)

The kinematic condition on the array surface

x= εX +µδ, (2.10)

can be now written as
Φx = Xt +µ(Φyδy +Φzδz). (2.11)

The equation of motion of the qth curved gate coupled with a linear damper is given
by

εMXq,tt + εCGXq + ε
3νXq,t =

∫ qa

(q−1)a
dy
{∫ εζ

−1
dz
(
εΦt + ε

2 1
2
|∇Φ|2

)
+

∫ εζ

0
Gz dz

}
,

(2.12)
where M =M′/(ρ ′λ′3) is the non-dimensional mass of the gate, C = C′/(g′ρ ′λ′2) the
non-dimensional stiffness of the spring and ν = ν ′/(A′2Tω

′ρ ′λ′) the non-dimensional
damping coefficient. In (2.12) we have assumed the contribution due to the damping
force on the gate motion to be small if compared to the other terms. Large values
of ν ′ comparable with leading-order terms would render the equation of motion
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242 S. Michele, E. Renzi and P. Sammarco

at O(1) damped and unforced, so that a trapped-mode solution would not be
possible anymore (Michele et al. 2018b). Assuming A′T ∼O(1) m, ω′ ∼O(1) rad s−1,
λ′∼O(10)–O(102) m, the values of ν ′ that satisfy the scale above should be of order
O(104)–O(105) kg s−1. In § 5 we demonstrate that these orders of magnitude are
physically congruent with power take-off systems for practical engineering applications
(Mei et al. 2005).

The free-surface boundary conditions are evaluated in correspondence of z = εζ ,
thus Taylor expanding (2.6) and (2.7) about z = 0 up to O(ε2) yields, respectively,

−Gζ = [Φt]z=0 + εζ [Φtz]z=0 + ε
2 ζ

2

2
[Φtzz]z=0 + ε

1
2
[|∇Φ|2]z=0 + ε

2 ζ

2
[|∇Φ|2z ]z=0, (2.13)

[Φtt +GΦz]z=0 + εζ [Φttz +GΦzz]z=0 + ε
2 ζ

2

2
[Φttzz +GΦzzz]z=0 + ε[|∇Φ|

2
t ]z=0

+ ε2ζ [|∇Φ|2tz]z=0 + ε
2 1
2
[∇Φ · ∇|∇Φ|2]z=0 = 0. (2.14)

Similarly, the kinematic boundary condition on the gate surface can be Taylor
expanded about x= 0:

[Φx]x=0 = Xt − (εX +µδ)[Φxx]x=0 −
1
2
(εX +µδ)2[Φxxx]x=0

+µ[Φyδy +Φzδz]x=0 +µ(εX +µδ)[Φxyδy +Φxzδz]x=0. (2.15)

Finally the equation of motion (2.12) becomes:

MXq,tt +GCXq + ε
2νXq,t =

∫ qa

(q−1)a
dy
∫ 0

−1
dz
{
Φt + ε

[
Φtx

(
X +

µδ

ε

)
+
|∇Φ|2

2

]
+ ε2

(
X +

µδ

ε

) [
Φtxx

2

(
X +

µδ

ε

)
+
|∇Φ|2x

2

]}
x=0

+ ε

∫ qa

(q−1)a
dy
{[

Gζ 2

2
+Φtζ

]
+ ε

[
(Gζ ζx +Φtxζ )

(
X +

µδ

ε

)
+
Φtzζ

2

2
+
ζ |∇Φ|2

2

]}
x=0,z=0

. (2.16)

3. Multiple-scale analysis and three timing
Let us introduce the following expansions of the non-dimensional velocity potential,

free-surface elevation and gate oscillation:

Φ =Φ1(x, y, z, t, t1, t2)+ εΦ2(x, y, z, t, t1, t2)+ ε
2Φ3(x, y, z, t, t1, t2)+O(ε3), (3.1)

ζ = ζ1(x, y, t, t1, t2)+ εζ2(x, y, t, t1, t2)+ ε
2ζ3(x, y, t, t1, t2)+O(ε3), (3.2)

Xq = Xq,1(t, t1, t2)+ εXq,2(t, t1, t2)+ ε
2Xq,3(t, t1, t2)+O(ε3), (3.3)

X = X1(y, t, t1, t2)+ εX2(y, t, t1, t2)+ ε
2X3(y, t, t1, t2)+O(ε3), (3.4)

where t1= εt and t2= ε
2t denote two slow time scales of the modal amplitude growth.

Unlike the case of Michele et al. (2018b), the three-timing assumption is necessary
here because of the presence in the governing equations of terms representing the
shape of the array. These terms correspond to a resonant forcing for the first-harmonic
solution at the second order, so that a solvability condition at O(ε) must be applied in
order to avoid secularity. The three time scales add terms in the evolution equation for
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Weakly nonlinear theory for curved WECs 243

the modal amplitude at the third order O(ε2) and the corresponding stability analysis
for the equilibrium states increases in complexity. Usage of the expansions (3.1)–(3.4)
for the unknowns yields for n= 1, 2, 3, the following equations.

Laplace’s equation:
∇

2Φn = 0, in Ω. (3.5)

Free-surface dynamic condition:

−Gζn =Φnt +Bn, z= 0, (3.6a,b)

where
B1 = 0, B2 =Φ1t1

+Φ1tzζ1 +
1
2 |∇Φ1|

2, (3.7a,b)

B3=Φ1t2 +Φ2t1
+Φ1t1zζ1+Φ1tzζ2+Φ2tzζ1+

Φ1tzzζ
2
1

2
+∇Φ1 ·∇Φ2+

ζ1

2
|∇Φ1|

2
z . (3.8)

Free-surface mixed condition:

Φntt +GΦnz =Fn, z= 0, (3.9)

where

F1 = 0, F2 =−2Φ1tt1
− ζ1(Φ1ttz +GΦ1zz)− |∇Φ1|

2
t , (3.10a,b)

F3 = −2Φ1tt2
− 2Φ2tt1

−Φ1t1 t1
− 2Φ1tzt1

ζ1 − ζ2(Φ1ttz +GΦ1zz)− ζ1(Φ2ttz +GΦ2zz)

−
ζ 2

1

2
(Φ1ttzz +GΦ1zzz)− 2(∇Φ1 · ∇Φ2)t − ζ1|∇Φ1|

2
tz −

1
2
∇Φ1 · ∇|∇Φ1|

2

− |∇Φ1|
2
t1 . (3.11)

No-flux boundary condition at the horizontal bottom:

Φnz = 0, z=−h. (3.12a,b)

No-flux boundary condition on the channel vertical walls:

Φny = 0, y= 0 and y= b. (3.13)

Kinematic condition on the array surface:

Φnx = Xnt + Gn, x= 0, (3.14)

where

G1 = 0, G2 = X1t1
−Φ1xx

(
X1 +

µδ

ε

)
+
µ

ε
(Φ1yδy +Φ1zδz), (3.15a,b)

G3 = X1t2
+ X2t1

−Φ1xx X2 −Φ2xx

(
X1 +

µδ

ε

)
−
Φ1xxx

2

(
X1 +

µδ

ε

)2

+
µ

ε
(Φ2yδy +Φ2zδz)+

µ

ε
(Φ1xyδy +Φ1xzδz)

(
X1 +

µδ

ε

)
. (3.16)
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244 S. Michele, E. Renzi and P. Sammarco

Equation of motion of the qth gate:

MXq,ntt +GCXq,n =

∫ qa

(q−1)a
dy
∫ 0

−1
Φnt dz+Dn, (3.17)

where

D1 = 0, (3.18)

D2 = −2MX1tt1
+

∫ qa

(q−1)a
dy
{

G
ζ 2

1

2
+Φ1tζ1

}
x=0,z=0

+

∫ qa

(q−1)a
dy
∫ 0

−1
dz
{
Φ1t1
+Φ1tx

(
X1 +

µδ

ε

)
+

1
2
|∇Φ1|

2

}
x=0

, (3.19)

D3 = −M(2X1tt2
+ 2X2tt1

+ X1t1 t1
)+

∫ qa

(q−1)a
dy
{

Gζ1ζ2 +
Φ1tzζ

2
1

2
+Φ1tζ2 +Φ2tζ1

+ Φ1t1
ζ1 +Φ1txζ1

(
X1 +

µδ

ε

)
+
ζ1

2
|∇Φ1|

2
+Gζ1ζ1x

(
X1 +

µδ

ε

)}
x=0,z=0

+

∫ qa

(q−1)a
dy
∫ 0

−1
dz

{
Φ1t2
+Φ2t1

+Φ1tx X2 +∇Φ1 · ∇Φ2 +
Φ1txx

2

(
X1 +

µδ

ε

)2

+

(
Φ2tx +Φ1t1x +

1
2
|∇Φ1|

2
x

)(
X1 +

µδ

ε

)}
x=0

− νXq,1t . (3.20)

Because of harmonic motion, higher-order solutions imply higher harmonics (Jordan
& Smith 2011). Hence we return to physical variables except for t1 and t2, omit
the primes for convenience and assume the following harmonic expansions of the
unknowns:

{Φn, ζn, Xq,n, Xn} =

n∑
m=0

{φnm, ηnm, χq,nm, χnm}e−imωt
+∗, (3.21)

where the symbol ∗ indicates the complex conjugate of the terms inside the series.
Substitution of the latter expansion into the governing equation and boundary
conditions allows us to split the nonlinear problem in a sequence of linear
boundary-value problems of order n and harmonic m:

∇
2φnm = 0, in Ω, (3.22)

φnmz = φnm
m2ω2

g
+Fnm, z= 0, (3.23)

ηnm = φnm
imω

g
+Bnm, z= 0, (3.24)

φnmz = 0, z=−h, (3.25)
φnmy = 0, y= 0, y= b, (3.26)

φnmx =−imωχnm + Gnm, x= 0. (3.27)
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The latter must be solved jointly with the equation of motion for each gate Gq (3.17),
which now becomes:

−m2ω2Mχq,nm +Cχq,nm =−imωρ
∫ qa

(q−1)a
dy
∫ 0

−h
φnm dz+Dnm, (3.28)

where the forcing terms Fnm, Bnm, Gnm and the Dnm values are defined for each order
n and harmonic m in appendix A. Having obtained the governing equations at the
different orders, we are now in a position to investigate the nonlinear synchronous
excitation of trapped modes.

4. Nonlinear synchronous excitation of a single trapped mode
In this section we analyse the synchronous excitation of a single trapped mode

by small incident waves at the second order O(ε). We remark that such nonlinear
dynamics is peculiar to curved gates and nonlinear resonance mechanisms. Indeed,
trapped modes cannot be resonated in linear theories by normally incident waves
because of orthogonality between the modal matrix and forcing terms, while flat-gate
systems do not allow nonlinear synchronous excitation when the incident waves are
small compared to the trapped wave field. This is due to the absence of first-harmonic
terms at the third order that include the forcing incident wave potential. In that case,
the evolution equation would be damped and unforced and the corresponding solution
would be given by the trivial stable state.

As in Michele et al. (2018b), we perform an asymptotic analysis up to the third
order O(ε2). For the sake of brevity, we show the solutions of each boundary-value
problem of order n and harmonic m in appendix A. We obtain that the second-order
inhomogeneous problem is forced by products between the first-order solution φ11
and the gate shape function δ. Since ω and φ11 solve the homogeneous first-harmonic
problem at the leading order O(1) (see § A.2), a solvability condition must be now
applied to φ11 and φ21 to avoid secularity. Green’s theorem over the entire fluid
domain Ω yields∫∫∫

Ω

(φ11∇
2φ21 − φ21∇

2φ11) dΩ =
∫∫

∂Ω

(
φ11
∂φ21

∂n
− φ21

∂φ11

∂n

)
dS= 0, (4.1)

where the normal n points outward the volume boundaries ∂Ω . By performing
straightforward algebra we obtain the evolution equation

χt1 −
icδ
ωε
χ = 0, (4.2)

where the coefficient cδ is real and given by

cδ =
1
cf

∫ b

0
dy
∫ 0

−h
dz{f11( f11xxδ − f11yδy − f11zδz)+ rωδf11x}, (4.3)

in which

cf =

∫ b

0
dy
∫
+∞

0

2ωf 2
11

g
dx+

∫ b

0
dy
∫ 0

−h
2f11r dz+

Q∑
q=1

2aωMr2
q

ρ
. (4.4)
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In the previous expressions, f11 represents the spatial dependence of the first-order
trapped velocity potential (A 3), while rq is the modal shape given by the solution
of the equation of motion at the leading order (see also Michele et al. 2018b). The
complex evolution equation (4.2) is linear, so the corresponding solution is readily
given by

χ(t1, t2)= ϑ(t2)e−(icδ t1/ωε) = ϑ(t2)e−icδ t. (4.5)

Thus, the coefficient cδ represents a modulation of the modal amplitude growth given
by gate curvature. On the other hand, for flat gates (δ= 0) the coefficient cδ= 0 and χ
depends on the super-slow time scale t2 only (Sammarco et al. 1997b; Michele et al.
2018b). We point out that curved gates do not always give cδ 6= 0. For example, anti-
symmetrical shapes with respect to the vertical plane y= b/2 yield cδ = 0.

At the third order, the inhomogeneous problem is forced by second-order and first-
order solutions, respectively. For the same reasons of the first-harmonic problem at the
second order, analysed before, we invoke the solvability condition by applying Green’s
theorem to φ11 and φ31 over Ω . After some lengthy algebra we obtain∫ b

0
dy
∫
+∞

0
f11F31 dx−

∫ b

0
dy
∫ 0

−h
f11G31 dz+

Q∑
q=1

iD31rq

ρ
= 0. (4.6)

Combination of the latter terms with the shape function δ and its derivatives gives
the following evolution equation of the Ginzburg–Landau type (Drazin 2002) for the
modal amplitude depending on the slow time scale t2:

−ε2iϑt2 = ϑ(cA + icB)+ ϑ
2ϑ∗(cN + icR)+ Ae(−icδ t1/ε)(cS + icU)+ iϑνcL, (4.7)

where ϑ∗ is the complex conjugate of ϑ . The expressions for the real coefficients
cA, cB, cN , cR, cS, cU, cL in (4.7) are quite long and can be found in appendix B.
The latter equation now has additional terms when compared to the evolution equation
in Michele et al. (2018b) for flat WECs, or the evolution equation for Venice gates
in Sammarco et al. (1997b). These are the new terms cA, cB, the complex forcing
coefficient (cS + icU) and the real coefficient cδ given by (4.3).

The coefficients cA and cB represent, respectively, detuning and damping caused by
the shape of the array. Flat gates (δ= 0) give cA= cB= 0. Note also that cA and cB are
invariant for profiles that are symmetric about x= 0. In other words [cA(δ), cB(δ)] =
[cA(−δ), cB(−δ)]. Concerning the other coefficients, cN represents nonlinearity, cR is
the radiation damping due to the second-harmonic radiation at the second order, cS and
cU represent the energy influx by the incident waves, while cL represents the effects
due to the linear damper.

Instead of perfect resonance, we consider a detuning 1ω between the trapped mode
and the incident waves such that the ratio 1ω/ω = ω2ε

2 (Sammarco et al. 1997b).
Then, the evolution equation becomes

−iϑt2 = ϑ(cA + icB)+ ϑ
2ϑ∗(cN + icR)+ Ae−i(ω2t2+(cδ t1/ε))(cS + icU)+ iϑνcL. (4.8)

After the following change of variables

ϑ = ϑe−i(ω2t2+(t1cδ/ωε)), (4.9)

we get

−iϑ t = ϑ(1ω+ cA + icB)+ ϑ
2
ϑ
∗

(cN + icR)+ A(cS + icU)+ iϑνcL. (4.10)
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By multiplying by ϑ
∗

both sides of (4.10) and subtracting its complex conjugate we
obtain the energy equation for synchronous excitation:

d|ϑ |2

dt
=−2(cB + νcL)|ϑ |

2
− 2cR|ϑ |

4
− 2A Im{(cS − icU)ϑ}. (4.11)

Since cR and the term cB + νcL are both positive, their effect is to damp the modal
amplitude.

Now define ϑ in action-angle variables form, i.e. ϑ = Reiψ . Then, from (4.10) we
obtain the following system of two real differential equations:

Rt =−R(cLν + cB)− R3cR − A(cU cosψ − cS sinψ),

ψt =1ω+ R2cN +
A
R
(cS cosψ + cU sinψ).

 (4.12)

The trivial fixed point does not exist, while non-trivial fixed points related to unstable
and stable equilibria correspond to the roots of the equation

−R(cLν + cB + R2cR)+

√
A2(c2

S + c2
U)− R2(cNR2 +1ω+ cA)2 = 0. (4.13)

The latter equation admits either a single stable fixed point or the coexistence of three
roots, i.e. two stable points and one unstable saddle. This depends on the values of
both detuning 1ω and damping coefficient ν and will be investigated in the next
section. Differently from what was obtained by Sammarco et al. (1997b) and Michele
et al. (2018b), the stable branch never coincides with the origin, hence the amplitude
at the equilibrium is always positive.

5. Application to surge-type wave energy converters
The theory developed so far is now applied to surge-type WECs. Here, the linear

damper represents a power take-off (PTO) system with damping coefficient ν = νpto
(Mei et al. 2005). Let us consider the simplest case of Q= 2 gates. Solution of the
O(1) problem yields a single out-of-phase trapped mode with eigenvector rq={1,−1}.
The water depth is h = 5 m and the gate width is a = 5 m. The amplitude of the
incident waves must be at the second order, thus we assume A = 0.1 m. Since we
require that νpto ∼ O(A2

Tωρλ) (see § 2), if ω ∼ O(1) rad s−1 and the wavelength λ ∼
O(10)–O(102) m, the numerical values of νpto that satisfy the scale above ought to
be of order O(104)–O(105) kg s−1. To prove that this range is reasonably valid for
practical engineering applications, let us maximise power extraction when a flat gate
moves in phase. Solution of the linearised two-dimensional radiation velocity potential
yields the following expression for the radiation damping

ν =
ρωa sinh2 k0h

k3
0

(
2k0h+ sinh 2k0h

4k0

)−1

, (5.1)

where k0 is the solution of the dispersion relation ω2
= gk0 tanh k0h. Maximum power

extraction efficiency requires resonance and νpto = ν (Mei et al. 2005), hence the
latter expression gives a first estimate for the optimal damping which maximises
the generated power for a surging gate. For the array dimensions considered here,
expression (5.1) yields ν ∼ O(105) kg s−1 when ω ∼ 1 rad s−1, i.e. a value that
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FIGURE 2. Sketch of the five configurations defined by expressions (5.2).

matches the damping coefficient scaling assumed in this work. This means that
nonlinear effects due to hydrodynamic contributions can be important, because they
are comparable to the PTO damping term. Thus, neglecting nonlinear hydrodynamic
terms might cause one to overlook constructive resonance phenomena like the
synchronous resonance mechanism analysed here.

Now, let us compare the flat gate (δ= 0) with five different gate configurations that
can be of practical engineering interest, respectively

δ1 =−
b
10

sin
πy
b
, δ2 =

b
10

cos
πy
b
, δ3 =

b cosh 0.24(h+ z)
10 cosh 0.24h

,

δ4 =−

b sin
πy
b

cosh 0.24(h+ z)

10 cosh 0.24h
, δ5 =

b cos
πy
b

cosh 0.24(h+ z)

10 cosh 0.24h
.

 (5.2)

These continuous shapes are represented in figure 2. Note that each shape is smooth
and does not present irregularities that can increase significantly design costs or
complicate feasibility of surging WECs in real operational conditions. Note also
that configurations 1–2 depend on y only, configuration 3 varies with the vertical
z while configurations 4–5 depend on both coordinates. The number 0.24 (in m−1)
inside the expressions for δ3,4,5 denotes the wavenumber k0 corresponding to the
eigenfrequency ω = 1.4 rad s−1. The latter value has been chosen to check whether
the gates interact constructively or destructively in correspondence of that frequency.
Now we investigate the effects of both synchronous and subharmonic resonance in
terms of power extraction.

5.1. Nonlinear synchronous resonance
Let us consider the evolution equation (4.7). The values of the real coefficients cL, cN ,
cR, cS, cU, cA and cB with respect to the eigenfrequency ω are shown in figure 3. The
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FIGURE 3. Behaviour of the coefficients of the evolution equation (4.7) versus the
eigenfrequency ω.

limiting values ω= 1.15 rad s−1 and ω= 1.65 rad s−1 correspond respectively to cR=

0 and the cutoff frequency at which k0=π/b. We remark that cR must be greater than
zero because it represents damping of radiating waves (Li & Mei 2006). Figure 3(e, f )
shows that cA and cB both have smooth trends without peaks or minima around ω=
1.4 rad s−1. Therefore, contrary to intuition, matching the gate profile to the vertical
eigenfunction does not give significant contributions. Sample values of the new forcing
coefficients cS and cU are shown in figure 3(c,d). Symmetrical configurations about
y= b/2, i.e. δ1,3,4, yield cS = cU = 0 and cannot be resonated synchronously.

Let us focus our attention on a fixed eigenfrequency and analyse the effects of
the PTO damping coefficient ν = νpto on the dynamic behaviour. For example, take
ω = 1.2 rad s−1 and assume two values of νpto, respectively 103 and 104 kg s−1.
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FIGURE 4. Equilibrium branches given by (4.13) versus detuning of the incident wave 1ω
for two different values of damping coefficient. (a) Corresponds to the shape function δ2
while (b) corresponds to δ5. The solid lines represent the stable equilibrium branches while
the dotted line represents the unstable branch. Trivial fixed points are not possible for
synchronous excitation and thus the modal amplitude at the equilibrium is always positive.

The corresponding equilibrium branches defined by (4.13) for configurations δ2,5 are
plotted in figure 4. The continuous lines correspond to stable fixed points, while the
dashed line is related to unstable saddles (Jordan & Smith 2011). Note that for large
values of νpto the unstable fixed point disappears, thus we have one stable fixed point
for the entire range of detuning 1ω and absence of non-trivial instability.

Now, we evaluate the efficiency of the system excited through nonlinear synchronous
interactions. The generated power by the array is given by

Psync = 2νpto(ω+1ω)
2

Q∑
q=1

r2
qR2, (5.3)

thus, the capture factor (Renzi & Dias 2012) for synchronous resonance is

CF
sync =

Psync

ECgb
, (5.4)

where the term at the denominator represents the incident wave energy flux per array
width b (Michele et al. 2016b), while

ECg =
ρgA2(ω+1ω)

4k

(
1+

2kh
sinh 2kh

)
. (5.5)

In the latter equation, both group celerity Cg and wavenumber k are related to the
frequency (ω+1ω). Figure 5 shows the maximum of CF

sync for the configurations δ2,5
versus the eigenfrequency ω for different values of PTO coefficients. The maximum
value is ∼0.7 for δ2. This means that even in the presence of small-amplitude
incident waves and trapped modes, a device designed to resonate synchronously
can still achieve significant efficiency. Note that configuration δ2 is more efficient
than δ5. This can be seen from the figures 3(c) and 3(d) representing the behaviour
of the forcing coefficients cS and cU, respectively. Both cS and cU for the second
configuration are always greater than the coefficients for configuration 5, hence
forcing contributions over δ2 are greater as well.
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FIGURE 5. Behaviour of the maximum value of the capture factor CF
sync (5.4) due to

nonlinear synchronous resonance. (a) Corresponds to the shape function δ2 while (b)
corresponds to δ5.

5.2. Nonlinear subharmonic resonance
In this section we analyse the subharmonic resonance of a single trapped natural mode
of an array of Q gates. Subharmonic resonance mechanisms are already known to
occur for the Venice gates (Blondeaux, Seminara & Vittori 1993a,b; Mei et al. 1994;
Vittori et al. 1996; Sammarco et al. 1997b,a), edge waves (Guza & Bowen 1976;
Rockliff 1978; Li 2007), cross-waves (Lichter & Chen 1987), Faraday waves (Miles
1984; Holmes 1986; Gu & Sethna 1987; Miles & Henderson 1990) and trapped waves
near a vertical cylinder in a channel (Li & Mei 2006). A similar resonance mechanism
has recently been found in the context of WECs by Michele et al. (2018b), but for flat
gates. Here we explore the role of gate surface curvature in triggering subharmonic
resonance effects. Again, the incident waves are assumed small and comparable with
O(ε) terms.

Let us assume a small detuning 21ω between the trapped mode and the incident
waves such that 1ω/ω=ω2ε

2 (Sammarco et al. 1997b). After some lengthy algebra,
the evolution equation for subharmonic resonance is

−iϑt2 = ϑ(cA + icB)+ ϑ
2ϑ∗(cN + icR)+ Ae−2i(ω2t2+(cδ t1/ε))ϑ∗(cF + icT)+ iϑνcL, (5.6)

in which the behaviour of the real forcing coefficients cF, cT is represented in
figure 6(a). Through the transformation

ϑ = ϑe−i(ω2t2+(t1cδ/ωε)), (5.7)

equation (5.6) becomes

−iϑ t = ϑ(1ω+ cA + icB)+ ϑ
2
ϑ
∗

(cN + icR)+ Aϑ
∗

(cF + icT)+ iϑνcL. (5.8)

Equation (5.8) is similar to (4.10) and admits both trivial and non-trivial fixed points.
For a detailed analysis about its properties we refer to the works of Sammarco et al.
(1997b) and Michele et al. (2018b).

By making use of the polar coordinates R and ψ (or action-angle variables)
expressed by ϑ = i

√
Reiψ , we obtain the two non-trivial fixed points with R 6= 0:
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FIGURE 6. (a) Behaviour of the forcing coefficients cF and cT and (b) maximum of the
optimal capture factor CF

max versus the eigenfrequency of the array ω; CF
max reaches values

greater than 1, i.e. the maximum that can be reached with linear synchronous motion only
by an asymmetric WEC.

R± =
1

c2
N + c2

R

{
− cR(νcL + cB)− cN(1ω+ cA)

±

√
A2(c2

F + c2
T)(c2

N + c2
R)− [cN(νcL + cB)− cR(1ω+ cA)]2

}
. (5.9)

Once the stable branch R+ is evaluated (see Michele et al. 2018b), the average
generated power by the array due to subharmonic resonance of the natural mode is
given by

Psub = 2ν(ω+1ω)2
Q∑

q=1

r2
qR+. (5.10)

To find the maximum value of Psub we should equate to zero the partial derivatives of
(5.10) with respect to 1ω and ν and then try to seek the roots of the corresponding
system. However, finding an analytical expression is not possible and numerical
methods are necessary. An optimum criterion can be still defined by approximating
the detuning which maximises the generated power with 1ω=1ωmax when the gate
oscillation reaches its maximum. To do so, we equate to zero the derivative of (5.10)
with respect to ν evaluated at 1ωmax:

dPsub

dν

∣∣∣∣
1ω=1ωmax

= 0. (5.11)

Solution of the latter equation yields

ν =
1

8cNcL

{
5AcN

√
c2

F + c2
T − 5cBcN − 2cRω

+

[
9A2c2

N(c
2
F + c2

T)+ 9c2
Bc2

N − 4AcNcRω

√
c2

F + c2
T + 4c2

Rω
2

+2cBcN

(
−9AcN

√
c2

F + c2
T + 2cRω

)]1/2
}
. (5.12)
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The capture factor for subharmonic resonance CF
sub becomes

CF
sub =

Psub

ECgb
, (5.13)

where the term at the denominator is related to the frequency 2(ω+1ω).
We now define the optimal capture factor CF

max as the capture factor that satisfies
the optimum criterion expressed by (5.11). Figure 6(b) shows the behaviour of
CF

max for each configuration versus the eigenfrequency ω. We obtain that the flat
configuration is the most efficient. This is because the coefficient cB is positive
for curved anti-symmetrical shapes and generates hydrodynamic damping, which
decreases efficiency. The same figure shows that the optimal capture factor is greater
than 1 for a wide range of frequencies. This value corresponds to the maximum
efficiency that a two-dimensional asymmetrical wave absorber can reach when
excited synchronously in a linearised framework (Mei et al. 2005). Thus, nonlinear
subharmonic resonance can have beneficial effects on power extraction. Such a
result confirms the previous findings of Michele et al. (2018b) for flap-type WECs.
However, figure 6(b) also reveals that all the curved configurations analysed here
are sub-optimal with respect to a flat gate. The occurrence of the shape-dependent
term cB in (5.6) has always resulted to be detrimental to the performance of the
system in the case of subharmonic resonance. Therefore, our results suggest that the
gate surface curvature does not increase wave power extraction when subharmonic
resonance is triggered. This behaviour contrasts the positive impact that using a gate
shape has in nonlinear synchronous resonance and in non-resonant states (Hodge
et al. 2017; Michele et al. 2018a).

6. Conclusions
We analysed the hydrodynamic interactions between an array of curved gates and

weakly nonlinear waves in a semi-infinite channel. Perturbation expansion and three
timing with two slow time scales allowed us to find the complex evolution equations
of the Ginzburg–Landau type both for synchronous and subharmonic excitation. New
damping, detuning and forcing coefficients that are dependent on the array shape
function and its derivatives appear in the equation. We remark also that this dynamics
is possible only for nonlinear theories, because forcing contributions now depend on
the products between the gate shape function and second-order velocity potentials at
the third order.

Then we have applied the theory to the case of surge-type WECs and investigated
the effects of curved shapes on the synchronous resonance mechanism by comparing
a flat configuration with several curved shapes of practical engineering interest. We
also demonstrated that the damping term at the third order is physically coherent
with systems for power absorption. We found that effects of synchronous interactions
on the generated power can be substantial for optimisation purposes. This highlights
the importance of including nonlinear resonances in the cost–benefit analysis when
choosing the gate shape.

We have also investigated the case of subharmonic excitation of the WEC array
by normally incident waves. In all the cases analysed here, we found that the flat
configuration is the most efficient for a wide range of frequencies. Several authors
have recently advocated the use of curved gates to improve wave power production in
non-resonant states. On the contrary, our results show that curved surfaces are usually
penalised if subharmonic resonance occurs.
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Finally, we point out that hydrodynamic effects such as fluid shear stresses
and vortex shedding in the gap area between adjacent gates are inevitable in real
conditions. These damping phenomena contribute to reduce the gate amplitude and
should be considered to better evaluate the gate response and the corresponding
hydrodynamics.
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Appendix A. Forcing terms and solutions of the boundary-value problems
In this appendix we derive the governing equations and the corresponding solution

of each boundary-value problem with order n and harmonic m defined in § 3.

A.1. Leading-order problem O(1) – zeroth harmonic
The forcing terms are all null:

F10 =B10 = G10 =D10 = 0. (A 1)

The bounded solution is therefore independent on the fast coordinates, i.e.

φ10 = φ10(t1, t2), χ10 = 0, η10 = 0. (A 2a−c)

A.2. Leading-order problem O(1) – first harmonic and trapped-mode solution
This problem is identical to that in Michele et al. (2018b). Hereafter we recall the
expression of the leading-order velocity potential

φ11 = iχω
Q∑

q=1

∞∑
m=1

∞∑
n=0

bmqDn

Cnαnm
e−αnmx cos

mπy
b

cosh kn(h+ z)≡ iχ f11(x, y, z), (A 3)

In the latter, the terms kn are the roots of the dispersion relation

ω2
= gk0 tanh k0h,

ω2
=−gkn tan knh, kn = ikn, n= 1, . . . ,∞.

}
(A 4)

The real coefficients in the expression for the velocity potential φ11 (A 3) are
obtained by matching the velocity of the gate and of the surrounding fluid via (3.27):

bmq = rq
2

mπ

[
sin

qmπ

Q
− sin

(q− 1)mπ

Q

]
, (A 5)

αnm =

√(mπ

b

)2
− k2

n, Cn =
1
2

(
h+

g
ω2

sinh2 knh
)
, Dn =

sinh knh
kn

. (A 6a−c)

Finally, numerical solution of the equation of motion gives (Q − 1) trapped modes
and related eigenfrequencies (Sammarco et al. 2013).
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A.3. Second-order problem O(ε) – zeroth-harmonic drift
Combination of quadratic nonlinearities results in forcing terms of the drift flow:

F20 = 0, (A 7)

B20 =−
i

gε
[φ10t1

εω+ |χ |2( f 2
11x
+ f 2

11y
− f 2

11z
)], (A 8)

G20 = 0, (A 9)

D20 =
ρ

ε

∫ qa

(q−1)a
dy
{
−
ω2
|χ |2

g
f 2
11

∣∣∣∣
z=0

+

∫ 0

−h
dz[φ10t1

εω+ |χ |2(−f 2
11x
+ f 2

11y
+ f 2

11z
)]

}
x=0

. (A 10)

Since the forcing terms on the free surface F20 and on the gates G20 vanish, the
velocity potential φ20 depends on the slow time scales in the same way as φ10:

φ20 = φ20(t1, t2). (A 11)

On the other hand, the trapped waves induce a bound wave η20 and a static
displacement χq,20 with expressions

η20 =−
i

gε
[φ10t1

εω+ |χ |2( f 2
11x
+ f 2

11y
− f 2

11z
)], (A 12)

χq,20 =
ρ

Cε

∫ qa

(q−1)a
dy
{
−
ω2
|χ |2

g
f 2
11

∣∣∣∣
z=0

+

∫ 0

−h
dz [φ10t1

εω+ |χ |2(−f 2
11x
+ f 2

11y
+ f 2

11z
)]

}
x=0

, (A 13)

in which the term φ10t1
is currently unknown and will be obtained at the third order

(§ A.7).

A.4. Second-order problem O(ε) – first harmonic and gate shape effects
At the second order, the effects of the gate shape on the total wave field influence the
first harmonic. Indeed, the forcing terms are non-null:

F21 =−χt1
2ω2f11

g
, (A 14)

B21 =−χt1
iωf11

g
, (A 15)

G21 = rχt1ω+
iχ
ε
( f11yδy + f11zδz − f11xxδ), (A 16)

D21 = 2iω2Mrqχt1 +
ρ

ε

∫ qa

(q−1)a
dy
∫ 0

−h
dz [if11χt1ωε +ωf11xδχ ]x=0. (A 17)

Linearity allows us to decompose the velocity potential, i.e. φ21= φ
G
21+ φ

F
21, in which

φF
21 represents the solution with homogenous conditions on the gate, while φG

21 is
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the solution with homogeneous conditions on the free surface. Both solutions can
be found with the eigenfunction expansion method. After some lengthy algebra, we
obtain, respectively,

φG
21=−

∞∑
p=0

∞∑
l=0

cosh kl(h+ z) cos
(pπy

b

) ieiαplx

αplε

(
Q∑

q=1

χt1ωεpbpqDlε

Cl
+ iχ∆pl

)
, (A 18)

φF
21 =

∞∑
p=1

∞∑
l=0

cosh kl(h+ z) cos
(pπy

b

) 2χt1ω
3 cosh klh

Clgαpl

×

Q∑
q=1

∞∑
n=0

bpqDn cosh knh(αpne−xαpl − αple−xαpn)

αpnCn(α
2
pl − α

2
pn)

, (A 19)

where ε0 = 0 and εp = 1, p= 1, . . . , while the eigenvalue

αpl =

√
k2

l −

(pπ

b

)2
. (A 20)

The remaining term ∆pl is given by

∆pl =
1

Clδp

∫ b

0
dy
∫ 0

−h
cosh kl(h+ z) cos

(pπy
b

)
(−f11xxδ + f11yδy + f11zδz) dz, (A 21)

with δ0 = b and δp = b/2, p= 1, . . . .
Note that the potential φ21 is a peculiar feature of the curved geometry and does

not exist for a flat array. Moreover, φG
21 (A 18) includes propagating long-crested waves

(p= l= 0) if the gate shape is not symmetric with respect to y= b/2. Indeed, such
long-crested component is strongly related to the gate shape and would be absent for
flat configurations.

A.5. Second-order problem O(ε) – incident waves
The incident wave field is assumed to be at O(ε), hence the incident wave amplitude
A′ and frequency ω must be an order of magnitude smaller than A′T , i.e. A′/A′T =O(ε).
The corresponding velocity potential is given by

φI
=−

iAg
2εω

cosh k0(h+ z)
cosh k0h

e−ik0x, (A 22)

the scattering potential is

φS
=−

iAg
2εω

cosh k0(h+ z)
cosh k0h

eik0x, (A 23)

while the radiation potential due to the in-phase motion of the gates is given by

φR
=−

∞∑
l=0

ωχADn

knCn
cosh kn(h+ z)eiknx. (A 24)

The response χA is

χA
=

−ρaAgD0/(ε cosh k0h)

−ω2M +C− iω2ρa
∞∑

l=0

D2
n

knCn

, (A 25)

where the wavenumbers kn correspond the real roots of the dispersion relation (A 4).
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A.6. Second-order problem O(ε) – radiated second harmonic
The second harmonic is forced both on the free surface and on the gate and does not
depend on the shape of the gate. The forcing terms are

F22 =−
1
εg
[η11(−ω

2φ11z + gφ11zz)− 2iω|∇φ11|
2
], (A 26)

B22 =−
1
εg

[
−iωφ11zη11 +

|∇φ11|
2

2

]
, (A 27)

G22 =−
φ11xxχ11

ε
, (A 28)

D22 =
ρ

ε

∫ b

0
dy
{

gη2
11

2
− iωφ11η11|z=0 +

∫ 0

−h

(
−iωφ11x rχ +

|∇φ11|
2

2

)
dz
}

x=0

. (A 29)

Similarly to the case for the first-harmonic solution at O(ε), we decompose the
velocity potential as φ

χ

22 = φG
22 + φF

22, where φF
22 represents the solution with

homogenous conditions on the gate, while φG
22 is the solution with homogeneous

conditions on the free surface. Again, the solution for both potentials can be obtained
in terms of vertical and horizontal eigenfunction expansions:

φG
22 = −χ

2ω

∞∑
p=0

∞∑
l=0

cosh κl(h+ z) cos
(pπy

b

) eiα̂plx

α̂pl

[
∞∑

q=1

2idpqFl

El

+
δp

bε

Q∑
q=1

Q∑
r=1

∞∑
n=0

∞∑
m=−∞

bmqb(m+p)rαnmDnDnl

ElCn

]
, m 6= 0,m+ p 6= 0, (A 30)

φF
22 =

iχ 2ω

4bgε

∞∑
p=0

∞∑
l=0

Q∑
q=1

Q∑
r=1

∞∑
n=0

∞∑
s=0

∞∑
m=−∞

cosh κl(h+ z) cos
(pπy

b

)
cosh knh cosh ksh

×
δpβqnmβr(m+p)s cosh κlh[α̂ple−x(αnm+α(m+p)s) − i(αnm + α(m+p)s)eiα̂plx]

El[α̂
2
pl + (αnm + α(m+p)s)2]

×

(
3ω4

g2
− k2

n +
2mπ(m+ p)

b2
+ 2αnmα(m+p)s

)
, m 6= 0,m+ p 6= 0, (A 31)

where

Dnl =
κl cosh knh sinh κlh− kn cosh κlh sinh knh

κ2
l − k2

n

, (A 32)

βqnm =
ωbmqDn

αnmCn
, α̂pl =

√
κ2

l −

(pπ

b

)2
. (A 33a,b)

The term dpq corresponds to the Fourier coefficient for the gate displacement:

dpq = χq,22
2

pπ

[
sin

qpπ

Q
− sin

(q− 1)pπ

Q

]
, (A 34)

in which χq,22 denotes the displacement of the qth gate normalised with respect to iχ 2.
Unlike the case of Sammarco et al. (1997b), the forcing term D22 given by (A 29)
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does not vanish, hence the displacement related to the second harmonic differs from
zero. Indeed, usage of the equation of motion (3.28) gives a forced linear system for
the unknowns χq,22, q = 1, . . . , Q. The corresponding determinant of the coefficient
matrix differs from zero, thus the inhomogeneous solution is unique. After some
algebra we obtain

χj,22(−4ω2M +C)− 4iω2ρ

Q∑
q=1

∞∑
p=0

∞∑
l=0

dpqcpjF2
l

α̂plEl

=
ρ

ε

{
−

iωδp

2b

∞∑
p=0

∞∑
l=0

Q∑
q=1

Q∑
r=1

∞∑
n=0

∞∑
s=0

∞∑
m=−∞

×

(
3ω4

g2
− k2

n +
2mπ(m+ p)

b2
+ 2αnmα(m+p)s

)
×
ωFlcpjβqnmβr(m+p)s cosh κlh[α̂pl − i(αnm + α(m+p)s)]

gα̂plEl[α̂
2
pl + (αnm + α(m+p)s)2]

+

∞∑
p=0

∞∑
l=0

Q∑
q=1

Q∑
r=1

∞∑
n=0

∞∑
m=−∞

iωcpjbmqb(m+p)rαnmFlDnDnl

αnmα̂plElCn

+ i

(
3ahω2r2

j

2
+

∫ qa

(q−1)a
dy
∫ 0

−h

f 2
11z
+ f 2

11y

2
dz+

∫ qa

(q−1)a

ω2f 2
11

2g
dy

)}
, (A 35)

where the term cpj is given by

cpj =
b

pπ

[
sin

jpπ

Q
− sin

( j− 1)pπ

Q

]
. (A 36)

A.7. The third-order problem O(ε2) – zeroth harmonic

For the zeroth harmonic at O(ε2) the forcing terms respectively on the free surface
and on the gate are

F30 = −ω
2φ10t1 t1

+
1
gε

{
3ω4f11ω(χχ

∗

t1 + χ
∗χt1)

g
+ωf11(χ

∗φ21zz + χφ
∗

21zz
)

− 2ω|χ |2t1 |∇f11|
2
+ωf11z[χ

∗(−φ21 + χt1 f11)− χ(φ
∗

21 + χ
∗

t1 f11)]

}
, (A 37)

G30 =−
r
ε
(χ∗φ21xx + χφ

∗

21xx
)+ωχ20t1

. (A 38)

Note that the dependence of φ10 (A 2) on the slow time coordinate t1 is still unknown.
Application of Green’s theorem to φ10 and φ30 yields

−

∫ b

0
dy
∫ X

0
F30|z=0 dx+

∫ b

0
dy
∫ 0

−h
G30|x=0 dz−

∫ b

0
dy
∫ 0

−h
φ10φ30x |x=X dz= 0, (A 39)

where X� 1 corresponds to a large value of the x-coordinate. Solving the integrals
and requesting that |∇φ30|→ 0 as X→+∞, we obtain

φ10t1 t1
= 0, (A 40)

in the limit X→+∞. Therefore, the bounded non-secular solution of (A 40) is simply
φ10 = 0.
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A.8. The third-order problem O(ε2) – first harmonic and forcing terms
The forcing terms F31, G31 and D31 are given by the following expressions:

F31 =
ω2

g
(2iφ21t1

− 2χt2 − f11χt1t1)+
1
gε

{
ωf11χ

∗

g
(−4ω2φ22z + gφ22zz)

+
iχ∗

g

[
−2iωφ22 −

χ 2

ε

(
3f 2

11z

2
+

f 2
11x
+ f 2

11y

2

)]
(ω2f11z − gf11z)

−
iω2f 2

11χ |χ |
2

2εg2
(−ω2f11zz + gf11zzz)+ 2ωχ∗(∇f11 · ∇φ22)

+
2iω2χ |χ |2f11|∇f11|

2
z

εg
−

3iχ |χ |2∇f11 · ∇|∇f11|
2

2ε

−
χ |χ |2

gε
( f 2

11x
+ f 2

11y
− f 2

11z
)(−ω2f11z + gf11zz)

}
, (A 41)

G31 = rωχt2 +
1
ε

{
−χ |χ |2f11xxχq,22 − χ

∗rφ22xx − φ21xxδ −
χ |χ |2f11xxx r

2ε

−
iχ f11xxxδ

2

2ε
+ φ21yδy + φ21zδz +

iχδ
ε
( f11xyδy + f11xzδz)

}
, (A 42)

D31 =
ρ

ε

∫ qa

(q−1)a
dy
∫ 0

−h
dz
{

iεωχt2 f11 + εωφ21t1
− iωδφ21x + iεωχt1 f11xδ −

ω2rχχ20

ε

+ iχ |χ |2f11xχq,22 +
χ

2ε
(3|χ |2f11xxωr2

q + f11xxωδ
2
+ |χ |2rq|∇f11|

2
x)

− iχ∗∇f11 · ∇φ22

}
x=0

+
ρ

ε

∫ qa

(q−1)a
dy
{

2iω2f11φ22

g
+

3χ |χ |2f11z f
2
11ω

3

2g2ε

−
χ |χ |2f11ω

2gε
(6f11xω+ |∇f11|

2)

}
x=0,z=0

−Mω2(−2iχt2 + χt1t1)+
irqωνχ

ε2
.

(A 43)

Appendix B. Expressions for the coefficient of the evolution equations (4.10) and
(5.8)

Let us decompose φ21 as follows:

φ21 = χt1
φ
(1)
21

ε
+ χ

φ
(2)
21

ε
. (B 1)

The expressions for the synchronous forcing coefficients are

cS =Re
{

iνS

ν̂

}
, cU = Im

{
iνS

ν̂

}
, (B 2a,b)

with

νS
=

∫ b

0
dy
∫ 0

−h
{f11(φ

A
xxδ − φ

A
z δz)+ rωδφA

x } dz. (B 3)
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In the latter, the velocity potential φA
= φI

+ φS
+ φR refers to the first-harmonic

incident, scattered and in-phase radiation potentials (A 22)–(A 24). The expressions for
the remaining coefficients inside the evolution equations (4.10)–(5.8) are

cA =Re
{

i
ν̂
(ν + icδ ν̃ − c2

δν)

}
, cB = Im

{
i
ν̂
(ν + icδ ν̃ − c2

δν)

}
, (B 4a,b)

cN =Re
{

iνR

ν̂

}
, cR = Im

{
iνR

ν̂

}
, cF =Re

{
iνI

ν̂

}
, cT = Im

{
iνI

ν̂

}
, (B 5a−d)

cL =−
i
ν̂

Q∑
q=1

ωr2
q

ρ
, (B 6)

where

ν̂ =−

∫ b

0
dy
∫
+∞

0

2f 2
11ω

g
dx−

∫ b

0
dy
∫ 0

−h
2f11r dz−

Q∑
q=1

2r2ωM
ρ

, (B 7)

ν =

∫ b

0
dy
∫ 0

−h
dz
{
−f11

[
−δφ

(2)
21xx
+ δyφ

(2)
21y
+ δzφ

(2)
21z
−

iδ2f11xxx

2

+ iδ( f11xyδy + f11xzδz)

]
+ irδω

(
−
δf11xx

2
+ f11yδy + f11zδz

)}
, (B 8)

ν̃ =

∫ b

0
dy
∫
+∞

0

2if11φ
(2)
21 ω

g
dx+

∫ b

0
dy
∫ 0

−h
dz { −f11[−δφ

(1)
21xx
+ δyφ

(1)
21y
+ δzφ

(1)
21z
]

+ ir(−2iδωr+ φ(2)21 )}, (B 9)

ν =

∫ b

0
dy
∫
+∞

0

2if11φ
(1)
21 ω− if 2

11

g
dx+

∫ b

0
dy
∫ 0

−h
irφ(1)21 dz+

Q∑
q=1

iMr2
q

ρ
, (B 10)

νI
=

∫ b

0
dy
∫
+∞

0
f11

{
f11ω

g
(−4ω2φ̃A

z + gφ̃A
zz)+

2ωφ̃A

g
(ω2f11z − gf11zz)

+ 2ω∇f11 · ∇φ̃
A

}
dx+

∫ b

0
dy
∫ 0

−h
dz { −f11(iχ̃Af11x − rQφ̃

A
xx)

+ ir(−2iωrφ̃A
x +ωf11x χ̃

A
− i∇f11 · ∇φ̃

A)} −

∫ b

0

2rω2f11φ̃
A

g
dy, (B 11)

νR
=

∫ b

0
dy
∫
+∞

0
f11

{
ωf11

g
(−4ω2φ

χ

22z
+ gφχ22zz

)−
iω2f 2

11

2g2
(−ω2f11zz + gf11zzz)

+
i
g

[
−2iωφχ22 −

(
3ω4f 2

11

2g
+

f 2
11x
+ f 2

11y

2

)](
ω4f11

g
− gf11zz

)
+ 2ω∇f11 · ∇φ

χ

22

+
2iω2f11|∇f11|

2
z

g
−

3i∇f11 · ∇|∇f11|
2

2
−

1
g

(
−
ω4f11

g2
+ f 2

11y
+ f 2

11z

)
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×

(
−
ω4f11

g
+ gf11zz

)}
dx+

∫ b

0
dy
∫ 0

−h
dz
{

f11

(
if11xxχq,22 − φ

χ

22r−
if11xxx r

2

2

)
+ irq

(
−2iωφχ22x

r+ωχq,22f11x − i∇f11 · ∇φ
χ

22 +
3ωf11xx r

2

2
+

rq|f11|
2
x

2

)}
+

∫ b

0

ωf11

g

{
2iωφχ22 +

3ω2f11f11z

2g
−
|∇f11|

2

2

}
dy−

Q∑
q=1

iahω2r2
qχ20, (B 12)

in which the terms φ̃A and χ̃A have the same structure of φA and χA with incident
wave frequency 2ω.
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