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Abstract: We present a novel mathematical model to investigate the extraction of wave power by flexible
floaters. The model is based on the method of dry modes, coupled with a matched eigenfunction
expansion. Our model results compare satisfactorily with preliminary data obtained from a demonstrator
device, developed at the University of Groningen. We show that the role of elasticity is to increase the
number of resonant frequencies with respect to a rigid body, which has a positive effect on wave power
output. The mathematical model is then extended to irregular incident waves, described by a JONSWAP
spectrum. Our results show that the peak capture factors decrease in irregular waves, as compared
to the monochromatic case. However, the system becomes more efficient at non-resonant frequencies.
This work highlights the need to scale-up experimental investigations on flexible wave energy converters,
which are still a small minority, compared to those on rigid converters.

Keywords: fluid–structure interaction; floating elastic plate; wave energy

1. Introduction

This paper presents novel mathematical and demonstrator models of wave power extraction from
flexible floaters. Our groups at Loughborough University and the University of Plymouth, in collaboration
with the University of Groningen and Ocean Grazer BV, have recently started an investigation into
innovative wave energy converters (WECs), with the goal of decreasing the levelised cost of energy (LCOE)
of wave power generation. Indeed, the sheer size and complexity of many of the WEC devices proposed
and tested during the past couple of decades has so far hindered their scalability and commercialisation [1].
To overcome such challenges, we consider the possibility of using light and flexible materials (e.g., silicone
rubber), instead of bulky metallic components, in the design of the prime mover.

To this aim, Renzi [2] analysed the coupled hydro-electromechanic response of a bimorph plate
made by a flexible substrate intertwined with piezoceramic layers. These allow the transformation of the
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plate elastic motion into useful electricity, by means of the piezoelectric effect. Renzi [2] shows that the
piezoelectric plate can extract sufficient energy for low-power devices, like sensors, LEDs, computers and
wireless routers. Later, Buriani and Renzi [3] also showed that connecting the flexible piezoelectric device to
a vertical wall (e.g., a caisson breakwater) significantly enhances its performance in small-amplitude waves.

The idea of using flexible floaters to extract energy from the ocean has been recently pushed forward
by Zheng et al. [4], who investigated the hydrodynamic interaction between water waves and an array
of circular porous elastic plates. An important result shown in [4] is that wave power dissipation by the
array of elastic plates increases thanks to the constructive interaction between the plates, which suggests
an interesting potential for wave power generation.

Further investigations on floating elastic plates include the effects of three dimensional structures on
wave energy dissipation [5–7], and the interactions between a flexible plate and a bottom ridge [8].

The potential use of arrays of floaters to extract energy from waves has attracted the attention of the
wave energy industry as well. For example, the Dutch company Ocean Grazer has recently proposed
several versions of its “floater blanket” concept, an array of floater elements each connected to power
take-off (PTO) systems [9]. For details on the technology, see [10]. An artist’s sketch of Ocean Grazer’s
floater blanket concept is illustrated in Figure 1.

Figure 1. Artist’s sketch of a system of floater blanket wave energy converters (WECs) connected to offshore
wind turbines. Source: www.oceangrazer.com.

In this paper, we propose a novel mathematical model of wave energy extraction by means of flexible
floaters (Section 2). The technology investigated here would correspond to a column of floaters along the
incident wave direction, in the case of the Ocean Grazer WEC. The mathematical model investigates a
two-dimensional flexible plate floating on the surface of the ocean, and connected to a series of linear PTO
devices. By coupling the method of dry modes with a matched eigenfunction expansion, we show that the
energy extraction efficiency of the device is enhanced by the bending elastic modes of the plate (Section 3).
We also show novel results of a demonstrator model of flexible wave energy device made by silicone
sheets (Section 4). The tests were carried out in the Faculty of Science and Engineering, University of
Groningen (The Netherlands). To estimate the energy extraction potential of the device, we connected the
flexible floater to a 1:35 scale model of the PTO system employed by the Ocean Grazer device. Interestingly,
our experimental results show that energy absorption levels are very similar for a continuous floater
and a series of single floaters of the same overall length. Finally, the mathematical model is extended to

www.oceangrazer.com
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investigate the device performance in random seas. We show that the peak performance decreases in
irregular waves, as compared to the monochromatic case. However, the system becomes more efficient at
non-resonant frequencies (Section 5). We anticipate that these results will be of interest to wave energy
companies working on the development of flexible WECs (Section 6).

2. Mathematical Model

With reference to Figure 2, consider an infinite two-dimensional channel of constant depth h and a
rectangular ridge of width 2L and height c.

Figure 2. Side view of the floating plate WEC. The power take-off (PTO) mechanisms are located at points
xi, i = 1, ..., M.

Let us define a Cartesian reference system (x, z) with the x axis along the undisturbed free surface and
the z axis positive upward. At x ∈ [−L, L] , z = 0 rests a flexible floater WEC of length 2L and thickness
hp, allowed to oscillate under the action of incident waves. The WEC is connected to the ridge through
a number M of vertical power take-off (PTO) mechanisms, each with damping coefficient ν = νPTO
and located at x = xi, i = 1, ..., M. We assume L � hp, thus the elastic vibration of the floater can be
described by the Euler beam equation [11]. We assume also monochromatic incident waves of amplitude A
coming from x → +∞, inviscid fluid and irrotational flow. Hence, the velocity potential Φ (x, z, t) satisfies
Laplace’s equation in the fluid domain Ω (x, z). On the free surface, we have the linearised kinematic and
mixed boundary conditions

ζt = Φz, z = 0, x ∈ [ L,+∞ ) , (1)

Φtt + gΦz = 0, z = 0, x ∈ [ L,+∞ ) , (2)

where ζ is the free-surface elevation, g is the acceleration due to gravity and t is time. The subscripts
denote differentiation with respect to the relevant variable. We require tangential fluid velocity at the
bottom and on the ridge vertical walls, located at x = ±L, i.e.,

Φn = 0, (3)

where n denotes the normal derivative to the relevant surface. The kinematic boundary conditions on the
wetted surface of the plate are

Φz = Wt, z = −d, x ∈ [−L,+L] , (4)
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Φx = −
(
z− zg

)
Wxt, z ∈ [−d, 0] , x = ±L, (5)

where W is the vertical displacement response of the structure and zg is the coordinate of the structure’s
centre of mass.

Since the system is forced by monochromatic incident waves of frequency ω, we assume
harmonic motion

{Φ, ζ, W} = Re
{
(φ, η, w) e−iωt

}
, (6)

with i being the imaginary unit. We now write the governing equations in terms of the spatial variables only

∇2φ = 0, in Ω, (7)

φz = −iωη, z = 0, x ∈ [ L,+∞ ) , (8)

−ω2φ + gφz = 0, z = 0, x ∈ [ L,+∞ ) , (9)

φz = −iωw, z = −d x ∈ [−L,+L] , (10)

φx = iω
(
z− zg

)
wx, z ∈ [−d, 0] , x = ±L, (11)

φn = 0, on solid boundaries , (12)

and require that the velocity potential φ is outgoing for x → −∞.
Following Newman [12,13], we now decompose the displacement of the floater into a set of dry

modes, i.e., in the absence of fluid or added mass. This allows us to significantly reduce the numerical
computations and to obtain a deeper physical insight. A schematic diagram explaining our approach is
presented in Figure 3.

Hydrodynamic Model Structural Model

Power Calculation

Incident wave Diffraction Radiation Plate elasticity Power take-off

Figure 3. Schematic representation of the mathematical modelling approach.

Since the plate and the fluid domain are symmetric with respect to the vertical axis x = 0,
we decompose the modal expansion into symmetric and antisymmetric parts, hence

w (x) =
∞

∑
l=0

[
ξS

l f S
l (x) + ξA

l f A
l (x)

]
(13)

where the superscripts S and A denote, respectively, the symmetric and antisymmetric components,
while ξS,A

l represents the complex amplitude of the symmetric or antisymmetric lth mode. The plate
satisfies the Euler beam equation with free-free end conditions; therefore, the corresponding dry modal
shapes are
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f S
0 = 1, (14)

f S
l =

cosh µS
l x
L

cosh µS
l
+

cos µS
l x
L

cos µS
l

, l = 1, ..., ∞ (15)

and

f A
0 = x, (16)

f A
l =

sinh µA
l x
L

sinh µA
l

+
sin µA

l x
L

sin µA
l

, l = 1, ..., ∞ (17)

where f S
0 and f A

0 correspond to the rigid modes heave and pitch [14], respectively, while the eigenvalues
µS,A

l are the positive real roots of the following eigenvalue conditions

tanh µS
l + tan µS

l = 0, (18)

tanh µA
l − tan µA

l = 0. (19)

We remark that these modes are orthogonal, i.e., the corresponding shapes satisfy the following properties

∫ L

−L
dx f S

i f S
l =

{
0, l 6= i,

2L, l = i,
,

∫ L

−L
dx f A

i f A
l =


0, l 6= i,

2L, l = i > 0,

2L3

3
, l = i = 0.

(20)

The decomposition into symmetric and antisymmetric parts allows us to analyse the half-problem
in the region x > 0 and simplify significantly the mathematical structure. Let us define the following
fluid subdomains

Ω1 = {x ∈ [ L,+∞ ) , z ∈ [−h, 0]} ,

Ω2 = {x ∈ [0, L] , z ∈ [−h + c,−d]} , (21)

where Ω1 represents the domain to the right of the elastic plate, while Ω2 represents the fluid region
between the elastic plate and the ridge. Following the method of [15], we decompose also the velocity
potential into diffraction and radiation components, i.e.,

φ = φS
D + φA

D +
∞

∑
l=0

ξS
l φS

lR +
∞

∑
l=0

ξA
l φA

lR, (22)

φS,A
D =

1
2

φI + φS,A
S , (23)

where φS
S (φA

S ) is the symmetric (antisymmetric) scattering potential, φS
D (φA

D) is the symmetric
(antisymmetric) diffraction potential satisfying the boundary conditions (8)–(12) with w = 0, and φS

lR
(φA

lR) is the lth symmetric (antisymmetric) radiation potential for unit amplitude that satisfies the same
conditions with the unknown vertical displacement w 6= 0. The incident wave potential is given by

φI =
−iAg

ω

cosh k0 (h + z)
cosh k0h

e−ik0x, (24)
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where the wavenumber k0 is the real root of the dispersion relation

ω2 = gk0 tanh k0h. (25)

Now omit the superscripts S, A for the sake of brevity, and let φ
(1)
D (φ(1)

R ) be the diffraction (radiation)

velocity potential in (x, z) ∈ Ω1 and φ
(2)
D (φ(2)

R ) the diffraction (radiation) velocity potential in (x, z) ∈ Ω2.
The boundary value problem for the subdomain Ω1 is

∇2φ(1) = 0, in Ω1, (26)

−ω2φ(1) + g
∂φ(1)

∂z
= 0, z = 0, x ∈ [ L,+∞ ) , (27)

∂φ
S,A(1)
lR
∂x

= iω
(
z− zg

) d f S,A
l

dx
, z ∈ [−d, 0] , x = ±L, (28)

∂φ
(1)
D

∂x
= 0, z ∈ [−d, 0] , x = ±L, (29)

∂φ(1)

∂z
= 0, z = −h, x ∈ [ L,+∞ ) , (30)

∂φ(1)

∂x
= 0, x = L, z ∈ [−h,−h + c] , (31)

∂φ(1)

∂x
=

∂φ(2)

∂x
, x = L, z ∈ [−h, 0] , (32)

φ(1) = φ(2), x = L, z ∈ [−h + c,−d] , (33)

where (32)–(33) represent, respectively, continuity of the velocity field and pressure between the fluid
domains Ω1 and Ω2. The boundary value problem for the subdomain Ω2 is governed by

∇2φ(2) = 0, in Ω2, (34)

∂φ
S,A(2)
lR
∂z

= −iω f S,A
l , z = −d x ∈ [−L,+L] , (35)

∂φ
(2)
D

∂z
= 0, z = −d x ∈ [−L,+L] , (36)

∂φ(2)

∂z
= 0, z = −h + c, x ∈ [−L,+L] , (37)

and the coupling matching conditions (32)–(33).
In the following sections, we determine the diffraction and radiation potential in Ω1 and Ω2,

respectively, by matching the potentials at the common boundaries.

2.1. Diffraction Potential Solution

The general solution in Ω1 is given by

φ
S,A(1)
D =

1
2

φI +
∞

∑
j=0
CS,A(1)

j X(1)
j Z(1)

j (38)



Energies 2020, 13, 6167 7 of 24

where the CS,A(1)
j are unknown complex constants, Z(1)

j is the set of orthogonal vertical eigenfunctions

Z(1)
j = cosh k j (h + z) , (39)

X(1)
j denotes the x dependence

X(1)
j = eikjx, (40)

while the terms k j’s are the roots of the dispersion relation [15]

ω2 = gk0 tanh k0h,

ω2 = −gkj tan kjh, k j = ikj, j = 1, . . . , ∞

}
. (41)

The solution in the domain Ω2 below the elastic plate reads

φ
S,A(2)
D =

∞

∑
j=0
CS,A(2)

j X(2)
j Z(2)

j , (42)

where the CS,A(2)
j are unknown complex constants and

Z(2)
j =


1, j = 0

cos
jπ (d + z)
c + d− h

, j = 1, ..., ∞
, (43)

XS(2)
j =


1, j = 0

cosh
jπx

c + d− h
, j = 1, ..., ∞

, (44)

XA(2)
j =


x, j = 0

sinh
jπx

c + d− h
, j = 1, ..., ∞

. (45)

Usage of the boundary conditions (32)–(33) gives

∞

∑
j=0
CS,A(1)

j XS,A(1)′

j

∣∣∣
x=L

Z(1)
j − C

S,A(2)
j XS,A(2)′

j

∣∣∣
x=L

Z(2)
j =

ik0

2
φI

∣∣∣∣
x=L

, (46)

∞

∑
j=0
CS,A(1)

j XS,A(1)
j (L) Z(1)

j − C
S,A(2)
j XS,A(2)

j (L) Z(2)
j = −1

2
φI

∣∣∣∣
x=L

. (47)

Multiplying each side of (46) and (47) by Z(1)
i and Z(2)

i , respectively, and integrating over the relevant
intervals, z ∈ [−h, 0] and z ∈ [−h + c,−d], yields the following inhomogeneous linear systems in the
unknown coefficients CS,A(1)

j and CS,A(2)
j
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∞

∑
j=0
CS(1)

j ik je
ikj Lbijδij −

CS(2)
j jπ

c + d− h
sinh

(
jπx

c + d− h

)
aij =

Agk0biiδi0e−ik0L

2ω cosh k0h

∞

∑
j=0
CS(1)

j eikj Laji −
∞

∑
j=1
CS(2)

j
h− d− c

2
cosh

(
jπx

c + d− h

)
δij − C

S(2)
0 (h− d− c) =

iAga0i
2ω cosh k0h

i = 0, ..., ∞

, (48)



∞

∑
j=0
CA(1)

j ik je
ikj Lbijδij −

∞

∑
j=1

CA(2)
j jπ

c + d− h
cosh

(
jπx

c + d− h

)
aij − C

A(2)
0 ai0 =

Agk0biiδi0e−ik0L

2ω cosh k0h

∞

∑
j=0
CA(1)

j eikj Laji −
∞

∑
j=1
CA(2)

j
h− d− c

2
sinh

(
jπx

c + d− h

)
δij − C

A(2)
0 L (h− d− c) δi0 =

iAga0i
2ω cosh k0h

i = 0, ..., ∞

, (49)

where δij is the Kronecker delta, while

aij =
ki (c + d− h)

[
(−1)1+j sinh kic + sinh ki (h− d)

]
(c + d− h)2 k2

i + j2π2
, (50)

bij =


1
2

(
h +

sinh 2kih
2ki

)
, i = j

0, i 6= j
. (51)

Systems (48) and (49) are solved by truncating and numerically solving an N× N system of equations.
The singularity at the bottom edges of the WEC is weaker than that of objects characterised by sharp
corners, thus the numerical convergence is fast [16–18]. In Section 2.3, we check the numerical computations
through theoretical integral relations, such as the Haskind–Hanaoka formula.

2.2. Radiation Potential Solution

Since the problem is linear, the solution in Ω1 can be written as

φ
S,A(1)
lR =

∞

∑
j=0
DS,A(1)

l j X(1)
j Z(1)

j (52)

where the DS,A(1)
l j are unknown complex constants, while the eigenfunctions X(1)

j and Z(1)
j are given by

(39) and (40).
The solution in Ω2 is given by the homogeneous part and a particular solution that accounts for the

plate vibration in z = −d

φ
S,A(2)
lR =

∞

∑
j=0
DS,A(2)

l j X(2)
j Z(2)

j + φ̃S,A
lR , (53)

where DS,A(2)
l j are unknown complex constants, while X(2)

j and Z(2)
j are expressed by (43) and (45).

The particular solution for the rigid heave mode reads

φ̃S
0R =

−iω
2 (h− c− d)

[
z2 − x2 + 2z (h− c)

]
, (54)
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while the particular solution for the pitching mode is given by [14]

φ̃A
0R =

iωx
6 (h− c− d)

[
x2 − 3z2 − 6z (h− c)

]
. (55)

For the symmetric and antisymmetric lth bending mode (15)–(17), the particular solutions are

φ̃S
lR =

−iωL
µS

l

cos µS
l x
L cosh µS

l (z+h−c)
L

cos µS
l sinh µS

l (h−c−d)
L

−
cosh µS

l x
L cos µS

l (z+h−c)
L

cosh µS
l sin µS

l (h−c−d)
L

 , (56)

φ̃A
lR =

−iωL
µA

l

 sin µA
l x
L cosh µA

l (z+h−c)
L

sin µA
l sinh µA

l (h−c−d)
L

−
sinh µA

l x
L cos µA

l (z+h−c)
L

sinh µA
l sin µA

l (h−c−d)
L

 . (57)

As in the previous subsection, continuity of pressure and velocity (32) and (33) gives

∞

∑
j=0
DS,A(1)

l j XS,A(1)′

j

∣∣∣
x=L

Z(1)
j −D

S,A(2)
l j XS,A(2)′

j

∣∣∣
x=L

Z(2)
j =

∂φ̃S,A
lR

∂x

∣∣∣∣∣
x=L

, (58)

∞

∑
j=0
DS,A(1)

l j XS,A(1)
j (L) Z(1)

j −D
S,A(2)
l j XS,A(2)

j (L) Z(2)
j = φ̃S,A

lR

∣∣∣
x=L

. (59)

As in the case of the diffraction potential, by multiplying each side of (58) and (59) by Z(1)
i and

Z(2)
i , respectively, and integrating over the relevant intervals, z ∈ [−h, 0] and z ∈ [−h + c,−d], yields the

following inhomogeneous linear systems in DS,A(1)
l j and DS,A(2)

l j

∞

∑
j=0
DS(1)

l j ik je
ikj Lbijδij −

DS(2)
l j jπ

c + d− h
sinh

(
jπx

c + d− h

)
aij = cS(1)

il

∞

∑
j=0
DS(1)

l j eikj Laji −
∞

∑
j=1
DS(2)

l j
h− d− c

2
cosh

(
jπx

c + d− h

)
δij −D

S(2)
l0 (h− d− c) = cS(2)

il

i = 0, ..., ∞

, (60)



∞

∑
j=0
DA(1)

l j ik je
ikj Lbijδij −

∞

∑
j=1

DA(2)
l j jπ

c + d− h
cosh

(
jπx

c + d− h

)
aij −D

A(2)
l j ai0 = cA(1)

il

∞

∑
j=0
DA(1)

l j eikj Laji −
∞

∑
j=1
DA(2)

l j
h− d− c

2
sinh

(
jπx

c + d− h

)
δij −D

A(2)
l0 L (h− d− c) δi0 = cA(2)

il

i = 0, ..., ∞

. (61)

In the latter, aij and bij are given by (50) and (51), while the constant terms on the right hand side read

cS,A(1)
il =

∫ −d

−h+c
dz Z(1)

i
∂φ̃S,A

lR
∂x

∣∣∣∣∣
x=L

+ iω
d f S,A

l
dx

∣∣∣∣∣
x=L

∫ 0

−d
dz Z(1)

i
(
z− zg

)
, (62)
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cS,A(2)
il =

∫ −d

−h+c
dz Z(2)

i φ̃S,A
lR

∣∣∣
x=L

(63)

As in the previous section, the linear systems (60) and (61) are solved numerically by truncating the
series at n = N and i = N.

2.3. Structural Response and the Haskind–Hanaoka Formula

The vibration of the floating elastic plate is governed by the following Euler dynamic equation

− EIWxxxx − ρΦt −
M

∑
m=1

δ (x− xm) νPTOWt − ρgW − ρphpWtt = 0, (64)

where E is the elastic modulus of the plate, I is the area moment of inertia of the plate and δ denotes the
Dirac delta function. The first term in the equation above represents the flexural rigidity, the second term
is the dynamic pressure exerted by the diffracted and radiated wave fields, the third term represents the
effect of localised forces due to the PTO system, the fourth term is the hydrostatic contribution, while the
last term represents the inertia of the plate.

By expanding W through the dry mode decomposition (13) and recalling that for a free-free beam in
the absence of applied loads

f S,A
lxxxx

= f S,A
l

(
µS,A

l
L

)4

, (65)

we obtain

∞

∑
l=0


EIεl

(
µS

l
L

)4

+ ρg−ω2ρphp −
M

∑
m=1

δ (x− xm) νPTOiω

 f S
l ξS

l − iωρ φ
S(2)
lR

∣∣∣
z=−d

ξS
l

+

EIεl

(
µA

l
L

)4

+ ρg−ω2ρphp −
M

∑
m=1

δ (x− xm) νPTOiω

 f A
l ξA

l − iωρ φ
A(2)
lR

∣∣∣
z=−d

ξ A
l


= iωρ

(
φ

S(2)
D + φ

A(2)
D

)∣∣∣
z=−d

, (66)

where, εl is defined by
ε0 = 0, εl = 1, l = 1, ..., ∞. (67)

The complex coefficients ξS
l and ξA

l can be found by multiplying the latter equation by f S
i and f S

i ,
respectively, and then integrating along the total length of the plate x ∈ [−L, L]. Truncating the series
at l = J, we obtain a (2J + 1)× (2J + 1) non-homogeneous system in ξS

l and ξA
l that can be written in

compact form

∞

∑
l=0

{[
KS

il −ω2
(

IS
il + MS

il

)
− iω

(
CS

il − νPTODS
il

)]
ξS

l

+
[
KA

il −ω2
(

IA
il + MA

il

)
− iω

(
CA

il − νPTODA
il

)]
ξA

l

}
= Fi, i = 0, ..., ∞, (68)

where Kil , Iil , Mil , Cil and Dil are the generalised stiffness matrix, mass matrix, added mas matrix,
radiation damping matrix and PTO damping matrix, while the term at the right-hand side represents the
exciting force vector. Their respective expressions are given in Appendix A.
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The structure of the latter equation suggests that the floating plate behaves as a linear forced harmonic
oscillator. The natural modes of the WEC are then evaluated from the following homogeneous unforced
and undamped system

∞

∑
l=0

{[
KS

il −ω2
(

IS
il + MS

il

)]
ξS

l +
[
KA

il −ω2
(

IA
il + MA

il

)]
ξ A

l

}
= 0, i = 0, ..., ∞. (69)

By equating to zero the determinant of the coefficient matrix, we obtain the eigenfrequencies ωi and
the respective modal forms.

Now, we apply the Haskind–Hanaoka formula valid for two-dimensional domains to check the
numerical computations of the diffraction and radiation velocity potentials. Its expression reads [15]

FS,A
i = −2iρgAAS,A−

i Cgω−1, (70)

where the term on the left hand side represents the exciting force given by (A21) and (A22), i.e.,

FS,A
i = iωρ

∫ L

−L
dx f S,A

i

(
φ

S(2)
D + φ

A(2)
D

)∣∣∣
z=−d

, (71)

Cg is the group velocity,

Cg =
ω

2k0

(
1 +

2k0h
sinh 2k0h

)
, (72)

while AS,A−
i is the amplitude of the radiated waves at large distance from the plate, for unit modal

amplitude and in the direction opposite the incident waves

AS,A−
i =

iω cosh k0hDS,A(1)
i0

g
, (73)

in which DS,A(1)
i0 is the first complex coefficient of the radiation potential in Ω1 (52). Substitution of (73)

in (70) gives
FS,A

i = 2ρACgDS,A(1)
i0 cosh k0h. (74)

The latter relates the diffraction to the radiation potential, and it is used to perform numerical check
evaluations.

2.4. Wave Power Extraction and Theoretical Maximum Efficiency

Once the complex coefficients ξS
l and ξA

l are determined, the average power absorbed over a wave
period T = 2π/ω by the plate in monochromatic waves can be calculated as

P =
1
T

∫ T

0
νPTO

M

∑
m=1

(
dW (xm)

dt

)2
dt =

1
2

νPTOω2
M

∑
m=1
|w (xm)|2 , (75)

which, after the substitution of (13), becomes

P =
1
2

νPTOω2
M

∑
m=1

∣∣∣∣∣ ∞

∑
l=0

ξS
l f S

l (xm) + ξA
l f A

l (xm)

∣∣∣∣∣
2

. (76)



Energies 2020, 13, 6167 12 of 24

Then, we define the capture factor as the ratio between the power output P and the incident wave
energy flux per unit width

CF =
P

ECg
, (77)

where
E =

1
2

ρgA2, (78)

is the total energy and Cg is the group speed.
We now turn to the evaluation of the theoretical maximum capture factor. Using the radiated wave

amplitudes (73), the most general expression of the capture factor (77) for two-dimensional flexible
floaters becomes

CF = −Re

{
2 ∑

l
A−l ξ∗l + ∑

l
∑

i
ξlξ
∗
i
(
A−l A

−∗
i +A+

l A
+∗
i
)}

, (79)

where (·)∗ denotes the complex conjugate of (·), while the superscripts A, S denoting symmetric and
antisymmetric components are omitted for brevity. If there is one degree of freedom, the latter becomes

CF = −2Re
{
A−l ξ∗l

}
− 2

∣∣ξlA−l
∣∣2 , (80)

which is maximised when Re
{
A−l ξ∗l

}
= −

∣∣A−l ξ∗l
∣∣. The maximum value of the capture factor occurs

when dCF/dξl = 0, i.e., for

|ξl | =
1

2
∣∣A−l ∣∣ , (81)

and is equal to CF = 0.5. This result can be derived in a different way directly from the equation of motion
of a two-dimensional rigid absorber properly constrained [15,19].

We remark that the theoretical maximum of the capture factor for a two-dimensional WEC cannot
be larger than 1 because of conservation of energy. The plate considered in this work is elastic and
characterised by two rigid modes (heave and pitch) and an infinite set of bending modes, thus CF can be
maximised several times within the range of frequencies of interest.

For example, let us consider two modes that dominate the dynamics with respect to the others,
one symmetric and the other one antisymmetric. Recalling that wave energy extraction is optimised when
the total scattered and radiated waves are maximised in the direction opposite to the incident wave field,
we assume AS−

l = AA−
l , AS+

l = −AA+
l , i.e., the radiated wave amplitude of each mode in the direction

opposite to the incident waves is the same. The corresponding capture factor becomes

CF = −2Re
{
AS−

l

(
ξS∗

l + ξA∗
l

)}
− 2

∣∣∣ξS
l A

S−
l

∣∣∣2 − 2
∣∣∣ξ A

l A
S−
l

∣∣∣2 . (82)

The capture factor is maximised when the first term on the right-hand side is real and negative and
when the modal coefficients ξS,A

l satisfy the following condition∣∣∣ξS,A
l

∣∣∣ = 1

2
∣∣∣AS−

l

∣∣∣ . (83)

Substitution of (83) into (82) gives CF = 1, a value independent of the WEC size. This result has been
obtained from the simplified assumption of WEC motion dominated by two modes, while the flexible
floater considered in this work includes rigid and bending elastic modes as well. This aspect potentially
implies multiple optimisation and consequent larger efficiency with respect to standard rigid devices.
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3. Results and Discussion

In this section, we investigate the effects of the plate geometry, ridge height c and PTO distribution on
the hydrodynamic behaviour and efficiency of the system. We choose the following parameters: A = 1 m,
h = 5 m, ρ = 1000 kg m−3, EI = 6.9× 104 kg m3s−2, and L = 10 m. Since in the expressions for the
velocity potentials and bending modes there are infinite terms, the summations must be truncated up to a
limiting value in the computations. Here, we use j = 10 and consider the first 5 dry modes to reach good
accuracy [13]. Calculations were carried out using the MATLAB software.

3.1. Effects of the PTO

Here, we investigate the effects of the PTO coefficient νPTO and PTO distribution on the power
extraction efficiency. For the sake of brevity, let us assume c = 0 m.

Figure 4 shows the surface plot of the capture factor versus the incident wave frequency and the
PTO coefficient for different PTO distributions. Figure 4a refers to the case of two PTO systems located
at the ends of the plate xi = ±L, while Figure 4b shows the case of 5 PTOs equally spaced located
at xi = ±L, ± L/2, 0. When the number of the PTOs increases, the bandwidth of the capture factor
increases and the system becomes more efficient. Several peaks with value CF ∼ 1 are shown, therefore the
theoretical maximum of a two-dimensional WEC in a channel can be almost reached. This result confirms
the theoretical predictions obtained in Section 2.4. Note also that the maxima are located in correspondence
to the first eigenfrequencies of the system, i.e., ωi = 0.99, 1.55, 2.24, 2.77, 3.66, 5.06 Rad s−1. As in the case
of oscillating wave surge converters and oscillating water columns [17,18,20–24], resonance of natural
modes is beneficial in terms of power extraction efficiency.
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Figure 4. Behaviour of the Capture Factor versus frequency of the incident waves and PTO-Coefficient.
(a) PTO at the ends xi = ±L; (b) Equally spaced PTO every 5 m.

3.2. Effects of the Ridge Height

Now we analyse the effects of the ridge height c on the capture factor. Let us fix the PTO distribution
to be equally spaced every 5 m and consider the same floater geometry analysed in the previous section.
By comparing Figure 4b (case without ridge) with Figure 5a,b, we note that when the ridge height increases,
the overall efficiency at small frequencies decreases, while a narrow peak appears around ω = 2.2 Rad s−1.
This behaviour is mainly due to the reflection of the incident waves with increasing c and the shifting of
the eigenfrequencies towards smaller values. In any case, this analysis shows that if a bottom structure
with a large height c is needed, the floater geometry and the PTO distribution can be still optimised to
maximise CF up to values around one.
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Figure 5. Behaviour of the Capture Factor versus frequency of the incident waves and PTO-Coefficient.
(a) Ridge height c = 2 m; (b) c = 4 m.

3.3. Effects of the Plate Stiffness

In order to evaluate the effects of the plate stiffness on the generated power, a parametric analysis is
performed for a softened plate characterised by a smaller value of the stiffness factor EI = 6.9× 103 kg
m3s−2 and a rigid plate. Figure 6a shows that when the flexural rigidity of the plate decreases, the efficiency
of the system can increase. This is due to the shifting of the bending mode eigenfrequencies towards
smaller frequencies and the fact that these frequencies tend to be much close to each other. Differently
from the case shown in Figure 4b, there are now four peaks in which the capture factor CF is close to one.

When the plate is rigid, or characterised by very large stiffness, there are no contributions from
the bending modes and the dynamics is governed by pitching and heaving only. Figure 6b shows that
there is one maximum around ω = 2.2 Rad s−1 with value C f ∼ 0.8. This frequency falls within the
eigenfrequencies of the heave mode ωi = 1.07 Rad s−1 and pitching mode ωi = 1.67 Rad s−1, respectively.
The overall efficiency is clearly smaller with respect to the cases shown so far because we reduced the
number of eigenfrequencies, the resonances of the natural modes and the possible modal optimisations.
This highlights the beneficial effects of the bending elastic modes on the power extraction efficiency.
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Figure 6. Behaviour of the Capture Factor versus frequency of the incident waves and PTO-Coefficient.
(a) Flexible plate with stiffness factor EI = 6.9× 103 kg m3s−2; (b) The case of a rigid plate.



Energies 2020, 13, 6167 15 of 24

4. Comparison with Preliminary Demonstrator Data

The flexible floater demonstrator is made by two layers of Polymax SILO-CELL silicone sponge sheet,
each of dimensions 2 m (length) × 0.2 m (width) × 0.01 m (thickness), see Figure 7.

Figure 7. The floater blanket, made by a two-layer red silicone sheet, inside the wave tank. The absorbing
beach is visible at the end of the tank.

The floater is attached to a laboratory model (scale 1:35) of the multi-pump, multi-piston power take
off system (MP2PTO) designed by the University of Groningen and Ocean Grazer, shown in Figure 8.

The MP2PTO system is installed inside a wave tank, which is 1.20 m high, 0.77 m wide and 10 m
long. Two transparent lateral walls are also installed inside the wave tank, along the direction of the
incident waves, restricting the width to 0.2 m. This effectively creates a channel inside the tank, and the
flexible floater is then installed inside this channel. The channel width matches the floater width (0.2 m),
hence the dynamics inside the channel are two-dimensional. The water level in the tank is h = 0.9 m.
The waves are generated by a flap paddle driven by a rotating-arm engine, located at one side of the
tank. The engine frequency and the length of the rotating arm can be set to a maximum of 60 Hz and
0.25 m, respectively. At the other side of the tank, a plane beach induces wave breaking, thus dissipating
wave energy and reducing reflection. To calibrate the wave maker, digital particle image velocimetry
(DPIV) measurements were taken using a high-definition camera. The camera recorded the motion of
tracer particles (polyamide particles) seeded in the tank, which was illuminated by means of a laser
sheet. For details on the measurement procedure and associated errors, we refer the interested reader to
Refs. [25,26] and references cited therein. The system of pistons and cables was calibrated using load cells,
as described in Ref. [27].
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Figure 8. Laboratory model of the MP2PTO system, made by 10 pistons.

4.1. Description of the Demonstrator Device

The flexible floater is connected to the MP2PTO system in the tank via high-performance polyethylene
cables, which are in turn connected to pistons. Each piston is located inside a 0.057 m wide cylinder. As the
floater deforms under the action of the incident waves, it transmits its motion to the pistons via the cables.
In turn, the pistons pump water inside the cylinders, as shown in Figure 9.

Figure 9. Top view of the pumping system. The high-performance polyethylene cables transfer the motion
from the flexible floater to the pistons inside the cylinders.
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The power extracted by each PTO element can be approximated by calculating the work done by the
piston against the force of gravity to lift the water column of weight ρgAH, where A is the cross-sectional
area of the cylinder and H is the maximum hydraulic head over a cycle. Thus, the extracted power is
given by

P = ρgAH2/τ,

where τ is the duration of the upstroke motion of the piston.
Four sets of demonstrations are conducted. In two sets (S1 and S2), the floater is a continuous flexible

silicone sheet of 2 m length, whereas in two sets (S3 and S4), the floater is cut into 10 pieces, each being
0.2 m long and connected to a single piston. For each setup, the maximum hydraulic head in each cylinder
is measured eight times, and the average of such measurements is then taken. The engine and wave
parameters for the four sets of tests are reported in Table 1. We use Froude’s law to scale between test and
model results. The Froude number is

Fr =
U2

gD
, (84)

where U is the fluid speed and D any linear dimension of the system. Using Equation (84) and a 1:35 scale
ratio, the wave periods 1.36 s and 1.62 s scale up to 8 and 9.5 s, respectively, whereas the wave heights
0.06 m and 0.08 m scale up to 2.1 m and 2.8 m, respectively. These values are consistent with an oceanic
wave climate, such as the North Atlantic Ocean [28].

Table 1. Parameters for the four sets of experiments on the flexible floater device.

Set Floater Wave Height Wave Period

S1 Continuous 0.06 m 1.36 s
S2 Continuous 0.08 m 1.62 s
S3 Discontinuous 0.06 m 1.36 s
S4 Discontinuous 0.08 m 1.62 s

4.2. Demonstrator Results

Figure 10 shows the average power at each of the 10 pistons in the MP2PTO laboratory model, for the
four sets of tests detailed in Table 1. Piston 1 is the closest to the generator, whereas piston 10 is the closest
to the absorbing beach, on the other side of the tank. Note that, in all configurations, the power absorbed
by the device first increases moving towards the centre of the floater, and then decreases moving further
on. Therefore, in all cases, the maximum power output is achieved towards the middle of the floater.
Note also that the power has a second maximum at the tail of the floater (piston 10), which results from end
reflections by the inclined beach. This is especially visible in the more energetic sea state (configurations
S2 and S4), whereas it is almost negligible in the milder sea state (configurations S1 and S3).

As expected, the configurations relevant to the more energetic seas, S2 and S4, are also those with
the largest power. Figure 10 also shows that the maximum power attained by the continuous floater
(configurations S1 and S2) is similar to that achieved by the discontinuous floater (configurations S3 and
S4). Interestingly, in the less energetic state, the continuous floater (configuration S1) performs slightly
better than the discontinuous one (configuration S3) at almost all pistons. In the more energetic sea state,
the continuous floater (configuration S2) performs better than the discontinuous one (configuration S4)
towards the front (pistons 1,2 and 3), and worse towards the middle (pistons 4–9). Since there is no
substantial advantage in choosing the continuous configuration over the discontinuous one (at least in
the sea states analysed here), our results suggest that in practice one can opt for either configuration
based on other criteria, such as installation and maintenance costs. In this sense, the discontinuous
configuration appears more advantageous to reduce maintenance costs, for example due to the possibility
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of replacing only one element, instead of the whole floater, in case of localised damage. The positive
practical implication of our preliminary findings prompts the need to scale-up the demonstrator device to
a full-fledged experimental model. This is the object of our ongoing research effort.
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Figure 10. Performance (power per single piston in mW) of the experimental flexible floater device.
Left panel: configurations S1 and S3; Right panel: configurations S2 and S4. The incident wave is coming
from the right. Connecting lines are for graphical illustration purposes.

4.3. Comparison with Mathematical Model

In this section, we show a preliminary comparison between the results of the experimental and
mathematical models. We remark that the PTO system is modelled as a linear damper in the mathematical
model, whereas it is nonlinear in the experimental model. For the sake of comparison, we selected a PTO
coefficient for the model which generates the same total power output as that in the demonstrator device.
This allows some quantitative comparisons and discussions.

Figure 11 shows the behaviour of the power output for each piston, in both the mathematical model
and the tests, for the same configuration as Figure 10. The overall behaviour is captured well and,
in general, the comparison is satisfactory. Both models show that the maximum power output is achieved
by those pistons located towards the front of the device. Some differences (especially in the maximum
power output) still remain, and these are likely due to the use of a linear PTO in the mathematical model.

12345678910
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0.1

0.15

0.2

0.25

Figure 11. Extracted power by the single pistons for the mathematical and experimental models. Connecting
lines are for graphical illustration purposes.
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We remark that, to date, very few studies have investigated the non-linear dynamics of wave-plate
systems analytically, see for example Refs. [29,30]. However, these dealt with the interaction of waves with
ice sheets. On the contrary, to the best of our knowledge, no application of nonlinear theories to wave power
extraction from flexible plates has been made so far. This highlights the need for developing higher-order
mathematical models to achieve a more accurate description of the power extraction dynamics.

5. Power Extraction in Irregular Waves

In this section, we investigate the effect of irregular sea waves on the floating plate dynamics and
power extraction efficiency. Let us assume the following JONSWAP spectrum function [31]

Sζ(ω, ωp) =
αH2

s
ω

(ωp

ω

)4
exp

[
−1.25

(ωp

ω

)4
]

γexp[−(ω/ωp−1)2/(2σ2)], (85)

in which Hs is the significant wave height, ωp denotes the peak frequency and

α =
0.0624(1.094− 0.01915 ln γ)

0.23 + 0.0336γ− 0.185(1.9 + γ)−1 , σ =

{
0.07 : ω ≤ ωp

0.09 : ω > ωp
, γ = 3.3. (86)

Since the problem is linear, the oscillation of the flexible plate can be written as

W
(
t, ωp, x, νPTO

)
=

∞

∑
n=1

√
2Sζ (ωn)∆ω RAO (ωn, x, νPTO) cos (ωnt + δn) , (87)

where ωn is the nth component of the discretised spectrum, ∆ω is the frequency interval, δn is a random
phase related to ωn, whereas RAO is the response amplitude operator for the plate, i.e.,

RAO (ωn, x, νPTO) = |w (ωn, x, νPTO)| . (88)

Then, the instantaneous generated power by the entire system is

Ps
(
t, ωp, νPTO

)
= νPTO

[
M

∑
m=1

∞

∑
n=1

√
2Sζ

(
ωn, ωp

)
∆ωRAO (ωn, xm, νPTO)ωn sin (ωnt + δn)

]2

. (89)

From the previous expression, we obtain the averaged generated power [17,20,22]

Ps
(
ωp, νPTO

)
= lim

τ→∞

1
τ

∫ τ

0
Ps dt = νPTO

M

∑
m=1

∞

∑
n=1

Sζ

(
ωn, ωp

)
∆ωRAO2 (ωn, xm, νPTO)ω2

n, (90)

whose expression in the limit ∆ω → 0 becomes

Ps
(
ωp, νPTO

)
= νPTO

M

∑
m=1

∫ ∞

0
Sζ

(
ω, ωp

)
RAO2 (ω, xm, νPTO)ω2 dω. (91)

Defining Pζ as the total incident wave power per unit crest width

Pζ

(
ωp
)
=
∫ ∞

0
ρgCg (ω) Sζ

(
ω, ωp

)
dω, (92)
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the capture factor in irregular seas CFζ can then be written as

CFζ

(
ωp, νPTO

)
=

P̄s

Pζ
. (93)

The latter expression gives the capture factor for any sea state characterised by significant wave Hs,
peak frequency ωp and PTO coefficient νPTO.

Let us investigate the capture factor in irregular waves of the same plates analysed in Section 3.3.
Figure 12 shows the behaviour of CFζ versus peak frequency ωp and PTO-coefficient νPTO for the softened
flexible plate and the rigid plate. The softened plate has stiffness factor EI = 6.9× 103 kg m3s−2, while the
rigid plate has EI → ∞.

As in the case of monochromatic incident waves, the flexible plate results in being more efficient than
the rigid plate and can be optimised for several values of ωp and νPTO. Indeed, the rigid plate shows a
single peak, while the flexible plate shows three maxima and a much larger bandwidth.

In addition, by comparing Figures 6 and 12, we note that the maxima are reduced with respect to the
case of monochromatic waves, whereas the system can be more efficient outside the resonant frequencies.
This is mainly due to the coupling between the broadband incident waves and the eigenfrequencies of
the system. Similar results were already obtained in the context of oscillating wave surge converters and
oscillating water columns [17,20,22].
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Figure 12. Behaviour of the Capture Factor in irregular sea waves versus peak frequency of the
incident JONSWAP spectrum and PTO-Coefficient. (a) Softened flexible plate with stiffness factor
EI = 6.9 × 103 kg m3s−2; (b) The case of a rigid plate.

6. Conclusions

This paper has presented novel results on analytical and demonstrator models of wave energy
converters made by flexible floating plates. The mathematical model is based on a linearised potential-flow
theory, whereby the method of dry modes is combined to matched eigenfunction expansions, in order to
solve the hydrodynamics of the converter. The main results of the analytical model are:

• The effect of the plate elasticity is to increase the number of the resonant frequencies with respect to
a rigid plate, while wave power extraction and the bandwidth of the capture factor become larger.
The same result has been obtained both in monochromatic and irregular waves.
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• The PTO distribution plays a significant role, and it is seen that, by increasing the number of PTO
devices, modal optimisation occurs and the overall efficiency of the system improves.

• We also investigated the effect of the ridge height below the plate. Analytical results showed that
if a bottom structure is needed, the floater can be properly designed to maximise power extraction,
despite reduced incident wave transmission. This aspect has potentially strong implications for the
design of nearshore structures for coastal protection.

• We analysed the plate response to irregular waves described by a JONSWAP spectrum. We showed
that the presence of a broad wave frequency range reduces the maximum resonant peaks of the
system. However, away from resonance, the efficiency can be larger than that of the monochromatic
case and the benefit of irregular waves is significant.

A preliminary demonstrator model was also realised, by connecting a flexible Polymax SILO-CELL
silicone sheet to the multi-piston MP2PTO system developed at the Faculty of Science and Engineering,
University of Groningen. A comparison between the mathematical model results and the demonstrator
data was encouraging. It is to be noted that the demonstrator results were characterised by abnormal
power output values for the last piston in the PTO system. This was due to the inclined beach at the end of
the tank not being able to suppress end reflections. Further experiments will need to be undertaken in
a larger wave tank, with a more sophisticated absorption system, to confirm the trend identified in this
work. Given the promising efficiency levels shown by the mathematical model, our results highlight the
need to scale-up experimental investigations on flexible wave energy converters, which are still a small
minority, compared to those on rigid converters.
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Appendix A

The generalised stiffness matrices are defined as follows

KS
il =

∫ L

−L
dx

EIεl

(
µA

l
L

)4

+ ρg

 f S
i f S

l δil , i = 0, ..., J (A1)

KS
il = 0, i = J + 1, ..., 2J + 1 (A2)

KA
il = 0, i = 0, ..., J (A3)
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KA
il =

∫ L

−L
dx

EIεl

(
µA

l
L

)4

+ ρg

 f A
i f A

l δil , i = J + 1, ..., 2J + 1. (A4)

The mass matrices are given by

IS
il = ρphp

∫ L

−L
dx f S

i f S
l δil , i = 0, ..., J, (A5)

IS
il = 0, i = J + 1, ..., 2J + 1, (A6)

IA
il = 0, i = 0, ..., J (A7)

IA
il = ρphp

∫ L

−L
dx f A

i f A
l δil , i = J + 1, ..., 2J + 1. (A8)

The expression for the added mass read

MS
il = Im

{
− ρ

ω

∫ L

−L
dx f S

i φ
S(2)
lR

}
, i = 0, ..., J, (A9)

MS
il = Im

{
− ρ

ω

∫ L

−L
dx f A

i φ
S(2)
lR

}
, i = J + 1, ..., 2J + 1, (A10)

MA
il = Im

{
− ρ

ω

∫ L

−L
dx f S

i φ
A(2)
lR

}
, i = 0, ..., J, (A11)

MA
il = Im

{
− ρ

ω

∫ L

−L
dx f A

i φ
A(2)
lR

}
, i = J + 1, ..., 2J + 1, (A12)

while the radiation damping matrices are

CS
il = Re

{
ρ
∫ L

−L
dx f S

i φ
S(2)
lR

}
, i = 0, ..., J, (A13)

CS
il = Re

{
ρ
∫ L

−L
dx f A

i φ
S(2)
lR

}
, i = J + 1, ..., 2J + 1, (A14)

CA
il = Re

{
ρ
∫ L

−L
dx f S

i φ
A(2)
lR

}
, i = 0, ..., J, (A15)

CA
il = Re

{
ρ
∫ L

−L
dx f A

i φ
A(2)
lR

}
, i = J + 1, ..., 2J + 1. (A16)

The contribution due to the PTO device distribution leads to the following matrices

DS
il =

M

∑
m=1

f S
l f S

i

∣∣∣
x=xm

, i = 0, ..., J, (A17)

DS
il =

M

∑
m=1

f S
l f A

i

∣∣∣
x=xm

, i = J + 1, ..., 2J + 1, (A18)

DA
il =

M

∑
m=1

f A
l f S

i

∣∣∣
x=xm

, i = 0, ..., J, (A19)
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DA
il =

M

∑
m=1

f A
l f A

i

∣∣∣
x=xm

, i = J + 1, ..., 2J + 1. (A20)

Finally, the exciting force vector is given by

Fi = iωρ
∫ L

−L
dx f S

i

(
φ

S(2)
D + φ

A(2)
D

)∣∣∣
z=−d

, i = 0, ..., J, (A21)

Fi = iωρ
∫ L

−L
dx f A

i

(
φ

S(2)
D + φ

A(2)
D

)∣∣∣
z=−d

, i = J + 1, ..., 2J + 1. (A22)
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