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A B S T R A C T   

A comprehensive in situ dataset of chlorophyll a (Chl a; N = 18,001), net primary production (NPP; N = 165) and 
net community production (NCP; N = 95), were used to evaluate the performance of Moderate Resolution Im-
aging Spectroradiometer on Aqua (MODIS-A) algorithms for these parameters, in the South Atlantic Ocean, to 
facilitate the accurate generation of satellite NCP time series. For Chl a, five algorithms were tested using MODIS- 
A data, and OC3-CI performed best, which was subsequently used to compute NPP. Of three NPP algorithms 
tested, a Wavelength Resolved Model (WRM) was the most accurate, and was therefore used to estimate NCP 
with an empirical relationship between NCP with NPP and sea surface temperature (SST). A perturbation analysis 
was deployed to quantify the range of uncertainties introduced in satellite NCP from input parameters. The 
largest reductions in the uncertainty of satellite NCP came from MODIS-A derived NPP using the WRM (40%) and 
MODIS-A Chl a using OC3-CI (22%). 

The most accurate NCP algorithm, was used to generate a 16 year time series (2002 to 2018) from MODIS-A to 
assess climate and environmental drivers of NCP across the South Atlantic basin. Positive correlations between 
wind speed anomalies and NCP anomalies were observed in the central South Atlantic Gyre (SATL), and the 
Benguela Upwelling (BENG), indicating that autotrophic conditions may be fuelled by local wind-induced 
nutrient inputs to the mixed layer. Sea Level Height Anomalies (SLHA), used as an indicator of mesoscale 
eddies, were negatively correlated with NCP anomalies offshore of the BENG upwelling fronts into the SATL, 
suggesting autotrophic conditions are driven by mesoscale features. The Agulhas bank and Brazil-Malvinas 
confluence regions also had a strong negative correlation between SLHA and NCP anomalies, similarly indi-
cating that NCP is forced by mesoscale eddy generation in this region. Positive correlations between SST 
anomalies and the Multivariate ENSO Index (MEI) in the SATL, indicated the influence of El Niño events on the 
South Atlantic Ocean, however the plankton community response was less clear.   
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1. Introduction 

Autotrophic plankton produce up to 50% of the net organic carbon 
on our planet (Field et al., 1998), as they draw down carbon dioxide 
(CO2) from the atmosphere into the ocean. A proportion of this NPP is 
respired by heterotrophic plankton, which results in a re-release of some 
of the fixed CO2 back into the atmosphere. The balance between auto-
trophic production and heterotrophic respiration determines NCP. 
Measurements of NCP made on research ships, though essential to un-
derstanding the dynamics of NCP, provides only a snapshot of the system 
rather than broader temporal-spatial dynamics. Such measurements can 
be estimated by ocean colour from space (Tilstone et al., 2015a). The use 
of in situ data to identify the most accurate ocean colour satellite algo-
rithms, will facilitate the generation of reliable synoptic-scale NCP time 
series. Such data are needed for identify trends in the metabolic balance 
of the oceans, and understand the biological draw down and release of 
CO2 from the oceans. 

The estimation of NCP from satellite ocean colour is dependent on 
the accurate quantification of NPP, which is derived from Chl a, photo- 
physiological parameters (e.g.: maximum photosynthetic rate, PB

m; 
initial slope of the light-dependent photosynthetic rate, αB), and 
photosynthetically active radiation (PAR), and the estimation of the 
relationship between NPP and heterotrophic respiration from proxy 
parameters such as SST. Chl a, as the dominant pigment in phyto-
plankton, has been routinely monitored on a global scale using satellite 
data since the launch of the National Aeronautics and Space Adminis-
tration (NASA) Sea Viewing Wide Field of View Sensor (SeaWiFS) on the 
Orbview-2 satellite in 1997. Following the success of SeaWiFS, MODIS-A 
was launched in 2002 providing continued monitoring of Chl a globally. 
Concerted efforts over the last three decades to estimate NPP from Chl a 
on a global scale resulted in the development of 20 models that use a 
variety of algorithm architecture (Carr et al., 2006; Friedrichs et al., 
2009). A series of inter-comparisons performed by NASA indicated that 
NPP models of different complexities performed similarly (Friedrichs 
et al., 2009), though they displayed regional dependencies (Campbell 
et al., 2002). These inter-comparisons also highlighted that up to 50% of 
model uncertainties could be attributed to uncertainty in the input pa-
rameters, with by far the largest contribution coming from Chl a (Saba 
et al., 2011). Such differences in algorithm performance highlight the 
need to identify the best performing NPP and Chl a algorithms region-
ally, to reduce the uncertainty attributed to input parameters. 

Recently NCP has been estimated from ocean colour data using 
empirical or semi-analytical algorithms based on NPP (Chang et al., 
2014; Li and Cassar, 2016; Serret et al., 2009; Tilstone et al., 2015a). 
Regional empirical NCP algorithms for the Atlantic Ocean have been 
derived from in vitro 14C-based NPP and O2-based NCP estimates (Serret 
et al., 2009; Tilstone et al., 2015a). However, these empirical algorithms 
assume a spatially homogenous relationship between photosynthesis 
and respiration that has been shown to be variable, for example between 
the North and South Atlantic Oceans (Serret et al., 2015). This reinforces 
the need to identify the most accurate algorithms for a particular 
geographical region. 

According to Saba et al. (2011), 22% of the uncertainty in NPP 
models could be attributed to the in situ NPP measurements uncertainty. 
Chl a, NPP and NCP algorithms will all have uncertainties in both the 
algorithm input parameters, and the uncertainty of the in situ mea-
surements that are used to assess their performance. Previous statistical 
assessments have assumed that all uncertainty resides in the satellite 
retrievals, and consider the in situ measurements to be truth (i.e. ‘100% 
accurate’). Neglecting the in situ uncertainty could result in a reduction 
in algorithm performance, especially when limited in situ data exist to 
either calibrate or validate the algorithms. 

The South Atlantic Ocean is under sampled and few in situ datasets 
are available. It is however an exceptionally dynamic and varied system, 
that includes the seasonal Equatorial upwelling, high productivity on 
the southwestern (Dogliotti et al., 2014; Garcia et al., 2004) and the 

southeastern shelf (Hutchings et al., 2009; Lamont et al., 2018), as well 
as the propagation of Agulhas Current eddies through the basin (Guerra 
et al., 2018). NCP variability can feasibly be observed using ocean 
colour remote sensing, to assess principal environmental drivers, 
assuming the performance of ocean colour algorithms have been eval-
uated. There are few studies however, that have assessed the perfor-
mance of ocean colour satellite algorithms in the South Atlantic Ocean. 
These have been focused mainly on the southwestern shelf and Brazilian 
Coast, but with conflicting results (Dogliotti et al., 2014; Dogliotti et al., 
2009; Garcia et al., 2005; Kampel et al., 2009b; Kampel et al., 2009a). 
Dogliotti et al. (2014; 2009) showed that the MODIS-A OC3M, un-
derestimates Chl a on the southwestern shelf, over a range of in situ 
values spanning 0.1 to 11 mg m− 3. By contrast, Kampel et al. (2009b) 
showed that OC3M overestimates Chl a on the Brazilian Coast, but over a 
much smaller range of in situ values from 0.08 to 0.20 mg m− 3. 

The objectives of this paper are to investigate the NCP dynamics in 
the South Atlantic Ocean, using MODIS-A multi-spectral observations, in 
order to assess the principal environmental drivers of NCP over a 16 year 
period. In order to generate accurate satellite NCP time series, the per-
formance of MODIS-A estimates of Chl a, NPP and NCP for the South 
Atlantic Ocean are assessed, whilst also accounting for the in situ un-
certainty. Weighted statistics are computed to account for the uncer-
tainty in both the satellite and in situ data to evaluate algorithm 
performance. Following selection of the most accurate algorithms, a 
perturbation analysis to determine the magnitude of the uncertainty 
induced on satellite NCP by each input parameter, and on the in situ 
measurements themselves was conducted. The uncertainty analysis 
identifies where future efforts should focus on reducing the uncertainties 
in these parameters. 

2. Methods 

2.1. Chlorophyll-a 

Chl a was measured semi-autonomously and continuously along 
seven Atlantic Meridional Transects (AMT; data available from BODC; 
https://www.bodc.ac.uk/) from 2009 to 2018 (Fig. 1a). Chl a was 
derived from total particulate absorption coefficients, measured using a 
WetLabs AC-S connected to the ships clean flow through system, which 
sampled the surface seawater continuously from a depth of approxi-
mately 5 m. Further details of this method are given in Brewin et al. 
(2016) following methods of Dall’Olmo et al. (2009), Slade et al. (2010) 
and Dall’Olmo et al. (2012). The AC-S Chl a method provided ~80,000 
measurements in the study area. The in situ uncertainty (ԐinsCHL) in the 
measurements were assessed using the log10 root mean square difference 
between the HPLC Chl a and AC-S estimated Chl a for each cruise, 
ranging from 0.06 to 0.26 log10(mg m− 3). 

A further 211 discrete Chl a measurements were collected along the 
South American coast (BRAZIL dataset) on six cruises between 2012 and 
2018. For each measurement, between 0.5 and 1 L of seawater was 
filtered onto 25 mm GF/F filters and stored in liquid nitrogen until 
analysis in the laboratory. Chl a was extracted in a solution of acetone 
and di-methyl sulphoxide (DMSO) and estimated fluorometrically 
following the method of Welschmeyer (1994) on a 10 AU Turner Fluo-
rometer. No replicate measurements were taken to assess the uncer-
tainty of these values. 

Additionally, 223 discrete Chl a measurements were collected in the 
South Atlantic (November 2003), Benguela upwelling system (October 
2002, May 2014 and September 2014) and the Atlantic sector of the 
Southern Ocean (January–February 2009) on five cruises (BEN dataset). 
For these samples, between 1.5 and 2.4 L of seawater was filtered onto 
25 mm GF/F filters and the filters were stored in liquid nitrogen until 
analysis ashore. Frozen filters were added to 90% acetone to extract 
pigments for analysis using the reverse-phase HPLC procedures outlined 
by Barlow et al. (1997) or Zapata et al. (2000). No replicate measure-
ments were taken to assess the uncertainty for these estimates. 
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2.2. In vitro NPP 

In vitro14C NPP incubations were conducted at 165 stations (Fig. 1b), 
from 15 AMT cruises between 2002 and 2019, following the protocols 
outlined in Poulton et al. (2006) and Tilstone et al. (2009). The in situ 
uncertainty (ԐinsNPP) was estimated by propagating the triplicate stan-
dard deviations of the discrete depth measurements, through the water 
column, using the same integration scheme, for each station. ԐinsNPP 
was on average 49 mg C m− 2 d− 1, and ranged between 5 and 300 mg C 
m− 2 d− 1. 

2.3. In vitro NCP 

In vitro NCP measurements were conducted at 95 stations (Fig. 1c) on 
10 AMT cruises between 2003 and 2019 using in vitro changes in dis-
solved oxygen (O2), following the procedures described in Gist et al. 
(2009). The in situ uncertainty (ԐinsNCP) was assessed by integrating the 

combined standard errors of the initial and light replicate bottles, at 
discrete depths through the water column, following the same integra-
tion scheme, for each station. ԐinsNCP was on average 20 mmol O2 m− 2 

d− 1 and ranged between 5 and 114 mmol O2 m− 2 d− 1. The in situ NCP 
dataset contains a subset of the data present in Tilstone et al. (2015a; N 
= 50), alongside an additional 45 stations from four AMT cruises; AMT 
22 (2012), AMT 23 (2013), AMT 24 (2014) and AMT 29 (2019). 

2.4. Chl a Algorithms 

Satellite Chl a was estimated using five algorithms. The OC algo-
rithms are based on an empirical relationship between the log- 
transformed blue to green remote sensing reflectance (Rrs) ratio and 
the in situ Chl a concentration (O’Reilly et al., 1998). For MODIS-A, the 
OC3Mv6 algorithm uses the log-transformed maximum band ratio (R) 
from two bands, Rrs(443) and Rrs(448) using Rrs(547) as the denomi-
nator as follows: 

Fig. 1. Sampling locations for measurements of (a.) in situ chlorophyll a (Chl a) collected at discrete stations along the Brazilian coast (BRAZIL dataset, green di-
amonds), Benguela and Southern Ocean (BEN dataset, green squares) and continuous underway estimates collected on seven Atlantic Meridional Transect (AMT) 
cruises (coloured lines); (b.) in vitro net primary production and (c.) in vitro net community production both determined at discrete stations on AMT cruises between 
2002 and 2019. (d) indicates discrete Chl a (green squares; green diamonds), net primary production (blue circles) and net community production (red squares) 
stations with satellite matchups. The province areas are from Longhurst (1998) as follows: WTRA is Western Tropical Atlantic; ETRA is Eastern Tropical Atlantic; 
BRAZ is Brazilian Current coastal; SATL is South Atlantic Gyre; BENG is Benguela Current coastal upwelling; FKLD is Southwest Atlantic shelves; SSTC is South 
Subtropical Convergence; SANT is Sub Antarctic and ANTA is Antarctic. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

D. Ford et al.                                                                                                                                                                                                                                    



Remote Sensing of Environment 260 (2021) 112435

4

R = log10

(
max[Rrs(443) ,Rrs(488) ]

Rrs(547)

)

(1) 

Chl a was estimated according to: 

Chl a = 10(a0+a1R+a2R2+a3R3+a4R4) (2)  

where a0 = 0.2424, a1 = − 2.7423, a2 = 1.8017, a3 = 0.0015 and a4 =

− 1.2280. The algorithm performs well where phytoplankton dominate 
the optical signal, however in coastal waters the performance decreases, 
where suspended sediments and coloured dissolved organic matter 
(CDOM), change the optical properties of the water (Morel and Prieur, 
1977). 

OC5 is a modification of the OC algorithm, to improve performance 
in areas with increased absorption by CDOM and scattering by sus-
pended sediments. Chl a concentrations are estimated by a triplicate 
look up table (LUT) approach, using the OC maximum band ratio, nor-
malised water leaving radiance (nLw(λ) at 412 and 555 nm; Gohin et al., 
2002). The algorithm was developed using observations in the English 
Channel and Bay of Biscay, but has been shown to perform well in other 
areas with high CDOM and/or sediment loads (Tilstone et al., 2011, 
2017). 

The GSM semi analytical model (Garver and Siegel, 1997; Maritor-
ena et al., 2002) simultaneously estimates Chl a, absorption by detrital 
and dissolved matter at 443 nm, and particle backscatter at 443 nm 

using non-linear optimisation of the Rrs spectrum. The underlying bio- 
optical model is:  

where λ0 = 443, and gi, γ, Sdg and a*ph(λ) are predefined values (Mar-
itorena et al., 2002) and 0.5238 is a conversion from below water to 
above water Rrs. The GSM has the advantage of solving for multiple 
parameters simultaneously. 

The Colour Index (CI) method was developed for the clearest waters 
(Hu et al., 2012) to reduce impacts from artefacts and biases due to 
residual glint, stray light, and atmospheric correction errors in the Rrs 
spectra. A three band reflectance difference method was used between 
Rrs(555) and a linear baseline between Rrs(443) and Rrs(670). For 
MODIS-A, the associated bands are band shifted to those required by the 
CI. The approach is merged with the OC algorithm (OCI) in the standard 
NASA Chl a algorithm to improve retrievals in the oligotrophic gyres 
(Hu et al., 2012). For this work, the CI was merged with OC3 and OC5 
(OC3-CI and OC5-CI) blending linearly between 0.15 and 0.2 mg m− 3. 

2.5. NPP Algorithms 

NPP was determined using three algorithms, which have previously 
shown to be accurate regionally in the Atlantic Ocean and/or the South 
Atlantic Ocean (Campbell et al., 2002; Carr et al., 2006; Dogliotti et al., 
2014; Friedrichs et al., 2009; Lobanova et al., 2018; Tilstone et al., 
2015b; Tilstone et al., 2009). In each case, satellite Chl a determined by 
the best performing algorithm was used as input. The Vertical Gener-
alized Production Model (VGPM; Behrenfeld and Falkowski, 1997) es-
timates NPP in the euphotic zone (1% light level) taking the form: 

NPPVGPM = Chla zeu 0.66125
[

PBopt
I0

4.1 + I0

]

DL (4)  

where DL is the day length, zeu is the euphotic zone depth and I0 is the 
daily surface PAR. PB

opt is the biomass specific optimum photosynthetic 
rate retrieved as a function of SST (Behrenfeld and Falkowski, 1997). 

The Platt and Sathyendranath model (PSM; Platt et al., 1991) esti-
mates daily NPP at a specific depth (z), based on an exponential 
photosynthetic-irradiance (P–I) function (square brackets): 

NPP(z)PSM = Chla(z)
[

PBm

(

1 − exp
(

−
αBI(z)
PBm

))]

DL (5)  

where, I(z) is PAR at z. The P–I function is driven by two parameters: 
the biomass specific maximum photosynthetic rate (PB

m) and the initial 
slope of the light-dependent photosynthetic rate (αB). These parameters 
cannot be determined using remote sensing, therefore in situ values were 
used from a published database (Bouman et al., 2018) averaged across 
the provinces (Fig. 1) and seasons in which the in situ NPP were sampled; 
PB

m = 3.43 mg C (mg Chl)− 1 h− 1 and αB = 0.039 mg C (mg Chl)− 1 h− 1 

(μEm− 2 s− 1)− 1. NPP(z)PSM was integrated to zeu to provide total water 
column NPPPSM (Lobanova et al., 2018). 

The P–I function was propagated through the water column using 
the Beer-Lambert-Bouguer law, as a function of surface PAR (I0): 

I(z) = I0exp( − Kdz) (6)  

where Kd is the downwelling diffuse attenuation coefficient of PAR. Zeu 

for the VGPM and PSM was estimated using the following equation, 
derived from Eq. (6), assuming I0 is 100% of the surface PAR and PAR at 
the euphotic zone depth is 1%: 

zeu = −
ln(0.01)
Kd

=
4.6
Kd

(7)  

where Kd for the PAR spectrum was calculated as a function of Kd at 490 
nm (Morel et al., 2007) available from satellite estimates (see Section 2.7 
for data source). The PSM was therefore run as a broad-band model 
using PAR as the input light parameter. 

The Wavelength Resolved Model (WRM) of Morel (1991), imple-
mented following Smyth et al. (2005), spectrally resolves the irradiance 
and associated phytoplankton response. The WRM takes the form: 

NPPWRM = 12 a*
maxϕm

∫DL

0

∫zeu

0

∫700

400

Chl a(z) PUR (z, t, λ) f (x(z, t) ) dλ dz dt (8)  

where, a*max is the maximum phytoplankton Chl a specific absorption 
coefficient and Фm is the maximum quantum yield for growth, both 
parametrised using Chl a following Morel et al. (1996), and PUR is the 
phytoplankton usable radiation. The PSM can also be run in a wave-
length resolving configuration. The above-water incident PAR was 
computed from the Gregg and Carder (1990) model at 5 nm wavelength 
and 1 min time resolution. Meteorological and ozone data were obtained 
from the National Centres for Environmental Prediction (NCEP) and 
Earth Total Ozone Mapping Spectrometer data (EPTOMS), respectively. 
Cloud cover fields were obtained from the European Centre for Medium 
Range Weather Forecasts (ECMWF) ERA5 model reanalysis product, 
downloaded from the Copernicus Climate Data Store (CCDS; https://cds 
.climate.copernicus.eu/), and used to modify the light field following 
Reed (1977). NPPWRM was integrated to the same zeu as the VGPM and 

Rrs(λ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑2

i=1
gi

⎡

⎢
⎢
⎣

bbw + bbp(λ0)

(
λ
λ0

)− Υ

bbw + bbp(λ0)

(
λ
λ0

)− Υ

+ aw(λ) + chla*a*
ph(λ) + adg(λ0)exp

[
− Sdg(λ − λ0)

]

⎤

⎥
⎥
⎦

i⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

0.5238 (3)   
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PSM, computed using Eq. (7). 

2.6. NCP Algorithms 

NCP was estimated using four empirical algorithms as described in 
Tilstone et al. (2015a). All four algorithms are based on a power law 
relationship between NPP and NCP. NCP-A was derived using data from 
mainly net heterotrophic areas of the North Atlantic Ocean (negative 
NCP). NCP-B was derived using data from mainly net autotrophic areas 
of the North Atlantic Ocean (positive NCP; Serret et al., 2009). These 
algorithms take the form: 

NCPA = 49.53*
∫

14CNPP0.48 − 300 (AMT6 Model) (9)  

NCPB = 212.01*
∫

14CNPP0.15 − 300 (AMT11 Model) (10) 

Two further algorithms, NCP-C and NCP-D, were developed using 
data spanning net autotrophic and net heterotrophic regimes in the 
Atlantic Ocean, but weighted towards the North Atlantic Ocean. An 
additional relationship between NCP and SST is included in the NPP 
exponent for NCP-D (Tilstone et al., 2015a): 

NCPC = 163.83*
∫

14CNPP0.2035 − 300 (11)  

NCPD = 179.86*
∫

14CNPP(0.2487+(− 0.0036*SST) ) − 300 (12)  

2.7. MODIS-A data 

MODIS-A Level 1 images downloaded from the NASA Ocean Colour 
website (https://oceancolor.gsfc.nasa.gov) were processed to Level 2 
(Reprocessing 2018) 1 km products using SeaDAS v7.5 using the stan-
dard atmospheric correction and projected onto a linearly spaced 1 km 
grid for matchup analysis. PAR, Kd(490) and SST were processed 
alongside Chl a using standard MODIS-A algorithms, as described on the 
NASA Ocean Colour website (https://oceancolor.gsfc.nasa.gov/atbd/), 
as inputs to the NPP and NCP algorithms. The AMT, BEN and BRAZ Chl a 
datasets used 56, 38 and 30 images respectively for matchup analysis. 

The procedure for matchup analysis described in Brewin et al. (2016) 
was followed using level 2, 1 km products. Although Brewin et al. (2016) 
highlighted that level 3, 4 km products could be used to evaluate the 
continuously measured AMT Chl a dataset, NPP and NCP in situ mea-
surements represent discrete water samples, driving the choice of level 
2, 1 km products. Discrete station data were subjected to the same 
quality checks (Brewin et al., 2016), including the elimination of data 
collected at night, leading to an approximate time window of ±8 h, to 
remain consistent between continuous and discrete datasets. A 3 × 3 
pixel window centred on each 1 km station-matchup pixel was selected 
to test for spatial homogeneity, and matchups with fewer than 5 valid 
pixels within the 3 × 3 pixel windows (after standard L2 flags were 
applied), were excluded from further analysis (Bailey and Werdell, 
2006). 

After selection of the most accurate algorithms, MODIS-A monthly 4 
km Chl a composites were produced for the entire South Atlantic domain 
using OC3-CI. Monthly composites of NPP were computed with the 
WRM using the LUT described in Smyth et al. (2005), using additional 
input composites of MODIS-A PAR, Kd(490) and SST downloaded from 
the NASA Ocean Colour website (https://oceancolor.gsfc.nasa.gov/l3/). 
Monthly NCP composites were assembled using NCP-D, to perform a 
monthly time series analysis against climate indices and environmental 
drivers between July 2002 and December 2018. Monthly NCP anomalies 
were calculated on a per pixel basis, by subtracting from the monthly 

NCP the corresponding month’s climatological NCP value computed 
using a time series between 2002 and 2018. 

2.8. Uncertainties in satellite data 

The combined uncertainty in the satellite measurements (ԐCALGOR-

ITHM) was estimated as the combination of three components (BIPM, 
2008). Firstly, the stated uncertainty of the algorithm (ԐaALGORITHM) 
during the parameterisation with in situ data was taken from the liter-
ature (see Table 1). Secondly, the spatial uncertainty in the satellite data 
(ԐsALGORITHM) were estimated using the standard deviation of the 3 × 3 
pixel grid used to test for homogeneity. Finally, the uncertainty attrib-
uted to the satellite input parameters (ԐiALGORITHM) was calculated as 
follows: For NPP and NCP algorithms Ԑi was estimated using a Monte 
Carlo uncertainty propagation, where 1000 calculations were made 
perturbing the input products using random noise representing the un-
certainty on the MODIS-A retrieval of each parameter (ԐRPARAMETER). 
For Chl a, Ԑi is normally calculated from the uncertainty in Rrs, but this 
is outside the scope of this work. ԐR for Chl a and NPP were assessed in 
this paper as log10 root mean square difference (log-RMS) values. ԐR for 
SST was taken as the RMS value of a comparison of MODIS-A SST to in 
situ skin SST (details in Appendix 3; Table A7). ԐR for PAR and Kd(490) 
were estimated using SeaWiFS Bio-optical Archive and Storage System 
(SeaBASS) matchups between in situ and MODIS-A data from a global 
dataset (PAR ԐR = 5.6 Einstein m− 2 d− 1, and Kd(490) ԐR = 0.257 in 
log10 space). 

The three components (Ԑa, Ԑs and Ԑi) are assumed to be independent, 
and combined in quadrature (Taylor, 1997) to estimate ԐCALGORITHM for 
each matchup: 

ԐC =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ԑa2 + Ԑs2 + Ԑi2

√
(15)  

2.9. Weighted statistical analyses 

Measured and satellite estimates of each parameter were compared 
in log10 space. To enable log10 transformation of NCP estimates, the 
minimum value of the satellite matchups (− 170 mmol O2 m− 2 d− 1) was 
added to each value. 

The measured and satellite estimates were first evaluated using a 
non-weighted statistical approach to assess the performance of satellite 

Table 1 
Tabulated algorithm uncertainties (Ԑa) used for parameterisation with in situ 
data from the literature.  

Algorithm Algorithm uncertainty (Ԑa) Reference 

Chl a Algorithms 
Uncertainty units: log10(mg m− 3) 

OC3 + OC3CIa 0.255 NASA Oceancolour Website 
GSM 0.156 (Maritorena et al., 2002) 
OC5 + OC5CIa 0.220 (Gohin et al., 2002) 

NPP Algorithms 
Uncertainty units: log10(mg C m− 2 d− 1) 

VGPM 0.24 (Friedrichs et al., 2009) 
PSM 0.24b N/A 
WRM 0.16 (Smyth et al., 2005) 

NCP Algorithms 
Uncertainty units: mmol O2 m− 2 d− 1 

NCP-A 103 (Tilstone et al., 2015a) 
NCP-B 46 (Tilstone et al., 2015a) 
NCP-C 40 (Tilstone et al., 2015a) 
NCP-D 35 (Tilstone et al., 2015a)  

a Indicates for OC3-CI and OC5-CI the uncertainty is assumed to be the same as 
the non-CI version. 

b Indicates for the PSM an uncertainty value to our knowledge is unavailable, 
and therefore assume the same value as the VGPM. 
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algorithms (e.g: Brewin et al., 2015; Dogliotti et al., 2014; Dogliotti 
et al., 2009). A Type-II regression analysis was employed to calculate the 
slope, intercept and the percentage variability explained by the linear 
regression (R2). To evaluate the accuracy of each model, the absolute 
percentage difference (APD), log-RMS and the mean (M) and standard 
deviation (S) of the log10 difference were calculated. Following the 
methods of Campbell et al. (2002) the inverse log10 difference between 
the in situ and satellite values of 10M (Fmed), 10M+S (Fmax) and 10M – S 

(Fmin) were calculated. The number of matchups used to compute the 
statistics (N) is also given. 

The estimates were then evaluated by a weighted statistical approach 
using weighted variants of the previously mentioned statistics. The 
weights for each matchup were computed using Ԑins and ԐC: 

weight =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ԑins2 + ԐC2

√ (16) 

The weights were rescaled between zero and one. This approach 
allows the satellite and in situ uncertainties to be accounted for in the 
statistical analysis, which was not previously possible, because in situ 
data uncertainties were not determined. The approach emphasises 
matchups where both the satellite and in situ measurements are more 
certain, while less certain matchups produce a smaller effect on the 
overall statistics. For the BRAZIL and BEN datasets, no in situ uncertainty 
could be calculated, and therefore the weighting uses only the satellite 
uncertainty (Appendix 2). NCP algorithms were assessed firstly driven 
using in situ NPP and in situ SST, and secondly driven by MODIS-A 
estimates. 

2.10. Uncertainty perturbation analysis 

Following the methods of Saba et al. (2011), a perturbation analysis 
was conducted to determine the potential reduction in NCP-D log-RMS 
which could be attributed to uncertainties in the satellite input param-
eters and in situ NCP. This analysis quantifies the range of uncertainty 
introduced in satellite NCP estimates from the input parameters, 
including the in situ NCP used to validate these estimates. Each of the 
input parameters; Chl a, PAR and SST can have three possible values for 
each NCP measurement (original value, original – ԐR and original + ԐR). 
The WRM algorithm used to determine NPP also has an uncertainty (log- 
RMS found in this paper, using weighted statistics: 0.20; Table 3), and 
therefore three values are also possible. For each NCP measurement, 81 
perturbations of the input data were calculated. Similarly, each in situ 
NCP measurement could also have three perturbations (original value, 
original - ԐinsNCP, original + ԐinsNCP). Log-RMS was used to assess the 
performance of NCP-D under different scenarios. For each NCP mea-
surement, the 81 perturbations were examined and the perturbation that 
produced the lowest log-RMS from 4 scenarios was selected, in order to 
assess the potential reduction in log-RMS that could be attributed to 
each of the parameters. The 4 scenarios tested were: (1) uncertainty in 
individual input parameters (Chl a, PAR, SST and NPP algorithm), (2) 
uncertainty in all input parameters together, (3) uncertainty in in situ 
NCP measurements and (4) uncertainty in all input parameters and in 
situ NCP. The analysis focused on the reduction in log-RMS, however 
considering the uncertainties from the input parameters could also in-
crease log-RMS. The input parameter uncertainties that have the 
greatest control on satellite NCP uncertainties were therefore indicated. 

2.11. Climate indices and environmental drivers 

Climate indices indicate large-scale variability in physical parame-
ters in the ocean. Satellite estimated NCP anomalies were compared to 

three climate indices: the North Atlantic Oscillation (NAO), indicating 
atmospheric pressure conditions in the North Atlantic, downloaded from 
http://www.cgd.ucar.edu/cas/catalog/; the Multivariate ENSO Index 
(MEI) as an indicator of El Niño Southern Oscillation (ENSO) phases, 
downloaded from https://www.esrl.noaa.gov/psd/enso/mei and the 
Southern Annular Mode (SAM), indicating the displacement of the 
westerly winds in the Southern Ocean, downloaded from http://www. 
nerc-bas.ac.uk/icd/gjma/sam.html. 

Changes in wind forcing can affect the distribution of phytoplankton 
through changes in the mixed layer. ECMWF ERA5 monthly wind speeds 
were downloaded from the CCDS (https://cds.climate.copernicus.eu/), 
with a resolution of 0.25◦, coincident with the MODIS-A NCP time series 
(July 2002 – December 2018). Wind speed anomalies were calculated by 
subtracting from the monthly wind speed, the corresponding monthly 
climatology value calculated from the ECMWF ERA5 wind speed. 

Sea Level Height Anomalies (SLHA) can be associated with meso-
scale processes and water mass changes, which can contribute to 
changes in phytoplankton distributions across basins. Monthly mean 
SLHA were downloaded from AVISO+ (https://www.aviso.altimetry. 
fr/) coinciding with the MODIS-A NCP time series at a resolution of 
0.25◦. Anomalies were calculated by AVISO+ with respect to a 25 year 
climatology between 1993 and 2018. 

2.12. Time series analysis 

Mean monthly NCP anomalies were averaged from 4 km monthly 
NCP anomaly maps for the South Atlantic Longhurst provinces; WTRA, 
ETRA, SATL, BRAZ, BENG, FKLD and SSTC (Fig. 1; Longhurst, 1998). 
The potential drivers of NCP variability were explored firstly by calcu-
lating Spearman correlation coefficients between monthly province- 
averaged NCP anomalies, climate indices and environmental drivers. 
The use of anomalies to determine correlations reduces the effect of 
temporal autocorrelation which may complicate interpretation. 

Averaging NCP anomalies over the provinces may highlight the 
dominant drivers of variability but mask the effects of opposing trends 
within a province as well as the more subtle and localised drivers, such 
as mesoscale eddies. The localised forcing is explored using a per pixel 
correlation approach, where a monthly time series of NCP anomalies is 
generated for each 4 km pixel for comparison against environmental 
drivers (Spearman correlation, α = 0.05). Spatial autocorrelation was 
tested using the method of field significance (Wilks, 2006). 

The uncertainties in NCP anomalies were propagated through the 
Spearman correlations using a Monte Carlo uncertainty propagation. 
Each monthly NCP measurement in the time series, was perturbed with 
random noise representing the uncertainty of the MODIS-A NCP esti-
mate 1000 times as in Section 2.8, and the Spearman correlations were 
repeated. The 95% confidence interval was calculated from the resulting 
distribution of the correlations. The correlation was deemed significant 
(α = 0.05), where the 95% confidence interval remained significant. The 
per pixel analysis was repeated for NPP and SST anomalies. 

3. Results 

3.1. Accuracy assessment of MODIS-A Chl a 

Weighted regression analysis between in situ Chl a and five MODIS-A 
algorithms for data collected on seven AMT campaigns is given in Fig. 2, 
and the associated statistical analysis are given in Table 2. Using the 
weighted approach to determine the algorithm performance, all five 
algorithms performed similarly, with R2 > 0.9 and log-RMS < 0.20. 
OC3-CI, the standard MODIS-A algorithm, showed the best performance 
with the lowest log-RMS, slope close to 1 and Fmin, Fmed and Fmax close to 
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1. All algorithms had positive M indicating a tendency to underestimate 
Chl a. OC5-CI, GSM and OC5 were characterised by higher values of M 
compared to OC3-CI and OC3, and by Fmed and Fmax values greater than 
1, highlighting that these three algorithms perform worse compared to 
OC3-CI and OC3 at the medium and maximum range Chl a values 
(Table 2). OC3-CI and OC5-CI showed lower scatter at Chl a < 0.15 mg 
m− 3 (Fig. 2a, e), compared to OC3 and OC5 (Fig. 2b, d), which resulted 
in a lower S over this range (Table 2). 

For both the BEN and BRAZIL datasets the weighting used only the 
satellite uncertainty. For the BEN, the trend in MODIS-A Chl a algo-
rithms was similar to that of the AMT dataset except for the GSM 

(Appendix 2 Table A6), which had a higher log-RMS, higher S and 
negative M and a tendency to overestimate Chl a above 3 mg m− 3 

(Fig. 2c). For the BRAZIL dataset, the trends were different (Appendix 2 
Table A5); the GSM exhibited the worst performance with lowest R2, 
highest log-RMS, M and S, indicating a failure in the algorithm to esti-
mate Chl a accurately in this region (Fig. 2c). 

3.2. Accuracy assessment of MODIS-A NPP 

There was a high variability in the in situ NPP uncertainty at each 
station. This was accounted for using the weighted method, which then 

Fig. 2. Comparison of in situ and MODIS-A estimates of chlorophyll a for: (a) OC3-CI, (b) OC3, (c) GSM, (d) OC5 and (e) OC5-CI. Algorithms are described in Section 
2.3. Red points indicate satellite matchups with the continuous Atlantic Meridional Transect (AMT) dataset, blue squares the Brazilian dataset (BRAZIL) and green 
squares the Benguela dataset (BEN). Black dashed line is 1:1 line, red dashed line is a weighted Type-II linear regression for the AMT dataset, blue dashed line is a 
weighted Type-II linear regression for the Brazilian dataset and green dashed line the weighted Type-II linear regression for the Benguela dataset. Horizontal error 
bars indicate in situ uncertainty (ԐinsCHLA). Vertical error bars indicate the combined satellite uncertainty (ԐC). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Table 2 
Performance indices for satellite chlorophyll a algorithms using the AMT dataset. Log-differences uncertainties in satellite estimates are mean (M), standard deviation 
(S) and Root Mean Square (log-RMS).  

Weighted (All) 

AMT Model R2 Slope Intercept log-RMS APD M S Fmin Fmed Fmax N 
OC3-CI 0.93 0.96 ¡0.08 0.16 123 0.06 0.14 0.83 1.16 1.61 1440 
OC3 0.91 0.96 ¡0.08 0.17 122 0.05 0.16 0.78 1.13 1.65 1440 
GSM 0.91 0.96 ¡0.10 0.18 144 0.09 0.16 0.84 1.22 1.77 1440 
OC5 0.91 0.92 − 0.13 0.19 166 0.08 0.17 0.82 1.21 1.79 1440 
OC5-CI 0.93 0.93 − 0.12 0.18 163 0.09 0.15 0.87 1.23 1.74 1440 

Weighted (Chl < 0.15 mg m− 3) 
AMT OC3-CI 0.87 1.05 0.04 0.10 6.9 0.01 0.10 0.81 1.03 1.30 884 

OC3 0.74 1.05 0.06 0.14 9.4 0.00 0.14 0.72 1.00 1.40 884 
GSM 0.72 1.02 0.00 0.14 9.5 0.03 0.14 0.79 1.08 1.48 884 
OC5 0.74 1.04 0.03 0.14 8.6 0.01 0.14 0.75 1.02 1.40 884 
OC5-CI 0.87 1.05 0.04 0.10 7.0 0.02 0.10 0.83 1.05 1.33 884 

The mean and one sigma range of the difference are given as; Fmed, Fmin and Fmax; values closer to 1 indicate greater accuracy. APD is the Absolute Percentage 
Difference. N indicates the number of matchups used to compute statistics. The most accurate algorithm for each statistic is highlighted in bold. Statistics were 
computed by weighting each station based on the in situ and satellite uncertainty (weighted). The statistics were performed on firstly, all the available matchups, and 
secondly, on matchups where in situ Chl a < 0.15 mg m− 3. 
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showed that the WRM exhibited the best performance (Table 3, Fig. 3) 
with the lowest log-RMS, slope closest to 1 and intercept closest to 0. The 
VGPM also had low log-RMS and M equal to 0 but displayed the lowest 
R2 and the highest S (Table 3). The PSM had high R2 but systematically 
underestimated NPP with Fmin, Fmed and Fmax greater than 1. 

3.3. Accuracy assessment of MODIS-A NCP 

The four NCP algorithms were firstly run using in situ NPP and in situ 
SST (N = 84) to assess their accuracy (Fig. 4, Table 4). Using the 
weighted approach NCP-C was the most accurate, with low log-RMS and 
S and the highest R2. NCP-D had a higher log-RMS and lower R2. NCP-B 
tended to overestimate NCP, indicated by Fmin and Fmed less than 1 but 
had a similar log-RMS to NCP-C and NCP-D. NCP-A had the highest 
slope, log-RMS, M and S indicating a tendency to underestimate NCP 
with Fmin, Fmed and Fmax all greater than 1. 

MODIS-A SST and NPP using the WRM model were then applied to 
estimate NCP (N = 14; Fig. 5; Table 5). Using the weighted approach, 
NCP-D showed the highest R2, low log-RMS and lowest S, and of all four 
algorithms was the most accurate. NCP-C showed a similar accuracy, but 
the slope deviated further from 1. Both algorithms tended to 

underestimate NCP when driven by MODIS-A NPP, compared to the in 
situ NPP. NCP-B tended to overestimate NCP, indicated by Fmin less than 
1. NCP-A tended to underestimate NCP indicated by Fmed and Fmax 
greater than 1, low R2 and high log-RMS. Overall, NCP-D was identified 
as the most accurate NCP algorithm to apply to the MODIS-A time series. 

3.4. Uncertainty perturbation analysis 

For the scenario in which the uncertainty in both the input param-
eters and in situ NCP measurements were considered, log-RMS decreased 
by 87% (Table 6). The uncertainties in the NPP model (40%) and in situ 
NCP (36%) accounted for the largest reduction in log-RMS. Chl a un-
certainties accounted for a reduction in log-RMS of 22%, whereas PAR 
and SST contributed the smallest reductions in the log-RMS of 2.8% and 
3.5% respectively. 

3.5. NCP time series analysis 

Since NCP-D was the most accurate NCP algorithm, it was applied to 
the MODIS-A time series. There were no significant correlations between 
province-averaged NCP anomalies, climate indices and environmental 
drivers, when the uncertainties were accounted for. 

On a per pixel basis and accounting for the uncertainties, there were 
significant correlations between NCP anomalies, with SLHA, wind speed 
anomalies, and the MEI (Fig. 6a, b, c). NCP anomalies were positively 
correlated with wind speed anomalies along the BENG coast (Fig. 6b). 
Negative correlations between NCP anomalies and SLHA occurred 
offshore in the BENG extending to the SATL (Fig. 6a). Significant 
negative correlations between NCP anomalies and SLHA, were also 
observed along the boundary between the SATL and SSTC. Positive 
correlations between NCP anomalies and wind speed anomalies, 
occurred in the SATL, especially around the centre of the South Atlantic 
gyre (Fig. 6b) which extended north into the WTRA. Patchy negative 
correlations between NCP anomalies and the MEI were observed 
(Fig. 6c), but were at the limits of significance (Wilks, 2006). No sig-
nificant correlations were found between NCP anomalies and the NAO 
and SAM. 

4. Discussion 

4.1. Satellite uncertainty analysis 

This is one of the first studies to evaluate the performance of and 
uncertainties in MODIS-A Chl a, NPP and NCP over the entire South 
Atlantic basin, using a comprehensive in situ dataset. In the following 
sections the reasons for the algorithms performance and where and why 
some of them fail is explored. 

Table 3 
Performance indices for satellite net primary production algorithms. Log-differences uncertainties in satellite estimates are mean (M), standard deviation (S) and Root 
Mean Square (log-RMS).  

Weighted 

Model R2 Slope Intercept Log-RMS APD M S Fmin Fmed Fmax N 

VGPM 0.72 0.97 0.06 0.22 6.9 0.00 0.22 0.61 1.01 1.68 18 
PSM 0.79 0.88 0.05 0.32 9.6 0.25 0.20 1.11 1.77 2.82 18 
WRM 0.81 0.96 0.02 0.20 6.3 0.07 0.18 0.78 1.18 1.79 18 

The mean and one sigma range of the difference are given as; Fmed, Fmin and Fmax; values closer to 1 indicate greater accuracy. APD is the Absolute Percentage 
Difference. N indicates the number of matchups used to compute statistics. The most accurate algorithm for each statistic is highlighted in bold. Statistics were 
computed by weighting each station based on the in situ and satellite uncertainty (weighted). 

Fig. 3. Comparison of in vitro and MODIS-A estimated net primary production. 
Algorithms are described in Section 2.5. Black dashed line is the 1:1 line. 
Dashed lines indicate weighted Type-II line regression for the VGPM (red), PSM 
(green) and WRM (blue). Horizontal error bars indicate in situ uncertainty 
(ԐinsPP). Vertical error bars indicate the combined satellite uncertainty (ԐC). 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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4.1.1. Accuracy assessment of MODIS-A Chl a 
Previous studies in this region showed that MODIS-A OC3M tends to 

underestimate Chl a on the Patagonian Shelf over a Chl a range of 0.2 to 
6 mg m− 3 (Dogliotti et al., 2009) and 0.3 to 11 mg m− 3 (Dogliotti et al., 
2014). Dogliotti et al. (2009) suggested that the underestimate is caused 
by increased aerosol loading off the Patagonian deserts, generating 
lower than expected Rrs(412) and Rrs(443) retrievals. Our results would 
suggest that this is not a local underestimation. In this study, we found 
that OC3-CI performed most accurately out of the five algorithms tested. 
There was, however, a tendency in all algorithms tested to underesti-
mate Chl a, especially at concentrations >0.3 mg m− 3 (Fig. 2). 

Szeto et al. (2011) found that the Chl a in the Atlantic Ocean was 
generally overestimated, however the majority of their Atlantic data 
were from the North American coast. Brewin et al. (2016) showed that 
using the same AC-S derived Chl a, OC3M Chl a were close to the 1:1 line 

and had a low bias. Compared to our results this could suggest bio- 
optical differences between the North and South Atlantic, resulting in 
an underestimation that may relate to changes in CDOM to Chl a ratios 
(Szeto et al., 2011), driven by changes in the phytoplankton community 
structure (Organelli and Claustre, 2019). 

MODIS-A is now in its 18th year of operation and has known 
degradation in the blue bands (412 and 443 nm; Meister and Franz, 
2014). NASA have corrected for some of this and conducted a vicarious 
calibration for these bands; the newly reprocessed data (R2018) prove to 
be accurate (NASA, 2018). The OC5 algorithm uses the 412 nm band to 
account for atmospheric overcorrection and/or CDOM absorption. 
Anomalies with this band have previously been reported, associated 
with the performance of the GSM (Maritorena et al., 2010), and may 
explain why OC5 performs worse than the other algorithms tested. 
Differences in the reprocessing versions may account for the difference 

Fig. 4. Comparison of net community production (NCP) algorithms driven using in situ net primary production and sea surface temperature where each scatter plot 
refers to (a) NCP-A, (b) NCP-B, (c) NCP-C and (d) NCP-D. Algorithms are described in Section 2.6. Black dashed line is the 1:1 line. Red dashed line indicates a 
weighted Type-II linear regression. Horizontal error bars indicate in situ uncertainty (ԐinsNCP). Vertical error bars indicate the in situ uncertainty in NPP and SST 
propagated through the NCP algorithms. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
Performance indices for net community production (NCP) algorithms driven by in situ net primary production and in situ sea surface temperature.  

Weighted 

Model R2 Slope Intercept Log-RMS APD M S Fmin Fmed Fmax N 

A 0.17 1.17 − 0.68 0.53 18.11 0.39 0.36 1.09 2.47 5.60 84 
B 0.30 0.93 0.16 0.11 3.4 − 0.04 0.10 0.72 0.90 1.14 84 
C 0.31 0.95 0.09 0.10 3.5 0.00 0.10 0.79 1.00 1.28 84 
D 0.26 0.90 0.17 0.12 4.2 0.02 0.12 0.80 1.05 1.37 84 

To log transform negative NCP values, we added the minimum value (− 170 mmol O2 m− 2d− 1) to all values. Log-differences uncertainties in satellite estimates are 
mean (M), standard deviation (S) and Root Mean Square (log-RMS). The mean and one sigma range of the difference are given as; Fmed, Fmin and Fmax; values closer to 1 
indicate greater accuracy. APD is the Absolute Percentage Difference. N indicates the number of matchups used to compute statistics. The most accurate algorithm for 
each statistic is highlighted in bold. Statistics were computed by weighting each station based on the in situ and satellite uncertainty (weighted). 
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found in this study to previous studies (Brewin et al., 2016; Dogliotti 
et al., 2014; Dogliotti et al., 2009; Kampel et al., 2009b). The regional 
bias for the South Atlantic shown in this study highlights the on-going 
need to monitor the performance of satellite ocean colour data, espe-
cially in regions where in situ data are sparse. 

4.1.2. Accuracy assessment of MODIS-A NPP 
Using MODIS-A OC3-CI Chl a as input to the NPP models, the WRM 

was the most accurate algorithm for this area, followed by the VGPM, 
similar to findings of Tilstone et al. (2009) for the entire Atlantic basin. 
The general trend in all three algorithms was an underestimation of NPP, 
especially at higher values, and reflects the trend in MODIS-A Chl a. Platt 
and Sathyendranath (1988) showed that the largest contributor to NPP 
variability is Chl a. Using in situ Chl a data, Tilstone et al. (2009) showed 
that the WRM and VGPM tend to overestimate NPP in the SATL during 
the period 1998 to 2005. This contrasts our results using MODIS-A Chl a, 
which showed an underestimate in NPP, during 2002 to 2019, by a 
similar amount. Stations at which in situ NPP exceeded 700 mg C m− 2 

d− 1 exhibited an underestimation in MODIS-A Chl a, whereas the 
remaining stations both over and under estimated satellite Chl a. 

The PSM showed a systematic bias (Fig. 3) resulting in a higher 
underestimation of NPP compared to the WRM and VGPM. The photo-
synthetic parameters, PB

m and αB
, used to parameterise the rate of 

photosynthesis in the PSM, are not used in the other models. Our data 
suggest that the regionally-averaged values of these parameters used in 
this study may be underestimated for the South Atlantic. Dogliotti et al. 
(2014) reported that the PSM performed well on the Patagonian Shelf 
when using in situ PB

m and αB
, collected at the same time as Chl a data 

used for validation of NPP algorithms, but it is not possible to run the 
PSM at the basin scale in this way. To assess this further, the PSM was 
run using in situ PB

m and αB from the season and province of each in-
dividual station, but there was no improvement and an even higher 
systematic bias (M = 0.37, log-RMS = 0.41, N = 17), indicating that the 
variability in the two photosynthetic parameters is not sufficiently 
represented by the available in situ data for the South Atlantic (Bouman 
et al., 2018; Platt and Sathyendranath, 1988). 

4.1.3. Accuracy assessment of NCP 
The NCP algorithms tested in this study are still in their infancy 

compared to NPP models, but the results are promising. Running the 
NCP algorithms with in situ NPP and SST showed that NCP-C performs 
slightly better than NCP-D (Table 4). This contrasts with Tilstone et al. 
(2015a), who found that over the entire Atlantic Ocean NCP-D was more 
accurate since it includes a temperature function which theoretically 
captures more of the natural variability in respiration rates. Howard 
et al. (2017) observed net autotrophic conditions in the SATL during 
austral autumn, which are also represented more accurately by NCP-C, 
but observed NCP closer to estimates of NCP-D in the SSTC. Serret 
et al. (2015) highlighted that NCP is not just determined by NPP, with a 
heterogeneous relationship between NPP and respiration and substan-
tial differences between the North and South Atlantic. The relationship 
between NPP and respiration could also change with the season (Serret 
et al., 2015), while the majority of the calibration data for NCP-C and 
NCP-D occurs in austral spring. Using satellite data alone however, NCP- 
D was the best performing algorithm (Table 5), and when driven with in 
situ NPP the differences to NCP-C were small. 

Fig. 5. Comparison of in vitro and MODIS-A estimated net community pro-
duction (NCP). Algorithms are described in Section 2.6. Black dashed line is the 
1:1 line. Red, green, blue and pink dashed lines indicate a weighted Type-II 
linear regression for the A, B, C and D algorithms respectively. Horizontal 
error bars indicate in situ uncertainty (ԐinsNCP). Vertical error bars indicate the 
combined satellite uncertainty (ԐC). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 5 
Performance indices for satellite net community production (NCP) algorithms. To log transform negative NCP values, we added the minimum value (− 170 mmol O2 
m− 2d− 1) to all values.  

Weighted 

Model R2 Slope Intercept Log-RMS APD M S Fmin Fmed Fmax N 

A 0.54 0.99 − 0.11 0.48 14.4 0.33 0.34 0.97 2.14 4.70 14 
B 0.64 0.96 0.04 0.10 3.4 0.01 0.10 0.81 1.03 1.30 14 
C 0.62 0.96 0.01 0.12 4.5 0.07 0.10 0.93 1.17 1.48 14 
D 0.70 0.98 0.00 0.11 3.5 0.06 0.09 0.93 1.14 1.40 14 

Log-differences uncertainties in satellite estimates are mean (M), standard deviation (S) and Root Mean Square (log-RMS). The mean and one sigma range of the 
difference are given as; Fmed, Fmin and Fmax; values closer to 1 indicate greater accuracy. APD is the Absolute Percentage Difference. N indicates the number of matchups 
used to compute statistics. The most accurate algorithm for each statistic is highlighted in bold. Statistics were computed by weighting each station based on the in situ 
and satellite uncertainty (weighted). 

Table 6 
Perturbation analysis results showing the percentage reduction in NCP-D log- 
RMS under different scenarios as described in Section 2.10.  

Scenario Percentage reduction in log-RMS 

Chl a 22% 
SST 3.5% 
PAR 2.8% 
NPP 40% 
in situ NCP 36% 
All Input 61% 
All Input and in situ NCP 87% 

The first five scenarios use single parameter perturbations to determine the in-
dividual reductions in log-RMS when accounting for the uncertainties. The 
further two scenarios determine the reduction in log-RMS when firstly all input 
parameters (Chl a, PAR, SST and NPP) are perturbed by their uncertainties, and 
secondly when all input parameters and the in situ NCP uncertainties are 
perturbed. 
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4.1.4. Weighted statistics and perturbation analysis 
In situ measurements used to assess satellite algorithm performance 

have their own uncertainties and cannot be assumed to be “100% ac-
curate” as is common practice (e.g. Brewin et al., 2015; Dogliotti et al., 
2014; Dogliotti et al., 2009). The perturbation analysis conducted in this 
paper showed that 36% of the NCP algorithm uncertainty could be 
attributed to the in situ NCP uncertainty (Table 6), indicating that this is 
the highest accuracy that a satellite NCP algorithm can currently achieve 
(equivalent to 0.03 log10 mmol O2 m− 2 d− 1). A further 61% of the un-
certainty was attributed to all of the satellite input parameters (Table 6), 
reinforcing the need to account for in situ as well as satellite un-
certainties when assessing satellite algorithm performance, and there-
fore to use weighted statistics to account for the uncertainties in both the 
in situ data used to evaluate algorithm performance, and the satellite 
data used to run the algorithm. Differences between the unweighted and 
weighted statistics are clearer for discrete station measurements, such as 

NPP (Table 3; Appendix 1 Table A2) and NCP (Tables 4, 5; Appendix 1 
Table A3 A4), where uncertainties are unlikely to be constant. 

Large in situ datasets have been compiled for Chl a to test the per-
formance of satellite algorithms (e.g. Valente et al., 2016, 2019). These 
datasets contain discrete station measurements across the globe, but do 
not include the associated uncertainties. A weighted approach could also 
be expanded for algorithm development, where uncertainties in both the 
in situ calibration and validation datasets could also be used to evaluate 
the algorithm performance. 

Uncertainties in the satellite data make the largest contribution to 
the total uncertainty. In this study we have not included the un-
certainties associated with atmospheric correction and the resulting 
satellite Rrs (Li et al., 2019). Land et al. (2018) proposed a promising 
statistical approach to estimate some of these uncertainties in Chl a 
alone. This is beyond the scope of this study, but is an important topic to 
pursue in the future to trace the uncertainties in Rrs through Chl a to NPP 

Fig. 6. Significant per pixel Spearman correlations between monthly satellite net community production (NCP-D) anomalies and (a) sea level height anomaly, (b) 
wind speed anomaly and (c) Multivariate ENSO Index (MEI). (d), (e) and (f) show the same for monthly satellite net primary production (WRM) anomalies and (g), 
(h) and (i) for monthly satellite sea surface temperature anomalies. The correlations were deemed significant when the 95% confidence interval of the Spearman 
correlation, determined through a Monte Carlo uncertainty propagation, remained significant (α = 0.05). Light grey regions indicate no significant correlation. Green 
areas indicate where more than 24 months of data are missing (N = 168 to 192). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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to NCP. 

4.2. Climate indices and environmental drivers of NCP 

Applying the most accurate satellite NCP and input parameter al-
gorithms to the 16 year MODIS-A time series, enables the exploration of 
climate indices and environmental drivers that may modulate NCP in 
the South Atlantic. Tilstone et al. (2015a) showed correlations between 
monthly province-averaged NCP anomalies and climate indices for the 
SeaWiFS time series between 1998 and 2010 in the Atlantic Ocean. 

Conducting the correlation analysis on province-averaged NCP 
anomalies, between 2002 and 2018, we showed no significant correla-
tions between NCP anomalies and wind speed anomalies, SLHA and the 
climate indices, when the NCP uncertainties were accounted for. Til-
stone et al. (2015a) showed significant correlation between NCP 
anomalies and the MEI in the SATL, which may become non-significant 
if the uncertainties are accounted for. Correlations with the environ-
mental drivers at local scales may however, still be significant. This was 
therefore studied in more detail, by conducting a correlation analysis on 
a per pixel basis across the region (Fig. 6). This technique has previously 
proved effective for determining trends in phytoplankton pigments and 
production (e.g.: Behrenfeld et al., 2006; Dunstan et al., 2018; Kahru 
et al., 2010). 

Significant positive correlations were found between wind speed and 
NCP anomalies, along the BENG coast (Fig. 6b). An increase in upwelling 
conducive wind speeds enhances the upwelling of colder, nutrient rich 
waters, causing an increase in NPP (Chen et al., 2012; Lamont et al., 
2019) and therefore potentially in NCP. The negative correlations be-
tween wind speed and SST anomalies (Fig. 6h) indicate the enhance-
ment of nutrient rich, cold water at the surface, under elevated wind 
speeds, which in turn drive the correlations between wind speed and 
NPP anomalies (Fig. 6e). 

Negative correlations between NCP anomalies and SLHA were 
observed offshore in the BENG, extending into the SATL (Fig. 6a). SLHA 
show substantial mesoscale activity in the form of eddies and filaments 
that propagate away from the upwelling front and advect more pro-
ductive, cooler waters (negative SLHA; positive NCP anomalies) into the 
SATL (Rubio et al., 2009). The positive correlations between SST 
anomalies and SLHA (Fig. 6g; negative SST anomalies; negative SLHA) 
extended offshore of the BENG, but to a lesser extent than negative 
correlations between NPP anomalies and SLHA (Fig. 6d). Rubio et al. 
(2009) indicated that these eddies and filaments can advect a significant 
volume of nutrient rich water into the SATL, which potentially enhances 
NPP and NCP offshore. Lamont et al. (2019) showed that long-term 
trends in Chl a and phytoplankton size structure differed between 
open ocean (> 1000 m) and shelf (< 1000 m) regions of the BENG, 
suggesting different driving mechanisms between shelf and open ocean 
regions. 

In the SATL, an area of positive correlations between NCP anomalies 
and wind speed anomalies were observed (Fig. 6b). Productivity in this 
region is influenced by the equatorial upwelling and South Equatorial 
current, both of which are wind-driven (Hooker et al., 2000). Wind 
speed anomalies were positively correlated with both NPP and NCP 
anomalies (Fig. 6b), suggesting a connection between wind induced 
mixing of nutrients to the photic zone which in turn fuels NPP and NCP. 
Negative correlations between SST anomalies and wind speed anomalies 
have a larger regional influence (Fig. 6h) than correlations with NCP and 
NPP anomalies (Fig. 6b, e). 

In the SSTC, significant negative correlations between NCP anoma-
lies and SLHA were observed, extending north into the SATL (Fig. 6a). 
From 30◦ S to 40◦ S, the western region between 54◦ W and 36◦ W, is 

influenced by mesoscale eddies from the Brazil-Malvinas confluence, 
where the deflection of the two currents generates, anticyclonic (posi-
tive SLHA; negative NCP anomalies) and cyclonic (negative SLHA; 
positive NCP anomalies) eddies (Garcia et al., 2004). 

The leakage of Indian Ocean waters into the South Atlantic is facil-
itated by Agulhas eddies, shed from the Agulhas Current, at the southern 
tip of South Africa (Guerra et al., 2018). These rings propagate across the 
South Atlantic, reaching the Brazilian coast between 15◦ S and 30◦ S. A 
band of significant positive correlations between SST anomalies and 
SLHA (Fig. 6g), are an indication of the presence of mesoscale eddies, 
which start at the southern tip of Africa, and end near the Brazilian 
coast. This is consistent with the basin-scale propagation of these 
Agulhas rings. These rings are anticyclonic ‘warm’ eddies, generally 
associated with positive SLHA, which induce downwelling of nutrients 
that potentially decreases NPP (He et al., 2016). The response of the 
plankton community to these Agulhas eddies in both NPP and NCP 
anomalies is clear at the southern tip of Africa, with negative correla-
tions between NPP/NCP anomalies and SLHA (Fig. 6a, d; positive SLHA; 
negative NPP/NCP anomalies). The response in NPP and NCP as these 
Agulhas eddies propagate across the South Atlantic is less clear however, 
with some patchy negative correlations between NCP anomalies and 
SLHA (Fig. 6a), and to a lesser extent between NPP anomalies and SLHA 
(Fig. 6d). The influence of oceanic mesoscale eddies on phytoplankton 
production varies with the structure and age of the feature (Liu et al., 
2018; Nencioli et al., 2018). 

On a per pixel basis, patchy negative correlations between NCP 
anomalies and the MEI were observed in the SATL (Fig. 6c), reciprocated 
in correlations between NPP anomalies and the MEI (Fig. 6f). El Niño 
periods are coupled with variability in SST in the South Atlantic, leading 
to higher temperatures in the SATL (Rodrigues et al., 2015), which are 
evident in the positive correlations between SST anomalies and the MEI 
in this region (Fig. 6i). Higher SST in the SATL is associated with 
stronger stratification and decreased nutrient supply, which can reduce 
NPP and NCP, but this was not seen in our analysis of the South Atlantic. 

Future climate change effects could drive changes in environmental 
forcing, which we have shown to control the metabolic state of the South 
Atlantic. Oceanic wind speeds have increased from 1985 to 2018 (Young 
and Ribal, 2019) and if this trend continues, it may suggest that areas of 
the South Atlantic become more autotrophic, driven by nutrient 
enrichment from upwelling and water column mixing. Upwelling 
favourable winds may become more prevalent along eastern boundary 
upwelling systems (Aguirre et al., 2019), inducing a further increase in 
these autotrophic communities in the Benguela system. 

5. Conclusions 

In this paper, we perform a comprehensive uncertainty analysis of 
ocean colour parameters for MODIS-A in the South Atlantic Ocean, to 
enable the generation of an accurate satellite NCP time series, to 
investigate the effect of environmental drivers on NCP. Five Chl a, three 
NPP and four NCP satellite algorithms were assessed using a weighted 
statistical analysis which takes into account the uncertainty in both the 
satellite and in situ data. For Chl a, OC3-CI showed the best performance, 
however all algorithms showed a large underestimation at higher Chl a 
concentrations. For NPP, the WRM showed the best performance, 
however it underestimated NPP at more productive stations. For NCP, 
NCP-D showed the highest accuracy and NCP-C was also similar. Up to 
61% of the uncertainty in satellite NCP could be attributed to un-
certainties in the input parameters. The uncertainties in the NPP model 
(40%) and Chl a (22%) accounted for the greatest reduction in the log- 
RMS, indicating that these need to be reduced to improve the derivation 
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of NCP using satellite data. 
Using NCP-D, in conjunction with the most accurate input parame-

ters, a 16 year monthly time series of NCP anomalies was produced for 
the South Atlantic Ocean, to investigate the effect of climate indices and 
environmental drivers on NCP. The central SATL showed significant 
positive correlations between wind speed and NCP anomalies. Similarly, 
in the Benguela region, significant positive correlations between wind 
speed and NCP anomalies dominated the coastal regions, indicating that 
wind driven upwelling controls autotrophic NCP in this region. Offshore 
SLHA had significant negative correlation with NCP anomalies which 
extended into the South Atlantic gyre. This correlation suggests that the 
propagation of mesoscale eddies and filaments from the BENG, modifies 
the autotrophic metabolic state of the plankton community offshore and 
into the SATL. Significant negative correlations between NCP anomalies 
and SLHA were also observed at the southern tip of Africa, highlighting 
that anticyclonic Agulhas Current rings and their associated fronts 
modify NCP in this region. Significant negative correlations between 
SLHA and NCP anomalies also occur in the Brazil-Malvinas Confluence 
region through persistent eddy generation. 
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Appendices. Appendix 1 – Unweighted Statistics  

Table A1 
Performance indices for satellite chlorophyll a algorithms using AMT dataset. Log-differences uncertainties in satellite estimates are mean (M), standard deviation (S) 
and Root Mean Square (log-RMS). The mean and one sigma range of the difference are given as; Fmed, Fmin and Fmax; values closer to 1 indicate greater accuracy. APD is 
the Absolute Percentage Difference. N indicates the number of matchups used to compute statistics. Statistics were computed using a standard unweighted procedure. 

Table A2 
Performance indices for satellite net primary production algorithms. Log-differences uncertainties in satellite estimates are mean (M), standard deviation (S) and Root 
Mean Square (log-RMS). The mean and one sigma range of the difference are given as; Fmed, Fmin and Fmax; values closer to 1 indicate greater accuracy. APD is the 
Absolute Percentage Difference. N indicates the number of matchups used to compute statistics. Statistics were computed using a standard unweighted procedure.  

Unweighted 

Model R2 Slope Intercept log-RMS APD M S Fmin Fmed Fmax N 

VGPM 0.68 0.86 0.33 0.23 7.4 0.02 0.23 0.62 1.05 1.79 18 
PSM 0.78 0.76 0.37 0.31 9.7 0.24 0.20 1.12 1.75 2.75 18 
WRM 0.71 0.91 0.16 0.22 7.6 0.06 0.22 0.69 1.15 1.90 18   
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Table A3 
Performance indices for net community production (NCP) algorithms driven by in situ net primary production and in situ sea surface temperature. To log transform 
negative NCP values, we add the minimum value (-170 mmol O2 m-2d-1) to all values. Log-differences uncertainties in satellite estimates are mean (M), standard 
deviation (S) and Root Mean Square (log-RMS). The mean and one sigma range of the difference are given as; Fmed, Fmin and Fmax; values closer to 1 indicate greater 
accuracy. APD is the Absolute Percentage Difference. N indicates the number of matchups used to compute statistics. Statistics were computed using a standard 
unweighted procedure.  

Unweighted 

Model R2 Slope Intercept log-RMS APD M S Fmin Fmed Fmax N 

A 0.14 3.00 -4.93 0.53 18.2 0.39 0.36 1.08 2.48 5.70 84 
B 0.23 0.53 1.11 0.12 3.8 -0.05 0.11 0.69 0.89 1.16 84 
C 0.23 0.74 0.58 0.12 3.9 0.00 0.12 0.76 0.99 1.31 84 
D 0.21 0.95 0.10 0.13 4.6 0.01 0.13 0.75 1.02 1.38 84   

Table A4 
Performance indices for satellite net community production (NCP) algorithms. To log transform negative NCP values, we added the minimum value (-170 mmol O2 m- 

2d-1) to all values. Log-differences uncertainties in satellite estimates are mean (M), standard deviation (S) and Root Mean Square (log-RMS). The mean and one sigma 
range of the difference are given as; Fmed, Fmin and Fmax; values closer to 1 indicate greater accuracy. APD is the Absolute Percentage Difference. N indicates the number 
of matchups used to compute statistics. Statistics were computed using a standard unweighted procedure.  

Unweighted 

Model R2 Slope Intercept log-RMS APD M S Fmin Fmed Fmax N 

A 0.35 3.53 -6.32 0.79 27.0 0.59 0.54 1.12 3.92 13.69 14 
B 0.50 0.48 1.20 0.13 4.6 -0.03 0.13 0.69 0.94 1.27 14 
C 0.49 0.69 0.65 0.13 5.0 0.05 0.13 0.84 1.12 1.50 14 
D 0.61 0.81 0.40 0.11 4.0 0.04 0.11 0.85 1.10 1.42 14  

Appendix 2 – Chl-a Statistics for BRAZ and BEN datasets  

Table A5 
Performance indices for satellite chlorophyll a algorithms using BRAZIL dataset. Log-differences uncertainties in satellite estimates are mean (M), standard deviation 
(S) and Root Mean Square (log-RMS). The mean and one sigma range of the difference are given as; Fmed, Fmin and Fmax; values closer to 1 indicate greater accuracy. 
APD is the Absolute Percentage Difference. N indicates the number of matchups used to compute statistics. Statistics were computed firstly assuming all stations have 
equal weighting (unweighted) and secondly weighting each station based only on the satellite uncertainty (ԐC) (weighted). 
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Table A6 
Performance indices for satellite chlorophyll a algorithms using BEN dataset. Log-differences uncertainties in satellite estimates are mean (M), standard deviation (S) 
and Root Mean Square (log-RMS). The mean and one sigma range of the difference are given as; Fmed, Fmin and Fmax; values closer to 1 indicate greater accuracy. APD is 
the Absolute Percentage Difference. N indicates the number of matchups used to compute statistics. Statistics were computed firstly assuming all stations have equal 
weighting (unweighted) and secondly weighting each station based only on the satellite uncertainty (ԐC) (weighted). 

Appendix 3 – Satellite skin sea surface temperature uncertainty 

Sea surface temperature (SST) is a key variable for both NPP and NCP algorithms, and therefore the performance of MODIS-A SST retrievals were 
assessed. SST measurements by infrared radiometers, such as MODIS-A, are a measurement of the SST at the oceans skin (~10 μm), but are usually 
compared to in situ buoy measurements of temperature below the surface (~5 m). These temperature measurements can introduce additional un-
certainty through vertical temperature gradients in the water column, and therefore a measurement of skin SST should be used in determining the 
uncertainty of MODIS-A SST. 

Skin SST measurements made on three AMT cruise in 2017, 2018 and 2019 (AMT 27, 28, 29) using an infrared SST autonomous radiometer (ISAR) 
as outlined in Donlon et al. (2008), were downloaded from the Ships4SST website (http://ships4sst.org/). Each individual measurement was provided 
with an uncertainty using the statistical model outlined in Wimmer and Robinson (2016). 

In situ measurements were subjected to the same matchup protocol as the ocean colour component, as described in Section 2.7. Satellite un-
certainties were determined following the same approach as the ocean colour component, with Ԑi assumed to be negligible, and Ԑa assigned a value of 
0.345 ◦C (Brown and Minnett, 1999). 

Weighted linear regression analysis is shown in Fig. A1 with associated statistics tabulated in Table A7. Our results show MODIS-A SST mea-
surements are accurate having no bias and little scatter, falling on the 1:1 line.  

Table A7 
Performance indices for satellite sea surface temperature (SST). Log-differences uncertainties in satellite estimates are mean (M) and standard deviation (S). Root Mean 
Square Error (RMS) was computed as opposed to log-RMS. The mean and one sigma range of the difference are given as; Fmed, Fmin and Fmax; values closer to 1 are more 
accurate. APD is the Absolute Percentage Difference. N indicates the number of matchups used to compute statistics. Statistics were computed firstly assuming all 
stations have equal weighting (unweighted) and secondly weighting each station based on the in situ and satellite uncertainty (weighted).  

Unweighted  

R2 Slope Intercept RMS APD M S Fmin Fmed Fmax N 

SST 0.99 1.01 -0.16 0.41 1.4 0.00 0.01 0.98 1.00 1.02 362             

Weighted  

R2 Slope Intercept RMS APD M S Fmin Fmed Fmax N 

SST 0.99 1.00 -0.08 0.41 1.4 0.00 0.01 0.98 1.00 1.02 362   
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Fig. A1. Comparison of ISAR and MODIS-A skin sea surface temperature (SST). Black dashed line is the 1:1 line. Red dashed line is a weighted Type-II linear 
regression between the ISAR and MODIS-A skin SST. Horizontal error bars indicate in situ uncertainty (Ԑins). Vertical error bars indicate the combined satellite 
uncertainty (ԐC). 
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