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Abstract

In this paper, a novel closed-loop model based on surface electromyography (sEMG)
comprised a long short term memory (LSTM) network and discrete-time zeroing neu-
ral algorithm called zeroing neural network (ZNN), which is developed to estimate
joint angles and angular velocities of human upper limb with joint damping. The
dynamic model of human upper limb with joint damping is set up as the initial equa-
tion.Then, the LSTM network is proposed as an open-loop model which described
the input-output relationship between the sEMG signals and joint motion intention.
Besides, a novel closed-loop model is built via ZNN for eliminating the predicted er-
ror of open-loop model and improving the accuracy of motion intention recognition.
Founded on the sEMG signals, the continuous movement of human upper limb joint
can be successfully estimated via the novel closed-loop model. The results show that
for simple joint movements, the closed-loop model is able to estimate the movement
intention of human upper limb with high accuracy.
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1. Introduction

The bioelectric signal contains human behavior information, which could be used
to identify human movement intentions. Thus, the effective human-machine inter-
action information was provided by bioelectric signals had been developed many
applications in varies area. In medical area, a successful example was rehabilitation
robots, which was able to improve actual movement of human-machine interaction
and provide behavior prediction [1, 2, 3, 4]. At present, bioelectric signals mainly
consisted of electromyography (EMG) [5], electroencephalogram (EEG) [6] and elec-
trooculogram (EOG) [7]. Surface electromyography (sEMG) was a reliable way to
recognize human motion intentions and could facilitate human-machine integration
with the help of an intelligent machine perception system [8].

sEMG was a kind of non-stationary weak signals, when the muscle and its relat-
ed motion unit was excited, the bioelectrical signals could be collects from the skin
surface. The collection process was simple and non-invasive, making it a popular
research field in human-machine interaction technology. At present, a fair amount
of representative research on motion intention recognition based on sEMG has been
reported, which can be broadly divided into two categories: classification of the mo-
tion pattern [9, 10, 11, 12, 13, 14] and estimation of the continuous motion of the
joint [15, 16, 17, 18, 19]. Many classification methods applied continuous sEMG
signals to estimate joint angles with predefined sets, such as support vector machine
[9], artificial neural network [10], gaussian mixture model [11] and other classifiers
[12, 13, 14]. Moreover, sEMG also could estimate the joint angle via Hill-type muscle
model of human upper limb. In [15], the measurement equation established by the
EMG function is exploited to extend the Hill-type muscle model to form a state-space
model, and its able to reduce the model uncertainty and external interference. In
addition, joint angle could be predicted via many neural network algorithms by their
self-learning function, such as radial basis function (RBF) [16, 17], back propagation
neural network (BPNN) [18] and convolutional neural network (CNN) [19]. In [17],
a RBF neural network was used to predict the joint angle of healthy people. How-
ever, there was no experiment on spinal cord injury (SCI) patients. Furthermore,
a nonlinear model based on BPNN was proposed to describe the sEMG signal and
joint angle of human limb, which could be used for able-bodied subjects and SCI
patients [18]. Compared with the traditional angle estimation method via sEMG
signal, the nonlinear model in [18] had improved the estimation accuracy and real-
time performance. Accordingly, the above neural networks were widely exploited to
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predict joint angle founded on sEMG signals, and the experimental results also could
be utilized to improve the rehabilitation of human limbs.

Among the most promising deep learning neural network algorithms, the long
short term memory (LSTM) network became widely utilized in motion intention
with long memory characteristics [20, 21, 22]. LSTM network was an excellent vari-
ant model of recurrent neural network (RNN), which could solve the problem of
vanishing gradient caused by the gradual reduction of the gradient back propagation
process. As for the motion intention recognition via sEMG, in motion classification,
a pattern recognition model was presented that combined LSTM network with mul-
tilayer perceptron (MLP) for the feature learning and classification of sEMG signals.
A feature space included the dynamic and static information of the sEMG signals
was learnt by LSTM-MLP model, which improved the accuracy of motion classifi-
cation [20]. In the field of estimation of continuous motion, a method was proposed
for predicting motion intention of daily grasp movements by LSTM network [21].
Compared multiple methods, such as BPNN and RBF, LSTM network held the best
performance for continuous estimation of grasp movement in that the LSTM net-
work was able to eliminate gradient disappearance and gradient explosion during
long sequence training. And in [21], it increased the estimation number of finger
joint angles from 10 to 20. Furthermore, the LSTM network combined with other
models could estimate intention identification of human body movement with bet-
ter results. Combining the short connected auto encoder with the LSTM regression
algorithm was developed to estimate continuous movement of shoulder and elbow
joint angles based on sEMG signals [22]. However, these LSTM-based models had
slight predicted errors, which had negative on influence human limbs rehabilitation.
It is necessary to further research to eliminate the predicted errors. Therefore, a
closed-loop model is utilized to eliminate the predicted errors.

Considering uncertain factors, such as physiological parameters, simplified mod-
els, measurement effect noise and external disturbance of traditional methods, they
were invalid to estimate the continuous motion of upper limbs. However, overcoming
these factors was essential for closed-loop systems. A strong convergence algorithm
called zeroing neural network (ZNN) could lower the risks. It has exponential conver-
gence and noise suppression capabilities, which was improved from RNN [23, 24, 25].
A comprehensive overview of the paper on ZNN was provided in [26], which was
thoroughly described stability and analysed convergence of ZNN model. The core
of the ZNN was to construct an error function, such as predicted errors of LSTM
predicted model. Then, the information is exploited to make the error function to
zero [27, 28, 29, 30].

In this paper, a neoteric method was proposed to estimate joint angles and angular
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velocities of human upper limb with joint damping by using sEMG signals. The main
intellectual contributions can be summarized as follows. The first objective is that a
new continuous estimation approach combined LSTM network with ZNN as a closed-
loop model is proposed, which can estimate the motion state of the human upper
limb with joint damping. Second, for the uncertainty of the open-loop model, the
ZNN method as a closed-loop feedback is exploited to eliminate the predicted error
of open-loop model. Last, the effectiveness of LSTM-ZNN method as a closed-loop
model needs to be testified founded on experimental results.

This paper consists of the following parts: Section 2 contains the acquisition
and processing of experimental data. Following with the upper limb dynamic model
and establishment of LSTM network model are introduced in Section 3. Section 4
introduces the formula of ZNN and the establishment of LSTM-ZNN model as a
closed-loop model. In Section 5, based on analyzing the experimental results, the
effectiveness of the closed-loop model is verified. Finally, Section 6 summarizes the
achievements and predicts the future work.

2. Experimental

2.1. Data acquisition

In this paper, one healthy tester (female, 27 years old, 165cm, 55kg), without
any history of neuromuscular disorder, has been selected to perform the required
movements. The experiment is introduced in Fig.1, the equipments and sensors for
signal acquisition are installed on the testers right upper limb to record EMG signals
and joint angles while the upper limb in the process of flexion or extension. The
signal acquisition equipment, which called Biopac, is exploited to acquire the sEMG
signals, as presented in Fig.1. The device is a wireless physiological data acquisition
and analysis system, which is able to record 10 sEMG data channels at the same
time, with a sampling rate of 2k Hz for each channel. In this experiment, the sEMG
signals are recorded of six selected types muscles of human upper limb via Biopac,
which are anterior deltoid, posterior deltoid, biceps brachii, triceps brachii, extensor
carpi radialis and flexor carpi radialis. In addition, the joint angle measuring device
is manufactured by Wit Motion, as shown in Fig.1. Three sensors are attached to
the human upper limb of the tester for collecting the angles of shoulder, elbow and
wrist while in motion. As a result, the devices of data acquisition are input by the
recorded joint angles and the sEMG signals of human upper limb.

It is important that keep clean of the test area, the skin surface need to be shaved
if necessary. The uncleaned surface could increase the probability of distortion during
the action [31]. A set of electrodes is attached to the skin surface, which is utilized
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to measure the simulated sEMG signals. Each pair of electrodes is separated from
each other with 2cm-3cm. The position of each electrode can also be found in Fig.1.

Fig. 1. Data acquisition experiment.

2.2. Signals processing

The raw sEMG signals are easily affected by noise during signal acquisition. The
power density spectrum of sEMG presents that most of its power in the range from
5 Hz to 500 Hz. Therefore, the signal with high cutoff frequency of 500 Hz should
be less considered. As considered above factors, the raw sEMG signals should be
reduced the noise via a set of 50 Hz notch filter, 20 Hz low cut-off frequency filter and
500 Hz high-pass frequency bandpass filter. The sEMG signals need to be further
digitized after removing the noise in the raw sEMG signals. Through the above steps,
the raw sEMG signals and the preprocessed sEMG signals of six selected muscles are
illustrated in Fig.2.

Moreover, the preprocessed sEMG signals are operated as follows. The waveform
of the sEMG signals oscillates randomly in nature, and the signals vibrate very fre-
quently around zero amplitude. The amplitude change can be more clearly observed
via full-wave rectification. This process can be expressed as

sEMGr(n) = |sEMG(n)| (1)

where sEMG(n) is the nth amplitude of the signals after pretreatment, sEMGr(n) is
the nth amplitude sample of the sEMG signals obtained after full-wave rectification.

As the sampling frequency of signals are not consistent with the joint angle,
sampling frequency of signals are 20 Hz and sampling frequency of the joint angle
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is 100 Hz. The joint angle signal has much lower sampling frequency than sEMG
signals. Therefore, to keep the consistency between two types of signals, the sEMG
signals should be sub-sampled. The process can be introduced as

sEMGs (n) =
1

N

nN∑
i=nN−N+1

sEMGr (i) (2)

where N is the number of times that signals need to be sub-sampled, sEMGs (n) is
the sEMG signals after sub-sampling.

3. Open-loop model estimation

3.1. Establishment of upper limb dynamic model

Based on the anatomy, the human body is composed of bones, bone junctions and
skeletal muscle. The bones connected to each other through joints, and therefore to
form a hard human frame. Moreover, human upper limb consists of shoulder, upper
arm, forearm and hand. There are a few important joints to link each part, such as
sternoclavicular joint, shoulder joint, elbow joint, forearm bone connection and wrist
joint. In this paper, only shoulder joint, elbow joint and wrist joint are considered to
establish the three degrees of freedom (3–DOFs) dynamic model with joint damping
of human upper limb, which is represented the relationship between joint angles,
angular velocities and joint torque. The human upper limb skeleton diagram is
displayed in Fig.3.

During the flexion and extension of the three joints, there would be resistance
caused by the tissue near the three joints. It is called the joint damping Mp and can
be described as

Mp =
1

2
P θ̇2 (3)

where P is the damping coefficient at each joint, θ̇ denotes the angular velocity.
The total torque rooted in dynamic model about the joints of upper limb is given

as follows
M (θ) θ̈ + C

(
θ, θ̇

)
θ̇ +G (θ) +Mp = τh (4)

where θ and θ̈ denote the joint angle and angular acceleration, M is the inertia
matrix of the system, C is the centripetal-coriolis matrix, G is the gravity effects of
upper arm, forearm and hand, τh is the joint torque.
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Fig. 2. Raw sEMG and preprocessed sEMG. (a)anterior deltoid; (b)posterior deltoid;
(c)biceps brachii; (d)triceps brachii; (e)extensor carpi radialis; (f)flexor carpi radialis.
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Fig. 3. Human upper limb skeleton diagram.

As the total torque acting on the joints is known, the angular and angular velocity
of equation (4) can be reformulated as{

θ̇1 = θ2

θ̇2 = −M−1
[
C
(
θ1, θ̇1

)
θ̇1 +G(θ1)+

1
2
P θ̇21

]
+M−1τh

(5)

where θ1 and θ2 are the joint angle and angular velocity respectively, which collected
by Wit Motion sensors.

3.2. LSTM-based model

In this paper, the LSTM-based model aims to predict the joint angles and angular
velocities with sEMG signals. Then, the predicted torque can be solved by predicted
joint angles and angular velocities and equation (4).

In this experiment, the collected data of sEMG signals and joint angles and
angular velocities are supposed as follows{

ai = [ai,1, . . . , ai,t]
bh = [bh,1, . . . , bh,i] t = 1, . . . , j

(6)

where ai is the sEMG signals of muscles measured by the Biopac, bh = [θ1; θ2], and
j represents the number of muscles exploited in this experiment.
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Fig. 4. The structure of LSTM network.

Considering the amplitude of sEMG signals has unique characteristics, which the
contraction of muscles would cause the rise in amplitude. Moreover, the joint angles
and angular velocities also change during the contraction. The relationship between
them can be obtained by the following nonlinear functions

hi = g (a1,i , . . . , a1,i−m+1;
a2,i, . . . , a2,i−m+1; . . . ;
ak,i, . . . , ak,i−m+1;) i = m, . . . , t

(7)

where hi = [θ1,i; θ2,i] is the joint angles and angular velocities estimated of three
joints at the ith time, g is the undetermined nonlinear function, and m represents
the order.

The LSTM network is build to estimate the relationship between the joint angles
and angular velocities of three joints and sEMG signals. The internal state in the
LSTM network is stored in a special unit to maintain a continuous error stream,
therefore, the gradient neither explodes nor disappears in network. The control
functions in a memory unit include save, write and read. The logic units do not
send their inputs to other neurons. Thereby, the LSTM network has four network
layers inside with a chain structure. Its repeating unit is different from the unit in
a standard RNN with only one network layer. The structure of LSTM network is
demonstrated in the Fig.4, which has three parts are called the forget gate, the input
gate and the output gate.

The first step, or the forget gate, of the LSTM network is to decide whether the
information needs to be discarded from the cell state or not. And this step follows
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function as
Fi = σ (WFhi−1 + VFai) (8)

where σ is the logistic sigmoid function, WF and VF are respectively recursive weight
matrix and projection of input representation in forget gate.

Next step is deciding what new information should be added to the state of the
cell in input gate. This step is obtained as follows

Ii = σ (WIhi−1 + VIai) (9)

Ĉi = tanh (WChi−1 + VCai) (10)

where WI and VI are the recursive weight matrix and the projection of input repre-
sentation in the input gate respectively. Ĉi is the new information of cell after tanh
layer. WC and VC are state and projection weights of input respectively.

Then, old cell information Ci−1 is updated to the new cell information Ci, which
can be described as following equation

Ci = Fi ⊙ Ci−1 + Ii ⊙ Ĉi (11)

where ⊙ is a logical operator.
The final output of the LSTM unit is obtained as follows

Oi = σ (WOhi−1 + VOai) (12)

hi = Oi ⊙ tanh (Ci) (13)

where WO and VO are recursive weight matrix and projection of input representation
in the output gate respectively.

There are six neurons in the input layer which represents the sEMG signals mea-
sured from anterior deltoid, posterior deltoid, biceps brachii, triceps brachii, extensor
carpi radialis and flexor carpi radialis, and six neuron in the output layer which rep-
resents the joint angles and angular velocities of shoulder joint, elbow joint and wrist
joint. The number of neurons in the hidden layer is uncertain. And the hidden layer
has a great impact on the precision of elbow joint angle estimation. Moreover, the
network performance is the key factor of the size of layers.

According to equation (4), the predicted total torque τh,i can be obtained

τhi
= M (θ1,i) θ̈1,i + C (θ1,i, θ2,i) θ2,i +G (θ1,i) +

1

2
Pθ2,i

2 (14)

where θ1,i, θ2,i and θ̈1,i denote the predicted joint angles, angular velocities and
angular accelerations.
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Moreover, The predicted joint angles θ1,i and angular velocities θ2,i are rooted in
the dynamic model, which can be described as follows{

θ̇1,i = θ2,i

θ̇2,i = −M−1
[
C
(
θ1,i, θ̇1,i

)
θ̇1,i +G(θ1,i)+

1
2
P θ̇21,i

]
+M−1τh,i

(15)

4. Closed-loop model estimation

The movement intention can be estimated by using the LSTM-based model (15),
which is an open-loop control system. It is worthless that the inaccurate estimation
due to the cumulative errors generated by suitable assumptions. Such as selecting
training data sets to train the model which may cause the predicted errors increased
in LSTM network and distortion of partially effective sEMG signals. As well as the
intention recognition of subjects would be affected in the open-loop experiment.

As the open-loop model has no automatic correction capability, hence a closed-
loop estimation method can be exploited to eliminate the influence of the accumulat-
ed errors, which is investigated for the motion intention of the human upper limb. In
closed-loop systems, once the predicted joint angle deviates from the measured joint
angle is detected, a corresponding control function will be generated to eliminate the
deviation. Therefore, it is able to lower the interference and enhance the response
characteristics of the system.

4.1. Zeroing neural network model

A nonlinear vector equation called zero-finding problem as described in [23, 25,
32], the zero-finding problem is considered as an example

f(x(t), t) = 0 ∈ Rn , t ⊆ [0,+∞) (16)

where f : Rn × [0,+∞) → Rn is a differential time-varying nonlinear mapping
function. According to equation (16), x(t) ∈ Rn is found as an objective in real
time. For simplicity, a solution x∗(t) of zero-finding problem is existed at any time
instant t ⊆ [0,+∞). Hence, the time-varying error function e(t) ∈ Rn can be written
as follows

e(t) = f(x∗(t), t)− f(x(t), t) = 0− f(x(t), t) (17)

To keep time-varying error e(t) near to zero, it is important to make x(t) close to
the time-varying state variable x∗(t). Therefore, the zero-finding problem (16) can
be described as a classical nonlinear dynamic system
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{
ẋ = u(t)

y(t) = f(x(t), t) = −e(t)
(18)

where x(t) is the time-varying state variable of system, u(t) and e(t) respectively are
time-varying control input function and output function.

Therefore, the classical nonlinear dynamic system (18) can be reformulated to
find a controller u(t) such that output variable e(t) is regulated to zero. In addition,
the time-varying error function e(t) can be described as

ė(t) = −γe(t) (19)

where γ > 0 is a constant value, which is related to the rate of convergence. The
formula means that e(t) converges to zero with ė(t) evolved along negative direction.

Theorem 1: (see [33]) The state variable x(t) of classical nonlinear dynamic
system (18) globally and exponentially converges to x∗(t). Therefore, the control
law can be designed as

u(t) = −
(
∂f(x(t), t)

∂x

)−1(
γ · f(x(t), t) + ∂f(x(t), t)

∂t

)
(20)

where ∂f(x(t), t)/∂t ∈ Rn, besides, ∂f(x(t), t)/∂x(t) ∈ Rn × Rn is nonsingular.
Proof:

Substituting (17) into (19) yields an implicit equation

J(x(t), t)ẋ(t) = −γ(f(x(t), t))− ∂f(x(t), t)

∂t
(21)

Substituting the equation (21) into the classical nonlinear dynamic system equa-
tion (18), the control law can be obtained as (20).

4.2. Discrete-time closed-loop estimation

Combining the LSTM-based model (15) with the classical nonlinear dynamic
model (18), then the closed-loop model founded on ZNN model in discrete-time can
be generalized as follows {

θk+1 = θk + θ̇kTs

θ̇k+1 = f(θk, tk) + u(tk)
(22)

where θk = [θi,k; θ̇i,k] is the time-varying state variable, Ts is the sampling time. The
f(θk, tk) is expressed as follows

f(θk, tk) = [θ2,i,k;−M−1

[
C
(
θ1,i,k, θ̇1,i

)
θ̇1,i,k +G(θ1,i,k)+

1

2
P θ̇21,i,k

]
+M−1τi,k] (23)
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According to the equation (20) and discrete-time technique, let e(tk) = θd,k − θk,
where θd,k = [θ1; θ2] in equation (5) is the desired state variable, the controller of the
closed-loop model (22) can be obtained as

uZNN(tk) = θ̇d,k + γ(θd,k − θk) (24)

The ZNN controller (24) can be deemed that provides a control framework for
dealing with convergence and robustness issues of the discrete-time model . Moreover,
closed-loop model (22) can improve the accuracy of motion intentions [23, 32]. Then,
a comparative experiment of open-loop model and closed-loop model is conducted
to verity the effectiveness of the proposed closed-loop model.

5. Experimental results and discussion

In order to verify the performances of the LSTM model (15) and LSTM-ZNN
model (22), a structure of the system is explained in Fig.5, including its application
to estimate the joint motion by using LSTM-ZNN model.
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Fig. 5. Structure of motion intention recognition.

5.1. Open-loop model

By using the preprocessed sEMG signals of six selected muscles and three joint
angles and angular velocities measured by sensors into the open-loop model, the
LSTM network training algorithm is to estimate the motion states of human upper
limb for continuous movements with sEMG measurements. According to equation
(14), the predicted three joint torques of upper limb is shown in Fig.6.

In Fig.6, the green line indicates the experimental results of the estimated torques
of open-loop model. And the blue line represents the actual value for three joint
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Fig. 6. Three joint torques of upper limb estimation with LSTM network.

torques which are calculated founded on the joint angles and angular velocities mea-
sured by sensors. It can be observed that the predicted torques of the three joints
can be roughly close to the actual joint torques. In this experiment, due to the
continuous movement of human upper limb, the three joint torques as outputs of the
predicted network are not related to the current sEMG signals, but also related to
their outputs in the past period of time. Therefore, the LSTM network holds the best
performance for predicting motion intention in that the neurons of LSTM network
are able to receive information from other neurons and their own information.

However, the results of torques are slightly diverged with actual torques, such as
compared torques of three joints at time 5s and time 13s. Therefore, Fig.6 illustrates
that open-loop model exists predicted errors while LSTM network in process. The
predicted errors are existed because of the uncertainties in modeling process of the
LSTM-based model. For instance, the number of neurons in the hidden layer of
LSTM network is uncertain, which can impact on the precision of estimation. Fur-
thermore, while performing the LSTM model to predict the joint angles and angular
velocities, it needs notice that smaller training data sets can result in more errors.
In addition, the motion intention rooted in open-loop model can be influenced by
physiological characteristics, such as joint damping.
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Fig. 8. Comparisons of error between the open-loop model and closed-loop model.
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5.2. Closed-loop model

After training the LSTM network, the motion intention of human upper limb with
joint damping is estimated by sEMG measurements. Then, the LSTM-ZNN model of
equation (22) is utilized to reduce the predicted error. Moreover, the motion intention
of the human upper limb with joint damping is estimated via closed-loop model. As
a further step, the open-loop model is performed to verity the improvement of closed-
loop model.

The actual joint angles and angular velocities measured by sensors are used to
evaluate the performance of the open-loop and closed-loop models. Fig.7 illustrates
the results of the open-loop model and the closed-loop model by using the sEMG
data in Fig.2, where the blue lines are the measurements of the actual joint angles
and angular velocities. It can be indicated that the predicted angles and angular
velocities of open-loop model are quite similar to the actual values, but predicted
errors exist. Such as the estimated joint angles of elbow joint and wrist joint of red
line in Fig.7(a) at time 5s. The estimated joint angle of the shoulder joint is the red
line in Fig.7(a), which exists slightly errors. As for the angular velocities, as shown
in Fig.7(b), each line of the open-loop model deviates from the actual value, such as
the estimated angular velocities of shoulder joint and wrist as red at time 4s, and at
time 14s in estimation of the elbow joint.

Compared the predicted results of the open-loop and closed-loop model in Fig.7,
the estimation performance is improved, which appeared the predicted value closer
to the actual value by the LSTM-ZNN model. This is because that ZNN model (20)
has strong robustness and high accuracy for the solution of time-varying nonlinear
problem. In this paper, the estimated joint angles and angular velocities are regarded
as the time-varying solution, which can converge to actual values founded on ZNN
controller (24). Besides, the LSTM-ZNN model (22) has strong uncertainty rejection
performance, which greatly reduces the influence brought by uncertain factors of the
LSTM predicted model. Therefore, the closed-loop model holds the better perfor-
mance for predicting joint angles and angular velocities in that the predicted errors
of open-loop model are decreased founded on the ZNN controller (24).

Fig.8 signifies the experimental results of the estimation errors of angles and
angular velocities with parameters γ = 150, where the green lines and red lines
are the error between estimated angle and angular velocity by open-loop model and
closed-loop model with the actual values respectively. In Fig.8, it can be shown that
the the errors of predicted angles and angular velocities of open-loop model is larger
than those of closed-loop model.

As observed the results in Fig.8, the experimental results show that the closed-
loop model is obviously outperformed than the open-loop model. Because, the core
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of the ZNN-based method is to construct an error function e(t), and use information
derived from e(t) to force ė(t) to zero as describe in equation (19). In this experiment,
the predicted errors are regarded as an error function e(t), which have been efficiently
corrected by the LSTM-ZNN model. The performance indicates that the closed-loop
model has convergence, which improves the accuracy of predicted results.

6. Conclusions

In this paper, a healthy female has completed the flexion and extension exercises
of upper limb, which provides experimental data and reflects the conditions of the
patients in reality. The relationship between the joint motion intention of upper limb
with joint damping and sEMG signals has been verified by using LSTM network as
an open-loop model in the measurements. Then, the predicted errors of open-loop
model have been eliminated by the LSTM-ZNN model as a closed-loop model. By
reason that the ZNN model has strong robustness and high accuracy for the solution
of time-varying nonlinear problem. In this experiment, the novel closed-loop model is
able to continuously capture the movement of human upper limb with joint damping.
Moreover, the results also reveal that sEMG signals can be exploited to predict the
angle and angular velocity with relatively high accuracy.

As a matter of fact, tremor movements are unable to predict due to the different
individuals, which needs to be reduce the influence for the future tests. In addition,
accurate and reliable acquisition of human motion intention is a prerequisite for
application of human-machine interaction. After obtaining the movement intention
of human, some control strategies are adopted to realize human-machine interaction
control for spinal cord injury patients and stroke patients.
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