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Abstract—The explosive growth of Internet of things (IoT) has
mandated the security of data access. Although authentication
methods can enhance network security, their vulnerability to
malicious attacks may be a barrier for the wide deployments
in IoT scenarios. To address the security issue, we advocate
the use of physical layer security through radio-frequency (RF)
fingerprint recognition. Observing that most RF fingerprint
recognition methods show a degradation of performance under
low signal-to-noise ratio (SNR) environments, we present a
dynamic shrinkage learning network (DSLN) to enhance security
for IoT applications, particularly in the setting of low SNR.
We design a novel dynamic shrinkage threshold for improving
the accuracy of recognition under low-SNR environments.
Additionally, we design an identity shortcut for reducing the
running time of RF fingerprint recognition. In comparison with
convolutional neural network (CNN), recurrent neural network
(RNN) and a hybrid CNN+RNN network (CRNN), our proposed
DSLN yields accuracy improvements of up to 20%. Moreover,
DSLN can reduce running time by up to 60%, indicating its great
potential to a real-time IoT system, e.g., an intelligent automotive
system.

Index Terms—Internet of things, Network security, RF
fingerprint recognition, Deep learning, Low SNR.

I. INTRODUCTION

As a promising technology, Internet of things (IoT)
is restructuring many sectors, including transportation,
healthcare, business, etc [1]. A typical IoT system comprises
multiple interconnected devices for the exchange of massive
data via wireless communication infrastructures. It has been
predicted that more than 50 billion IoT devices will be
connected through Internet by 2025 [2]. The explosive growth
of wireless devices has imposed a strong need for IoT
networks to collect and process an unprecedented amount of
data for various purposes such as monitoring and decision
making, thereby facilitating innovations in the intelligent
industry [3].

However, the widespread IoT applications also raise severe
security and trustworthiness concerns [4]. A cluster of
servers at the cloud is employed for data storage and user
authentication in a typical IoT system. Due to the private
nature of data at the servers, it is important to identify the
authentication of mobile devices for the control of user access.
In the setting of IoT, most authentication methods by using IP
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or MAC addresses (e.g., digital signature) may be inapplicable
since these methods are vulnerable to malicious attacks, e.g.,
duplicating and changing IP addresses [5]. Such a security
problem has become a bottleneck that restricts the further
applications of IoT.

Against this background, deploying RF fingerprint
recognition for IoT user authentication has received increasing
research attention [6]–[13]. RF fingerprints are designed to
reflect the unique features of an individual device. These
features attribute to manufacturing tolerances, component
aging, and changes in working environments. The typical
examples of the RF fingerprints include frequency deviation
of oscillators, phase noise, non-linear distortion of power
amplifiers, filter distortion, I/Q imbalance, phase imbalance,
frequency error, etc. There have been methods of extracting
fingerprint features and identifying the devices by comparing
the similarities of features [6]–[9]. These methods need a
manual selection of fingerprint features, which is highly
dependent on domain knowledge. To remove the process
of manual feature selection, an alternative direction is by
intelligently learning fingerprint features with deep-learning
algorithms [10]–[13]. The idea is to apply a few typical
deep learning algorithms, e.g., convolutional neural network
(CNN) and recurrent neural network (RNN), to recognize
mobile devices to prevent impersonation. As shown in Fig.1,
the RF signals emitted from different devices may have
similar waveforms in the time domain, and therefore, it is
challenging to recognize devices through their signals both in
time and in frequency domains. However, by extracting the
RF fingerprint features from these signals, e.g., the high-order
moments, box dimension, fractal dimension, one can identify
the devices by analyzing their features [7].

Existing learning algorithms for RF fingerprint recognition
in an IoT system may not work well in low-SNR settings
[14]. For example, an intelligent automotive IoT system uses a
millimeter-wave radar for environment perception, information
sharing, and decision making [15], where the millimeter-wave
signals may be difficult to pass through buildings and tend
to have a high noise level. In this case, a low SNR needs
to be dealt with in order to cover the subtle differences of
RF fingerprints between mobile devices. At an SNR of 0
dB, convolutional neural network (CNN) and recurrent neural
network (RNN) may suffer from accuracy degradation of 30%
[16].

Despite a rich body of literature on RF fingerprint
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Fig. 1. RF fingerprint recognition for device identification in IoT systems.

recognition, most existing works are effective for modest to
high SNRs only [6]–[13]. Compared with low SNR settings,
it is easier to recognize devices’ RF fingerprints in high
SNR settings since a low level of noise has little impact
on the recognition results. However, when the SNR is low,
without an effective denoising method, a high level of noise
is most likely to mislead a model and generate an incorrect
recognition result. The effective methods for high SNR can
theoretically be used in low SNR, but their performance would
dramatically degrade in practice. Thus, the key of achieving
a high recognition accuracy at low SNRs is to design a
denoising method in the model when recognizing a device’s
RF fingerprint. Towards this end, we develop a dynamic
shrinkage learning network (DSLN) to train RF fingerprint
features of mobile devices. The main contributions of this
paper are summarized as follows:

(1) To the best of our knowledge, it is the first work
which studies on RF fingerprint recognition under a low-SNR
environment for IoT systems. The research on this topic has
the great potential of enhancing security for widespread IoT
applications.

(2) To improve the accuracy of RF fingerprint recognition
at low SNRs, we design a dynamic shrinkage threshold
in the DSLN algorithm. The dynamic shrinkage threshold
can preserve more signal features than the existing learning
algorithms, thereby achieving higher accuracy of recognizing
RF fingerprints.

(3) To reduce the running time of RF fingerprint recognition,

we present an identity shortcut in the DSLN algorithm. An
identity shortcut is used to skip one or more convolutional
layers, thus directly connecting a particular layer to a latter
layer with an identity mapping. Critical features can be
preserved even though particular layers are skipped [17]. Due
to identity mappings, the proposed network can facilitate
training process, thus yielding a reduced number of iterations.

(4) We also develop a hardware prototype of DSLN for RF
fingerprint recognition. Extensive experiments illustrate that
our proposed DSLN can achieve an improvement of up to 20%
in recognition accuracy than CNN and RNN. Moreover, the
performance of running time in DSLN also gets significantly
reduced by 60% − 80% in comparison to that of CNN and
RNN.

The rest of this paper is organized as follows. In Section
II, we review the progress of RF fingerprint recognition and
its related learning methods. In Section III, we demonstrate
the internal hardware features which lead to the external
differences of signals. Then, the proposed DSLN algorithm
is described in Section IV, including its architecture and its
training pipeline. Section V illustrates the experiment results.
The conclusion and future work is discussed in Section VI.

II. RELATED WORK

The development of RF fingerprint recognition is primarily
composed of two research streams: One is knowledge-based
RF fingerprint recognition, whereas the other is data-based
RF fingerprint recognition. In the first stream, one needs

 



to carefully select appropriate fingerprint features and
then employ the feature difference to identify mobile
devices. Specifically, machine-learning algorithms are used
to recognize devices based on a model with the features as
system inputs. The second stream is based on deep learning
algorithms which can automatically train the raw data of
signals to recognize mobile devices.

A. Knowledge-based RF fingerprint recognition

RF fingerprint recognition can be carried out by the
measurement of similarities which compares the observed RF
fingerprint with reference RF fingerprint in a database. An
RF fingerprint method was used to collect and analyze the
probe request frames of devices with Bayesian algorithms in
order to recognize IEEE 802.11 mobile devices [6]. However,
the recognition of RF fingerprint might be fragile to the
variation of wireless channels [7]. Thus, a wavelet analysis
algorithm was proposed to identify the mobile devices with
the inter-arrival time of TCP/UDP packets.

Alternatively, one can classify different mobile devices
by analyzing I/Q imbalance, phase imbalance, frequency
deviation of oscillators, phase noise, non-linear distortion of
power amplifiers, filter distortion, etc [18]. [8] proposed a
method of extracting spectral features and analyzing preamble
within a packet with k-nearest neighbor (kNN) algorithms. To
improve the accuracy of k-nearest neighbor (kNN) algorithms,
a combination of support vector machine (SVM) and kNN
algorithms was presented to classify 802.11 devices by
analyzing the RF fingerprint for an accuracy of 95%.

Additionally, a method of artificial neural networks with
an accuracy of 99% was proposed to identify mobile devices
by analyzing their hardware compositions [9]. Although the
above-mentioned works can achieve high accuracy at high
SNRs, these methods have their limitations. Most work only
provided insights into the performance of learning models in
high SNR settings (e.g., 15-30 dB), and did not consider low
SNR scenarios.

B. Data-based RF fingerprint recognition

Recently, deep learning has been applied to tackle
RF fingerprint recognition problems. [11] used an ANN
model to identify IEEE 802.11, IEEE 802.15.4, and
IEEE 802.15.1 devices, and achieved a higher recognition
accuracy than machine-learning models. But they did
not consider the problem of multi-path interferences.
To improve the accuracy of device identification in
multi-path channels, [10] preprocessed original data by
using the Multiple Signal Classification algorithm and then
used a deep-learning-based model for RFID-based activity
identification in a multi-path indoor environment. It was
shown that their model demonstrated high classification
accuracy in a rich multipath environment. In a cognitive radio
network, the impersonation of devices could be recognized
by detecting their physical-layer features [12] for increased
the utilization efficiency of the network. A few more methods
were proposed to reduce the complexity of identifying mobile
devices. An acceleration method was proposed to analyze

the features between similar devices with a CNN classifier
[12]. The key idea of their paper was to directly train the
raw I/Q samples to distinguish mobile devices. A revised
network with long short term memory (LSTM) in [13]
was proposed, and this model could reduce running time
compared to a CNN model. The revised network needs
fewer parameters than the CNN model, and the forward
and back propagation iterations of CNN models are fairly
time-consuming in nature. Moreover, the revised model could
improve classification accuracy in comparison with the CNN
model. Experimental results showed that the convolutions fail
to capture the highly discriminative features from original
data. Additionally, extensive experimental data from multiple
sources provided a comparison between CNN, RNN, and
hybrid CNN & RNN. Their results showed that hybrid CNN
& RNN model outperforms other deep learning methods to
detect false-reading attacks [19].

C. Comparison of knowledge-based and data-based RF
fingerprint recognition

Heavily relying on human experiences of experts, traditional
machine learning methods mostly require a time-consuming
process of feature selection. By solving the above-mentioned
issue, deep learning methods can avoid the time-consuming
process of feature selection. Instead, one only needs to input
raw data (i.e. I/Q samples) to the learning models. The critical
task of a deep learning algorithm is to construct a multi-layer
network and optimize the relevant parameters. Particularly,
deep learning algorithms could be a comparatively better
option than machine learning ones in the case of insufficient
prior experiences. For example, it is fairly difficult to identify
the primary factors or features that impose significant impacts
on the final results. In this case, it is appropriate to build
learning models with deep learning algorithms.

In this paper, we use deep learning algorithms to detect
mobile devices. The signals from transmitters are represented
by raw I/Q data. On the other hand, if we choose to use
traditional machine learning algorithms, there is a long process
of feature selection to construct a series of mathematical
and statistical indicators, including frequency offset, spectral
characteristics, time domain envelope, wavelet coefficients,
etc. This process is fairly time consuming. Moreover, it might
lose a large amount of information.

III. ANALYSIS ON RF FINGERPRINT FEATURES

The RF fingerprint features are inherent to the hardware
of each mobile device. The identification process is carried
out at the receiving end by analyzing a number of hardware
mismatches such as frequency offset of the oscillator,
nonlinear distortion of the power amplifier, and the distortion
of filters. In this section, we introduce and study the
mechanism of RF fingerprint generated by a modulator.
With different modulation schemes, we can collect the subtle
differences in modulator hardware. For quadrature modulators,
non-linear distortion is often introduced by I/Q channel gain
imbalance, phase imbalance, delay imbalance and carrier
leakage.

 



A. Signal difference caused by I/Q imbalance

With quadrature modulation, we can denote the ideal signal
X(t) at the transmitter as

X(t) = XI(t) cos(w0t)
+XQ(t) sin(w0t).

(1)

Due to the hardware differences, the actual signal X̂(t) may
have subtle differences in amplitude (∆) and phase (ε) in
comparison with the ideal signal. Hence, the former can be
denoted as

X̂(t) = XI(t)(1−∆) cos(w0t− ε)
+XQ(t)(1 + ∆) sin(w0t+ ε).

(2)

The difference between the actual transmit signal and the
ideal transmit signal X̄(t) can be expressed as

X̄(t) = X̄ε(t) + X̄ε,∆(t). (3)

In (3), X̄ε(t) represents the signal difference only caused
by phase difference (ε) as

X̄ε(t) = 2 sin ε
2 [cos ε2 (XQ(t) cos(w0t)

+XI(t) sin(w0t))
− sin ε

2 (XQ(t) sin(w0t)
+XI(t) cos(w0t))].

(4)

Moreover, X̄ε,∆(t) represents the signal difference caused
by both amplitude difference and phase difference (∆ and ε)
as

X̄ε,∆(t) = ∆[cos ε(XQ(t) sin(w0t)
−XI(t) cos(w0t))
+ sin ε(XQ(t) cos(w0t)
+XI(t) sin(w0t))].

(5)

When ε is close to 0, given φ = arctan XI

XQ
, X̄(t) can be

simplified as

X̄(t)|ε=0 = ∆(XQ(t) sin(w0t)
−XI(t) cos(w0t))

= ∆
√
X2
Q(t) +X2

I (t) sin(w0t− φ).
(6)

When ∆ is close to 0, given φ = arctan XI

XQ
, X̄(t) can be

simplified as

X̄(t)|∆=0 =
√
X2
Q(t) +X2

I (t)[sin ε cos(w0t− φ)

+ (cos ε− 1) sin(w0t+ φ)].
(7)

In the following, we will use the subtle difference between
the ideal signal and the actual signal (shown in Fig. 2) as the
internal features of mobile devices to identify them. We will
use the amplitude difference and phase difference in (3), (6),
(7) for simulation, which will be shown in Section V.

B. Inherent nature of RF fingerprint features

RF fingerprint represents a collection of inherent features
extracted from wireless devices, and usually has the following
characteristics:

(1) Versatility: Even in the same batch, each device
has its own imperfections deviating slightly from nominal
specifications, and thus each device has its own features
in hardware due to the slight imperfection [18], [20]. RF
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Fig. 2. Illustration of the subtle difference between devices reflected in the
constellation.

fingerprints are designed to reflect the unique features of
an individual device. The features attribute to manufacturing
tolerances, component aging, and changes in working
environments. The typical examples of features include
frequency deviation of oscillators, phase noise, non-linear
distortion of power amplifiers, filter distortion, I/Q imbalance,
phase imbalance, frequency error, etc. We can identify each
of the wireless devices by properly selecting these fingerprint
features.

(2) Short-term invariance: Unlike human beings who can
remain their fingerprint features invariant throughout their
lives, the components of wireless devices will inevitably face
aging, and long-term use will lead the actual fingerprint
features to be different from those registered in the fingerprint
feature database. However, the aging of components takes a
long time, so its impact on RF fingerprint features during a
short period is relatively low [21]. The study in [21] shows that
the RF fingerprint features extracted by a wireless network can
remain unchanged within 5 months, and the device recognition
rate is quite stable.

(3) Uniqueness: As human have different fingerprint
features, the RF fingerprints of wireless devices are also
unique due to the uniqueness of their hardware. With the fast
development of integrated circuits, the degree of integration
between electronic components is dramatically rising. At the
same time, the high level of integration leads to a more subtle
difference between devices. Thus, how to identify the wireless
devices with their unique fingerprint features is a primary
issue.

(4) Robustness: The robustness of an RF fingerprint
feature refers to the level of stability in the RF fingerprint
of a wireless device when its communication environment
changes. The authors in [23] present the influence of antenna
polarization direction, multi-path effect, transceiver distance,
voltage, power, and noise interference on the extraction of RF
fingerprint features and the identification of devices. Therefore,
it is necessary to consider the robustness issue in the selection
of RF fingerprint features.

 



C. Identification of wireless devices with RF fingerprint
features

Identifying wireless devices can be considered as a
classification problem in which each device represents a
specific class. We use the features of all the wireless
devices, selecting a device as a positive class and the
other devices as a single negative class. In the identification
issue with K wireless devices, we can use a length-K
vector [p(wi; y1), p(wi; y2), . . . , p(wi; yxN ))] to represent the
estimated probabilities of matching the received signal with
each of K devices, where yi (i = 1, 2, . . . N ) denotes the ith
segment of data at the receive end and wi the ith wireless
device.

We can use the signal data y to identify a wireless device
with the highest probability of matching. Mathematically, we
have

ŵi = argmaxwi
[p(wi; y1), p(wi; y2), . . . , p(wi; yxN ))]. (8)

IV. ALGORITHM DESIGN

In this section, we first present the architecture of our
proposed DSLN algorithm, and demonstrate the layered
structure of DSLN. Then, we address the DSLN training
pipeline, and design each of the components in the DSLN.
Finally, we implement the proposed DSLN algorithm for
device recognition in IoT scenarios.

A. DSLN Architecture

As introduced above, we train the I/Q samples of RF signals
within a DSLN framework to recognize IoT devices. A DSLN
is a type of improved variant of ResNets which is composed of
typical components such as a convolutional layer, a residual
building unit (RSBU), a batch normalization/rectifier linear
unit/convolutional layer unit (BRC), a global average pooling
(GAP), and a fully connected (FC) layer. The structure of a
DSLN is shown in Fig.3.

A convolutional layer is used to compute the convolution
between input I/Q samples and a convolutional kernel. The
convolution process can dramatically reduce running time
compared with matrix multiplication that is widely used in
the fully-connection layer. The RSBU is the core of our
DSLN model, eliminating the noise features by using a
dynamic threshold. Typically, an RSBU comprises two layers
of BRC, one layer of GAP, one layer of FC in sequence.
Additionally, an RSBU has four operations, including sigmoid
function, element-wise multiplication, dynamic thresholding,
element-wise summation. A BRC takes the role of nonlinear
transformation to reduce the variation of features in the I/Q
samples of RF signals. The BRC includes three components,
i.e. a batch normalization (BN), a rectifier linear unit (ReLU),
and a convolutional layer unit. A GAP layer computes the
mean of features, and it can further eliminate the variation of
features in the I/Q samples. An FC layer is designed to use
transformation matrices for multi-class recognition tasks. In
the following, these components are described in detail.

B. DSLN training pipeline

(1) A convolutional layer uses a convolutional kernel to
replace matrix multiplications in a fully connected neural
network, which can dramatically reduce the number of
parameters to be trained. With the convolutional layer, we
can achieve a high accuracy since the process of convolution
may avoid the overfitting in the model. Specifically, we can
compute the jth output Ij by convolving the ith input Pi and
the convolutional kernel C, adding a bias B as:

Ij =
∑
i

Pi ∗Cij + Bj . (9)

Typically, the feature map of a convolutional layer is a 3-D
tensor. In this paper, we take the 2-D I/Q samples as input
data, and thus the height of a feature map is set to be 1. With
the convolutional kernel sliding on the feature map, we can
achieve a channel of feature map at the output end. When
a convolutional layer contains multiple convolutional kernels,
we can attain more than one channel as the output of feature
map.

(2) A RSBU is the core of a DSLN network. The primary
operation of RSBU is a dynamic threshold, and it can be
expressed as

Wi =


Ui − τ, Ui > τ

0, − τ ≤ Ui ≤ τ
Ui + τ, Ui < −τ

, (10)

where U represents the features of input I/Q signals, W
represents the output features, and τ represents a dynamic
threshold which is usually a positive parameter. This dynamic
threshold only sets the near-zero features to zeros, instead
of setting all the negative features to zero as in the ReLU
function, so that the negative features of a signal can be
preserved.

The threshold used in the RSBU is expressed as follows:

τ = α×mean[|U|], (11)

where mean[|U|] represents the mean of modulus of U, which
is the output of GAP. α represents a scaling parameter, which
is expressed as

α =
1

1 + e−|t|
, (12)

where t represents the output of fully connection networks.
Fig.3 illustrates the detailed structure of a RSBU. t is the

output of a fully connection layer, and according to equation
(12) α is constrained within 0.5 to 1. Because the threshold τ
is a linear function of α, the threshold τ is dependent on t.

According to Fig.3, RSBU is composed of two operations:
one is identity mapping, and the other is wavelet denoising.
The output of identity mapping is denoted as I, and the output
of wavelet denoising is W. By element-wise summation, the
output of RSBU can be denoted as O = I + W.

A specific extreme example to clarify the operation in
equation (12) is presented as follows: When the output of a
fully connection layer t=0.0001, according to equation (12),
α is approximate to be 0.5, and τ = 0.5mean[|U|]; when the
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output of a fully connection layer t=10000000, according to
equation (12), α is approximate to be 1, and τ = mean[|U|].

When τ = 0.5mean[|U|], only the inputs U with a
comparatively large value is preserved, and the preserved
inputs have a high possibility to be useful features based on
the wavelet de-noising theory. Therefore, we need to execute
both the wavelet de-noising step and the identity mapping step
by using an element-wise summation.

When τ = mean[|U|], compared to the case of τ =
0.5mean[|U|], more inputs U are set to be zeros, indicating
that the inputs have a comparatively lower level of noise and
the wavelet de-noising is not necessary. Therefore, we could
skip the wavelet de-noising step, and only execute the identity
mapping step.

To reduce the running time of RF fingerprint recognition,
we design an identity shortcut in the stage of RSBU. An
identity shortcut is used to skip one or more convolutional
layers, and directly to connect a particular layer to a latter
layer with an identical mapping. By guaranteeing the residual
of the building block with an identity shortcut connection is
close to zero, critical features of data would not be lost [17].
Due to identical mappings, this design is verified to accelerate
the training process of RSBU, thereby reducing running time
for trainning, shown later in Section V.D.

(3) In the BRC layer, a batch normalization can reduce
the variation of features in each round of training process by
adjusting the parameters of a convolution layer. The step of
batch normalization can normalize the features to ensure that
they are in a distribution with the average of zero and the
standard deviation of one. Specifically, the detailed process of

batch normalization can be characterized as

µ =
1

Nb

Nb∑
i=1

Ii,

σ2 =
1

Nb

Nb∑
i=1

(Ii − µ)2,

Îi =
Ii − µ√
σ2 + δ

,

Qi = αÎi + γ

(13)

where Ii and Qi denote the ith input and ith output features
in a batch, respectively. µ and σ2 represent the mean and the
deviation, respectively. Nb represents the number of features
in a batch. α and γ are two parameters for scaling and shifting
the distributions, respectively. δ represents a constant, which
is close to zero.

(4) A global average pooling layer computes the mean of
feature inputs. Generally, it can reduce the number of training
weights in a network and thus achieve a lower probability of
overfitting. GAP can also reduce the impact of variation of
input features on the output.

(5) A fully connection layer is designed to minimize the
cross-entropy error of multiclass recognition. In comparison
with the minimization of squared mean error, the minimization
of cross-entropy error can enhance the training efficiency since
the gradient of cross-entropy error is less likely to be zero.
To compute the cross-entropy error, we can use a softmax
function to ensure that the feature values can be kept in
the range of (0, 1). Specifically, we can represent a softmax
function as

Ti =
eSi∑Nc

k eSk

, (14)

 



where Si and Ti denote the ith input and ith output of a
cross-entropy error layer, respectively. Nc denotes the number
of classes to recognize.

Assume that Pr(Tj) denotes the probability of an output
to be classified into the jth class, we can represent the
cross-entropy error as

E = −
Nc∑
i

Pr(T̂j) log(Pr(Tj)), (15)

where E denotes the cross-entropy error, Pr(T̂j) denotes the
actual probability of an output to be classified into the jth
class.

C. Implementation of DSLN for device recognition

Based on the above-mentioned procedures, we design a
gradient descent algorithm to minimize the cross-entropy error,
and train a few iterations of a DSLN model. The detailed
DSLN algorithm is presented in Algorithm 1.

In Algorithm 1, given the initial parameters input signal Pi,
convolutional kernel Cij , bias Bj , RSBU parameters δ, γ, t,
we can start the process of DSLN based algorithm as follows.
We first compute the output of a convolutional layer, a RSBU
layer, a BRC layer, a GAP layer and a FC layer.

Algorithm 1: DSLN based algorithm for device
identification with RF fingerprint
Require:
1: Input signal Pi.
2: Convolutional kernel Cij .
3: Bias Bj .
4: RSBU parameters δ, γ, t.
Ensure:
5: for each iteration in training do
6: Compute the output of a convolutional layer

Ij =
∑
iPi ∗Cij + Bj in equation (9).

7: Compute the output of RSBU by
repeating the following updates:
α = 1

1+e−|t|
,

τ = α×mean[|U|].
8: Compute the output of BRC by

repeating the following updates:
µ = 1

Nb

∑Nb

i=1 Ii,
σ2 = 1

Nb

∑Nb

i=1(Ii − µ)2,
Îi = Ii−µ√

σ2+δ
,

Qi = αÎi + γ.
9: Update the output of full connection with

Ti = eSi∑Nc
k eSk

to achieve the cross-entropy error.
10: Estimate E with Tj = argmaxTj

E = −
∑Nc

i Pr(T̂j) log(Pr(Tj))
with the output of T.

11: end for
12: Return the label of device T.

V. PERFORMANCE EVALUATION AND DISCUSSION

We carried the experiment over a hardware platform
consisting of a NI-PXIe 1085 device and three
USRP-RIO-2943 (Universal software radio peripheral-radio
reconfigurable Input/Output). As a low-cost software-defined
radio support device, USRP-RIO enables a wide range of
applications, including broadcasting, mobile, GPS, WiFi, ISM
FM, TV signals, and so on. So we can use USRP-RIO to
simulate diverse IoT devices.

The hardware set is shown in Fig. 4, and the user interface
of signal analysis software is shown in Fig. 5. NI-PXIe 1085 is
a computer-based platform for data transmission and graphic
display. The two USRP RIO-2943 (RIO2 and RIO3) contain
4 transmitters, simulating four different transmitters that need
to be identified; one USRP RIO-2943 (RIO1) as a receiver,
responsible for receiving signals from the four transmitters.
As for the transmitters, their hardware differences can lead
to amplitude difference and phase difference in (3), (6), (7).
We set the parameters as follows: the pattern of the signal
from transmitter 1 only indicates the changes in amplitude
(using (6)), the pattern of the signal from transmitter 2 only
indicates the changes in phase (using (7)), and the pattern of
transmitter 3 and 4 indicates the changes in both amplitude
and phase (using (3)).

We consider CNN, RNN, and a hybrid model CRNN
(CNN+RNN) [22] as benchmarks to compare with our
proposed model. The hybrid CRNN is composed of three
layers: a CNN based transcription layer, a RNN based
recurrent layer, and a connectionist temporal classification
(CTC) layer. The transcription layer takes the role of feature
extraction from input data. The recurrent layer is used to
predict the feature sequence, learn each feature vector in the
sequence, and output the predicted labels. The CTC layer
employs CTC loss to convert a series of labels from the
recurrent layer into the final label sequence.

A. Setting of experiments

In the experiments, we used a NI-PXIe 1085 computer to
collect the data from multiple RIO-2943 USRPs, and extracted
the RF fingerprint features for device identification. Afterward,
we used MATLAB 2018b to simulate wireless channels,
including AWGN and Rayleigh channels. In MATLAB, we
set the sampling rate as 20 Mbps, the number of subcarriers
as 64, the guard interval length of 0.8µs for the transmitted
signals, the root-mean-squared delay spread (RDS) as 50 ns
and 100 ns with 16 paths in Rayleigh channels, simulating the
environment of home and office (shown in Table I) respectively
[23].

Specifically, four transmitters cyclically transmit the data
with quadrature phase shift keying (QPSK) modulation to the
receiver. We collected 20000 independent groups of signals
emitted from four transmitters, and each consisting of 190-200
I/Q samples. Hence we have 3834920 I/Q signal samples in
total. 80% of these data (around 16000 independent groups of
3067936 samples) are used for training, and 20% of the data
(around 4000 independent groups of 766984 samples) are used
for testing.

 



Fig. 4. Experimental settings for data collection.
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Fig. 5. User interface of signal analysis software.

Besides the data collected in our experiment, we also use
the Oracle dataset generated by Genesys lab, Northeastern
University [24] to compare the performance of various
deep-learning networks. The Oracle dataset is collected by
using more than 100 WiFi devices in an open recreation area
with much fewer reflections, while the data in our experiment
are collected in a closed lab with more reflections. Thus, the
dataset can be viewed as a complement to the data collected
in our lab. For all the data either collected from our lab or
recorded in the Oracle dataset, we randomly select 80% of
data for model training while using the other data for model
testing.

B. Constellation of I/Q signal samples

The original I/Q signal sample points appear around 4
constellation points (0.5, 0.5), (0.5, -0.5), (-0.5, -0.5) and (-0.5,
0.5) with a deviation, shown in Fig. 6 (a), which depends on

TABLE I
PARAMETERS OF RAYLEIGH CHANNELS

Environment RDS (ns) Number of paths

Home 50 16
Office 100 16

Environment Sampling rate (Mbps) Guard interval length (µs)
Home 20 0.8
Office 20 0.8

the subtle difference among wireless devices. After passing
through AWGN or Rayleigh channels, the difference around
4 constellation points is fairly scattered.

Fig. 6 (b) and Fig. 6 (c) show that the constellation points
range from −10 to 10 in both horizontal axis (In-phase) and
vertical axis (Quadrature) through AWGN channels, while the
constellation points range from −5 to 5 through a Rayleigh
channel at an RDS of 100 ns when SNR equals to 0 dB. This
result indicates that device recognition in Rayleigh channels
is more difficult than that in AWGN channels, since the
constellation points are widely dispersed, which shows the
difference of constellation points among devices.
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Fig. 6. Constellation of RF fingerprint (SNR=0 dB) at both transmit and
receive ends after passing through AWGN or Rayleigh channels.

C. Accuracy of RF fingerprint recognition

The identification accuracy in AWGN channels with our
collected dataset and that with the Oracle dataset are
respectively shown in Fig. 7 (a) and Fig. 7 (b). The results
show that our proposed DSLN algorithm outperforms CNN,
RNN, CRNN (CNN+RNN) algorithms at different levels of
SNRs. In the low-SNR region, the proposed algorithm can
achieve a dramatically higher level of accuracy than that
of the other algorithms. Moreover, the gap in the level of
accuracy between these algorithms increases with the decrease
of SNR. Specifically, at a very low SNR (e.g., 0 dB), DSLN
outperforms CRNN by 5%, outperforms RNN by 8%, and
outperforms CNN by 16%. The confusion matrix for the four
device identification is shown in Table II. Each entry refers
to the number of groups, illustrated in Subsection V.A. In
addition, within the range of 0 dB to 20 dB, the accuracy
of DSLN varies from 95.5% to 99.5%, which illustrates that
DSLN is more robust than the other algorithms. In brief,

 



TABLE II
CONFUSION MATRIX FOR 4 DEVICE IDENTIFICATION PROBLEM AT VERY LOW SNR (NUMBER OF GROUPS)

CNN AWGN Rayleigh (RDS=50 ns) Rayleigh (RDS=100 ns)

Device 1 Device 2 Device 3 Device 4 Device 1 Device 2 Device 3 Device 4 Device 1 Device 2 Device 3 Device 4

Device 1 733 88 88 91 725 95 91 89 700 95 105 100
Device 2 75 780 73 72 83 750 83 84 113 681 101 106
Device 3 74 74 772 80 90 90 730 90 97 97 710 96
Device 4 75 73 70 782 86 87 87 740 100 99 99 702

DSLN AWGN Rayleigh (RDS=50 ns) Rayleigh (RDS=100 ns)

Device 1 Device 2 Device 3 Device 4 Device 1 Device 2 Device 3 Device 4 Device 1 Device 2 Device 3 Device 4

Device 1 959 15 11 15 952 16 11 21 901 33 33 33
Device 2 19 945 18 18 21 940 19 20 32 901 32 35
Device 3 14 13 961 12 14 15 947 14 30 36 892 42
Device 4 15 14 15 956 20 21 20 959 32 32 31 905

RNN AWGN Rayleigh (RDS=50 ns) Rayleigh (RDS=100 ns)

Device 1 Device 2 Device 3 Device 4 Device 1 Device 2 Device 3 Device 4 Device 1 Device 2 Device 3 Device 4

Device 1 850 50 45 55 840 60 50 50 807 64 65 64
Device 2 42 873 40 45 55 835 56 54 73 783 72 72
Device 3 56 60 834 50 41 51 836 72 71 58 813 58
Device 4 45 45 44 862 51 51 82 845 51 71 72 806

CNN+RNN AWGN Rayleigh (RDS=50 ns) Rayleigh (RDS=100 ns)

Device 1 Device 2 Device 3 Device 4 Device 1 Device 2 Device 3 Device 4 Device 1 Device 2 Device 3 Device 4

Device 1 880 40 40 40 845 56 49 50 817 60 60 63
Device 2 40 880 35 45 51 839 56 54 70 793 70 67
Device 3 54 57 840 50 41 45 845 69 61 59 821 59
Device 4 40 42 44 870 51 51 72 855 51 66 67 816

compared to CNN, RNN, CRNN, our proposed DSLN is less
sensitive to noise and is more capable of learning the RF
fingerprint features from wireless signals even when they are
contaminated by a high level of noise.
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Fig. 7. Accuracy comparison of CNN, RNN, CRNN (CNN+RNN), and
DSLN. (’50 ns’ represents RDS = 50ns, ’100 ns’ represents RDS =
100ns.)

We also evaluate the device identification with RF
fingerprint features in Rayleigh channels. These results from
our collected data and from Oracle dataset are shown in Fig.
7 (c) and Fig.7 (d), respectively. As shown in Fig. 7 (c) and
Fig. 7 (d), the accuracy of device identification with CNN,

RNN, CRNN (CNN+RNN) and DSLN increases with the rise
of root-mean-squared delay spread (RDS), i.e., the accuracy
in the home environment is higher than that in the office
environment. Also, in comparison with AWGN channels, the
accuracy in the Rayleigh channels decreases. This is due to
the multi-path effect of the Rayleigh channels that leads to the
change of a signal segment, thus making it difficult to identify
a device in the Rayleigh channels.

As shown in Fig. 7 (c), in comparison with other algorithms,
our proposed DSLN can achieve a higher level of accuracy.
Specifically, when SNR is 0 dB and RDS is 50 ns, DSLN
outperforms CRNN by 9%, outperforms CNN by 20%, and
outperforms RNN by 11%. The confusion matrix for 4-device
identification with various learning algorithms is illustrated in
Table II with the RDS of 50 ns and 100 ns, respectively.

The key of our network to achieve a better performance
in high-level noise environments is the use of dynamic
thresholding for activation functions, shown in equation
(10). In the data pre-processing procedure, original data is
transformed into wavelet coefficients for de-noising. In the
following, we use a dynamic thresholding based activation
function, which sets near-zero inputs (between −τ and τ )
to zeros, since these inputs have a high probability of being
noise without any useful information according to the theory of
signal de-noising. Specifically, our idea is borrowed from the
Wavelet threshold de-noising method [25]. Because wavelets
localize data features to different scales, important signal or
data features can be preserved after removing noise. That
is, a wavelet transform leads to a sparse representation for
real-world signals, and it merely concentrates signals in a
few large-magnitude wavelet coefficients. It should be noted
that the wavelet coefficients with small values are regularly

 



considered as noise.

D. Convergence of RF fingerprint recognition algorithms

This section investigates the convergence of RF fingerprint
recognition by comparing CNN, RNN, CRNN (CNN+RNN),
and our proposed DSLN algorithms with our collected dataset
and the Oracle dataset. As shown in Fig. 8 (a) and (b), it takes
around 16-18 iterations in RNN, CRNN and DSLN to achieve
the convergence in AWGN channels when SNR is 0 dB, while
it takes 18-20 iterations in CNN for convergence. In addition,
it takes around 15 iterations in RNN, CRNN and DSLN to
achieve convergence in Rayleigh channels when SNR is 0
dB, while it takes 18 iterations in CNN for convergence. The
reason is that compared to an AWGN channel, a Rayleigh
channel is significantly influenced by the effect of multiple
paths, and thus it needs more iterations to learn signal features.
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Fig. 8. Convergence and running time comparison of CNN, RNN, CRNN
(CNN+RNN), and DSLN (SNR = 0 dB) (’50 ns’ represents RDS = 50ns,
’100 ns’ represents RDS = 100ns.)

We then evaluate the running time of CNN, RNN, CRNN
(CNN+RNN) and DSLN, including both data training and
testing time. As shown in Fig.8 (c), it takes around 600-950
seconds to achieve convergence with CNN, around 500-850
second to achieve convergence with RNN, around 600-940
second to achieve convergence with CRNN, and around
430-780 seconds to achieve convergence with DSLN at
different levels of SNR in AWGN channels. In Fig. 8, the
numbers of iterations in RNN, CRNN and DSLN are almost
the same, but DSLN needs less time for training and testing
than other algorithms. This is due to the fact that DSLN
employs an identity shortcut that could facilitate parameter
update process [26].

In Rayleigh channels, DSLN needs 400-800 seconds or
600-1000 seconds to achieve convergence when the RDS is
50 ns or 100 ns, respectively. In comparison with CNN, our
proposed DSLN algorithm can reduce the running time by
50 − 60% in total. In comparison with RNN, our proposed

DSLN algorithm can reduce the running time by 10−20%. In
comparison with CRNN, our proposed DSLN algorithm can
reduce the running time by 25− 40%.

E. Computation complexity of RF fingerprint recognition
algorithms

In this section, we discuss the computation complexity in
the training phase of various learning algorithms. Specifically,
we present the computation complexity of DSLN, CNN, RNN
and CRNN. The authors in [27] proved that the learning
process of a neural network with a depth of d takes a
time of O

(
s2d
)

, where s refers to the input dimension and
O (.) represents the level of complexity of an algorithm. The
operation of convolution has additional time complexity due to
the forward and backpropagation units, which can be shown as
O
(∑M

m=1 cms
2
mfmρ

2
m

)
where M represents the number of

convolutional layers, m represents the index of a convolutional
layer, cm represents the size of input feature map at the mth
layer, sm represents the size of filters at the mth layer, fm
represents the number of filters at the mth layer, ρm represents
the size of output feature map at the mth layer [28].

In the proposed DSLN model with depth d, we have one
convolutional layer, and d − 1 non-convolutional layers. The
time complexity of DSLN model can be shown as

TCD = O
(
c1s

2
1f1ρ

2
1

)
+O

(
s2d
)
. (16)

In the CNN model, we have d convolutional layers, and thus
the time complexity of CNN model can be shown as

TCC = O

(
d∑

m=1

cms
2
mfmρ

2
m

)
+O

(
s2d
)
. (17)

In the RNN model, we have no convolutional layer, but
merely d non-convolutional layers. The time complexity of
CNN model can be shown as

TCR = O
(
s2d
)
. (18)

In the CRNN model, we have d̂ convolutional layers (d̂ < d)
and d − d̂ non-convolutional layers. The time complexity of
CRNN model can be shown as

TCCR = O

 d̂∑
m=1

cms
2
mfmρ

2
m

+O
(
s2d̂
)

+O
(
s2d−d̂

)
.

(19)

By comparing equations (16), (17), (18), (19), we find that
CNN and CRNN requires more time than other algorithms,
attributing to convolutional layers that consume a large amount
of computation time. The proposed DSLN model takes slightly
more time than the RNN model since the former has one
convolutional layer. But the gap of time complexity between
DSLN and RNN tends to diminish with the increase of depth
d. Moreover, DSLN needs fewer epochs for convergence than
other models, resulting in less running time than RNN, CNN,
and CRNN, as shown in Fig. 8.

 



F. Summary of performance evaluation

We have proposed a DSLN algorithm to recognize devices
by analyzing RF fingerprints in a low-SNR IoT system.
In comparison with CNN, RNN and CRNN that are most
widely used deep learning algorithms, our proposed DSLN
algorithm not only dramatically improves the accuracy of
device recognition, but also reduces the running time for
training and testing. These improvements stem from two
aspects.

On one hand, in terms of the device recognition accuracy,
the proposed algorithm outperforms CNN, RNN, CRNN by
yielding improvements of 10% to 20%, under a typical
low-SNR IoT environment. Also, the proposed DSLN
algorithm is more robust than other algorithms. DSLN can
keep a level of accuracy between 90 − 99% in various
AWGN and Rayleigh channels, while other algorithms can
only achieve an accuracy below 80% at low SNRs. As
a result, the design of a dynamic shrinkage threshold in
our proposed DSLN algorithm can effectively improve the
recognition accuracy at low SNRs and keep robust at various
SNRs.

On the other hand, the proposed DSLN algorithm could
reduce 20% to 60% of running time in comparison with CNN,
RNN, CRNN. For DSLN, the design of an identity shortcut
can skip convolutional layers and directly connect a particular
layer to a latter layer with an identity mapping, thus greatly
reducing running time. It should be noted that running time is
a critical indicator to evaluate the performance of a real-time
IoT system.

CONCLUSION

In this paper, we have proposed a novel algorithm,
called DSLN, to identify IoT devices by analyzing their
RF fingerprints. DSLN could mitigate the problems in the
low SNR settings of IoT applications, e.g., in a radar
system for Internet of vehicles. Specifically, we develop a
dynamic shrinkage threshold to improve device recognition
accuracy. Moreover, an identity shortcut has been presented
for accelerating the training process. The detailed analysis and
extensive experiments has shown the robustness of DSLN in
various SNR scenarios. Finally, the deployment of a 4-device
network has demonstrated that DSLN comprehensively
outperforms CNN, RNN, CRNN, both in terms of the
recognition accuracy and running time, thereby enabling
security in real-time IoT scenarios.

To further improve the robustness of our RF recognition
methods in complicated scenarios, we plan to extend our
study to the scenario of both high-level noise and adversarial
attacks. Different from [13], which assumes that RF signal
data can be collected by a server for model training, we might
not be able to send the original signal data to a server for
model training in a high SNR setting. Instead, we can only
complete the learning process in a distributed way, with a
small amount of data exchange between the server and the
devices, e.g., the key parameters of learning models. In a
distributed computing architecture, an invalid user is more
likely to mislead the learning process of device recognition by

intentionally spoofing or imposing perturbations on RF signals.
As a future work, it is interesting to consider distributed
adversarial learning under low SNR environments.
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