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Abstract. There are well-known quasi-formal arguments that identity is a “strict”

relation in at least the following three senses: (1) There is a single identity relation and a

single distinctness relation; (2) There are no contingent cases of identity or distinctness;

and (3) There are no vague or indeterminate cases of identity or distinctness. However,

the situation is less clear cut than it at first may appear. There is a natural formal theory

of identity that is very close to the standard classical theory but which does not validate

the formal analogues of (1)–(3). The core idea is simple: We weaken the Principle of the

Indiscernibility of Identicals from a conditional to an entailment and we adopt a weakly

classical logic. This paper investigates this weakly classical theory of identity (and related

theories) and discusses its philosophical ramifications. It argues that we can accept a

reasonable theory of identity without committing ourselves to the uniqueness, necessity,

or determinacy of identity.

§1. Introduction. The identity relation seems to be very straightforward.
If asked to characterize this relation, we might respond with a near triviality –
for example, “everything is identical to itself and to nothing else”.1 No more
elaborate characterization appears needed.

The formal theory of identity also seems to be well-settled. The familiar first-
order theory of identity is generated by two principles – the claim that identity
is reflexive, and a schematic version of Leibniz’s Principle of the Indiscernibility
of Identicals.

Part of the reason that the nature of identity seems so straightforward is that
identity appears to be a “strict” relation. In particular, identity seems to be
strict in at least the following three senses:

(1) There is a single identity relation and a single distinctness (non-identity)
relation. There is no room for multiple extensionally-inequivalent identity
or distinctness relations.

(2) The identity and distinctness relations obtain necessarily. There is no
room for contingent cases of identity or distinctness.

This is the penultimate draft of a paper that appears in The Review of Symbolic Logic
(2011) 4(4): 607–644.

1For instance, Lewis writes, “Identity is utterly simple and unproblematic. Everything is

identical to itself; nothing is ever identical to anything else except itself. There is never any
problem about what makes something identical to itself; nothing can ever fail to be. And

there is never any problem about what makes two things identical; two things never can be
identical.” See Lewis (1986), pages 192–193.
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(3) The identity and distinctness relations obtain definitely and determinately.
There is no room for vague or indeterminate cases of identity or distinct-
ness.2

Indeed, there are compelling quasi-formal arguments for each of these three
claims.

To be sure, there can be indeterminate and contingent identity statements.
Well-known examples include the contingent “Benjamin Franklin is identical to
the first Postmaster General”3 and the indeterminate “Princeton is identical to
Princeton Borough” (as opposed to the surrounding Princeton Township).4 But
in these cases, the contingency or indeterminacy seems not to derive from the
identity relation as such. Rather, the contingency and indeterminacy seems to
derive from the ways in which terms in the two sentences designate their referents.
The description “the first Postmaster General” is not a rigid designator. It does
not designate the same object – namely, Benjamin Franklin – in every possible
world. The term “Princeton” does not determinately refer to a single geographic
region. It refers indeterminately to Princeton Borough, Princeton Township, and
perhaps other geographical regions. When we restrict our attention to singular
terms that designate their objects both rigidly and determinately, examples of
contingent or indeterminate identity statement are hard to find. According to
orthodoxy, then, (1)–(3) are true.

However, the technical situation is less clear cut than it may at first appear.
There is a natural theory of identity that provides more wiggle room than one
might have thought possible. This theory is very close to the standard classical
theory of identity, but does not validate the formal analogues of (1)–(3). The
core idea is simple: We weaken the Principle of the Indiscernibility of Identicals
from a conditional to an entailment (or equivalently, to a rule). We also adopt
a weakly classical logic – a logic that validates the classical entailments but
not the classical meta-rules. In the resulting theory, the standard arguments
for the formal analogues of (1)–(3) do not go through. Weaker versions of the
formal results do obtain. But they do not rule out the possibility of multiple
extensionally-inequivalent identity relations or the possibility of contingent or
indeterminate cases of identity.

Perhaps this result will turn out to be a mere logical curiosity. But it provides
evidence that we can adopt a reasonable theory of identity without claiming
that identity is unique, necessary, or determinate. If we have reason – from
metaphysics, perhaps – to reject one of these claims, we can do so without
radically changing our logic or our theory of identity. At the very least, we can
stay neutral on these issues.

Indeed, I suspect that this result tells us something deep and interesting about
the nature of identity and the power of classical logic. It shows us where the
strength of the familiar theory of identity comes from. And this is so even if we
ultimately reject weakly classical theories as insufficiently powerful.

2In this paper, I treat vagueness as a species of indeterminacy. So far as I can tell, nothing
hangs on this assumption.

3See Kripke (1971).
4See Lewis (1988).
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This paper will proceed as follows: In the next section, I rehearse the quasi-
formal arguments for the strictness of identity. In section three, I develop the
proof theory and model theory for weakly classical theories of identity. I first
discuss a simple theory of identity that contains the claim that identity is reflexive
and a version of the Principle of the Indiscernibility of Identicals in rule form.
I then consider theories that contain additional principles. I provide a natural
algebraic semantics for each of these theories and prove strong soundness and
strong completeness results. In section four, I examine how to add a modal
operator to the language. In section five, I present an alternative relational
semantics. In section six, I return to the quasi-formal arguments for the strictness
of identity and show how they break down. Finally, in section seven, I briefly
discuss the potential philosophical ramifications of these results.

§2. Arguments for the Strictness of Identity. Here are the basic prin-
ciples of the familiar classical theory of identity:5

x = x Reflexivity (Re)
x = y → (E(x)↔ E(y)) Indiscernibility of Identicalsc (PIIc)

These two principles are schemas such that x and y are arbitrary terms and E
is an arbitrary formula. For simplicity, we can assume that the language lacks
function symbols. Thus, the only terms are constants and variables. The formula
E(y) differs from the formula E(x) only in that it may have a free occurrence of
y in some or all of the places that E(x) has a free occurrence of x. (We treat all
occurrences of constants as free.)

2.1. The Collapse Argument. The core of the collapse argument is a sim-
ple formal result. Suppose we have a language with two identity predicates, =1

and =2. Suppose they each obey the classical theory of identity. That is, suppose
that the theory contains:

x =1 x Reflexivity1 (Re1)
x =2 x Reflexivity2 (Re2)
x =1 y → (E(x)↔ E(y)) Indiscernibility of Identicalsc1 (PIIc1)
x =2 y → (E(x)↔ E(y)) Indiscernibility of Identicalsc2 (PIIc2)

Here, E(x) ranges over formulas of the entire language.
Given this theory, we can show that =1 and =2 are fully intersubstitutable.

That is, any pair of formulas that differ only in the subscripts on some or all of
their identity symbols logically entail each other.

Proof. Let x and y be arbitrary constants or variables. By Re2, ` x =2 x.
By PIIc1, ` x =1 y → (x =2 x ↔ x =2 y). Since x =2 x, x =1 y → (x =2 x ↔
x =2 y) ` x =1 y → x =2 y, it follows that ` x =1 y → x =2 y. Similarly, using
Re1 and PIIc2, ` x =2 y → x =1 y. So, ` x =1 y ↔ x =2 y.

In classical logic, we have the following principle: If ` A ↔ B then ` E ↔
E〈B/A〉, where A, B, and E are arbitrary formulas and E〈B/A〉 differs from E
only in that it has occurrences of B in some or all of the places where E has
occurrences of A. (This is the principle of the substitution of logical equivalents.)

5In what follows, I follow the standard practice of ignoring the use-mention distinction where
there is little chance of confusion.
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So for any formula E, ` E ↔ E〈x =2 y/x =1 y〉. It follows that E a` E〈x =2

y/x =1 y〉. Thus, =1 and =2 are fully intersubstitutable.6 �

This result can be used to argue for several striking claims. First, it can be used
to argue that two people who each speak a language with an identity predicate
must have identity predicates with the very same extension.7 In particular, if the
speakers disagree about the truth of an identity claim, at least one of them must
be wrong. For otherwise, we could combine their languages. The two identity
predicates would presumably each obey the classical theory of identity in the
combined language but would be inequivalent. This violates the formal result.8

Second, the formal result can be used to argue that if a speaker employs
an identity predicate, it determinately refers to a single determinate relation.
For otherwise, there would be at least two inequivalent precisifications of the
speaker’s predicate. These precisifications could be added to the speaker’s lan-
guage. The precisifications would presumably each obey the classical theory of
identity in the expanded language but would be inequivalent. This again violates
the formal result.

Finally, and perhaps more surprisingly, the formal result can be used to argue
that identity obtains necessarily (for any reasonable kind of alethic necessity).
For otherwise, we could define a second identity predicate, =′, such that x =′ y
holds just in case 2x = y, where 2 is the relevant necessitation operator. Since
` x = x, we have it that ` 2x = x (by the Necessitation principle of modal
logic).9 Moreover, ` 2x = y → x = y (by the T principle of modal logic). Using
PIIc, ` 2x = y → (E(x) ↔ E(y)). So =′ obeys the classical theory of identity
but is inequivalent with =. This again violates the formal result.

One might worry that these arguments prove too much. After all, there are
cases of contingent and indeterminate identity statements. What should we say
about them? The answer is that the Principle of the Indiscernibility of Identicals
should not be taken to apply in contexts where designators can fail to be rigid
or fail to determinately refer. In what follows, we’ll assume that this constraint
is met – all terms in the language will be assumed to designate both rigidly and
determinately.

Each of the three ways of applying the collapse argument can be challenged.
For example, against the first argument, it might be claimed that one cannot al-
ways include the identity predicates of distinct languages in a common language.
Alternatively, it might be claimed that when a language with an identity pred-
icate is expanded with additional vocabulary, there may come to be a violation
of the Principle of the Indiscernibility of Identicals where there wasn’t one orig-
inally. Against the second argument, it might be claimed that there are cases

6A version of this argument can be found in Williamson (2007). He traces it back to Quine
(1961).

7If distinct predicates can have the same extension but different meanings, the two identity

predicates may nevertheless have different meanings.
8An analogous argument can be made for mental representations rather than public language

expressions.
9One might object to this on the grounds that 2a = a is equivalent to 2∃xx = a, and so

2a = a entails that a necessarily exists. Following Kripke (1971), we can avoid this worry by
taking 2 to be a weak necessitation operator: 2A is true if A is true in every world in which

the objects mentioned in A exist.
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of indeterminacy without distinct precisifications. Alternatively, it might be
claimed that precisifications of the identity predicate can violate the Principle of
the Indiscernibility of Identicals with respect to formulas containing occurrences
of distinct precisifications. Against the third argument, it might be claimed that
the Principle of the Indiscernibility of Identicals fails in modal contexts. And so
on. As is probably obvious, these challenges carry a whiff of desperation about
them, at least in the absence of significant defense and elaboration.

2.2. The Modal Argument. The second quasi-formal argument for the
strictness of identity consists of a cluster of related results in classical identity
theory with a single one-place modal operator. If the modal operator, 2, is
governed by a normal modal logic, we can show that ` x = y → 2x = y.

Proof. By Re, ` x = x. By Necessitation, ` 2x = x. By PIIc, ` x = y →
(2x = x → 2x = y). Since 2x = x, x = y → (2x = x → 2x = y) ` x = y →
2x = y, we have it that ` x = y → 2x = y.10 �

This proof relies only on the Necessitation principle of modal logic. Given
additional modal principles, we can derive further results. For example, consider
the B principle: ` A → 2¬2¬A. In the modal logic KB, we can show that
` ¬x = y → 2¬x = y.

Proof. By the previous result, ` x = y → 2x = y. Since ` x = y ↔
¬¬x = y, using K it follows that ` 2x = y ↔ 2¬¬x = y. So ` x = y →
2¬¬x = y. By contraposition, ` ¬2¬¬x = y → ¬x = y. Again using K,
` 2¬2¬¬x = y → 2¬x = y. By B, ` ¬x = y → 2¬2¬¬x = y. Therefore,
` ¬x = y → 2¬x = y. �

Putting these two results together, it follows that in any normal extension of
KB, the necessity of identity and the necessity of distinctness obtain. It further
follows that ` ¬2x = y → 2¬x = y and ` ¬2¬x = y → 2x = y. That is,
if an identity is not necessary, its negation is necessary. If the negation of an
identity is not necessary, the identity is necessary. Moreover, using the Law of
the Excluded Middle, ` 2x = y ∨ 2¬x = y. In other words, for any identity
claim, either it or its negation is a necessary truth.

Now consider the D principle: ` 2A → ¬2¬A. In the modal logic KD, we
can show that ` 2¬x = y → ¬x = y.

Proof. By D, ` 2x = y → ¬2¬x = y. By contraposition, ` 2¬x = y →
¬2x = y. By the above results, ` x = y → 2x = y. By contraposition,
` ¬2x = y → ¬x = y. Therefore, ` 2¬x = y → ¬x = y. �

In the modal logic KDB, we can show that ` 2x = y → x = y.

Proof. By D, ` 2x = y → ¬2¬x = y. By the above results, in any extension
of KB, ` ¬x = y → 2¬x = y. By contraposition, ` ¬2¬x = y → x = y.
Therefore, ` 2x = y → x = y. �

10This argument is commonly referred to as the “Barcan-Kripke argument”. The first proof

of the necessity of identity appears in Barcan (1947). A version of this argument is also
stated in Kripke (1971). Kripke doesn’t explicitly endorse the argument (although he does

endorse its conclusion). Kripke writes that the argument “has been stated many times in
recent philosophy.”
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Thus, in any normal extension of KDB, x = y and 2x = y are logically
equivalent, as are ¬x = y and 2¬x = y. In particular, these results apply to
the modal logic S5 – the best candidate for the logic of metaphysical necessity.
This suggests that we should accept the necessity of identity and the necessity
of distinctness. There is no room for any kind of contingency in the identity and
distinctness relations.

2.3. The Vagueness Argument. The final argument for the strictness of
identity that I’ll consider is a version of Evans’s argument that there can be no
vague objects.11

Let V be an operator such that VA stands for the claim that it is vague
whether A. We first show that ` V x = y → ¬x = y. The only principle for V
that we’ll need is that it is not vague whether logical truths obtain.

Proof. By Re, ` x = x. By the non-vagueness of logical truths, ` ¬V x = x.
By PIIc, ` x = y → (¬V x = x ↔ ¬V x = y). Since ¬V x = x, x = y →
(¬V x = x ↔ ¬V x = y) ` x = y → ¬V x = y, it follows that ` x = y →
¬V x = y.12 By contraposition, ` V x = y → ¬x = y. �

This suggests that if it is vague whether an identity holds, the identity is false.
Presumably, if an identity is false it is not vague whether it holds.13 Thus, we
can conclude that identity cannot be vague.

If it is vague whether ¬x = y, it is vague whether x = y. So we should endorse
` V¬x = y → V x = y. Combining this with the above result, ` V¬x = y →
¬x = y. This suggests that if it is vague whether a non-identity holds, the
identity is false. Presumably, if an identity is false it is not vague whether the
non-identity holds.14 Thus, we can conclude that non-identity cannot be vague,
either.

There is a somewhat different (and perhaps better) strategy that can be used
to argue that identity and distinctness are not vague.15 In particular, we can
apply the results of the previous subsection. Suppose Det is an operator such
that DetA stands for the claim that it is definitely the case that A. (Thus, we
can understand VA to be equivalent to ¬DetA ∧ ¬Det¬A.) If Det obeys the
Necessitation principle of modal logic (as seems plausible), then by the results
of the previous subsection, ` x = y → Detx = y. If, in addition, Det obeys the
principles of the modal logic KB (as also seems plausible), then ` ¬x = y →
Det¬x = y. In KB, then, both identities and non-identities are definite. From
this, it follows that ` ¬Detx = y → Det¬x = y and ` ¬Det¬x = y → Detx =
y. That is, if it is not definite that an identity holds, it is definite that it does

11See Evans (1978). See Salmon (1981), page 243, for essentially the same argument. Evans’s

main concern is whether the world can contain vague objects and not whether identity can
be vague. As Williamson (1994), page 256, points out, it is plausible that we can accept the
existence of vague objects without accepting vague identities. So even if Evans’s argument

works against vague identity, it may not rule out the existence of vague objects.
12Notice that the argument to this point is analogous to the Barcan-Kripke argument, with

¬V playing the role of 2. The analogy is not perfect, however, since ¬VA is not the claim
that A is definitely true but the claim that it not vague whether A is true.

13This claim can be questioned.
14This claim can also be questioned.
15This may be related to what Evans had in mind with the second argument in his paper.
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not hold. If it is not definite that an identity does not hold, it is definite that the
identity does hold. Moreover, by the Law of the Excluded Middle, it follows that
` Detx = y ∨ Det¬x = y. In other words, for any identity statement, either it
or its negation is definite. (And therefore, both ` ¬V x = y and ` ¬V¬x = y.)
This suggests that we should accept the definiteness of identity and distinctness.
There is no room for vagueness in the identity or distinctness relations.16

Similarly, if we interpret VA as the claim that it is indeterminate whether A
and DetA as the claim that it is determinately the case that A, we can argue
that there is no room for any kind of indeterminacy in the identity or distinctness
relations.

2.4. Weakly Classical Identity Theory. What should we make of these
arguments? One option is to simply accept their conclusions. This may ul-
timately be the best response. But it seems much too quick to close off our
options in metaphysics on the basis of these rather superficial-seeming grounds.
It is worth investigating how the arguments may be resisted.

A second option is to move to a very different base logic. There are several
non-classical logics that could be explored. For instance, we could move to
an intuitionistic logic.17 If we did that, we would still be able to prove that
` x =1 y ↔ x =2 y, that ` x = y → 2x = y, and that ` x = y → Detx = y.
But we would no longer be able to prove that ` 2x = y ∨ 2¬x = y or that
` Detx = y ∨ Det¬x = y. Alternatively, we could move to a logic in which
B,A→ (B → C) 0 A→ C.18 In such a logic, the proofs of ` x =1 y ↔ x =2 y,
` x = y → 2x = y, and ` x = y → Detx = y would fail. Needless to say, these
are radical proposals.

A third option is to retain classical logic but reject the standard first-order
theory of identity. The trouble with this suggestion is that it is not at all clear
what should go in its place.

The strategy of this paper is to try to make the minimal possible changes
in logic and identity theory and still escape the arguments for the strictness of
identity. It turns out that two small changes suffice.

The first change is to weaken the theory of identity. Reflexivity seems non-
negotiable. The idea, then, is to slightly weaken the Principle of the Indiscerni-
bility of Identicals. The natural suggestion is to weaken the principle from a
conditional to an entailment (or to a rule). There are two salient proposals for
doing so:

x = y,E(x)/E(y) PIIe

x = y/E(x)↔ E(y) PIIe′

These two rules are equivalent over a very weak base logic. In particular, all
that is needed beyond the usual structural rules are two principles for the bicon-
ditional: A,A↔ B ` B and ` A↔ A.

16Indeed, it is plausible that Det obeys the principles of the modal logic KDB. By the results

of the previous subsection, it follows that x = y and Detx = y are logically equivalent, as are

¬x = y and Det¬x = y.
17See Putnam (1983) and Wright (2001) for the suggestion that the correct account of

vagueness requires moving to an intuitionistic logic.
18Such logics are sometimes proposed to deal with the semantic paradoxes. See, for example,

Field (2008).
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Proof. By PIIe, x = y,E(x) ↔ E(x) ` E(x) ↔ E(y). But ` E(x) ↔ E(x).
So x = y ` E(x)↔ E(y).

By PIIe′, x = y ` E(x)↔ E(y). E(x), E(x)↔ E(y) ` E(y). So x = y,E(x) `
E(y). �

We can therefore adopt either of these two rules as our version of the Principle
of the Indiscernibility of Identicals. For concreteness, we’ll adopt PIIe.19 This
is a familiar rule – it is the standard elimination rule for identity in Natural
Deduction-style formulations of identity theory.

In (strongly) classical logic, PIIc and PIIe are equivalent. The second change
we need to make is to slightly weaken our base logic. In particular, we weaken
the logic to weakly classical logic.

Given a consequence relation for a language that contains at least the usual
propositional logical constants, we say that the consequence relation is weakly
classical just in case each classically valid formula is valid and each classically
valid entailment is valid. (For the purpose of this definition, we do not count
identity as a logical constant. So PIIc does not count as a classical validity.) We
say that the consequence relation is strongly classical if, in addition, each classi-
cally valid meta-rule is valid. In particular, the consequence relation must have
as valid Conditional Introduction, Disjunction Elimination (that is, Reasoning
by Cases), and Negation Introduction (that is, Reductio).

Over weakly classical logic, Conditional Introduction, Disjunction Elimination,
and Negation Introduction are equivalent. These meta-rules are also equivalent
to the principle of Entailment Congruence: If Γ, A ` B and Γ, B ` A then
Γ, E ` E〈B/A〉. So we can characterize a strongly classical logic as a weakly
classical logic that validates any one of these meta-rules.

If we’re working in a language in which there are only the usual logical connec-
tives and quantifiers (in addition to individual constants, functions, and predi-
cates), any weakly classical consequence relation is strongly classical. But if the
language contains additional vocabulary, a weakly classical consequence relation
need not be strongly classical. For instance, there are weakly classical theories
of truth and weakly classical theories of determinateness that are not strongly
classical.20 Perhaps surprisingly, the same is true for identity. As we will see be-
low, if our theory of identity is axiomatized by Re and PIIe, the weakly classical
consequence relation will not be strongly classical.21 This provides just enough
wiggle room to block the arguments for (1)–(3).

§3. Basic Results.

3.1. The Language. We can begin our investigation in a very simple lan-
guage. The language has an infinite stock of individual constants, a1, a2, a3, . . . ,
the familiar logical connectives, ¬,∧,∨,→,↔, the identity predicate, =, and

19The superscript “c” stands for “conditional” and the superscript “e” stands for

“entailment”.
20Logics for truth or determinate truth based on supervaluational semantics provide impor-

tant examples of this.
21By contrast, by Lemma 3.15, if our theory of identity consists of Re and PIIc, the conse-

quence relation will be strongly classical.
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the parentheses, ( and ). The language does not contain variables, quantifiers,
function symbols, or any additional predicates.

We use a, b, and c to stand for arbitrary constants. We use A, B, and C to
stand for arbitrary sentences. We use Γ, ∆, and Θ to stand for arbitrary sets of
sentences.

The formation rules for sentences are the obvious ones. The only atomic
sentences are expressions of the form a = b, where a and b are constants. If A
and B are sentences, so are ¬A, (A ∧ B), (A ∨ B), (A → B), and (A ↔ B).
Nothing else is a sentence.

3.2. Proof Theory. We operate with a weakly classical consequence rela-
tion. So we can make use of any of the standard Hilbert-style axiomatizations
of classical propositional logic for our language.22 For simplicity, we can assume
that the only rule of inference in the chosen axiomatization is Modus Ponens. In
addition, we add the following two schemas:

a = a Reflexivity (Re)
a = b, E(a)/E(b) Indiscernibility of Identicalse (PIIe)

The sentence E(b) differs from the sentence E(a) only in that it may have oc-
currences of b in some or all of the places that E(a) has occurrences of a.

We let > stand for an arbitrary theorem of the logic.

3.3. Semantics. We employ an algebraic approach to semantics. Each model
for the language is based on a Boolean algebra. There are two ways of under-
standing what these Boolean algebras represent. On one way of understanding
the semantics, the elements of the Boolean algebras are truth values. On an
alternative – and preferable – way of understanding the semantics, the elements
of the Boolean algebras are propositions. They are not truth values but the
contents expressed by sentences.

There is a choice to make regarding the designated values of our semantics.
We could insist that the sole designated value in a model be the top element of
the relevant Boolean algebra. Alternatively, we could make use of a proper filter
of elements of the Boolean algebra – a non-empty proper upper subset of the
algebra that is closed under finite infima.

If we understand the elements of the Boolean algebra to be a set of propo-
sitions, we can understand this choice as follows: On one view, a proposition
is a set of possible worlds, precisifications, or some other kind of entity. Em-
ploying a semantics where the designated value is the top element is akin to a
supervaluational semantics on which a sentence is true if it is true on all pre-
cisifications. Employing a semantics where the designated values form a proper
filter of propositions is akin to a modal semantics on which a sentence is true if
it expresses a set of worlds that contains the actual world (or some privileged
set of worlds).23 In what follows, I’ll discuss both approaches, but I’ll largely

22We could instead make use of a Natural Deduction-style formulation of classical propo-
sitional logic, so long as the meta-rules were restricted so that PIIe cannot be applied in

subderivations.
23More precisely, there is a natural correspondence between (i) a complete atomic Boolean

algebra with a complete proper filter of designated values and (ii) a set of worlds with a

privileged subset of worlds to supervaluate over. If the filter contains only the top element of
the Boolean algebra, the corresponding privileged set of worlds is the set of all worlds. If the
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focus on the filter-based approach. This is for two reasons. First, it is philo-
sophically more natural in most contexts. Second, there are technical reasons for
making use of a filter-based semantics when we extend the language by adding
an alethic modal operator. In particular, on the most straightforward way of
adding a modal operator to the single designated value semantics, it turns out
that if A is true in a model so is 2A. When we turn to the case of vagueness
and indeterminacy, however, the single designated value approach will become
relevant.

In greater detail, here is the filter-based semantics: A model,M, is an ordered
sextuple 〈S,≤, F,D, I,Φ〉, such that 〈S,≤〉 is a non-trivial24 Boolean algebra. F
is a proper filter of the Boolean algebra. D is a non-empty set – the domain of
the model. I is a function from D×D to S – the identity function of the model.
Φ is a function from the set of constants to D – the interpretation function of
the model.

We write p and q for arbitrary elements of S. We write d, e, and f for arbitrary
elements of the domain.

Given any sentence A of the language, we write ‖A‖M for the semantic value
of A in the model M. When the model is clear from context, we omit the
superscript. The semantic value of A in M is recursively defined as follows:

• ‖a = b‖ = I(Φ(a),Φ(b));
• ‖¬A‖ = −‖A‖;
• ‖A ∧B‖ = ‖A‖ u ‖B‖;
• ‖A ∨B‖ = ‖A‖ t ‖B‖;
• ‖A→ B‖ = −‖A‖ t ‖B‖;
• ‖A↔ B‖ = (−‖A‖ t ‖B‖) u (−‖B‖ t ‖A‖).

Here, −, u, and t are the complement, infimum, and supremum functions for
the Boolean algebra, respectively. We write 0 and 1 for the bottom and top
elements of the algebra, respectively.

Given a modelM, we writeM � A to mean that A is true inM. This obtains
just in case ‖A‖ ∈ F . We write M � Γ to mean that every member of Γ is true
in M.

Notice that in any model, ‖A→ B‖ = 1 just in case ‖A‖ ≤ ‖B‖. ‖A↔ B‖ = 1
just in case ‖A‖ = ‖B‖.

In this semantics, we’ll want theorems to have value 1 in each model (and
not merely a designated value). Otherwise, we can find a model in which the
theorem is not designated – we simply take a model in which a theorem has a
value other than 1 and modify it by setting the filter to contain only 1.

We must impose constraints on models so that our theory of identity comes
out as true in every model. In particular, there are two constraints that are
needed:

• I(d, d) = 1;
• If I(d, e) ∈ F then for any f , I(d, f) = I(e, f) and I(f, d) = I(f, e).

filter is an ultrafilter, the corresponding privileged set of worlds is a singleton. See section 5.3
for relevant discussion.

24That is, S has at least two elements.
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The first constraint is needed so that each instance of Reflexivity has value 1
in every model. The second constraint is needed for PIIe. In what follows,
models will be understood to satisfy these two constraints. (We’ll add further
constraints below.)

Notice that the two constraints jointly entail that if I(d, e) ∈ F then I(d, e) =
1: Suppose I(d, e) ∈ F . Then I(d, e) = I(e, e) (by the second constraint) = 1
(by the first constraint). Thus, in any model, a designated identity statement
has the top value in the Boolean algebra.

We write � A to mean that A is valid. This obtains just in case for every
model M, M � A. We write Γ � A to mean that Γ entails A. This obtains just
in case for every model M, if M � Γ then M � A.25

The single designated value semantics is similar. We simply add the constraint
that in any model, the only element of F is the top element of its Boolean algebra.

3.4. Soundness. It is straightforward to show that the proof theory is strongly
sound with respect to our filter-based semantics. That is, if Γ ` A then Γ � A.

Lemma 3.1. In any model, if ‖a = b‖ ∈ F then ‖E(a)‖ = ‖E(b)‖.
Proof. Suppose ‖a = b‖ ∈ F . We prove the result by induction on the

complexity of E.

• E(a) is a = c: If E(b) is a = c, the result is trivial. Suppose instead that
E(b) is b = c. ‖E(a)‖ = ‖a = c‖ = I(Φ(a),Φ(c)) = I(Φ(b),Φ(c)) (by the
second constraint) = ‖b = c‖ = E(b).
• The cases where E(a) is c = a or a = a are similar.
• E(a) is ¬G(a). ‖E(a)‖ = ‖¬G(a)‖ = −‖G(a)‖ = −‖G(b)‖ (by induction)

= ‖¬G(b)‖ = ‖E(b)‖.
• E(a) is G(a) ∧ H(a). ‖E(a)‖ = ‖G(a) ∧H(a)‖ = ‖G(a)‖ u ‖H(a)‖ =
‖G(b)‖ u ‖H(b)‖ (by induction) = ‖G(b) ∧H(b)‖ = ‖E(b)‖.
• The remaining cases are similar. �

Lemma 3.2. If ` A then in any model, ‖A‖ = 1.

Proof. Suppose ` A. Let M be any model. We show that ‖A‖ = 1 by
induction on the complexity of the proof of A.

• Propositional Logic. If A is a theorem of classical propositional logic, then
‖A‖ = 1, since the model is based on a Boolean algebra.
• Reflexivity: ‖a = a‖ = I(Φ(a),Φ(a)) = 1 (by the first constraint).
• PIIe: Suppose ‖a = b‖ = 1 and ‖E(a)‖ = 1. By Lemma 3.1, ‖E(b)‖ =
‖E(a)‖ = 1.
• Modus Ponens: Suppose ‖A→ B‖ = 1. So ‖A‖ ≤ ‖B‖. So if ‖A‖ = 1

then ‖B‖ = 1. �

Theorem 3.3 (Strong Soundness). If Γ ` A then Γ � A.

Proof. Suppose Γ ` A. Let M be any model such that M � Γ. We show
that M � A by induction on the derivation of A from Γ.

• A ∈ Γ: Since M is a model of Γ, M � A.
• A is an axiom: By Lemma 3.2, M � A.

25Entailment is thus defined to be global rather than local validity.
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• Modus Ponens: Suppose A is derived from B and B → A via an appli-
cation of Modus Ponens. By induction, M � B and M � B → A. So
‖B‖ ∈ F and ‖B → A‖ ∈ F . Since F is a filter, ‖B‖ u ‖B → A‖ ∈ F .
‖B‖u‖B → A‖ = ‖B‖u (−‖B‖t‖A‖) = (‖B‖u−‖B‖)t (‖B‖u‖A‖) =
0 t (‖B‖ u ‖A‖) = ‖B‖ u ‖A‖ ≤ ‖A‖. Since F is a filter, ‖A‖ ∈ F .
• PIIe: Suppose A is E(b) and is derived from a = b and E(a) via an

application of PIIe. By induction, M � a = b. By Lemma 3.1, ‖E(a)‖ =
‖E(b)‖. By induction, M � E(a). So M � E(b). �

We are now in a position to show that PIIc is not valid on the semantics.

Proposition 3.4. PIIc is not valid.

Proof. Here is a countermodel: Let M = 〈S,≤, F,D, I,Φ〉, where S =
{1, s, t, 0}; 〈S,≤〉 is the four element Boolean algebra such that 0 < s, t < 1;
F = {1}; D = {l,m, n}; I(l,m) = I(m, l) = I(l, n) = I(n, l) = s and I(m,n) =
I(n,m) = t; and Φ(a1) = l, Φ(a2) = m, and Φ(a3) = n.

In this model, ‖a1 = a2 → (a1 = a3 ↔ a2 = a3)‖ = −s t (t u s) = t /∈ F . �

On the semantics, PIIc does not follow from PIIe because a = b, E(a) ` E(b)
“says” that if a = b and E(a) get designated values, so does E(b). The equivalent
principle PIIe′ “says” that if a = b gets a designated value, so does E(a)↔ E(b).
But this tells us nothing about what happens if a = b gets an undesignated value.
By contrast, PIIc requires E(a)↔ E(b) to have at least as great a value as a = b,
whether or not a = b is designated.

Since PIIe is valid but PIIc is not, it immediately follows that Conditional
Introduction is not a valid meta-rule. Thus:

Corollary 3.5. The consequence relation � is weakly classical but not
strongly classical.

3.5. Completeness. We can prove that the proof theory is strongly complete
with respect to this algebraic semantics using a familiar kind of Lindenbaum-
Tarski construction.

Given a set of sentences of the language, ∆, we define the following relation
on pairs of sentences in the language: A ∼∆ B just in case ∆ ` A↔ B.

Lemma 3.6. ∼∆ is an equivalence relation on sentences.

Proof. Easy. �

Let |A|∆ be the equivalence class of the sentence A generated by ∼∆. We
make the following definitions:

S∆ = {|A|∆ | A is a sentence};
|A|∆ ≤∆ |B|∆ just in case ∆ ` A→ B.

Our proof of completeness relies on the following well-known result:26

Lemma 3.7. 〈S∆,≤∆〉 is a Boolean algebra in which −|A|∆ = |¬A|∆, |A|∆u
|B|∆ = |A ∧B|∆, |A|∆ t |B|∆ = |A ∨B|∆, the top element 1∆ = |>|∆, and the

bottom element 0∆ = |¬>|∆. 〈S∆,≤∆〉 is non-trivial just in case ∆ is consistent.

26See, for instance, Rasiowa & Sikorski (1970), chapter 6.
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Given any set of sentences, Γ, we define the following relation on pairs of terms
in the language: a ≡Γ b just in case Γ ` a = b.

Lemma 3.8. ≡Γ is an equivalence relation on terms.

Proof. By Re, ` a = a. So Γ ` a = a. So ≡Γ is reflexive.
Suppose Γ ` a = b. By PIIe, a = b, a = a ` b = a. By R, ` a = a. So

a = b ` b = a. So Γ ` b = a. Therefore, ≡Γ is symmetric.
Suppose Γ ` a = b and Γ ` b = c. By the above, a = b ` b = a. By PIIe,

b = a, b = c ` a = c. So Γ ` a = c. Therefore, ≡Γ is transitive. �

For any constant a, let aΓ be the equivalence class containing a generated by
≡Γ. Let Γ= be the set of identity sentences derivable from Γ. Given any set
of sentences, Γ, and any set ∆ such that Γ= ⊆ ∆ ⊆ Γ, we make the following
definitions:

FΓ,∆ = {|A|∆ | Γ ` A};
DΓ = {aΓ | a is a constant in the language};
IΓ,∆(aΓ, bΓ) = |a = b|∆;

ΦΓ(a) = aΓ;

MΓ,∆ = 〈S∆,≤∆,FΓ,∆,DΓ, IΓ,∆,ΦΓ〉.
We can use MΓ,∆ as our model of Γ in the proof of strong completeness.

Lemma 3.9. If Γ is consistent, MΓ,∆ is a model.

Proof. 〈S∆,≤∆〉 is a non-trivial Boolean algebra: Since Γ is consistent, so

is ∆. By Lemma 3.7, 〈S∆,≤∆〉 is a non-trivial Boolean algebra.
FΓ,∆ is well-defined: If A ∼∆ B then ∆ ` A↔ B. So Γ ` A↔ B. So Γ ` A

just in case Γ ` B.

FΓ,∆ is non-empty: Γ ` >. So 1∆ = |>|∆ ∈ FΓ,∆.

FΓ,∆ is an upper subset of the Boolean algebra: Suppose |A|∆ ∈ FΓ,∆ and

|A|∆ ≤∆ |B|∆. Then Γ ` A and ∆ ` A → B. Since ∆ ⊆ Γ, Γ ` A → B. So

Γ ` B. So |B|∆ ∈ FΓ,∆.

FΓ,∆ is a filter: Suppose |A|∆ ∈ FΓ,∆ and |B|∆ ∈ FΓ,∆. So Γ ` A and Γ ` B.

So Γ ` A ∧ B. So |A ∧B|∆ ∈ FΓ,∆. By Lemma 3.7, |A|∆ u |B|∆ = |A ∧B|∆ ∈
FΓ,∆. So FΓ,∆ is closed under finite infima.

FΓ,∆ is a proper filter: Since Γ is consistent, Γ 0 A for some A. So |A|∆ /∈
FΓ,∆.

Clearly, DΓ is a non-empty set and ΦΓ is a function from the constants to
DΓ.

IΓ,∆ is well-defined: Suppose aΓ = cΓ. So Γ ` a = c. So Γ= ` a = c. Since
Γ= ⊆ ∆, ∆ ` a = c. By PIIe′, a = c ` a = b↔ c = b. So ∆ ` a = b↔ c = b. So

|a = b|∆ = |c = b|∆. Similarly, if bΓ = cΓ then |a = b|∆ = |a = c|∆.
Finally, we must show that MΓ satisfies the two constraints on models.
Constraint 1: ` a = a. So ` a = a ↔ >. So ∆ ` a = a ↔ >. Therefore,

IΓ,∆(aΓ, aΓ) = |a = a|∆ = |>|∆ = 1∆.

Constraint 2: Suppose IΓ,∆(aΓ, bΓ) ∈ FΓ,∆. So |a = b|∆ ∈ FΓ,∆. So Γ `
a = b. So aΓ = bΓ. Therefore, IΓ,∆(aΓ, cΓ) = IΓ,∆(bΓ, cΓ) and IΓ,∆(cΓ, aΓ) =
IΓ,∆(cΓ, bΓ). �
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Lemma 3.10. If Γ is consistent, MΓ,∆ � A just in case Γ � A.

Proof. Suppose Γ is consistent. By Lemma 3.9, MΓ,∆ is a model. We show

that ‖A‖ = |A|∆ by induction on the complexity of A.

• ‖a = b‖ = IΓ,∆(ΦΓ(a),ΦΓ(b)) = IΓ,∆(aΓ, bΓ) = |a = b|∆.

• ‖¬A‖ = −‖A‖ = −|A|∆ (by induction) = |¬A|∆.

• ‖A ∧B‖ = ‖A‖ u ‖B‖ = |A|∆ u |B|∆ (by induction) = |A ∧B|∆.
• The cases of ∨, →, and ↔ are similar.

Therefore, MΓ,∆ � A just in case ‖A‖ ∈ FΓ,∆ just in case |A|∆ ∈ FΓ,∆ just in
case Γ ` A. �

Given these lemmas, we can show the following:

Theorem 3.11 (Strong Completeness). If Γ � A then Γ ` A.

Proof. Suppose Γ 0 A. So Γ is consistent. By Lemma 3.9, MΓ,∆ is a model.
By Lemma 3.10, MΓ,∆ � Γ and MΓ,∆ 2 A. Therefore, Γ 2 A. �

Corollary 3.12 (Compactness). If Γ � A then for some finite Γ0 ⊆ Γ,
Γ0 � A.

Proof. Suppose Γ � A. By strong completeness, Γ ` A. So for some finite
Γ0 ⊆ Γ, Γ0 ` A. By strong soundness, Γ0 � A. �

Corollary 3.13. Γ is consistent just in case Γ is satisfiable.

Proof. If Γ is consistent, then by Lemma 3.9, MΓ,∆ is a model. By Lemma
3.10, MΓ,∆ satisfies Γ.

If Γ is satisfiable, then Γ 2 A for some sentence A. By strong soundness,
Γ 0 A. So Γ is consistent. �

For concreteness, we can take MΓ,Γ=

to be our official Lindenbaum-Tarski
model for Γ for the filter-based semantics.

Notice that the strong completeness result still obtains if we add the constraint
that the only designated value in a model is the top value of the Boolean algebra.
This follows from the fact that the model MΓ,Γ has only a single designated value.

Proof. Suppose |A|Γ ∈ FΓ,Γ and |B|Γ ∈ FΓ,Γ. So Γ ` A and Γ ` B.

A,B ` A↔ B. So Γ ` A↔ B. Therefore |A|Γ = |B|Γ. �

We can therefore take MΓ,Γ to be our official Lindenbaum-Tarski model for Γ
for the single designated value semantics.

3.6. Comments. On the algebraic semantics, the identity relation is highly
constrained when an identity statement is designated. In any model, all desig-
nated identity statements take the top value of the Boolean algebra. This is the
residual sense in which identity is a strict relation in the semantics. However,
there is no constraint when an identity statement is undesignated. Identity state-
ments can take arbitrary undesignated semantic values. This is the significant
wiggle room that is allowed by the semantics.

We can add a further requirement to the definition of a model without chang-
ing the consequence relation generated by the semantics. In particular, we can
require that I(d, e) ∈ F just in case d is identical to e. (Here, “is identical to” is
the identity relation in the meta-language.) This is a very natural requirement
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to impose. Depending on one’s view of the role of model theory, it might be
thought to be a non-negotiable constraint.

Notice that the construction used in our proof of strong completeness, MΓ,∆,
satisfies this requirement. (That was the reason for setting the domain of the
constructed model to contain equivalence classes of constants.)

Proof. IΓ,∆(aΓ, bΓ) ∈ FΓ,∆ just in case Γ ` a = b just in case aΓ = bΓ. �

So the proof of strong completeness (and related results) goes through even given
this additional requirement.

If we impose this requirement, we can replace the two constraints on models
listed above with a single constraint:

• I(d, e) ∈ F just in case I(d, e) = 1 just in case d is identical to e.

In what follows, we’ll impose this constraint on models.
There are other natural constraints that could also be imposed. For instance,

we could require that the Boolean algebra of each model be complete – that is,
closed under arbitrary infima and suprema – and atomic – that is, such that
every non-zero element is greater than an atom, a non-zero element immediately
greater than zero. If we were to impose these constraints, we’d presumably also
want to require that the filter be complete – that is, closed under arbitrary
infima. Adding these constraints would not change the consequence relation.
This is a consequence of the results stated in section 5.

3.7. Symmetry and Transitivity. There is a problem with the consequence
relation that we have so far characterized. There are intuitively correct claims
about identity that turn out not to be valid. For instance, identity is intu-
itively symmetric. It is intuitively transitive. However, 0 a = b → b = a and
0 (a = b ∧ b = c)→ a = c.

Proof. Here is a countermodel: Let M = 〈S,≤, F,D, I,Φ〉, where S =
{1, s, t, 0}; 〈S,≤〉 is the four element Boolean algebra such that 0 < s, t < 1;
F = {1}; D = {l,m, n}; I(l,m) = I(m,n) = I(n,m) = s, I(l, n) = I(n, l) =
I(m, l) = t; and Φ(a1) = l, Φ(a2) = m, and Φ(a3) = n.

In this model, ‖a1 = a2 → a2 = a1‖ = −s t t = t t t = t /∈ F . Moreover,
‖(a1 = a2 ∧ a2 = a3)→ a1 = a3‖ = −(s u s) t t = −s t t = t /∈ F . �

Weaker versions of symmetry and transitivity do hold. In particular, a =
b ` b = a. a = b, b = c ` a = c. a = b ` b = c → a = c. But the
stronger principles are intuitively correct, too. This is a significant flaw with the
consequence relation.

The obvious fix is to add additional principles to the theory of identity. The
new theory of identity can be axiomatized using four basic principles:

a = a Reflexivity (Re)
a = b→ b = a Symmetry (Sy)
(a = b ∧ b = c)→ a = c Transitivity (Tr)
a = b, E(a)/E(b) Indiscernibility of Identicalse (PIIe)

If we add the Sy and Tr principles, we need to impose additional constraints
in the definition of a model. In total, we impose three constraints on models:

• I(d, e) ∈ F just in case I(d, e) = 1 just in case d is identical to e;
• I(d, e) = I(e, d);
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• I(d, e) u I(e, f) ≤ I(d, f).

The second constraint is intuitively correct. The third constraint is also intu-
itively correct, since higher in the Boolean algebra corresponds, in some sense,
to “truer”.27 The third constraint says, in effect, that I(d, f) is at least as true
as I(d, e) u I(e, f).

It may be helpful to think about these three constraints as follows: Suppose
we look not at identity but at distinctness. Let NI(d, e) be −I(d, e). Then the
constraints are equivalent to the following:

• NI(d, e) = 0 just in case d is identical to e;
• NI(d, e) = NI(e, d);
• NI(d, f) ≤ NI(d, e) tNI(e, f);
• I(d, e) ∈ F just in case I(d, e) = 1.

The first three of these constraints say that NI behaves like a metric, except that
the range of the function is a Boolean algebra rather than the non-negative real
numbers. (The third constraint is just the triangle inequality.) The constraints
on models are thus very natural.

It is easy to show that the new consequence relation is strongly sound with
respect to the algebraic semantics with the new constraints imposed on models.
The second constraint ensures that Sy is valid and the third constraint ensures
that Tr is valid. The strong completeness proof is also straightforward. The
Lindenbaum-Tarski construction goes just as before. It is easy to show that the
model MΓ,∆ satisfies the new constraints. Sy ensures that the model satisfies
the second constraint and Tr ensures that it satisfies the third.

The resulting logic, however, has a problematic feature. It is a strongly clas-
sical logic.

Lemma 3.14. The minimal weakly classical consequence relation for our lan-
guage that obeys Re, Sy, Tr, and PIIe also obeys PIIc.

Proof. We prove this by induction on the complexity of E(a). The base cases
are the cases where E(a) is a = a, a = c, or c = a for some distinct constant c.
Each of these cases is easy. For illustration, here is one of them:

• E(a) is a = c: The case where E(b) is a = c is trivial. Suppose instead
that E(b) is b = c. By Tr, ` (a = b ∧ b = c) → a = c. So ` a = b →
(b = c → a = c). That is, ` a = b → (E(b) → E(a)). Again by Tr,
` (c = a ∧ a = b) → c = b. So ` a = b → (c = a → c = b). By Sy,
` a = c ↔ c = a and ` b = c ↔ c = b. So, ` a = b → (a = c → b = c).
That is, ` a = b→ (E(a)→ E(b)). Therefore, ` a = b→ (E(a)↔ E(b)).

For the inductive step, suppose ` a = b → (E(a) ↔ E(b)) and ` a = b →
(G(a) ↔ G(b)). It easily follows that ` a = b → (¬E(a) ↔ ¬E(b)), ` a = b →
((E(a) ∧ G(a)) ↔ (E(b) ∧ G(b))), ` a = b → ((E(a) ∨ G(a)) ↔ (E(b) ∨ G(b))),
` a = b → ((E(a) → G(a)) ↔ (E(b) → G(b))), and ` a = b → ((E(a) ↔
G(a))↔ (E(b)↔ G(b))). Therefore, PIIc obtains. �

27For instance, if elements of the Boolean algebra correspond to sets of possible worlds, the
≤ relation corresponds to the subset relation. So higher in the algebra corresponds to truth in

a superset of worlds.
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Lemma 3.15. Any weakly classical consequence relation with an axiomati-
zation that has as its only rules Modus Ponens and PIIe is strongly classical just
in case it obeys PIIc.

Proof. Suppose that a weakly classical consequence relation obeys PIIe but
not PIIc. Then there is a counterexample to Conditional Introduction. So the
consequence relation is not strongly classical.

Now suppose that a weakly classical consequence relation has an axiomatiza-
tion that has as its only rules Modus Ponens and PIIe. Suppose it obeys PIIc.
We show that if Γ, A ` B then Γ ` A→ B. The argument is based on a simple
modification of the usual inductive proof of the deduction theorem:

• B ∈ Γ: Γ ` B. B ` A→ B. So Γ ` A→ B.
• B is an axiom: ` B. B ` A→ B. So ` A→ B. So Γ ` A→ B.
• B is derived from C and C → B using Modus Ponens: By induction,

Γ ` A→ C and Γ ` A→ (C → B). A→ C,A→ (C → B) ` A→ B. So
Γ ` A→ B.

• B is derived from a = b and E(a) by PIIe: So B = E(b). By induction,
Γ ` A → a = b and Γ ` A → E(a). By PIIc, ` a = b → (E(a) ↔ E(b)).
A → a = b, A → E(a), a = b → (E(a) ↔ E(b)) ` A → E(b). So
Γ ` A→ E(b).

Since the consequence relation is a weakly classical consequence relation that
obeys Conditional Introduction, it is strongly classical. �

Given these two lemmas, the following result is immediate:

Proposition 3.16. The minimal weakly classical consequence relation for
our language that obeys Re, Sy, Tr, and PIIe is strongly classical.

In a sense, this is a nice result. It demonstrates that the weakly classical theory
of identity that includes PIIe, Re, Sy, and Tr is not missing any logical truth
concerning identity that can be stated in our language. On the other hand, the
whole point of the endeavor was to avoid a strongly classical logic. We wanted
to accept PIIe without also having to accept PIIc. So the result might seem to
be very problematic.

This problem is not, however, very serious. The reason that we can prove PIIc

is that the language we have been working with so far is expressively very limited.
If we expand our language by adding a stock of predicates, for instance, the logic
becomes a merely weakly classical logic. We will have it that a = b ` Pa↔ Pb
but not ` a = b→ (Pa↔ Pb).

3.8. Adding Predicates. Let us add a stock of predicates to our language.
In particular, for each natural number n, we add a (possibly empty) stock of
n-place predicates, Pn1 , P

n
2 , . . . . In the expanded language, the atomic sentences

are defined to include expressions of the form a = b as well as expressions of the
form Pnma1 . . . an, where Pnm is an n-place predicate and a1, . . . , an are constants.
The formation rules for non-atomic sentences are as before.

The proof theory is as before. Our consequence relation is the minimal weakly
classical consequence relation for the expanded language that includes PIIe, Re,
Sy, and Tr. PIIe is now understood so that E(a) ranges over all sentences in
the expanded language. As before, this consequence relation can be axiomatized
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using any Hilbert-style axiomatization of classical logic, the axioms schemas Re,
Sy, and Tr, and the rule of inference PIIe. For simplicity, we assume that the
only other rule of inference is Modus Ponens.

The semantics is also straightforward. As before, a model is an ordered sex-
tuple 〈S,≤, F,D, I,Φ〉. The interpretation function, Φ, now maps constants to
members of D and maps n-place predicates to functions from ordered n-tuples
of members of D to S. The definition of the semantic value of a sentences in a
model is as before with the addition of a clause for atomic sentences containing
predicates:

• ‖Pnma1 . . . an‖ = Φ(Pnm)(Φ(a1) . . .Φ(an)).

The rest of the semantics, including the constraints on models, is just as before.28

The proof of strong soundness is a straightforward modification of the above
proof. The proof of strong completeness also requires only straightforward mod-
ifications. In the definition of the model MΓ,∆, we now use as our interpretation
function the function ΦΓ,∆, defined as follows:

ΦΓ,∆(a) = aΓ;

ΦΓ,∆(Pnm)(aΓ
1 , . . . , a

Γ
n) = |Pnma1 . . . an|∆.

In the analogue of the proof of Lemma 3.9, we must show that ΦΓ,∆ is well-
defined. This is easy.

Proof. Suppose aΓ
i = bΓ. So Γ ` ai = b. So Γ= ` ai = b. So ∆ ` ai = b.

ai = b ` Pnma1 . . . ai . . . an ↔ Pnma1 . . . b . . . an. Therefore, |Pnma1 . . . ai . . . an|∆ =

|Pnma1 . . . b . . . an|∆. �

In the analogue of the proof of Lemma 3.10, we must show that ‖Pnma1 . . . an‖ =

|Pnma1 . . . an|∆. This is easy, too.

Proof. ‖Pnma1 . . . an‖ = ΦΓ,∆(Pnm)(aΓ
1 , . . . , a

Γ
n) = |Pnma1 . . . an|∆. �

The rest of the proof of strong completeness (and related results) goes through
just as before.

If there is at least one predicate in the language, we can show that PIIc is not
valid.

Proof. For simplicity, we work in a language with a single 1-place predicate,
P 1

1 . Here is a countermodel: Let M = 〈S,≤, F,D, I,Φ〉, where S = {1, s, t, 0};
〈S,≤〉 is the four element Boolean algebra such that 0 < s, t < 1; F = {1};
D = {l,m}; I(l,m) = I(m, l) = s; Φ(a1) = l, Φ(a2) = m, Φ(P 1

1 )(l) = s,
Φ(P 1

1 )(m) = t.
In this model, ‖a1 = a2 → (P 1

1 a1 ↔ P 1
1 a2)‖ = −st (tus) = tt0 = t /∈ F . �

So the consequence relation is weakly classical. Problem solved. We will therefore
take this logic to be our base weakly classical logic with identity.

There is a remaining issue that deserves discussion. Consider the following
schema: E(a),¬E(b) ` ¬a = b. This is the contrapositive of PIIe. This schema
is intuitively correct.29 However, not every instance of this schema is valid in

28If we were to remove the requirement that I(d, e) ∈ F just in case d is identical to e and

return to the original two constraints, we would need to impose an additional constraint for
predicates: If I(d, e) ∈ F then Φ(Pn

m)(d1, . . . , d, . . . , dn) = Φ(Pn
m)(d1, . . . , e, . . . , dn).

29Heck (1998), page 288, argues that if we accept PIIe, we should also accept its

contrapositive.
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our logic. (In general, in a weakly classical logic, while the contrapositive of a
valid conditional is valid, the contrapositive of a valid entailment need not be
valid.)

Proof. We work in a language with a single 1-place predicate, P 1
1 . Here is

a countermodel: Let M = 〈S,≤, F,D, I,Φ〉, where S = {1, s, t, 0}; 〈S,≤〉 is the
four element Boolean algebra such that 0 < s, t < 1; F = {1}; D = {l,m};
I(l,m) = I(m, l) = s; Φ(a1) = d, Φ(a2) = e, Φ(P 1

1 )(d) = 1, Φ(P 1
1 )(e) = 0.

In this model, ‖P 1
1 a1‖ = 1, ‖¬P 1

1 a2‖ = 1, ‖¬a1 = a2‖ = t /∈ F . �

We do get certain instances of the schema as valid in our logic. In particular,
using Proposition 3.16, we can show that each instance of the schema where E(a)
is built out of constants, the identity relation, and the familiar logical connectives
is valid. But we do not get such simple instances as P 1

1 a,¬P 1
1 b ` ¬a = b.

To handle this problem, we can add another rule to the proof theory:
E(a),¬E(b)/¬a = b PII−1e

If we do this, we have to impose an additional constraint on models. The only
obvious constraint to impose is the following: If ‖E(a)‖ ∈ F and −‖E(b)‖ ∈ F
then −I(Φ(a),Φ(b)) ∈ F . It is straightforward to prove strong soundness and
strong completeness for the semantics with this additional constraint.

We can also show that PIIc is not valid on the new consequence relation.

Proof. We work in a language with a single 1-place predicate, P 1
1 . Here is a

countermodel: Let M = 〈S,≤, F,D, I,Φ〉, where S = {1, r, s, t, u, v, w, 0} and ≤
is the relation depicted in the following Hasse diagram:

1

r s t

u v w

0

F = {1}; D = {l,m}; I(l,m) = I(m, l) = r; and Φ(a1) = l, Φ(a2) = m,
Φ(P 1

1 )(l) = r, and Φ(P 1
1 )(m) = s.

This model satisfies the additional constraint: Suppose ‖E(a1)‖ = 1. E(a1) is
equivalent to a sentence in Conjunctive Normal Form – that is, a conjunction of
disjunctions of atomic sentences and negations of atomic sentences. Each of the
conjuncts has value 1. By a tedious enumeration of cases, it can be shown that
substituting occurrences of a2 for some of the occurrences of a1 in a conjunct
yields a sentence with value 1, r, or s. Thus, E(a2) has value 1, r, s, or u. So
there is no pair of sentences E(a1) and E(a2) such that E(a1) and ¬E(a2) both
have designated values. By a similar argument, there is no pair of sentences
E(a1) and E(a2) such that E(a2) and ¬E(a1) both have designated values. So
the model satisfies the constraint.

In this model, ‖a1 = a2 → (P 1
1 a1 ↔ P 1

1 a2)‖ = −r t (s u r) = w t u = s /∈ F .
So PIIc is not valid. �

The problem with adding PII−1e to the logic is that the proposed additional
constraint on models is unattractive. It concerns not only atomic sentences but
also sentences of arbitrary complexity. As is clear from the proof immediately
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above, verifying that a model satisfies the constraint can be tedious. And it is
not clear that there is a simpler and more natural constraint that could instead
be imposed. This is an unfortunate feature of the semantics.

In what follows, we will discuss both the base logic without PII−1e and the
logic that results from adding this rule.

As defined, our language lacks functions, variables, and quantifiers. If we add
these to the language, our main results still obtain. The modifications needed in
the definition of a model and in the proof of our main results are straightforward.
They are the usual complications that arise for algebraic treatments of first-order
logic.

§4. Adding a Modal Operator. Before we can return to the quasi-formal
arguments for the strictness of identity, we must first examine how to add a
modal operator to our language.

4.1. The Language. Our language is as before – containing constants and
predicates but no functions, variables, or quantifiers – with the addition of a
single one-place operator 2. The atomic sentences are defined just as before.
The non-atomic sentences are defined as before, with the addition of a clause for
2: If A is a sentence, so is 2A.

4.2. Proof Theory. The base logic for this language is the minimal weakly
classical normal modal logic for our language that validates Re, Sy, Tr, and PIIe.
A logic is a normal modal logic just in case the following obtains:

(K) ` 2(A→ B)→ (2A→ 2B)
(Nec) If ` A then ` 2A

This base logic can therefore be axiomatized using any Hilbert-style axiomati-
zation of classical logic, the axioms schemas Re, Sy, and Tr, an axiom schema
for K, the rule of inference PIIe, and a rule of proof for Nec. (If we like, we can
strengthen the logic by also adding the rule PII−1e.)

Since we are working with an algebraic semantics, we could use a weaker modal
base logic. For instance, we could adopt only the very weak modal principle RE:
If ` A ↔ B then ` 2A ↔ 2B. Alternatively, we could retain Nec and weaken
K to Ke: 2(A → B) ` 2A → 2B. We could weaken K still further to Ke′:
2(A → B),2A ` 2B. For our purposes here, however, it will be convenient to
work in a normal modal logic as our base logic.

There are several familiar modal principles that can be added to our base logic.
For instance, we can add any of the following schemas:

(T) 2A→ A
(4) 2A→ 22A
(5) ¬2A→ 2¬2A
(B) A→ 2¬2¬A
(D) 2A→ ¬2¬A

The most plausible modal logic for metaphysical necessity is S5 = KT45DB
= K4DB = K5DB = KT4B = KT5. This logic is also plausibly a strengthening
of the correct logic for definiteness (or determinacy). S5 will therefore be a
particular focus of attention in what follows.
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4.3. Semantics. The semantics for this language is straightforward. We en-
rich the definition of a model to handle sentences containing 2. The most natural
way to do so is to add to each model a function N from S to S. The idea is that
N maps the semantic value of a sentence to the semantic value that attributes
necessity to the original semantic value.30 A model, therefore, is an ordered
septuple 〈S,≤, F,N,D, I,Φ〉, where 〈S,≤, F,D, I,Φ〉 is defined as above and N
is a function from S to S.

The definition of the semantic value of a sentence A in a model is defined as
above, with the addition of the obvious clause for 2:

• ‖2A‖ = N(‖A‖).
The definitions of truth in a model and validity are as before.

As before, we impose the following constraints on models:

• I(d, e) ∈ F just in case I(d, e) = 1 just in case d is identical to e;
• I(d, e) = I(e, d);
• I(d, e) u I(e, f) ≤ I(d, f).

If we add the rule PII−1e, we also impose the following constraint:

• If ‖E(a)‖ ∈ F and −‖E(b)‖ ∈ F then −I(Φ(a),Φ(b)) ∈ F .

We must impose additional constraints on models for the modal principles to
be valid. It is easy to see that the semantics already validates RE. Indeed, it
validates the more general principle:

(EQ) If ` A↔ B then ` E ↔ E〈B/A〉
However, additional constraints are required for Nec and K.

For Nec, we need to impose the following constraint on models: N(1) = 1.
Notice that, given this constraint, if we require models to have only a single
designated value then A � 2A. This is not a plausible claim if 2 is interpreted
to be an alethic modal operator. It is somewhat more plausible if 2 is interpreted
to be a definiteness or determinately operator.

In discussing the case of K, it is helpful to consider a different modal principle:
(R) 2(A ∧B)↔ (2A ∧2B)

In a weakly classical modal logic with Nec, K is equivalent to R.

Proof. From K and Nec we can derive R: ` (A ∧ B) → A. By Nec, `
2((A ∧ B) → A). By K, ` 2((A ∧ B) → A) → (2(A ∧ B) → 2A). By Modus
Ponens, ` 2(A ∧ B) → 2A. By analogous reasoning, ` 2(A ∧ B) → 2B. It
follows that ` 2(A ∧B)→ (2A ∧2B).
` A → (B → (A → B)). By Nec, K, and Modus Ponens, ` 2A → 2(B →

(A → B)). By K, ` 2(B → (A → B)) → (2B → 2(A → B)). It follows that
` 2A→ (2B → 2(A ∧ B)) and so ` (2A ∧ 2B)→ 2(A ∧ B). Combining this
with the above, ` 2(A ∧B)↔ (2A ∧2B).

From R and Nec we can derive K: ` ((A → B) ∧ A) ↔ (A ∧ B). By Nec
and K, ` 2((A → B) ∧ A) ↔ 2(A ∧ B). Using R, ` 2(A ∧ B) → (2A ∧ 2B).
So ` 2(A ∧ B) → 2B. So ` 2((A ∧ B) ∧ A) → 2B. Using R, ` (2(A →
B) ∧ 2A) → 2((A → B) ∧ A). So ` (2(A → B) ∧ 2A) → 2B. Therefore,
` 2(A→ B)→ (2A→ 2B). �

30In algebraic semantics, it is more common to treat possibility rather than necessity as
basic. But treating necessity as basic is slightly more convenient for our purposes here.
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The obvious constraint corresponding to R is N(p u q) = N(p) uN(q). For our
base modal logic, we therefore impose two constraints on N in models:

• N(1) = 1;
• N(p u q) = N(p) uN(q).

It is straightforward to determine the constraints on models that correspond
to the other modal principles listed above.

• For T: N(p) ≤ p;
• For 4: N(p) ≤ N(N(p));
• For 5: −N(p) ≤ N(−N(p));
• For B: p ≤ N(−N(−p));
• For D: N(p) ≤ −N(−p).

In particular, here is a natural list of constraints for S5:

• N(1) = 1;
• N(p u q) = N(p) uN(q);
• N(p) ≤ p;
• N(p) ≤ N(N(p));
• −N(p) ≤ N(−N(p)).

Notice that the penultimate constraint is redundant.
There is an illuminating alternative characterization of the constraints for

S5. Given a Boolean algebra, we say that the semantic value p is a Boolean
combination of the semantic values q1, . . . , qn just in case p can be generated
from the qs by taking complements, finite infima, and finite suprema. Given this
definition, the last two constraints can be replaced with the following:

• If p is a Boolean combination of N(p1), . . . , N(pn) then N(p) = p.

Proof. It is easy to see that this constraint entails the constraints corre-
sponding to the 4 and 5 principles.

We show that the constraints listed for S5 entail this new constraint by induc-
tion on the complexity of the Boolean combination. It suffices to consider the
base case and the cases of complement and pairwise infimum.

• p = N(pi): So N(p) = N(N(pi)) = N(pi) (by the constraints for T and
4) = p.
• p = −q where q = N(q): N(p) = N(−N(q)) = −N(q) (by the constraints

for T and 5) = q.
• p = q1 u q2 where q1 = N(q1) and q2 = N(q2): N(p) = N(q1 u q2) =
N(q1) uN(q2) (by the constraint for R) = q1 u q2 = p. �

Notice that the set of constraints for S5 is weaker than the constraint that
N(p) = 1 if p = 1 and N(p) = 0 otherwise. This is not the appropriate constraint
for S5 since any model that satisfies both this constraint and the constraint for
PII−1e obeys PIIc.31

Proof. SupposeM 2 a = b→ (E(a)↔ E(b)). So ‖a = b→ (E(a)↔ E(b))‖ /∈
F . By the proposed constraint, ‖2(a = b→ (E(a)↔ E(b)))‖ = 0. It follows
that −‖2(a = b→ (E(a)↔ E(b)))‖ = 1 ∈ F . ‖2(a = a→ (E(a)↔ E(a)))‖ =
1 ∈ F . By the constraint for PII−1e, it follows that −I(Φ(a),Φ(b)) ∈ F . So

31See section 6.2 for the result that PIIc does not follow from S5 and PII−1e.
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‖¬a = b‖ ∈ F . Since ‖a = b→ (E(a)↔ E(b))‖ /∈ F , ‖¬a = b‖ /∈ F . This is a
contradiction. �

4.4. Soundness and Completeness. It is straightforward to prove the
strong soundness of each of the weakly classical normal modal logics with identity
described above with respect to our algebraic semantics with the corresponding
constraints imposed on models.

It is also straightforward to prove the corresponding strong completeness re-
sults (and related results). We say that a set of sentences ∆ is necessitation-
closed just in case for every sentence A, if ∆ ` A then ∆ ` 2A. Given
a set of sentences Γ and a necessitation-closed set of sentences ∆ such that
Γ= ⊆ ∆ ⊆ Γ, we define the model MΓ,∆ to be 〈S∆,≤∆,FΓ,∆,N∆,DΓ,ΦΓ, IΓ,∆〉,
where 〈S∆,≤∆,FΓ,∆,DΓ,ΦΓ, IΓ,∆〉 is defined as above and N∆(|A|∆) = |2A|∆.
We use MΓ,∆ as our model for Γ in the proof of strong completeness.

We must make four additions to the proof of strong completeness. First, it
must be shown that N∆ is well-defined. (This is the reason for requiring that ∆
be necessitation-closed.)

Proof. Suppose |A|∆ = |B|∆. So ∆ ` A ↔ B. So ∆ ` A → B and ∆ `
B → A. Since ∆ is necessitation-closed, ∆ ` 2(A → B) and ∆ ` 2(B → A).
By K, ∆ ` 2A→ 2B and ∆ ` 2B → 2A. Therefore, ∆ ` 2A↔ 2B. �

Second, it must be shown that for every Γ, there is a necessitation-closed ∆
such that Γ= ⊆ ∆ ⊆ Γ. This is easy: Γ= is itself a necessitation-closed set.

Proof. Suppose Γ= ` A. We show that Γ= ` 2A by induction on the
derivation of A.

• A ∈ Γ=: A is a = b. By Re, ` a = a. By Nec, ` 2a = a. By PIIe,
a = b,2a = a ` 2a = b. So a = b ` 2a = b. So Γ= ` 2a = b.
• A is an axiom: ` A. By Nec, ` 2A. So Γ= ` 2A.
• Modus Ponens: Suppose A is derived from B and B → A via an applica-

tion of Modus Ponens. By induction, Γ= ` 2B and Γ= ` 2(B → A). By
K, Γ= ` 2B → 2A. So Γ= ` 2A.
• PIIe: Suppose A is E(b) and is derived from a = b and E(a) via an

application of PIIe. By induction, Γ= ` 2E(a). By PIIe, a = b,2E(a) `
2E(b). So Γ= ` 2E(b). �

Thus, we can use the model MΓ,Γ=

as our model for Γ in the proof of complete-
ness.

Third, it must be shown that N∆ satisfies the appropriate constraints for the
given weakly classical modal logic with identity.

Proof. Here is the proof for each of the modal principles listed above:
Nec: ` >. By Nec, ` 2>. So ` 2> ↔ >. So ∆ ` 2> ↔ >. So N∆(1∆) =

N∆(|>|∆) = |2>|∆ = |>|∆ = 1∆.
R: By R, ` 2(A ∧ B) ↔ (2A ∧ 2B). So ∆ ` 2(A ∧ B) ↔ (2A ∧ 2B). So

N∆(|A|∆ u |B|∆) = N∆(|A ∧B|∆) = |2(A ∧B)|∆ = |2A ∧2B|∆ = |2A|∆ u
|2B|∆ = N∆(|A|∆) uN∆(|B|∆).

T: By T, ` 2A→ A. So ∆ ` 2A→ A. So N∆(|A|)∆ = |2A|∆ ≤∆ |A|∆.
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4: By 4, ` 2A → 22A. So ∆ ` 2A → 22A. So N∆(|A|∆) = |2A|∆ ≤∆

|22A|∆ = N∆(N∆(|A|∆)).

5: By 5, ` ¬2A → 2¬2A. So ∆ ` ¬2A → 2¬2A. So −N∆(|A|∆) =

|¬2A|∆ ≤∆ |2¬2A|∆ = N∆(−N∆(|A|∆)).

B: By B, ` A → 2¬2¬A. So ∆ ` A → 2¬2¬A. So |A|∆ ≤∆ |2¬2¬A|∆ =

N∆(−N∆(−|A|∆)).

D: By D, ` 2A→ ¬2¬A. So ∆ ` 2A→ ¬2¬A. So N∆(|A|∆) = |2A|∆ ≤∆

|¬2¬A|∆ = −N∆(−|A|∆). �

Finally, in the proof of the analogue of Lemma 3.10, it must be shown that

‖2A‖ = |2A|∆. This is also easy.

Proof. ‖2A‖ = N∆(‖A‖) = N∆(|A|∆) = |2A|∆. �

The remainder of the strong completeness proof (and the proofs of related
results) goes just as before.

If we add the rule A/2A to any of the weakly classical normal modal logics
with identity described above, it will be strongly sound and strongly complete
with respect to the semantics with the corresponding constraints on models and
the additional constraint that the filter contain only the top value of the Boolean
algebra. This is because any set Γ will be necessitation-closed given the addition
of the new rule. So MΓ,Γ is well-defined. This model has only a single designated
value. So MΓ,Γ can be used as the model for Γ in the proof of strong completeness
for the single designated value semantics.

§5. Relational Semantics. We have so far made use of an algebraic ap-
proach to semantics. It is more common to make use of a relational approach,
especially when discussing languages containing a modal operator. In this sec-
tion, I present a relational semantics and state the constraints on models cor-
responding to each of the weakly classical theories of identity described above.
I do so both because this style of semantics is more familiar and because it is
illuminating to see what relational models look like for our weakly classical logics
with identity.

In this section, I do not provide detailed proofs of strong soundness and strong
completeness. I only present the main definitions and constructions needed for
these (and related) results. The proofs are straightforward given the definitions
and constructions.

5.1. Semantics. On the relational semantics, a model, M, is an ordered
sextuple 〈W,R,@, D, I,Φ〉 where W is a non-empty set – the set of worlds. R
is a binary relation on W – the accessibility relation. @ is a non-empty subset
of W – the set of actual worlds.32 D is a non-empty set – the domain of the
model. I is a function that maps each world to a subset of D×D – the identity
function of the model. Φ is a function that maps each constant to a member of

32This semantics thus bears some resemblance to the suggestion in Akiba (2004), Barnes
(2009), and Williams (2008) that there are multiple actual worlds. Notice that we needn’t

think of W and @ as representing sets of worlds. They can be thought of representing sets of
precisifications or of some other kind of entity.
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D and maps each n-place predicate to a function that maps each world to a set
of ordered n-tuples of members of D – the interpretation function of the model.

Given a model and a sentence A of the language we write w � A to mean that
the sentence A is true at the world w ∈W . This is recursively defined as follows:

• w � a = b just in case 〈Φ(a),Φ(b)〉 ∈ I(w);
• w � Pnma1 . . . an just in case 〈Φ(a1), . . . ,Φ(an)〉 ∈ Φ(Pnm)(w);
• w � ¬A just in case w 2 A;
• w � A ∧B just in case w � A and w � B;
• w � A ∨B just in case w � A or w � B;
• w � A→ B just in case w 2 A or w � B;
• w � A↔ B just in case either w 2 A or w � B and either w 2 B or w � A;
• w � 2A just in case for every v ∈W such that wRv, v � A.

Given a modelM, we writeM � A to mean that A is true inM. This obtains
just in case for every w ∈ @, w � A. In other words, a sentence is true in a model
if it is true at each of the actual worlds. We write M � Γ to mean that every
member of Γ is true in M.

We must impose constraints on models so that our theory of identity is true
in every model. We impose the following two constraints:

• For every w ∈W , I(w) is an equivalence relation;
• 〈d, e〉 ∈ I(w) for every w ∈ @ just in case d is identical to e.

The first constraint is needed for Re, Sy, and Tr. It is a very natural constraint.
The second constraint is needed for PIIe. In effect, it says that if two objects are
identical at every actual world then they are identical simpliciter (and thus are
identical at all worlds). Notice that there is no requirement that distinct worlds
otherwise agree about identity.

If we also have PII−1e in the logic, we need to impose a third constraint:

• If w � E(a) and w 2 E(b) for every w ∈ @, then 〈Φ(a),Φ(b)〉 /∈ I(w) for
every w ∈ @.

In other words, if E(a) is true at every actual world and E(b) is false at every
actual world then ¬a = b is true at every actual world.

No additional constraints are needed for K and Nec. Additional constraints
are needed for the other modal principles. As is familiar, the T, 4, 5, B, and
D schemas correspond to the accessibility relation being reflexive, transitive,
Euclidean, symmetric, and serial, respectively. If the modal logic is S5, for
example, then the accessibility relation is an equivalence relation on worlds.

Notice that the appropriate constraint for S5 is not R = W×W . If a relational
model satisfies both the constraint that R = W × W and the constraint for
PII−1e then it obeys PIIc.33 This is not true for the weaker constraint that R is
an equivalence relation.

If we add the rule A/2A to the logic, the corresponding constraint on relational
models is that @ = W . In other words, a sentence is true in a model just in case
it is true at all worlds in the model.

33According to the correspondence between relational and algebraic models defined below,
the constraint that R = W ×W corresponds to the constraint that N(p) = 1 if p = 1 and

N(p) = 0 otherwise.
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Notice that if @ is a singleton in a model, then PIIc will be true in the model:
If x = y is false at the actual world, then x = y → (F (x)↔ F (y)) is true at the
actual world. If x = y is true at the actual world, then x is identical to y and
so x = y → (F (x) ↔ F (y)) is true at the actual world. This shows that it is
crucial for our purposes that models can have multiple actual worlds.

As before, we write � A to mean that A is valid. This obtains just in case
for every model M, M � A. We write Γ � A to mean that Γ entails A. This
obtains just in case for every model M, if M � Γ then M � A.

If the language lacks a modal operator, the definition of a model can be sim-
plified in the obvious ways.

5.2. Soundness and Completeness. It is straightforward to prove the
strong soundness of each of the weakly classical logics with identity described
above with respect to the relational semantics with the relevant constraints im-
posed on models.

The proof of strong completeness is a bit more complicated. Let ` be the
consequence relation for any of the weakly classical normal modal logics with
identity described above. Let Γ be a set of sentences that is consistent with
respect to this consequence relation. We show how to define a model for Γ that
can be used in the proof of strong completeness.

In the construction, we make use of a second consequence relation. Let `− be
the consequence relation that has the same axiomatization as ` except that it
lacks the rules PIIe and PII−1e. For example, if ` is the minimal weakly classical
consequence relation that obeys Re, Sy, Tr, PIIe, K, Nec, and T, then `− is the
minimal weakly classical consequence relation that obeys Re, Sy, Tr, K, Nec,
and T. `− is always a strongly classical consequence relation.

We say that a set of sentences, Θ, is maximal consistent− just in case it is
maximal consistent with respect to `−. That is, it is consistent with respect to
`− and it has no proper superset that is consistent with respect to `−. Since
`− is a strongly classical consequence relation, for any maximal consistent− set,
Θ, A ∈ Θ just in case ¬A /∈ Θ; A ∧ B ∈ Θ just in case both A ∈ Θ and B ∈ Θ;
A ∨ B ∈ Θ just in case either A ∈ Θ or B ∈ Θ; A → B ∈ Θ just in case either
A /∈ Θ or B ∈ Θ; and A↔ B ∈ Θ just in case either A /∈ Θ or B ∈ Θ and either
B /∈ Θ or A ∈ Θ. Thus, Θ behaves rather like a world.

For any set of sentences in the language, ∆, let ∆+ be the closure of ∆ under
`. That is, ∆+ = {A | ∆ ` A}.

Given any set Γ and any necessitation-closed set ∆ such that Γ= ⊆ ∆ ⊆ Γ,
we make the following definitions:

W∆ = {Θ | Θ is a maximal consistent− set of sentences containing ∆+};
R∆ = {〈w, v〉 | for every sentence A, if 2A ∈ w then A ∈ v};
@Γ = {Θ | Θ is a maximal consistent− set of sentences containing Γ+};
DΓ = {aΓ | a is a constant in the language};
IΓ,∆(w) = {〈aΓ, bΓ〉 | a = b ∈ w};
ΦΓ,∆(a) = aΓ;

ΦΓ,∆(Pnm)(w) = {〈aΓ
1 , . . . , a

Γ
n〉 | Pnma1 . . . an ∈ w};

MΓ,∆ = 〈W∆,R∆,@Γ,DΓ, IΓ,∆,ΦΓ,∆〉.
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If the language lacks a modal operator, the construction can be simplified in the
obvious ways.

We can show that if Γ is consistent and ∆ is a necessitation-closed set such
that Γ= ⊆ ∆ ⊆ Γ, then MΓ,∆ is a model. This model satisfies the relevant
constraints for the consequence relation ` (with the sole exception of the case of
the rule A/2A). MΓ,∆ � A just in case Γ ` A. Since Γ= is a necessitation-closed
set, we can use MΓ,Γ=

as our model for Γ in the proof of strong completeness.
If we add the rule A/2A to the logic, Γ will be a necessitation-closed set. So

we can use the model MΓ,Γ in the proof of strong completeness. In this model,
the set of actual worlds is the set of worlds, since @Γ = WΓ.

5.3. The Relationship between the Approaches. There is a natural
mapping from relational models to algebraic models. Given any relational model
M = 〈W,R,@, D, I,Φ〉, we can define a corresponding algebraic model M′ =
〈S,≤, F,N,D, I ′,Φ′〉 as follows:

S = P(W ) (that is, the powerset of W );
p ≤ q just in case p ⊆ q;
F = {p | @ ⊆ p};
N(p) = {w | if wRv then v ∈ p};
D is unchanged;
I ′(d, e) = {w | 〈d, e〉 ∈ I(w)};
Φ′(a) = Φ(a);
Φ′(Pnm)(d1, . . . , dn) = {w | 〈d1, . . . , dn〉 ∈ Φ(w)(Pnm)}.

If M has α worlds for some cardinal α, M′ will have 2α semantic values.
Notice that if @ = W , then F will contain only the top value of the Boolean
algebra. If @ contains only a single world, then F will be an ultrafilter (and
since the filter is complete, a principal ultrafilter).

It is straightforward to show that M � A just in case M′ � A. It is also
straightforward to show that if M satisfies the constraints for relational models
for any of the weakly classical theories of identity described above,M′ will satisfy
the corresponding constraints for algebraic models.
M′ is based on a complete atomic Boolean algebra and has a complete filter.

(The atoms of the algebra are the singletons. Given a set of of elements of the
algebra, their suprema is their union and their infima is their intersection.) It
follows that, in the statement of the strong completeness result for the algebraic
semantics, we can require that the Boolean algebra of each model be atomic and
complete and that the filter be complete.

There is also a mapping in the other direction. Suppose that we have an
algebraic model based on an atomic complete Boolean algebra with a complete
filter. By the Stone Representation theorem, the model will be isomorphic to
a model based on a powerset algebra. Given such a model M = 〈P(W ),⊆
, F,N,D, I,Φ〉, we can define a relational model M′ = 〈W,R,@, D, I ′,Φ′〉 as
follows:
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W is the carrier set of P(W );
wRv just in case w /∈ N(W − {v});
@ is the intersection of F ;
D is unchanged;
I(w) = {〈d, e〉 | w ∈ I(d, e)};
Φ′(a) = Φ(a);
Φ′(Pnm)(w) = {〈d1, . . . , dn〉 | w ∈ Φ(Pnm)(d1, . . . , dn)}.

If F contains only the top value of the Boolean algebra, then @ = W . If F is
an ultrafilter (and thus a principal ultrafilter), then @ will contain only a single
world.

It is straightforward to show that M � A just in case M′ � A. It is also
straightforward to show that if M satisfies the constraints for algebraic models
for any of the weakly classical theories of identity described above,M′ will satisfy
the corresponding constraints for relational models.

These mappings show that the algebraic and relational approaches to seman-
tics are essentially equivalent, at least if we require that algebraic models be
based on complete atomic Boolean algebras and have complete filters. In the
remainder of the paper, we’ll rely on the algebraic approach to semantics. All of
the models used in the proofs below will be finite, so they will satisfy these re-
quirements. Corresponding relational models will be easy to read off from these
algebraic models.

§6. The Quasi-Formal Arguments Revisited. We are finally in a posi-
tion to return to the three quasi-formal arguments for the strictness of identity.
Let us discuss them in turn.

6.1. The Collapse Argument. Let us first consider the collapse argument.
Recall that the core of the collapse argument is the following technical result:
Suppose we have a language with two identity predicates, =1 and =2, that each
obey the strongly classical theory of identity. That is, they each obey Re and
PIIc. Then we can show that ` a =1 b ↔ a =2 b. Moreover, we can show that
the two identity predicates are fully intersubstitutable.

The situation is different if we move to a weakly classical logic with iden-
tity. Consider a language in which we have two identity predicates, =1 and
=2, as well as individual constants, predicates, the usual logical connectives,
and parentheses. (For simplicity, we operate in a language without a modal
operator.) Suppose that the consequence relation is the minimal weakly clas-
sical consequence relation such that each identity predicate obeys Re, Sy, Tr,
and PIIe. This consequence relation can be axiomatized using any Hilbert-style
axiomatization of classical logic with the addition of the following axioms and
rules:
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a =1 a Reflexivity1 (Re1)
a =2 a Reflexivity2 (Re2)
a =1 b→ b =1 a Symmetry1 (Sy1)
a =2 b→ b =2 a Symmetry2 (Sy2)
(a =1 b ∧ b =1 c)→ a =1 c Transitivity1 (Tr1)
(a =2 b ∧ b =2 c)→ a =2 c Transitivity2 (Tr2)
a =1 b, E(a)/E(b) Indiscernibility of Identicalse1 (PIIe1)
a =2 b, E(a)/E(b) Indiscernibility of Identicalse2 (PIIe2)

We can assume that the only other rule of inference is Modus Ponens.
The semantics for this language is a simple modification of the algebraic se-

mantics presented above. A model is a septuple, 〈S,≤, F,D, I1, I2,Φ〉. We let
‖a =1 b‖ = I1(Φ(a),Φ(b)) and ‖a =2 b‖ = I2(Φ(a),Φ(b)). We impose the follow-
ing constraints on models:

• I1(d, e) ∈ F just in case I1(d, e) = 1 just in case d is identical to e;
I2(d, e) ∈ F just in case I2(d, e) = 1 just in case d is identical to e;
• I1(d, e) = I1(e, d); I2(d, e) = I2(e, d);
• I1(d, e) u I1(e, f) ≤ I1(d, f); I2(d, e) u I2(e, f) ≤ I2(d, f).

It is straightforward to modify the proofs above to show the strong soundness and
strong completeness of this consequence relation with respect to the semantics.

PIIc1 and PIIc2 are not theorems of this theory. So the argument for the inter-
substitutivity of =1 and =2 does not go through.

We can show that a =1 b a` a =2 b.
34

Proof. By Re2, ` a =2 a. By PIIe1, a =1 b, a =2 a ` a =2 b. So a =1

b ` a =2 b. Similarly, using PIIe2 and Re1, a =2 b ` a =1 b. Therefore,
a =1 b a` a =2 b.

35 �

However, ¬a =1 b 0 ¬a =2 b and ¬a =2 b 0 ¬a =1 b.

Proof. Here is a countermodel: Let M = 〈S,≤, F,D, I1, I2Φ〉, where S =
{1, s, t, 0}; 〈S,≤〉 is the four element Boolean algebra such that 0 < s, t < 1;
F = {1}; D = {l,m}; I1(l,m) = I1(m, l) = 0 and I2(l,m) = I2(m, l) = s;
Φ(a1) = l and Φ(a2) = m.

In this model, ‖¬a1 =1 a2‖ = 1 but ‖¬a1 =2 a2‖ = −s = t /∈ F . Therefore,
¬a1 =1 a2 2 ¬a1 =2 a2. (To show that ¬a =2 b 2 ¬a =1 b, simply switch I1 and
I2.) �

Thus, the two identity predicates are not fully intersubstitutable.
It follows that 0 a =1 b↔ a =2 b. Indeed, the sentence ¬(a =1 b↔ a =2 b) is

consistent.

Proof. Let M = 〈S,≤, F,D, I1, I2Φ〉, where S = {1, s, t, 0}; 〈S,≤〉 is the
four element Boolean algebra such that 0 < s, t < 1; F = {1}; D = {l,m};
I1(l,m) = I1(m, l) = s and I2(l,m) = I2(m, l) = t; Φ(a1) = l and Φ(a2) = m.

In this model, ‖¬(a1 =1 a2 ↔ a1 =2 a2)‖ = −(t u s) = −0 = 1 ∈ F . �

Moreover, the set {a =1 b ∨ a =1 c,¬(a =2 b ∨ a =2 c)} is consistent.

34Thus, on our weakly classical theory of identity, identity is unique in the sense of Belnap
(1962). However, as we will see below, this does not entail that =1 and =2 are intersubstitutable

in embedded contexts.
35There is also a simple semantic proof: M � a =1 b just in case I1(Φ(a),Φ(b)) ∈ F just in

case Φ(a) is identical to Φ(b) just in case I2(Φ(a),Φ(b)) ∈ F just in case M � a =2 b.
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Proof. Let M = 〈S,≤, F,D, I1, I2,Φ〉, where S = {1, s, t, 0}; 〈S,≤〉 is the
four element Boolean algebra such that 0 < s, t < 1; F = {1}; D = {l,m, n};
I1(l,m) = I1(m, l) = s, I1(l, n) = I1(n, l) = t, I1(m,n) = I1(n,m) = 0, and
I2(l,m) = I2(m, l) = I2(l, n) = I2(n, l) = I2(m,n) = I2(n,m) = 0; Φ(a1) = l,
Φ(a2) = m, and Φ(a3) = n.

In this model, ‖a1 =1 a2 ∨ a1 =1 a3‖ = I1(l,m) t I1(l, n) = s t t = 1 ∈ F .
‖¬(a1 =2 a2 ∨ a1 =2 a3)‖ = −(I2(l,m) t I2(l, n)) = −(0 t 0) = −0 = 1 ∈ F . �

Thus, it is consistent to accept that the two identity predicates are not equivalent.
It is also consistent to accept both a sentence and the negation of the sentence
that differs from the original sentence only in that it has occurrences of =2 where
the original sentence has occurrences of =1. In short, the two identity predicates
may behave very differently in embeddings.

Now suppose that we add the following two additional rules to the proof theory:
E(a),¬E(b)/¬a =1 b PII−1e

1

E(a),¬E(b)/¬a =2 b PII−1e
2

It is easy to show that this new consequence relation is strongly sound and
strongly complete with our semantics given an additional restriction on models:
If ‖E(a)‖ ∈ F and−‖E(b)‖ ∈ F , then−I1(Φ(a),Φ(b)) ∈ F and−I2(Φ(a),Φ(b)) ∈
F .

As before, on this consequence relation, a =1 b a` a =2 b. We can now also
show that ¬a =1 b a` ¬a =2 b.

Proof. By Re1, ` a =1 a. By PII−1e
2 , a =1 a,¬a =1 b ` ¬a =2 b. So

¬a =1 b ` ¬a =2 b. By the analogous reasoning, ¬a =2 b ` ¬a =1 b. �

Moreover, the sentence ¬(a =1 b↔ a =2 b) is no longer consistent.

Proof. By Re1 and Re2, ` a =1 a and ` a =2 a. So ` a =1 a↔ a =2 a. By
PII−1e

1 , a =1 a ↔ a =2 a,¬(a =1 b ↔ a =2 b) ` ¬a =1 b. So ¬(a =1 b ↔ a =2

b) ` ¬a =1 b. Similarly, using PII−1e
2 , ¬(a =1 b ↔ a =2 b) ` ¬a =2 b. ¬a =1

b,¬a =2 b ` a =1 b ↔ a =2 b. Hence, ¬(a =1 b ↔ a =2 b) ` a =1 b ↔ a =2 b.
Therefore, ¬(a =1 b↔ a =2 b) is inconsistent. �

So we can no longer consistently maintain that the two identity predicates are
inequivalent.

Nevertheless, it remains true that 0 a =1 b↔ a =2 b.

Proof. Here is a countermodel: Let M = 〈S,≤, F,D, I1, I2,Φ〉, where S =
{1, r, s, t, u, v, w, 0} and ≤ is the relation depicted in the following Hasse diagram:

1

r s t

u v w

0

F = {1}; D = {l,m}; I1(l,m) = I1(m, l) = r and I2(l,m) = I2(m, l) = s; and
Φ(a1) = l, Φ(a2) = m, Φ(P 1

1 )(l) = r, and Φ(P 1
1 )(m) = s.

This model satisfies the additional constraint: Suppose ‖E(a1)‖ = 1. E(a1) is
equivalent to a sentence in Conjunctive Normal Form – that is, a conjunction of
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disjunctions of atomic sentences and negations of atomic sentences. Each of the
conjuncts has value 1. By a tedious enumeration of cases, it can be shown that
substituting occurrences of a2 for some of the occurrences of a1 in a conjunct
yields a sentence with value 1, r, or s. Thus, E(a2) has value 1, r, s, or u. So
there is no pair of sentences E(a1) and E(a2) such that E(a1) and ¬E(a2) both
have designated values. By a similar argument, there is no pair of sentences
E(a1) and E(a2) such that E(a2) and ¬E(a1) both have designated values. So
the model satisfies the constraint.

In this model, ‖a1 =1 a2 ↔ a1 =2 a2‖ = (−rus)u(−str) = sur = u /∈ F . �

So we can refrain from endorsing the claim that the two identity relations are
equivalent. Similarly, a =1 b ∨ a =1 c may be true in a model without a =2

b ∨ a =2 c being true in the model. So it is consistent to accept a =1 b ∨ a =1 c
without also accepting a =2 b∨a =2 c. Thus, even if we add the rules PII−1e

1 and
PII−1e

2 to the logic, the two identity predicates are not fully intersubstitutable.
Given these results, what should we make of the collapse argument and its

alleged consequences? The weakly classical theory of identity generated by Re,
Sy, Tr and PIIe is a very natural theory. It contains the claim that the identity
relation is an equivalence relation and the rule PIIe. If we adopt this theory as our
theory of identity (perhaps also including the rule PII−1e), we can no longer make
use of the collapse argument in arguing that: (i) the identity predicates of distinct
speakers must have the same extension; (ii) the identity predicate determinately
refers to a single determinate relation; and (iii) identities are necessary.

We can still argue that the identity predicates of two speakers must agree at
least insofar as a =1 b a` a =2 b. In other words, if one speaker accepts an
identity statement and the other does not, at least one of them is making a
mistake. However, if identity theory does not contain PII−1e, the speakers need
not agree about which identity statements they deny. Moreover, even if iden-
tity theory includes PII−1e, the speakers needn’t agree about how the identity
predicate behaves in other embedded contexts. For instance, one speaker may
accept that a = b ∨ a = c while the other may not. Thus, we can no longer use
the collapse argument to argue that two speakers must have identity predicates
with the same extension.

Similarly, we can still argue that any two precisifications of the identity relation
must agree at least insofar as a =1 b a` a =2 b. In other words, if an identity is
true on one precisification, it must be true on the other. But if identity theory
does not include PII−1e, precisifications need not agree about when the negation
of an identity claim is true. Moreover, even if identity theory includes PII−1e,
precisifications need not agree on how the identity predicate behaves in other
embedded contexts. For instance, the sentence a = b ∨ a = c may be true on
one precisification but not on another. Thus, two precisifications of the identity
predicate may behave differently. We can no longer use the collapse argument
to argue that identity cannot be vague or otherwise indeterminate.

Finally, we can still argue that if a = b obeys our weakly classical theory of
identity, so does 2a = b. We can still argue that a = b and 2a = b must agree
at least insofar as a = b a` 2a = b. But irrespective of whether we include
PII−1e in our theory of identity, a = b and 2a = b may behave very differently
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in embeddings. In particular, we need not accept that ` a = b → 2a = b. So
we can no longer make use of the collapse argument to argue that if an identity
obtains, it obtains necessarily.

6.2. Modality. Let us now consider the modal argument. Recall that the
core of the modal argument is the following technical result: Suppose we have
a strongly classical normal modal logic with identity. Suppose our theory of
identity contains Re and PIIc. Then we can show that ` a = b → 2a = b.
Moreover, given additional modal principles, we can show that ` a = b↔ 2a =
b, ` ¬a = b ↔ 2¬a = b, and ` 2a = b ∨ 2¬a = b. In particular, these
results obtain in S5, the best candidate for the logic of metaphysical necessity.
This suggests that identity and distinctness obtain necessarily and that given
any pair of objects, they are either necessarily identical or necessarily distinct.
There is no room for any sort of contingency concerning identity or distinctness.

The situation is different in weakly classical logic. Since PIIc does not obtain,
the argument that ` a = b→ 2a = b does not go through. It is true that in our
base weakly classical normal modal logic with identity, a = b ` 2a = b.

Proof. By Re, ` a = a. By PIIe, a = b,2a = a ` a = a. By Nec, ` 2a = a.
Therefore, a = b ` 2a = b. �

In addition, if we have the T principle in the logic, we can show that ` 2a =
b → a = b. Thus, in KT, we can show that a = b a` 2a = b. Using T, we
can also show that ` 2¬a = b → ¬a = b and thus that 2¬a = b ` ¬a = b.
However, even if we accept the S5 principles for necessity, ¬a = b 0 2¬a = b,
¬2¬a = b 0 a = b, and 0 2a = b ∨ 2¬a = b. Indeed, it is consistent to accept
¬(2a = b ∨2¬a = b).

Proof. Here is a countermodel: Let M = 〈S,≤, F,D, I,N,Φ〉, where S =
{1, s, t, 0}; 〈S,≤〉 is the four element Boolean algebra such that 0 < s, t < 1;
F = {1, s}; D = {l,m}; I(l,m) = I(m, l) = t; N(1) = 1 and N(0) = N(s) =
N(t) = 0; and Φ(a1) = l and Φ(a2) = m.

In this model, ‖¬a1 = a2‖ = −I(Φ(a1),Φ(a2)) = −I(l,m) = −t = s ∈ F but
‖2¬a1 = a2‖ = N(s) = 0 /∈ F .

In this model, ‖¬2¬a1 = a2‖ = −N(−I(l,m)) = −N(−t) = −N(s) = −0 =
1 ∈ F but ‖a1 = a2‖ = I(l,m) = t /∈ F .

In this model, ‖2a1 = a2 ∨2¬a1 = a1‖ = N(I(l,m))tN(−I(l,m)) = N(t)t
N(−t) = N(t)tN(s) = 0t0 = 0 /∈ F . ‖¬(2a1 = a2 ∨2¬a1 = a1)‖ = 1 ∈ F . �

Moreover, 0 a = b→ 2a = b.

Proof. Here is a countermodel: Let M = 〈S,≤, F,D, I,N,Φ〉, where S =
{1, s, t, 0}; 〈S,≤〉 is the four element Boolean algebra such that 0 < s, t < 1;
F = {1, s}; D = {l,m}; I(l,m) = I(m, l) = s; N(1) = 1 and N(0) = N(s) =
N(t) = 0; and Φ(a1) = l and Φ(a2) = m.

In this model, ‖a1 = a2 → 2a1 = a2‖ = −I(Φ(a1),Φ(a2))tN(I(Φ(a1),Φ(a2))) =
−s tN(s) = t t 0 = t /∈ F . �

If we accept a weakly classical normal modal logic with identity, we cannot
both accept an identity and the claim that the identity is not necessary. That
is, the sentence a = b ∧ ¬2a = b is inconsistent, as is the logically equivalent
sentence ¬(a = b→ 2a = b). However, we can accept that it is possible that an
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identity is contingently true. That is, ¬2¬(a = b ∧ ¬2a = b) is consistent, as is
the logically equivalent sentence ¬2(a = b → 2a = b). So we can consistently
accept a positive claim about how a = b → 2a = b is defective, and not just
withhold acceptance of it.

Proof. Let M = 〈S,≤, F,D, I,N,Φ〉, where S = {1, s, t, 0}; 〈S,≤〉 is the
four element Boolean algebra such that 0 < s, t < 1; F = {1, s}; D = {l,m};
I(l,m) = I(m, l) = t; N(1) = 1 and N(0) = N(s) = N(t) = 0; and Φ(a1) = l
and Φ(a2) = m.

In this model, ‖¬2¬(a1 = a2 ∧ ¬2a1 = a2)‖ = −N(−(I(Φ(a1),Φ(a2)) u
−N(I(Φ(a1),Φ(a2))))) = −N(−(I(l,m)u−N(I(l,m)))) = −N(−(tu−N(t))) =
−N(−(t u −0)) = −N(−(t u 1)) = −N(−t) = −N(s) = −0 = 1 ∈ F . �

All of these results continue to hold even if we add the rule PII−1e to our
logic. Of the three countermodels presented above, the first and the third satisfy
the constraint that if ‖E(a)‖ ∈ F and −‖E(b)‖ ∈ F then −I(Φ(a),Φ(b)) ∈ F .
(In each of these models, the only members of the domain are l and m and
−I(l,m) ∈ F .) The result that 0 a = b → 2a = b requires a more complex
model.

Proof. Here is a countermodel: Let M = 〈S,≤, F,D, I,N,Φ〉, where S =
{1, r, s, t, u, v, w, 0} and ≤ is the relation depicted in the following Hasse diagram:

1

r s t

u v w

0

F = {1}; D = {l,m}; I(l,m) = I(m, l) = r; N(1) = 1, N(r) = N(s) = N(u) =
u, and N(0) = N(t) = N(v) = N(w) = 0; and Φ(a1) = l and Φ(a2) = m.

This model satisfies the additional constraint: Suppose ‖E(a1)‖ = 1. Since
we are operating in S5, E(a1) is equivalent to a sentence in Modal Conjunctive
Normal Form – that is, a conjunction of disjunctions of sentences of the form A,
2A, and ¬2A, where A has no modal operators.36 Each of the conjuncts has
value 1. By a tedious enumeration of cases, it can be shown that substituting
occurrences of a2 for some of the occurrences of a1 in a conjunct yields a sentence
with value 1, r, s, or u. Thus, E(a2) has value 1, r, s, or u. So there is no pair
of sentences E(a1) and E(a2) such that E(a1) and ¬E(a2) both have designated
values. By a similar argument, there is no pair of sentences E(a1) and E(a2)
such that E(a2) and ¬E(a1) both have designated values. So the model satisfies
the constraint.

In this model, ‖a1 = a2 → 2a1 = a2‖ = −r uN(r) = w u u = s /∈ F . �

We do get an additional result by adding the rule PII−1e. Namely, ¬2a = b `
¬a = b.37

36See Hughes & Cresswell (1996), page 82.
37I owe this observation to Heck (1998), page 288.
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Proof. Here is a countermodel for the case that the logic does not contain
PII−1e: Let M = 〈S,≤, F,D, I,N,Φ〉, where S = {1, s, t, 0}; 〈S,≤〉 is the four
element Boolean algebra such that 0 < s, t < 1; F = {1}; D = {l,m}; I(l,m) =
I(m, l) = s; N(1) = 1 and N(0) = N(s) = N(t) = 0; and Φ(a1) = l and
Φ(a2) = m.

In this model, ‖¬2a1 = a2‖ = −N(I(Φ(a1),Φ(a2))) = −N(s) = −0 = 1 ∈ F .
‖¬a1 = a2‖ = −I(Φ(a1),Φ(a2)) = −s = t /∈ F .

Now suppose that the logic contains PII−1e. By Re and Nec, ` 2a = a. By
PII−1e, 2a = a,¬2a = b ` ¬a = b. So ¬2a = b ` ¬a = b. �

The claim that ¬2a = b ` ¬a = b is the contrapositive of a = b ` 2a = b. It
should not be surprising, then, that we get the contrapositive of a = b ` 2a = b
when we add the contrapositive of PIIe to the logic.

Given these results, what should we conclude about the necessity of the iden-
tity and distinctness relations? The weakly classical theory containing Re, Sy,
Tr, and PIIe is very natural. If we adopt it as our theory of identity, and we
accept the S5 principles for 2, we can no longer argue that the identity and
distinctness relations obtain necessarily. It is true that we cannot accept an
identity and fail to accept that it is necessary. But we can accept a distinctness
claim without accepting that it is necessary. Moreover, we need not accept the
conditional a = b → 2a = b. Indeed, we can accept ¬2¬(a = b ∧ ¬2a = b).
That is, we can accept that it is possible for an identity to be true without be-
ing necessarily true. More strikingly still, it is consistent to accept that neither
an identity nor its negation is necessary. And these results hold even if we en-
dorse the rule PII−1e.38 This suggests there is room for contingency in both the
identity and the distinctness relations.

6.3. Vagueness. Finally, let us consider the vagueness argument. The op-
erator Det can be treated as a modal operator, with the same semantics as 2.
As is true for the case of 2, if Det obeys a weakly classical normal modal logic
with identity, we can show that a = b ` Det a = b. If, in addition, DetA ` A,
we can show a = b a` Det a = b. However, even if our modal logic for Det
is S5 (or some weakening of it), ¬a = b 0 Det¬a = b, ¬Det¬a = b 0 a = b,
0 Det a = b ∨ Det¬a = b, and 0 a = b → Det a = b. Indeed, it is consistent to
accept ¬(Det a = b ∨Det¬a = b). Moreover, while it is not consistent to accept
a = b ∧ ¬Det a = b, it is consistent to accept ¬Det¬(a = b ∧ ¬Det a = b) and
the logically equivalent ¬Det(a = b → Det a = b). And each of these results
continues to obtain even if we add the rule PII−1e to the theory of identity.

Suppose VA is an abbreviation for ¬DetA∧¬Det¬A. (Thus, VA is logically
equivalent to V¬A.) Since a = b ` Det a = b, we have it that a = b ` ¬V a = b.
However, we can easily show that ¬a = b 0 ¬V a = b. Moreover, 0 a = b →
¬V a = b, 0 ¬a = b → ¬V a = b, 0 V a = b → ¬a = b, and V a = b 0 ¬a = b.
Indeed, V a = b and the equivalent V¬a = b are each consistent.

Given this weakly classical theory of identity, Evans’s argument for the deter-
minacy of identity breaks down. We no longer have PIIc, and so cannot use it to

38If we endorse PII−1e and we claim of some identity that neither it nor its negation is
necessary, we will be committed to the negation of the identity. But we won’t be committed

to the necessity of the negation.
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show that ` V a = b→ ¬a = b. Indeed, as we have seen, this sentence is no longer
a theorem. Moreover, since 0 ¬a = b → ¬V a = b and 0 ¬a = b → ¬V¬a = b,
the later parts of Evans’s argument fail, too.

The second strategy for arguing for the determinacy of identity and distinct-
ness – based on an application of the Barcan-Kripke argument – also fails. It
fails in exactly the same way as does the argument for the necessity of identity
and distinctness.

So far, this is all straightforward. There is a complication, however. Many
have found the rule A/DetA to be plausible. Indeed, this is a valid rule on
certain supervaluational treatments of vagueness.39 On our algebraic semantics,
this rule corresponds to the constraint that the only designated value in a model
is the top value of the Boolean algebra. The trouble is that if our logic contains
this rule as well as PII−1e, we can show that V a = b is inconsistent.40

Proof. By our previous results, given PII−1e, ¬Det a = b ` ¬a = b. Since
A ` DetA, we have it that ¬a = b ` Det¬a = b. Thus, ¬Det a = b ` Det¬a = b.
So, ¬Det a = b,¬Det¬a = b ` Det¬a = b ∧ ¬Det¬a = b. It follows that
V a = b ` Det¬a = b ∧ ¬Det¬a = b. Therefore, V a = b is inconsistent. �

This is the residual force of Evans’s original argument.
What should we make of this result? The inconsistency proof requires both the

rule PII−1e and the rule A/DetA. So we might consider giving up one of these
two rules. As we have seen, PII−1e corresponds to an unattractive constraint in
the semantics. Yet, it is a plausible rule governing identity. So it seems difficult
to give up this rule. The real issue concerns the rule A/DetA. While this rule
is widely endorsed, it does not strike me as obviously correct. Why think that
someone committed to A is thereby committed to the determinacy of A?

Nevertheless, let us suppose that both rules are correct. Does this show that
we must claim that identity claims are never vague? The answer is no. Since
we are operating in a weakly classical logic, Reductio is not a valid meta-rule.
So we cannot use it to conclude that ` ¬V a = b.41 Indeed, we can show that
0 ¬V a = b, or equivalently, that 0 Det a = b ∨ Det¬a = b. We can also show
that 0 a = b→ Det a = b and 0 ¬a = b→ Det¬a = b.

Proof. Here is a countermodel: Let M = 〈S,≤, F,D, I,N,Φ〉, where S =
{1, r, s, t, u, v, w, 0} and ≤ is the relation depicted in the following Hasse diagram:

1

r s t

u v w

0

39See, for instance, Fine (1975). On a supervaluational treatment, if logical consequence is

defined as global validity, then A entails DetA. This is not so if logical consequence is defined
as local validity. See Williamson (1994), chapter 5.

40See Heck (1998), page 288.
41See Heck (1998), page 291.
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F = {1}; D = {l,m}; I(l,m) = I(m, l) = r; N(1) = 1, N(r) = N(s) = N(u) =
u, and N(0) = N(t) = N(v) = N(w) = 0; and Φ(a1) = l and Φ(a2) = m.

As we have already shown (on page 33), this model satisfies the constraint for
PII−1e. This model has only a single designated value.

In this model, ‖Det a1 = a2 ∨Det¬a1 = a2‖ = N(I(l,m)) t N(−I(l,m)) =
N(r) tN(−r) = N(r) tN(w) = u t 0 = u /∈ F .

In this model, ‖a1 = a2 → Det a1 = a2‖ = −I(l,m) t N(I(l,m)) = −r t
N(r) = w t u = s /∈ F .

In this model, ‖¬a1 = a2 → Det¬a1 = a2‖ = I(l,m) t N(−I(l,m)) = r t
N(−r) = r tN(w) = r t 0 = r /∈ F . �

So we can withhold assent to the claim that an identity is not vague. We can
also withhold assent to the definiteness of identity and the definiteness of non-
identity. We just cannot consistently claim that an identity is vague. This
provides us with less wiggle room than before, but it still provides us enough to
resist endorsing the definiteness or determinacy of the identity and distinctness
relations.

Given that we can avoid endorsing the determinacy of identity, is there any
positive claim we can consistently accept about how ¬V a = b is defective? For
example, can we consistently accept ¬Det¬V a = b? The answer is that we
cannot, at least assuming that we are operating in S5. In S5, iterated modalities
collapse. However, there are reasons to think that S5 is not the correct modal
logic for the definiteness or determinately operators. If higher-order indetermi-
nacy is a genuine phenomenon, then we should move to a weaker modal logic for
Det. And if we endorse a weaker modal logic, we may be able to consistently
claim that ¬V a = b is defective, and not merely fail to endorse it.

Given these results, what should we conclude about the determinacy of the
identity and distinctness relations? The weakly classical theory containing Re,
Sy, Tr, and PIIe is a very natural theory. It is plausible that the correct logic
for determinacy (or definiteness) is some weakening of S5. If we adopt this
theory as our theory of identity, and we adopt some weakening of S5 as our
theory of determinacy, we can no longer argue that the identity and distinctness
relations are determinate. It is true that we cannot accept an identity and fail
to accept that it is determinate. But we can accept a distinctness claim without
accepting that it is determinate. Moreover, we need not accept the conditional
a = b → Det a = b. Indeed, we can accept ¬Det(a = b → Det a = b). That
is, we can accept that it is not determinate that if an identity is true, it is
determinately true. More strikingly still, we can accept that it is vague whether
an identity obtains. And these results obtain even if we endorse the rule PII−1e.

If we also endorse the (perhaps dubious) rule A/DetA, we can show that
¬a = b ` Det¬a = b. Moreover, it is no longer consistent to claim that it is vague
whether an identity obtains. Nevertheless, we need not accept a = b→ Det a = b
or ¬a = b→ Det¬a = b. So the arguments for the determinacy of identity and
non-identity fail. Even with this rule, then, there is room to avoid endorsing the
determinacy of the identity and distinctness relations.
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§7. Discussion. Let’s take stock. If we accept strongly classical logic and
a theory of identity that contains the claim that identity is reflexive and the
claim PIIc, there are compelling arguments that suggest that (i) there is a single
identity relation and a single distinctness relation; (ii) the identity and distinct-
ness relations obtain necessarily; and (iii) the identity and distinctness relations
obtain definitely and determinately. On the other hand, if we accept a merely
weakly classical logic and the weaker theory of identity that contains the claim
that identity is an equivalence relation as well as the rule PIIe (and perhaps also
the rule PII−1e), the arguments are blocked.

In the weaker theory, we can still argue that a =1 b a` a =2 b. Given two
identity relations, if one accepts an identity claim, so must the other. If we
accept PII−1e, we can also argue that ¬a =1 b a` ¬a =2 b. Given any two
identity relations, if one accepts a distinctness claim, so must the other. But
even if we accept PII−1e, two identity relations may behave very differently in
other embedded contexts. In short, there is room for multiple extensionally-
inequivalent identity and distinctness relations.

In the weaker theory of identity, we can argue that a = b ` 2a = b and a =
b ` Det a = b. If we accept an identity claim, we must accept that it is necessary,
definite, and determinate. But even if we accept PII−1e, ¬a = b 0 2¬a = b and
¬a = b 0 Det¬a = b. If we accept a distinctness claim, we need not accept
that it is necessary, definite, or determinate. Moreover, 0 a = b → 2a = b and
0 a = b → Det a = b. Indeed, it is consistent to accept ¬(2a = b ∨ 2¬a = b)
and ¬(Det a = b ∨ Det¬a = b). That is, we can accept that neither an identity
nor its negation is necessary. We can also accept that neither an identity not its
negation is definite or determinate. In other words, there is room for contingency,
vagueness, and indeterminacy in the identity and distinctness relations.

If we endorse both PII−1e and A/DetA, our wiggle room declines further.
But even in this setting, we need not accept a = b → Det a = b or ¬a = b →
Det¬a = b. So we need not accept the definiteness and determinacy of the
identity and distinctness relations.

It seems, then, that we can accept a reasonable theory of identity and reason-
able principles for 2 and Det without committing ourselves to the uniqueness,
necessity, or determinacy of the identity and distinctness relations.

Supposing that our only two options are (a) the strongly classical theory of
identity containing Re and PIIc; and (b) the weakly classical theory of identity
containing Re, Sy, Tr, and PIIe (and perhaps also PII−1e), how should we decide
between them? There are really two decisions to make. The first decision is
between strongly classical logic and (merely) weakly classical logic. Assuming
we go for weakly classical logic, the second decision is between the two theories
of identity. (Given strongly classical logic, the two theories are equivalent.)

How should we decide between strongly classical and weakly classical logic?
This question is bound up with fundamental questions concerning the nature of
logic. On one picture, logic is intimately tied to reasoning; logic tells us how
we ought to (deductively) reason. This picture sits well with the idea that the
standard Natural Deduction rules – including the meta-rules – are of central
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importance.42 Perhaps such rules are built into the logical concepts, as certain
versions of Conceptual Role Semantics maintain. Even if they are not, such rules
tell us how we should reason. Given this picture, we should presumably endorse
the classical meta-rules. We should accept strongly classical logic.43

On an alternative picture of the nature of logic, logic is not directly connected
with reasoning. It is not a normative but a descriptive theory. Logic is the theory
of the (logical) consequence relation. It tells us what follows from what.44 This
picture sits well with the idea that what is central to logic is not the Natural
Deduction rules but the logical truths and entailment claims. Given this picture,
we should presumably endorse (merely) weakly classical logic. We should only
go on to accept strongly classical logic if the rules governing the vocabulary in
our language permit it.45

The choice between strongly classical and weakly classical logic thus depends
(in part) on which of these two pictures of the nature of logic is correct.

There is another – semantic – way to think about the choice between strongly
classical and weakly classical logic.46 Consider the claim � A→ B. On a simple
semantics for strongly classical logic, � A → B is true just in case whenever A
is designated in a model, so is B. In contrast, on our algebraic semantics for
weakly classical logic with identity, the claim is true just in case in every model
‖A‖ ≤ ‖B‖. So we can think about the choice between strongly classical and
weakly classical logic by considering the partial order of semantic values. Does
this partial order correspond to anything real? If the partial order corresponds to
something real, should the semantics for the logical connectives make use of it, or
should it only make use of the distinction between designated and undesignated
values? These questions do not have obvious answers, but they provide a way to
get a handle on the choice between strongly classical and weakly classical logic.

Supposing we end up endorsing weakly classical logic, how should we decide
between the two theories of identity? Unfortunately, it is not entirely clear how
to make this choice. Both theories are very natural. Perhaps there is some
intuitive support for PIIc. It is intuitive that if a is identical to b then a and
b share the very same properties. This claim is most naturally understood as
a conditional and not as an entailment. But, the difference is subtle, and this
is, at best, very weak evidence. I suspect that the best way to decide between

42Indeed, Gentzen (1935) motivates the natural deduction rules in part by connecting them
to reasoning.

43This conclusion is not forced, however. We can accept the primacy of Natural Deduction
formulations of logic and also accept a merely weakly classical logic. In particular, we can
place side conditions on the standard Natural Deduction rules. For instance, we might accept
a version of Conditional Introduction restricted so that the rule PIIe cannot be used in sub-

derivations. This is broadly analogous to what advocates for supervaluational semantics for
truth sometimes do. They accept a version of Conditional Introduction restricted so that the

rules governing the truth predicate cannot be used in subderivations. See, for instance, McGee
& McLaughlin (2004), section 3.

44See Harman (1995) for arguments for this picture of logic.
45This conclusion is also not forced. We can accept that logic is the descriptive theory

of the consequence relation and still claim that we should endorse strongly classical logic no
matter what is in our language. For example, we might claim that the the meta-rules encode

important patterns among entailments.
46For discussion of this issue, I am grateful to Gabriel Uzquiano.
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these two views is to think about the consequences of the decision. Is it plausible
that the identity and distinctness relations are necessary? Is it plausible that
the identity and distinctness relations are definite and determinate? There may
be good reasons from metaphysics to want there to be room for contingency,
vagueness, or indeterminacy of identity. Perhaps, for instance, we should accept
that there is “vagueness in the world” and perhaps this requires vagueness in
the identity relation. If so, assuming that we want to hold onto classical logic,
the best alternative may be to endorse a weakly classical theory of identity. At
the very least, this should be one of the theoretical options open to us.

At the end of the day, we may decide that the weakly classical theory of identity
is insufficiently powerful. We may find reason to endorse the strongly classical
theory of identity. Even if we do so, I take it that the results presented here are of
interest. They demonstrate that there is a significant difference between strongly
classical and (merely) weakly classical logic. They show that there is a significant
difference between the Principle of the Indiscernibility of Identicals in conditional
form and in rule form. The arguments for the strictness of identity crucially rely
on these differences. They rely on the power of strongly classical logic and the
power of the Principle of the Indiscernibility of Identicals in conditional form.
Even if we ultimately conclude that we should continue to accept the strongly
classical theory of identity, it is important that we understand exactly what it
is that we are accepting.

§8. Acknowledgements. This paper is a development of some ideas that
arose in connection with Schechter (2011). Thanks to Timothy Williamson for
asking the question about identity that led me to the results presented here.
Thanks to Richard Heck and Gabriel Uzquiano for helpful discussion. The first
draft of this paper was written while I was a visiting fellow at New College,
Oxford University. I am grateful to New College for their hospitality.

REFERENCES

Akiba, K. (2004). Vagueness in the world. Noûs 38(3), 407–429.
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