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Abstract

In this thesis, we study the first hitting time and Parisian time of Brow-

nian motion and squared Bessel process, as well as the exact simulation

algorithm of the two-parameter Poisson-Dirichlet distribution. Let the

underlying process be a reflected Brownian motion with drift moving

on a finite collection of rays. Using a recursive method, we derive the

Laplace transform of the first hitting time of the underlying process.

This generalises the well-known result about the first hitting time of a

Walsh Brownian motion on spider. We also invert the Laplace transform

explicitly using two different methods, and obtain the density and distri-

bution functions of the first hitting time. Then we consider the Parisian

time of the underlying process, which is defined as the first exceeding

time of the excursion time length. Using the same recursive method, we

derive the Laplace transform of the Parisian time. The exact simula-

tion algorithm for the Parisian time is also proposed. Next, we extend

the result to the Parisian time of a squared Bessel process with a linear

excursion boundary. Based on a variation of the Azéma martingale, we

obtain the distributional properties of the Parisian time, and design the

algorithm for sampling from the Parisian time. Finally, as an extension

of the simulation of the Parisian time, we propose two exact simula-

tion algorithms for sampling from the two-parameter Poisson-Dirichlet

distribution.
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Chapter 1

Introduction

Research about the first hitting time and Parisian time of stochastic processes has a

long history and attracts a lot of interests. Their applications range from financial

mathematics to risk management. The main objective of this thesis is to generalise

the existing results concerning the first hitting time and Parisian time of Brownian

motion, and to emphasise their connection to the Lévy subordinator. The first two

chapters are about the first hitting time and the Parisian time of a reflected Brownian

motion with drift on rays. The third chapter considers the Parisian time of a squared

Bessel process with a linear excursion boundary. The fourth chapter presents the

exact simulation algorithms for two-parameter Poisson-Dirichlet distribution.

The study of the first hitting time of a Brownian motion with an one-sided linear

boundary goes back to Doob (1949). Other types of boundary have also been con-

sidered. The second-order boundary was studied by Salminen (1988) using the in-

finitesimal generator method. The square-root boundary was considered by Breiman

(1967) via the Doob’s transform approach. Wang and Pötzelberger (1997) obtained

the crossing probability for Brownian motion with a piecewise linear boundary using

the Brownian bridge. Scheike (1992) derived an exact formula for the broken linear

boundary. Peskir (2002) provided a general result for the continuous boundary using

the Chapman-Kolmogorov formula, and gave the probability density function of the

first hitting time in terms of a Volterra integral system.

For the first hitting time of Brownian motion with a two-sided boundary, the Laplace

transform and density are well-known; see Borodin and Salminen (1996) Section

II.1.3. Barba Escribá (1987) obtained the moment generating function of the time

at which Brownian motion exits a region bounded by two nonconvergent straight

lines. Che and Dassios (2013) used a martingale method to derive the crossing

probability with a two-sided boundary involving random jumps. Sacerdote et al.
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(2014) constructed a Volterra integral system for the probability density function of

the first hitting time of Brownian motion with a general two-sided boundary.

Another case that we are interested in is the first hitting time of Walsh Brownian

motion on spider. In the epilogue of Walsh (1978), Walsh introduced a planar

process which is now known as the Walsh Brownian motion. The idea in Walsh

(1978) is to take each excursion of a reflected Brownian motion |W (t)| and, instead

of giving it a random sign (we obtain a skew Brownian motion and in particular,

a standard Brownian motion by doing so), to assign it a random variable Θ with

a given distribution in [0, 2π), and to do this independently for each excursion.

That is, if the excursion occurs during the time interval (u, v), we replace |W (t)|
by the pair (|W (t)|,Θ) for u ≤ t < v, Θ being a random variable with values in

[0, 2π). This provides a planar process (|W (t)|,Θ(t)), where Θ(t) is constant during

each excursion away from 0, has the same distribution as Θ, and is independent for

different excursions. Then the process (|W (t)|,Θ(t)), when away from the origin, is

a Brownian motion along a ray, and is kicked away from 0 immediately by the law

Θ. In much of the existing literature, the angular measure Θ has a finite support,

and in this case, we call the state space of the planar process a spider.

The Walsh Brownian motion was further studied by Barlow et al. (1989). The Walsh

Brownian motion and Walsh diffusion on a spider were studied in Tsirelson (1997),

Watanabe (1999) and Evans and Sowers (2003). Itô’s formula for Walsh Brownian

motion with arbitrary angular measure was proved in Hajri and Touhami (2014),

and the stochastic calculus was developed in Freidlin and Sheu (2000), Freidlin and

Wentzell (1993) and Picard (2005). Walsh semimartingales and Walsh diffusions

with arbitrary angular measure were introduced in Ichiba et al. (2018), and further

studied in Karatzas and Yan (2019) with control problems. The convergence and

stationary distributions for Walsh diffusions are considered in Ichiba and Sarantsev

(2019). The Laplace transform of the first hitting time of the Walsh Brownian

motion on a spider has been derived by Papanicolaou et al. (2012) and Yor (1997).

A literature review can be found in Yan (2018).

In this thesis, we will consider a generic planar process, the reflected Brownian

motion with drift on rays. More specifically, we generalise the Walsh Brownian

motion (|W (t)|,Θ(t)) to (|X(t)|,Θ(t)), where |X(t)| is a reflected Brownian motion

with drift whose coefficients depends on Θ(t). It is clear that the standard Brownian

motion and Walsh Brownian motion on spider can be viewed as the special cases of

the reflected Brownian motion with drift on rays. Then the first hitting problems of

the one-sided, two-sided and Walsh types can also be viewed as the special cases of

the first hitting time of the latter process. In view of this, we will derive the Laplace
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transform of the first hitting time of the reflected Brownian motion with drift on

rays, and use the existing literature to verify our results.

We are also interested in the probability density function of the first hitting time.

In the one-sided and two-sided cases, the probability density function can be seen

in Borodin and Salminen (1996). However, these formulas are in a series whose

truncated function converges to the original function fast only when the variable

t is small. This causes some computational problems as it is hard to calculate

the probability when the first hitting time takes a large value. For example, from

Borodin and Salminen (1996) we know

P(τ ∈ dt) =
∞∑

k=−∞

(−1)k
(2k + 1)b√

2πt3
e−

(2k+1)2b2

2t dt, b > 0,

where τ := inf{t ≥ 0 | |Wt| = b}. To calculate the value of this function, we need to

truncate the summation at some level n, i.e., to use the truncated function

n∑
k=−n

(−1)k
(2k + 1)b√

2πt3
e−

(2k+1)2b2

2t .

But we will show that the truncated function provides a good approximation for

the original function only when t is small, and we will derive an expression for the

density function that is useful when t is large.

On the other hand, no explicit formula is known for the density of the first hitting

time of a Walsh Brownian motion on spider. In this thesis, we propose two different

methods to invert the Laplace transform and derive the density function. These

methods will result in two explicit expressions that are useful for large t and small

t respectively.

Apart from the first hitting time, we also look at the Parisian time of the reflected

Brownian motion with drift on rays. Parisian time is part of excursion theory, and

is defined as the first time that the excursion time length of the underlying pro-

cess reaches a threshold. The study of excursion time length of Brownian motion

goes back to Chung (1976). Other aspects of Brownian excursion have also been

considered. Durrett et al. (1977) developed the relationships between the Brownian

excursions, meanders and bridges using the limit processes of conditional function-

als of Brownian motion. Imhof (1984) derived the joint density concerning the

maximum of Brownian motion and 3-dimensional Bessel process. Kennedy (1976a)

derived the distribution of the maximum of excursion via the limiting processes and

relates it to the standard Brownian motion. Getoor and Sharpe (1979) obtained
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a limiting result on the distribution of the amount of time a Brownian excursion

spends in a small interval around the origin. A literature review can be found in

Zhang (2014).

More recently, Chesney et al. (1997) studied the Parisian time of Brownian motion.

Let Wt be a standard Brownian motion, we define its last zero time to be

g(t) := sup{s ≤ t | W (s) = 0},

and the excursion time length to be

U(t) := t− g(t).

Then U(t) represents the time length Wt has stayed away from zero, and the Parisian

time is defined as the first hitting time of U(t), i.e.,

τ := inf{t ≥ 0 | U(t) = d},

where d is a constant. The Laplace transform of the Parisian time τ was obtained

by Chesney et al. (1997). In this thesis, we will generalise the concept of Parisian

time to the reflected Brownian motion with drift on rays. We calculate the Laplace

transform of the Parisian time and design an exact simulation algorithm to sample

from it.

Chesney et al. (1997) also used their results to price the Parisian type options. They

are path-dependent options whose payoff depends not only on the final value of the

underlying asset, but also on the path trajectory of the underlying above or below

a predetermined barrier for a length of time. The two-sided Parisian option was

considered in Dassios and Wu (2010), its pricing depends on the Parisian time of

a drifted Brownian motion with a two-sided excursion time threshold. For more

details about Parisian options, see Schröder (2003), Anderluh and van der Weide

(2009) and Labart and Lelong (2009). It turns out that the results in Chesney et al.

(1997) and Dassios and Wu (2010) can be viewed as the special cases of the Parisian

time of a reflected Brownian motion with drift on rays. Moreover, we will discuss

the application of the Parisian time in the real-time gross settlement system.

Another topic within the excursion theory is the Parisian time of a squared Bessel

process with a linear excursion boundary. In most of the existing literatures, the

attention has been given to the Parisian time of a reflected Brownian motion. But a

reflected Brownian motion |Wt| has the same excursion time length as |Wt|2 because
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they share the same zeros, and the latter process can be viewed as the special case

of a squared Bessel process. To see this, consider the squared Bessel process Zt with

the stochastic differential equation

dZt = 2(1− α)dt+ 2
√
ZtdWt, Z0 = 0, 0 < α < 1.

When α = 1/2, the right hand side reduces to the SDE of |Wt|2. This relationship

inspires us to study the Parisian time of a larger class of processes, the squared

Bessel process.

In addition, we generalise the constant excursion boundary to a linear excursion

boundary. Recall that we define the Parisian time to be τ := inf{t ≥ 0 | U(t) = d},
where d is a constant. But it is also possible to generalise the threshold d to a

function of time. In particular, we are interested in the Parisian time defined as

τ := inf{t ≥ 0 | U(t) = a+ bt},

where a > 0 and 0 < b < 1. This is motivated by the pricing problem of a new type

of Parisian option, the moving Parisian option. The owner of such options is betting

the price of the underlying asset is above or below a barrier for an increasingly long

term. We will propose two methods to price the moving Parisian options. To our

knowledge, the only existing literature about the moving Parisian option is Guer

(2020).

In order to study the distribution of this Parisian time, we will construct a martingale

based on the excursion time length Ut. When the underlying process is a Brownian

motion Wt, Ut := t− sup{s ≤ t | W (s) = 0} represents the excursion length of Wt,

and the martingale based on Ut is called a Azéma martingale. The most well-known

Azéma martingale is

sgn(Wt)
π

2

√
Ut,

see Çetin (2012). There are also other types of Azéma martingale, see Dassios and

Lim (2019). When the underlying process is a squared Bessel process, we call the

martingale based on Ut an extension of the Azéma martingale. We will use the

extension to study the distributional properties of the Parisian time of the squared

Bessel process.

Finally, we study the exact simulation algorithm of the two-parameter Poisson-

Dirichlet distribution (PD distribution). The PD distribution is a probability dis-

tribution on the set of decreasing positive sequences with sum 1. It can be defined

in a ‘stick-breaking’ manner as follows. For 0 ≤ α < 1 and θ > −α, suppose
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that Ỹi, i = 1, 2, . . . is a sequence of independent random variables such that Ỹi has

Beta(1− α, θ + iα) distribution. Let

Ṽ1 = Ỹ1, Ṽi = (1− Ỹ1) . . . (1− Ỹi−1)Ỹi (i ≥ 2)

and let V1 ≥ V2 ≥ . . . be the ranked values of the Ṽi. Then the PD distribution

with parameters (α, θ) is defined to be the distribution of Vi, i = 1, 2, . . . .

The PD distribution arises in many fields, for example, as the asymptotic distribu-

tion of the ranked relative cycle lengths in a random permutation, see Shepp and

Lloyd (1966) and Schmidt and Vershik (1977); as the limiting proportions of genes

in some populations genetics models, see Hoppe (1987) and Watterson (1976); as the

distribution of the ranked sizes of atoms in the Dirichlet process prior in Bayesian

statistics, see Ferguson (1973) and Blackwell and MacQueen (1973). It also appears

in the research fields such as number theory Billingsley (1972), Vershik (1986) and

combinatorics Aldous (1985), Hansen (1994). More recently, the PD distribution is

used to approximate the capital distribution curves in equity markets, see Sosnovskiy

(2015).

From Pitman and Yor (1997), we know the PD distribution is related to the trun-

cated Lévy subordinator. On the other hand, we will show that the Parisian time

of a reflected Brownian motion can also be interpreted as a truncated Lévy sub-

ordinator at an exponential time. Hence, we find a connection between the PD

distribution and the previous research. Using a Laplace transform approach, we

propose a decomposition for the components of the PD distribution. The decompo-

sition leads us to an exact simulation algorithm. Moreover, when the parameters of

the distribution meet certain conditions, we provide a modified algorithm which is

much faster than the general case.

This thesis is organised as follows:

Chapter 2 studies the first hitting time of reflected Brownian motion with drift on

rays. Using a recursive method, we derive the Laplace transforms of the first hitting

time. Moreover, we propose two methods to invert the Laplace transform explicitly,

and obtain the density and distribution functions of the first hitting time.

Chapter 3 considers the Parisian time of reflected Brownian motion with drift on

rays. Using the same recursive method, we obtain the Laplace transform of the

Parisian time. Then we interpret the Laplace transform as a truncated Lévy subor-

dinator at an exponential random time, and propose an exact simulation algorithm

to sample from the Parisian time.
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Chapter 4 concentrates on the Parisian time of a squared Bessel process with a

linear excursion boundary. We provide an extension of the Azéma martingale, and

interpret it as the projection of a martingale with respect to the full filtration. Then

we derive a recursive formula for the density of the Parisian time, and develop an

exact simulation algorithm for sampling from the Parisian time. Moreover, we use

the previous results to price the moving Parisian options. Numerical results are also

provided.

Chapter 5 focuses on the two-parameter Poisson-Dirichlet distribution. We derive

two decompositions for the components of the distribution, and propose the exact

simulation algorithms for sampling from these components. Numerical examples are

provided to illustrate the accuracy and effectiveness of our algorithms.

Chapter 6 concludes the thesis and sets out some topics for future research.
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Chapter 2

First hitting time of reflected

Brownian motion with drift on

rays

Suppose we have a system of rays emanating from a common origin and a parti-

cle X(t) moving on this system. On each ray, the particle behaves as a reflected

Brownian motion with drift; and once at the origin, it instantaneously chooses a ray

for its next voyage randomly according to a given distribution. On each ray, there

is an upper boundary (see Fig. 2.1). We are interested in the first time that the

boundary is hit by X(t).

In order to derive the Laplace transform of the first hitting time, we will construct

a perturbed process which makes a small jump at the origin. This enables us to use

a recursive method to calculate the Laplace transform. Next, we reduce the process

to a Walsh Brownian motion on spider by taking zero drift and unit dispersion.

ray S2, upper boundary b2

µ(v2) = µ2, σ(v2) = σ2

ray S1, upper boundary b1

µ(v1) = µ1, σ(v1) = σ1

ray S5, upper boundary b5

µ(v5) = µ5, σ(v5) = σ5

ray S4, upper boundary b4

µ(v4) = µ4, σ(v4) = σ4

ray S3, upper boundary b3

µ(v3) = µ3, σ(v3) = σ3 ε

0

Figure 2.1 A reflected Brownian motion with drift on a collection of 5 rays.
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By doing so, we also get a simpler expression for the Laplace transform of the first

hitting time. We invert the Laplace transform using two different methods, and

study the density and distribution functions of the first hitting time.

This chapter is motivated by the real-time gross settlement system (RTGS, and

known as CHAPS in the UK, see McDonough 1997 and Padoa-Schioppa 2005). The

participating banks in the RTGS system are concerned about liquidity risk and wish

to prevent the excessive liquidity exposure between two banks. There is evidence

suggesting that in CHAPS, banks usually set bilateral or multilateral limits on the

exposed position with others (see Becher et al. 2008a and Becher et al. 2008b), this

mechanism was studied by Che and Dassios (2013) using a Markov model. For a

single bank, namely bank A, let a reflected Brownian motion be the net balance

between bank A and bank i, and let ui be the bilateral limit set up by bank A for

bank i, Che and Dassios (2013) calculated the probability that the limit is exceeded

in a finite time.

We generalize this model by considering an individual bank A and n counterparties.

Assume that bank A uses an internal queue to manage its outgoing payments, and

once the current payment is settled, it has probability Pi to make another payment

to bank i, where i ∈ {1, . . . , n}. Let a reflected Brownian motion with drift be

the net balance between bank A and bank i. To avoid the excessive exposure to

liquidity risk, a limit bi has been set for the net balance between bank A and bank

i (this limit might be set by either the participating banks or the central bank, see

Padoa-Schioppa 2005), and they are interested in the first time that such a limit is

exceeded. In practice, an individual bank could set multiple limits or even remove

the limit on different types of counterparties. This problem can be reduced to the

calculation of the first hitting time of a reflected Brownian motion with drift on

rays. For more details about the RTGS system, see Che (2011) and Soramäki et al.

(2007). Applications of the current chapter also include the communication in a

network, see Deng and Li (2009).

The rest of this chapter is organised as follows. We construct the reflected Brownian

motion with drift on rays X(t) in Section 2.1, then calculate the Laplace transform

of the first hitting time τ and present some special cases of the result in Section 2.2.

Next, we consider a special case where X(t) is a Walsh Brownian motion on spider,

and provide two methods to invert the Laplace transform explicitly in Section 2.3.

Numerical implementations are presented in Section 2.4.
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2.1 A construction of the planar process and the

first hitting time

In this section we construct the reflected Brownian motion with drift on a finite

collection of rays, and define the first hitting time we are interested in. Let n be a

finite positive integer, we denote by S a system containing n rays emanating from

the common origin, i.e., S := {S1, . . . , Sn}, and fix a distribution P := {Pi}i=1,...,n,

so that
∑n

i=1 Pi = 1. Once at the origin, the underlying process will choose a ray for

its next voyage randomly according to P . We also define the functions µ(Si) := µi

and σ(Si) := σi for i = 1, . . . , n, where µi ∈ R and σi ∈ R+ are constants (see Fig

2.1).

Consider a planar process X(t) on the system of rays S. We represent the position

of X(t) by (|X(t)|,Θ(t)), where |X(t)| denotes the distance between X(t) and the

origin, and Θ(t) ∈ {S1, ..., Sn} indicates the current ray of the process. We want

|X(t)| to behave as a reflected Brownian motion with drift. From Peskir (2006), we

know that the latter process can be expressed in terms of the Skorokhod reflection of

a “driving process”, which is a Brownian motion with the same drift and volatility

that we expect for |X(t)|. To this end, let U(t) := µ(Θ(t))t + σ(Θ(t))Wt be the

driving process, and |X(t)| be the Skorokhod reflection of U(t), i.e.,

|X(t)| = U(t) + max
0≤s≤t

(−U(s))+, t ≥ 0.

Then |X(t)| has the same distribution as a reflected Brownian motion with drift

µ(Θ(t)) and dispersion σ(Θ(t)), a proof of this can be seen in Jeanblanc et al.

(2009) Section 4.1, Peskir (2006) and Graversen and Shiryaev (2000).

We expect Θ(t) to be constant during each excursion of X(t) away from the origin

and has the same distribution as P when X(t) returns to the origin. To this end, we

initialise Θ(t) with P(Θ(0) = Si) = Pi, i = 1, . . . , n, and let Θ(t) remain constant

whenever |X(t)| 6= 0. Once |X(t)| = 0, Θ(t) is randomised according to P , i.e.,

P
(
Θ(t) = Si | |X(t−)| = 0

)
= Pi, i = 1, . . . , n, ∀t > 0.

This means the coefficients of U(t) remain constant whenever |X(t)| 6= 0, then

the Skorokhod reflection of U(t) has the same distribution as a reflected Brownian

motion with drift µi and dispersion σi on each ray Si.

Therefore, we summarise the behaviour of X(t) as follows. The initial state of X(t)

is distributed as P(X(0) = (0, Si)) = Pi, i = 1, . . . , n. Then it behaves as a Brownian
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motion with drift µi and dispersion σi on ray Si before the next time it returns to

the origin, i.e., inf{t > 0|X(t) = 0}. Once at the origin, it instantaneously chooses

a new ray according to P , independently of the past behaviour, that is

P
(
X(t) = (0, Si) | |X(t−)| = 0

)
= Pi, i = 1, . . . , n.

There are some special cases of X(t). When µi = 0 and σi = 1 for i = 1, . . . , n,

X(t) becomes a Walsh Brownian motion on spider. When n = 2, P1 = α = 1− P2,

µ1 = µ2 = 0 and σ1 = σ2 = 1, X(t) recovers the skew Brownian motion. We

also obtain a Brownian motion with drift µ and dispersion σ by setting n = 2,

P1 = P2 = 1
2
, µ1 = µ, µ2 = −µ and σ1 = σ2 = σ; and a reflected Brownian motion

by setting n = 1, P1 = 1, µ = 0 and σ = 1.

Next, we define the first hitting time of X(t). On each ray i, there is an upper

boundary bi > 0, our target is to find the first time that the boundary is hit by

X(t). Thus, we are interested in the first hitting time τ defined as

τi := inf{t ≥ 0 | |X(t)| ≥ di,Θ(t) = Si}, for i = 1, . . . , n,

τ := min
i=1,...,n

τi.
(2.1)

We need to calculate the excursion time length of X(t) before hitting the boundary,

but the problem is there is no first excursion from zero; before any t > 0, the

process has made an infinite number of small excursions away from the origin. To

approximate the dynamic of a Brownian motion, Dassios and Wu (2010) introduced

the “perturbed Brownian motion”, we will extend this idea here.

For every 0 < ε < min
i=1,...,n

bi, we define a perturbed process Xε(t) = (|Xε(t)|,Θε(t))

on the system of rays S. On each ray Si, X
ε(t) behaves as a reflected Brownian

motion with drift µi, dispersion σi and starting from ε, as long as it does not return

to the origin. Once at the origin, Xε(t) not only chooses a new ray according to P ,

but also jumps to ε on the new ray. In other words, Xε(t) has a perturbation of size

ε at the origin which can be described as

P
(
Xε(t) = (ε, Si) | |Xε(t−)| = 0

)
= Pi, i ∈ {1, . . . , n}.

Hence, we describe the behaviour of Xε(t) as follows. The initial state of Xε(t) is

distributed as P(Xε(0) = (ε, Si)) = Pi, i = 1, . . . , n. Then it behaves as a Brownian

motion with drift µi, dispersion σi and starting from ε on ray Si, as long as it does
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not return to the origin. Once at the origin, it instantaneously chooses a new ray

according to P and jumps to ε on the new ray.

We define the first hitting time of Xε(t) similarly as before. We are interested in

the first hitting time τ ε defined as

τ εi := inf{t ≥ 0 | |Xε(t)| ≥ bi,Θ
ε(t) = Si}, for i = 1, . . . , n,

τ ε := min
i=1,...,n

τ εi .

As ε → 0, the perturbation at origin vanishes, and Xε(t) → X(t) in a pathwise

sense, then τ ε → τ in distribution. Hence we will first derive the Laplace transform

of τ ε, then take the limit lim
ε→0

E(e−βτ
ε
) to calculate the Laplace transform of the first

hitting time τ .

2.2 Laplace transform of τ

In this section, we derive the Laplace transform of the first hitting time. We first

prepare some preliminary formulas in the following lemma.

Lemma 2.2.1. Let W i
t := ε + µit + σiWt be a Brownian motion with drift µi,

dispersion σi and starting from ε, define the first exit time

H = H0,bi := inf{t ≥ 0 | W i
t 6∈ (0, bi)},

then H has the Laplace transforms

Ui(ε) := E
(
e−βH1{W i

H=bi}

)
= e

µi
σ2
i

(bi−ε)
sinh

(
ε

√
µ2
i+2σ2

i β

σ2
i

)
sinh

(
bi

√
µ2
i+2σ2

i β

σ2
i

) , (2.2)

Li(ε) := E
(
e−βH1{W i

H=0}

)
= e

− µi
σ2
i

ε
sinh

(
(bi − ε)

√
µ2
i+2σ2

i β

σ2
i

)
sinh

(
bi

√
µ2
i+2σ2

i β

σ2
i

) . (2.3)

Moreover, they have the limits

lim
ε→0

Ui(ε) = 0 and lim
ε→0

Li(ε) = 1,
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and their derivatives have the limits

lim
ε→0

(
d

dε
Ui(ε)

)
= e

µi
σ2
i

bi

√
µ2
i+2σ2

i β

σ2
i

sinh

(
bi

√
µ2
i+2σ2

i β

σ2
i

) , (2.4)

lim
ε→0

(
d

dε
Li(ε)

)
= −µi

σ2
i

−
√
µ2
i + 2σ2

i β

σ2
i

cosh

(
bi

√
µ2
i+2σ2

i β

σ2
i

)
sinh

(
bi

√
µ2
i+2σ2

i β

σ2
i

) . (2.5)

Proof. See Borodin and Salminen (2002) Part II.2.3.

Remark 1. For simplicity, we will refer to (2.2) and (2.3) as Ui and Li. From Sec-

tion 2.1, we know Xε(t) starts from ε on ray i and behaves as a Brownian motion

with drift as long as it does not hit the origin. In their Laplace transforms respec-

tively, Ui represents the excursion length of Xε(t) on ray i if it arrives at bi before

hitting 0, and Li represents the excursion length if it arrives at 0 before hitting bi.

Next, we present the main result of this section.

Theorem 2.2.2. Let X(t) be a reflected Brownian motion with drift on a finite

collection of rays, where µi ∈ R, σi ∈ R+, Pi ∈ (0, 1] and bi > 0 are the drift,

dispersion, entering probability and boundary of ray i, i = 1, . . . , n. For β ≥ 0, the

Laplace transform of the first hitting time τ is

E
(
e−βτ

)
=

∑n
i=1 Pie

µi
σ2
i

bi Di
sinh(biDi)∑n

i=1 Pi
µi
σ2
i

+
∑n

i=1 PiDi
cosh(biDi)
sinh(biDi)

, (2.6)

where we denote by Di :=

√
µ2
i+2σ2

i β

σ2
i

.

Proof. Define the sequence of random times

ζ0 = 0, ζm+1 = inf{t > ζm | |Xε(t)| = 0}, for m ∈ N0

recursively, and the mutually exclusive events

Cm := {ζm ≤ τ ε < ζm+1}, for m ∈ N0,

where Cm denotes the event that Xε(t) hits the boundary during the (m + 1)-th

excursion. We set {Xε(0) = (ε, vi)} for an arbitrary but fixed i, and calculate the

Laplace transforms E(e−βτ
ε
1{Cm} | Xε(0) = (ε, vi)) for m ∈ N0.
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For m = 0, we interpret C0 as follows. Starting from ε on ray i, Xε(t) arrives at bi

before hitting the origin, hence the boundary is hit during the first excursion. Using

Remark 1, we have

E
(
e−βτ

ε

1{C0} | Xε(0) = (ε, vi)
)

= Ui.

Next, we consider the event C1. In this case, Xε(t) arrives at 0 before hitting

bi during the first excursion, and the Laplace transform of the first excursion is

Li. After the first excursion, Xε(t) returns to the origin and jumps to (ε, vk) with

probability Pk, then arrives at bk before returning to the origin. But the behaviour

of Xε(t) during the second excursion is similar to what we described for C0, with

the index i replaced by k. Thus, we have

E
(
e−βτ

ε

1{C1} | Xε(0) = (ε, vi)
)

=Li

(
n∑
k=1

PkE
(
e−βτ

ε

1{C0} | Xε(0) = (ε, vk)
))

=Li

(
n∑
k=1

PkUk

)
.

In the same way, we consider the event C2. In this case, Xε(t) arrives at 0 before

hitting bi during the first excursion, and the Laplace transform of the first excursion

is Li. After the first excursion, Xε(t) returns to the origin and jumps to (ε, vk) with

probability Pk. Restarting from (ε, vk), X
ε(t) will hit the boundary exactly during

the second excursion (hence the third in total). But the behaviour of Xε(t) during

the second and third excursions is similar to what we described for C1, with the

index i replaced by k. Hence,

E
(
e−βτ

ε

1{C2} | Xε(0) = (ε, vi)
)

= Li

(
n∑
k=1

PkE
(
e−βτ

ε

1{C1} | Xε(0) = (ε, vk)
))

= Li

(
n∑
k=1

PkLk

(
n∑
j=1

PjUj

))
= Li

(
n∑
k=1

PkLk

)(
n∑
j=1

PjUj

)
.

The same explanation applies to Cm for any positive integer m, i.e., Xε(t) arrives at

0 before hitting bi during the first excursion, after that it restarts from (ε, vk) and

hits the boundary exactly during the m-th excursion. Hence we deduce that

E
(
e−βτ

ε

1{Cm} | Xε(0) = (ε, vi)
)

= Li

(
n∑
k=1

PkE
(
e−βτ

ε

1{Cm−1} | Xε(0) = (ε, vk)
))

.
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This implies a recursive structure between the Laplace transforms of τ ε conditioned

on Cm and Cm−1, we solve for

E
(
e−βτ

ε

1{Cm} | Xε(0) = (ε, vi)
)

= Li

(
n∑
k=1

PkLk

)m−1( n∑
j=1

PjUj

)
,

where m = 1, 2, . . . . Since the boundary hitting may occur during any excursion of

Xε(t), we need to sum the result over m ∈ N0, this gives

E
(
e−βτ

ε | Xε(0) = (ε, vi)
)

=
∞∑
m=0

E
(
e−βτ

ε

1{Cm} | Xε(0) = (ε, vi)
)

=Ui +
∞∑
m=1

Li( n∑
k=1

PkLk

)m−1( n∑
j=1

PjUj

) = Ui +
Li

(∑n
j=1 PjUj

)
1−∑n

k=1 PkLk
,

(2.7)

the last equation holds because for each k = 1, . . . , n and β ≥ 0, 0 < Lk < 1, thus

0 <
n∑
k=1

PkLk <
n∑
k=1

Pk = 1.

Equation (2.7) boils down the Laplace transform of τ ε to the initial state of Xε(t).

Since P(Xε(0) = (ε, vi)) = Pi, we have

E
(
e−βτ

ε)
=

n∑
i=1

PiE
(
e−βτ

ε | Xε(0) = (ε, vi)
)

=
n∑
i=1

Pi

(
Ui +

Li(
∑n

j=1 PjUj)

1−∑n
k=1 PkLk

)
=

∑n
i=1 PiUi(ε)

1−∑n
k=1 PkLk(ε)

.

(2.8)

As ε→ 0, both numerator and denominator of (2.8) tend to 0, then we can calculate

the limit lim
ε→0

E
(
e−βτ

ε)
using (2.4) and (2.5), and this gives E

(
e−βτ

)
.

As in Section 2.1, X(t) can be reduced to some special cases by choosing the pa-

rameters accordingly, then we can compare Theorem 2.2.2 with the results in the

existing literature.

Remark 2. When n = 1, P1 = 1, µ1 = 0, σ1 = 1 and b1 > 0, equation (2.6) gives

the Laplace transform of the first hitting time of a reflected Brownian motion (see

Borodin and Salminen 2002 Section II.3.2),

E
(
e−βτ

)
=

1

cosh(b1

√
2β)

. (2.9)
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When n = 2, µ1 = µ = −µ2, σ1 = σ2 = 1, P1 = P2 = 1
2

and b1 > 0, b2 > 0, equation

(2.6) becomes the Laplace transform of the first exit time of a drifted Brownian

motion from the stripe (−b2, b1) (see Borodin and Salminen 2002 Section II.2.3),

E
(
e−βτ

)
=
eµb1 sinh(b2

√
µ2 + 2β) + e−µb2 sinh(b1

√
µ2 + 2β)

sinh((b1 + b2)
√
µ2 + 2β)

.

Moreover, when n is a finite positive integer and µi = 0, σi = 1, for j = 1, . . . , n,

X(t) becomes a Walsh Brownian motion. Let the upper boundaries be b1 > 0, . . . , bn >

0, then the first hitting time τ has the Laplace transform

E
(
e−βτ

)
=

∑n
k=1 Pk

1
sinh(bk

√
2β)∑n

k=1 Pk
cosh(bk

√
2β)

sinh(bk
√

2β)

, (2.10)

this is the Laplace transform of the first hitting time of a Walsh Brownian motion on

spider, see Fitzsimmons and Kuter (2015). In particular, when P1 = · · · = Pn = 1
n

,

we revert the main result of Papanicolaou et al. (2012) and Yor (1997) Section

17.2.3.

2.3 Density of the first hitting time

In this section, we concentrate on a special case where µi = 0 and σi = 1, for

j = 1, . . . , n, then the underlying process reduces to a Walsh Brownian motion on

spider, and the first hitting time τ has the Laplace transform (2.10). We provide two

methods to invert the Laplace transform (2.10). For simplicity, we denote by g(x, t)

and Ψ(x, t) the density and distribution functions of an inverse Gaussian random

variable with parameter x:

g(x, t) :=
x√
2πt3

e−
x2

2t and Ψ(x, t) := 2− 2Φ

(
x√
t

)
,

where Φ(·) is the standard normal distribution function.

We first present an auxiliary result concerning the poles of the Laplace transform

(2.10). In general, the poles of a Laplace transform refer to the zeros of its de-

nominator, and they are useful in the inverse Laplace transform problem (see, for

example, Arfken and Weber 2001 Section 20.10). For the current section, we are

interested in the solutions to the equation
∑n

k=1 Pk
cosh(bk

√
2β)

sinh(bk
√

2β)
= 0 with respect to β.
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It is also shown in the proof of Lemma 2.3.1 that there is no pole from the numerator

part
∑n

k=1 Pk
1

sinh(bk
√

2β)
of the Laplace transform.

Lemma 2.3.1. Denote by −β∗ the poles of the Laplace transform (2.10), then

−β∗ are negative real numbers. Moreover, when n > 1 and the upper boundaries

{bi}i=1,...,n are rational numbers, we can find out the poles by solving the equation

n∑
i=1

Pi

∑
k even

(−1)
k
2

(
Ci
k

)
yk

∏
j={1,...,n}\{i}

(∑
k odd

(−1)
k−1

2

(
Cj
k

)
yk

) = 0

with respect to y, and look for β∗ > 0 which satisfies

y = tan

(
1∏n
j=1 dj

√
2β∗

)
,

where we have set bi = ci
di

, for i = 1, . . . , n, such that ci and di are positive integers,

and Ci := ci
∏

j={1,...,n}\{i} dj.

Since all the poles of the Laplace transform (2.10) are negative real numbers, we sort

them in descending order as −β∗1 > −β∗2 > . . . , and denote the set of all poles by

{−β∗i }i∈N. We also make the convention that the expression
∑
−β∗ f(−β∗) represents

the summation with respect to all the poles.

Note that we do not use the expression
∑∞

i=1 f(−β∗i ) because sometimes it is more

convenient to write it as
∑∞

k=−∞ f(ak), where ak is a constant concerning the poles;

see Example 2.3.5 and Example 2.3.6 below.

Next, we provide an explicit method to invert the Laplace transform (2.10).

Theorem 2.3.2. Assume that the upper boundaries {bi}i=1,...,n are rational numbers,

then the density of the first hitting time τ is

f(t) =
∑
−β∗

e−β
∗t

∑n
k=1 Pk

√
2β∗

sin(bk
√

2β∗)∑n
k=1 Pkbk +

∑n
k=1 Pkbk

cos2(bk
√

2β∗)
sin2(bk

√
2β∗)

, (2.11)

and the distribution of τ is

F (t) =
∑
−β∗

1

−β∗
(
e−β

∗t − 1
) ∑n

k=1 Pk
√

2β∗

sin(bk
√

2β∗)∑n
k=1 Pkbk +

∑n
k=1 Pkbk

cos2(bk
√

2β∗)
sin2(bk

√
2β∗)

. (2.12)
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We now consider the usefulness of this theorem. Recall that all the poles −β∗ are

negative real numbers and have been sorted in descending order. On the other hand,

we notice that the term

e−β
∗t

∑n
k=1 Pk

√
2β∗

sin(bk
√

2β∗)∑n
k=1 Pkbk +

∑n
k=1 Pkbk

cos2(bk
√

2β∗)
sin2(bk

√
2β∗)

converges to zero fast when t is large. Hence, to evaluate the value of the function

(2.11), we can truncate the summation
∑
−β∗ at the largest n poles. In other words,

we define a truncated function

fn(t) :=
∑

{−β∗1 ,...,−β∗n}

e−β
∗t

∑n
k=1 Pk

√
2β∗

sin(bk
√

2β∗)∑n
k=1 Pkbk +

∑n
k=1 Pkbk

cos2(bk
√

2β∗)
sin2(bk

√
2β∗)

.

The truncated function provides a good approximation for f(t) when t is large,

because the truncation error

f(t)− fn(t) =
∑

{−β∗n+1,−β∗n+2,... }

e−β
∗t

∑n
k=1 Pk

√
2β∗

sin(bk
√

2β∗)∑n
k=1 Pkbk +

∑n
k=1 Pkbk

cos2(bk
√

2β∗)
sin2(bk

√
2β∗)

converges to zero fast when t is large.

However, this method is not useful for small t because the truncation error does not

converge to zero when t is small. Hence, to control the size of the truncation error,

we need to significantly increase the value of n, i.e., to include much more poles in

the truncated function fn(t), such that the truncation error contains less terms and

becomes smaller. This is not efficient because t can be arbitrarily close to zero, and

that would make the value of n extremely large.

We are not establishing the exact bound for the truncation error here, and this is a

potential topic for a further study. An immediate example can be constructed based

on the density of the first hitting time of a reflected Brownian motion (see Example

2.3.3), which is exactly the Jacobi Theta function. And there are many literatures

about the convergence speed of the Jacobi Theta function, see for example Bellman

(1961). More generally (Example 2.3.4, 2.3.5 and 2.3.6 where the density is not a

special function), it might be useful to apply the Tauberian theorem for the Laplace

transform (2.10) to derive the asymptotic behaviour of the density function at zero

and infinity, see Bingham et al. (1989).

Inspired by the general Theta function transformation (see Bellman 1961 Section

19), we now provide an alternative expressions for the density function of τ that is
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useful when t is small.

Remark 3. When {bi}i=1,...,n are rational numbers, there exist positive integers ci

and di, such that bi = ci
di

, for i = 1, . . . , n. Denote by x := e
−
√

2β 1
d1...dn , then Laplace

transform (2.10) can be written as a quotient of two polynomials M(x)/N(x), the

series expansion with respect to x gives

M(x)

N(x)
=
∞∑
k=1

akx
k =

∞∑
k=1

ake
−
√

2β k
d1...dn . (2.13)

Since e
−
√

2β k
d1...dn is the Laplace transform of an inverse Gaussian random variable

with parameter k
d1...dn

, we can invert (2.13) term by term to derive the density of τ :

f(t) :=
∞∑
k=1

ak

k
d1...dn√

2πt3
e−

( k
d1...dn

)
2

2t =
∞∑
k=1

akg

(
k

d1 . . . dn
, t

)
,

We define the truncated function

fn(t) =
n∑
k=1

ak

k
d1...dn√

2πt3
e−

( k
d1...dn

)
2

2t ,

and the truncation error

f(t)− fn(t) =
∞∑

k=n+1

ak

k
d1...dn√

2πt3
e−

( k
d1...dn

)
2

2t .

Using a similar argument as before, we find out that the truncated function fn(t)

provides a good approximation for f(t) when t is small, because the truncation error

converges to zero fast when t is small. But this method is not useful when t is large.

We also integrate the density over (0, t) for the distribution of τ :

F (t) =
∞∑
k=1

ak

(
2− 2Φ

(
k

d1...dn√
t

))
=
∞∑
k=1

akΨ

(
k

d1 . . . dn
, t

)
.

We provide some examples to illustrate the use of Theorem 2.3.2 and Remark 3.

Example 2.3.3 (reflected Brownian motion). Consider the Laplace transform (2.9).

To find the poles of the Laplace transform, we need to solve the equation coth(b1

√
2β) =

0. Set β = −β∗, we have coth(b1

√−2β∗) = cos(b1

√
2β∗) = 0, and b1

√
2β∗ = 2k−1

2
π,
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k ∈ Z+. Therefore, the Laplace transform (2.9) has the poles

−β∗ = −(2k − 1)2

8b2
1

π2, k ∈ Z+.

Using Theorem 2.3.2, we calculate the density function of τ to be

f(t) =
∞∑
k=1

(−1)k−1π
(2k − 1)

2b2
1

e
− (2k−1)2

8b21
π2t
,

which is useful when t is large. We also integrate the density over (0, t) to derive

the distribution function

F (t) =
∞∑
k=1

(−1)k−1 4

(2k − 1)π

(
1− e−

(2k−1)2

8b21
π2t

)
.

On the other hand, denote by x := e−
√

2β, the negative binomial expansion implies

E
(
e−βτ

)
=

2

xb1 + x−b1
=

2xb1

x2b1 + 1
= 2

n∑
k=1

(−1)k−1x(2k−1)b1 .

For every k ∈ Z+, x(2k−1)b1 = e−(2k−1)b1
√

2β is the Laplace transform of an inverse

Gaussian random variable with parameter (2k − 1)b1, then Remark 3 gives

f(t) = 2
∞∑
k=1

(−1)k−1g ((2k − 1)b1, t) ,

which is useful when t is small. The distribution function is given by

F (t) = 2
∞∑
k=1

(−1)k−1Ψ ((2k − 1)b1, t) .

Example 2.3.4 (standard Brownian motion). Let n = 2, b1 = 1, b2 = 2 and

P1 = P2 = 1
2

in Laplace transform (2.10), then

E
(
e−βτ

)
=

1
sinh(

√
2β)

+ 1
sinh(2

√
2β)

cosh(
√

2β)

sinh(
√

2β)
+ cosh(2

√
2β)

sinh(2
√

2β)

.

Using Lemma 2.3.1, we can derive the poles of the Laplace transform by solving
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y2 − 3 = 0 and y = tan(
√

2β∗). Thus, the poles are

−β∗ = −1

2
π2(k +

1

3
)2, k ∈ Z.

Using Theorem 2.3.2, we calculate the density function of τ to be

f(t) =
π

2
√

3

∞∑
k=−∞

e−
1
2
π2(k− 2

3)
2
t

(
k − 2

3

)(
(−1)k+1 + 1

)
=

π

2
√

3

∞∑
k=1

e−
1
2
π2(k− 2

3)
2
t

(
k − 2

3

)(
(−1)k+1 + 1

)
+

π

2
√

3

∞∑
k=1

e−
1
2
π2(k− 1

3)
2
t

(
k − 1

3

)(
(−1)k+1 − 1

)
,

(2.14)

which is useful when t is large. We also integrate the density over (0, t) to derive

the distribution function

F (t) =
1√
3π

∞∑
k=1

1(
k − 2

3

) (1− e− 1
2
π2(k− 2

3)
2
t
) (

(−1)k+1 + 1
)

+
1√
3π

∞∑
k=1

1(
k − 1

3

) (1− e− 1
2
π2(k− 1

3)
2
t
) (

(−1)k+1 − 1
)
.

(2.15)

On the other hand, denote by x := e−
√

2β, the negative binomial expansion implies

E
(
e−βτ

)
=

(x− x−1) + (x2 − x−2)

x3 − x−3
=
x(x+ 1)

x3 + 1
=
∞∑
k=1

(−1)k−1
(
x3k−1 + x3k−2

)
.

For every k ∈ Z+, we invert x3k−1 and x3k−2 using the inverse Gaussian density,

then

f(t) =
∞∑
k=1

(−1)k−1g(3k − 2, t) +
∞∑
k=1

(−1)k−1g(3k − 1, t), (2.16)

which is useful when t is small. The distribution function is given by

F (t) =
∞∑
k=1

(−1)k−1Ψ(3k − 2, t) +
∞∑
k=1

(−1)k−1Ψ(3k − 1, t). (2.17)

Example 2.3.5 (skew Brownian motion). Let n = 2, b1 = 1, b2 = 2 and P1 =
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1− P2 = 1
3

in Laplace transform (2.10), it becomes

E
(
e−βτ

)
=

1
3

1
sinh(

√
2β)

+ 2
3

1
sinh(2

√
2β)

1
3

cosh(
√

2β)

sinh(
√

2β)
+ 2

3
cosh(2

√
2β)

sinh(2
√

2β)

.

Using Lemma 2.3.1, we can derive the poles of the Laplace transform by solving

y2 − 2 = 0 and y = tan(
√

2β∗). Thus, the poles are

−β∗ = −1

2
(kπ + θ)2, k ∈ Z, where θ = arctan(

√
2).

Using Theorem 2.3.2, we calculate the density function of τ to be

f(t) =
1

2
√

6

∞∑
k=−∞

e−
1
2

(θ+kπ)2t(θ + kπ)
(

(−1)k +
√

3
)
, (2.18)

which is useful when t is large. We also integrate the density over (0, t) to derive

the distribution function

F (t) =
1√
6

∞∑
k=−∞

1

(θ + kπ)

(
1− e− 1

2
(θ+kπ)2t

)(
(−1)k +

√
3
)
. (2.19)

On the other hand, denote by x := e−
√

2β, the series expansion implies

E
(
e−βτ

)
=

2x+ 2x3 + 4x2

3 + 3x4 + 2x2
=

2

3
x+

4

3
x2 +

2

9
x3 − 8

9
x4 − 22

27
x5 − 20

27
x6 +O(x7).

We invert it term by term to derive the density function

f(t) =
2

3
g(1, t) +

4

3
g(2, t) +

2

9
g(3, t)− 8

9
g(4, t)− 22

27
g(5, t)− 20

27
g(6, t) +O(g(7, t)),

(2.20)

which is useful when t is small. The distribution function is given by

F (t) =
2

3
Ψ(1, t)+

4

3
Ψ(2, t)+

2

9
Ψ(3, t)− 8

9
Ψ(4, t)− 22

27
Ψ(5, t)− 20

27
Ψ(6, t)+O(Ψ(7, t)).

(2.21)

Example 2.3.6 (Walsh Brownian motion). Let b1 = 1, b2 = 2, b3 = 3 and Pi = 1
3
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for i = 1, 2, 3 in (2.10), then the Laplace transform of τ becomes

E
(
e−βτ

)
=

1
3

1
sinh(

√
2β)

+ 1
3

1
sinh(2

√
2β)

+ 1
3

1
sinh(3

√
2β)

1
3

cosh(
√

2β)

sinh(
√

2β)
+ 1

3
cosh(2

√
2β)

sinh(2
√

2β)
+ 1

3
cosh(3

√
2β)

sinh(3
√

2β)

.

Using Lemma 2.3.1, we can derive the poles of the Laplace transform by solving

y4 − 12y2 + 11 = 0 and y = tan(
√

2β∗). Thus, we know ±1 = tan(
√

2β∗) and

±
√

11 = tan(
√

2β∗), and the poles are

−β∗ = −1

2

(
1

4
π + kπ

)2

and −β∗ = −1

2
(θ + kπ)2 , k ∈ Z, where θ = arctan(

√
11).

Using Theorem 2.3.2, we calculate the density function of τ to be

f(t) =
1

10

∞∑
k=−∞

e−
1
2

( 1
4
π+kπ)2t

(
2
√

2(−1)k + 1
)(1

4
π + kπ

)

+
1

15

∞∑
k=−∞

e−
1
2

(θ+kπ)2t

(
(−1)k

√
12√
11

+
6√
11

+ (−1)k+1 3
√

3√
11

)
(θ + kπ) ,

(2.22)

which is useful when t is large. We also integrate the density over (0, t) to derive

the distribution function

F (t) =
1

5

∞∑
k=−∞

1(
1
4
π + kπ

) (1− e− 1
2

( 1
4
π+kπ)2t

)(
2
√

2(−1)k + 1
)

+
2

15

∞∑
k=−∞

1

(θ + kπ)

(
1− e− 1

2
(θ+kπ)2t

)(
(−1)k

√
12√
11

+
6√
11

+ (−1)k+1 3
√

3√
11

)
.

(2.23)

On the other hand, denote by x := e−
√

2β, the series expansion implies

E
(
e−βτ

)
=

2 (x11 + x10 + x9 − x8 − 2x7 − 2x5 − x4 + x3 + x2 + x)

3x12 − x10 − x8 − 2x6 − x4 − x2 + 3

=
2

3
x+

2

3
x2 +

8

9
x3 − 4

9
x4 − 22

27
x5 +

2

27
x6 +O(x7).

31



We invert it term by term to derive the density function

f(t) =
2

3
g(1, t) +

2

3
g(2, t) +

8

9
g(3, t)− 4

9
g(4, t)− 22

27
g(5, t) +

2

27
g(6, t) +O(g(7, t)),

(2.24)

which is useful when t is small. The distribution function is given by

F (t) =
2

3
Ψ(1, t)+

2

3
Ψ(2, t)+

8

9
Ψ(3, t)− 4

9
Ψ(4, t)− 22

27
Ψ(5, t)+

2

27
Ψ(6, t)+O(Ψ(7, t)).

(2.25)

2.4 Numerical Implementation

In this section, we present the numerical illustration for Example 2.3.4, 2.3.5 and

2.3.6. We will plot the density and distribution functions in each example, and study

the accuracy of these functions.

For Example 2.3.4, we first consider the density function when t is large. As we

discussed before, (2.14) is useful for large t. We define the truncated function

fn(t) :=
π

2
√

3

n∑
k=1

e−
1
2
π2(k− 2

3)
2
t

(
k − 2

3

)(
(−1)k+1 + 1

)
+

π

2
√

3

n∑
k=1

e−
1
2
π2(k− 1

3)
2
t

(
k − 1

3

)(
(−1)k+1 − 1

)
,

(2.26)

and plot f 2(t), f 4(t) and f 6(t) in Fig. 2.2a. To demonstrate the accuracy of the

truncated functions, we also invert the Laplace transform E(e−βτ ) numerically using

the Gaver-Stehfest method (see Cohen 2007), and view the resulting curve f̃(t) as

the benchmark in Fig. 2.2a.

Notice that we use the Gaver-Stehfest method to invert the Laplace transform be-

cause the method does not involve any complex number, hence it is easy to im-

plement. Also, the computation speed of Gaver-Stehfest method is faster than

other common numerical inverse Laplace transform methods, for example the Euler

method.

We see from Fig. 2.2a that, when t is small, f 2(t), f 4(t) and f 6(t) are not accurate

because they are far from the benchmark. As t increases, f 6(t) converges to f̃(t)

earlier than f 4(t) and f 2(t). When t is large enough, all the curves converge to f̃(t).

The difference between fn(t) and f̃(t) is recorded in Table 2.1a. We denote by

dn := |f̃(t) − fn(t)| the truncation error of fn(t), for n = 2, 4, 6. We also set the
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error tolerance level to be 0.0001. Then, if dn < 0.0001, we say fn(t) is sufficiently

accurate; otherwise, it is not sufficiently accurate. From Table 2.1a, we know d6 <

0.0001 for t ≥ 0.054, so f 6(t) is a sufficiently accurate approximation for the density

function of τ when t ≥ 0.054.

For the distribution function (2.15), we define the truncated function

F n(t) :=
1√
3π

n∑
k=1

1(
k − 2

3

) (1− e− 1
2
π2(k− 2

3)
2
t
) (

(−1)k+1 + 1
)

+
1√
3π

n∑
k=1

1(
k − 1

3

) (1− e− 1
2
π2(k− 1

3)
2
t
) (

(−1)k+1 − 1
)
,

(2.27)

and plot F 2(t), F 4(t) and F 6(t) in Fig. 2.2b. We also invert the Laplace transform
E(e−βτ )

β
numerically, and use the resulting curve F̃ (t) as the benchmark in Fig. 2.2b.

Next, we consider the density function when t is small. As we discussed before,

(2.16) is useful for small t. We define the truncated function

fn(t) =
n∑
k=1

(−1)k−1g(3k − 2, t) +
n∑
k=1

(−1)k−1g(3k − 1, t), (2.28)

and plot f 2(t), f 4(t) and f 6(t) in Fig. 2.2c. We also use the same benchmark as

before, i.e., f̃(t) obtained by inverting the Laplace transform E(e−βτ ) numerically.

We see from Fig. 2.2c that, when t is small, f 2(t), f 4(t) and f 6(t) are accurate. As

t increases, f 2(t) diverges from the benchmark earlier than f 4(t) and f 6(t). When

t is large enough, all the curves diverge from the benchmark.

The difference between fn(t) and f̃(t) is recorded in Table 2.1b. We denote by

en := |f̃(t) − fn(t)| the truncation error of fn(t), for n = 2, 4, 6. From Table 2.1b

we know, with the error tolerance level 0.0001, f 6(t) is sufficiently accurate when

t ≤ 26.945.

For the distribution function (2.17), we define the truncated function

F n(t) =
n∑
k=1

(−1)k−1Ψ(3k − 2, t) +
n∑
k=1

(−1)k−1Ψ(3k − 1, t), (2.29)

and plot F 2(t), F 4(t) and F 6(t) in Fig. 2.2d. We also invert the Laplace transform
E(e−βτ )

β
numerically, and use the resulting curve F̃ (t) as the benchmark in Fig. 2.2d.

In conclusion, with the truncation level n = 6 and the error tolerance level 0.0001,

the truncated density function (2.26) is sufficiently accurate for t ≥ 0.054; while the
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truncated density function (2.28) is sufficiently accurate for t ≤ 26.945.

A similar analysis is conducted for Example 2.3.5, with the results recorded in the

Fig. 2.3 and Table 2.2. In conclusion, with the truncation level n = 6 and the

error tolerance level 0.0001, the truncated function of (2.18) is sufficiently accurate

for t ≥ 0.055; while the truncated function of (2.20) is sufficiently accurate for

t ≤ 3.181.

For Example 2.3.6, the numerical results are recorded in Fig. 2.4 and Table 2.3. In

conclusion, with the truncation level n = 6 and the error tolerance level 0.0001, the

truncated function of (2.22) is sufficiently accurate for t ≥ 0.261; while the truncated

function of (2.24) is sufficiently accurate for t ≤ 2.995.
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(a) Truncated functions (2.26).
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(b) Truncated functions (2.27).
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(c) Truncated functions (2.28).
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(d) Truncated functions (2.29).

Figure 2.2 Density and distribution functions in Example 2.3.4.

Table 2.1 Truncation error of (2.26) and (2.28) for n = 2, 4, 6.

(a) Truncation error of (2.26).

t d2 d4 d6

0.001 2.3776 4.4812 6.0890
... ... ... ...

0.053 0.8770 0.0577 0.0001
0.054 0.8578 0.0508 0.0000

... ... ... ...
0.134 0.1148 0.0001 0.0000
0.135 0.1118 0.0000 0.0000

... ... ... ...
0.551 0.0001 0.0000 0.0000
0.552 0.0000 0.0000 0.0000

(b) Truncation error of (2.28).

t e2 e4 e6

2.732 0.0000 0.0000 0.0000
2.733 0.0001 0.0000 0.0000

... ... ... ...
11.688 0.0119 0.0000 0.0000
11.689 0.0119 0.0001 0.0000

... ... ... ...
26.945 0.0094 0.0021 0.0000
26.946 0.0094 0.0021 0.0001
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(a) Density function (2.18) trun-
cated at n = 2, 4, 6.
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(b) Distribution function (2.19)
truncated at n = 2, 4, 6.
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(c) Density function (2.20) trun-
cated at n = 2, 4, 6.
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(d) Distribution function (2.21)
truncated at n = 2, 4, 6.

Figure 2.3 Density and distribution functions in Example 2.3.5.

Table 2.2 Truncation error of (2.18) and (2.20) for n = 2, 4, 6.

(a) Truncation error of (2.18).

t d2 d4 d6

0.001 2.1157 3.9877 5.4186
... ... ... ...

0.054 0.7607 0.0477 0.0001
0.055 0.7444 0.0436 0.0000

... ... ... ...
0.134 0.1107 0.0001 0.0000
0.135 0.1080 0.0000 0.0000

... ... ... ...
0.536 0.0001 0.0000 0.0000
0.537 0.0000 0.0000 0.0000

(b) Truncation error of (2.20).

t e2 e4 e6

0.301 0.0000 0.0000 0.0000
0.302 0.0001 0.0000 0.0000

... ... ... ...
1.431 0.0035 0.0000 0.0000
1.432 0.0035 0.0001 0.0000

... ... ... ...
3.181 0.0154 0.0066 0.0000
3.182 0.0155 0.0066 0.0001
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(a) Density function (2.22) trun-
cated at n = 2, 4, 6.
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(b) Distribution function (2.23)
truncated at n = 2, 4, 6.
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(c) Density function (2.24) trun-
cated at n = 2, 4, 6.
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(d) Distribution function (2.25)
truncated at n = 2, 4, 6.

Figure 2.4 Density and distribution functions in Example 2.3.6.

Table 2.3 Truncation error of (2.22) and (2.24) for n = 2, 4, 6.

(a) Truncation error of (2.22).

t d2 d4 d6

0.001 0.5183 1.2908 1.3865
... ... ... ...

0.260 0.0537 0.0002 0.0001
0.261 0.0530 0.0002 0.0000

... ... ... ...
0.275 0.0437 0.0001 0.0000
0.276 0.0431 0.0000 0.0000

... ... ... ...
0.897 0.0001 0.0000 0.0000
0.898 0.0000 0.0000 0.0000

(b) Truncation error of (2.24).

t e2 e4 e6

0.029 0.0000 0.0000 0.0000
0.030 0.0001 0.0000 0.0000

... ... ... ...
1.336 0.0225 0.0000 0.0000
1.337 0.0225 0.0001 0.0000

... ... ... ...
2.995 0.0314 0.0048 0.0000
2.996 0.0314 0.0048 0.0001
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Chapter 3

Parisian time of reflected

Brownian motion with drift on

rays

Suppose we have a system of rays emanating from a common origin and a particle

X(t) moving on this system. On each ray, the particle behaves as a reflected Brow-

nian motion with drift; and once at the origin, it instantaneously chooses a ray for

its next voyage randomly according to a given distribution. We are interested in the

time length the particle spends on each ray, and the first time that the excursion

time length on a ray exceeds a predefined threshold (see Fig 3.1). We call this first

exceeding time of threshold a Parisian time, as it generalises the same concept in

literature.

This chapter is also motivated by the RTGS system (see Chapter 2). In this chapter,

we are interested in another source of liquidity risk, the time-lag between the exe-

ray S2, excursion time threshold d2

µ(S2) = µ2, σ(S2) = σ2

ray S1, excursion time threshold d1

µ(S1) = µ1, σ(S1) = σ1

ray S5, excursion time threshold d5

µ(S5) = µ5, σ(S5) = σ5

ray S4, excursion time threshold d4

µ(S4) = µ4, σ(S4) = σ4

ray S3, excursion time threshold d3

µ(S3) = µ3, σ(S3) = σ3 ε

0

Figure 3.1 A reflected Brownian motion with drift on a collection of 5 rays.
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cution of the transaction and its final completion. As it is explained in McDonough

(1997) and Padoa-Schioppa (2005), if a counterparty does not settle an obligation

for the full value when due but at some unspecified time thereafter, the expected

liquidity position of the payee could be affected. The settlement delay may force the

payee to cover its cash-flow shortage by funding at short notice from other sources,

which may result in a financial loss due to higher financing costs or to damage to its

reputation. In more extreme cases it may be unable to cover its cash-flow shortage

at any price, in which case it may be unable to meet its obligation to others. As the

settlement delay is the major source of liquidity risk in the RTGS system, both the

central bank and the participating banks are interested in the length of the delay.

Previous research in Che and Dassios (2013) has shown that the Markov-type mod-

els are adequate for CHAPS, we will extend this model here to study the settlement

delay. For bank A and bank i in CHAPS, we view the net balance between them as

a reflected Brownian motion with drift. Assume that bank A has set a time limit di

on the duration of settlement delay for bank i, and they are interested in the first

time that the limit is exceeded. In practice, an individual bank could set multiple

limits or even remove the limit on different types of counterparties. We reduce this

problem to the calculation of the Parisian time of a reflected Brownian motion with

drift on rays. For more details about the CHAPS, see Che (2011) and Soramäki

et al. (2007).

The rest of this chapter is organised as follows. We construct the reflected Brownian

motion with drift on rays in Section 3.1, then calculate the Laplace transform of

the Parisian time in Section 3.2. An exact simulation algorithm to sample from

the distribution of the Parisian time is provided in Section 3.3. We discuss the

application of these results in Section 3.4.

3.1 Construction of the underlying process and

the Parisian time

The underlying process X(t) used in this chapter is exactly the ‘reflected Brownian

motion with drift on rays’ constructed in Chapter 2. To avoid repetition, we refer

the reader to Section 2.1 for the construction and special cases of the underlying

process.

Next, we define the last zero time and excursion time length of X(t) as g(t) :=

sup{s ≤ t | |X(s)| = 0} and U(t) := t− g(t). Then U(t) represents the time length

X(t) has spent in the current ray since last time at the origin. On each ray Si, there
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is a threshold di > 0 for the excursion time length, our target is to find the first

time that the threshold is exceeded by U(t). Thus, we are interested in the Parisian

time τ defined as

τi := inf{t ≥ 0 | U(t) ≥ di,Θ(t−) = Si}, for i = 1, . . . , n,

τ := min
i=1,...,n

τi.
(3.1)

Note that X(t) may make an excursion with infinite time length on a ray Si if the

drift µi on this ray is positive. But since our target is to study the Parisian time τ ,

we are only interested in the excursion time length up to di, even if the total length

is infinite.

We need to calculate the excursion time length of X(t), but the problem is there

is no first excursion from zero; before any t > 0, the process has made an infinite

number of small excursions away from the origin. To approximate the dynamic of

a Brownian motion, Dassios and Wu (2010) introduced the “perturbed Brownian

motion”, we will extend this idea here.

For every ε > 0, we define a perturbed process Xε(t) = (|Xε(t)|,Θε(t)) on the system

of rays S. On each ray Si, |Xε(t)| behaves as a reflected Brownian motion with drift

µi, dispersion σi and starting from ε, as long as it does not return to the origin.

Once at the origin, Xε(t) not only chooses a new ray according to P , but also jumps

to ε on the new ray. In other words, Xε(t) has a perturbation of size ε at the origin

which can be described as

P
(
Xε(t) = (ε, Si) | |Xε(t−)| = 0

)
= Pi, i ∈ {1, . . . , n}.

Hence, we describe the behaviour of Xε(t) as follows. The initial state of Xε(t) is

distributed as P(Xε(0) = (ε, Si)) = Pi, i = 1, . . . , n. Then it behaves as a Brownian

motion with drift µi, dispersion σi and starting from ε on ray Si, as long as it does

not return to the origin. Once at the origin, it instantaneously chooses a new ray

according to P and jumps to ε on the new ray.

We define the Parisian time of Xε(t) similarly as before. Let gε(t) := sup{s ≤ t |
|Xε(s)| = 0} and U ε(t) := t−gε(t). We are interested in the Parisian time τ ε defined

as

τ εi := inf{t ≥ 0 | U ε(t) ≥ di,Θ
ε(t−) = Si}, for i = 1, . . . , n,

τ ε := min
i=1,...,n

τ εi ,
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As ε → 0, the perturbation at origin vanishes, and Xε(t) → X(t) in a pathwise

sense, then τ ε → τ in distribution. Hence we will first derive the Laplace transform

of τ ε, then take the limit lim
ε→0

E(e−βτ
ε
) to calculate the Laplace transform of the

Parisian time τ .

3.2 Laplace transform of τ

In this section, we derive the Laplace transform of the Parisian. For simplicity, we

denote the symmetric function

Ψ(x) := 2
√
πxΦ(

√
2x)−√πx+ e−x

2

, x ∈ R,

where Φ(.) is the cumulative distribution function of standard normal distribution;

and the constant

Ci := Pi

(
2√

2πσ2
i di

Ψ

(
µi
√
di√

2σ2
i

)
+
µi
σ2
i

)
,

where µi, σi, Pi and di are defined in Section 3.1. For µi ∈ R, σi ∈ R+, Pi ∈ (0, 1]

and di > 0, we deduce from the definition that Ci > 0.

Theorem 3.2.1. Let X(t) be a reflected Brownian motion with drift on a system

of rays S, where µi ∈ R, σi ∈ R+, Pi ∈ (0, 1] and di > 0 are the drift, dispersion,

entering probability and excursion time threshold of ray Si, i = 1, . . . , n. For β ≥ 0,

the Laplace transform of the Parisian time τ is

E
(
e−βτ

)
=

∑n
i=1 e

−βdiCi∑n
i=1Ci +

∑n
i=1 Pi

∫ di
0

(1− e−βv)e−
µ2
i

2σ2
i

v
1√

2πσ2
i v

3
dv

, (3.2)

and the expectation of τ is

E(τ) =

∑n
i=1 diCi +

∑n
i=1 Pi

∫ di
0
e
− µ2

i
2σ2
i

v
1√

2πσ2
i v
dv∑n

i=1Ci
. (3.3)

Proof. We prepare some preliminary formulas for the proof. From Section 3.1, we

know Xε(t) starts from ε on ray Si, and behaves as a Brownian motion with drift

µi and dispersion σi as long as it does not return to the origin. Let gi(ε, t) be the
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density of the first hitting time at 0 of such a Brownian motion, then

gi(ε, t) =
ε√

2πσ2
i t

3
e
− (ε+µit)

2

2σ2
i
t , for µi ∈ R, σi ∈ R+, ε > 0, t > 0, i = 1, . . . , n.

We define the following functions in ε,

Li(ε) :=

∫ di

0

e−βtgi(ε, t)dt and Ui(ε) :=

∫ ∞
di

e−βdigi(ε, t)dt,

and call them Li and Ui for convenience. In their Laplace transforms respectively,

Li represents the excursion time length of Xε(t) on ray Si if it is shorter than the

threshold di, and Ui represents the excursion time length if it is longer than di.

In the latter case, we set the excursion time length to be di because we are only

interested in the excursion up to the threshold.

These functions have the limits

lim
ε→0

Ui(ε) = 0 and lim
ε→0

Li(ε) = 1.

Moreover, we calculate the limits of their derivatives to be

lim
ε→0

(
d

dε
Ui(ε)

)
= e−βdi

(
2√

2πσ2
i di

Ψ

(
µi
√
di√

2σ2
i

)
+
µi
σ2
i

)
, (3.4)

lim
ε→0

(
d

dε
Li(ε)

)
=− 2√

2πσ2
i di

Ψ

(√
µ2
i di

2σ2
i

+ βdi

)
− µi
σ2
i

=−
(

2√
2πσ2

i di
Ψ

(
µi
√
di√

2σ2
i

)
+
µi
σ2
i

)
−
∫ di

0

(1− e−βy)e−
µ2
i

2σ2
i

y 1√
2πσ2

i y
3
dy.

(3.5)

The last equation can be checked using Ψ(x) = 1 +
∫ 1

0
(1 − e−x2v) 1

2v3/2dv, which is

obtained by a direct calculation from the definition of Ψ(x).

Now we study the Parisian time τ ε. Define the sequence of random times

ζ0 = 0, ζm+1 = inf{t > ζm | |Xε(t)| = 0}, for m ∈ N0
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recursively, and the mutually exclusive events

Cm := {ζm ≤ τ ε < ζm+1}, for m ∈ N0.

Then Cm denotes the event that the exceeding of threshold occurs during the (m+1)-

th excursion of Xε(t) away from the origin. Next, we set {Xε(0) = (ε, Si)} for an

arbitrary but fixed i, and calculate the Laplace transforms E(e−βτ
ε
1{Cm} | Xε(0) =

(ε, Si)) for m ∈ N0.

For m = 0, we interpret C0 as follows. Starting from ε on ray Si, X
ε(t) spends more

than di time before hitting the origin, hence the exceeding occurs during the first

excursion. This is equivalent to the event that a Brownian motion with drift µi and

dispersion σi spends more than di time to travel from ε to 0, which has probability∫∞
di
gi(ε, t)dt. Thus (τ ε1{C0} | Xε(0) = (ε, Si)) = di, and

E
(
e−βτ

ε

1{C0} | Xε(0) = (ε, Si)
)

=

∫ ∞
di

e−βdigi(ε, t)dt = Ui.

Next, we consider the event C1. In this case, the duration of the first excur-

sion of Xε(t) is shorter than di, and the Laplace transform of the duration is∫ di
0
e−βsgi(ε, t)dt. After the first excursion, Xε(t) returns to the origin and jumps

to (ε, Sk) with probability Pk, then exceeds the excursion time threshold dk before

returning to the origin. But the behaviour of Xε(t) during the second excursion is

similar to what we described for C0, with the index i replaced by k. Thus, we have

E
(
e−βτ

ε

1{C1} | Xε(0) = (ε, Si)
)

=

(∫ di

0

e−βsgi(ε, t)dt

)( n∑
k=1

PkE
(
e−βτ

ε

1{C0} | Xε(0) = (ε, Sk)
))

=Li

(
n∑
k=1

PkUk

)
.

In the same way, we consider the event C2. In this case, the duration of the first

excursion of Xε(t) is shorter than di, with the Laplace transform
∫ di

0
e−βsgi(ε, t)dt.

After the first excursion, Xε(t) returns to the origin and jumps to (ε, Sk) with prob-

ability Pk. Restarting from (ε, Sk), X
ε(t) will exceed the excursion time threshold

exactly during the second excursion (hence the third in total). But the behaviour

of Xε(t) during the second and third excursions is similar to what we described for
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C1, with the index i replaced by k. Hence

E
(
e−βτ

ε

1{C2} | Xε(0) = (ε, Si)
)

=

(∫ di

0

e−βsgi(ε, t)dt

)( n∑
k=1

PkE
(
e−βτ

ε

1{C1} | Xε(0) = (ε, Sk)
))

=Li

(
n∑
k=1

PkLk

(
n∑
j=1

PjUj

))
= Li

(
n∑
k=1

PkLk

)(
n∑
j=1

PjUj

)
.

The same explanation applies to Cm for any positive integer m, i.e., the duration of

the first excursion of Xε(t) is shorter than di, after that Xε(t) restarts from (ε, Sk)

and exceeds the threshold exactly during the m-th excursion. Hence we deduce that

E
(
e−βτ

ε

1{Cm} | Xε(0) = (ε, Si)
)

= Li

(
n∑
k=1

PkE
(
e−βτ

ε

1{Cm−1} | Xε(0) = (ε, Sk)
))

.

This implies a recursive structure between the Laplace transforms of τ ε conditioned

on Cm and Cm−1, we solve for

E
(
e−βτ

ε

1{Cm} | Xε(0) = (ε, Si)
)

= Li

(
n∑
k=1

PkLk

)m−1( n∑
j=1

PjUj

)
, m = 1, 2, . . . .

Since the exceeding of threshold may occur during any excursion of Xε(t), we need

to sum the result over m ∈ N0, this gives

E
(
e−βτ

ε | Xε(0) = (ε, Si)
)

=
∞∑
m=0

E
(
e−βτ

ε

1{Cm} | Xε(0) = (ε, Si)
)

=Ui +
∞∑
m=1

(
Li(

n∑
k=1

PkLk)
m−1(

n∑
j=1

PjUj)

)
= Ui +

Li(
∑n

j=1 PjUj)

1−∑n
k=1 PkLk

,

(3.6)

the last equation holds because for each k, gk(ε, t) is a probability density function

on (0,∞), so for any β ≥ 0,

0 <
n∑
k=1

PkLk =
n∑
k=1

Pk

∫ dk

0

e−βsgk(ε, s)ds ≤
n∑
k=1

Pk

∫ dk

0

gk(ε, s)ds <
n∑
k=1

Pk = 1.

Equation (3.6) boils down the Laplace transform of τ ε to the initial state of Xε(t),

which is distributed as P(Xε(0) = (ε, Si)) = Pi. Then we calculate the Laplace
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transform of τ ε to be

E
(
e−βτ

ε)
=

n∑
i=1

PiE
(
e−βτ

ε | Xε(0) = (ε, Si)
)

=
n∑
i=1

Pi

(
Ui +

Li(
∑n

j=1 PjUj)

1−∑n
k=1 PkLk

)
=

∑n
i=1 PiUi(ε)

1−∑n
k=1 PkLk(ε)

.

(3.7)

As ε → 0, both numerator and denominator of the right hand side of (3.7) tend

to 0, then we can calculate the limit lim
ε→0

E(e−βτ
ε
) using (3.4) and (3.5), and this

gives E(e−βτ ). The expectation of τ is obtained by applying the moment generating

function.

As in Section 3.1, X(t) can be reduced to a Brownian motion with drift or a standard

Brownian motion by choosing the parameters accordingly, then we can compare

Theorem 3.2.1 with the results in the existing literature.

Remark 4. When n = 2, µ1 = µ ≥ 0, µ2 = −µ, σ1 = σ2 = 1, P1 = P2 = 1
2

and d1 > 0, d2 > 0, equation (3.2) becomes the Laplace transform of the two-sided

Parisian time of a Brownian motion with drift

E
(
e−βτ

)
=
e−βd1

(√
d2Ψ(µ

√
d1

2
) + µ

√
d1d2π

2

)
+ e−βd2

(√
d1Ψ(µ

√
d2

2
)− µ

√
d1d2π

2

)
√
d2Ψ

(√
(β + µ2

2
)d1

)
+
√
d1Ψ

(√
(β + µ2

2
)d2

) ,

this is the main result of Dassios and Wu (2010). Moreover, for n = 2, P1 = P2 = 1
2
,

µ1 = µ2 = 0, σ1 = σ2 = 1, we set d2 > 0 and let d1 →∞, then equation (3.2) gives

the Laplace transform of the one-sided Parisian time of a standard Brownian motion

E(e−βτ )→ 1

1 + 2
√
πβd2 exp(βd2)Φ(

√
2βd2)

,

this was derived in Section 8.4.1 of Chesney et al. (1997).

3.3 Exact simulation algorithm of the Parisian

time

In this section we provide an exact simulation algorithm to sample from the distribu-

tion of the Parisian time τ . Our algorithm is based on the exact simulation schemes
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of the truncated Lévy subordinator developed in Dassios et al. (2020). We refer to

Algorithm 4.3 and 4.4 of Dassios et al. (2020) as AlgorithmI(.) and AlgorithmII(. ,

.), their full steps are attached in Appendix B.

Algorithm 3.3.1. Exact simulation algorithm of the Parisian time τ .

1. Initialise µi, σi, Pi, di and calculate Ci for i = 1, . . . , n. Set λ =
∑n

i=1Ci.

2. Generate a multinomial random variable I whose probability function is

P(I = i) =
Ci∑n
j=1 Cj

for i = 1, ..., n,

via the following steps:

(a) Generate a uniform random variable U1 ∼ U [0, 1].

(b) Set P(I = 0) = 0. For i = 1, ..., n, find the unique i such that

i−1∑
j=0

P(I = j) < U1 ≤
i∑

j=0

P(I = j),

then return I = i.

3. Generate a random variable τ ∗ via the following steps:

(a) Generate an exponential random variable T ∼ exp(λ) by setting U2 ∼
U [0, 1], then return T = − 1

λ
ln(1− U2).

(b) For each i = 1, ..., n, generate the following subordinator:

� If µi = 0, generate a subordinator Xi by setting α = 1
2

and

Xi = AlgorithmI

(
TPi√
2πσ2

i di

Γ(1− α)

α

)
;

� If µi 6= 0, generate a subordinator Xi by setting α = 1
2

and

Xi = AlgorithmII

(
TPi√
2πσ2

i di

Γ(1− α)

α
,
µ2
i di

2σ2
i

)
.

(c) Set τ ∗ =
∑n

i=1 diXi.
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4. Output τ = τ ∗ + dI .

Proof. For simplicity, we denote by M :=
∑n

i=1 e
−βdiCi and λ :=

∑n
i=1Ci, then the

Laplace transform (3.2) can be written as

E
(
e−βτ

)
=

M

λ+
∑n

i=1 Pi
∫ di

0
(1− e−βv)e−

µ2
i

2σ2
i

v
1√

2πσ2
i v

3
dv

, for β ≥ 0.

Since Ci > 0 for i = 1, . . . , n, we know λ > 0, and the denominator of E(e−βτ ) is

positive. This enables us to rewrite the Laplace transform in the integral form

E
(
e−βτ

)
=M

∫ ∞
0

exp

(
−t
(
λ+

n∑
i=1

Pi

∫ di

0

(1− e−βv)e−
µ2
i

2σ2
i

v 1√
2πσ2

i v
3
dv

))
dt

=
M

λ

∫ ∞
0

λe−λt exp

(
−

n∑
i=1

tPi√
2πσ2

i di

∫ 1

0

(1− e−βdiz)e−
µ2
i di

2σ2
i

z 1

z3/2
dz

)
dt.

(3.8)

Equation (3.8) can be understood as a product of the Laplace transforms of two

independent random variables, hence we can generate them separately, and view

the Parisian time τ as their summation.

Denote by I a multinomial random variable with the probability function

P(I = i) =
Ci∑n
j=1 Cj

for i = 1, ..., n,

then we can generate I using the inversion method for discrete random variable (see

Devroye 1986 Section III.2), this becomes Step 2. Note that the random variable

dI = {d1, . . . , dn} has the Laplace transform

E
(
e−βdI

)
=

n∑
i=1

(
e−βdi

Ci∑n
j=1 Cj

)
=
M

λ
.

Next, we denote by τ ∗ the random variable whose Laplace transform is

E
(
e−βτ

∗)
=

∫ ∞
0

λe−λt exp

(
−

n∑
i=1

tPi√
2πσ2

i di

∫ 1

0

(1− e−βdiz)e−
µ2
i di

2σ2
i

z 1

z3/2
dz

)
dt.

(3.9)
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For each i, we interpret the expression

exp

(
− tPi√

2πσ2
i di

∫ 1

0

(1− e−βdiz)e−
µ2
i di

2σ2
i

z 1

z3/2
dz

)
(3.10)

as the Laplace transform of the random variable diXi(
tPi√
2πσ2

i di
), where Xi(

tPi√
2πσ2

i di
)

is a subordinator with truncated Lévy measure

v(dz) := e
−µ

2
i di

2σ2
i

z 1

z3/2
1{0<z<1}dz

at time tPi√
2πσ2

i di
. Comparing (3.10) with (B.1), we know Xi(.) can be generated via

Algorithm 4.3 and 4.4 in Appendix B.

Moreover, (3.9) implies that τ ∗
law
=
∑n

i=1 diXi(
TPi√
2πσ2

i di
), where T ∼ exp(λ) is an expo-

nential random variable. Hence we generate T in Step 3(a), sample from Xi(
TPi√
2πσ2

i di
)

in Step 3(b), and calculate τ ∗ via Step 3(c).

Finally, since E(e−βτ ) = E(e−βdI )E(e−βτ
∗
), we have the representation τ

law
= dI + τ ∗,

where dI and τ ∗ are independent, then τ can be generated via Step 4.

Next, we illustrate the accuracy and performance of the exact simulation algorithm

with a numerical example. We set n = 7, and

µ1 = 0, µ2 = 0.5, µ3 = −0.3, µ4 = 0, µ5 = 0.2, µ6 = 0, µ7 = −0.1;

σ1 = 1.5, σ2 = 2, σ3 = 1.3, σ4 = 1, σ5 = 2, σ6 = 1, σ7 = 1;

P1 = 0.1, P2 = 0.2, P3 = 0.1, P4 = 0.2, P5 = 0.2, P6 = 0.1, P7 = 0.1;

d1 = 1, d2 = 3, d3 = 2.5, d4 = 1.5, d5 = 1.5, d6 = 0.5, d7 = 2.5.

Using the exact simulation algorithm, we generate samples from the Parisian time

and calculate their average. On the other hand, we use equation (3.3) to calculate

the true expectation of τ to be 3.0534. Then we consider the following two standard

measures for the associated error of the algorithm,

1. difference = sample average − true expectation

2. standard error = sample standard deviation√
number of samples

Table 3.1 reports the results, we see that the algorithm can achieve a high accuracy,

and one has to generate more samples to decrease the standard error.
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Table 3.1 Sample average and accuracy of the exact simulation algorithm.

Sample size Sample average Difference Standard error

1000 3.0666 0.0132 0.0616
4000 3.0302 -0.0232 0.0304

16000 3.0470 -0.0065 0.0155
64000 3.0509 -0.0025 0.0077

256000 3.0520 -0.0014 0.0039
1024000 3.0538 0.0004 0.0019

In addition, we estimate the distribution function of the Parisian time. Using the

exact simulation algorithm and the smoothing techniques (see Bowman and Azza-

lini, 1997), we get the estimated curve for the distribution function. On the other

hand, we apply the Gaver-Stehfest method (see Cohen, 2007) to invert the Laplace

transform E(e−βτ )
β

numerically. We set f̃(β) := E(e−βτ )
β

and calculate

f(t) ≈ ln(2)

t

2M∑
k=1

wkf̃

(
k ln(2)

t

)

numerically, where the weights wk are defined as

wk := (−1)M+k

min(k,M)∑
j=[(k+1)/2]

jM+1

M !

(
M

j

)(
2j

j

)(
j

k − j

)
,

and [x] means the greatest integer less or equal to x. Then we obtain the inverted

curve for the distribution function. These curves are provided in Figure 3.2, they

show that the exact simulation algorithm provides a good approximation for the

distribution of the Parisian time.
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Figure 3.2 Inverted and numerical estimated curves of the distribution function.
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We also illustrate the performance of the algorithm by recording the CPU time

needed to generate these samples from the Parisian time. The experiment is imple-

mented on an Intel Core i5-5200U CPU@2.20GHz processor, 8.00GB RAM, Win-

dows 10, 64-bit Operating System and performed in Matlab R2019b. No parallel

computing is used. Table 3.2 reports the results.

Table 3.2 CPU time of the exact simulation algorithm.

Sample size CPU time (in seconds)

1000 0.201831
4000 0.725738

16000 3.080721
64000 12.214876

256000 52.715700
1024000 201.460605

3.4 Discussion

We can apply this model to study the settlement delay in CHAPS. For an individual

bank A, we assume that there are n counterparties in the system, namely bank 1,

bank 2, . . . , bank n. We also assume that bank A uses an internal queue to manage

its outgoing payments, and once the current payment is settled, it has probability Pi

to make another payment to bank i, i = 1, . . . , n. Let a reflected Brownian motion

with drift µi and dispersion σi be the net balance between bank A and bank i. To

avoid the excessive exposure to liquidity risk, a time limit di has been set for the

duration of settlement delay between bank A and bank i. Both the central bank and

the participating banks are interested in the first time that the limit is exceeded.

We model the net balance between bank A and the counterparties by the planar

process X(t), and view the first exceeding time as the Parisian time of X(t). Using

the results in the current chapter, we can sample from this first exceeding time and

estimate its distribution function numerically. We remark that this approach can

be adopted by both the policymaker in the central bank and the credit control de-

partments of the participating banks to lay down decisive actions. For example, the

central bank may use time-dependent transaction fees to provide incentives to ear-

lier settlements. Alternatively, the participating banks may also learn to coordinate

their payments over time, creating non-binding behavioural conventions or implicit

contracts.

In particular, an empirical method has been developed in Denbee and Zimmerman

(2012) to detect the apparent ‘free-riding’ in the RTGS system, referring to the
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behaviour that the banks wait for incoming payments to fund subsequent outgoing

payments and not supply an amount of liquidity to the system commensurate with

the share of payments they are responsible for. Suppose the banks are required

to hold buffers of liquid assets in order that they can make payments in a stress

scenario, and the buffers are continuously calculated based on past activity. Banks

may have an incentive to delay their payments so that the regulatory buffer will

be reduced at subsequent recalibrations. The method in Denbee and Zimmerman

(2012) could help to detect this behaviour and calibrate buffers independent of

strategic actions. The study in the current chapter provides another point of view

towards this method. We can estimate the distribution of the settlement delay and

take this into consideration when calculating the buffers.

It is also possible to extend the model in the current chapter to the settlement

systems other than CHAPS. For example, the structure of settlement delay in SPEI

(Interbank Electronic Payment System operated by Banco de México) has been

specified in Alexandrova-Kabadjova and Solis (2012) with real transactions data

from April 7 to May 7, 2010. We may assume that the Markov model is adequate

for SPEI, and use these data to calibrate the parameters of the model. Moreover,

the observations in Alexandrova-Kabadjova and Solis (2012) suggest that low value

payments do not increase the settlement delay in the system. This is reasonable

under the assumption that the net balance between two banks follows a reflected

Brownian motion with drift, because the process will make an infinite number of

small excursions at the origin.

This chapter has focused on the model with one central bank (or agent) and several

domestic participants, which is classified as a ‘within border payment system’ (see

Bech et al., 2020). For a cross-border payment system, however, we need to consider

a model containing two or more central banks, each with their own domestic par-

ticipants. Assume that the system offers PvP (payment versus payment, see Bech

et al., 2020) services, then the settlement delay may originate in any local system,

and the first exceeding time of settlement delay of the whole system can be viewed

as the joint distribution of the Parisian times of the local systems. To this end, we

can collect the transaction data and calibrate the parameters of the model for each

local system, then simulate the Parisian times for all the systems simultaneously.

Then the minimal value of the sample is taken to be the first exceeding time of

settlement delay of the whole system. This is a topic for future research, and the

result would be beneficial on a global scale.

Also, our Brownian-type model reflects the random fluctuations of payments and

delays, but the external events that can influence these are not taken into account.
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For example, the operational risks related to computer and telecommunication sys-

tem breakdown may increase the settlement delay, see Rochet and Tirole (1996) for

the impact of computer problem of Bank of New York in 1985 and the San Fran-

cisco earthquake in 1989. More recently, many reports have suggested the impact

of global pandemic in 2020 on the settlement systems. These might be interesting

for a further study.
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Chapter 4

Parisian time of a squared Bessel

process with a linear excursion

boundary and the pricing of

moving Parisian options

4.1 Introduction

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space and Zt be a squared Bessel

process adapted to (Ft)t≥0. The squared Bessel process Zt satisfies the following

SDE

dZt = 2(1− α)dt+ 2
√
ZtdWt, Z0 = 0, 0 < α < 1.

Set

gt = sup{u ≤ t|Zu = 0},

and denote by Ut the time elapsed since the last time zero can be achieved by the

squared Bessel process

Ut = t− sup{u ≤ t|Zu = 0}. (4.1)

We are interested in studying the Parisian time defined as (see Fig. 4.1)

τ = inf{t ≥ 0|Ut = a+ bt}, a > 0, 0 ≤ b < 1. (4.2)
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Figure 4.1 Definition of the Parisian time τ with a linear excursion boundary
a+ bt.

In this chapter, we focus on the non-trivial excursion boundary where b > 0, and

use b = 0 to verify our results. By definition, τ is the first time that the excursion

length of the squared Bessel process reaches a linear boundary a+bt. The definition

of τ can be expressed as

τ = inf

{
t ≥ 0| Ut

a+ bt
= 1

}
, a > 0, 0 ≤ b < 1, (4.3)

where b < 1 because the excursion time length can not increase faster than the

actual time. This expression motivates us to find the first hitting time at 1 of the

ratio Ut
a+bt

.

To study the distribution of the Parisian time τ , we need to find a martingale

involving this ratio. From Jeanblanc et al. (2009), we know that a squared Bessel

process is connected to a CIR process via a time change, and a martingale using

the excursion length of the CIR process can be found in Dassios et al. (2019). We

use these results to provide a variation of the Azéma martingale for the process
Us(t)
a+bs(t)

, where s(t) is a change of time. Our martingale reduces to the two-sided

version of the martingale used in Chesney et al. (1997) when α = 1
2

and b = 0. The

Azéma martingale can also be obtained by projecting another martingale onto the

slow filtration which contains the zero points of the squared Bessel process, we will

demonstrate the projection in this chapter.

54



The Azéma martingale enables us to study the distribution of the Parisian time τ .

We derive a recursive formula for its probability density function. In addition, we

develop an exact simulation algorithm to sample from the Parisian time distribution.

Finally, we use the results to price the moving Parisian option.

This chapter will be organised as follows. Section 4.2 sets out some preliminary re-

sults on the time-changed squared Bessel process that will be used in other sections.

Section 4.3 proves the extension of the Azéma martingale. Section 4.4 demonstrates

the martingale projection. In Section 4.5, we obtain the recursive formula of the

Parisian time density. Section 4.6 provides the exact simulation algorithm for sam-

pling from the Parisian time distribution, we also give some numerical results in this

section. In Section 4.7, we present details on pricing of moving Parisian options.

4.2 Preliminaries

In this section, we introduce the basic settings that will be applied throughout the

chapter. Let Zt be a squared Bessel process on the t-domain, then Zt follows the

SDE

dZt = 2(1− α)dt+ 2
√
ZtdWt, Z0 = 0,

where we reparametrize with α := 1 − δ
2

and δ represents the dimension of the

squared Bessel process. We consider in particular dimensions 0 < δ < 2, which

corresponds to 0 < α < 1. In this case, the squared Bessel process returns to 0 in

finite time almost surely and is instantaneously reflecting at 0.

We define a new variable s by

s :=
1

b
ln

(
b

a
t+ 1

)
and t(s) =

a

b

(
ebs − 1

)
, for b > 0, (4.4)

then Zt can be written as Za
b

(ebs−1), which is a time-changed squared Bessel process

on the s-domain. We define the process Ys on the s-domain by

Ys :=
e−bsZt(s)

a
=
e−bsZa

b
(ebs−1)

a
. (4.5)

Using Ito’s formula, Ys is a CIR process satisfying the following SDE,

dYs = 2((1− α)− kYs)ds+ 2
√
YsdWs, Y0 = 0,
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with k = b
2
. Since k > 0 and 2k(1− α) > 0, the CIR process Ys hits 0 in finite time

almost surely and the boundary 0 is instantaneously reflecting (see Jeanblanc et al.

2009).

From Dassios et al. (2019), we have some knowledge about the Azéma martingale

and meander density of the CIR process Ys, these are very useful for the study of

our Parisian time τ . Hence it is more convenient for us to work on the s-domain.

We adopt the following notation. We use Zs for a squared Bessel process on the

s-domain, F = (Fs)s≥0 is the filtration generated by Zs. We also use Us for the

excursion length of the squared Bessel process Zs, Us is adapted to the filtration

FU = (FUs)s≥0. Similarly, we denote by FY = (FYs)s≥0 the filtration generated by

the CIR process Ys. And we use UY
s for the excursion length of the CIR process,

UY
s is adapted to the filtration FUY = (FUYs )s≥0. Furthermore, we notice that the

process Ut defined as (4.1) is adapted to the filtration (FUt)t≥0, which contains the

zero points of the squared Bessel process Zt. From (4.5), we know that Zt and Ys have

the same zero points, hence the filtration (FUt)t≥0 contains the same information as

FUY = (FUYs )s≥0.

Next we define a stopping time σ on the s-domain by

σ = inf {s ≥ 0, Us = a+ bs} = inf

{
s ≥ 0,

Us
a+ bs

= 1

}
, (4.6)

then it follows immediately that

σ
law
=

1

b
ln

(
b

a
τ + 1

)
. (4.7)

In order to obtain the distributional properties of the Parisian time τ , we will first

derive these properties for σ and then apply the transformation (4.7) to obtain the

actual results on τ .

4.3 An extension of the Azéma martingale

Let FU be the filtration generated by Us containing the zeros of the squared Bessel

process Zs, we consider a martingale involving the process Us
a+bs

and adapted to FU .

This result is an extension of the celebrated Azéma martingale.
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Theorem 4.3.1 (Azéma martingale). Let Ms be the process defined as

Ms := e−βs

(
1 + (1− b Us

a+ bs
)−

β
b (

b Us
a+bs

1− b Us
a+bs

)α
∫ − 1

b
ln(1−b Us

a+bs
)

0

βe−βv

(ebv − 1)α
dv

)
,

(4.8)

then Ms is a FU -martingale, where FU is the filtration generated by (Us)s≥0.

Proof. This is an extension of Theorem 3.1 in Dassios et al. (2019) with a changed

time. We have proved that the process Ys defined as (4.5) is a CIR process on the

s-domain. By (4.5), Ys and the time-changed squared Bessel process Za
b

(ebs−1) have

the same zeros; hence they share the same excursion time.

Let the process R(s) be defined as

R(s) := −1

b
ln

(
1− bUt(s)

a+ bt(s)

)
= −1

b
ln

(
1−

bUa
b

(ebs−1)

a+ ba
b
(ebs − 1)

)
,

where Ut(s) := t(s)− gt(s) is the excursion length of the squared Bessel process Zt(s).

Notice that Ua
b

(ebs−1) = 0 results in R(s) = 0. Furthermore, since

Ua
b

(ebs−1) =
a

b
(ebs − 1)− ga

b
(ebs−1),

we have

R(s) = −1

b
ln

(
1−

b(a
b
(ebs − 1)− ga

b
(ebs−1))

a+ ba
b
(ebs − 1)

)
= s+

− ln
(
a+ bga

b
(ebs−1)

)
+ ln(a)

b
.

While the time-changed squared Bessel process Za
b

(ebs−1) is non-zero, its last zero

time ga
b

(ebs−1) remains unchanged, and R(s) evolves linearly at rate 1 on the s-

domain; When Za
b

(ebs−1) hits zero, which is equivalent to Ys hitting zero, ga
b

(ebs−1) =
a
b
(ebs − 1). And as a result, R(s) = 0. In conclusion, R(s) evolves linearly at rate

1 and jumps back to 0 when Ys hits zero, therefore R(s) represents the excursion

length of the CIR process Ys.

On the other hand, for a CIR process Yt defined as

dYt = 2((1− α)− kYt)dt+ 2
√
YtdWt,

denote by UY
t its excursion length at time t, then from Dassios et al. (2019) we know
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that

e−βt

(
1 + eβU

Y
t (e2kUYt − 1)α

∫ UYt

0

βe−βv

(e2kv − 1)α
dv

)
(4.9)

is a FUY -martingale, where the filtration FUY is generated by (UY
t )t≥0 and contains

the zeros of the CIR process Yt. By setting k = 1
2
b, substituting UY

t with R(s) and

t with s, we conclude that (4.8) is a FU -martingale.

4.4 A martingale projection onto the filtration FU
In this section, we introduce a martingale involving the process Zs

a+bs
and adapted to

the full filtration F . Furthermore, we show that the projection of this martingale

onto the restricted filtration FU is exactly the martingaleMs we obtained in Theorem

4.3.1. This section also provides an alternative proof for Theorem 4.3.1.

Proposition 4.4.1 (Martingale projection). Let MZ
s be the process defined by

MZ
s := e−βsΦ

(
β

b
, 1− α, b

2

Zs
a+ bs

)

then MZ
s is a F-martingale. Furthermore, projecting this martingale onto the filtra-

tion FUs gives

E(MZ
s |FUs) = Ms, (4.10)

where Φ(a, b, x) is the Kummer function of the first kind, F is the filtration generated

by (Zs)s≥0, and Ms is the FU -martingale defined as (4.8).

Proof. We first present a martingale projection result based on the CIR process Ys,

then we show that (4.10) is a time and space changed version of the CIR result.

Let Ys be defined as (4.5), the infinitesimal generator of Ys is

Af(s, y) =
∂f

∂s
+ 2((1− α)− ky)

∂f

∂y
+ 2y

∂2f

∂y2
. (4.11)

In order to find a martingale involving Ys, we consider the partial differential equa-

tion (see Revuz and Yor, 1999)

∂f

∂s
+ 2((1− α)− ky)

∂f

∂y
+ 2y

∂2f

∂y2
= 0. (4.12)
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Assume its solution has the format f(s, y) = e−βsg(y), then solving the partial

differential equation reduces to solving the ordinary differential equation with the

reflecting boundary condition (see Mandl 1968 pp. 13, 67 for a proof of the reflecting

boundary condition)

−βg(y)+2((1−α)−ky)g′(y)+2yg′′(y) = 0, g(0) = 1, lim
y→0

y1−αg′(y) = 0. (4.13)

This is an extended confluent hypergeometric equation, in general it has two linearly

independent solutions, but only one solution follows the boundary condition. We

use Φ(a, b, x) for the Kummer function of the first kind, then we solve for

g(y) = Φ

(
β

2k
, 1− α, ky

)
Thus the process MY

s defined as

MY
s := e−βsΦ

(
β

2k
, 1− α, kYs

)

is a FY -martingale, where FY is the filtration generated by (Ys)s≥0.

Denote by UY
s the excursion length of Ys, and FUY the filtration generated by

(UY
s )s≥0. Next we consider the projection of the martingale MY

s onto the filtration

FUY . From Dassios et al. (2019) we know that the meander of the CIR process Ys

has the probability density function

p(u, y) = P(Ys ∈ dy|UY
s = u) =

k

1− e−2ku
e
− k

1−e−2ku y.

For simplicity we denote

k(u) :=

∫ ∞
0

g(y)p(u, y)dy, (4.14)

then integrating both sides of equation (4.13) with respect to p(u, y) gives

−βk(u) + g(0)
2αk

1− e−2ku
− 2αk

1− e−2ku
k(u) + k′(u) = 0.
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From integration by parts we have

k(0) = lim
u→0

k(u) = lim
u→0

∫ ∞
0

g(y)
k

1− e−2ku
e
− k

1−e−2ku ydy = g(0),

hence by applying the CIR meander, the ordinary differential equation in (4.13)

becomes

−βk(u) + k′(u) +
2αk

1− e−2ku
(k(0)− k(u)) = 0, k(0) = 1. (4.15)

Notice that there is one boundary condition here because we only care about the

Kummer function of the first kind, i.e., the second boundary condition in (4.13)

must hold throughout the discussion.

But (4.15) admits to the following partial differential equation,

∂h

∂s
+
∂h

∂u
+

2αk

1− e−2ku
(h(s, 0)− h(s, u)) = 0, (4.16)

with the assumption that the solution has the format h(s, u) = e−βsk(u). Notice

that the left side of (4.16) is exactly the infinitesimal generator of UY
s . In order to

find a martingale involving UY
s , we solve (4.15) for

k(u) = 1 + eβu(e2ku − 1)α
∫ u

0

βe−βv

(e2kv − 1)α
dv.

Then we have that the process MUY

s defined as

MUY

s := e−βs

(
1 + eβU

Y
s (e2kUYs − 1)α

∫ UYs

0

βe−βv

(e2kv − 1)α
dv

)
,

is a FUY -martingale. Combining MY
s , MUY

s and (4.14), we conclude that

E(MY
s |FUYs ) = MUY

s ,

this provides us a martingale projection result for the CIR process.

Now we proceed to prove Proposition 4.4.1, let Xt be the process defined as

Xt =
Zt

a+ bt
,
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the infinitesimal generator of Xt is

Af(t, x) =
∂f

∂t
+

2(1− α)− bx
a+ bt

∂f

∂x
+

2x

a+ bt

∂2f

∂x2
.

In order to find a martingale involving Xt, we consider the partial differential equa-

tion
∂f

∂t
+

2(1− α)− bx
a+ bt

∂f

∂x
+

2x

a+ bt

∂2f

∂x2
= 0,

it has the same solution as

(a+ bt)
∂f

∂t
+ (2(1− α)− bx)

∂f

∂x
+ 2x

∂2f

∂x2
= 0. (4.17)

Apply the time change (4.4), we rewrite (4.17) as

∂f

∂s
+ (2(1− α)− bx)

∂f

∂x
+ 2x

∂2f

∂x2
= 0. (4.18)

Note that (4.18) is same as (4.12) with k = b
2
, hence the process MZ

s defined as

MZ
s := e−βsΦ

(
β

b
, 1− α, b

2

Zs
a+ bs

)
is a Fs-martingale, where Fs is the filtration generated by (Zs)s≥0.

Similarly, we define the process XU
t via

XU
t =

Ut
a+ bt

,

the infinitesimal generator of XU
t is

Af(t, x) =
∂f

∂t
+

1− bx
a+ bt

∂f

∂x
+

α

x(a+ bt)
(f(t, 0)− f(t, x)).

In order to find a martingale involving XU
t , we consider the partial differential

equation
∂f

∂t
+

1− bx
a+ bt

∂f

∂x
+

α

x(a+ bt)
(f(t, 0)− f(t, x)) = 0,

it has the same solution as

(a+ bt)
∂f

∂t
+ (1− bx)

∂f

∂x
+
α

x
(f(t, 0)− f(t, x)) = 0. (4.19)
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Martingale involving the

process Zs
a+bs : MZ

s

Martingale involving the

CIR process Ys: MY
s

Martingale involving the

process Us
a+bs : Ms

Martingale involving the excursion

of a CIR process UY
s : MUY

s

(Proposition 2)
projection onto the

filtration FU

time change

space change

time and

projection onto the
filtration FUY

Figure 4.2 Sketch of the proof of Proposition 2.

Apply the time change and define a new variable u := −1
b

ln(1 − bx). We rewrite

(4.19) as
∂f

∂s
+
∂f

∂u
+

αb

1− e−bu (f(s, 0)− f(s, u)) = 0. (4.20)

Note that (4.20) is same as (4.16) with k = b
2
, hence the process Ms defined as

Ms := e−βs

(
1 + (1− b Us

a+ bs
)−

β
b (

b Us
a+bs

1− b Us
a+bs

)α
∫ − 1

b
ln(1−b Us

a+bs
)

0

βe−βv

(ebv − 1)α
dv

)
,

is a FU -martingale, where FU is the filtration generated by (Us)s≥0. This provides

us an alternative proof for Theorem 1.

We have obtained the projection from MY
s to MUY

s . Since (4.18) is same as (4.12)

and (4.20) is same as (4.16), the projection (4.10) follows immediately, and the

proposition is proved.

Remark 5. We give a graphical representation of the proof in Figure 2. It was

shown in Dassios and Lim (2019) that the projection of the Kennedy martingale

(see Kennedy 1976b, Nguyen-Ngoc and Yor 2005) onto the restricted filtration gives a

variation of the Azéma martingale. Just like Dassios and Lim (2019), the projection

related to the Azéma type martingale is also of interest here. Inspired by this, we

provide the martingale which is adapted to the full filtration F and has the projection

Ms in Proposition 4.4.1.

Furthermore, in the proof of Theorem 4.3.1, we used the fact that (4.9) is a martin-

gale. The martingale property of (4.9) was proved by Dassios et al. (2019), but the

associated projection was not provided there. In the proof of Proposition 4.4.1, we

provide another approach to the martingale property of (4.9), and present the associ-

ated projection. Hence we complete the discussion about the Azéma type martingale

(4.9) in the current chapter.
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4.5 Distributional properties of the Parisian time

In this section, we study the distributional properties of the Parisian time τ . Due to

the time change we have made, we will first derive these properties for the stopping

time σ and then apply the transformation (4.7) to obtain the actual results on τ .

4.5.1 Laplace transform for the stopping time

We apply the optional stopping theorem on the martingale Ms to obtain the Laplace

transform of the stopping time σ.

Lemma 4.5.1 (Laplace transform). The Laplace transform of σ is

E(e−βσ) =
1

1 + (1− b)−βb ( b
1−b)

α
∫ − 1

b
ln(1−b)

0
βe−βv

(ebv−1)α
dv
.

Proof. Since Us∧σ
a+b(s∧σ)

≤ 1 and Ms is an increasing function in Us∧σ
a+b(s∧σ)

, we have

|Ms∧σ| ≤ K for some constant K for all s. Thus optional stopping theorem and

dominated convergence theorem applies, and we have

E(Mσ) = E( lim
s→∞

Ms∧σ) = M0 = 1.

Hence

E

(
e−βσ(1 + (1− b)−βb (

b

1− b)α
∫ − 1

b
ln(1−b)

0

βe−βv

(ebv − 1)α
dv)

)
= 1,

the lemma is proved.

Next, we calculate the moments of τ using the following method.

Remark 6 (Finiteness of moments). Consider a special case of Lemma 4.5.1, when

β = −b we know

E(ebσ) =
1

1 + (1− b)( b
1−b)

α
∫ − 1

b
ln(1−b)

0
−bebv

(ebv−1)α
dv

=
1− α

1− α− b.

By setting σ = 1
b

ln( b
a
τ + 1), we obtain the mean of τ ,

E(τ) =
a

1− α− b,
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hence τ has finite mean only for 0 ≤ b < 1−α. When α = 1
2

and b = 0, E(τ) = 2a,

this corresponds to the mean of the Parisian time of reflected Brownian motion

with a constant excursion boundary D = a (see Chesney et al. 1997). Next we set

β = −2b, then Lemma 4.5.1 implies

E(e2bσ) =
1

1 + (1− b)2( b
1−b)

α
∫ − 1

b
ln(1−b)

0
−2be2bv

(ebv−1)α
dv

=
(2− α)(1− α)

(2− α)(1− α)− 2b(2− b− α)
.

By setting σ = 1
b

ln( b
a
τ + 1), we obtain the second moment of τ ,

E(τ 2) =
2a2(1− b)

[(2− α)(1− α)− 2b(2− b− α)](1− α− b) ,

hence τ has finite second moment only for 0 ≤ b < 1
2
(2 − α −

√
α(2− α)). In

general, by setting β = −nb, we can calculate the n-th moment of τ and derive the

range of b where the moment is finite.

In the calculation above, we have taken β to be a negative number. It seems that

we do not need β ≥ 0 for the existence of the Laplace transform of σ, because for

any fixed β ∈ R, we can always find the bound K in the proof of Lemma 4.5.1. And

from the numerical implementation in the next subsection, we believe the moments

are correct. But the use of negative β still needs a further study.

4.5.2 Density of the Parisian time

We obtain a recursive expression for the density of the Parisian time τ , the expression

involves only a finite sum.

Theorem 4.5.2 (Recursive density). Let fτ (t) be the probability density function of

the Parisian time τ , we have

fτ (t) =
1

a+ bt

n−1∑
i=0

(−1)iLi

(
1

b
ln

(
b

a
t+ 1

)
−
(
−1

b
ln(1− b)

))
,

for
a

b

(
1

(1− b)n − 1

)
< t ≤ a

b

(
1

(1− b)n+1
− 1

)
, n = 1, 2, ...,

where Li(t) is defined recursively as follows:

L0(t) =

(
1− b
b

)α
b sin(απ)

π
(1− e−bt)α−1, for t > 0,
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Li+1(t) =

∫ t−i(− 1
b

ln(1−b))

− 1
b

ln(1−b)
Li(t− s)

b sin(απ)

π

(1− 1
1−be

−bs)α

(1− e−bs)( b
1−b)

α
ds,

for t > (i+ 1)

(
−1

b
ln(1− b)

)
.

Proof. See Appendix C.

Remark 7. By setting a = 1 and taking the limit b→ 0, τ reduces to the Parisian

time of a squared Bessel process with constant excursion boundary D = 1, then

Lemma 4.5.1 and Theorem 4.5.2 become the main results of Dassios et al. (2019).

Furthermore, by setting α = 1
2
, τ reduces to the Parisian time of a reflected Brownian

motion with constant excursion boundary D = 1, Lemma 4.5.1 becomes the Laplace

transform used in Chesney et al. (1997), and Theorem 4.5.2 become the main results

of Dassios and Lim (2017).

4.6 Exact simulation

In this section, we develop an exact simulation algorithm for the Parisian time

τ , the algorithm is based on the compound geometric representation of the Laplace

transform we obtained in Lemma 4.5.1. We also present some numerical experiments

to illustrate the performance of our simulation algorithm.

4.6.1 Exact simulation algorithm

We provide a compound geometric representation for the Laplace transform of the

stopping time σ, this representation will lead to the exact simulation algorithm.

Lemma 4.6.1 (Compound geometric representation). The Laplace transform of the

stopping time σ can be written as

E(e−βσ) =
p(e−(− 1

b
ln(1−b)))β

∫ − 1
b

ln(1−b)
0

e−βuf0(u)du

1− (1− p)(e−(− 1
b

ln(1−b)))β
∫ − 1

b
ln(1−b)

0
e−βuf(u)du

,

where we define

p =
bM

π csc(πα)(eb(−
1
b

ln(1−b)) − 1)α
, (4.21)

f0(u) =
(1− e−bu)α−1

M
,
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f(u) =
1

E

∫ − 1
b

ln(1−b)

u

αbeb(u+(− 1
b

ln(1−b))−s)(1− e−bs)α−1(eb(−
1
b

ln(1−b)) − 1)α

(eb(u+(− 1
b

ln(1−b))−s) − 1)α+1
ds,

and

M =

∫ − 1
b

ln(1−b)

0

1

(1− e−bs)1−αds, (4.22)

E =

∫ − 1
b

ln(1−b)

0

(
(eb(−

1
b

ln(1−b)) − 1)α

(eb(−
1
b

ln(1−b)−s) − 1)α
− 1

)
1

(1− e−bs)1−αds. (4.23)

Furthermore, f0(u) and f(u) are well-defined probability density functions over u ∈
[0,−1

b
ln(1− b)].

Proof. See Appendix C.

Then we have the following exact simulation algorithm for the Parisian time τ .

Algorithm 4.6.2 (Exact simulation algorithm). The simulation algorithm for the

Parisian time τ is the following:

1. Generate a geometric random variable G with

P(G = g) = p(1− p)g,

where g = 0, 1, 2, ..., and p is defined in (4.21).

2. Generate a random variable T0 using the A/R scheme (see Glasserman, 2004)

by the following steps

(a) Generate T̄0 by setting

T̄0 =

(
−1

b
ln(1− b)

)
U

1
α

1 , U1 ∼ U [0, 1];

(b) Generate a standard uniform random variable V1 ∼ U [0, 1], if

V1 ≤
(1− e−bT̄0)α−1

bα−1(−1
b

ln(1− b))1−α T̄
1−α
0 ,

then accept T̄0 and then set σ0 = T̄0 + (−1
b

ln(1 − b)); Otherwise reject

this candidate and go back to step 2.(a).
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3. For G = g, generate the sequence of independent and identical distributed

random variables {Ti}i=1,2,...,g via the following steps,

(a) Numerically maximising

C(s) =

(
(eb(−

1
b

ln(1−b)) − 1)α

(eb(−
1
b

ln(1−b)−s) − 1)α
− 1

)
(1−e−bs)α−1

(
−1

b
ln(1− b)− s

)1−α

,

record the optimal s∗ and set C = C(s∗).

(b) Generate S̄ by setting

S̄ =

(
−1

b
ln(1− b)

)
(1− U

1
α

2 ), U2 ∼ U [0, 1].

(c) Generate a standard uniform random variable V2 ∼ U [0, 1], if

V2 ≤
1

C

(
(eb(−

1
b

ln(1−b))−1)α

(eb(−
1
b

ln(1−b)−S̄)−1)α
− 1

)
(1− e−bS̄)α−1

(−1
b

ln(1− b)− S̄)α−1
,

then accept S̄; Otherwise reject this candidate and go back to step 3.(a).

(d) With the accepted S̄, generate Ti by setting

Ti =S̄ − (−1

b
ln(1− b))

+
1

b
ln


 (eb(−

1
b

ln(1−b)) − 1)α

(eb(−
1
b

ln(1−b))−1)α

(eb(−
1
b

ln(1−b)−S̄)−1)α
− U3

(
(eb(−

1
b

ln(1−b))−1)α

(eb(−
1
b

ln(1−b)−S̄)−1)α
− 1

)


1
α

+ 1

 ,

where U3 ∼ U [0, 1], and then set σi = Ti + (−1
b

ln(1− b)).

4. Set σ = σ0 + ...+ σn, return τ = a
b
(ebσ − 1).

Proof. See Appendix C.

4.6.2 Numerical illustration

In this section, we illustrate the performance of our exact simulation algorithm via

numerical examples. We estimate the mean and standard deviation of the Parisian

67



time τ under the parameter settings α = 1
2
, a = 1, b = {0.01, 0.1, 0.2, 0.3, 0.4, 0.5},

with the sample size 106. From Remark 6 we know for α = 1
2
, τ has finite mean only

when 0 ≤ b < 0.5, and finite standard deviation only when 0 ≤ b < 3
4
−
√

3
4
≈ 0.3170,

hence we restrict b to the interval [0, 0.5]. We also know that when b = 0, the

excursion boundary becomes a constant D = a, and in this case the Parisian time

has mean 2a and standard deviation 2
√

3
3
a. Since our algorithm is designed for b > 0,

we take b = 0.01 and compare the estimations to the case of b = 0.

Table 4.1 Estimated mean and standard deviation of the Parisian time τ based
on parameter settings α = 1

2
, a = 1, b = {0.01, 0.1, 0.2, 0.3, 0.4, 0.5} and sample size

106.

Sample True Sample True
average expectation standard deviation standard deviation

b = 0.01 2.0402 2.0408 1.2036 1.2024
b = 0.1 2.5004 2.5000 1.8289 1.8233
b = 0.2 3.3365 3.3333 3.5231 3.4752
b = 0.3 5.0051 5.0000 11.2083 14.4338
b = 0.4 9.9263 10.0000 183.4117 ∞
b = 0.5 58.3532 ∞ 9134.6000 ∞

Table 4.1 reports the simulation results. We see that the estimations are very close

to the true values when b is small. While b = 0.3 is close to the boundary of the

range where the standard deviation exists, hence the estimation shows a higher level

of error. When b = 0.4, the standard deviation does not exist, and when b = 0.5,

both the mean and the standard deviation do not exist.

In addition, since Algorithm 4.6.2 is based on the exact simulation of the stopping

time σ (see Step 4. of the algorithm), we carry out separate numerical experiments

for the distribution function of σ. Using the exact simulation algorithm and the

smoothing techniques (see Bowman and Azzalini 1997), we get the estimated curve

for the distribution function. On the other hand, we apply the Gaver-Stehfest

method (see Cohen 2007) to invert the Laplace transform E(e−βσ)
β

numerically and

obtain the inverted curve for the distribution function. The estimated and inverted

curves are provided in Figure 4.3a, Figure 4.3b and Figure 4.3c, showing that our

algorithm provides a good simulation for the stopping time σ, and hence a good

simulation for the Parisian time τ , because τ is just a transform of σ.

4.7 Application: Pricing moving Parisian options

In this section, we use our results to price the two-sided moving Parisian options.

It is called a ‘moving’ option because unlike the traditional Parisian options, the

68



0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Value of the stopping time σ

D
is

tr
ib

ut
io

n 
of

 th
e 

st
op

pi
ng

 ti
m

e 
σ

 

 

numerical inverse Laplace transform curve
exact simulation estimated curve

(a) b = 0.2

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Value of the stopping time σ

D
is

tr
ib

ut
io

n 
of

 th
e 

st
op

pi
ng

 ti
m

e 
σ

 

 

numerical inverse Laplace transform curve
exact simulation estimated curve

(b) b = 0.5
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(c) b = 0.8

Figure 4.3 Distribution function curves of σ with α = 1
2

and b = {0.2, 0.5, 0.8}.

excursion boundary of our option is a function of time. In the option pricing problem,

it is the Parisian time of a reflected Brownian motion that matters. For this reason,

we take α = 1
2

in this section, which reduces the squared Bessel process Zt to a

square of reflected Brownian motion. But a reflected Brownian motion has the

same excursion time as its square, hence the Parisian time τ is reduced to the first

time that the excursion length of a reflected Brownian motion hits a linear boundary.

This is also the reason for the option to be called ‘two-sided’: Our Parisian time

results are for the squared Bessel process, and in particular, the reflect Brownian

motion. On the other hand, the option pricing problem is based on a standard

Brownian motion, which could be either positive or negative, and the excursion

length of the standard Brownian motion will accumulate in both cases. Hence it is

equivalent to consider the excursion of a reflected Brownian motion, in other words,

we treat the positive and negative excursions of the standard Brownian motion in

the same manner.

Let St be the price process of the underlying asset which follows a geometric Brow-

nian motion, the owner of a moving Parisian option receives a payoff h(ST ) only if

the price process St has an excursion away from the predetermined barrier L which

is of length greater or equal to D = a + bt before the expiration time T . For a

two-sided moving Parisian option, the owner will receive the payoff when either the

underlying makes an excursion above the barrier or an excursion below the barrier

of length D.

Let Q denote the risk neutral probability measure. The dynamic of S under Q is

dSt = St(rdt+ σdWt), S0 = x,

where Wt is a standard Brownian motion under Q, and r and σ are positive con-

stants. For simplicity, assume zero dividends. Let K denote the strike price of the
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option and we introduce the notation

m =
1

σ

(
r − σ2

2

)
,

so that the asset price St = xeσ(mt+Wt). Also define

gSt = inf{s ≤ t|Ss = L},

to be the last time the asset price reaches L before time t, and

τSD = inf{t ≥ 0|t− gSt ≥ D}.

Thus, τSD denotes the first time that the excursion length of the process S away from

the barrier L reaches level D. In our case the excursion boundary is linear, hence

we set D = a+bt. To emphasise the effect of the linear boundary, we also let L = x.

The price of the moving Parisian option with initial underlying price x, maturity T ,

strike price K, payoff function h(s), and parameters K, L, D, r fixed, is

P (x, T ) = EQ
(
e−rTh(xeσ(mT+WT ))I{τSD<T}

)
.

We introduce a new probability measure P , which makes Zt = Wt +mt a standard

Brownian motion under P . Applying Girsanov’s theorem, we have

P (x, T ) =EP
(
e−

1
2
m2T+mZT e−rTh(xeσ(mT+WT ))I{τ<T}

)
=EP

(
e−(r+ 1

2
m2)T emZTh(xeσZT )I{τ<T}

)
.

(4.24)

Thus, we propose two methods to price the moving Parisian option with a certain

payoff function h(s). The first is using Monte Carlo simulation based on P (x, T ).

In Table 4.2, we present numerical examples of the moving Parisian call option

(h(s) = (s−K)+) for a range of parameters a, b, and x. After one year (52 weeks),

the boundary has been increased by the length of b years in total, making it harder

for the excursion length to reach the boundary. We observe that the price decreases

when the excursion boundary increase, i.e. a and b increase.

Alternatively, we can use explicit expressions for the expectation (4.24) to obtain

numerical prices for the moving Parisian option. We denote by FZt the filtration

generated by the Brownian motion (Zt)t≥0, then τ is a FZt -stopping time, and by
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Table 4.2 Price of the two-sided moving Parisian call option with K = 90 under
parameter setting r = 0.05, σ = 0.2, T = 1 year (assumed to be 52 weeks), D =
(a+ bt) year, a = 4

52
, 8

52
, b = 0.1, 0.2, 0.4, x = 80, 82, 84, 86, 88, 90.

S0 D = 4
52

+ 0.1t D = 4
52

+ 0.2t D = 8
52

+ 0.2t D = 8
52

+ 0.4t
80 4.2076 4.0839 4.0745 3.6619
82 5.0362 4.9490 4.9429 4.3865
84 5.9673 5.9552 5.7534 5.1881
86 7.0574 7.0305 6.7648 6.0227
88 8.1885 8.1652 7.9085 6.8857
90 9.4036 9.3819 8.9880 7.7386

the strong Markov property of Brownian motion,

P (x, T ) =EP
(
EP(e−(r+ 1

2
m2)T emZTh(xeσZT )I{τ<T}|Fτ )

)
=e−(r+ 1

2
m2)TEP(I{τ<T}

∫ ∞
−∞

emyh(xeσy)
1√

2π(T − τ)
e−

(y−Zτ )2

2(T−τ) dy).

We can then think of Zτ as a Brownian meander, because it is a Brownian motion

starting from 0 and conditioned to stay away from 0 up to time a+ bτ . We denote

the density of Zτ by v(dz), then we have (see Yor 1997)

v(dz) =
−z

2(a+ bτ)
e−

z2

2(a+bτ) I{z<0}dz +
z

2(a+ bτ)
e−

z2

2(a+bτ) I{z>0}dz,

hence

P (x, T )

=e−(r+ 1
2
m2)T

∫ T

0

fτ (t)

∫ ∞
−∞

∫ ∞
−∞

emyh(xeσy)
1√

2π(T − t)
e−

(y−z)2
2(T−t)dyv(dz)dt

=e−(r+ 1
2
m2)T

∫ T

0

fτ (t)

∫ ∞
0

∫ ∞
−∞

emyh(xeσy)
1√

2π(T − t)
e−

(y−z)2
2(T−t)dy

z

2(a+ bt)
e−

z2

2(a+bt)dzdt

+ e−(r+ 1
2
m2)T

∫ T

0

fτ (t)

∫ 0

−∞

∫ ∞
−∞

emyh(xeσy)
1√

2π(T − t)
e−

(y−z)2
2(T−t)dy

−z
2(a+ bt)

e−
z2

2(a+bt)dzdt,

where fτ (t) denotes the density of the Parisian time given by Theorem 4.5.2. For a
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moving Parisian call option with the payoff function h(s) = (s−K)+, the price is

P (x, T )

=

∫ T

0

fτ (t)

∫ ∞
0

∫ ∞
η

emy(xeσy −K)
1√

2π(T − t)
e−

(y−z)2
2(T−t)dy

z

2(a+ bt)
e−

z2

2(a+bt)dzdt

+

∫ T

0

fτ (t)

∫ 0

−∞

∫ ∞
η

emy(xeσy −K)
1√

2π(T − t)
e−

(y−z)2
2(T−t)dy

−z
2(a+ bt)

e−
z2

2(a+bt)dzdt

=

∫ T

0

fτ (t)

∫ ∞
0

(ρ(z) + ρ(−z))
z

2(a+ bt)
e−

z2

2(a+bt)dzdt,

where we have denoted by η := 1
σ

ln(K
x

), and

ρ(z) :=

∫ ∞
η

emy(xeσy −K)
1√

2π(T − t)
e−

(y−z)2
2(T−t)dy

=xez(m+σ)+ 1
2

(T−t)(m+σ)2

[
1− Φ

(
η − [z + (T − t)(m+ σ)]√

T − t

)]
+Kezm+ 1

2
(T−t)m2

[
1− Φ

(
η − [z + (T − t)m]√

T − t

)]
.
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Chapter 5

Exact simulation of two-parameter

Poisson-Dirichlet random variables

5.1 Introduction

The two-parameter Poisson-Dirichlet distribution is a probability distribution on

the set of decreasing positive sequences with sum 1. It can be defined in terms of

independent Beta random variables as the following.

Definition 5.1.1 (Definition 1 of Pitman and Yor 1997). For 0 ≤ α < 1 and

θ > −α, suppose that a probability Pα,θ governs independent random variables Ỹi

such that Ỹi has Beta(1− α, θ + iα) distribution. Let

Ṽ1 = Ỹ1, Ṽi = (1− Ỹ1) . . . (1− Ỹi−1)Ỹi (i ≥ 2)

and let V1 ≥ V2 ≥ . . . be the ranked values of the Ṽi. Define the Poisson-Dirichlet

distribution with parameters (α, θ), abbreviated PD(α, θ), to be the Pα,θ distribution

of (Vi).

Moreover, results of McCloskey (1965), Perman et al. (1992) and Pitman (1996) show

that under the Pα,θ governing, the sequence {Ṽi}i≥1 is a size-biased permutation of

{Vi}i≥1, i.e., the same sequence presented in a random order (Vσ1 , Vσ1 , . . . ), where

P(σ1 = i) = Vi, and for k distinct indices i1, . . . , ik,

P(σk = ik | σ1 = i1, . . . , σk−1 = ik−1) =
Vik

1− (Vi1 + · · ·+ Vik−1
)
.
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An index i with bigger ‘size’ Vi tends to appear earlier in the permutation, hence

the name size-biased. Based on the size-biased permutation, Engen (2013) proposed

a residual allocation model for {Ṽi}i≥1.

The PD(α, θ) distribution extends the one-parameter family of Poisson-Dirichlet

distribution introduced by Kingman (1975) and denoted by PD(0, θ), θ > 0. It

also generalises the family of distributions denoted by PD(α, 0), which can be in-

terpreted in terms of the ranked lengths of excursion intervals between zeros of a

recurrent Bessel process, see Pitman and Yor (1992). We refer the reader to Pit-

man and Yor (1997) for the motivation and a collection of existing results of the

Poisson-Dirichlet distribution. In particular, Pitman and Yor (1997) includes the

distributional properties of PD(α, 0) and its connection to random processes, we

will use these properties throughout the chapter.

Despite its long history of research, the simulation method for PD(α, θ) is less

attended and we found no exact method in the literature. When α = 0, PD(0, θ) can

be approximated by a Dirichlet distribution, see Section 9.3 of Kingman (1993) and

Proposition 5 of Pitman and Yor (1997). An approximation method for PD(α, θ)

with a general value of α is proposed in Al Labadi and Zarepour (2014).

In this chapter we develop two exact simulation algorithms for the first n compo-

nents, (V1, V2, . . . , Vn), of the PD(α, θ) distribution. The following trivial simulation

algorithm is obtained immediately from Definition 5.1.1. However, this is only an

approximation.

Algorithm 5.1.2 (Trivial algorithm). The approximation algorithm for the random

vector (V1, V2, . . . , Vn) is the following.

1. Initialise α, θ and n, select a positive integer m� n (for example m = 5n).

2. For i = 1, 2, . . . ,m, generate independent Beta random variables

Ỹi ∼ Beta(1− α, θ + iα).

3. Set Ṽ1 = Ỹ1, and for each i = 2, . . . ,m, set

Ṽi = (1− Ỹ1) . . . (1− Ỹi−1)Ỹi.

4. Sort {Ṽi}i=1,...,m in a descending order and let V1 ≥ V2 ≥ · · · ≥ Vm be the

ranked values of {Ṽi}i=1,...,m.
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5. Truncate the sequence {Vi}i=1,...,m at the first n components, then (V1, V2, . . . , Vn)

is an approximation of the first n components of the PD(α, θ) distribution.

Proof. This follows Definition 5.1.1 directly.

As m→∞, Algorithm 5.1.2 coincides with the definition of the PD(α, θ) distribu-

tion, but in practice m can only take a finite value, so this algorithm is a non-exact

approximation for (V1, V2, . . . , Vn).

The rest of the chapter is organised as follows. In Section 5.2 we provide two decom-

positions in law for the components of the PD(α, θ) distribution, these decomposi-

tions will lead to the exact simulation algorithms directly. In Section 5.3 we present

the main results, namely the subordinator algorithm and the compound geomet-

ric representation algorithm to sample from the PD(α, θ) distribution. Numerical

examples and their discussions are given in Section 5.4.

5.2 Decompositions of 1/Vk under Pα,θ

Denote by (V1, V2, . . . , Vn) the first n components of the PD(α, θ) distribution.

In this section, we provide two decompositions for 1/Vk, k = 1, . . . , n under the

probability measure Pα,θ. These decompositions will lead to the exact simulation

algorithms. For simplicity, we make the convention throughout the chapter that∏n−1
j=n aj = 1. The following lemma provides a preliminary result that will be used

in the proof of the main results.

Lemma 5.2.1 (Existing results under Pα,0). Denote by τt a stable subordinator with

Lévy measure Cαx−α−11{x>0}dx for 0 < α < 1, and ∆k the ranked jumps of τt, such

that ∆1 > ∆2 > . . . and τt =
∑∞

k=1 ∆k. Then for every C > 0 and t > 0, the

random vector (
∆1

τt
,
∆2

τt
, . . .

)
has PD(α, 0) distribution.

Moreover, let Vk := ∆k

τt
be the k-th component of the PD(α, 0) distribution, then for

k = 1, . . . , n, the decomposition

1

Vk

law
=

(
1 +

(
R1 +R1R2 + · · ·+

n−1∏
j=1

Rj

)
+

(
n−1∏
j=1

Rj

)
Σn

)
k−1∏
j=1

R−1
j (5.1)
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holds under the probability measure Pα,0, where Rj := Vj+1/Vj = ∆j+1/∆j, and

Σn|∆1, . . . ,∆n is a subordinator with truncated Lévy measure Cαx−α−11{0<x<1}dx

at time t∆−α1 (
∏n−1

j=1 R
−α
j ).

Proof. For the distribution of the random vector
(

∆1

τt
, ∆2

τt
, . . .

)
, see Proposition 6 of

Pitman and Yor (1997). We now proceed to prove the decomposition (5.1) under

Pα,0. Denote by

Σn :=
τt −∆1 − · · · −∆n

∆n

and Rj := ∆j+1/∆j, it follows that

1

V1

=
τt
∆1

=1 +
∆2 + · · ·+ ∆n

∆1

+
∆n

∆1

Σn

=1 +

(
R1 +R1R2 + · · ·+

n−1∏
j=1

Rj

)
+

(
n−1∏
j=1

Rj

)
Σn,

and the decomposition for 1/Vk, k = 2, . . . , n is given by Vk = V1

∏k−1
j=1 Rj.

Moreover, from the proof of Proposition 11 in Pitman and Yor (1997) (see also the

calculations in Kingman 1975 and Perman 1993), we know the Laplace transform

of Σn | ∆1, . . . ,∆n is

E
(
e−βΣn|∆1, . . . ,∆n

)
=e−t∆

−α
n

∫ 1
0 (1−e−βx)Cαx−α−1dx

=e−t∆
−α
1 (

∏n−1
j=1 R

−α
j )

∫ 1
0 (1−e−βx)Cαx−α−1dx,

this is the Lévy-Khintchine representation (see Kyprianou 2006) of a subordinator

with truncated Lévy measure Cαx−α−11{0<x<1} at time t∆−α1 (
∏n−1

j=1 R
−α
j ), then the

Lemma is proved.

Next, we present the decomposition for the first n components of the PD(α, θ)

distribution, this result will permit us to use the subordinator algorithm developed

in Dassios et al. (2020). Without loss of generality, we set t = 1 and C = 1 in the

rest of the chapter.

Theorem 5.2.2. Let (V1, V2, . . . , Vn) be the first n components of the PD(α, θ)

distribution, then for every k = 1, . . . , n, the decomposition

1

Vk

law
=

(
1 +

(
R1 +R1R2 + · · ·+

n−1∏
j=1

Rj

)
+

(
n−1∏
j=1

Rj

)
Σn

)
k−1∏
j=1

R−1
j
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holds under the probability measure Pα,θ, where (∆−α1 , R1, . . . , Rn−1,Σn) has the joint

density

g(w, r1, . . . , rn−1, x) :=

Γ(θ+1)

Γ( θ
α

+1)
Γ(1− α)

θ
αfΣn

(
x | w∏n−1

j=1 r
−α
j

)
αn−1w

θ
α

+n−1e−w
∏n−1
j=1 r

−α
j

(∏n−1
j=1 r

−(n−j)α−1
j

)
(

1 +
(
r1 + r1r2 + · · ·+∏n−1

j=1 rj

)
+
(∏n−1

j=1 rj

)
x
)θ ,

and fΣn

(
x | w∏n−1

j=1 r
−α
j

)
denotes the density of a subordinator with truncated Lévy

measure αx−α−11{0<x<1}dx at time w
∏n−1

j=1 r
−α
j , for w > 0, 0 < rj < 1, j =

1, . . . , n− 1 and x > 0.

Proof. This theorem is an analogue of Lemma 5.2.1 with a changed probability

measure. Denote by H the non-negative product measurable function

H(x1, . . . , xn) := e
−β1

1
x1 . . . e−βn

1
xn ,

where βk ≥ 0 and 0 < xk < 1, for k = 1, . . . , n. From Proposition 14 of Pitman and

Yor (1997), we know

Eα,θ(H(V1, . . . , Vn)) = cα,θEα,0
(
τ−θt H(V1, . . . , Vn)

)
,

where

cα,θ = C
θ
α

Γ(θ + 1)

Γ( θ
α

+ 1)
Γ(1− α)

θ
α . (5.2)

Since V1 = ∆1/τt under Pα,0, we set τ−θt = ∆−θ1 V θ
1 , then

Eα,θ(H(V1, . . . , Vn)) = cα,θEα,0
(
∆−θ1 V θ

1 H(V1, . . . , Vn)
)
. (5.3)

From Lemma 24 of Pitman and Yor (1997), we know that under the probability

measure Pα,0, ∆−α1 has a standard exponential distribution. Conditioning on ∆−α1 ,

we have

Eα,0
(
∆−θ1 V θ

1 H(V1, . . . , Vn)
)

=

∫ ∞
0

Eα,0
(
∆−θ1 V θ

1 H(V1, . . . , Vn) | ∆−α1

)
e−wdw

=

∫ ∞
0

Eα,0
(
V θ

1 H(V1, . . . , Vn) | ∆−α1

)
w

θ
α e−wdw.

Moreover, the joint density of R1, . . . , Rn−1 | ∆−α1 = w under Pα,0 is given by Lemma
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3.2 of James (2019) (see Appendix D),

fR1,...,Rn−1(r1, . . . , rn−1 | ∆−α1 = w) := αn−1wn−1ewe−w
∏n−1
j=1 r

−α
j

n−1∏
j=1

r
−(n−j)α−1
j , (5.4)

for 0 < rj < 1, j = 1, . . . , n− 1. Thus, conditioning on R1, . . . , Rn−1, we have

Eα,0
(
∆−θ1 V θ

1 H(V1, . . . , Vn)
)

=

∫ ∞
0

∫ 1

0

· · ·
∫ 1

0

Eα,0
(
V θ

1 H(V1, . . . , Vn) | ∆−α1 , R1, . . . , Rn−1

)
× fR1,...,Rn−1(r1, . . . , rn−1 | w)w

θ
α e−wdr1 . . . drn−1dw.

We also denote by fΣn(x | w∏n−1
j=1 r

−α
j ) the density of a subordinator with truncated

Lévy measure αx−α−11{0<x<1}dx at time w
∏n−1

j=1 r
−α
j . Then, conditioning on Σn

leads to

Eα,0
(
∆−θ1 V θ

1 H(V1, . . . , Vn)
)

=

∫ ∞
0

∫ 1

0

· · ·
∫ 1

0

∫ ∞
0

Eα,0
(
V θ

1 H(V1, . . . , Vn) | ∆−α1 , R1, . . . , Rn−1,Σn

)
× fΣn

(
x | w

n−1∏
j=1

r−αj

)
fR1,...,Rn−1(r1, . . . , rn−1 | w)w

θ
α e−wdxdr1 . . . drn−1dw.

From Lemma 5.2.1, we know (V1, . . . , Vn) is determined by (∆−α1 , R1, . . . , Rn−1,Σn)

under the probability measure Pα,0. Using the decomposition (5.1), we get

Eα,0
(
∆−θ1 V θ

1 H(V1, . . . , Vn)
)

=

∫ ∞
0

∫ 1

0

· · ·
∫ 1

0

∫ ∞
0

n∏
k=1

e−βk(1+(r1+r1r2+···+
∏n−1
j=1 rj)+(

∏n−1
j=1 rj)x)

∏k−1
j=1 r

−1
j

×
fΣn

(
x | w∏n−1

j=1 r
−α
j

)
fR1,...,Rn−1(r1, . . . , rn−1 | w)w

θ
α e−w(

1 +
(
r1 + r1r2 + · · ·+∏n−1

j=1 rj

)
+
(∏n−1

j=1 rj

)
x
)θ dxdr1 . . . drn−1dw.

Taking this into (5.3) and using the expressions of fR1,...,Rn−1(r1, . . . , rn−1 | ∆−α1 = w)
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and cα,θ, we obtain the joint Laplace transform of ( 1
V1
, . . . , 1

Vn
) under Pα,θ,

Eα,θ
(
e
−β1

1
V1 . . . e−βn

1
Vn

)
=

∫ ∞
0

∫ 1

0

· · ·
∫ 1

0

∫ ∞
0

n∏
k=1

e−βk(1+(r1+r1r2+···+
∏n−1
j=1 rj)+(

∏n−1
j=1 rj)x)

∏k−1
j=1 r

−1
j

×
Γ(θ+1)

Γ( θ
α

+1)
Γ(1− α)

θ
αfΣn

(
x | w∏n−1

j=1 r
−α
j

)
αn−1w

θ
α

+n−1e−w
∏n−1
j=1 r

−α
j

(∏n−1
j=1 r

−(n−j)α−1
j

)
(

1 +
(
r1 + r1r2 + · · ·+∏n−1

j=1 rj

)
+
(∏n−1

j=1 rj

)
x
)θ

dxdr1 . . . drn−1dw,

and the theorem is a direct consequence of this result.

The next theorem gives another decomposition for the components of PD(α, θ),

which will permit us to use a faster simulation algorithm when θ/α is a positive

integer.

Theorem 5.2.3. Let (V1, V2, . . . , Vn) be the first n components of the PD(α, θ)

distribution. If θ > 0 and θ/α is a positive integer, then for every k = 1, . . . , n, the

decomposition

1

Vk

law
=

(
1 +R1 +R1R2 + · · ·+

n−1∏
j=1

Rj

)
k−1∏
j=1

R−1
j +

θ
α

+n∑
i=1

(n−1∏
j=k

Rj

)N(i)∑
j=0

T
(i)
j


holds under the probability measure Pα,θ, where (Z,R1, . . . , Rn−1) has the joint den-

sity

m(z, r1, . . . , rn−1) :=
Γ(θ + 1)Γ(1− α)

θ
α

Γ(θ)
zθ−1

(
n−1∏
j=1

(jα + θ)rjα+θ−1
j

)

× e−z(1+r1+r1r2+···+
∏n−1
j=1 rj)(

1 +
∫ 1

0
(1− e−z(

∏n−1
j=1 rj)x)αx−α−1dx

) θ
α

+n
,

for z > 0 and 0 < rj < 1, j = 1, 2, . . . , n− 1. Moreover, let A be defined as

A = A(Z,R1, . . . , Rn−1) :=

∫ 1

0

e−Z(
∏n−1
j=1 Rj)(v+1)v

−α − vα
v + 1

dv; (5.5)

then for i = 1, 2, . . . , θ/α + n, N (i) ∈ {0, 1, 2, . . . } are independent and identical
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geometric random variables with parameter q, where

q = q(Z,R1, . . . , Rn−1) := 1− A

π csc(πα)
. (5.6)

Furthermore, for every i = 1, 2, . . . , θ/α+ n, T
(i)
0 ∈ (0, 1) is a random variable with

density

h0(x|Z,R1, . . . , Rn−1) =
e−Z(

∏n−1
j=1 Rj)xxα−1∫ 1

0
e−Z(

∏n−1
j=1 Rj)yyα−1dy

for 0 < x < 1; (5.7)

and T
(i)
1 , T

(i)
2 , . . . are independent and identically distributed random variables with

T
(i)
j
D
= G+ 1, j = 1, 2, . . . , N (i), where G ∈ (0, 1) is a random variable with density

h(u | Z,R1, . . . , Rn−1) =
e−Z(

∏n−1
j=1 Rj)(u+1) u−α−uα

u+1

A
for 0 < u < 1. (5.8)

Proof. From equation (5.3), we know that

Eα,θ

(
n∏
k=1

e
−βk 1

Vk

)
=cα,θEα,0

(
∆−θ1 V θ

1

n∏
k=1

e
−βk 1

Vk

)

=cα,θEα,0

(
∆−θ1 V θ

1

n∏
k=1

e
−βk 1

V1
(
∏k−1
j=1 R

−1
j )

)
,

where Rj := Vj+1/Vj and cα,θ is defined as (5.2).

Since θ > 0 and V1 > 0, the Gamma density implies V θ
1 =

∫∞
0

1
Γ(θ)

zθ−1e
− z
V1 dz, then

Eα,θ

(
n∏
k=1

e
−βk 1

Vk

)
= cα,θEα,0

(
∆−θ1

(∫ ∞
0

1

Γ(θ)
zθ−1e

− z
V1 dz

) n∏
k=1

e
−βk 1

V1
(
∏k−1
j=1 R

−1
j )

)
.

(5.9)

As in the proof of Theorem 5.2.2, we condition on (∆−α1 , R1, . . . , Rn−1) under Pα,0,
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then

Eα,0

(
∆−θ1

(∫ ∞
0

1

Γ(θ)
zθ−1e

− z
V1 dz

) n∏
k=1

e
−βk 1

V1
(
∏k−1
j=1 R

−1
j )

)

=

∫ ∞
0

∫ 1

0

· · ·
∫ 1

0

Eα,0

(∫ ∞
0

1

Γ(θ)
zθ−1e

− z
V1 dz

n∏
k=1

e
−βk 1

V1
(
∏k−1
j=1 r

−1
j ) | ∆−α1 , R1, . . . , Rn−1

)

× fR1,...,Rn−1(r1, . . . , rn−1 | w)w
θ
α e−wdr1 . . . drn−1dw

=

∫ ∞
0

∫ 1

0

· · ·
∫ 1

0

∫ ∞
0

1

Γ(θ)
zθ−1Eα,0

(
e
−(z+

∑n
k=1 βk(

∏k−1
j=1 r

−1
j )) 1

V1 | ∆−α1 , R1, . . . , Rn−1

)
dz

× αn−1w
θ
α

+n−1e−w
∏n−1
j=1 r

−α
j

(
n−1∏
j=1

r
−(n−j)α−1
j

)
dr1 . . . drn−1dw,

where fR1,...,Rn−1(r1, . . . , rn−1 | w) is given in (5.4).

Using the decomposition (5.1) for 1
V1

under the probability measure Pα,0, we get

Eα,0

(
∆−θ1

(∫ ∞
0

1

Γ(θ)
zθ−1e

− z
V1 dz

) n∏
k=1

e
−βk 1

V1
(
∏k−1
j=1 R

−1
j )

)

=

∫ ∞
0

∫ 1

0

· · ·
∫ 1

0

∫ ∞
0

1

Γ(θ)
zθ−1e−(z+

∑n
k=1 βk(

∏k−1
j=1 r

−1
j ))(1+r1+r1r2+···+

∏n−1
j=1 rj)

× Eα,0
(
e−(z+

∑n
k=1 βk(

∏k−1
j=1 r

−1
j ))(

∏n−1
j=1 rj)Σn | ∆−α1 , R1, . . . , Rn−1

)
dz

× αn−1w
θ
α

+n−1e−w
∏n−1
j=1 r

−α
j

(
n−1∏
j=1

r
−(n−j)α−1
j

)
dr1 . . . drn−1dw.

The distribution of Σn | ∆−α1 , R1, . . . , Rn−1 under Pα,0 has been specified in Lemma

5.2.1, hence we can calculate its Laplace transform using the Lévy-Khintchine rep-

resentation,

Eα,0

(
∆−θ1

(∫ ∞
0

1

Γ(θ)
zθ−1e

− z
V1 dz

) n∏
k=1

e
−βk 1

V1
(
∏k−1
j=1 R

−1
j )

)

=

∫ ∞
0

∫ 1

0

· · ·
∫ 1

0

∫ ∞
0

1

Γ(θ)
zθ−1e−(z+

∑n
k=1 βk(

∏k−1
j=1 r

−1
j ))(1+r1+r1r2+···+

∏n−1
j=1 rj)

× e−w(
∏n−1
j=1 r

−α
j )

∫ 1
0 (1−e−(z+

∑n
k=1 βk(

∏k−1
j=1

r−1
j

))(∏n−1
j=1

rj)x)αx−α−1dxdz

× αn−1w
θ
α

+n−1e−w
∏n−1
j=1 r

−α
j

(
n−1∏
j=1

r
−(n−j)α−1
j

)
dr1 . . . drn−1dw.

Next, we carry out the integral with respect to w using a Gamma density; it follows
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that

Eα,0

(
∆−θ1

(∫ ∞
0

1

Γ(θ)
zθ−1e

− z
V1 dz

) n∏
k=1

e
−βk 1

V1
(
∏k−1
j=1 R

−1
j )

)

=

∫ 1

0

· · ·
∫ 1

0

∫ ∞
0

1

Γ(θ)
zθ−1e−(z+

∑n
k=1 βk(

∏k−1
j=1 r

−1
j ))(1+r1+r1r2+···+

∏n−1
j=1 rj)

×
Γ( θ

α
+ n)αn−1

(∏n−1
j=1 r

jα+θ−1
j

)
(

1 +
∫ 1

0
(1− e−(z+

∑n
k=1 βk(

∏k−1
j=1 r

−1
j ))(

∏n−1
j=1 rj)x)αx−α−1dx

) θ
α

+n
dzdr1 . . . drn−1.

(5.10)

We focus on the fraction in the integrand, denoted by

I :=
1

1 +
∫ 1

0
(1− e−(z+

∑n
k=1 βk(

∏k−1
j=1 r

−1
j ))(

∏n−1
j=1 rj)x)αx−α−1dx

.

For the denominator of I, we integrate by parts; then we multiply both the nu-

merator and denominator of I by
∫ 1

0
e−(z+

∑n
k=1 βk(

∏k−1
j=1 r

−1
j ))(

∏n−1
j=1 rj)xxα−1dx. We also

divide both the numerator and denominator of I by π csc(πα), it follows that

I =

∫ 1

0
e−(z+

∑n
k=1 βk(

∏k−1
j=1 r

−1
j ))(

∏n−1
j=1 rj)xxα−1dx

π csc(πα)−
∫ 1

0
e−(z+

∑n
k=1 βk(

∏k−1
j=1 r

−1
j ))(

∏n−1
j=1 rj)(u+1) u−α−uα

u+1
du

=

B
π csc(πα)

1
(1− A

π csc(πα)
)
(1− A

π csc(πα)
)
∫ 1

0
e−

∑n
k=1 βk(

∏n−1
j=k rj)x e

−z(∏n−1
j=1

rj)xxα−1

B
dx

1− A
π csc(πα)

∫ 1

0
e−

∑n
k=1 βk(

∏n−1
j=k rj)(u+1) e

−z(∏n−1
j=1

rj)(u+1) u−α−uα
u+1

A
du

,

where we have defined

A = A(z, r1, . . . , rn−1) :=

∫ 1

0

e−z(
∏n−1
j=1 rj)(v+1)v

−α − vα
v + 1

dv,

B = B(z, r1, . . . , rn−1) :=

∫ 1

0

e−z(
∏n−1
j=1 rj)yyα−1dy.

Also, let q, h0(x | z, r1, . . . , rn−1) and h(u | z, r1, . . . , rn−1) be defined as (5.6), (5.7)
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and (5.8), then I can be written as

I =
B

π csc(πα)− A ×
q
∫ 1

0
e−

∑n
k=1 βk(

∏n−1
j=k rj)xh0(x | z, r1, . . . , rn−1)dx

1− (1− q)
∫ 1

0
e−

∑n
k=1 βk(

∏n−1
j=k rj)(u+1)h(u | z, r1, . . . , rn−1)du

=
1

1 +
∫ 1

0
(1− e−z(

∏n−1
j=1 rj)x)αx−α−1dx

× E
(
e−

∑n
k=1 βk(

∏n−1
j=k rj)(

∑N
j=0 Tj)

)
,

where N ∈ {0, 1, 2, . . . } is a geometric random variable with parameter q. Taking

this back to equation (5.10) and using equation (5.9), we get the joint Laplace

transform of ( 1
V1
, . . . , 1

Vn
) under Pα,θ,

Eα,θ
(
e
−β1

1
V1 . . . e−βn

1
Vn

)
=

∫ 1

0

· · ·
∫ 1

0

∫ ∞
0

e−
∑n
k=1 βk(

∏k−1
j=1 r

−1
j )(1+r1+r1r2+···+

∏n−1
j=1 rj)

×
(
E
(
e−

∑n
k=1 βk(

∏n−1
j=k rj)(

∑N
j=0 Tj)

)) θ
α

+n Γ(θ + 1)Γ(1− α)
θ
α

Γ(θ)
zθ−1

×

(∏n−1
j=1 (jα + θ)rjα+θ−1

j

)
e−z(1+r1+r1r2+···+

∏n−1
j=1 rj)(

1 +
∫ 1

0
(1− e−z(

∏n−1
j=1 rj)x)αx−α−1dx

) θ
α

+n
dzdr1 . . . drn−1,

and the theorem is a direct consequence of this result.

5.3 Exact simulation algorithms

We start this section with introducing the subordinator algorithm for the random

vector (V1, . . . , Vn). We call it the “subordinator algorithm” because it is based on

the exact simulation algorithm of truncated subordinator. It is Algorithm 4.3 of

Dassios et al. (2020), which we refer to as Algorithm(α, t) and attach the full steps

in Appendix B.

Algorithm 5.3.1 (Subordinator algorithm). For α ∈ (0, 1) and θ ≥ 0, the exact

simulation algorithm for (V1, V2, . . . , Vn) is the following.

1. Initialise α ∈ (0, 1), θ ≥ 0 and n ≥ 2.

2. Sample from the random vector (R1, . . . , Rn−1, Y,Σn) via the following steps.
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(a) Generate a Gamma random variable Y by setting

Y ∼ Gamma

(
θ

α
+ n, 1

)
.

(b) For j = 1, . . . , n− 1, generate a Beta random variable Rj by setting

Rj ∼ Beta(jα + θ, 1).

(c) Generate a truncated subordinator Σn by setting

Σn = Algorithm(α,Γ(1− α)Y ).

(d) Set V ∼ U [0, 1], if

V ≤ 1(
1 +R1 +R1R2 + · · ·+∏n−1

j=1 Rj +
(∏n−1

j=1 Rj

)
Σn

)θ ,
accept these candidates and go to Step 3; Otherwise go back to Step 2(a).

3. For k = 1, . . . , n output

Vk =
1(

1 +R1 +R1R2 + · · ·+∏n−1
j=1 Rj +

(∏n−1
j=1 Rj

)
Σn

) k−1∏
j=1

Rj

Proof. We apply the acceptance rejection method to sample from the random vector

(∆−α1 , R1, . . . , Rn−1,Σn) given in Theorem 5.2.2 with the envelope

g∗(r1, . . . , rn−1, y, x) :=(
n−1∏
j=1

(jα + θ)rjα+θ−1
j

)
1

Γ( θ
α

+ n)
y
θ
α

+n−1e−yfΣn(x | y)dxdydr1 . . . drn−1,

where fΣn(x | y) denotes the density of a subordinator with truncated Lévy measure

αx−α−11{0<x<1}dx at time y, for x > 0, y > 0 and 0 < rj < 1, j = 1, . . . , n− 1. To

sample from the envelope, we generate independent Gamma( θ
α

+n, 1) and Beta(jα+

θ, 1) random variables in Step 2(a, b), then simulate the subordinator via Step 2(c).

84



To justify the acceptance rejection algorithm, we re-parametrize the envelope with

a new variable w := y
∏n−1

j=1 r
α
j , w > 0, then we have

g∗ (w, r1, . . . , rn−1, x) =fΣn

(
x | w

n−1∏
j=1

r−αj

)
αn−1

Γ( θ
α

+ 1)
w

θ
α

+n−1e−w(
∏n−1
j=1 r

−α
j )

×
(
n−1∏
j=1

r
−(n−j)α−1
j

)
dxdwdr1 . . . drn−1.

Since θ ≥ 0, we know

sup
w>0,0<r1<1,...,0<rn−1<1,x>0

g(w, r1, . . . , rn−1, x)

g∗(w, r1, . . . , rn−1, x)

= sup
w>0,0<r1<1,...,0<rn−1<1,x>0

Γ(θ + 1)Γ(1− α)
θ
α(

1 +
(
r1 + r1r2 + · · ·+∏n−1

j=1 rj

)
+
(∏n−1

j=1 rj

)
x
)θ

=Γ(θ + 1)Γ(1− α)
θ
α ,

then we accept the candidates via Step 2(d).

Next, we consider a special case when θ > 0 and θ/α is a positive integer, and

develop the compound geometric representation algorithm for the random vector

(V1, . . . , Vn).

Algorithm 5.3.2 (Compound geometric representation algorithm). For α ∈ (0, 1)

and θ > 0, if θ/α is a positive integer, the exact simulation algorithm for (V1, V2, . . . , Vn)

is the following.

1. Initialise α ∈ (0, 1), θ > 0 and n ≥ 2.

2. Sample from the random vector (Z,R1, . . . , Rn−1) via the following steps.

(a) Generate a Gamma random variable Z by setting

Z ∼ Gamma(θ, 1).

(b) For j = 1, 2, . . . , n− 1, generate a Beta random variable Rj by setting

Rj ∼ Beta(jα + θ, 1).
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(c) Set V ∼ U [0, 1], if

V ≤ e−Z(R1+R1R2+···+
∏n−1
j=1 Rj)(

1 +
∫ 1

0
(1− e−Z(

∏n−1
j=1 Rj)x)αx−α−1dx

) θ
α

+n
,

accept these candidates; otherwise go back to Step 2(a).

With the accepted candidates, calculate A and q numerically by setting

A =

∫ 1

0

e−Z(
∏n−1
j=1 Rj)(v+1)v

−α − vα
v + 1

dv and q = 1− A

π csc(πα)
,

then go to Step 3.

3. For every i = 1, 2, . . . , θ/α + n, execute the following Step (a), (b) and (c):

(a) Generate a geometric random variable N (i) by setting

N (i) ∼ Geometric(q).

(b) Generate a random variable T
(i)
0 via the following Step i. and ii.:

i. Generate a Beta random variable T ∗0 by setting

T ∗0 ∼ Beta(α, 1).

ii. Set V ∼ U [0, 1], if

V ≤ e−Z(
∏n−1
j=1 Rj)T

∗
0 ,

accept this candidate and set T
(i)
0 = T ∗0 ; otherwise go back to 3.b.(i).

(c) If N (i) > 0, generate T
(i)
j by executing the following Step i. and ii. for

every j = 1, 2, . . . , N (i); otherwise skip this step:

i. Generate a random variable G∗ whose density is

h∗(u) =
1

π
sin(απ)

− 1
α

u−α − uα
u+ 1

for 0 < u < 1,

using the algorithm provided in Appendix E.

ii. Set V ∼ U [0, 1], if

V ≤ e−Z(
∏n−1
j=1 Rj)G

∗
,
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accept this candidate and set G = G∗, then set T
(i)
j = G+1; otherwise

go back to 3.c.(i).

4. For k = 1, 2, . . . , n, output

Vk =
1(

1 +R1 + · · ·+∏n−1
j=1 Rj

)∏k−1
j=1 R

−1
j +

∑ θ
α

+n

i=1

((∏n−1
j=k Rj

)(∑N(i)

j=0 T
(i)
j

)) .

Proof. We apply the acceptance rejection method to sample from the random vector

(Z,R1, . . . , Rn−1) given in Theorem 5.2.3 with the envelope

m∗(z, r1, . . . , rn−1) :=

(
n−1∏
j=1

(jα + θ)rjα+θ−1
j

)
1

Γ(θ)
zθ−1e−z,

for z > 0 and 0 < rj < 1, j = 1, . . . , n − 1. To sample from the envelope, we

generate independent Gamma(θ, 1) and Beta(jα + θ, 1) random variables via Step

2(a-b). Since θ
α

+ n > 0, we know

sup
z>0,0<r1<1,...,0<rn−1<1

m(z, r1, . . . , rn−1)

m∗(z, r1, . . . , rn−1)

= sup
z>0,0<r1<1,...,0<rn−1<1

Γ(θ + 1)Γ(1− α)
θ
α e−z(r1+r1r2+···+

∏n−1
j=1 rj)(

1 +
∫ 1

0
(1− e−z(

∏n−1
j=1 rj)x)αx−α−1dx

) θ
α

+n

=Γ(θ + 1)Γ(1− α)
θ
α ,

then we accept the candidates via Step 2(c).

Next, we use the acceptance rejection method to sample from T
(i)
0 with the envelope

h∗0(x) := αxα−1, for 0 < x < 1. Since

sup
0<x<1

h0(x | Z,R1, . . . , Rn−1)

h∗0(x)
= sup

0<x<1

e−Z(
∏n−1
j=1 Rj)x

α
∫ 1

0
e−Z(

∏n−1
j=1 Rj)yyα−1dy

=
1

α
∫ 1

0
e−Z(

∏n−1
j=1 Rj)yyα−1dy

we accept the candidate via Step 3.b.(ii).
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We also use the acceptance rejection method to sample from G with the envelope

h∗(u) =
1

π
sin(απ)

− 1
α

u−α − uα
u+ 1

for 0 < u < 1,

note that we can sample from h∗(u) using the algorithm given in Appendix E. Since

sup
0<u<1

h(u | Z,R1, . . . , Rn−1)

h∗(u)
= sup

0<u<1

1
A
e−Z(

∏n−1
j=1 Rj)(u+1)

1
π

sin(απ)
− 1
α

=
1

A
(

π

sin(απ)
− 1

α
)e−Z(

∏n−1
j=1 Rj),

we accept the candidate via Step 3.c.(ii).

5.4 Numerical results

In this section we present some numerical results for Algorithm 5.3.1 and 5.3.2. We

will use the expectation and covariance of (V1, . . . , Vn) as benchmarks to illustrate the

accuracy of these algorithms. The complexity of the algorithms are also considered.

The following theorem gives an expression for the moments of Vn.

Theorem 5.4.1 (Proposition 17 of Pitman and Yor 1997). Let Vn be the n-th com-

ponent of the PD(α, θ) distribution. For p > 0,

Eα,θ(V p
n ) =

Γ(1− α)
θ
αΓ(θ + 1)Γ( θ

α
+ n)

Γ(n)Γ(θ + p)Γ( θ
α

+ 1)

∫ ∞
0

tp+θ−1e−t
φα(t)n−1

ψα(t)
θ
α

+n
dt,

where

φα(λ) := α

∫ ∞
1

e−λxx−α−1dx and ψα(λ) := Γ(1− α)λα + φα(λ).

Proof. See Proposition 17 of Pitman and Yor (1997).

Next, we derive an expression for Eα,θ(VmVn).

Theorem 5.4.2 (Covariance). For positive integers m and n, such that 1 ≤ m ≤ n,
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let Vm and Vn be the m-th and n-th components of the PD(α, θ) distribution, then

Eα,θ(VmVn)

=
Γ(θ + 1)Γ(1− α)

θ
αΓ( θ

α
+ n)αn−1

Γ( θ
α

+ 1)

∫ 1

0

· · ·
∫ 1

0

∫ ∞
0

yθ+1e−y

Γ(θ + 2)

(
m−1∏
j=1

rθ+jα+1
j

)(
n−1∏
j=m

rθ+jαj

)

× e−y(r1+r1r2+···+
∏n−1
j=1 rj)(

1 +
∫ 1

0
(1− e−y(

∏n−1
j=1 rj)x)αx−α−1dx

) θ
α

+n
dydr1 . . . drn−1.

Proof. Since (VmVn)−1 > 0, we know
∫∞

0
(VmVn)−1e−(VmVn)−1βdβ = 1; it follows that

Eα,θ(VmVn) = Eα,θ
(∫ ∞

0

e−
β

VmVn dβ

)
=

∫ ∞
0

Eα,θ
(
e−

β
VmVn

)
dβ. (5.11)

We concentrate on the integrand first. As in the proof of Theorem 5.2.2, we change

the probability measure to Pα,0 using (5.3) and condition on (∆−α1 , R1, . . . , Rn−1),

then

Eα,θ
(
e−

β
VmVn

)
=cα,θ

∫ ∞
0

∫ 1

0

· · ·
∫ 1

0

Eα,0
(
V θ

1 e
− β
VmVn | ∆−α1 , R1, . . . , Rn−1

)
× αn−1w

θ
α

+n−1e−w
∏n−1
j=1 r

−α
j

(
n−1∏
j=1

r
−(n−j)α−1
j

)
dr1 . . . drn−1dw.

Using the decomposition (5.1) for V1, Vm and Vn under Pα,0, we get

Eα,θ
(
e−

β
VmVn

)
=cα,θ

∫ ∞
0

∫ 1

0

· · ·
∫ 1

0

Eα,0

e−β(1+(r1+···+
∏n−1
j=1 rj)+(

∏n−1
j=1 rj)Σn)

2
(
∏m−1
j=1 r−1

j )(
∏n−1
j=1 r

−1
j )(

1 +
(
r1 + r1r2 + · · ·+∏n−1

j=1 rj

)
+
(∏n−1

j=1 rj

)
Σn

)θ | ∆−α1 , R1, . . . , Rn−1


× αn−1w

θ
α

+n−1e−w
∏n−1
j=1 r

−α
j

(
n−1∏
j=1

r
−(n−j)α−1
j

)
dr1 . . . drn−1dw.
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Taking this into (5.11) and calculating the integration with respect to β, we have

Eα,θ(VmVn)

=cα,θ

∫ ∞
0

∫ 1

0

· · ·
∫ 1

0

Eα,0


(∏m−1

j=1 rj

)(∏n−1
j=1 rj

)
(

1 +
(
r1 + r1r2 + · · ·+∏n−1

j=1 rj

)
+
(∏n−1

j=1 rj

)
Σn

)θ+2
| ∆−α1 , R1, . . . , Rn−1


× αn−1w

θ
α

+n−1e−w
∏n−1
j=1 r

−α
j

(
n−1∏
j=1

r
−(n−j)α−1
j

)
dr1 . . . drn−1dw.

Since θ+2 > 0, we use a Gamma density to rewrite the denominator of the expression

inside the conditional expectation, then rearrange the terms; it follows that

Eα,θ(VmVn)

=cα,θ

∫ ∞
0

∫ 1

0

· · ·
∫ 1

0

(
m−1∏
j=1

rj

)(
n−1∏
j=1

rj

)∫ ∞
0

1

Γ(θ + 2)
yθ+1

× e−y(1+r1+r1r2+···+
∏n−1
j=1 rj)Eα,0

(
e−y(

∏n−1
j=1 rj)Σn | ∆−α1 , R1, . . . , Rn−1

)
dy

× αn−1w
θ
α

+n−1e−w
∏n−1
j=1 r

−α
j

(
n−1∏
j=1

r
−(n−j)α−1
j

)
dr1 . . . drn−1dw.

Then we calculate the Laplace transform of Σn | ∆−α1 , R1, . . . , Rn−1 using the Lévy-

Khintchine representation given in Lemma 5.2.1,

Eα,θ(VmVn)

=cα,θ

∫ ∞
0

∫ 1

0

· · ·
∫ 1

0

(
m−1∏
j=1

rj

)(
n−1∏
j=1

rj

)∫ ∞
0

1

Γ(θ + 2)
yθ+1

× e−y(1+r1+r1r2+···+
∏n−1
j=1 rj)e−w(

∏n−1
j=1 r

−α
j )

∫ 1
0 (1−e−y(

∏n−1
j=1

rj)x
)αx−α−1dxdy

× αn−1w
θ
α

+n−1e−w
∏n−1
j=1 r

−α
j

(
n−1∏
j=1

r
−(n−j)α−1
j

)
dr1 . . . drn−1dw.

Finally, we carry out the integration with respect to w using a Gamma density and
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rearrange the terms; it follows that

Eα,θ(VmVn)

=
Γ(θ + 1)Γ(1− α)

θ
αΓ( θ

α
+ n)αn−1

Γ( θ
α

+ 1)

∫ 1

0

· · ·
∫ 1

0

∫ ∞
0

yθ+1e−y

Γ(θ + 2)

(
m−1∏
j=1

rθ+jα+1
j

)(
n−1∏
j=m

rθ+jαj

)

× e−y(r1+r1r2+···+
∏n−1
j=1 rj)(

1 +
∫ 1

0
(1− e−y(

∏n−1
j=1 rj)x)αx−α−1dx

) θ
α

+n
dydr1 . . . drn−1,

and the theorem is proved.

Next, we present numerical results of the algorithms.

5.4.1 Sample average

We illustrate the accuracy of our algorithms by comparing the expectation to the

sample average. Consider the first 10 components, (V1, . . . , V10), of the PD(α, θ)

distribution. We use Theorem 5.4.1 to calculate Eα,θ(Vk), k = 1, . . . , 10 numerically.

Then we generate samples from the random vector using Algorithm 5.1.2, 5.3.1 and

5.3.2, and calculate the sample average of Vk. The results are recorded in Table 5.1,

5.2 and 5.3, we see from the tables that the algorithms can generate exact samples

of the random vector.

5.4.2 Covariance

We also present numerical results for the covariance between different components

of the random vector (V1, . . . , V5), for simplicity we focus on Eα,θ(VmVn) only. We

use Theorem 5.4.2 to calculate Eα,θ(VmVn) for 1 ≤ m ≤ n ≤ 5 numerically, then

generate samples from VmVn using Algorithm 5.1.2, 5.3.1 and 5.3.2 and calculate

their averages. The results are recorded in Table 5.4, 5.5 and 5.6, the tables show

that our algorithms are accurate in estimating the covariance.

5.4.3 Complexity

We are also interested in the complexity of the algorithms, which indicates how many

resources the algorithms will costume. Instead of CPU times, we first consider
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the total number of random variables generated by the algorithms, because it is

consistent and does not depend on the performance of the computer.

From the definition we know the complexity of Algorithm 5.1.2 is m, that is, the

algorithm will generate m number of Beta random variables in total. In the previous

subsection we have taken n = 10 and m = 50.

We record the average number of random variables generated by Algorithm 5.3.1 and

5.3.2 for (V1, . . . , V10) in Table 5.7 and 5.8. From the tables we see that when θ/α is

an integer and relatively large, Algorithm 5.3.2 has a lower complexity than Algo-

rithm 5.3.1, this is because the truncated subordinator is not involved in Algorithm

5.3.2.

5.4.4 CPU time

We record the CPU times of Algorithm 5.1.2, 5.3.1 and 5.3.2 for 104 samples of

(V1, . . . , V10) in Table 5.9, 5.10 and 5.11. The experiments are implemented on

an AMD Ryzen 7 4800U CPU@1.80GHz processor, 16.00GB RAM, Windows 10,

64-bit Operating System and performed in Matlab R2019b. The tables show that

when applicable, the compound geometric representation algorithm is preferable in

general.
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Table 5.1 Expectation and sample average of Vk, k = 1, . . . , 10 for α = 1
3

and
θ = 1

3
, the sample size is 105. For the trivial algorithm n = 10 and m = 50.

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

expectation 0.6273 0.1695 0.0729 0.0386 0.0230 0.0149 0.0102 0.0073 0.0054 0.0041

trivial
algorithm 0.6265 0.1700 0.0737 0.0393 0.0235 0.0154 0.0106 0.0076 0.0057 0.0043

subordinator
algorithm 0.6273 0.1696 0.0734 0.0391 0.0235 0.0153 0.0105 0.0076 0.0056 0.0043

compound

algorithm 0.6282 0.1695 0.0732 0.0390 0.0234 0.0153 0.0105 0.0076 0.0056 0.0043

Table 5.2 Expectation and sample average of Vk, k = 1, . . . , 10 for α = 1
3

and
θ = 1

5
, the sample size is 105. For the trivial algorithm n = 10 and m = 50. The

compound geometric representation algorithm is not applicable because θ/α is not
an integer.

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

expectation 0.6727 0.1598 0.0648 0.0332 0.0195 0.0125 0.0085 0.0061 0.0046 0.0035

trivial
algorithm 0.6715 0.1592 0.0648 0.0331 0.0194 0.0124 0.0084 0.0060 0.0044 0.0033

subordinator
algorithm 0.6725 0.1589 0.0647 0.0330 0.0193 0.0123 0.0084 0.0060 0.0044 0.0033

Algorithm

compound N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Table 5.3 Expectation and sample average of Vk, k = 1, . . . , 10 for α = 2
3

and
θ = 4

3
, the sample size is 105. For the trivial algorithm n = 10 and m = 50.

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

expectation 0.2873 0.1204 0.0718 0.0492 0.0364 0.0284 0.0231 0.0195 0.0169 0.0150

trivial
algorithm 0.2879 0.1204 0.0721 0.0498 0.0372 0.0292 0.0237 0.0197 0.0166 0.0142

subordinator
algorithm 0.2879 0.1205 0.0724 0.0500 0.0374 0.0294 0.0240 0.0200 0.0171 0.0148

Algorithm

compound 0.2875 0.1205 0.0723 0.0500 0.0374 0.0295 0.0240 0.0200 0.0171 0.0148

Table 5.4 Expectation and sample average of VmVn, 1 ≤ m ≤ n ≤ 5 for α = 1
2

and
θ = 1

2
with the trivial algorithm, the sample size is 105. The data are in the format

(a, b) where a represents the expectation and b represents the sample average.

V1 V2 V3 V4 V5
V1 0.2830, 0.2841 0.0686, 0.0687 0.0324, 0.0322 0.0192, 0.0191 0.0129, 0.0127
V2 0.0329, 0.0330 0.0149, 0.0147 0.0086, 0.0085 0.0057, 0.0056
V3 0.0090, 0.0090 0.0052, 0.0052 0.0034, 0.0034
V4 0.0036, 0.0036 0.0023, 0.0023
V5 0.0017, 0.0017
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Table 5.5 Expectation and sample average of VmVn, 1 ≤ m ≤ n ≤ 5 for α = 1
2

and θ = 1
2

with the subordinator algorithm, the sample size is 105. The data are
in the format (a, b) where a represents the expectation and b represents the sample
average.

V1 V2 V3 V4 V5
V1 0.2830, 0.2837 0.0686, 0.0688 0.0324, 0.0321 0.0192, 0.0191 0.0129, 0.0127
V2 0.0329, 0.0331 0.0149, 0.0147 0.0086, 0.0085 0.0057, 0.0057
V3 0.0090, 0.0091 0.0052, 0.0052 0.0034, 0.0034
V4 0.0036, 0.0036 0.0023, 0.0023
V5 0.0017, 0.0017

Table 5.6 Expectation and sample average of VmVn, 1 ≤ m ≤ n ≤ 5 for α = 1
2

and θ = 1
2

with the compound geometric representation algorithm, the sample size
is 105. The data are in the format (a, b) where a represents the expectation and b
represents the sample average.

V1 V2 V3 V4 V5
V1 0.2830, 0.2830 0.0686, 0.0685 0.0324, 0.0323 0.0192, 0.0191 0.0129, 0.0127
V2 0.0329, 0.0330 0.0149, 0.0148 0.0086, 0.0086 0.0057, 0.0057
V3 0.0090, 0.0091 0.0052, 0.0052 0.0034, 0.0034
V4 0.0036, 0.0036 0.0023, 0.0023
V5 0.0017, 0.0017

Table 5.7 Average number of random numbers (rounding to the nearest integer)
generated by the subordinator algorithm for (V1, . . . , V10), the sample size is 104.
The data are in the format a+ b+ c where a, b, c represent the number of uniform,
Gamma and Beta random variables respectively.

θ = 0.3 θ = 0.5 θ = 1.0 θ = 1.5 θ = 1.6
α = 0.3 175+56+10 216+69+12 421+134+21 952+304+44 1144+365+52
α = 0.4 177+55+11 224+70+13 458+144+24 1076+339+53 1302+410+63
α = 0.5 192+59+11 251+77+14 537+166+28 1355+418+67 1664+514+80
α = 0.8 435+123+15 647+183+21 1993+565+62 7336+2081+217 9650+2737+283

Table 5.8 Average number of random numbers (rounding to the nearest integer)
generated by the compound geometric representation algorithm for (V1, . . . , V10), the
sample size is 104. The data are in the format a+ b+ c+ d where a, b, c, d represent
the number of uniform, Gamma, Beta and geometric random variables respectively.

θ = 0.3 θ = 0.5 θ = 1.0 θ = 1.5 θ = 1.6
α = 0.3 16+1+24+11 N/A N/A 25+5+62+15 N/A
α = 0.4 N/A N/A N/A N/A 30+7+82+14
α = 0.5 N/A 26+2+32+11 29+3+47+12 36+7+87+13 N/A
α = 0.8 N/A N/A N/A N/A 115+30+318+12

Table 5.9 CPU time (in seconds) of the trivial algorithm for (V1, . . . , V10), the
sample size is 104.

θ = 0.3 θ = 0.5 θ = 1.0 θ = 1.5 θ = 1.6
α = 0.3 0.628853 0.698557 0.656535 0.667601 0.583066
α = 0.4 0.572390 0.583742 0.570028 0.603642 0.553737
α = 0.5 0.651893 0.557833 0.545066 0.561283 0.587276
α = 0.8 0.545630 0.560253 0.558486 0.579318 0.610685
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Table 5.10 CPU time (in seconds) of the subordinator algorithm for (V1, . . . , V10),
the sample size is 104.

θ = 0.3 θ = 0.5 θ = 1.0 θ = 1.5 θ = 1.6
α = 0.3 2.919347 3.407936 5.905766 12.709555 16.287444
α = 0.4 4.129321 6.928111 11.446559 23.492180 25.992863
α = 0.5 8.535146 10.143674 15.590900 31.600125 38.378702
α = 0.8 18.097517 26.450564 85.147071 283.616955 372.585268

Table 5.11 CPU time (in seconds) of the compound geometric representation
algorithm for (V1, . . . , V10), the sample size is 104.

θ = 0.3 θ = 0.5 θ = 1.0 θ = 1.5 θ = 1.6
α = 0.3 7.394960 N/A N/A 10.042571 N/A
α = 0.4 N/A N/A N/A N/A 12.311978
α = 0.5 N/A 10.326533 11.250926 13.745608 N/A
α = 0.8 N/A N/A N/A N/A 42.778541
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Chapter 6

Epilogue

In conclusion, this thesis contains several themes. Firstly, we derive the Laplace

transform of the first hitting time of the Walsh Brownian motion on spider. Two

methods are provided to invert this Laplace transform, which enable us to study

the density and distribution functions. The Parisian time of the reflected Brownian

motion with drift on rays is also considered. We provide the Laplace transform and

exact simulation algorithm for the Parisian time. Moreover, we study the Parisian

time of a squared Bessel process with a linear excursion boundary. The distribu-

tional properties and exact simulation algorithm are studied. These results are used

to price moving Parisian options. Finally, we provide two decompositions for the

components of the two-parameter Poisson-Dirichlet distribution, and propose the

exact simulation algorithms for this distribution.

This thesis inspires us to work on the following topic in the future:

� In Chapter 2, we invert the Laplace transform (2.10) using the Bromwich in-

tegral (see Proof of Theorem 2.3.2 in Appendix A). This method could be

generalised to the Laplace transform (2.6), and the result will enable us to

study the density of the first hitting time of a reflected Brownian motion with

drift on rays. Due to the existence of the drift term, the use of Bromwich

integral is not straightforward. We need to focus on the singularities of the

Laplace transform (2.6). We also plan to develop an exact simulation algo-

rithm for the first hitting time whose Laplace transform is (2.6). This result

can be used to price more complicated barrier options; it also has potential

applications in physics and biology.

� In Chapter 3, we mention the application of the Parisian time in the real-

time gross settlement system. In fact, we could construct a general framework
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which reflects the liquidity management in RTGS under realistic settings. The

daily payment data will be used to study how liquidity is managed in practice,

and to estimate the parameters of the model. This research will link the

mathematical theory to the methods employed in industry, and contribute to

the stability of the interbank payment system.

� In Chapter 4, we study the Parisian time of a squared Bessel process with a

linear excursion boundary, and provide a Azéma martingale relating to the

Parisian time. In fact, the linear boundary could be generalised to other types

of boundaries. Instead of the ratio Ut
a+bt

, we could focus on Ut
f(t)

where f(t) is a

function satisfying certain conditions. We could write down the corresponding

PDE and seek for other explicit solutions. This method will lead us to a

general framework for the Parisian time of a squared Bessel process with an

arbitrary boundary.

� In Chapter 5, the exact simulation algorithm for the two-parameter Poisson-

Dirichlet distribution has been established. We plan to develop its application

in Bayesian statistics, as well as in the capital distribution curve.
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Appendix A

Proofs of the main results in

Chapter 2

Proof of Lemma 2.3.1. We notice that the Laplace transform (2.10) has the limit

lim
β→0

E(eβτ ) = 1, hence β = 0 is not a pole of (2.10). We also know that sinh(bk
√

2β) 6=
0 for bk > 0 and β ∈ R \ {0}, hence the numerator part

∑n
k=1 Pk

1
sinh(bk

√
2β)

will not

contribute to any pole of the Laplace transform. For this reason, the poles of (2.10)

are equivalent to the roots of its denominator.

We look for the solutions of the equation

n∑
k=1

Pk
1√
2β

cosh(bk
√

2β)

sinh(bk
√

2β)
= 0. (A.1)

Using the inverse Laplace transform (see Borodin and Salminen 1996 Appendix 2.11)

and the general Theta function transformation (see Bellman 1961 Section 19), we

know

L−1

(
cosh(bk

√
2β)√

2β sinh(bk
√

2β)

)
=

1√
2πt

∞∑
n=−∞

e−
2b2k(2n+1)2

t =
1

2bk

∞∑
n=−∞

e
−n2π2 t

2b2
k , t > 0.

Then we invert both sides of (A.1), this gives

n∑
k=1

Pk
2bk

∫ ∞
0

e−βt
∞∑

n=−∞

e
−n2π2 t

2b2
k dt = 0. (A.2)
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We assume that the roots of (A.2) have the format x+ iy, for x, y ∈ R, then

n∑
k=1

Pk
2bk

∫ ∞
0

e−xt (cos(yt)− i sin(yt))
∞∑

n=−∞

e
−n2π2 t

2b2
k dt = 0.

For the imaginary component of the equation, we calculate the integral

∫ ∞
0

e−xt sin(yt)e
−n2π2 t

2b2
k dt =

y(
x+ n2π2 1

2b2k

)2

+ y2

,

hence we must have y = 0, for otherwise the imaginary component cannot be zero.

This means the roots are real numbers. Next, we set β = x in equation (A.1), then

we have
n∑
k=1

Pk√
2x

coth(bk
√

2x) = 0.

Since coth(x) > 0 for x ∈ R+, this equation cannot hold for any positive real x, this

means x must be negative real numbers. We denote by −β∗ the roots of equation

(A.1), where β∗ > 0, then we have

n∑
k=1

Pk cot(bk
√

2β∗) = 0. (A.3)

Next, we proceed to solve equation (A.3) under the assumption that the upper

boundaries {bi}i=1,...,n are integers. For any positive integer n, the multiple-angle

formula implies

cot(nθ) =

∑
k even

(−1)
k
2

(
n
k

)
tan(θ)k∑

k odd

(−1)
k−1

2

(
n
k

)
tan(θ)k

.

Then, equation (A.3) can be written as

n∑
k=1

Pk cot(bk
√

2β∗) =
n∑
i=1

Pi

∑
k even

(−1)
k
2

(
bi
k

)
tan(
√

2β∗)k∑
k odd

(−1)
k−1

2

(
bi
k

)
tan(
√

2β∗)k

=

∑n
i=1 Pi

( ∑
k even

(−1)
k
2

(
bi
k

)
yk
∏

j={1,...,n}\{i}

( ∑
k odd

(−1)
k−1

2

(
bj
k

)
yk
))

∏n
i=1

( ∑
k odd

(−1)
k−1

2

(
bi
k

)
yk
) = 0,

(A.4)

where we denote by y := tan(
√

2β∗). Note that y = 0 is not a solution to this
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equation, for otherwise equation (A.3) cannot hold. For this reason, we only need

to consider the numerator part of (A.4):

n∑
i=1

Pi

∑
k even

(−1)
k
2

(
bi
k

)
yk

∏
j={1,...,n}\{i}

(∑
k odd

(−1)
k−1

2

(
bj
k

)
yk

) = 0.

This approach is also sufficient when {bi}i=1,...,n are rational numbers. Let ci and di

be positive integers, such that bi = ci
di

, for i = 1, . . . , n, then

bi
√

2β∗ =
ci
di

√
2β∗ = ci

 ∏
j={1,...,n}\{i}

dj

 θ,

where we denote by θ := 1
d1...dn

√
2β∗. Since ci

(∏
j={1,...,n}\{i} dj

)
is a positive integer,

we can replace bi
√

2β∗ by ci

(∏
j={1,...,n}\{i} dj

)
θ in equation (A.3), and follow the

rest of the proof. Then the lemma is proved.

Proof of Theorem 2.3.2. The poles of the Laplace transform (2.10) have been de-

rived in Lemma 2.3.1, we first show that they are simple poles (see Lang 2013). The

denominator of (2.10) has the derivative:

d

dβ

(
n∑
k=1

Pk
cosh(bk

√
2β)

sinh(bk
√

2β)

)
=

1√
2β

n∑
k=1

Pkbk

(
1− cosh2(bk

√
2β)

sinh2(bk
√

2β)

)
,

and the limits of this derivative at the poles are non-zero, i.e.,

lim
β→−β∗

d

dβ

(
n∑
k=1

Pk
cosh(bk

√
2β)

sinh(bk
√

2β)

)
=

1

i
√

2β∗

n∑
k=1

Pkbk

(
1 +

cos2(bk
√

2β∗)

sin2(bk
√

2β∗)

)
6= 0,

this implies that −β∗ are simple poles.

Next, we introduce an explicit inverse method for the Laplace transform (2.10). De-

note by f̂(β) the Laplace transform (2.10), and f(t) its inverse. From the Bromwich

integral (see Arfken and Weber 2001 Section 20.10), we know

f(t) =
1

2πi

∫ +i∞

−i∞
eβtf̂(β)dβ.
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This integral can be calculated via the residue theorem, that is,

f(t) =
∑
−β∗

Res
(
eβtf̂(β),−β∗

)
.

Since the poles of (2.10) are simple poles, we can calculate the residues by evaluating

the limit

Res
(
eβtf̂(β),−β∗

)
= lim

β→−β∗

(
(β − (−β∗)) eβtf̂(β)

)
,

it follows that

f(t) =
∑
−β∗

e−β
∗t

∑n
k=1 Pk

√
2β∗

sin(bk
√

2β∗)∑n
k=1 Pkbk +

∑n
k=1 Pkbk

cos2(bk
√

2β∗)
sin2(bk

√
2β∗)

.

For the distribution function, we integrate f(t) over (0, t), and the theorem is proved.
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Appendix B

Exact simulation of truncated

subordinator

In this appendix we attach the Algorithm 4.3 and 4.4 of Dassios et al. (2020), these

algorithms exactly generate samples from the truncated subordinator Z(t) with

Laplace transform

E
(
e−vZ(t)

)
= exp

(
− αt

Γ(1− α)

∫ 1

0

(1− e−vz) e
−ηz

zα+1
dz

)
. (B.1)

We first present two ancillary algorithms, namely Algorithm 4.1 and 4.2 of Dassios

et al. (2020).

Lemma B.1 (Algorithm 4.1 of Dassios et al. 2020). Exact simulation of (T,W ).

1. Set ξ = Γ(1− α)−1; A0 = (1− α)α
α

1−α .

2. minimise C(λ) = A0e
ξ

1
α λ1− 1

α α(1−α)
1
α−1

(A0 − λ)α−2.

3. record critical value λ∗; set C = C(λ∗).

4. repeat {

5. sample U ∼ U [0, π]; U1 ∼ U [0, 1],

6. set Y = 1− U
1

1−α
1 ; AU = [sinα(αU) sin1−α((1− α)U)/ sin(U)]

1
1−α ,

7. sample R ∼ Γ(2− α,Au − λ); V ∼ U [0, 1].

8. if (V ≤ AUe
ξR1−αY αe−λ

∗R(AU − λ∗)α−2Y α−1(1− (1− Y )α)/C), break.
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9. }

10. sample U2 ∼ U [0, 1],

11. set T = R1−αY α; W = Y − 1 + [(1− Y )−α − U2((1− Y )−α − 1)]−
1
α .

12. return (T,W ).

Lemma B.2 (Algorithm 4.2 of Dassios et al. 2020). Exact simulation of {Z(t)|T >

t}.

1. sample U1 ∼ U [0, π]; set AU1 = [sinα(αU1) sin1−α((1− α)U1)/ sin(U1)]
1

1−α .

2. repeat {

3. sample U2 ∼ U [0, 1]; set Z =

[
− log(U2)

AU1
t

1
1−α

]− 1−α
α

.

4. if (Z < 1), break.

5. }

6. return Z.

Next we provide the Algorithm 4.3 and 4.4 of Dassios et al. (2020).

Theorem B.3 (Algorithm 4.3 of Dassios et al. 2020). Exact simulation of the sub-

ordinator Z(t) when η = 0. The input is t.

1. set Z = 0; S = 0.

2. repeat {

3. sample (T,W ) via Algorithm 4.1; set S = S + T , Z = Z + 1 +W .

4. if (S > t), break.

5. }

6. set ZS−T = Z − 1−W ; sample Zt−(S−T ) via Algorithm 4.2.

7. return ZS−T + Zt−(S−T ).

Theorem B.4 (Algorithm 4.4 of Dassios et al. 2020). Exact simulation of the sub-

ordinator Z(t) when η > 0. The inputs are (t, η).

1. repeat {
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2. sample Zt via Algorithm 4.3; V ∼ U [0, 1].

3. if (V ≤ exp(−ηZt)), break.

4. }

5. return Zt.

Proof. For the proof as well as the motivation of the algorithms above, see Dassios

et al. (2020).
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Appendix C

Proofs of the main results in

Chapter 4

Proof of Theorem 4.5.2. Using integral by parts for its denominator, we rewrite the

Laplace transform of σ obtained in Lemma 5.1 as

E(e−βσ)

=
1

1 + (1− b)−βb ( b
1−b)

α
∫ − 1

b
ln(1−b)

0
βe−βv

(ebv−1)α
dv

=
(1− b)βb

1 + ( b
1−b)

α
∫ − 1

b
ln(1−b)

0
(1− e−βv)αb(ebv − 1)−(α+1)ebvdv

=
(1− b)βb

( b
1−b)

α
∫∞

0
βe−βv(ebv − 1)−αdv + ( b

1−b)
α
∫∞
− 1
b

ln(1−b) e
−βvαb(ebv − 1)−(α+1)ebvdv

=
(1− b)βb

( b
1−b)

α Γ(β
b

+α)Γ(−α+1)

Γ(β
b

)
+ ( b

1−b)
α
∫∞
− 1
b

ln(1−b) e
−βvαb(ebv − 1)−(α+1)ebvdv

.

Then the negative binomial expansion implies

E(e−βσ)

=
(1− b)βb
( b

1−b)
α

Γ(β
b
)

Γ(β
b

+ α)Γ(−α + 1)

×
∞∑
i=0

(−1)i

(
Γ(β

b
)

Γ(β
b

+ α)Γ(−α + 1)

∫ ∞
− 1
b

ln(1−b)
e−βvαb(ebv − 1)−(α+1)ebvdv

)i

.
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Next, we denote by

L̂i(β) =
Γ(β

b
)

Γ(β
b

+ α)Γ(−α + 1)
(

Γ(β
b
)

Γ(β
b

+ α)Γ(−α + 1)

∫ ∞
− 1
b

ln(1−b)
e−βvαb(ebv−1)−(α+1)ebvdv)i.

Since L̂1(β) → 0 as β → ∞, and L̂1(β) is continuous and decreasing in β, there

exists some β∗ > 0 such that the infinite series summation is valid for all β > β∗.

Furthermore, we have the following Laplace inversion

L−1
s {

Γ(β
b
)

Γ(β
b

+ α)Γ(−α + 1)
} =

b sin(απ)

π
(1− e−bs)α−1.

Then, we can use the convolution method to invert the product of two Laplace

transforms

L−1
s {

Γ(β
b
)

Γ(β
b

+ α)Γ(−α + 1)

∫ ∞
− 1
b

ln(1−b)
e−βvαb(ebv − 1)−(α+1)ebvdv}

=
b sin(απ)

π
αb

∫ s

− 1
b

ln(1−b)
(1− e−b(s−v))α−1(ebv − 1)−(α+1)ebvI{s>− 1

b
ln(1−b)}dv

=
b sin(απ)α

π
I{s>− 1

b
ln(1−b)}

∫ ebs

1
1−b

(1− e−bsx)α−1(x− 1)−(α+1)dx

=
b sin(απ)

π
I{s>− 1

b
ln(1−b)}

(1− 1
1−be

−bs)α

(1− e−bs)( b
1−b)

α
.

Also notice that
(1− b)βb
( b

1−b)
α

= (
1− b
b

)α(e−
1
b

ln(1−b))−β.

Hence, inverting the Laplace transform in each term of E(e−βσ), we get the proba-

bility density function of σ. Finally we invert the time change

P(τ = t) =
1

a+ bt
P
(
σ =

1

b
ln

(
b

a
t+ 1

))
,

and obtain the probability density function of the Parisian time τ .

Proof of Lemma 4.6.1. The Laplace transform of the stopping time σ can be written

as

E(e−βσ) =
(e−(− 1

b
ln(1−b)))β

(e−(− 1
b

ln(1−b)))β + ( b
1−b)

α
∫ − 1

b
ln(1−b)

0
βe−βv(ebv − 1)−αdv

.
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Multiplying both the numerator and the denominator by

∫ − 1
b

ln(1−b)

0

e−βu(1− e−bu)α−1du,

we denote by N the numerator and Q the denominator, then

N = (e−(− 1
b

ln(1−b)))β
∫ − 1

b
ln(1−b)

0

e−βu(1− e−bu)α−1du,

and

Q =(e−(− 1
b

ln(1−b)))β
∫ − 1

b
ln(1−b)

0

e−βu(1− e−bu)α−1du

+ (
b

1− b)α
∫ − 1

b
ln(1−b)

0

βe−βv(ebv − 1)−αdv

∫ − 1
b

ln(1−b)

0

e−βu(1− e−bu)α−1du.

For the integral in the second term of the denominator, we split it into two parts

β

∫ − 1
b

ln(1−b)

0

e−βv(ebv − 1)−αdv

∫ − 1
b

ln(1−b)

0

e−βu(1− e−bu)α−1du

=β

∫ − 1
b

ln(1−b)

0

e−βt
∫ t

0

(eb(t−s) − 1)−α(1− e−bs)α−1dsdt

+ β

∫ −2 1
b

ln(1−b)

− 1
b

ln(1−b)
e−βt

∫ − 1
b

ln(1−b)

t−(− 1
b

ln(1−b))
(eb(t−s) − 1)−α(1− e−bs)α−1dsdt,

then we apply integral by parts to derive
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β

∫ − 1
b

ln(1−b)

0

e−βv(ebv − 1)−αdv

∫ − 1
b

ln(1−b)

0

e−βu(1− e−bu)α−1du

=β

∫ − 1
b

ln(1−b)

0

e−βt
∫ t

0

(1− e−bs)α−1

(eb(t−s) − 1)α
dsdt

+ e−β(− 1
b

ln(1−b))
∫ − 1

b
ln(1−b)

0

(1− e−bs)α−1

(eb(−
1
b

ln(1−b)−s) − 1)α
ds

+

∫ −2 1
b

ln(1−b)

− 1
b

ln(1−b)
e−βt

∂

∂t
(

∫ − 1
b

ln(1−b)

t−(− 1
b

ln(1−b))
(eb(t−s) − 1)−α(1− e−bs)α−1ds)dt

=
π csc(πα)

b
− e−β(− 1

b
ln(1−b))

∫ − 1
b

ln(1−b)

0

e−βs(1− e−bs)α−1

(eb(−
1
b

ln(1−b)) − 1)α
ds

− e−β(− 1
b

ln(1−b))
∫ − 1

b
ln(1−b)

0

e−βu
∫ − 1

b
ln(1−b)

u

αbeb(u+(− 1
b

ln(1−b))−s)(1− e−bs)α−1

(eb(u+(− 1
b

ln(1−b))−s) − 1)α+1
dsdu.

Then, the denominator becomes

Q =
π csc(πα)

b
(eb(−

1
b

ln(1−b)) − 1)α − e−β(− 1
b

ln(1−b))

×
∫ − 1

b
ln(1−b)

0

e−βu
∫ − 1

b
ln(1−b)

u

αbeb(u+(− 1
b

ln(1−b))−s)(1− e−bs)α−1(eb(−
1
b

ln(1−b)) − 1)α

(eb(u+(− 1
b

ln(1−b))−s) − 1)α+1
dsdu,

where we have the following observation for the inner integral

∫ − 1
b

ln(1−b)

0

∫ − 1
b

ln(1−b)

u

αbeb(u+(− 1
b

ln(1−b))−s)(1− e−bs)α−1(eb(−
1
b

ln(1−b)) − 1)α

(eb(u+(− 1
b

ln(1−b))−s) − 1)α+1
dsdu

=(eb(−
1
b

ln(1−b)) − 1)α
∫ − 1

b
ln(1−b)

0

(1− e−bs)α−1

(eb(−
1
b

ln(1−b)−s) − 1)α
ds−

∫ − 1
b

ln(1−b)

0

1

(1− e−bs)1−αds

=(eb(−
1
b

ln(1−b)) − 1)α
π csc(πα)

b
−
∫ − 1

b
ln(1−b)

0

1

(1− e−bs)1−αds.

Hence the Laplace transform of σ can be expressed as the Laplace transform of a

compound geometric distribution as follows

(
p(e−(− 1

b
ln(1−b)))β

∫ − 1
b

ln(1−b)

0

e−βu
(1− e−bu)α−1

M
du

)/
(

1− (1− p)e−β(− 1
b

ln(1−b))
∫ − 1

b
ln(1−b)

0

e−βu
1

E

×
∫ − 1

b
ln(1−b)

u

αbeb(u+(− 1
b

ln(1−b))−s)(1− e−bs)α−1(eb(−
1
b

ln(1−b)) − 1)α

(eb(u+(− 1
b

ln(1−b))−s) − 1)α+1
dsdu

)
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where p, M and E are given as (21), (22) and (23). It is easy to check that

f0(u) =
(1− e−bu)α−1

M
,

and

f(u) =
1

E

∫ − 1
b

ln(1−b)

u

αbeb(u+(− 1
b

ln(1−b))−s)(1− e−bs)α−1(eb(−
1
b

ln(1−b)) − 1)α

(eb(u+(− 1
b

ln(1−b))−s) − 1)α+1
ds,

are well-defined probability density functions over u ∈ [0,−1
b

ln(1− b)].

Proof of Theorem 4.6.2. From Lemma 4.6.1, we know that σ follows a compound

geometric distribution. In particular, we have

σ = σ0 +
G∑
i=1

σi,

where

� G is a geometric distributed random variable with parameter p given in (21);

� σ0 = T0 + (−1
b

ln(1− b)), the probability density function of T0 is f0;

� σi = Ti + (−1
b

ln(1 − b)), for i = 1, ..., G, Ti are i.i.d. random variables with

probability density function f .

To generate T0, we choose an envelope T̄0 with probability density function

fT̄0
(u) =

α

(−1
b

ln(1− b))αu1−α , 0 < u < −1

b
ln(1− b),

then the associated A/R decision directly follows Step 2.

To generate Ti for i 6= 0, we develop a two-dimensional simulation scheme. Since

the probability density function of Ti is f , and

∫ s

0

αbeb(u+(− 1
b

ln(1−b))−s)(eb(−
1
b

ln(1−b)) − 1)α

(eb(u+(− 1
b

ln(1−b))−s) − 1)α+1
du =

(eb(−
1
b

ln(1−b)) − 1)α

(eb(−
1
b

ln(1−b)−s) − 1)α
− 1,

then the integrand in the expression of f can be expressed in terms of the joint

109



density of (Ti, Si),

fTi,Si(t, s)

=
1

E

αbeb(u+(− 1
b

ln(1−b))−s)(eb(−
1
b

ln(1−b)) − 1)α

(eb(u+(− 1
b

ln(1−b))−s) − 1)α+1
(1− e−bs)α−1

=

αbeb(u+(− 1
b

ln(1−b))−s)(eb(−
1
b

ln(1−b))−1)α

(eb(u+(− 1
b

ln(1−b))−s)−1)α+1

(eb(−
1
b

ln(1−b))−1)α

(eb(−
1
b

ln(1−b)−s)−1)α
− 1

1

E
(

(eb(−
1
b

ln(1−b)) − 1)α

(eb(−
1
b

ln(1−b)−s) − 1)α
− 1)(1− e−bs)α−1,

with 0 < u < s < −1
b

ln(1 − b). We use A/R scheme to sample Si by choosing an

envelope S̄i with the following probability density function

fS̄(s) =
α

(−1
b

ln(1− b))α (−1

b
ln(1− b)− s)α−1,

and

fS(s)

fS̄(s)
=

(−1
b

ln(1− b))α
αE

(
(eb(−

1
b

ln(1−b)) − 1)α

(eb(−
1
b

ln(1−b)−s) − 1)α
− 1)(1− e−bs)α−1(−1

b
ln(1− b)− s)1−α

≤(−1
b

ln(1− b))α
αE

C,

where C can be found via numerical optimisation. Given S, the cumulative density

function of Ti is given as

FT |S(t|s) =

(eb(−
1
b

ln(1−b))−1)α

(eb(−
1
b

ln(1−b)−s)−1)α
− (eb(−

1
b

ln(1−b))−1)α

(eb(t+(− 1
b

ln(1−b))−s)−1)α

(eb(−
1
b

ln(1−b))−1)α

(eb(−
1
b

ln(1−b)−s)−1)α
− 1

,

which can be inverted explicitly by

F−1
T |S(t|s) = s−(−1

b
ln(1−b))+1

b
ln

(
(eb(−

1
b

ln(1−b)) − 1)α

(eb(−
1
b

ln(1−b))−1)α

(eb(−
1
b

ln(1−b)−s)−1)α
− t( (eb(−

1
b

ln(1−b))−1)α

(eb(−
1
b

ln(1−b)−s)−1)α
− 1)

)
1
α + 1

 .

Hence, Ti can be exactly simulated via Step 3.
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Appendix D

Joint density of the random vector

(R1, . . . , Rn−1 | ∆−α1 = w)

From Proposition 10 of Pitman and Yor (1997), we know that under the probability

measure Pα,0,

Rk :=
∆k+1

∆k

law
=

(
∑k+1

i=1 ei)
−1/α

(
∑k

i=1 ei)−1/α
for k = 1, 2, . . . ,

where ei are independent standard exponential random variables. In particular, it

is known that ∆−α1
D
= e1, see Lemma 24 of Pitman and Yor (1997).

On the other hand, define

Rk(λ) :=

(∑k−1
i=1 ei + λα∑k
i=1 ei + λα

) 1
α

for k = 1, 2, . . . ,

then Lemma 3.2 of James (2019) implies that (R1(λ), . . . , Rn−1(λ)) has the joint

density

fR1,...,Rn−1(r1, . . . , rn−1) = αn−1λ(n−1)αeλ
α

e−λ
α
∏n−1
j=1 r

−α
j

n−1∏
j=1

r
−(n−j)α−1
j . (D.1)

111



We set λ = ∆−1
1 , then λα

D
= e1 and

Rk(λ)
law
=

(∑k
i=1 ei∑k+1
i=1 ei

) 1
α

=
(
∑k+1

i=1 ei)
−1/α

(
∑k

i=1 ei)−1/α
,

hence the random vector (R1(λ), . . . , Rn−1(λ) | λ = ∆−1
1 ) has the identical distribu-

tion as (R1, . . . , Rn−1), and we obtain the joint density (5.4) by setting λ = w
1
α in

(D.1).

Alternatively, the same result could be obtained by writing down the joint density

of ∆1, . . . ,∆n using the basic property of Poisson random measure, and change the

variables with Rk := ∆k+1

∆k
.
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Appendix E

Simulation of G∗

We give the algorithm for sampling from the density h∗(u).

Theorem E.1. Let G∗ be a random variable with the probability density function

h∗(u) =
1

π
sin(απ)

− 1
α

u−α − uα
u+ 1

for 0 < u < 1,

then G∗ can be generated via the following steps.

1. Numerically maximising

C(u) =
1

π
sin(απ)

− 1
α

u−α − uα
u+ 1

B(θ, 2)

uθ−1(1− u)
,

where θ = 0.59 − 0.01α − 0.60α2 and B(., .) is the standard Beta function,

record the optimal u∗ and set C = C(u∗, θ).

2. Generate a Beta random variable G′ by setting

G′ ∼ Beta(θ, 2).

3. Set V ∼ U [0, 1], if

V ≤ 1

C

1
π

sin(απ)
− 1

α

(G′)−α − (G′)α

G′ + 1

B(θ, 2)

(G′)θ−1(1−G′) ,

accept this candidate and return G∗ = G′, otherwise go back to Step 2.
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Proof. This is a direct consequence of the accept rejection method, see Dassios et al.

(2020) for details.
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bilités de Saint-Flour, volume 1117 of Lecture Notes in Math. Springer, Berlin.

Alexandrova-Kabadjova, B. and Solis, F. (2012). The mexican experience in how

the settlement of large payments is performed in the presence of a high volume of

small payments. Diagnostics for the financial markets–computational studies of

payment system.

Anderluh, J. H. M. and van der Weide, J. A. M. (2009). Double-sided Parisian

option pricing. Finance Stoch., 13(2):205–238.

Arfken, G. B. and Weber, H. J. (2001). Mathematical methods for physicists. Har-

court/Academic Press, Burlington, MA, fifth edition.
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