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Abstract

This thesis contributes to single-image reconstruction under visual disruption caused by rain
in the following areas:

1. Parameterization of a Convolutional Autoencoder (CAE) for small images [1]

2. Generation of a rain-free image using Cycle-Consistent Generative Adversarial Network
(CycleGAN) [2]

3. Rain removal across spatial frequencies using the Multi-Scale CycleGANs (MS-CycleGANs)

4. Rain removal at spatial frequency’s sub-bands using the Wavelet-CycleGANs (W-CycleGANs)

Image reconstruction or restoration refers to reproducing a clean or disruption-free image
from an original image corrupted with some form of noise or unwanted disturbance. The goal
of image reconstruction is to remove such disruption from the original corrupted image while
preserving the original detail of the image scene. In recent years, deep learning techniques have
been proposed for removal of rain disruption, or rain removal. They were devised using the
Convolutional Neural Network (CNN) [3], and a more recent type of deep learning network
called the Generative Adversarial Network (GAN) [4]. Current state-of the-art deep learning
rain removal method, called the Image De-raining Conditional Generative Adversarial Network
(ID-CGAN) [5], has been shown to be unable to remove rain disruption completely, or preserv-
ing the original scene detail [2]. The focus of this research is to remove rain corruption from
images without sacrificing the content of the scene, starting from the collection of real rain im-
ages to the testing methodologies developed for our Generative Adversarial Network (GAN)
networks. This image rain removal or reconstruction research area has attracted much interest
in the past decade as it forms an important aspect of outdoor vision systems where many com-
puter vision algorithms could be affected by rain disruption, especially if only a single image is
captured.

The first contribution of this thesis in the area of image reconstruction or restoration is the
parameterization of a Convolutional Autoencoder (CAE). A framework for deriving an optimum
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set of CAE parameters for the reconstruction of small input images based on the standard Mod-
ified National Institute of Standards and Technology (MNIST) and Street View House Numbers
(SVHN) data sets are proposed, using the quantitative mean squared error (MSE) and the qual-
itative 2Ds’ visualization of the neurons’ activation statistics and entropy at the hidden layers
of the CAE. This methodology’s results show that for small 32x32 pixels’ input images, having
2560 neurons at the hidden layer (bottleneck layer) and 32 convolutional feature maps can result
in optimum reconstruction performance or good representations of the input image in the latent
space for the CAE [1].

The second contribution of this thesis is the generation of a rain-free image using the pro-
posed CycleGAN [2]. Its network model was trained on the same set of 700 rain and rain-
free image-pairs used by the recent ID-CGAN work [5]. In the ID-CGAN paper, there was
a thorough comparison with other existing techniques like sparse dictionary-based method,
convolutional-coding based method, etc. The results using synthetic rain training images have
shown that the ID-CGAN method has outperformed all other existing techniques. Hence, our
first proposed algorithm, the CycleGAN, is only compared to the ID-CGAN, using the same set
of real rain images provided by the authors. The CycleGAN is a practical image’s style transfer
approach that falls into the unpaired category, which is capable of transferring an image with
rain to an image that is rain-free, without the use of training image-pairs. This is important as
natural or real rain images don’t have their corresponding image-pairs that are rain-free. For
comparison purpose, a real rain image data set was created. The real rain’s physical properties
and phenomena [6] were used to streamline our testing conditions into five broad types of real
rain disruption. This testing methodology covers most of the different outdoor rain distortion
scenarios captured in the real rain image data set. Hence, we can compare both ID-CGAN and
CycleGAN networks using only real rain images. The comparison results using both real and
synthetic rain has shown that the CycleGAN method has outperformed the ID-CGAN which
represents the state-of-the-art techniques for rain removal [2]. The Natural Image Quality Eval-
uator (NIQE) is also introduced as a quantitative measure [7] to analyze rain removal results as
it can predict the quality of an image without relying on any prior knowledge of the image’s
distortions. The results are presented in Chapter 6.

Subsequently, from the CycleGAN technique, the third contribution of the thesis is proposed
based on the multi-scale representation of the CycleGAN, called the MS-CycleGANs technique.
This proposed technique was built on the remaining gaps on rain removal using the CycleGAN.
As highlighted in the rain removal paper using CycleGAN [2], the CycleGAN results could be
further improved as its reconstructed output was still unable to remove the rain components at
low frequency band and preserved as much original details of the scenes as possible. Hence, the
MS-CycleGANs was introduced as a better algorithm than the CycleGAN, as it could train mul-
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tiple CycleGANs to remove rain components at different spatial frequency bands. The imple-
mentation of the MS-CycleGANs is discussed after the CycleGAN, and its rain removal results
are also compared to the CycleGAN. The results of the MS-CycleGANs framework has shown
that the MS-CycleGANs can learn the characteristics between the rain and rain-free domain at
different spatial frequency scales, which is essential for removing the individual frequency com-
ponents of rain while preserving the scene details.

In the final contribution towards image reconstruction for removal of visual disruptions
caused by rain across spatial frequency’s sub-bands, the W-CycleGANs is proposed and im-
plemented to exploit the properties of wavelet transform such as orthogonality and signal lo-
calization, to improve the CycleGAN results. For a fair comparison with the CycleGAN, both
the proposed multi-scale representations of CycleGAN networks, namely the MS-CycleGANs
and the W-CycleGANs, were trained and tested on the same set of rain images used by the
ID-CGAN work [5]. A qualitative visual comparison of rain-removed images, especially at the
enlarged rain-removed regions, is performed for the ID-CGAN, CycleGAN, MS-CycleGANs
and W-CycleGANs. The comparison results among them has demonstrated the superiority of
both the MS-CycleGANs and W-CycleGANs in removing rain distortions.
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Chapter 1

Introduction

1.1 Thesis’ Outline

This thesis proposes image reconstruction techniques using deep learning, to recover clean
images under visual disruption caused by rain without losing original scene’s detail. A detailed
study of rain characteristics and the Convolutional Autoencoder is first carried out. This is fol-
lowed by the three proposed network architectures for image reconstruction based on the Cycle-
GAN [8], MS-CycleGANs and W-CycleGANs, which have achieved significant improvements
over traditional and recent deep learning algorithms, especially on removing real rain effects in
images from a holistic perspective.

Bad outdoor weather condition, such as rain, snow and haze, can severely affect the major-
ity of computer vision’s algorithms, which are mostly developed to work under well-controlled
environments. The most direct impact of falling rain drops, snowflakes or haze dust on outdoor
images could be the degradation of its contrast or sharpness due to the change in brightness
around the rain, snow or haze artifacts. In the worst case, they could cause severe distortion
in the scene’s content [6]. Hence, uncontrollable environmental conditions are drawing interest
in computer vision, especially rain, which may be the most common but most difficult type of
degradation to deal with. Hence, rain removal for image reconstruction purpose is chosen as the
main focus of this thesis.

In Chapter 2, our image reconstruction’s requirements based on the characteristics of rain
is discussed, which play a crucial role in the determination of our proposed deep learning net-
works in the subsequent chapters. This is because rain produces complex intensity or brightness
changes to a scene captured by a camera. The falling rain drops have a brighter appearance than

1
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the background of the scene [6], making the background scene’s appearance hazy and the ob-
jects nearer to the camera at the foreground appear blurred or distorted with low illumination [9].
Due to such complex brightness effect on images, rain detection and removal algorithms have
been developed more than a decade ago to model such effects, based on the physics of rain
drops [6]. One thing worth mentioning here is that most, if not all, of the rain removal algo-
rithms till date had used test images superimposed with artificially added synthetic rain for the
quantitative analysis of rain removal performance, since the ground truth or an exact rain-free
version of a rain image does not exist. In addition, until recently, most image reconstruction
algorithms have involved video or frame-to-frame processing, which made the rain removal task
easier, due to the fact that a scene would not be occluded by rain drops in all frames of the video.

Prior to rain removal, the task of image reconstruction under visual disruption caused by
rain has been studied and analyzed in Chapter 3, which involves two areas of research in im-
age processing: image reconstruction and denoising. In recent years, Convolutional Neural
Network (CNN) have demonstrated significant improvements over previous conventional image
processing methods in almost all computer vision related tasks they have been applied to, which
includes image reconstruction for a denoising task. The most basic CNN network architecture
which can be used for both purposes is the Convolutional Autoencoder (CAE) [10], [11], [12],
which is a combination of the CNN and the autoencoder. Although the CAE was developed for
the purpose of initializing the network parameters of a CNN network, the CAE can be a starting
point for our research as it can also be used for image denoising task due to the basic autoen-
coder structure in its network, if rain disruption is regarded as a form of unwanted noise. The
CAE works by reconstructing an input image through non-linear compression of its data, via
learning a high-level representation of the data set in a self-supervised or unsupervised manner,
without the need for any data label. Thus, the CAE network is potentially capable of learning
how to reconstruct a rain-free output image from a compact latent representation of the input
rain image with the practical advantage of extracting both rain and rain-free features from an
input rain image, without the need for rain and rain-free image-pairs, which is commonly used
in many deep learning rain removal algorithms. This CAE study, coupled with our understand-
ing of real rain physics, then led to our subsequent detailed analysis of existing and proposed
algorithms in Chapters 4, 5 and 6.

1.2 Existing Techniques

To simplify our analysis of existing algorithms, we can group the various single-image rain
removal techniques into two broad categories: The first category uses the conventional sig-
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nal processing technique based on the rain priors models or sparse coding dictionary learn-
ing technique to remove rain effects from an image, and the second category uses deep learn-
ing approaches such as the Convolutional Neural Networks (CNNs) and the advanced Gen-
erative Adversarial Networks (GANs). As mentioned in Section 1.1, removing rain from an
image instead of a video is a more challenging task because there is no spatio-temporal in-
formation in an image, unlike video-based technique which can compare successive frames
to get such information [6], [13], [14], [16], [17]. In other words, the advantage in multi-
frame based techniques is lacking in all single-image rain removal approaches. As this is an
ill-posed problem, many single-image based methods have considered layer or signal separa-
tion [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29] approaches, or derived
image priors based on rain properties for detection and its subsequent removal of rain using
filtering methods [18], [19], [30], [31], [32]. The most recent deep learning single-image ap-
proaches, however, have tried to overcome this natural limitation using deep-learning of both
rain and rain-free features supplied by the massive training data provided during the network
training. A taxonomy of the various conventional and deep learning rain removal approaches is
shown in Figure 1.1.

The most common assumption of the conventional signal processing approaches, such as
morphological component analysis-based dictionary learning or sparse coding methods [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29], and rain property-based rain priors meth-

Figure 1.1: A taxonomy of various categories of single-image rain removal approaches in the
literature, based on the analysis from [2].
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ods [18], [19], [20], [21], [32], [33], [34], is that rain pixels are always present at the high
frequency components of an image, with similar repeating patterns at a certain orientation. Al-
though there are some successes achieved by these conventional approaches, but it was high-
lighted in more recent deep learning approaches using Convolutional Neural Network (CNN)
and the more advanced Generative Adversarial Networks (GANs), that due to such assump-
tions, they may suffer from incomplete rain removal or excessive rain removal which may cause
scene blurring or the introduction of unwanted artifacts [5], [35]- [38], [39].

Figure 1.2: Rain disruption on outdoor images are shown in (a) and (b). (c) and (d) are the
CycleGAN’s rain removal results respectively.

Figure 1.2 shows two examples of rain distorted images and their rain removal results us-
ing the proposed CycleGAN [2], to illustrate the difference before and after rain removal. The
original rain images and their corresponding rain removal results by the CycleGAN have shown
the potential impact that the rain removal algorithm could make for many real outdoor computer
vision tasks, such as detecting the drivable path for an autonomous vehicle [40]. This is because
both drivable and non-drivable paths must be detected before the autonomous system could suc-
cessfully navigate around [41], regardless of its environmental conditions. In this example, such
heavy rain could cause the recognition or analysis of objects in the outdoor scene to fail. Hence,
there is a real need for rain removal during image reconstruction. Based on the above analysis,
the proposed CycleGAN’s reconstruction results are compared to the state-of-the-art deep learn-
ing approach, represented by the ID-CGAN, to demonstrate the removal of such rain distortion
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to a finer detail.

This thesis aims to improve on the state-of-the-art rain removal and image reconstruction
technique. In Chapter 4, both real and synthetic rain comparison results have demonstrated that
the proposed CycleGAN is superior than the ID-CGAN in removing real rain distortions [2].
Another two improved CycleGAN methods in rain removal using the multi-scale approaches,
are proposed in Chapters 5 and 6 respectively: the first approach is to use a MS-CycleGANs
framework to remove rain distortions at different spatial frequency representations and to opti-
mize its ability in removing rain defects using a Laplacian pyramid [42]; the second approach is
to remove rain at different wavelet sub-bands using the CycleGAN, called the W-CycleGANs.
The main challenge is to implement their integrated network architectures to perform a success-
ful image-to-image translation from Domain X (image with rain) to Domain Y (image without
rain), for these two implementations of the multi-scale CycleGANs, in this project.

In Chapter 5, the concept of the Laplacian Generative Adversarial Network (LAPGAN) [42]
is introduced first as a GAN processing method that emulates the visual cortex processing, which
divides image processing into 6 different sub-bands [42]. Using image pyramids to integrate
multiple Conditional Generative Adversarial Nets (CGANs) [43], it is able to learn independent
image features at multiple frequency bands and outperform the Generative Adversarial Networks
(GANs) [4] in image generation. Inspired by the success of the LAPGAN in the generation of
images at different frequency bands [42], the MS-CycleGANs is proposed in this thesis as a new
technique to remove rain distortions independently at different spatial frequency bands based
on the CycleGAN network architecture. In this framework, besides processing the entire input
image at a global scale, the CycleGAN technique is also applied at each level of the Laplacian
Pyramids to improve the rain removal performance of the proposed CycleGAN in Chapter 4. As
shown in Figure 1.2(d), low frequency artifacts were observed in the CycleGAN’s rain-removed
images. One possible reason could be the lack of multi-scale decomposition of the images be-
fore applying the CycleGAN as rain degradation can happen at the low frequency spectrum of
the images as well, although it was generally assumed to be at the high frequency spectrum of
the images. Hence, the CycleGAN approach can be combined with the Laplacian Pyramid to
form a network architecture to improve the CycleGAN’s low-frequency noise removal perfor-
mance from Chapter 5 onwards.

Besides the MS-CycleGANs, we have studied another multi-scale CycleGAN approach us-
ing the wavelet representation, called the W-CycleGANs, in Chapter 6. Wavelet representation
has been implemented successfully in many image processing application areas such as color
image enhancement task [44] and image super-resolution [45]. Our proposed technique is in-
spired by these wavelet-based works mentioned, by implementing the CycleGAN in the wavelet
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domain, to remove rain components at different wavelet-decomposed frequency sub-bands of
the Luminance channel of the Hue, Saturation and Value (HSV) color scheme. Using the same
700 training images as the CycleGAN (provided by the ID-CGAN study [5]), we have also
compared both the proposed MS-CycleGANs and the W-CycleGANs networks’ performance
against the CycleGAN in Chapter 6, quantitatively, using the NIQE metrics which is based on
the Natural Scene Statistics (NSS) model [7]. The comparison results of both real rain images
from our rain data set and the images from the ID-CGAN paper [5], have shown the rain removal
effectiveness of all proposed algorithms.

1.3 Contribution

In this thesis, new results of image reconstruction under visual disruption caused by rain
are shown and discussed for each of the proposed algorithms. Detailed contributions in each of
these areas are given as follows:

• The parameterization of a CAE using a novel methodology involving both quantitative
and qualitative analysis of the latent representations of the input image at the hidden layer
of the network is proposed [1].

• The CycleGAN [8] algorithm is proposed for the first time as a practical and effective
approach to remove rain disruption, without the need of paired rain and rain-free training
samples for learning, as required by other Convolutional Neural Networks (CNNs) and
GANs methods [5], [35]- [39].

• The proposed CycleGAN algorithm is evaluated against the state-of-the-art representative,
the ID-CGAN [5], and show better rain removal performance on real rain [2].

• Many existing algorithms are mainly compared with others quantitatively based on rain
and rain-free image-pairs that are not natural rain images, and many of them are compared
qualitatively using a few selected outdoor real rain images without a proper methodology.
On the other hand, the comparison methodology proposed in this research is derived from
real rain physics model [6], which identified five broad categories of real rain distortion
[2].

• The MS-CycleGANs algorithm in which multiple CycleGANs are implemented within
the Laplacian pyramid framework is proposed for the first time as a practical and effective
multi-scale CycleGAN approach to remove rain disruption, without the need of paired
rain and rain-free training samples.
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• The W-CycleGANs algorithm is proposed for the first time as another effective multi-scale
CycleGAN approach to remove real rain from images, including its low frequency noise.

• Both the proposed MS-CycleGANs and W-CycleGANs networks are evaluated against
the proposed CycleGAN [2] using the quantitative NIQE metrics [7], and show better rain
removal performance.

1.4 Motivation

The motivations behind the proposed rain removal algorithms are discussed as follow:

• We believe that a real rain image classification data set, rather than synthetically generated
rain images, need to be created in this research for qualitative and quantitative evaluation
of rain removal algorithm. This proposed real rain classification data set is derived based
on rain physics model [6], for comparison with existing rain removal algorithms, as dis-
cussed in Chapter 2.

• The parameterization of a Convolutional Autoencoder to reconstruct a small image effec-
tively is then discussed in Chapter 3. Through a detailed study, the effectiveness of the
representations of features in the compressed latent space of the network can be studied,
both qualitatively and quantitatively.

• As part of a study in rain removal, the effectiveness of a special class of Generative Adver-
sarial Networks (GANs) [4] called the Cycle-Consistent Generative Adversarial Network
(CycleGAN) [8], is explored in Chapter 4.

• The proposed multi-scale CycleGAN approaches also do not require rain and rain-free
image-pairs for training, as discussed in Chapters 5 and 6. This is very practical for train-
ing the networks to remove real rain disruption for outdoor tasks, as real rain image-pairs
simply don’t exist in reality. This practical advantage of the various CycleGAN networks
to learn the style transfer function to map an input image from rain to its rain-free ver-
sion, can address the concern of other deep learning approaches because of their need for
such image-pairs. This avoids the practical issues of collecting similar rain and rain-free
image-pairs to train our proposed algorithms, which is non-existent. Furthermore, we feel
that using synthetic rain to evaluate a GAN network’s performance is not sufficient to
demonstrate effectiveness in real rain removal. These approaches are compared with the
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state-of-the-art, ID-CGAN [5], to demonstrate the superiority of our proposed networks
in removing rain disruption on real rain images.

1.5 Organization of Thesis

Generating or inferring a rain-free image from a given real rain image can be considered
an ill-posed problem, as such rain image-pairs are unavailable in reality. Hence, we address
this ill-posed problem of single-image reconstruction under visual disruption caused by rain by
researching into the following areas:

• Parameterization of a Convolutional Autoencoder (CAE) for small images which allows
an understanding on the effectiveness of feature representation in the compressed latent
space of the network

• Generation of a rain-free image using the proposed Cycle-Consistent Generative Ad-
versarial Network (CycleGAN) [8] technique and its comparison with the state-of-the-
art’s ID-CGAN technique using real rain images that covers most real-world scenarios,
rather than relying on synthetically generated rain images, for evaluation of the rain re-
moval algorithms. Both the qualitative and quantitative evaluation methodologies (using
NIQE [7]), are based on the proposed real rain classification data set derived from rain
physics model [6], for comparison among rain removal algorithms

• The proposed rain removal techniques across spatial frequencies’ sub-bands using the
Multi-Scale CycleGANs (MS-CycleGANs) and the Wavelet-CycleGANs (W-CycleGANs)
do not require rain and rain-free image-pairs for training, as compared to other deep learn-
ing techniques. This is very practical for training the networks to remove real rain disrup-
tion for outdoor tasks, as real rain image-pairs simply do not exist in reality

Chapter 1 gives a brief introduction to our proposed multi-scale’s deep-learning approaches
to address rain disruption’s removal problem. This is followed by an overview of rain charac-
teristics and existing image reconstruction methods in Chapter 2, in particular the existing rain
removal techniques found in the existing literature. In Chapter 3, the methodology and results
of the parameterization of a CAE are discussed. The network architecture and results of the pro-
posed rain removal CycleGAN [8] network are then presented in Chapter 4. In Chapter 5, the
network architectures and rain removal results of the proposed MS-CycleGANs, as compared to
the CycleGAN, are discussed. This is followed by an illustration of the W-CycleGANs’ network
architectures in Chapter 6, with a comprehensive comparison, and qualitative and quantitative
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analysis, using real rain test images. Lastly, Chapter 7 provides a brief summary and discus-
sion of the research findings to conclude the thesis, and to discuss the future directions of our
research.



Chapter 2

Background and Related Work

The task of image reconstruction under visual disruption caused by rain involves two areas
of research in image processing: image reconstruction and rain detection and/or removal tasks.
In this chapter, the background and related works in each of these areas will be discussed in
detail. This review of existing techniques is essential to identify the gaps in the literature. It
also provides the background for identifying CycleGAN-based networks as the more promis-
ing approach, which will be discussed in the subsequent chapters of this thesis. We will start
by discussing the existing image reconstruction approaches, followed by rain physics, which
has influenced how researchers tackled rain detection and/or removal tasks in image processing.
Last but not least, early rain removal approaches, deep rain removal techniques and rain removal
as an image translation problem will be discussed.

2.1 Image Reconstruction

In image processing, the image reconstruction task requires some data generative models to
be built. The main challenge with image reconstruction is incomplete data availability to build
such data generative models. However, using deep learning-based methods, object priors can po-
tentially be learnt using the available training data to minimize image reconstruction errors [46].
Hence, an optimization-based reconstruction method that is formulated in the latent space of a
generative deep neural network is growing in its popularity in the research area of deep genera-
tive models, in particular the Generative Adversarial Networks (GANs). In this chapter, we will
discuss both the traditional autoencoders and these emerging GANs for the image reconstruction
task. Figure 2.1 shows a summary of these two image reconstruction techniques, especially for
our task of removing rain disruption from images, which is an image style transfer problem.

10
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Figure 2.1: A taxonomy of data generative models.

2.1.1 Autoencoders

An autoencoder is among the most common network architecture used for image compres-
sion or denoising tasks, by reconstructing an input image through non-linear compression of
data. It can learn high-level representations of a data set in a self-supervised or unsupervised
manner, which makes it a basic network structure that suits our purpose of image reconstruction
to remove rain effects. Since it has this advantage of self-learning capability without the need
for any data label on rain images, it can be a basic network that can be improved to extract both
rain and rain-free features from an input rain image, for rain removal purpose. Such an improved
autoencoder can learn to extract the hierarchical, feature-based representation of an image, by
combining it with a Convolutional Neural Network (CNN), to form a Convolutional Autoen-
coder (CAE) [10], [11], [12]. This will take advantage of both networks, so that the combined
network is potentially capable of learning how to reconstruct a rain-free output image from a
compact latent representation of the input rain image.

In recent years, the Convolutional Neural Network (CNN) has demonstrated significant im-
provements over previous conventional image processing methods in almost all computer vision
related tasks they have been applied to. This is mainly due to the way CNN represents and
processes visual information like the biological brain, such as the increase in receptive fields’
sizes [47] in a pyramid-like, hierarchical feature-based representation [48]. However, the short-
coming of CNN is that it requires a large and labelled training data set for its supervised training.
Autoencoders, on the other hand, are methods of learning higher-level representations of a data
set in a self or unsupervised manner. It requires only the data and not their labels which is usually
matched to each data. Hence, only a small number of training samples is needed to train an au-
toencoder. In other words, since the autoencoder is an unsupervised network architecture aimed
at learning representation, and the CNN essentially learn hierarchical feature-based representa-
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Figure 2.2: A basic Convolutional Autoencoder Model.

tion, it seems natural to combine these two techniques, to create an unsupervised, hierarchical
feature-based representation learning network that emulates a biological brain [10], [11], [12].

The CAE consist of two distinct blocks: an encoder and a decoder. The input image is fed
into the encoder which creates a set of information carrying units (or bits) to represent the image
in the latent space at the bottleneck layer, via a convolutional network. The decoder then maps
the latent space at the bottleneck layer to the output, via another convolutional network, to gen-
erate a reconstructed output image. Both the encoder and decoder networks are normally trained
through the standard back-propagation method in the CAE, using some loss functions defined
by the difference between both input and output of the network functions. To prevent learning an
identity function, the bottleneck layer of the network is normally made quite narrow, to ensure
the network must compress the input image to a smaller vector from which it must reconstruct
the output image. This forces the autoencoder structure inside the CAE to learn useful features
about the image. This is depicted by the architecture of a basic skeleton model of a CAE for
reconstructing an input image as shown in Fig. 2.2.

Just like autoencoders, the CAE is traditionally trained to optimize a fixed criterion, such as
the commonly used mean squared error, to determine which underlying features or causes are
considered salient to be encoded. This reconstruction error, or mean squared error L(x,r), is
defined by the square of the error values between the reconstructed outputs (r) and the training
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input images (x) as shown below:

L(x,r) = ‖x− r‖2 (2.1)

It normally serves as the commonly used loss function to be minimized during the training for
image reconstruction in an autoencoder network.

To start our analysis on a CAE, we need to explicitly define a feature-extracting function fθ ,
which is a function of the parameter of the network θ , that needs to be optimized during network
training. This is the encoder that allow the efficient computation of a feature vector h = fθ (x)

from an input image x. For each example of x from a data set [x(1),..., x(T )], it is defined as

h = fθ (x), (2.2)

where h is the feature vector (or representation or code) computed from x. Another closed form
parameterized function, gθ , called the decoder, maps from feature space back into input space,
producing a reconstruction r = gθ (h).

In general, autoencoders are parameterized through their encoder and decoder. The set of
parameters θ (made up of weights and biases) of the encoder and decoder are learned simul-
taneously on the task of reconstructing the original input, i.e. attempting to incur the lowest
possible reconstruction error L(x,r). Hence, for a CAE, the mean squared error (MSE) is also
defined as the loss function to be minimized during its network training for image reconstruction.

Due to such loss function using the mean squared error, a large enough object which can
occupy a large number of pixels can have the change in its brightness to be significant enough
to be implicitly specified as a salient underlying cause by the mean squared error (MSE) to be
encoded from its image pixels. In other words, an autoencoder may have problem in capturing
small objects in its latent space as they may not be considered salient pixels to be encoded. For
example, the mean squared error used to train an autoencoder may fail to reconstruct a small ob-
ject that occupy only a few pixels, as the autoencoder has limited capacity and the small number
of pixels occupied by the object in the image is implicitly not being identified as being salient
enough to encode, as shown in Figure 2.3 [49].

Other than this disadvantage of the autoencoders, there may be discontinuity in the latent
space as well. These shortcomings of the autoencoders were addressed largely by closing up the
gaps to reduce discontinuity in the latent space using a Variational Autoencoder (VAE), which
may be the most useful type of image generation autoencoders. The VAE uses the architecture
of an autoencoder and employs a stochastic variational inference algorithm to learn how to
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Figure 2.3: The mean squared error used to train an autoencoder for a robotic task may fail to
reconstruct a small object like a ping pong ball that occupy only a few pixels, as the autoencoder
has limited capacity and the mean squared error has made the training failed to identify the small
ping pong ball as being salient enough to encode (reproduced from [49]).

generate different types of images with better performance than the autoencoder [50]. However,
the autoencoders as a whole could be potentially improved in terms of its representation learning
for better image reconstruction quality. This improvement can be extended by the state-of-the-
art Generative Adversarial Networks (GANs), which is an entirely different approach to generate
different types of images.

2.1.2 Generative Adversarial Networks (GANs)

GANs [4] has shown success in many image processing tasks such as image super-resolution
[51], image inpainting [52] and image generation [53], [54]. Instead of imposing prior structure
over learned representations like the VAE, the GANs uses a large CNN generator with sufficient
capacity to learn a non-linear distribution implicitly to perform a forward mapping from the
input to the output of the network. It consists of two models: a generative model, G and a dis-
criminative model, D. The generative model learns the forward mapping to generate an output
image based on the given input, such that the discriminative model is unable to distinguish those
generated images from real images. As shown in Figure 2.4, the adversarial autoencoders can
learn representation better than the VAE in the latent space [55]. Hence, it seems natural to use
this GANs technique for our image reconstruction task.

But actually, our task is to transfer the style from a rain image domain (X) to a rain-free
image domain (Y ) rather than a pure image reconstruction task. Hence, it will require the GANs
algorithm to have not only the ability of accurate image reconstruction but also the capability to
transfer the style of an image from one domain to the other [8], [54]. This is to fulfil the goal
of image reconstruction under visual disruption caused by rain, which is to remove rain effects
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Figure 2.4: (A) & (B), (C) & (D): A comparison of the distribution of the hidden codes of
both adversarial and Variational Autoencoders on MNIST in the latent space, for fitting to a
2-D Gaussian and 10 2-D Gaussians, respectively. Each color represents a different image label
(reproduced from [55]).

from an input image without blurring the scene or introducing unwanted distortion [2]. In the
next section, prior to removing rain distortion from images, the detrimental effects of rain on
images will be analyzed, which is a topic as important as image reconstruction itself.

2.2 Visual Disruption Caused by Rain

As mentioned in Chapter 1, the performance of an outdoor computer vision system such as
autonomous surveillance and navigation could be seriously degraded due to rain, which pro-
duces complex intensity or brightness changes to a scene captured by a camera. The falling
rain drops always cause a brighter appearance than the background of the scene [6], making the
background scene hazy and the objects nearer to the camera at the foreground appear blurred
or distorted with a low illumination [9]. In this Section 2.2, rain drops’ characteristics have to
be understood first, before an algorithm can be devised to remove such unwanted visual effect
caused by real rain.

In Section 2.2.1 to 2.2.3, the first part of our background study on conventional rain removal
approach is to study the pioneering literature on removing rain in video by blurring the rain
effect on images before the scene is captured by a video camera, using camera settings like the
aperture size and exposure time. These settings can blur the rain drops both temporally and spa-
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tially, if adjusted appropriately [6]. This pioneering work has shown that rain has similar varying
intensities effects for any pixel from frames to frames, and rain couldn’t cause occlusion of the
scene content at all instances in the video sequences of frames. Thus, many conventional algo-
rithms were developed later to handle rain in video.

2.2.1 Rain Models

Since the 19th century, rain phenomena’s studies have been drawing interest in multiple
fields such as architecture, communications and atmospheric sciences [6]. Although the pur-
poses of these studies were not trying to solve the rain removal problem in computer vision,
it became a foundation for pioneering studies on rain removal, where rain characteristics were
explored and modelled in detail [6]. These pioneering in-depth and complete studies on rain’s
appearance on captured images have led to the derivation of rain’s dynamic and photometric
models which serve as the main literature explored by many subsequent rain removal algo-
rithms. As mentioned before, the photometric model focuses on the spatial intensities’ changes
caused by rain while the dynamic model describes rain’s properties in terms of both the spatial
and temporal dimensions [6]. According to the studies, camera’s parameters, rain drops’ proper-
ties and environmental brightness are three critical factors that can affect rain’s appearance due
to rain drops’ physical properties such as high terminal velocity, small diameter size and unique
volumetric distribution in space [6]. Hence, the studies focused on rain detection and removal
by adjusting camera’s settings when the rain scene was captured [6].

Rain Properties

• Shape:

Experimental work on dropping rain drops to investigate their shapes originated with the
wind tunnel studies. A large number of experimental and theoretical investigations on the
shape of rain drops falling at their terminal velocities have been reported in the literature,
as early as 1883 in the area of atmospheric sciences [56]. Rain drops dropping at a high
terminal velocity from the sky undergo a phenomenon called oscillations, which describes
a rapid change in their shapes that subsequently cause complex intensity changes in a
rain image. This phenomenon may affect light’s reflection and refraction patterns at the
individual rain drop which acts as a spherical lens, and can cause brightness change or
even scene appearance distortion in an image [57]. Fortunately, the oscillations’ effect
on a rain image is mostly insignificant, as a rain drop dropping at its terminal velocity
in the sky has already achieved its equilibrium shape. Rain drops that are spherical in
shape are normally smaller in diameter, and those that are having oblate spheroid shape
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Figure 2.5: The shape model of
the rain drops of various sizes (re-
produced from [6]).

Figure 2.6: The distribution of
number of raindrops per unit vol-
ume with drop size (reproduced
from [6]).

are generally rain drops larger in their diameters, which can be described as a 10th order
cosine distortion of a sphere [56]. The rain drop’s diameter, r(θ), can be expressed as in
Equation (2.3) below,

r(θ) = a(1+
10

∑
n=1

cn cos(nθ)), (2.3)

where c1 ...c10 are rain drop’s coefficients that rely on its radius a, and θ is the polar angle
of elevation [6]. Note that θ = 0 is at the rain drop’s dropping direction. In summary, the
equilibrium shapes of various sizes of rain drops are shown in Figure 2.5 [6].

• Size:

Rain drops’ sizes can range from 0.1 mm to 10 mm. The Marshall-Palmer distribution [58]
is normally used to empirically calculate the distribution of rain drops’ sizes, as shown
below:

N(a) = 8∗106e−8200∗h−0.21a, (2.4)

where N(a) is the number of raindrops per unit volume that contains rain drops with radius
of a metres, within a small range of fluctuation (a,a+ da), and h is the rate of dropping
rain drops measured in mm per hour. This distribution of a typical rate of 30 mm per

hour can be viewed graphically in Figure 2.6. As shown in the figure, most of the rain
drops’ radius is less than 1 mm. On the other hand, Figure 2.5 shows that such typical
sizes of rain drops can be approximated by or modelled as a spherical shape, as they have
minimum shape distortion.
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• Velocity:

Rain drops falling at a constant high velocity could eventually achieve their terminal ve-
locity [59], with a velocity range between 5 - 9 m/s , if they can fall for at least 12 m

without any obstruction along their paths [60]. The empirical formula derived to calculate
the terminal velocity v of a rain drop with a radius a, is shown below [61]:

−→v = 200
√

a (2.5)

• Distribution in Space:

The distribution of rain drops is generally assumed to be random and uniform, within a
3D volume V in space [59], [62], with a Poisson distribution P(k) [59], which can be
calculated as below:

P(k) =
e−n̄(n)k

k!
, (2.6)

where k is the volumetric count of raindrops, and n̄ = ρV is the average number of rain-
drops n with a density of ρ .

Rain Dynamic Model

The dynamics of rain in a video can be represented by a binary field with a value of 1 and 0
to indicate rain and rain-free pixels [6]. This can be achieved by correlating the space and time
information to calculate the volumetric locations of rain drops in successive frames of the video.
Rain and its direction can then be detected by looking at the neighborhood of pixels with high
correlation in time [6]. This is based on the constant velocity and straight-line motion property
of rain drops. The rain pixels between successive frames are separated by a constant distance in
the image plane in the direction of rain [6].

Rain Photometric Model

Rain drops’ complex appearance with bright illumination are mainly caused by the refraction
of incident radiance from the environment through the rain drops [6]. But raindrops falling at
high velocity appear as rain streaks to human or camera vision due to the blurring effect of the
motion [6]. This phenomenon is found to be caused by the projected duration of raindrops onto
a pixel (<1.18 ms) which is much shorter than the typical exposure duration of a video camera
(30 ms) [6]. Experiments on short (1 ms) vs. long exposure time (30 ms) conducted by the
authors have shown that rain drops appear to be stationary, brighter and non-transparent at short
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exposure time. In other words, the normal transparent appearance of rain streaks seen by human
or camera are actually caused by the motion-blurring effect of rain drops. Various factors such
as the brightness of the rain drops, radiance of its environment and exposure time setting of
the camera can affect the rain streaks’ light intensity at the camera’s pixels [6]. However, the
brightness or intensity increase at the pixels caused by rain drops, in terms of the mean and
standard deviation of the individual RGB components’ intensity level, are found to be the same
for the same region of the image [17].

2.2.2 Rain Phenomena and Categories

In this section, various rain’s distortions and phenomena are being categorized based on
rain’s properties, and both dynamic and photometric rain models as discussed earlier. Rain
drops’ physical properties (high terminal velocity, small diameter size and unique volumetric
distribution in space), camera’s parameters and environmental brightness are three critical fac-
tors that can affect rain’s appearance, as shown below [6]:

σr(I) =
∫

σr(I,z)dz = k0
a2√ρ
√

v
(Lr−Lb)

√
G( f ,N,z0)√

T
, (2.7)

where the r (rain) and b (background scene) are used to denote both L (radiance) terms. The
σr term in the equation is used to denote rain’s visibility or intensity’s standard deviation over
a volume of rain. The camera parameters’ function G in the equation are dependent on the ex-
posure time T , focus distance z0, F-number N and focal length f . In addition, camera gain k0

and distance between the camera and rain drops z can also affect rain’s appearance. Lastly, rain
properties denoted by ρ (rain water density), I (rain pixel’s intensity), a (rain drops’ radius) and
v (rain drops’ velocity) could also cause different phenomena of rain drops.

In addition, due to rain’s high terminal velocity being reduced by both man-made and natural
structures before reaching the ground, the appearance of rain drops could be changed signifi-
cantly by them. As discussed before, rain drops falling at high velocity appear as rain streaks to
human or camera vision due to the blurring effect of the motion [6]. But rain drops appear to be
stationary, brighter and non-transparent at short exposure time or reduced velocity [6]. Hence,
various rain phenomena could be analyzed and categorized into five different types based on
rain’s complex appearance [2]:

i.) heavy or light rain streaks;
ii.) different appearances of rain streaks due to camera settings;
iii.) rain disruption on the glass;
iv.) rain’s random droplets caused by splashing at buildings; and
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v.) rain’s random splashing on puddles of water on ground surface.

We will make use of such derived rain phenomena to test the effectiveness of our proposed
CycleGAN networks in Chapter 4 and 6.

2.2.3 Appearance of Rain Disruption on Images

Based on the rain phenomena discussion in the previous section, the appearance of rain drops
in an image captured outdoor is dependent on how close the volume of rain drops is from the
camera lens, z, besides the environmental brightness. Thus, to remove rain effectively from im-
ages, there is a need to tackle at least two forms of rain appearance, one at the background and
the other one at the foreground [9]. Hence, we can make use of such simplified appearance of
rain on images to design our proposed network to remove rain disruption from images in two
network stages:

i.) first stage is to remove the foreground rain appears as local disruptions’ effect caused by
near-by large rain streaks; and

ii.) second stage is to remove the background rain, which is a far-away rain effect of the scene
that appears hazily in the background caused by tiny rain drops’ cumulative effect.

The detailed network architectures of our proposed algorithm will be discussed later in Chap-
ters 5 and 6.

2.3 Early Rain Removal Approaches

Our focus is in reconstructing the scene distorted by rain from a single image, a more chal-
lenging task than from a video. A detailed analysis of the two categories of rain removal ap-
proaches, namely the video approach and the single-image approach, is provided. From the
study, we have found that conventional, non-deep learning approaches always tackle rain re-
moval problem based on some ’rain priors’ models such as the photometric model for a single
image or the dynamic model for a video. After our discussion on video’s rain removal algo-
rithms, it is followed by a discussion on removing rain disruption from an image which is a
more difficult task. This part of the background study involves a detailed study on the existing
single-image non-deep learning rain removal algorithms derived from rain’s appearance.
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2.3.1 Rain Removal from Video

Based on the three factors affecting rain’s appearance discussed in the previous section [6],
the authors have suggested to remove the blurring effect caused by the moving rain streaks in
both spatial and temporal dimensions, by reducing the value of the camera function G or in-
creasing the camera’s exposure time T as discussed earlier. This technique is recommended for
static or simple background scene only [63]. Another suggested method for rain detection and
removal from video suggested by the same authors is to first detect and then segment individual
rain streaks’ pixels in consecutive frames of the scene, by modelling rain streaks’ appearance,
for subsequent rain removal. Although this method may work for dynamic scene, it is also suit-
able to work with simple background scene without texture only [63].

There are four different video rain detection algorithms proposed. This is summarized in Fig-
ure 2.7. In No Explicit Detection method, rain effect is simply removed by simple noise filtering
techniques [64], [65] and [66], but it fails to detect rain in a moving scene. In Per-Pixel Detection
algorithm, image with rain is classified into rain and rain-free pixels [17], but the temporal prop-
erties of rain will cause some misclassification. In Patch-Based Detection, the rain’s photometric
model is applied to detect rain regions in an image with rain, in each video frame [6]. However,
a rain-free region with other moving objects could be mis-detected by this algorithm, as a hard
thresholding method of classification of rain pixels is used. In Frequency-Based method [63],
rain detection in video is performed by estimating rain’s energy in proportion with other objects
in the spatio-temporal frequency domain. Due to only global patterns of rain is considered in
the frequency domain model, some challenging scenes with cluttered rain frequency will have
difficulties in rain detection and its subsequent removal [63].

After rain detection, removal of rain pixels or region can then be applied. There are two main
methods to remove rain in video [63]: one technique removes rain in the time domain, while the
other one does so in the frequency domain. Figure 2.8 shows the algorithms that fall under these
two methods in video rain removal.

One of the simplest time-based or temporal properties-based approach that can be used for a

Figure 2.7: Taxonomy of rain detection in a rain video [16].
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static scene without moving objects in a video uses a temporal median filter to remove rain pixels
from the video scene [66]. Another simple but faster approach that uses such rain’s properties
in time uses a Kalman filter to estimate rain pixels’ intensity to remove rain in real time [67].
Similar to the other filtering approach, such technique is limited to static scene’s rain removal
only. Later, another algorithm uses the chromatic or color property of rain to remove and then
recover rain pixels’ color values for the same pixels in consecutive frames in a video, instead
of using rain’s temporal properties. As discussed in the previous sections, falling raindrops will
cause the rain-affected pixels to be brighter than the background pixels. This property of rain
is used to recover the background’s pixel color values after rain removal [68]. However, such
technique is also limited to the same drawback as the other filtering methods, which is its in-
ability to remove rain in a dynamic scene [63]. Hence, this is followed by a hybrid approach
that uses both properties of rain in video. Making use of the properties of the change of pixel
locations of raindrops in time and the property of rain’s same intensity changes in all RGB color
channels in all frames [17], K-means clustering technique is applied to the video’s histogram of
intensity values to detect rain pixels, followed by Gaussian blurring with α-blending applied to
the detected rain pixels, to remove rain [17].

Other than rain’s properties in both spatial and temporal domain, its information in the fre-
quency domain can also be used for rain detection and its subsequent removal in video. In the
Frequency-Based technique, rain pixel’s frequency information can be detected by consecutive
frame of the video, but its subsequent removal can be performed independently, using its neigh-
bours in the same video frame for replacement [17]. However, the drawback of this technique is
that the rain pixels cannot be removed completely, and the replaced rain pixels tend to become
darker [69]. Figure 2.9(b) shows the rain removal results based on spatio-temporal frequency
detection.

Figure 2.8: Taxonomy of rain removal in a rain video [63].
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Figure 2.9: Rain detection results (c) of a windowed building with many vertical and horizontal
edges, by subtracting consecutive frames of a video sequence (a) and (b). Some false detections
are seen near the window frames and bushes (reproduced from [16]).

Figure 2.10: Taxonomy of early methods of removing rain from an image.

All these previous works discussed so far focus on the video-based (multi-frame, consecutive
sequence of images) technique to combat the complex visual effect of rain by fitting the spatio-
temporal information of rain streaks in successive images to some predicted rain physics models
[31]. However, there are some limitations to this kind of approach due to the requirement to align
successive frames accurately to improve their detection and removal abilities, and they couldn’t
be used on a single-image scenario, as highlighted in [34]. Hence, there is an increasing number
of works published for removing rain from an image instead, which is also the focus of this
research, as discussed in the next section.

2.3.2 Rain Removal from Single Image

Removing rain from an image instead of a video is a more challenging task because there is
no spatio-temporal information in an image, unlike the video-based techniques, where succes-
sive frames can be compared [6], [13], [14], [16], [17]. A few general approaches for removing
rain from an image have been proposed in [69]. Figure 2.10 shows these general approaches.

Based on the rain detection and removal algorithm for video discussed so far, we can see that
there is a need to find a single-image approach and to cater for both static and dynamic scenes.
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For example, moving objects can be mistaken as some large rain streaks in a video or image
scene due to rain’s fast-moving and large-size properties.

Morphological component analysis can be used as a rain removal method for an image cor-
rupted with rain, using decomposition technique such as the dictionary learning and sparse cod-
ing [20]. Such image decomposition technique based on sparse representation is a common
approach used by many other single-image algorithms. For example, one of the pioneering ap-
proaches has formulated rain removal from an image as a bi-lateral or guided filtering based on
sparse representation or morphological component analysis [22]. However, it has the follow-
ing potential limitations [23], [32]: (i) Its dictionary learning method requires a fairly complex
and lengthy procedure to solve for the sparse coefficients, (ii) It may erase the texture of the
background or rain-free pixels which appear in the same direction as rain streaks, (iii) Some
removed rain pixels may have visual artifacts when the dictionary basis vectors are not clustered
effectively, (iv) It only works on gray images.

Hence, a more recent, improved color-image sparse representation approach is subsequently
proposed [23]. For removal and enhancement of the rain-free pixels, it uses the guided filtering
rather than bilateral filtering technique that is coupled with a hybrid feature set like color and
depth of field (DOF) information [70]. Coincidently, a similar approach, the low-rank appear-
ance model approach, is also proposed to learn rain pixels appearing in repeated and similar
patterns in an image scene, using dictionary learning and sparse coding decomposition tech-
niques [30]. Both improved approaches are similar in their concepts. Their abilities to remove
rain are also comparable [23]. Their rain removal abilities, measured as Visual Information Fi-
delity (VIF), are better compared to the first pioneering approach [23]. But their procedures,
although improved, still require a high amount of processing time [32].

A second guidance / guided image approach is based on the white-color property of rain [33].
By separating the low frequency from the high frequency components of an image, the low fre-
quency components can be used as a guidance image to guide the guided filter to remove rain
pixels from the high frequency components. Although the processing speed of this second ap-
proach and its later refined guidance-image approach [34], is probably the fastest among all
existing approaches [32], this second approach will cause the image to lose too much details and
appears blurry due to effect of low pass filtering [32].

A third approach uses rain’s chromatic properties (rain’s visibility and saturation features) to
detect and then remove rain in the frequency domain. Due to rain’s high visibility and low satu-
ration, the original color and other details in the image can be preserved after rain removal [32]
in the frequency domain as rain’s power spectral appears as elliptical shapes in certain orien-
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tations or directions, which is easy to detect and then removed [32]. Although the processing
speed of this approach is faster than first pioneering approach [23], its rain removal ability is
still inferior.

The fourth approach [31] treats rain removal as a denoising problem, which is simpler than
all other approaches. As rain appears as elliptical and elongated shapes oriented in the vertical
directions of an image, rain can be detected by analyzing both the aspect ratio and the rotated
angle of the elliptical kernel at each pixel. A non-local means filter can then be applied adap-
tively to the rain pixels only, to remove rain. The drawback of this algorithm is that it may cause
the image to look brighter, and some blurring artifacts may occur if rain detection is not done
accurately before applying the non-local means filters to the rain pixels.

Another rain removal method which uses the denoising algorithm is the bilateral filtering
approach, which combines neighbouring pixels’ values in a non-linear fashion, to smooth an
image [70]. And more recently, the sparse and redundant representations via dictionary learning
using the K-SVD algorithm is proposed as the state-of-the-art denoising algorithm to remove
additive white Gaussian noise effectively [71]. But such technique may not yield satisfactory
rain removal capability due to rain’s complex appearance nature on images, as discussed in the
previous sections.

Hence, we can conclude from the above analysis that generally rain removal from a sin-
gle image using conventional, non-deep learning computer vision approaches would face the
challenges of the lack of dynamic spatio-temporal information to identify and remove rain ac-
curately, and the blurring of background scenes as a result of such rain removal processing. In
the next section, we will analyze the effectiveness of various state-of-the-art deep learning rain
removal algorithms.

2.4 Deep Learning Rain Removal Approaches

In Section 2.3, various conventional non-deep learning algorithms are discussed based on
their rain removal methods using the properties of rain. For an image corrupted from rain drops,
the pixels of certain scene are occluded at the moment the images are captured. The process of
removing rain pixels can blur the actual scene content as well, particularly in a dynamic scene
with object motion. Hence, the main challenge of all single-image rain removal techniques is
to completely remove rain pixels and reconstruct the image without blurring the content. Based
on the benefits of deep learning approaches as proposed by many contemporary literatures, we
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propose to model the appearance of random rain streaks based on just a single image captured
at any particular instant, using a new deep learning approach to achieve robust reconstruction of
images that are affected by rain.

Other than the early algorithms developed in the past decades, which are discussed in the
previous sections, various more recent single-image rain removal algorithms have been devised
using signal or layer separation methods, rain filtering using image priors methods, sparse cod-
ing dictionary learning method, rain priors approaches, CNN and other advanced GANs algo-
rithms, as discussed and shown in Figure 1.1.

Convolutional Neural Network (CNN) approaches have been recently used to remove rain
from an image [35]- [38]. CNN can be trained to perform a forward image-mapping from a
domain with rain (X) to another domain that is rain-free (Y ), in an end-to-end manner. It has
shown more superior results than the conventional approaches in removing rain from an image,
including scenes of heavy rain. But as pointed out by the more advanced Generative Adversarial
Networks (GANs) approaches [5], the CNN couldn’t remove rain distortion as thoroughly as the
GANs approaches.

The success of GANs [4] in image super-resolution [51], image inpainting [52] and im-
age generation [53], [54] have prompted many researchers to look at this approach as a more
promising approach to remove rain completely from an image without introducing unwanted
distortion. Among the early GANs methods introduced for rain removal is the Image De-raining
Conditional Generative Adversarial Network (ID-CGAN) [5], a rain removal approach based on
the general purpose Conditional Generative Adversarial Network (CGAN) network.

The GANs consists of two models: a generative model, G and a discriminative model, D.
The generative model learns the forward mapping to generate an output image based on the given
input, such that it is capable of deceiving the discriminative model with its generated images.
If the discriminative model is unable to distinguish those generated images from real images,
the learning process is completed. Similar to GANs which has a generative model, G and a
discriminative model, D, the CGAN is introduced for general purpose image-to-image transla-
tion tasks such as mapping a semantic label to a scene image, translating an image with object
outlines to a color photo, and so on [54]. The advantage of the CGAN is the elimination of the
need for special, hand-crafted loss function to be specified for every image-to-image translation
task. Hence, the ID-CGAN is using the CGAN framework to directly tackle the single-image
rain removal problem by learning a forward mapping from a domain with rain (X) to another
domain that is rain-free (Y ), using the discriminative model in CGAN to guide the network’s
learning process to ensure that the generated rain-free images by the generative model are indis-
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tinguishable from the ground truth or rain-free counterparts by the discriminative model. Hence,
for the ID-CGAN, the training images are also required to be made up of both rain and rain-free
(ground truth) image-pairs for its network training.

In addition to the ability of the ID-CGAN to incorporate the CGAN criterion into its opti-
mization framework to remove rain, the ID-CGAN approach also uses an additional perceptual
loss function in its framework to ensure that the visual quality of its reconstructed rain-free im-
ages outperforms other advanced techniques.

2.5 Rain Removal as an Image Translation Problem

The ID-CGAN discussed in the previous section has treated rain removal as an image transla-
tion or style transfer problem. Similarly, our first proposed method in this research is to perform
an image translation from rain to rain-free domains using a special GANs, the Cycle-Consistent
Generative Adversarial Network (CycleGAN) [8]. But the CycleGAN does not require similar
image-pairs for rain removal network training, so in this sense it has an added advantage over
other CNN and GANs networks. This is possible because the CycleGAN has two generative
and two discriminative models that can be trained to perform a forward image-mapping from a
domain with rain (X) to another domain that is rain-free (Y ), and vice versa. It learns both for-
ward and reverse mappings, such that the additional feedback or cycle-consistency loss ensures
the generated images from domain Y also appear as real as possible to the discriminative model
in the X domain.

Hence, we will start the discussion on the network development of our first proposed rain
removal network using the CycleGAN in Chapter 4. This was motivated by our belief that the
CycleGAN, which has two generative and two discriminative models, can be trained to per-
form a better forward image-translation from a domain with rain (X) to another domain that
is rain-free (Y ), better than the ID-CGAN. Based on our results shown in Chapter 4, we have
then built on the CycleGAN approach by tackling rain with different appearance and frequency
bands, using novel multi-scale CycleGAN approaches, namely the MS-CycleGANs and the W-
CycleGANs, to further address the gaps identified in the CycleGAN’s performance [2]. These
two later approaches will be discussed in detail in Chapters 5 and 6 respectively.

In the next chapter, a Convolutional Autoencoder (CAE) will first be studied to reconstruct
a rain-free output image from a compact latent representation of the input rain image, as dis-
cussed in Section 2.1.1. This will enable the understanding of the optimal network capacity that
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provides good image reconstruction.



Chapter 3

Parameterization of Convolutional
Autoencoders for Reconstruction of Small
Images

In Chapter 2, the general use of a CAE as a basic skeleton for image reconstruction based
on its latent representation of the input image was discussed. Before we discuss our proposed
CycleGAN algorithm in Chapter 4 which is a more complicated GANs network and sharing
a similar basic encoder-decoder structure, we can study how to parameterize a CAE to recon-
struct a small image effectively, to ensure our proposed CycleGAN will have sufficient network
capacity to suit a large image’s reconstruction task. By doing so, we can also analyze the effec-
tiveness of the features being represented in the compressed latent space of a CAE qualitatively,
as well as quantitatively using the mean squared error or image reconstruction error, to avoid
overfitting or underfitting phenomena from occurring at the bottleneck layer of any network. In
other words, this study is an important first step to analyze the effectiveness of our proposed
algorithm later, by ensuring we have enough network capacity to learn a good image reconstruc-
tion in the latent space of the networks. In this CAE parameterization study for a small image’s
reconstruction task, besides looking at the quality of the images reconstructed by the networks,
we need to determine the optimum number of neurons in the hidden or bottleneck layer to create
an accurate latent representation of the input.

Although there exist some methods, which are used for determining the number of neurons
in the hidden nodes of a conventional neural network [72], [73], [74], the research on deciding
the optimum parameters such as the number of neurons in the hidden layer is still lacking to
date [1]. This may pose a challenging issue while considering the complex problem of rain
removal, using the proposed CycleGAN. If the number of neurons is less, as compared to the
complexity of the problem data then "underfitting" may occur, when there are too few neurons

29
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in the hidden layers to adequately detect the signals in a complicated rain data set. If unnec-
essary more neurons are present in the network then "overfitting" may occur. Even the most
recent development of autoencoder methods for image reconstruction [49], [55] did not address
such parameterization concern [1]. Thus, the first motivation behind this research is to derive
an optimum set of Convolutional Autoencoders’ parameters for the reconstruction of the input
image, which is the fundamental purpose of image reconstruction. The experimental results of
this research will be presented and discussed. Most of the material in this chapter is published
in the 15th International Conference on Control, Automation, Robotics and Vision [1].

In this chapter, a framework for deriving an optimum set of CAE parameters for the recon-
struction of input images based on the standard Modified National Institute of Standards and
Technology (MNIST) data set is proposed. The robustness of the parameters is then verified
using other data sets like the Street View House Numbers (SVHN) data set. Our results show
that for small 32x32 pixels’ input images, having 2560 neurons at the hidden layer (bottleneck
layer) and 32 convolutional feature maps can result in optimum reconstruction performance for
the CAE. In addition, the quantitative mean squared error (MSE) and the qualitative (2D visu-
alization of the neurons’ activation, the histogram statistics and estimated source entropy at the
hidden layers) analysis methodology provided by this work can provide a good framework for
deciding the parameter values of the CAEs to provide good representations of the input image.

Section 3.1 introduces the CAE model architecture derived for this study. Then it leads
us to discuss the methodology used in our experiments both quantitatively and qualitatively to
analyze the effectiveness of a CAE in preserving good feature information and reconstructing
input images in Section 3.2. The experimental results of our CAE models based on the standard
MNIST data set for reconstruction of small images are presented in Section 3.3. The results of
the reconstruction performance of the selected CAE model with its parameters optimized, are
compared with other similar input data set, the SVHN, to check the robustness of the model.
Finally, this chapter is concluded with major findings for our research in Section 3.4.

3.1 CAE Models

For a CAE, we have to build a network which takes an image as an input, and reconstruct the
same image as an output. Of course, the identity function would do this exactly, but we would
not have learned any useful feature about the image that way. To prevent this, we will make
the bottleneck layer of the network quite narrow. This means that the network must compress
all the data from the image to a smaller vector from which it must reconstruct the image. This
forces the autoencoder structure inside the CAE to learn useful features about the image. We
will discuss the details of image compression and information theory in the next section. The
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architecture of this skeleton model (Model 1) is shown in Fig. 3.1.

For this skeleton model, we will start with a network with one convolutional/pooling layer
and one deconvolution/unpooling layer, called Model 1, both with filter size of 3×3. The narrow
encoding layer starts with 40 neurons (Nn). This model can be trained on a Nvidia 850 GPU
in about 15 minutes with no. of epochs, Ne, equals 20 and no. of feature maps, Nm, equals
32. Note that the unpooling layer is simply performing an upsampling operation, as opposed
to downsampling operation for pooling layer, and the deconvolutional operation is the same as
the convolutional step for symmetric convolutions upwards or downwards. This is shown in
Fig. 3.2. We then compare Model 1 with Model 2, which comprises three convolutional/pooling
layers and three deconvolutional/depooling layers. Since we choose to use valid borders for the
convolutional and deconvolutional steps, the sizes of the layers at each step has to be calculated
carefully in order to get the output image size to be the same as the input. The comparison of
the two models are shown in Fig. 3.3.

Figure 3.1: Basic Convolutional Autoencoder Model (Model 1).

Figure 3.2: Model 1’s architecture.
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Figure 3.3: Comparison of Model 1 and Model 2.

3.2 Methodology

In this section, the methodology used in our experiments to quantitatively and qualitatively
analyze the effectiveness of a CAE, specifically in preserving good feature information and
reconstructing input image, is discussed.

3.2.1 Image Compression, Information Theory and Entropy

CAE is often used in image compression to reduce the original image’s data at the encoded
representation. Since our inputs are images, we use Convolutional Neural Networks as encoders
and decoders in a CAE. As discussed in Chapter 2, the CAE consist of two blocks: an encoder
and a decoder. The input image, denoted as f (x,y), is fed into the encoder which creates a set
of information carrying units (or bits) to represent the image in the latent space at the bottleneck
layer, via a convolutional network. For image compression, the bottleneck layer of the network
is normally made quite narrow to ensure the network must compress the input image to a smaller
vector from which it must reconstruct the output image. This forces the autoencoder structure
inside the CAE to learn useful features about the image. If n1 and n2 are number of bits in the
original image and encoded image respectively, the compression ratio CR can be defined as [77]:

CR =
n1

n2
(3.1)

The encoded image is then used by the decoder to reconstruct an output image which can be
denoted as f̂ (x,y).

The question that naturally arises is: How many bits are required to compress or represent
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an image’s gray level completely? This question can be found in the theoretical framework
provided by the information theory. According to this theory, information can be generated by
modeling the probability of its generation process intuitively. This foundation of the informa-
tion theory can be traced back to 1948, in response to the need of a communication system’s
design by Claude Shannon [75]. It covers the mathematical theorems for calculating signal
transmission’s limitations, ranging from its representation’s efficiency to the transmission chan-
nel’s reliability. According to this theory, we can represent each gray level of an image with L

gray levels by computing the probabilities of each occurrence in the image, pr(rk), where rk is a
discrete random variable in the range of k = 1,2, ...,L, as described below [77]:

pr(rk) =
nk

n
, k = 1,2, ...,L (3.2)

where nk is the number of occurrences of the kth gray level, and n is the total pixel counts in
the image, respectively. To find the average number of bits needed to represent each pixel or the
average code words’ length assigned to each gray-level value, Lavg, we can calculate the sum
of the product of I(rk) and pr(rk), where I(rk) is the number of bits used for each rk, as shown
below [77]:

Lavg =
L

∑
k=1

I(rk)pr(rk) (3.3)

Hence, to encode an image with the size of M×N, the required total number of bits is MNLavg

[77].

For a discrete random event E, the amount of information represented can be calculated
using the probability of the random event, P(E), which can be computed as follows [77]:

I(E) = log
1

P(E)
=− logP(E) (3.4)

where the result always assumes a positive value or zero. In other words, there is no information
transmitted when its associated event’s probability is 1.0 or the event has no uncertainty. In other
words, rare events which are more uncertain will require more information to be represented,
and thus, a greater number of bits is needed to represent the event.

For a discrete set of possible events {a1,a2, ...,a j}, the Entropy of the source [76] or the
average information for each source output, H, can be defined for the source of random events
with probabilities {P(a1),P(a2), ...,P(a j)}, as follows [77]:

H =−
J

∑
j=1

P(a j) logP(a j) (3.5)
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Figure 3.4: Visualization of the neurons’ arrangement at layer 3 in a 2-D form.

For an image, which can be considered a "gray-level source", its gray-level histogram can
be used to generate the first estimate of the source’s entropy, H̃, as follows [77]:

H̃ =−
L

∑
k=1

pr(rk) log p(rk) (3.6)

3.2.2 2-D Neuron Activation, Histogram Statistics and Entropy Visualiza-
tion

For Model 1, the information captured by the 5408 neurons at the flatten layer (layer 3) are
compressed to 40 or more neurons at the fully-connected bottleneck layer (layer 4). Since it is
difficult to visualize them in a 1-D form, naturally it will be easier to visualize them in a 2-D
form as shown in Fig. 3.4. There are 169 neurons arranged in each row and they correspond to
the 169 neurons (or 13×13) in each of the 32 feature maps. Since each feature map at the flatten
layer (layer 3) is the result of the convolution using different filters learnt followed by a subse-
quent pooling operation, any variation seen along the row should show the information captured
by each map, which is represented by the neurons’ activation states. Any variation along the
column should be irrelevant for visualization of the information captured by each convolution
and pooling operations at each of the feature map, as they may not show strong image structures.

To further examine the utilization of the 5408 neurons for the flatten layer (layer 3), we will
also look at the entropy values of the neighboring 169 neurons for each neuron shown in each
row of Fig. 3.4. The entropy values will be calculated and presented in a 2-D form as well.
Also, although the neurons at the bottleneck layer (layer 4) can’t be arranged by feature maps
row-by-row, we will visualize and examine the encoded neurons with the assumption that the
variations across neurons arranged in a 2-D form will still show some structure of activation as
the neurons are still in the right order of neighboring sequence.

Finally, the histogram visualization of the stacked feature maps at both layers under study is
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conducted. By looking at the statistics and histograms of each of the visualized 2-D maps and
entropy images, we can then verify our conclusion on the effectiveness of the latent representa-
tion of input by our CAE.

3.2.3 Accuracy Study of Image Reconstruction using Mean Squared Er-
ror (MSE)

By using the MNIST data set as the training and validation input images, the training and valida-
tion results of our network can be measured by the mean squared error (MSE) values. The MSE
is the mean of the square of the error values between the reconstructed output and the training
and validation input images, and indicates the accuracy of image reconstruction of the two net-
work models. We can then use the better model for our qualitative study in the subsequent stages.

We can also use the MSE to conclude our analysis by comparing the quality of image recon-
struction (measured by mean squared error, MSE) and the efficiency of 2-D neurons’ utilization
in the same plots for varying both the number of neurons (Nn) and the number of feature maps
(Nm). We will first define our analysis framework of using MSE as a quantitative measure of our
CAE network performance. This framework is based on the autoencoder framework [78] which
has an encoder function, fθ , that extract features from an input x to compute a feature vector h

= fθ (x), which is defined as:

h = fθ (x) (3.7)

The decoder function, gθ , then reconstruct the input using the encoded feature vector. The re-
constructed output is r = gθ (h).

Autoencoders are parameterized through their encoder and decoder with the set of parame-
ters θ , which is made up of weights and biases. During training, it learns the parameters of both
the encoder and decoder to reconstruct the input simultaneously, and iterates towards the lowest
possible reconstruction error, L(x,r), which is the difference between input x and its reconstruc-
tion r. In order to estimate the data generative distribution without learning an identity function,
similar low-dimensional constraint applied to the autoencoder or Principal Component Analysis
(PCA) is also applied to the CAE in the regularization process. To measure the reconstruction
error, MSE is defined for our experiments as follows:

L(x,r) = ‖x− r‖2 (3.8)



CHAPTER 3. PARAMETERIZATION OF CONVOLUTIONAL AUTOENCODERS 36

3.2.4 Robustness Study using another data set

The final part of our methodology on image reconstruction analysis is to verify the formula-
tion of the network parameterization guideline of the CAE using a more complex small image
data set, the Street View House Numbers (SVHN). This will help to check the robustness of
our hypothesis that the Convolutional Autoencoder is capturing useful information and being
utilized in an efficient manner by setting the appropriate Ne (number of epochs), Nn (number of
neurons at the bottleneck layer) and Nm (number of feature maps) numbers to parameterize our
CAE. After the discussion of the proposed parameterization study methodology, the results are
presented in the next section.

3.3 Results and Discussions

In this section, the MSE results are presented for a varying number of epochs, Ne, for the
two models discussed in the previous section, Model 1 and Model 2. In addition, we will
also compare the sensitivity of the MSE results to Nn for both models, to find the optimum
range of the number of epochs (Ne) and the number of neurons (Nn) for our subsequent CAE
experiments. The purpose of the subsequent experiments is to optimize the network structure
and to understand how well the neurons are utilized in the Convolutional Autoencoders for the
selected model, as well as to identify the optimum number of neurons Nn at the bottleneck layer
and the optimum number of feature maps Nm. We will use the methodology discussed to analyze
these results.

3.3.1 Model Selection and No. of Epochs, Ne

The effect of varying the number of epochs, Ne, on both Models 1 and 2, is shown in Fig. 3.5.
We observe that the convergence rate of the MSE for both models are an exponential function
over Ne, i.e. ke−aNe , where a is a constant rate of reduction and k is the initial MSE value. The
values of k and a are found by performing a best-fit function for both models, and are found
in the range of < 0.4 and < 0.1 respectively. But the initial MSE for Model 2 is found to be
significantly higher than Model 1, as shown in Fig. 3.5. Note that the number of neurons, Nn,
is fixed at 40 for the experiment. As their MSE values become smaller when Ne increases, they
reach their steady state MSE values at Ne > 15. Hence, for all subsequent experiments, we have
fixed Ne = 20. Note that Nm is fixed at 32 throughout our experiments.

We observe that having more neurons (and hence more parameters) are better for image re-
construction by a CAE when comparing Model 1 and 2 architecture. The flatten layer (layer 3,
before the bottleneck layer) of Model 1 has a much larger number of neurons (5408, and hence
a greater number of parameters), vs 32 neurons only for Model 2. Model 2 may have too much
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Figure 3.5: Comparison of convergence rate between model 1 and model 2 for no. of neurons
Nn = 40 for the bottleneck layer.

information loss compared to Model 1 before being compressed.

The use of standard online back-propagation algorithm in our case, has shown that it can be
difficult to reduce training error to a level near the globally optimal value, even when using more
weights than training cases. But increasing the number of weights makes it easier for standard
back-propagation algorithm to find a good local optimum, so using "oversized" networks can re-
duce both training error and generalization error. We have shown that by increasing the number
of neurons in the hidden layer just before data compression plays an important role in reducing
both training error and generalization error measured in MSE for a small MNIST image data set.

From these results, we can conclude that Model 1 which has 1 Conv/Pool and 1 Deconv/Depool
layers is better than other models which has more Conv/Pool and Deconv/Depool layers for
MNIST data set. Hence, Model 1 is selected for all our subsequent experiments.

3.3.2 No. of Neurons, Nn

In this section, we present the comparison results of the 2-D visualization of neurons’ acti-
vation, the mean and standard deviation values of the 2-D neurons’ activation maps, the 2-D
visualization of the entropy, as well as the image reconstruction results (measured by MSE), as
the number of neurons of the bottleneck layer, Nn, is varied from 40 to 2560. The Ne and Nm are
fixed at 20 and 32 respectively throughout our experiments.

Fig. 3.6 shows the visualization of the stacked feature maps’ neuron activation states and
Fig. 3.7 shows the visualization of the histogram of the stacked feature maps at the flatten layer
(layer 3) with different no. of neurons at the bottleneck layer (layer 4). As shown in Fig. 3.6,
there are more activated neuron’s structure or patterns as the number of neurons Nn increases
from 40 to 2560, as there are lesser inactivated (black) neurons when Nn increases. Fig. 3.7(a)
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Figure 3.6: Visualization of the stacked feature maps’ neuron activation states at layer 3 with
different no. of neurons at the bottleneck layer: (a) Nn = 40; (b) Nn = 160; (c) Nn = 640; and
(d) Nn = 2560.

Figure 3.7: Visualization of the histogram of the stacked feature maps at layer 3 with different
no. of neurons at the bottleneck layer: (a) Nn = 40; (b) Nn = 160; (c) Nn = 640; and (d)
Nn = 2560.

to (c) show there are many inactivated neurons concentrated at the zero gray level cluster. There
is no significant difference seen among their distributions, although the distributions are more
evenly spread out as Nn increases from 40 to 640. But for Fig. 3.7(d), we can see that there
are lesser inactivated neurons concentrated at the zero gray level cluster. Hence, the information
representation ability at Nn = 2560 is better in information representation for our Convolutional
Autoencoder model.

Next, the first estimate of the source’s entropy in the neighboring 169 neurons for each neu-
ron in the same feature map at layer 3 according to a 2-D stacked feature map is studied, as
shown in Fig. 3.8. The results show the number of high entropy values growing as the number
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Figure 3.8: Visualization of the 169 neighborhood’s first estimated entropy values of the stacked
feature maps’ neurons at layer 3 with different no. of neurons at the bottleneck layer: (a) Nn =
40; (b) Nn = 160; (c) Nn = 640; and (d) Nn = 2560.

of neurons Nn increases from 40 to 2560 at the bottleneck layer, as shown from Fig. 3.8(a) to
(d). Fig. 3.8(a) shows the least number of high entropy values (computed from Equation (3.6))
due to a large number of inactivated neurons with the probability pr(rk) values close to 1. Hence
from the many high entropy values as shown in Fig. 3.8(d), Nn = 2560 has better information
representation ability.

Similarly, we can employ the same techniques to visualize the activation of the neurons at
the bottleneck layer (layer 4). The results are shown at Figs. 3.9 to 3.11. Our results show that
almost all neurons are fully activated to represent the bottleneck information, with Nn = 40 in
Fig. 3.9(a). As Nn increases from 40 to 2560, there are more neurons’ activation with lesser sat-
uration observed, in particular so for Nn = 2560 which shows very few highly saturated neurons
at the rightmost of the grey level distribution. This may explain the improvement in training and
generalization (validation) losses (measured in MSE), as shown in Fig. 3.5 previously, as Nn is
increased from 40 to 2560 for Model 1.
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Figure 3.9: Visualization of the stacked feature maps’ neuron activation states at layer 4 with
different no. of neurons at the bottleneck layer: (a) Nn = 40; (b) Nn = 160; (c) Nn = 640; and
(d) Nn = 2560.

Figure 3.10: Visualization of the histogram of the stacked feature maps at layer 4 with different
no. of neurons at the bottleneck layer: (a) Nn = 40; (b) Nn = 160; (c) Nn = 640; and (d)
Nn = 2560.

This is further supported by the first estimate of the source’s entropy in the neighboring neu-
rons for each neuron in the same feature map at layer 4 presented in a 2-D form in Fig. 3.11. Fig.
3.11(a) shows many low entropy values due to many highly saturated neurons with pr(rk) close
to one, with the first estimated entropy values close to zero. As the entropy values get larger
from Fig. 3.11(a) to (d), there are lesser low entropy values seen and the information captured
is more clustered. This result is consistent with the conclusion from Fig. 3.8, which shows that
a larger number of neurons, Nn, will result in better information representation ability. Hence,
from the many high entropy values as shown in Fig. 3.11(d), it is concluded that Nn = 2560 will
have better information representation ability.
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Figure 3.11: Visualization of the neighborhood’s first estimated entropy values of the stacked
feature maps’ neurons at layer 4 with different no. of neurons at the bottleneck layer: (a) Nn =
40; (b) Nn = 160; (c) Nn = 640; and (d) Nn = 2560.

Figure 3.12: Comparison of the image reconstruction results (measured by MSE), and the mean
and standard deviation values of the 2-D neurons’ activation maps, as the number of neurons of
the encoded layer, Nn, is varied from 40 to 2560, at both layer 3 and 4.
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Figure 3.13: Visualization of the stacked feature maps’ neuron activation states at layer 3 with
different no. of feature maps with Nn fixed at 1200: (a) Nm = 8; (b) Nm = 16; (c) Nm = 24; and
(d) Nm = 32; and (e) Nm = 40.

3.3.3 No. of Feature Maps, Nm

In line with our results of varying Nn, we believe that as Nm increases, we should also see bet-
ter information representation by our CAE. Hence, the same techniques were used to examine
the neurons’ activation state for the flatten layer and bottleneck layer (layers 3 and 4) with the
number of neurons at the bottleneck layer (layer 4) Nn fixed at 1200, and varying the number of
feature maps Nm (Nm=8, 16, 24, 32 and 40).

Fig. 3.12 shows the comparison of the reconstruction results (measured in MSE) and the
mean and standard deviation values of the 2-D neurons’ activation maps, as the number of neu-
rons of the bottleneck layer, Nn, is varied from 40 to 2560, at both layers 3 and 4. The reduction
in the MSE values as Nn increases, as shown in Fig. 3.12, suggests that information representa-
tion ability at Nn = 2560 is better for our Convolutional Autoencoder model.

As shown by the results in Figs. 3.13 to 3.19, the visualization of the stacked feature maps’
neuron activation states, the histograms of the stacked feature maps, the entropy maps and the
MSE results at layers 3 and 4 (for different no. of feature maps) have all shown that Nm=32
or more will have better information representation ability as there are more activated neuron’s
structure or patterns and high entropy values, and lesser inactivated neurons concentrated at the
zero gray cluster, as the number of feature maps Nm increases from 8 to 40. The results are
consistent with our previous discussions.



CHAPTER 3. PARAMETERIZATION OF CONVOLUTIONAL AUTOENCODERS 43

Figure 3.14: Visualization of the histogram of the stacked feature maps at layer 3 with different
no. of feature maps with Nn fixed at 1200: (a) Nm = 8; (b) Nm = 16; (c) Nm = 24; (d) Nm = 32;
and (e) Nm = 40.

3.3.4 Robustness Check

In this section, the formulation of the network parameterization guidelines of the Convolutional
Autoencoder will be verified using a more complex small image data set, the Street View House
Numbers (SVHN) data set. It helps us check the robustness of our hypothesis that the Convolu-
tional Autoencoder is capturing useful information and being utilized in an efficient manner by
setting Nn of at least 2560, Nm of at least 32 and Ne of at least 20. Fig. 3.20 shows our CAE’s
image reconstruction results based on the SVHN data set. It can be seen that Nn of 2560 pro-
duces the highest quality reconstructed image and is most recommended. All the results based
on our methodology arrive at the same conclusion when varying Nn and Nm.

3.4 Conclusion and future work

In conclusion, the visualization of neurons’ activation and entropy at layer 3 and 4 of our
CAE model have proved that having Ne=20, Nn=2560 and Nm=32 will represent information
well for a small input image size of 32x32 pixels.

In this chapter, we have presented our experimental setup and results of studying a proposed
methodology to parameterize our CAE. The effectiveness of the methodology is verified both
qualitatively and quantitatively using small input images, i.e. the standard MNIST data set. The
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Figure 3.15: Visualization of the 169 neighborhood’s first estimated entropy values of the
stacked feature maps’ neurons at layer 3 with different no. of feature maps with Nn fixed at
1200: (a) Nm = 8; (b) Nm = 16; (c) Nm = 24; (d) Nm = 32; and (e) Nm = 40.

Figure 3.16: Visualization of the stacked feature maps’ neuron activation states at layer 4 with
different no. of feature maps with Nn fixed at 1200: (a) Nm = 8; (b) Nm = 16; (c) Nm = 24; (d)
Nm = 32; and (e) Nm = 40.
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Figure 3.17: Visualization of the histogram of the stacked feature maps at layer 4 with different
no. of feature maps with Nn fixed at 1200: (a) Nm = 8; (b) Nm = 16; (c) Nm = 24; (d) Nm = 32;
and (e) Nm = 40.

Figure 3.18: Visualization of the neighborhood’s first estimated entropy values of the stacked
feature maps’ neurons at layer 4 with different no. of feature maps with Nn fixed at 1200: (a)
Nm = 8; (b) Nm = 16; (c) Nm = 24; (d) Nm = 32; and (e) Nm = 40.
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Figure 3.19: Comparison of the image reconstruction results (measured by MSE), and the mean
and standard deviation values of the 2-D neurons’ activation maps, as the number of feature
maps of the bottleneck layer, Nm, is varied from 8 to 40, at both layer 3 and 4.

Figure 3.20: Input image and reconstructed 32×32 results of the SVHN data set with different
no. of neurons at the bottleneck layer: (a) Nn = 40; (b) Nn = 160; (c) Nn = 640; and (d)
Nn = 2560.

Street View House Number (SVHN) data set is used to conclude our network parameterization
study on the CAE by checking the robustness of our methodology.

The results of the parameterization study of our CAE for small input images like in MNIST
(28×28 pixels) and the SVHN (32×32 pixels) data sets have shown that having 2560 neurons
at the hidden layer (bottleneck layer) and 32 convolutional feature maps at both the encoder
and decoder can result in optimum reconstruction performance for our single conv/pool and de-
conv/depool layers’ Convolutional Autoencoders. Our results show that using both the quantita-
tive (MSE) and the qualitative (2D visualization of the neurons’ activation, histogram statistics
and estimated source entropy at the layer just before the bottleneck layer and the bottleneck
layer itself) analysis methodology, as proposed by this work, can provide a good framework
for deciding the optimum parameter values of the Convolutional Autoencoders to provide good
representation of the input image.
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As shown in our results, increasing the number of network layers for small image data sets
like the MNIST and SVHN is not as effective as our single-layer model CAE. Moving forward,
we may extend the study of our Convolutional Autoencoders by using a larger image’s data set to
look at the effect of varying the no. of network layers on the parameterization study of the CAE
in the future. But for our research purpose of image reconstruction under visual disruption by
rain, this study has already provided a good background understanding on how to optimize our
proposed CycleGAN networks for a selected input rain image size for reconstruction purpose.



Chapter 4

Generation of a rain-free image using
CycleGAN

As mentioned in Chapter 2, the success of GANs [4] in image generation [53], [54] has
prompted many researchers to look at this approach as a more promising approach to remove
rain completely from an image without introducing unwanted distortion. Among the early GANs
methods introduced for rain removal is the Image De-raining Conditional Generative Adversar-
ial Network (ID-CGAN) [5], a rain removal approach based on the general purpose Conditional
Generative Adversarial Network (CGAN).

Similar to GANs which has a generative model, G and a discriminative model, D, the CGAN
is introduced for general purpose image-to-image translation tasks such as mapping a semantic
label to a scene image, translating an image with object outlines to a color photo, and so on [54].
The advantage of the CGAN is the elimination of the need for special, hand-crafted loss func-
tion to be specified for every image-to-image translation task. Hence, the ID-CGANs is using
the CGAN framework to directly tackle the single-image rain removal problem by learning a
forward mapping from a domain with rain (X) to another domain that is rain-free (Y ), using
the discriminative model in CGAN to guide the network’s learning process to ensure that the
generated rain-free images by the generative model are indistinguishable from the ground truth
or rain-free counterparts by the discriminative model. However, for the ID-CGANs, the training
images are required to be made up of both rain and rain-free (ground truth) image-pairs for its
network training.

Thus, the first motivation behind this research is to use another GANs method, the proposed
CycleGAN, which is an unpaired image-to-image translation technique that doesn’t require such
image-pairs for network training, to remove rain distortion. CycleGAN has been successfully
used for image style transfer [8], without the need of image-pairs for training. Its network archi-

48
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tecture details, followed by a result comparison with the ID-CGAN, is discussed in this chapter.
Most material presented and discussed are published in the ECCV 2018 Workshop Proceed-
ings [2].

4.1 Background

The CycleGAN method [8] follows the recent framework of the CGAN [54] to perform
image-to-image translation by learning the mapping across different domains, without the use
of image-pairs. Before the CycleGAN, other recent unpaired image-to-image translation ap-
proaches such as the CoupledGANs (CoGANs) [79] and cross-modal scene networks [80] are
also proposed to learn the shared representation across the two domains. Such unpaired frame-
work has also been extended with a combination of VAEs and GANs [81] to learn the common
representation across different domains. Unlike these approaches, the CycleGAN is a general
image-to-image translation approach that uses the idea of transitivity to supervise the learning
of both forward and backward mappings [82], [83]. It uses the similar cycle-consistency loss to
push both forward-backward mapping functions to be consistent with each other [8].

In this chapter, the CycleGAN’s application in image-to-image translation tasks has been
intuitively extended to removing rain disruption from an image as the CycleGAN has two gen-
erative and two discriminative models which can be trained to perform a better forward image-
mapping from a domain with rain (X) to another domain that is rain-free (Y ), without the need
of image-pairs [2]. Hence, the CycleGAN is discussed based on how it can remove real rain
disruptions from images, from both theoretical and experimental aspects. Our qualitative re-
sults show that it can be used as a practical image’s style transfer approach for rain removal,
as it is capable of transferring an image with rain to an image that is rain-free, without the use
of rain training image-pairs. This is important as natural or real rain images don’t have their
corresponding image-pairs that are rain-free. For a quantitative measure of the effectiveness of
image reconstruction with rain removal, the Natural Image Quality Evaluator (NIQE) will be
introduced. This concludes Chapter 4.

4.2 CycleGAN’s Network model, parameter and training data
set

The CycleGAN is a practical image’s style transfer approach that falls into the unpaired cat-



CHAPTER 4. GENERATION OF A RAIN-FREE IMAGE USING CYCLEGAN 50

Figure 4.1: The CycleGAN model is made up of two adversarial generators G(X) in the forward-
mapping direction and F(Y ) in the reverse-mapping direction. Their associated adversarial dis-
criminators are DY and DX respectively.

Figure 4.2: The cycle-consistency loss ensures that the results of the forward image-mapping
function G(X) (from blue to red), followed by a reverse-mapping function F(Y ) (from red to
blue), can be as similar as possible to the initial input.

egory, which is capable of transferring an image with rain to an image that is rain-free, without
the use of training image-pairs. The CycleGAN is ideal for our rain removal purpose because
it can learn the rain statistics for removing rain, by using an image-mapping function G(X) to
translate the input rain images from the rain domain (X) to the generated rain-free images in
the rain-free domain (Y ), such that they are very similar to the statistics of the rain-free images.
This can be achieved by having two generators and two discriminators in the CycleGAN, and
training the CycleGAN using two types of losses: General Adversarial Networks (GANs) loss
and cycle-consistency loss [8]. This is because the forward-mapping is an under-constrained
problem, which has to work together with an inverse function F(Y ) to translate it back to the X

domain, using a cycle-consistency loss function to achieve F(G(X))≈ X [8].

If the training samples are provided in both domains X and Y during the CycleGAN’s net-
work training, it aims to learn both forward-mapping and reverse-mapping functions in both
domains simultaneously. Figure 4.1 shows this model which is made up of two mappings:
Forward-mapping G(X) in the X → Y direction together with its associated adversarial dis-
criminator DY and reverse-mapping F(Y ) in the Y → X direction together with its adversarial
discriminator DX . In domain X of the CycleGAN, DX is responsible for distinguishing between
the given X images and the translated images Y → X , while DY aims to discriminate between
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the given images in domain Y and the translated images X → Y . Hence, there are two objec-
tive terms for the CycleGAN during its network training, namely the adversarial or GANs loss
(LGAN) and the cycle-consistency loss (Lcyc). The adversarial loss in each domain targets to
fit its data generative model to the actual data distributions, while the cycle-consistency loss en-
sures that the results of the forward image-mapping function G(X) (from blue to red), followed
by a reverse mapping function F(Y ) (from red to blue), can be as similar as possible to the initial
input after training. This is illustrated in Figure 4.2.

The combination of this cycle-consistency loss with GAN losses in both X and Y domains
results in the overall CycleGAN loss function as shown below [8]:

L (G(X),DY ,F(Y ),DX) =λLcyc(G(X),F(Y )) (4.1)

+LGAN(X ,Y,G(X),DY )

+LGAN(Y,X ,F(Y ),DX),

where DY is the associated discriminator for G(X) to translate images X→Y , and the same def-
inition applies to F(Y ) and DX . The cycle-consistency loss is controlled by a constant parameter
λ , as shown in Equation (4.1).

Figure 4.3: The network architecture of the CycleGAN model [8]. Only the image-to-image
translation in the forward direction is shown in the figure.

Figure 4.3 illustrates the CycleGAN model [8], which is made up of two generators and dis-
criminators, as discussed before. For our proposed CycleGAN, the generator architecture from
the CycleGAN [8] is simplified to accommodate only one input image size (256x256) for the
rain-removal CycleGANs network, and the same simplification is adopted for the discriminator
architecture as well. It uses the same PatchGANs [8] to learn how to decide whether the image
patches overlapped that are of the same size are real image patches, during network training, to
reduce the discriminators’ number of parameters.
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Figure 4.4: The network architecture of the CycleGAN model’s encoder.

Figure 4.5: The network architecture of the CycleGAN model’s transformation stage.

Figure 4.6: The network architecture of the CycleGAN model’s decoder.

Each generator consists of 3 network stages: the encoder, transformation and the decoder.
For the encoder, as shown in Figure 4.4, different features from the input RGB images are ex-
tracted by the moving filter kernels across the images. 64 feature maps of 256x256 pixels and
the 64 filter kernels of 7x7 pixels are used in the first convolutional layer. The higher-level
features are then extracted by the subsequent convolutional layers. The transformation stage, as
shown in Figure 4.5, converts the features extracted from the encoder into a latent feature vector.
There are 6 RESNET (residual) blocks in between its encoder and decoder blocks, which are
adopted to accommodate input image sizes of 256x256 pixels. Rain removal and background
restoration are performed by the RESNET blocks of the generators, which can help to increase
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the feature extraction ability of the CycleGAN. The skip connections of the RESNET blocks of
the generator can help to prevent information loss while facilitating gradient propagation in such
autoencoder-like generator’s network structure during training. The final decoder stage of the
generator, as shown in Figure 4.6, is performing the opposite process of the encoder, using its
de-convolution layers. It converts the new feature vector from the previous transformation stage
back to the output RGB reconstructed image.

A Nvidia GTX 1070 is used for training our proposed CycleGAN network, and the algo-
rithm is written in Pytorch [84]. The learning rate is set to 0.0002 for 200 epochs of training,
using a λ value of 10 (see Equation 4.1), for all experiments.

The CycleGAN approach does not require rain image-pairs for its network training. But for
a consistent comparison of the proposed CycleGAN rain removal approach with the ID-CGAN,
the same 700 rain image-pairs provided by [5] can be used for their training after being resized
to 256x256 by the CycleGAN. In addition, rain images with real distortions are used to test the
performance of the CycleGAN, as explained in the next section.

4.3 Testing and evaluation results

Existing objective image quality measures require some measurement of the closeness of a
test image to its corresponding reference (ground truth). These measures are either based on
mathematically defined measures such as the widely used mean squared error (MSE), peak sig-
nal to noise ratio (PSNR), universal quality index (QI) [85] and structure similarity information
measures (SSIM) [86], or the human visual system (HVS) based perceptual quality measures
such as the visual information fidelity (VIF) [87]. Most existing literature used such generated
image-pairs for quantitative comparison of their results.

Based on the five types of rain distortions listed in Chapter 2, the performance of real rain
removal performance is evaluated. As ground truth reference images are not available in the
test data set, the performance of the proposed CycleGAN and the ID-CGAN is evaluated visu-
ally. Although the corresponding rain-free (ground truth) images for a quantitative comparison
of results using the mentioned objective image quality measures are not available, the proposed
visual analysis methodology to compare the removal results using real-world rain images (Type
I to V) can reveal the superiority of the proposed method, as shown in Section 4.3.1 to 4.3.5.

For a fair comparison, both the ID-CGAN and the CycleGAN were trained on the same
set of 700 synthesized rain-and-ground-truth image-pairs, provided by [5]. Subsequently both
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networks were tested on real rain images which fall broadly under these five types of real rain
distortions. A comparison of the rain removal performance between the CycleGAN and the
ID-CGAN are discussed in this chapter.

4.3.1 Type I: Different severity of rain streaks

As discussed in Chapter 2, rain drops show a wide distribution of size, volume and rate [6].
Hence, it is expected that rain properties affect the appearance of rain streaks in a wide variety
of manner [6], [38]. Light rain streaks below 1 mm in rain drop’s diameter are common; they
are less visible and blur the background scene in a rain image. Heavy nearby rain streaks above
1 mm in rain drops’ diameter are more visible and reduce the visibility by occluding the back-
ground scene. Severe distant rain with large rain drops’ diameter show that their individual rain
streaks are overlapping and cannot be seen, occluding the background scene in a misty man-
ner [38]. Two Type I sample images are shown in Figure 4.7 (a) and (c) with different severity
of rain streaks, and their corresponding magnified rain streaks are shown in Figure 4.7 (b) and
(d) respectively. The rain removal results using the ID-CGAN and CycleGAN are shown in
Figure 4.7(e) to (h) and Figure 4.7(i) to (l) respectively. The subsequent figures for other types
of rain distortion are presented in the similar manner.

As shown by the results, CycleGAN removed the rain streaks of different severity equally
well, while the ID-CGAN was unable to remove the rain streaks and many original rain streaks
remained, especially for heavy rain. In addition, it was observed that the contrast of background
scenes was enhanced with the ID-CGAN.

4.3.2 Type II: Different camera settings

As discussed in Chapter 2, camera parameters such as exposure time affect the visibility of
rain [6]. By comparing rain images taken with a short exposure time of 1 ms and normal ex-
posure time of 30 ms, the authors discovered that the short exposures produced stationary and
bright raindrops and they do not appear transparent. However, at long exposures, due to fast
motion, raindrops produce severely motion-blurred rain streaks. Type II distortion is typically
due to a short exposure time that increases rain’s visibility and produces stationary, bright and
non-transparent raindrops. Due to the high speed of rain, rain drops appear as bright spheres
occluding the background scene. Figure 4.8(a) to (d) shows examples of such rain degradation.
The rain removal results using the ID-CGAN and CycleGAN are as shown in Figure 4.8(e) to
(h) and Figure 4.8(i) to (l) respectively.
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Figure 4.7: Type I distortion for different severity of rain streaks as shown in Figure 4.7(a) to
(d), and their rain removal results by the ID-CGAN and CycleGAN were shown in Figure 4.7(e)
to (h) and 4.7(i) to (l) respectively.

It was observed that the CycleGAN was able to remove the bright rain spheres well, although
it was not trained to remove such type of defect. In comparison, the ID-CGAN was unable to
remove such defect and left behind many bright rain spheres in the zoomed regions-of-interest.
This may be because such real rain defect is not covered in the synthetic training data set. In
addition, ID-CGAN is known to suffer from white-round rain streaks due to the high-level fea-
tures from CNN network inherently enhancing white round particles [5]. Hence, the CycleGAN
performed better than the ID-CGAN for the rain distortions in Type II.

4.3.3 Type III: Indoor rain images behind a glass window

Since a glass window affect the radiance or scene properties of an image, it affects the vis-
ibility of rain streaks as shown by Equation (2.7) in Chapter 2. Hence, rain streaks and its
background scene viewed behind a transparent or translucent glass window should be consid-
ered separately as a different defect. The adherent rain water behind the glass window also
occludes the rain streaks and its background scene. The reflection of light by, and the refraction
of light through, the adherent water stain behind the glass window produces very low brightness
scene captured by a camera or observed by a human, as shown in Figure 4.9 (a) to (d).
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Figure 4.8: Type II distortion for different camera setting as shown in Figure 4.8(a) to (d), and
their rain removal results by the ID-CGAN and CycleGAN were shown in Figure 4.8(e) to (h)
and 4.8(a) to (l) respectively.

Figure 4.9(e) to (h) and Figure 4.9(i) to (l) show the results of removing rain using the ID-
CGAN and CycleGAN respectively. As shown by the results, the ID-CGAN would brighten
the adherent water drops as shown by Figure 4.9(e) and (f), regardless of the sizes of the drops.
This may be due to the same reasons, as discussed in Type II. In comparison, the CycleGAN
does not show such defects, as shown in Figure 4.9 (i) and (j). Also, as shown in Figure 4.9
(g) and (h), although the ID-CGAN managed to enhance the contrast of the low brightness
background scenes, its contrast was still not as good as the CycleGAN, as shown in Figure 4.9
(k) and (l). This may be due to the nature of the learning of the cycle-consistency objective
that ensures the results of the forward image-mapping function G(X), followed by a reverse-
mapping function F(Y ), can be as similar as possible to the initial input, in such low brightness
situations. Although none of the algorithms was trained to remove such defects, the CycleGAN
has shown that it is more superior to remove such defect and manage to enhance the contrast of
the low brightness scene well.

4.3.4 Type IV: Rain velocity reduction and splashing at obstructing struc-
tures



CHAPTER 4. GENERATION OF A RAIN-FREE IMAGE USING CYCLEGAN 57

Figure 4.9: Type III distortion for scene behind a glass window as shown in Figure 4.9(a) to (d),
and their rain removal results by the ID-CGAN and CycleGAN were shown in Figure 4.9(e) to
(h) and 4.9(i) to (l) respectively.

For free falling rain drops where the raindrops’ velocities were suddenly reduced by a struc-
ture (e.g. the roof) of a building as shown in Figure 4.10(a) to (d), the rain streaks appeared
almost stationary and bright as they are not falling at terminal velocities. This kind of distortion
consists of both the usual motion blurred long rain streaks as well as the brighter and shorter
streaks, as shown in Figure 4.10(a) to (d).

It is illustrated in Figure 4.10(i) to (l) that the CycleGAN was able to remove both fast and
slow rain streaks, while the ID-CGAN was only able to remove the faster rain streaks. This may
be due to the same reasons, as discussed in Type II. As shown in Figure 4.10(f) and (h), most of
the slow rain streaks remained, in the case of the ID-CGAN. Based on these observations, the
CycleGAN is more robust for a wide range of real rain defects, as compared to the ID-CGAN.

4.3.5 Type V: Splashing and accumulation of rain water on ground sur-
face

Rain water tends to accumulate on surfaces such as the road surface or the roof of a building.
Hence, distortion due to water splashing defect is common in rain images. Figure 4.11(a) to (d)
show samples of such rain distortion.
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Figure 4.10: Type IV distortion for rain velocity reduction and splashing at obstructing structures
as shown in Figure 4.10(a) to (d), and their rain removal results by the ID-CGAN and CycleGAN
were shown in Figure 4.10(e) to (h) and 4.10(i) to (l) respectively.

Figure 4.11(e) to (h) and Figure 4.11(i) to (l) show the results of removing rain using the
ID-CGAN and CycleGAN respectively. As shown by the results, the CycleGAN was able to
remove water splashes and ripples of water accumulated on the surface completely. As shown in
Figure 4.11 (e) and (f), the ID-CGAN has introduced many white artifacts. This was expected
as the ID-CGAN was not trained to remove such a type of defect, But the CycleGAN was able
to remove the defect very well with good contrast, as shown in Figure 4.11 (i) and (j). The ID-
CGAN also created a large patch of bright defect on the accumulated surface water, as shown in
Figure 4.11 (g) and (h). Such artifacts are not observed in the CycleGAN, as shown in Figure
4.11 (k) and (l). Based on the above observations, the CycleGAN has shown to be superior to
the ID-CGAN in removing Type V rain distortion.

4.4 NIQE: a quantitative measure for real rain analysis

In the previous section, we have compared the CycleGAN’s rain removal results with the
state-of-the-art ID-CGAN qualitatively, using five types of real rain phenomena. To achieve a
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Figure 4.11: Type V distortion for splashing and accumulation of rain water on ground surface
as shown in Figure 4.11(a) to (d), and their rain removal results by the ID-CGAN and CycleGAN
were shown in Figure 4.11(e) to (h) and Figure 4.11(i) to (l) respectively.

more meaningful comparison, we will need to compare them quantitatively. Since there are no
ground truth images for a quantitative comparison, we need to use a different quantitative ap-
proach to evaluate their rain removal capabilities. The Natural Image Quality Evaluator (NIQE)
can be used as a quantitative measure [7] to analyze rain removal results as it can predict the
quality of an image without relying on any prior knowledge of the image’s distortion. In other
words, it is a completely blind image assessment measure [7]. It can be called an ‘opinion un-
aware’ measure that is independent of the type of distortion, unlike other top-performing IQA
models such as the BRISQUE (Blind/Reference less Image Spatial Quality Evaluator) that re-
quire some training samples or human perception to anticipate an image’s distortion level [111].
Such robust methodology is ideal for our real rain removal’s quality evaluation. This is because
popular image assessment models such as the structural similarity index measure (SSIM) re-
quire the ground-truth images to guide the quantitative comparisons, which is not available, as
illustrated in Figure 4.12.

NIQE is derived based on the commonly used natural scene statistics (NSS) model [7]. It
learns natural images’ statistics by first selecting image patches to compare them with the NSS
model, which are the most distortion-free images. Using the selected patches to characterize
the model, it compares both ‘local sharpness’ with a defined ‘threshold’, for model’s charac-
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Figure 4.12: The NIQE image assessment model does not require a ground-truth image for
quantitative comparison.

terization purpose [7]. For our real rain removal’s quantitative comparison purpose, the lower
the NIQE score achieved by the reconstructed images of the rain removal algorithms, the better
their rain removal capabilities are, as they are closer to the statistics of the natural images with-
out rain. Hence, we will evaluate all rain removal algorithms quantitatively using their NIQE
scores, to decide which is the better algorithm in this research, in Chapter 6.

4.5 Conclusion and future work

Despite the success of the CycleGAN in outperforming all other state-of-the-art techniques,
there is still some residual frequency artifacts observed in the CycleGAN rain-removed images.
This may be addressed by a multi-scale spatial decomposition of the images before applying
the CycleGAN, to remove the low frequency rain distortions. The CycleGAN approach can be
combined with either the Laplacian Pyramid or the Wavelet representation, to form multi-scale
network architectures to improve the CycleGAN’s rain removal performance, as shown in the
subsequent chapters.



Chapter 5

Rain removal across spatial frequencies
using MS-CycleGANs

In this chapter, the remaining gaps on rain removal using the CycleGAN [2] will be ad-
dressed. By incorporating multiple CycleGANs into the proposed multi-scale pyramid frame-
work, the MS-CycleGANs can learn the characteristics of translating between the rain and rain-
free domain at different spatial frequency scales, which is essential for removing the individual
frequency components of rain while preserving the scene details.

The details of the MS-CycleGANs’ network architectures, together with their results, will
be discussed in this chapter. For a fair comparison with the CycleGAN, the proposed multi-
scale representations of CycleGAN networks were trained and tested on the same set of rain
images used by the ID-CGAN work [5]. The comparison results of the performance between
the CycleGAN and the MS-CycleGANs will be shown to demonstrate the superiority of the
MS-CycleGANs in removing rain distortions.

5.1 Background

The multi-resolution or multi-scale approach [88] has been very popular for analyzing im-
ages at different spatial frequency scales. It models after the scale space theory [89] which is
a more complex approach, to process images at different scales. Most of the multi-scale repre-
sentations used in image processing and analysis focus on utilizing pyramid-like structures to
provide a decomposed representation of the input image’s features [90], [91]. This is due to the
important property of the pyramids which lies in their abilities to convert global input image’s
features into local features that allows for ’local interaction’ of the converted local features at
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higher levels or coarser level of the pyramid. Hence, such representation can relate global fea-
tures with the local features across pyramid levels [88].

By using different pyramid levels to unify an image’s structures or local features, we can
combine the multiple CycleGANs to form a MS-CycleGANs to learn rain characteristics to re-
move rain effectively using such signal localization property. Theoretically, the use of pyramid-
like representations in a multi-scale framework will aid in improving the rain removal capability
of our proposed CycleGAN network. Another way of multi-scale processing is using the scale-
space approach. The scale-space approach is a signal decomposition of an image into multi-
ple scales or frequency bands [92]. There is another form of scale-space approach where the
multiple frequency scales are defined linearly or continuously [89]. For this approach, we can
summarize the following desirable properties of linear scale-space:

• Shift invariance: it means spatial isotropy, where all spatial positions are treated equally.

• Scale invariance: it means spatial homogeneity, all spatial scales are treated equally

• Causality: it means there is no new feature created in scale-space

Although scale-space representation sounds very attractive for our multi-scale rain removal
algorithm, a main dispute behind its construction is that if no ’rain priors’ information is avail-
able on what are the suitable scales for our rain image data set, then the only reasonable method
is to signify the input image at various scales or spatial sizes. In the case of a rain image, when
there is a change in scale of the image, the amount of rain streak’s structure information will also
change according to the scales. Hence, in a multi scale or resolution rain removal system, rain
streaks might subtend only a few samples on the captured image in terms of a small range of
spatial frequencies. As we change the scale of an image, rain streaks’ structure will grow in size
on the scaled images and a correspondingly larger range of spatial frequencies may be present
to describe more ’detail’ on its appearance. Hence, the gross structure of rain streaks is resolved
in greater detail as we change the image scale, but does not transform radically, and new detail
emerges as we increase the size of the representation. This evolution of image structure in terms
of more detail appearance with increasing image size forms the core concept of our multi-scale
rain removal: to take advantage of the sequential evolution of detail (including rain) over scale.
Such processing of image signals in a scale-independent manner can exploit the finest levels of
detail, i.e. ’highest acuity information’ available, for our rain removal task [93].

In our context, to develop a deep learning rain removal algorithm that detect the edges and
remove a specific object, such as a rain streak, the algorithm shall be able to recognize it regard-
less of whether they occupy the entire field of view or just a small region in the image. In this
context, we would like our rain removal algorithm to be able to remove rain regardless of the
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image structures’ sizes in our training or testing images, at the finest level of structure available
within the images. In the final analysis, with a general framework based on multi-scale repre-
sentation of an image, it is possible to devise a deep learning rain removal algorithm that operate
over a range of image scales in a consistent manner. In other words, we filter the rain images
in order to extract image’s rain features and then learn these features from different training
images. However, the types of image feature we extract and learn could practically span a very
large range of spatial scales. Furthermore, the feature scales present within the training images
are not usually known in advance. In this case, a multi-scale representation in the image pyramid
form, which will be discussed in this chapter, would be a more suitable and practical approach
for such purpose, as compared to the scale space representation.

In this chapter, the proposed MS-CycleGANs, a multi-scale pyramid based CycleGAN net-
work for rain removal to enhance the performance of the CycleGAN, is first discussed. The
network architecture consists of two stages. The first stage involves rain removal in a 3-level
pyramid, using three CycleGANs, in a low-to-high rain frequency (coarse-to-fine) manner. In
this way, low frequency rain is removed first at the coarse level of the image pyramid by the first
CycleGAN. The background details are gradually recovered while lighter rain is being removed,
as the image resolution increases, by the second and then the third CycleGAN in the network.
In other words, the structure of the background of the scene at the coarse level is recovered first,
followed by the fine details of the background which is reconstructed in higher resolution’s pyra-
mid levels. The second stage consists of just a CycleGAN, concatenated to the output of the first
stage, to remove the residual rain. Therefore, in the MS-CycleGANs, no rain frequency of the
image is estimated or the rain disruptions in a particular image region is explicitly distinguished,
to prevent under or over rain removal which has happened to many of the other rain removal
techniques due to such assumptions.

The main advantage of this method compared to the other pyramid based deep learning
techniques lies in that there is no additional residual (input attention map) [94] being used to
represent the missing background details or rain regions by the network, which leave the rain
removal task that can preserve background details solely to the CycleGANs at their respective
pyramid levels. In this manner, multiple CycleGANs are exploited to learn how to tackle rain
components at different spatial frequency scales, without the need to target at or guide the net-
work to a particular rain region which may not generalize well with all kinds of rain distortions,
in particular the effect of real rain on images [2], as described in Chapter 2.

To validate this proposed method, the MS-CycleGANs is implemented as a 3-level Lapla-
cian pyramid in its first stage, followed by a CycleGAN in its second stage, to form a multi-scale
pyramid-based rain removal network. The purpose of its two stages is discussed in this chapter,
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from image feature extraction to rain removal capability, to tackle the single-image rain distor-
tion problem. It is worth mentioning that the MS-CycleGANs is capable of learning both rain
and rain-free images’ statistics in the rain domain and its corresponding rain-free domain, at
different frequency scales, without requiring rain and rain-free paired training images.

This chapter provides an overview of the MS-CycleGANs’ network architectures, starting
from the multi-scale representation framework. The process of building the network involves
the iterations of the following few phases:

1. training of MS-CycleGANs model

2. testing of the model through the reconstruction of the respective Laplacian images’ at
different frequency scales of the pyramid;

3. image quality check and hyper-parameters’ adjustments; and

4. re-training and testing of the MS-CycleGANs.

This chapter is concluded by a qualitative comparison of the performance of the MS-CycleGANs
to the CycleGAN.

5.2 Multi-Scale Representation

As mentioned in Chapter 1, the proposed MS-CycleGANs method addresses the gaps of
the CycleGAN in single-image rain degradation problem by learning a mapping from an input
rain image to a rain-free (ground truth) image at different frequency scales. One such possi-
ble GANs approach is the LAPGAN, which is a Laplacian pyramid-based framework that uses
GANs processing method to extract image features at 6 different frequency bands for image
reconstruction [42].

In this section, the image pyramid concept is first discussed, followed by the Laplacian
Generative Adversarial Network (LAPGAN) [42]. The main focus is to study the LAPGAN
implemented in PyTorch and its image generation results using the Canadian Institute for Ad-
vanced Research (CIFAR-10) data set. This is to demonstrate the image feature extraction and
processing capability in a multi-scale approach. We end this section with an introduction of the
MS-CycleGANs, to be discussed in the following sections of the chapter.
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5.2.1 Image Pyramid

As a common form of multi-scale representation, image pyramid representation involves
stacking a series of octave-separated images or layers in a consistent manner. A basic image
pyramid can be formed by repeatedly stacking the Gaussian-filtered and down-sampled images,
with the higher resolution (fine) images at the bottom and lower resolution (coarse) images at
the top. As the image at the bottom will always be twice as big as the image that was directly
stacked above it, the pyramid layers follow the behavior of octaves [91]. Figure 5.1 illustrates
how a typical image pyramid is formed in each layer. To understand the concept of image
pyramid, the Gaussian Pyramid, Laplacian Pyramid and its image reconstruction are discussed
next.

Figure 5.1: An image pyramid: each level has reduced the resolution (width and height) by a
factor of two, and henceforth a quarter of the pixels, of its parent level.

Gaussian Pyramid

The Gaussian pyramid of an image can be constructed by applying the steps of Gaussian-
smoothing followed by sub-sampling (or down-sampling by reducing image size by a factor
of 2) each layer’s image iteratively, until the minimum resolution is reached [90]. As shown in
Figure 5.2, the down-sampling function reduces both the image size and its resolution. Given G0

as the input layer and GN as the top layer of the Gaussian pyramid, for a range of 0 < N ≤ 3, G3

is assumed to be a result of down-sampling of G2, through an operation of Downsample[G3−1],
as shown below [90]:

GN = Downsample[GN−1] (5.1)

This results in a bank of multi-scale low-pass filters in the pyramid.
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Figure 5.2: A four-level Gaussian pyramid using a bee image as the original input image. Level
0 measures 256x256, level 1 measures 128x128, level 2 measures 64x64 and level 3 measures
32x32 pixels respectively [90].

Laplacian Pyramid

Figure 5.3: The Gaussian pyramid (top) levels up-sampled to the size of the original image, and
(bottom) its corresponding levels of the Laplacian pyramid. The Gaussian image shows the low-
pass filtered sample of the bee image. The Laplacian images show band-pass filtered samples of
the image [90].

The Laplacian pyramid is formed by a recursive-interpolation and up-sampling operations
to expand the image size by a factor of 2. The existing image levels of the Gaussian pyramid
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is expanded before it is being subtracted from the previous level. This results in the Laplacian
image levels of LN = GN - GN+1 as shown in Figure 5.3. As each level represents the difference in
Gaussian images, the image features tend to be enhanced through this operation. By performing
summation of the Laplacian pyramid, the original image can be recovered, as discussed in the
next section.

Reconstruction

Since the last level in the Laplacian pyramid shown in Figure 5.3 and the last level in the
Gaussian pyramid shown in Figure 5.2 are the same image, image reconstruction can be achieved
by adding the images from the Laplacian levels of the Laplacian pyramid [95], as shown in
Figure 5.4.

Figure 5.4: The illustration on how to reconstruct using Laplacian pyramid only. Level 3 image
is the coarsest layer which is expanded and then added to level 2 image. The resulted layer
is then expanded and added to level 1, and then the process is repeated until it reaches level 0
which will be the reconstructed version of the original image.
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5.2.2 LAPGAN

The LAPGAN model integrates the CGAN into the framework of a Laplacian pyramid.
The objective function of the CGAN is shown below [42]:

LCGAN(z, l,h,G,D) = argmin
G

max
D

Ez∼pNoise(z),l∼pl
(l)[log(1−D(G(z, l), l))]

+El∼pData(l,h),h[logD(l,h)], (5.2)

where z is the input (random noise) to the Generator G, h is the band-pass version of input train-
ing images I for the Discriminator D and l is the low-pass version of input training images I

acting as the conditioning images for both D and G at each level of the Laplacian pyramid. Note
that pData, pNoise(z) and E are the Generator’s distribution to be trained over samples, input noise
prior and the probability of correct labels being assigned while training both the Generator and
the Discriminator of the CGAN, respectively.

Figure 5.5: The training procedure of the LAPGAN model, reproduced from [42].

Figure 5.5, reproduced from [42], illustrates this multi-scale approach applied to the CGAN,
with four levels of Laplacian pyramid used, from levels 0 to 3. As shown at the top-left of the
figure, the input training image I (64×64 pixels) is used as the input image I0 for level 0 of the
pyramid. The image I1 is the low-pass image with half of its original input size, resulted from the
Gaussian-blurring and the subsequent down-sampling operations applied to I0, as shown by the
red arrow in the figure. I1 is then interpolated and up-sampled to double its size to be the same
as the original input image, as shown by the green arrow in the figure, to form l0 which is a low-
pass filtered image of I0. Subsequently, this resultant low-pass image l0 can serve as either a real
(blue arrow’s path) or a generated (fake, magenta arrow’s path) input to the discriminator D0, or
fed directly into D0, as shown by the orange arrow in the figure. For the real case of l0, the real
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input is a band-passed image h0 formed by the subtraction between I0 and l0, as shown by the
blue arrows in the figure. For the generated case, the generated output of the generator G0, h̃0, is
a band-pass image formed by taking both the random noise input z0 and the low-passed image
l0 as the inputs to G0, as shown by the magenta arrows in the figure. For both real or generated
cases, the real input l0 is fed directly to the discriminator D0 (orange arrow) to condition a better
judgement by the discriminator D0 to label the generator’s output as real or fake, after ’seeing’
the real inputs h0 and l0. This can help the generator G0 to generate a more realistic output by an
adversarial labelling of the images as real or fake by the discriminator D0. Hence, the generator
G0 can learn to generate a more realistic band-pass image h̃0 which is similar in structure with
the low-pass image l0 with the help from l0, as well as the help from the discriminator D0.

At levels 1 and 2 of the pyramid, the same training steps are repeated independently, using
inputs I1 and I2 respectively. As level 3’s input I3 is a just small 8× 8 pixels’ image, it can be
handled by a standard GANs model which is made up of G3 and D3.

Figure 5.6: The sampling procedure of the LAPGAN model, reproduced from [42].

The image reconstruction or sampling procedure after the LAPGAN’s training is shown in
Figure 5.6. It can be viewed as the reverse-pyramid steps involving a series of up-sampling and
summation operations for the generators’ output from each level of the pyramid. Starting from
level 3 or the right side of the figure, the generator G3 generate an output image Ĩ3 based on its
noise input z3. Ĩ3 can be used as a conditioning input l2 (orange arrows) for the level 2’s genera-
tor G2 after being up-sampled (green arrow), and together with its noise input z2, it can generate
h̃2, as shown by the pink arrow at level 2. This output h̃2 is then combined with l2 to form Ĩ2.
The same steps are then repeated Level by level, from level 2 to level 0. The final reconstructed
image, Ĩ0, is an image similar to the training images’ visual quality.

In a similar procedure as the LAPGAN, we can construct a multi-scale network architecture
for our CycleGAN at each level of the Laplacian pyramids independently as described above. To
test this concept, the LAPGAN was first implemented in PyTorch [84]. The implemented 3-level
LAPGAN was successfully built and tested using the CIFAR-10 data set. Its image generation



CHAPTER 5. RAIN REMOVAL ACROSS SPATIAL FREQUENCIES 70

Figure 5.7: The generated CIFAR-10 images by the 3-level LAPGAN model, implemented in
PyTorch. 4 rows of images are generated at each level of the LAPGAN, from coarse (top) to
fine (bottom).

results for each pyramid layer is shown in Figure 5.7. From the results, it is observed that the
quality of the LAPGAN images are of good visual quality, for small images’ reconstruction
purpose. Hence, a similar image pyramid framework for each layer’s CycleGANs is used in the
proposed MS-CycleGANs.

5.3 MS-CycleGANs’ Network model

There are 2 stages of rain removal in the proposed MS-CycleGANs network. The first stage
of the MS-CycleGANs model aims at removing different rain frequency components at different
scales or pyramid levels. Low frequency rain and its effect can be removed at the coarse level,
followed by its higher frequency components at the finer levels of the pyramid. The second stage
is a general CycleGAN trained to remove global rain effect from the image. Figure 5.8 shows
the network architecture of both stages of the MS-CycleGANs network. The MS-CycleGANs
model comprises four CycleGAN models, with three of them in the pyramid at the first stage,
working with image sizes of 256x256,128x128 and 64x64 pixels respectively, while the Cycle-
GAN at the second stage is concatenated at the pyramid’s output, with both of stages working
with 256x256 pixels’ input images. Each CycleGAN model needs to be trained concurrently to
capture image features at different Laplacian pyramid levels.
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Figure 5.8: Network architecture of the MS-CycleGANs model.

The simplified CycleGAN network model discussed in Chapter 4 is adapted to suit the in-
put image size of each of the 4 CycleGAN models used in the MS-CycleGANs framework. A
Nvidia GTX 1070 is used to train the proposed integrated MS-CycleGANs network, and the
algorithm is written in Pytorch [84]. This MS-CycleGANs network is made up of a 3-level
(256x256, 128x128 and 64x64 pixels) CycleGANs’ pyramid and a general CycleGAN at two
stages. The learning rate is set to 0.0001 for 300 epochs of training, using a λ value of 10 (see
Equation 4.1), for all experiments.

The MS-CycleGANs approach, similar to the CycleGAN, does not require rain image-pairs
for its network training. But for a consistent comparison of the proposed MS-CycleGANs
rain removal approach with the CycleGAN, the same 700 rain image-pairs provided by [5]
can be used for their trainings after being resized to 256x256 by the first CycleGAN at both
stages. In addition, rain images with real distortions are used to test the performance of the
MS-CycleGANs, as explained in the next section.
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5.4 Training and Testing

In the proposed first stage of the multi-scale pyramid framework, each of the three Cycle-
GAN models in the pyramid is the same simplified CycleGAN model as explained earlier. They
are trained to learn the rain and rain-free characteristics at different spatial frequency scales.
This is essential for removing the individual frequency bands’ rain components while preserv-
ing the scene details by each CycleGAN in the pyramid framework. Figure 5.8 shows the MS-
CycleGANs network architecture for transferring images from rain to rain-free by each Cycle-
GAN in the pyramid, while a similar network is trained concurrently to map reversely from the
rain-free domain (Y ) back to the rain domain (X), to ensure the cycle-consistency of removing
and generating rain. Note that all three CycleGAN models learn to remove rain at different
scales of the Laplacian pyramid of the input image concurrently. Since they are trained together
at each level of the Laplacian Pyramid, the gain differences of different training images could
be auto-compensated during the training process of each CycleGAN.

The first stage of the proposed MS-CycleGANs’ training and testing architectures involve a
combination of down-sampling and upsampling operations of input images. The purpose of this
stage of the model is to remove rain gradually by each of the three CycleGANs, from large to
small rain streaks; and restore background scene, from coarse to fine details. The CycleGAN
at the coarse level of the pyramid is designed to remove low frequency rain, and recover the
structure of the background scene. Each generator architecture of its CycleGAN consists of 6
RESNET (residual) blocks in between its encoder and decoder blocks, and is adapted to accom-
modate input image sizes of 256x256 pixels. The RESNET blocks of the generators help to
increase the feature extraction ability to restore more background details while removing finer
rain streaks. The skip connections of the RESNET blocks of the generator can help to prevent
information loss while facilitating gradient propagation in such autoencoder-like generator’s net-
work structure during training. The three losses of each CycleGAN’s two generators and two
discriminators as shown before in Equation 4.1: forward-mapping, reverse-mapping and their
cyclic losses, are being minimized concurrently during their trainings, with the help of their re-
spective discriminators, thus ensuring consistent image gains from each level.

The second stage of the MS-CycleGANs model is made up of the CycleGAN adapted to
accommodate input image sizes of 256x256 pixel. Its purpose is to remove the residual rain
effect not being removed by the first stage. This may be required as rain in atmosphere can
be simplified into two forms, one at the background and the other one at the foreground [9],
as discussed in Chapter 2 before. The background rain is a far-away rain effects of the scene
that appears hazily in the background caused by the tiny rain drops’ cumulative effect, while the
foreground rain appears as local disruptions’ effect caused by near-by large rain streaks. While
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Figure 5.9: Testing of the trained MS-CycleGANs model from the trained CycleGANs.

the nearer one may be removed by the first stage of the MS-CycleGANs by the different scales
of the pyramid, the far-away rain effect at the global image level of the background may need
a conventional CycleGAN to remove it directly in a global manner, since the rain removal Cy-
cleGAN paper [2] has shown great results in removing such rain. Hence, we have concatenated
both stages to form a two-stage MS-CycleGANs design, as shown in Figure 5.8.

After training of the MS-CycleGANs model, the testing operation involves making use of
all the four trained CycleGAN models to yield the final reconstruction results, to get back a
final rain-free image. Figure 5.9 depicts the testing operation. It shows the reconstruction
of input test images from the trained CycleGANs. While each of them works with 256x256,
128x128 and 64x64 pixels respectively in the Laplacian pyramid at the first stage, the second
stage’s CycleGAN works with 256x256 pixels’ input images only. The test process also runs the
down-sampling for the input rain image to obtain the half-resolution or half-sized down-sampled
images at each image scales, for the CycleGAN to obtain its corresponding outputs, which is
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similar to the training operation. But the testing process also involves up-sampling its output at
the current level and adding it back to the previous finer level’s outputs, level-by-level at each
image scales, to reconstruct the final rain-free image.

5.5 MS-CycleGANs’ rain removal results

Figures 5.10 to Figure 5.12 show the reconstructed rain removal results from the CycleGAN
and MS-CycleGANs. The images in the second row are the zoomed in regions of the first row
for a clearer comparison. As shown by the figures, the MS-CycleGANs have shown its capabil-
ity in removing a significant amount of rain streaks, in particular at high-frequency sub-bands.
The vertical and diagonal rain streaks’ characteristics were learnt by the MS-CycleGANs at each
band-passed level, and the models managed to preserve the other vertical and diagonal structural
details of the scenes after rain removal. This can be observed in the figures when comparing the
original real rain images and their rain-removed counterparts. The MS-CycleGANs has shown
its abilities in retaining the distinct and sharp structural details of the scenes after rain removal
as well.

Figure 5.10: First input real rain image, CycleGAN rain removal results and the MS-
CycleGANs’ rain removal results (from left to right), together with their corresponding zoomed
in regions shown below them.
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Figure 5.11: Second input real rain image, CycleGAN rain removal results and the MS-
CycleGANs’ rain removal results (from left to right), together with their corresponding zoomed
in regions shown below them.

Figure 5.12: Third input real rain image, and CycleGAN’s and MS-CycleGANs’ rain removal
results (from left to right), together with their corresponding zoomed in regions below them.

As shown by Figure 5.10’s comparison result, the MS-CycleGANs has successfully removed
the rain streaks with very little rain residue when comparing it to the original rain image. This
is evident with zoomed-in image below it, which has been almost completely clear of rain. Fur-
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thermore, the details of the objects at the foreground and the background are found to be retained
as well. We believe that the first stage multi-scale CycleGANs at different frequency bands have
removed the dynamic rain at the foreground, while the second stage’s CycleGAN have removed
the low-frequency static rain, have contributed to such performance. Hence, we can say that the
MS-CycleGANs can preserve the scene details with almost perfect rain removal, as compared
to the CycleGAN.

Figure 5.11 also show the comparison of the performance of the MS-CycleGANs with the
CycleGAN. For the MS-CycleGANs trained using the same synthetic data sets, it has shown
very good rain removal performance. Most of the heavy diagonal rain streaks in the image have
been removed completely, besides the low-frequency rain components. The CycleGAN’s recon-
structed image has suffered from discolouration compared to the original rain image, while the
objects’ details in the image have not been well-preserved also with some obvious defect. The
same analysis can also be applied to Figure 5.12.

To summarize this section, the qualitative rain removal results of the multi-scale representa-
tion using the MS-CycleGANs has been demonstrated to be superior to the CycleGAN. Both its
rain removal capability, as well as the preservation of object and background details, are better
than the CycleGAN. The quantitative NIQE comparison results will be discussed together with
the W-CycleGANs’ results analysis in the next chapter.



Chapter 6

Rain removal at spatial frequency’s
sub-bands using W-CycleGANs and real
rain’s performance analysis

In Chapter 5, we have discussed how the CycleGAN performance can be improved by the
MS-CycleGANs, using the framework of a pyramid-like, multi-scale implementation of multi-
ple CycleGANs at each of the frequency bands. Another way to process images at multi-scales
for rain removal can be implemented in the wavelet domain [96]. Although Fourier transform
is a popular method to transform images to the frequency domain, there is no signal local-
ization and orthogonality in its frequency domain. Over the past decades, wavelet transform
has been very popular in application areas such as super-resolution [97], denoising [98] and
color enhancement [44]. Our proposed Wavelet-CycleGANs (W-CycleGANs) makes use of
such desired properties of the wavelets for image reconstruction. Coincidently, another wavelet-
CycleGAN technique was also proposed for denoising the satellite images using wavelet’s sub-
band cycle-consistent adversarial network called WavCycleGAN [99]. But our proposed rain
removal method in this chapter is different, as the WavCycleGAN technique is limited to re-
moving noise from gray-level noisy satellite images, which are computationally lighter and less
complicated.

The details of the W-CycleGANs’ network architectures, together with their results, will be
discussed in this chapter. For a fair comparison with the CycleGAN, this proposed multi-scale
representations of CycleGAN networks were trained and tested on the same set of rain images
used by the ID-CGAN work [5]. The comparison results of the performance between the Cy-
cleGAN, the MS-CycleGANs and the W-CycleGANs has demonstrated the superiority of the
both the MS-CycleGANs and W-CycleGANs in removing rain distortions, both qualitatively
and quantitatively.

77
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6.1 Background

Fourier transform is a great tool in signal processing but it does not represent abrupt changes
caused by rain efficiently as its basis function used is a sine wave, which is a continuous func-
tion that continue indefinitely. Hence, its representation is not localized in terms of the pixel
location of the rain disruption in an image. Therefore, to reconstruct an image corrupted with
rain that have abrupt changes, we need to use some basis functions that are well localized in
pixel locations, and orthogonal to each other, like the wavelets.

In this section, some basic wavelet concepts will be covered to understand why it is a better
suited tool for analyzing an image corrupted with rain. Real world signals in an image always
have mostly smooth regions, but with some abrupt changes in signal contrast at the edges of
objects or fine structures of a scene. In terms of rain removal, the abrupt changes in spatial
locations of an image can also be caused by rain that fall into any random frequency range of
an image, as discussed in the previous chapters. Hence, there is a need to extract and remove
such localized rain corruption based on its spatial-frequency information extracted at different
sub-bands.

The Haar functions used in the wavelet transform for the proposed W-CycleGANs are an
example of the orthogonal family of wavelet functions. It is an orthogonal basis of piecewise
constant functions, constructed by dilation (scaling) and translation [100]. As shown in Figure
6.1, its scale factor is inversely proportional to its frequency, i.e. a signal W (x) scaled by a
factor of 2 results in a reduction of its original interval by half, or by an octave. In other words,
it has a band-pass characteristic in the frequency domain. As for its translation, as shown in the
same figure, a delay of 1 is introduced along the spatial location axis of the image. The wavelet
needs to be translated in order to align it with different features in an image. By having the basis
functions scaled and translated, they can capture both slowly varying changes as well as abrupt
changes, for the reconstruction of an image corrupted with rain.

As discussed and shown in Figure 6.1, the wavelet decomposition operations from W (x) to
W (2x) is dilation, and from W (2x) to W (2x− 1) is the translation. The next level of operation
is made up of W (4x), W (4x− 1), W (4x− 2) and W (4x− 3), each with an interval of length
1
4 [100]. The Haar’s functions can be represented by:

Wjk(x) =W (2 jx− k), (6.1)
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Figure 6.1: Scaling function φ(x), wavelet W (x), and the next level of detail of the Haar wavelet
(reproduced from [100]).

together with φ(x). This forms the Euclidean norm L2[0,1] when the index range for j is ≥ 0
and for k is 0≤ k < 2 j [100].

The four functions as shown in Figure 6.1 are piecewise constant functions that are orthog-
onal to each other, and the combination of them can represent every function that is constant on
each quarter-interval [100]. This mutually-orthogonal property of a wavelet, together with its
signal localization property, have made the wavelets ideal for our proposed W-CycleGANs, as
we need to reconstruct an image corrupted with rain which consists of abrupt changes.

Figure 6.2: The procedure of 1-level 2D DWT decomposition results in four sub-bands’ coeffi-
cient arrays LL, LH, HL and HH (reproduced from [97]).

The Discrete Wavelet Transform (DWT) is normally used in image processing for image
denoising and compression applications as it can represent many natural images with fewer co-
efficients, or sparser representation. DWT based on the Haar wavelets can transform an input
image into four wavelets coefficient arrays LL, LH, HL and HH, as shown in Figure 6.2. The
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Figure 6.3: The 2D DWT and 2D IDWT operations and their resultant coefficient arrays from
an image HR. LL, LH, HL and HH are the four sub-bands’ coefficient arrays correspondingly
after 2D DWT decomposition (reproduced from [97]).

length of the coefficients in each sub-band is half of the number of coefficients in the preceding
stage. In DWT, a scale-space representation of the image is achieved using digital filtering tech-
niques, where an image is passed through a bank of special low pass and high pass filters to yield
low pass and high pass sub-bands, as shown in Figure 6.2. These filters also have the ability to
reconstruct the sub-bands, while cancelling any aliasing that occurs due to down-sampling. To
get back the reconstructed image from these four wavelets coefficient arrays, in a similar nota-
tion, its inverse operation, called the IDWT, has to be performed, as shown in Figure 6.3.

Recently, in the area of deep neural networks, wavelet transform has been used and achieved
encouraging results. For example, a multi-scale wavelet architecture has been proposed as a deep
neural network’s approach in an image reconstruction task [101]. Later, a multi-scale wavelet
transform method was used to remove rain disruption from an image recursively [102]. Another
work [104] then combines original rain images with rain removed features for more details, and
adopts a multi-scale loss function to perform coarse-to-fine restoration process.

Our proposed multi-scale wavelet-based method for rain removal is motivated by [44], which
performs wavelet transform at the Hue, Saturation, and Luminance (HSV) color space, instead
of the usual RGB color space. The luminance component (V ), also called the brightness val-
ues, can then be decomposed by a one-level Discrete Wavelet Transform (DWT), using Haar
as the wavelet function, into four frequency sub-bands which are orthogonal to each other.
The rain components in the high frequency sub-bands can then be learnt by the CycleGAN,
so as to remove rain distortions at various spatial directions. Finally, the rain-free V can be
obtained through the inverse wavelet transform, and converted back to RGB enhanced image by
re-combining it with the H and S channels.
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Hence, the main motivation behind this wavelet idea is two-fold:

• Wavelet coefficients inherently encourages signal localization [101], just as the multi-scale
image pyramid approach discussed earlier.

• We can decompose the image into orthogonal sub-bands but at the same time use the
information from other sub-bands to predict extra coefficients for the rain-free images.

This chapter provides an overview of another multi-scale CycleGANs’ implementation, the
W-CycleGANs, to improve the CycleGAN’s performance. It’s network architecture, followed
by its training and testing methods, will be discussed in this chapter. The process of building the
network involves the iterations of the following few phases:

1. Training of W-CycleGANs model

2. Testing of the model through the reconstruction of the respective wavelet coefficient arrays
at different frequency scales and orientation

3. Image quality check

4. Re-training and testing of the W-CycleGANs

This chapter concludes with a qualitative and quantitative evaluation and analysis of the
performance of the W-CycleGANs, MS-CycleGANs, CycleGAN and the state-of-the-art, ID-
CGAN.

6.2 W-CycleGANs Network model

The motivation of using the Haar wavelet [96] in our proposed rain removal framework has
been discussed in Section 6.1. DWT can decompose images into four orthogonal coefficient
arrays, with smaller frequency bandwidths and spatial widths. One of them is a low frequency
band (LL), which is a coarse approximation of the source image, and the other three are higher
frequency bands (LH, HL, HH), containing image local details at the horizontal, vertical and
diagonal orientations.

As discussed in Chapter 2, a rain image consists of two types of appearances: background
(far) and foreground (near) rain. Because the foreground rain appears mainly at the high fre-
quency sub-bands, the first stage of the combination of "Wavelet-CycleGAN" approach can help
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to remove such rain component by using the popular Haar wavelet to decompose the source im-
age into the four sub-bands first, followed by removing them in an end-to-end mapping using
only the CycleGAN in the wavelet domain. For the other hazy rain component as a result of
the cumulative effect of far-away rain streaks, a CycleGAN at the second stage is a better ap-
proach [2] to remove them. By combining these two stages in such a manner, a multi-scale
CycleGAN’s model is formed and all parameters of our network model are trained together in
a single framework. Hence, in this chapter, a novel multi-scale wavelet-based CycleGAN net-
work, named W-CycleGANs, has been proposed for rain removal from images.

The first stage of the W-CycleGANs combines the benefit of wavelet transform with the Cy-
cleGAN to remove rain in multiple high-frequency sub-bands. Only the rain components and the
ground truth in the rain images’ luminance (V -channel) in the HSV color space [103] is decom-
posed into multi-scale sub-bands, via a wavelet transform, since the intensity values of images
are solely determined by the V -channel values. The high frequency sub-bands of the trans-
formed image are then forwarded to its corresponding CycleGAN to remove rain components
at different frequency and orientation. In other words, the wavelet transform has effectively
performed a down-sampling operation on the source image for further sub-bands’ processing by
the CycleGAN.

Figure 6.4: W-CycleGANs model involves the discrete wavelet transform to decompose an
image into 4 orthogonal frequency sub-bands or coefficient arrays in its first stage.

Instead of decomposing rain images into multi-level hierarchical sub-bands [104] to exploit
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hierarchical features to improve rain removal performance, our W-CycleGANs is built on just
a single-level’s 2D discrete wavelet transform (DWT) to take advantage of spatial-frequency
localization. As shown in Fig. 6.4, the 2-D wavelet decomposition results in four frequency
sub-bands. Since the LL represents the approximation sub-band, it contains more background
or scene information. LH, HL and HH sub-bands contain more rain details and edge informa-
tion, at different orientations. Hence, this decomposition can help the CycleGAN to learn both
the rain and rain-free characteristics of the scene. The second stage of the W-CycleGANs is just
composed of a CycleGAN, concatenated to the output of the first stage, to recover more details
and further enhance restoration performance, similar to the second stage of the MS-CycleGANs
discussed in Chapter 5.

Figure 6.5 shows the two generators and their associated adversarial discriminators of the
CycleGAN, at the first stage of our proposed W-CycleGANs network in the rain domain (X).
Using the adversarial and cycle-consistency loss functions described in the previous chapter,
discriminator Y can ’help’ the training of the generator X to Y , such that the generated output
by the generator at domain Y (rain-free) can ’fool’ the discriminator. Similar trainings of the
generators Y to X and discriminator X are also happening at the Y (rain-free) domain, although
it is not shown here.

Figure 6.5: The first stage of the W-CycleGANs model.

6.3 Training and Testing
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Figure 6.6: The W-CycleGANs testing model comprises two CycleGAN models at two stages,
where the first stage can remove rain in the wavelet domain, and the second stage can remove
rain in the spatial domain.

A Nvidia GTX 1070 is used to train the proposed W-CycleGANs network, and the algorithm
is written in Pytorch [84]. A learning rate of 0.0001 is set for 200 epochs’ training. For all ex-
periments, λ is set at the value of 10 (see Equation (4.1)).

The proposed W-CycleGANs requires a series of down-sampling operation by discrete wavelet
transform (DWT) and upsampling operation by inverse discrete wavelet transform (IDWT) at its
first stage’s rain removal process which involves only the V -channel in the HSV color space, as
shown in Figure 6.6. The data set used for training is the same as the ID-CGAN’s work [5]; they
are 700 rain-free and 700 rain image-pairs (a total of 1400 training images). Every image will
undergo a DWT operation to get into 4 sub-bands at array sizes of 128x128 pixels each and an
IDWT operation which is the reverse process to restore the images after the first CycleGAN’s
rain removal.

The high-frequency sub-bands’ coefficient arrays are then forwarded to its first stage Cy-
cleGAN to remove their foreground rain components, together with the contrast-enhanced low-
frequency sub-band (LL) using the gamma correction technique [105], [106] to restore its con-
trast, for subsequent images’ reconstruction. This is followed by a second stage CycleGAN’s
rain removal for the residual (background) rain removal. This final stage of the W-CycleGANs
is just composed of a CycleGAN, concatenated to the output of the first stage, to recover more
details and further enhance restoration performance.

All the 700 image-pairs of rain-free and rain data set will undergo training concurrently at
both stages’ CycleGANs, as shown in the same figure. After training, the test operation involves
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making use of each of the trained models to yield the final reconstruction results, to get back a
final rain-free image. As mentioned before, the same set of 700 rain image-pairs provided by [5]
are used to train all the CycleGAN, MS-CycleGANs and W-CycleGANs models. After training,
real rain images are used to test all networks for their rain removal performance. Their results
are analyzed in this chapter both qualitatively and quantitatively. The qualitative analysis in-
volves visual comparison of their rain-removed images, especially at the enlarged rain-removed
regions. The quantitative check involves the Natural Image Quality Evaluator (NIQE) values’
comparison as the analysis method because it involves real rain, which has no ground-truth im-
ages, as discussed in Chapter 4.

6.4 Gamma Correction

The term gamma is historically introduced to describe the non-linearity of the output voltage
of a display device to the change in image brightness [107]. But this term is later generalized
to the term gamma correction used in image processing for the camera to correct for light sen-
sitivity difference between human eyes and a camera’s sensors. An image pixel’s intensity data
captured by a camera’s sensors is linearly related to its luminance levels, while human vision
responds non-linearly to the same brightness changes [108]. Hence, the inverse of this gamma
correction process performed by the camera may be necessary for our image reconstruction tasks
because the first stage of the W-CycleGANs process images at the V (intensity) channel of the
HSV color space. This non-linearity of human eyes to brightness level of an image is caused
by human eyes’ higher sensitivity to a small change in brightness in the darker regions of an
image compared to the brighter areas [108]. The gamma correction performed on the camera’s
output image due to such non-linearity of human vision’s sensitivity to brightness changes can
be approximated by a power law function [108]. It can be introduced to the camera’s output by
simply applying a power law transform to the camera’s output I, as shown below [108]:

Igc = Iγ (6.2)

where I is the camera’s image normalized to the range [0,1], γ is the gamma correction value
and Igc is the gamma-corrected camera image.

Figure 6.7 shows this non-linear characteristic plot for γ value between 0.45 and 2.2, which
are typically used in the camera. The corrected images of an example image at different gamma
levels are shown in Figure 6.8. These figures show that an imaging device such as a camera
always perform a non-linear gamma correction or mapping of its output intensity value to pro-
vide a finer perceptual detail at darker region. Hence, to reconstruct images from our trained
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Figure 6.7: The non-linear characteristic plots for γ = 0.45, 1 and 2.2 (reproduced from [108]).

Figure 6.8: Corrected images of an example image at different value of γ (reproduced from
[108]).
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W-CycleGANs network with rain test images (see Figure 6.6), we need to remove these non-
linearities introduced by the camera’s gamma correction, prior to our second processing stage in
the W-CycleGANs, immediately after the first stage’s CycleGAN has removed rain components
from the higher frequency sub-bands. If we know the original gamma value of the test images,
we can simply inverse this gamma correction process from the low frequency LL sub-band of
the V (intensity) channel of the input image, to remove these non-linearities introduced by the
camera’s gamma correction, as shown below [109]:

I = I
1
γ

gc (6.3)

Figure 6.9: Brightness effect of different value of γ: (a). 0.9; (b) 1.0; and (c) 1.1.

As shown in Figure 6.9 (a), when the γ value applied to an image to inverse the gamma
correction process is less than 1, the image becomes darker, and less details are visible. When
γ is more than 1, as shown in Figure 6.9 (c), the image becomes brighter and more details are
revealed. When γ equals to 1, as shown in Figure 6.9 (b), there is no effect on the image.

However, knowledge of the gamma correction used by the imaging device is not possible to
be obtained, as most of our rain test images are provided from the ID-CGAN paper [5]. In ad-
dition, once the rain corruptions which made the whole rain image looked brighter, as discussed
in Chapter 2, are removed from the W-CycleGANs, the reconstructed image will appear to be
darker than original image. Hence, we will need to apply a γ of more than 1 to restore the origi-
nal brightness of the image. But the main drawback of gamma correction is that it does not have
a specific gamma value for every image, as each of them may have different luminance require-
ment. In other words, to invert the images’ gamma correction performed by the camera, we need
to find a way to determine the unique gamma value that can be applied to the W-CycleGANs’
first stage of processing during network testing.

Although there exist some gamma correction techniques which could obtain the γ value for
each different image’s gamma correction, such as the Adaptive Gamma Correction (AGC) [110]
which rely on different images’ probability density function (PDF) and cumulative distribution



CHAPTER 6. RAIN REMOVAL AT SPATIAL FREQUENCY’S SUB-BANDS 88

function (CDF) in histogram analysis to decide the gamma value used to enhance the luminance
in each dimmed image, our experimental results show that it will over-enhance the rain image
of the W-CycleGANs and make it looked saturated, as shown in Figure 6.10. This may be due
to the image’s dark region contrast being enhanced by the AGC [110].

Figure 6.10: W-CycleGANs’ Adaptive Gamma Correction (AGC) image reconstruction results
after first stage processing.

In conclusion, we plan to enhance the reconstructed image’s contrast by directly defining a
specific gamma correction value in the proposed W-CycleGANs, after running multiple exper-
iments with different γ values to determine the optimum γ value. The experiments and their
results will be shown and discussed in the next section.

6.5 W-CycleGANs’ rain removal results

In this section, the reconstructed rain removal results from the CycleGAN and W-CycleGANs
are compared qualitatively first, followed by a quantitative analysis of all algorithms, including
the ID-CGAN and the MS-CycleGANs, using NIQE scores and real rain test images. Before
the results’ comparison, it was mentioned in Section 6.4 that specific gamma correction value
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in the proposed W-CycleGANs has to be defined for optimizing the reconstructed image’s con-
trast. This can be achieved by running multiple experiments with different γ values to determine
the optimum γ value. Hence, the experiments’ results involving different γ values will first be
shown and discussed in Section 6.5.1.

6.5.1 Determining γ Value for W-CycleGANs’ Gamma Correction

Before we show the W-CycleGANs’ rain removal results, we need to decide the optimum
gamma correction value, as discussed in Section 6.4. Figure 6.11 shows the gamma correction
experimental results for a range of γ after its first stage of processing, to enhance the brightness
of reconstructed images. From the results, γ = 1.2 is selected as the reconstructed image shows
optimum image brightness with visible image details, although its overall brightness and color
can still be improved. Hence, another experiment was carried out on gamma correction on the
Saturation (S) channel after second stage’s processing, as shown in Figure 6.12. This is because
the S-channel of the reconstructed images can be enhanced with gamma correction to optimize
their overall brightness and color. The optimum γ value of 1.05 is selected as the reconstructed
results have the optimum brightness and color.

6.5.2 W-CycleGANs’ Results

After the selection of the gamma correction value, both the qualitative and the quantitative
rain removal performance of the W-CycleGANs is compared to other algorithms in this section.
The quantitative NIQE results will also be compared to the MS-CycleGANs and IDCGAN, us-
ing the five types of real rain test images [2] for such purpose.

Figures 6.13 and 6.14 show the CycleGAN and the W-CycleGANs’ rain-removal results,
with zoomed in regions shown directly below them, for easier comparison. The visual qualita-
tive comparison demonstrates the W-CycleGANs’ capability in removing a significant amount
of rain distortions, with the scene details well-preserved. We believe that the vertical and di-
agonal rain streaks’ characteristics, as well as the other vertical and diagonal structural details
of the scenes at each sub-band, are learnt by the W-CycleGANs. This may be the contribu-
tion from the first stage’s wavelet-CycleGAN to the rain streaks’ removal in the high frequency
sub-bands, followed by the second stage’s CycleGAN to the remaining sub-bands’ rain removal.

We can validate further the performance of both the MS-CycleGANs and the W-CycleGANs
quantitatively, using five types of real rain phenomena, as proposed in [2]. Based on these five
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Figure 6.11: W-CycleGANs’ image reconstruction results using different γ for V -channel at its
first stage.

types which are listed as follows, the effectiveness of our proposed approaches are checked:

i. heavy or light rain streaks;
ii. different appearances of rain streaks due to camera settings;
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Figure 6.12: W-CycleGANs’ final image reconstruction results after its two stages of testing
using different γ values for S-channel, on top of its V -channel’s correction of using γ value of
1.2.

iii. rain disruption on the glass;
iv. rain’s random droplets caused by splashing at buildings; and
v. rain’s random splashing on puddles of water on ground surface.

Figure 6.15 shows the NIQE comparison scores for five real rain test images (Type I to V)
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Figure 6.13: Original real rain image, CycleGAN rain removal results and the W-CycleGANs’
rain removal results (from left to right), together with their corresponding zoomed in regions
below them, from left to right.

Figure 6.14: Original real rain image, CycleGAN rain removal results and the W-CycleGANs’
rain removal results (from left to right), together with their corresponding zoomed in regions
below them, from left to right.

and the CycleGAN’s, MS-CycleGANs’ and W-CycleGANs’ reconstructed images (from left to
right respectively). Both the MS-CycleGANs and the W-CycleGANs have shown good rain re-
moval results, in terms of their lower NIQE quantitative values, as compared to the CycleGAN’s
and the original rain’s scores. Qualitatively or visually, both algorithms’ rain-removed images
also looked more natural with lesser distortion. Both algorithms are able to remove rain from the
images that are classified into the five types almost completely, including the low-frequency rain
components. The objects and backgrounds in their reconstructed images are also preserved with
no obvious defect or loss of information after the rain removal. In comparison, the CycleGAN’s
results show not only incomplete rain removal capability, but also have the same discolouration
problem discussed before. To summarize the comparisons shown in the figure, both the MS-
CycleGANs and the W-CycleGANs have not only successfully removed the rain streaks with
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very little rain residue remained, the objects at the foreground and the background scene are
found to be retained with the original color and structural details, when compared to the original
rain image.

Figure 6.15: The NIQE scores for five real rain test images (Type I to V), compared to Cycle-
GAN’s, MS-CycleGANs’ and W-CycleGANs’ reconstructed images (from left to right respec-
tively).
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Table 6.1: NIQE scores for original real rain images compared to ID-CGAN’s, CycleGAN’s,
MS-CycleGANs’ and W-CycleGANs’ reconstructed images. The NIQE’s mean (first row) and
standard deviation (second row) values are derived from a test data set comprises 50 selected
test images covering all five types of real rain phenomena.

Original Rain ID-CGAN CycleGAN MS-CycleGANs W-CycleGANs

NIQE (mean) 5.41 4.89 4.77 4.56 4.72

NIQE (standard deviation) 1.93 1.34 1.21 1.07 1.20

To compare all algorithms’ quantitatively, including the ID-CGAN, we have carefully se-
lected ’sharp’ test images from a pool of real rain images to test their reconstructed images. This
test data set is selected from hundreds of real rain images from the five types of rain distortions,
to ensure a good spread of real rain phenomena and to exclude any abnormal distortion caused by
the camera’s defocus or poor resolution, which may affect the NIQE score in the first place. This
will help us to achieve a meaningful comparison of all algorithms statistically. Table 6.1 shows
that the CycleGAN, MS-CycleGANs and W-CycleGANs are all showing lower NIQE mean
scores compared to the ID-CGAN and original real rain images. The results show that the MS-
CycleGANs has the best performance out of all algorithms. This quantitative result is important
for us to conclude that NIQE is a good evaluation metric for real rain removal’s performance
comparison, without using the synthetically generated ground truth image-pairs. In addition,
we can quantitatively determine that the MS-CycleGANs is the better multi-scale CycleGANs
algorithms, compared to the W-CycleGANs. The lower NIQE scores for MS-CycleGANs may
be contributed by the image enhancement capability of the multi-scale Laplacian pyramid, com-
pared to a single-level wavelet decomposition by the W-CycleGANs.

6.6 Conclusion and future work

To conclude the results presented in this chapter, both multi-scale representations of the
CycleGAN, namely the MS-CycleGANs and the W-CycleGANs, have demonstrated very good
rain removal performances both qualitatively and quantitatively, compared to the CycleGAN
and the state-of-the-art ID-CGAN. This brings us to an important juncture to conclude the thesis
in the next chapter.



Chapter 7

Conclusion and future directions

7.1 Conclusion

In this thesis, a number of fundamental contributions are made in the area of removing real
rain effects from images as follows:

• A methodology for the parameterization of a CAE to ensure optimum latent representa-
tions or image reconstruction performance is proposed.

• The CycleGAN [8] is proposed for the first time as a practical and effective way to re-
construct images under visual disruption caused by real rain, without the need of paired
rain and rain-free training data for learning to address the disruption problem posed by
real rain, as compared to other CNNs and GANs methods [5], [35]- [39]. The distinct
advantage of the CycleGAN lies in its training simplicity. Due to the impracticality of
collecting aligned rain and rain-free image-pairs to train rain removal GANs for real out-
door task in computer vision, and that synthetically generated rain image data sets may not
faithfully representing real rain characteristics, the CycleGAN is proposed as a practical
way to reconstruct images under visual disruption caused by rain without the need for rain
and rain-free input image-pairs.

• A comparison methodology based on rain physics for comparing the effectiveness of real
rain removal in five types of rain distortion is proposed in this thesis, based on a rain
physics model [6]. This methodology can be applied to the majority of outdoor rain con-
ditions.

• Using the limited synthetic training data set for training the networks that was provided
by the researchers who published the ID-CGAN methodology [5], the CycleGAN rain re-
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moval performance was evaluated on real rain data set against the ID-CGAN, the state-of-
the-art rain removal method. The results have demonstrated that the proposed CycleGAN
approach is more robust and effective in removing all rain defects from images compared
to the ID-CGAN network. The CycleGAN is able to remove all five types of rain distor-
tion, while preserving image scene details. In comparison, the ID-CGAN was unable to
remove bright and short rain streaks, leaving behind many white artifacts and was not able
to enhance images with low brightness or contrast.

• Although paired domain examples are widely used for quantitative evaluation on existing
rain removal techniques due to the non-existence of associated rain-free images for real
rain images, our analysis has gone beyond such synthetically added rain streaks’ removal
quantitative study. For a fair comparison with other deep learning techniques, all pro-
posed algorithms are trained on the same set of 700 image-pairs, the effectiveness of the
algorithms are evaluated on real rain. To our best knowledge, no one has ever performed
a detailed study on quantifying real rain removal using the NIQE quantitative measure,
based on various real rain phenomena which represent the majority of outdoor rain condi-
tions [2]. In other words, we have used these rain categories to evaluate the effectiveness
of our rain removal algorithm in this research, both qualitatively and quantitatively.

• We have developed a robust rain removal methodology for real rain, without any rain pri-
ors model assumptions or targeted rain regions estimated, which may cause incomplete
rain removal and loss of scene details, to combat the complex visual effects of real rain. In
this thesis, we have provided the motivation of using a multi-scale CycleGAN approach
to remove the total visual effects of rain, based on its appearance in the near-field or
far-field. We think that a holistic approach which consists of a two-stage rain removal
process is necessary to capture all rain’s statistics before removing them. Hence, both
the multi-scale MS-CycleGANs and W-CycleGANs algorithms are proposed as effective
ways to remove real rain disruption from images in this thesis. The proposed multi-scale
frameworks are evaluated against the state-of-the-art representative, the CycleGAN and
the ID-CGAN, both qualitatively using visual check and quantitatively using NIQE quan-
titative measure, and show better rain removal performances. Besides, both multi-scale
approaches are also practical methods, as they can learn the rain and rain-free image’s
statistics without using paired training samples, as required by other methods.
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7.2 Future Works

With more and more outdoor unmanned vehicles and security surveillance systems using
computer vision and artificial intelligence technologies, research on removing unwanted rain
distortion from digital images without blurring scene content is on the rise, especially for video
applications.

The initial problem statement of this research is for removing rain disruption in a single im-
age. Since most real-world outdoor computer vision is using video application, it will be more
practical to use the CycleGAN technique in removing outdoor weather disruption for a video
task, rather than just for single-image rain removal purpose. Hence, we need to extend the Cy-
cleGAN algorithm in removing weather distortion to outdoor rain video. Although switching
from image to video processing using the CycleGAN may involve tedious programming change,
we could generalize the program to extract and process individual frames from any video with
different codec format (MP4, MOV, etc.) using the CycleGAN, and gain the advantage of video
processing as opposed to single-image processing. Video processing provides additional tem-
poral information of rain streaks to the CycleGAN algorithm to further improve the CycleGAN
performance to cover a wider range of applications like removing weather disruption in an out-
door character recognition task, etc. Besides, it could also help us identify individual rain streaks
easily for effective evaluation of different algorithms. Hence, for future works described in Sec-
tion 7.2.1, the CycleGAN approach can be extended to removing rain in video, by making use
of the additional temporal information of rain in video.

So far, our research has mainly focused on removing rain from a single image which is
a more challenging task than rain removal from video because the pixels of certain scene are
occluded or blurred by rain pixels at the moment the images are captured. But without the
availability of the spatio-temporal information of rain pixels in a video, the process of remov-
ing rain pixels may cause partial rain pixels’ removal and blurring of scene content in certain
complex scene situations. Hence as part of the future work, we recommend to extend this prac-
tical approach from a single image rain removal to video rain removal, to make full use of the
spatio-temporal information in the video, to make the whole rain removal process complete.
One recommendation is to use a deep recurrent network such as the Recurrent Neural Network
(RNN), combined with the CycleGAN approach, to form a Recurrent CycleGAN network to
remove rain completely in video applications.
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7.2.1 Recurrent CycleGAN

Our initial video processing experiment results using the CycleGAN has shown that the Cy-
cleGAN is able to remove mist-type heavy rain at the scene’s background well and enhance the
scene details as well. But large rain streaks, especially near rain streaks dropping at non-terminal
velocity (e.g., from the roof of a building), would cause the rain removal algorithm using Cycle-
GAN to fail. Hence, we could further improve the existing CycleGAN network to tackle video
degradation for a real outdoor recognition task by exploiting the spatio-temporal information of
individual rain streaks. This would result in a combination of the recurrent neural network and
the CycleGAN which we name it as the Recurrent CycleGAN.

There may be a few reasons why video processing showed that the CycleGAN failed to re-
move real rain streaks but could remove the mist-type rain distortion. Firstly, the CycleGAN
is still the same network trained using the synthetic rain streaks samples provided by the ID-
CGAN [5], for an apple-to-apple comparison with other algorithms. As discussed in earlier
chapters, synthetic hand-drawn rain streaks may not represent real rain statistics well. The Cy-
cleGAN has an advantage over other networks in its ability to learn the underlying relationship
between the rain and rain-free domain without the need of paired rain and rain-free domain ex-
amples. Although it could understand the statistical differences between the rain and rain-free
domain well to remove a wide range of rain disruptions as shown by our results, the training data
set provided in [5] by Zhang et al. was not synthesized according to the five types of real rain
images proposed in this thesis. Hence, to remove real large rain streaks as shown in the videos,
we need to train the CycleGAN using real rain data set instead of synthetic data set.

Secondly, the distinct advantage of video processing as opposed to single-image process-
ing lies in its ability to help us identify the individual rain streaks using the additional temporal
information of high-speed moving rain streaks provided by video. This could help us identify in-
dividual rain streaks easily in video and evaluate the effectiveness of our algorithms. Lastly, the
CycleGAN rain removal algorithm was trained for single-image rain removal purpose. Hence,
it could not make use of the additional temporal information provided by high-speed moving
rain streaks during its network training. This could enable us to address the main weaknesses of
the CycleGAN network for further improvement, using the extra spatio-temporal information in
video. Due to the lack of ground-truth images for a quantitative comparison of rain removal al-
gorithms, we could make use of the NIQE values of successive frames in the videos to compare
different rain removal algorithms quantitatively.

For a rain video clip made up of a sequence of rain images, Recurrent Neural Networks
(RNN) can improve the rain removal capability of the CycleGAN by conditioning its image
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Figure 7.1: a.) The Recurrent Neural Network architecture with 3 time-steps shown. b.) The
inputs and outputs to a neuron of a RNN. Note that xt and yt are the input and output image
vectors of the RNN at time t respectively. W is a weight matrix consists of W (hx) which is
the weights matrix used to condition the input image vector xt , and W (hh) which is the weights
matrix used to condition the output of the previous time-step, ht−1 (reproduced from [112]).

generators on all previous images in the sequence of the video. Conventional non-deep learning
video rain removal techniques, as discussed in Chapter 2, rely only on a finite number of pre-
vious images in the sequence to remove rain disruption. Figure 7.1(a) shows a RNN with three
consecutive time-steps in the video, for illustration of RNN architecture [112]. Each rectangu-
lar box represents a hidden layer of RNN at a particular time-step, t. Each of the hidden layer
which is made up of a number of neurons, performs a linear mapping on its inputs, followed by
a non-linear sigmoid operation σ(.). At each time-step, the next predicted output ŷt and output
features ht (Equation 7.1) of each hidden layer are produced by the previous step’s output ht−1

and the next image vector, xt , along with their associated weights W (hh) and W (hx) respectively,
which are used to condition them. Figure 7.1(b) illustrates each RNN neuron’s inputs and out-
puts. Note that ŷt is the next predicted image given the output of the previous step (i.e. ht−1)
and the last observed image vector xt .

ht = σ(W (hh)ht−1 +W (hx)xt) (7.1)

Figure 7.2 shows our proposed Recurrent CycleGAN network architecture for both domains
X and Y at time t. As shown in the figure, the recurrent CycleGAN model’s Generator X to Y

works by taking an input image from domain X (rain domain) which is Input X at time-step t,
and the same generator’s previous output image, Generated X at time-step (t−1), to condition
the same generator. The generator will then transform the given rain image from domain X to
an image in the target domain Y (rain-free domain) at the same time-step t. The same process is
happening at domain Y for the Generator Y to X .

The Recurrent CycleGAN networks have two important features: 1.) they take the form of
recurrent structures which can refine their extracted features progressively in each recurrence;
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Figure 7.2: The Recurrent CycleGAN network architecture for both domains X and Y , at time
step t.

2.) The weights at time-step t are conditioned on the previous time-step’s output image Gener-
ated X(t−1). For each recurrence, the output image Generated Y(t) should have better rain removal
capability as it can produce a more successful mapping that is absent in unpaired video data set.
This previous output image acts as the additional conditioning image for the Recurrent Cycle-
GAN. The extra rain information in Generated X(t−1) is needed to direct the data generation
process, or to control the mode (rain or rain-free) of the data being generated. Notice that in the
networks shown in Figure 7.2, Domain Y work exactly the same way as Domain X , except that
they work with input images in the rain-free domain.

In conclusion, both the multi-scale and the Recurrent CycleGAN networks can be applied
on areas of shortcomings of the CycleGAN where the CycleGAN could fail to remove normal
large rain streaks and near rain streaks dropping at non-terminal velocity (e.g., from the roof
of a building) due to the few reasons discussed previously. By exploiting both the multi-scale
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spatial information and the additional temporal information of individual rain streaks in video,
we are confident that it could help us remove a wide range of weather disruption on videos and
images successfully. Besides, video processing could make use of the additional temporal in-
formation provided by high-speed moving rain streaks in the videos to evaluate individual real
rain streaks to compare different rain removal algorithms both qualitatively and quantitatively.
This methodology could overcome the current limitation of the literature in comparing individ-
ual rain removal algorithm’s performance objectively due to the lack of ground truth for real rain
images.
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