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Abstract 

Background: Transcranial magnetic stimulation (TMS) produces magnetic pulses 

by passing a strong electrical current through coils of wire. Repeated stimulation 

accumulates heat, which places practical constraints on experimental design.  

New Method: We designed a condensation-free pre-chilled heat sink to extend 

the operational duration of transcranial magnetic stimulation coils.  

Results: The application of a pre-chilled heat sink reduced the rate of heating 

across all tests and extended the duration of stimulation before coil overheating, 

particularly in conditions where heat management was problematic.  

Comparison with Existing Method: Applying an external heat sink had the 

practical effect of extending the operational time of TMS coils by 5.8 to 19.3 

minutes compared to standard operating procedures. 

Conclusion: Applying an external heat sink increases the quantity of data that 

can be collected within a single experimental session.  

 

Abbreviations: TMS, Transcranial Magnetic Stimulation; MSO, Maximum 

Stimulation Output. 
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Introduction 

Transcranial magnetic stimulators produce magnetic pulses by passing strong 

electrical currents through coils of wire (Barker AT, Jalinous R, 1985). Repeated 

stimulations accumulate heat (Weyh, Wendicke, Mentschel, Zantow, & Siebner, 

2005) and this limits the duration of experiments. Some coils have design 

features such as internal venting to manage heat dissipation (Rossi, Hallett, 

Rossini, & Pascual-Leone, 2009). However, these coils are typically designed for 

rTMS protocols that use rapid but low-powered pulse trains, which may not meet 

the needs of neurophysiological experiments requiring high stimulation 

magnitudes. The additional bulk of these cooling systems is also an obstacle to 

designs requiring the placement of multiple coils on one patient. 

 We designed a heat sink that can be pre-chilled and placed in contact with 

TMS coils while they are in use. The heat sinks were manufactured from cotton 

flannel, cotton broadcloth, and cotton thread and filled with Linum usitatissimum 

(common whole flaxseed). Breathable fabrics were chosen to allow airflow and 

prevent condensation. Two separate sizes were manufactured for the 40mm and 

50mm alpha branding iron coils weighing 124 grams and 149 grams, respectively 

(see Figure 1). An elastic band sewn into the heat sink ensured close contact 

with the upper surface of the coils. We tested the efficacy of this accessory in 

managing heat dissipation in TMS experiments. 

***Figure 1 about here*** 
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Materials and Methods 

Figure-of-eight branding iron coils were attached to two magstim200 stimulators 

which were controlled by an MacMini computer (OSX v10.10.5) running Python 

(v2.7.1) extended with the MagPy package and connected to the stimulators by 

custom built Quickfire cables adapted by from McNair (2017). Stimulators were 

triggered remotely with an inter pulse interval of 10 seconds to simulate a 

common experimental parameter (Giovannelli et al., 2009; Howatson et al., 2011; 

Iwata, Jono, Mizusawa, Kinoshita, & Hiraoka, 2016). Stimulation continued until 

the internal temperature of the coils triggered automatic safety shutoff, or to a 

maximum of 500 trials.  The internal temperature of the coil was recorded before 

the onset of the experiment and immediately after each stimulation using the 

system’s internal sensors. The number of trials completed before reaching 

maximum temperature was taken as an index of the number of trials that would 

be practicable for TMS experiments. 

 This procedure was repeated with 40mm and 50mm alpha branding iron 

coils, with stimulator power set to 55, 65, and 75 percent of maximum stimulator 

output (%MSO), and with or without the application of an external heat sink. Heat 

sinks were pre-chilled to -20°C. Permutations of coil size, stimulation power, and 

heat sink were replicated four times each in random order. Sessions were 

conducted in a climate-controlled room set to 22°C. The ambient room 

temperature was verified by analog thermometer prior to each session. Coils 

were allowed to return to room temperature between sessions. 
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Results 

We constructed linear models (Bates, Maechler, Bolker, & Walker, 2015; R Core 

Team, 2017) to predict the number of trials before automatic shutoff from the coil 

size, stimulation power, and the presence/absence of the heat sink (see Figure 

2). A comparison of linear models revealed no main effect of coil size F(1, 36) = 

0.013, p= 0.91, a significant main effect of stimulation power F(2,36) = 1581.5, p 

< 0.05, and a significant effect of the heat sink F(1,36) = 84.8, p< 0.05. However, 

there were also significant interactions between coil size and heat sink F(1,36) = 

8.4, p< 0.05, heat sink and stimulation power F(2,36) = 14.8, p< 0.05, and a three 

way interaction between coil size, stimulation power, and heat sink F(2,36) = 5.7, 

p < 0.05. 

***Figure 2 about here*** 

 In light of the significant interactions we performed a battery of simple 

main effects within coil size and stimulation power. There was no effect of the 

heat sink at stimulation power of 55 %MSO for the 40mm coil [F(1,6) = 1.2, p = 

0.32, CI -11.7 to 30.2 trials] or the 50mm coil [F(1,6) = 2.0, p = 0.21, CI -3.1 to 

11.6 trials]. There was no effect of the heat sink at a stimulation power 65 %MSO 

for the 40mm coil [F(1,6) = 1.4, p = 0.28, CI -27.2 to 79.2 trials], but there was a 

main effect for the 50mm coil [F(1,6) = 83.6, p < 0.05, CI 67.2 to 116.3 trials]. 

There was a significant main effect of heat sink at stimulation power of 75 %MSO 

for both the 40mm coil [F(1,6) = 79.0, p < 0.05, CI 35 to 61.5 trials] and 50mm 

coil [F(1,6) = 300.6, p < 0.05, CI 55 to 73 trials]. 
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Discussion 

We tested a novel pre-chilled heat sink to manage overheating in TMS coils. We 

found that larger coils were more prone to overheating, particularly with greater 

stimulation power. These heat sinks are effective, inexpensive, produce no 

device-harming condensation, and add little bulk to the coils, which is of 

particular importance when conducting multi-coil experiments. The application of 

an external heat sink mitigated coil overheating, particularly for larger coils and 

with high stimulation power. At low stimulation power heat sinks may accumulate 

sufficient heat to act as an insulator in which condition the heat sinks may be 

counterproductive. Where it was effective the heat sinks prolonged the safe 

operation of the stimulators between 35 and 116 trials corresponding to 5.8 to 

19.3 minutes of additional stimulation time. Inter-test variation in the benefit of the 

heat sinks may be due to differences in the time taken to move the heat sinks 

from the freezer to the onset of stimulation. The use of these heat sinks in 

neurophysiological experiments with TMS would allow for more data to be 

collected in a single session.  

We recommend these external heat sinks for experiments that must use 

standard coils lacking built-in cooling hardware, at high stimulation powers as is 

common in neurophysiological studies. In practical application, we have found it 

feasible to position coils over their targets prior to applying the heat sinks. It may 

also be useful to design experiments with breaks in the stimulation paradigm that 

would allow researchers to remove or replace heat sinks that are no longer 

cooler than the ambient temperature of the laboratory. 
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 The flannel outer covering also provides an opportunity to increase the 

aesthetic appeal of TMS coils with no detrimental heating or power effects. Coil 

aesthetics is of particular relevance for populations that may experience anxiety 

about undergoing neurostimulation, such as pediatric patients (Rajapakse & 

Kirton, 2013). This feature may have potential similar to the practice of training 

patients with pediatric-friendly mock scanners in the context of magnetic 

resonance imaging, which alleviates procedure related anxiety in both the patient 

and the family (De Bie et al., 2010). 
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Figure Legends 

 

Figure 1: Upper) Heat sinks installed on branding iron coils. Lower) Superior and 

inferior views. 

 

Figure 2: Lines show the progressive heating of TMS coils over successive 

stimulations. Rug plots show the trial on which coils reached maximum 

temperature.  These indicate the number of trials completed before triggering an 

automatic shutoff with the exception of the few cases in which the full 

complement of trials was completed. 
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