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Abstract: Few data are available that describe how probiotics influence systemic metabolism during
endurance exercise. Metabolomic profiling of endurance athletes will elucidate mechanisms by which
probiotics may confer benefits to the athlete. In this study, twenty-four runners (20 male, 4 female)
were block randomised into two groups using a double-blind matched-pairs design according to
their most recent Marathon performance. Runners were assigned to 28-days of supplementation
with a multi-strain probiotic (PRO) or a placebo (PLB). Following 28-days of supplementation,
runners performed a competitive track Marathon race. Venous blood samples and muscle biopsies
(vastus lateralis) were collected on the morning of the race and immediately post-race. Samples were
subsequently analysed by untargeted 1H-NMR metabolomics. Principal component analysis (PCA)
identified a greater difference in the post-Marathon serum metabolome in the PLB group vs. PRO.
Univariate tests identified 17 non-overlapped metabolites in PLB, whereas only seven were identified
in PRO. By building a PLS-DA model of two components, we revealed combinations of metabolites
able to discriminate between PLB and PRO post-Marathon. PCA of muscle biopsies demonstrated no
discernible difference post-Marathon between treatment groups. In conclusion, 28-days of probiotic
supplementation alters the metabolic perturbations induced by a Marathon. Such findings may be
related to maintaining the integrity of the gut during endurance exercise.

Keywords: metabolomics; marathon; exercise; probiotic; metabolism

1. Introduction

During strenuous exercise, the gastrointestinal (GI) tract faces a number of stressors,
and one of the consequences, most commonly seen in endurance runners, is an increase in
symptoms such as bloating, abdominal cramping, diarrhoea, nausea, and vomiting [1,2].
The aetiology of GI distress during endurance exercise is, in part, related to splanchnic
hypoxia, oxidative stress, hyperthermia, mechanical stress related to exercise, and malab-
sorption of carbohydrates (CHO) consumed before and during exercise [3,4]. Reduced
CHO absorption due to GI distress poses a particular problem for endurance athletes,
as CHO availability during endurance exercise lasting > 60 min may be a limiting factor
for performance. As liver and muscle glycogen stores are limited, oral ingestion of CHO
before and during exercise improves performance and delays fatigue in cycling and run-
ning [5,6]. Due to the apparent importance of the microbiome on mammalian metabolism,
GI morphology and integrity, and overall health [7], there has been an interest in probiotic
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supplementation, with the aim of altering the existing GI environment. Such supplementa-
tion has been associated with a number of benefits for different aspects of human health
and, more recently, there has been significant interest in how probiotic supplementation
could positively impact the health and performance of athletic populations, including
endurance athletes [8–10].

Few studies have investigated whether probiotic supplements can reduce GI symp-
toms and help maintain endurance exercise performance. A reduction in the duration of
GI symptoms was noted in a group of recreational runners two weeks after a Marathon
following a single strain probiotic supplementation, although only severe symptoms (diar-
rhoea, vomiting, and stomach-ache) were recorded, and no differences were found during
the period of supplementation [11]. The severity of GI symptoms during training in novice
triathletes was also reduced when supplementing with a multi-strain probiotic [12]. Re-
cently, we have shown in a randomised controlled trial of twenty-four recreational runners,
that supplementation with a multi-strain probiotic for 28 days prior to a Marathon race
reduces the incidence and severity of GI symptoms when compared with a placebo control,
which was also associated with better maintenance of running pace in the latter stages of
the Marathon [10]. We were unable to associate the improvement in GI symptoms with any
one of the biochemical variables assessed in our study, and, moreover, markers of GI dam-
age were no different between treatment groups. Our previous findings suggest that the
potential positive effects of probiotics may be in the improved absorption of carbohydrates
across the GI tract. However, the precise mechanisms and interactive effects by which
probiotics may positively regulate aerobic exercise performance remain to be determined.

Metabolomic profiling has demonstrated that the microbiome has a considerable
influence on the mammalian blood metabolome [13], and, therefore, metabolomic profiling
of Marathoners ingesting a multi-strain probiotic has the potential to reveal new insights
into how probiotics influence systemic metabolism and endurance exercise performance.
In a recent publication, untargeted metabolite profiling was performed on the serum of
31 runners prior to and following a Marathon to identify metabolites that vary most due
to the physiological stress of this type of endurance exercise [14]. These findings revealed
that a Marathon induces a substantial strain on bioenergetic pathways, potentially causing
extensive protein degradation, oxidative stress, and inhibition of anabolic pathways. The
findings not only highlight the complexity of the physiological responses to Marathon run-
ning but also the utility of untargeted metabolomics for better characterising the response
to exercise.

The aim of the current study was to generate new hypotheses and subsequently better
characterise the mechanisms by which probiotic supplementation may incur beneficial
physiological effects during Marathon running. To achieve this aim, samples derived from
our aforementioned track Marathon study [10] were analysed by untargeted metabolomics
before and after a Marathon race.

2. Results

During the 24 h before the Marathon race, participants consumed a standardised
high CHO, low fibre diet (per kg body mass: 8.0 g CHO (0.28 g fibre); 2.0 g protein; 1.0 g
fat). Compliance with the diet was confirmed with food diaries and the remote food
photography method [15]. After an overnight fast, participants reported to the laboratory
at ~ 07:00 h and resting venous blood samples and muscle (vastus lateralis) biopsies were
taken. Participants were then provided with a standardised breakfast (572 kcal; 128 g
CHO (4.4 g fibre), 7 g protein, 3.5 g fat, and a minimum of 500 mL water) before a pre-race
venous blood sample was collected. Participants performed self-selected warmups before
a race briefing to reiterate in-race nutrition. The race started at 12:00 pm. Runners ran
the 42,195 m race on a synthetic 400 m outdoor track (105.48 laps), which was in close
proximity to the laboratory. Participants were fed CHO gels at a rate of 66 g/h during
the Marathon race. Weather conditions throughout the race were as follows: temperature:
16–17 ◦C; wind speed: 8–16 km/h−1; precipitation: 0 mm. Immediately post-Marathon,
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blood samples and muscle biopsies were taken in the same manner as pre-Marathon. A
schematic overview of the study design is presented in Figure 1.
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Figure 1. Schematic overview of the study design. (A) Participant randomisation (n = 24; 20 males,
4 females) to either 4 weeks of multi-strain probiotic (PRO) or visually identical placebo (PLB).
(B) Dietary control 24 h pre-Marathon and food diary recording by RFPM. (C). Race day protocol
commenced with blood and biopsy sampling at 07:00, followed by a controlled breakfast. Track
Marathon commenced at 12:00, immediately following which blood and biopsy samples were
collected again. Samples were immediately processed at the on-site laboratory and frozen stored
at −80 ◦C. (D) Sample preparation and analysis by 1H-NMR. Peaks were assigned using Chenomx.
Full parameters sets are deposited along with raw and processed spectra in the EMBL-EBI repository
MetaboLights. (E) Univariate and multivariate data analysis were performed in the statistical
software R, and pathway elucidation was undertaken in MetaboAnalyst and MetExplorer. Figure
created with BioRender.com.
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2.1. Effects of Multi-Strain Probiotic Supplementation on the Alterations to the Serum Metabolome
Induced by Marathon Running

Unsupervised multivariate analysis of the serum groups by principal component
analysis (PCA) was performed to determine if any underlying structure was present in the
data (Figure 2C,D), and we observed that post-Marathon, a greater difference was observed
in the PLB group than in PRO. Within-group differences pre- and post-Marathon were then
explored by univariate tests for all serum buckets, which identified 94 significant buckets
of which there were 36 different identities and 17 were non-overlapped metabolites in
placebo. In contrast, the probiotic group identified only 15 buckets significantly different,
of which there were seven different identities (all non-overlapped metabolites). Metabolites
involved in energy metabolism predominated the significantly altered metabolite dataset;
2-hydorxybutryate increased in both groups and is an early marker for both insulin resis-
tance and impaired glucose regulation that appears due to increased lipid oxidation and
oxidative stress, and notably can increase glutathione synthesis. Glutathione was elevated
in skeletal muscle biopsy samples, but only in PLB in our dataset. We also detected a
significant increase in 3-hydroxybutyrate, which is metabolised by 3-hydroxybutyrate de-
hydrogenase to form acetoacetate, using NAD+ as an electron acceptor. The concentration
of 3-hydroxybutyrate in blood is elevated in ketosis and was also only elevated in the
PLB condition highlighting a potential switch to fatty acid metabolism over carbohydrate
metabolism in this group. Glucose and tricarboxylic acid cycle intermediates such as citrate
and lactate were also significantly altered by Marathon running, predominantly in the PLB
group. A number of amino acids were also significantly altered by Marathon running,
including phenylalanine, proline, threonine, tyrosine, alanine, arginine, glutamine, the
branched-chain amino acids (leucine, isoleucine and valine) histidine and lysine. Notably,
some glucogenic amino acids and precursors, particularly alanine and arginine showed
significant decreases following the Marathon only in PLB, pointing towards increased
reliance on amino acids as a source of glucose production, especially considering the ele-
vation of ketone bodies in the PLB group post-Marathon. A heat map of the significantly
altered metabolites is presented in Figure 2, and the metabolite sets to which they map are
listed in Table 1. The most overrepresented pathways, as determined by hypergeometric
testing, identified aminoacyl t-RNA biosynthesis and amino acid synthesis, likely due
to the presence of numerous amino acids predominating the list of significantly altered
metabolites.

Table 1. Results of the overrepresentation analysis using the hypergeometric test to evaluate whether a particular metabolite
set was represented more than expected by chance within the metabolites identified from our univariate analysis. One-tailed
p-values are provided after adjusting for multiple testing.

Biological Process Total Expected Hits Raw p-Value
Holm

Adjusted
p-Value

FDR

Aminoacyl-tRNA biosynthesis 48 0.778 12 7.53 × 10−13 6.32 × 10−11 6.32 × 10−11

Valine, leucine and isoleucine
biosynthesis 8 0.13 4 3.61 × 10−6 3.00 × 10−4 0.000152

Phenylalanine, tyrosine and
tryptophan biosynthesis 4 0.0649 2 0.00149 0.122 0.0416

Phenylalanine metabolism 10 0.162 2 0.0105 0.85 0.22
Arginine biosynthesis 14 0.227 2 0.0204 1 0.301
Arginine and proline

metabolism 38 0.616 3 0.0218 1 0.301

Valine, leucine and isoleucine
degradation 40 0.649 3 0.025 1 0.301

Neomycin, kanamycin and
gentamicin biosynthesis 2 0.0324 1 0.0322 1 0.338

Galactose metabolism 27 0.438 2 0.0692 1 0.62
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Figure 2. Pre- and post-race comparison via principal component analysis of serum placebo group (A), serum probiotic
group (B), skeletal muscle placebo group (C), and skeletal muscle probiotic group (D). For clarity, ellipses show the 95%
confidence region. Heatmap of metabolites significantly different pre- and post-Marathon for (E) serum and skeletal muscle
tissue (F). Fold change calculated as a ratio of the mean for each listed metabolite peak pre-Marathon to post-Marathon.
Data presented as binary logarithm (log2) to indicate whether each metabolite level has increased (greater than 0, red)
or decreased (less than 0, blue) between sampling points. Not all participants were willing to provide a muscle biopsy,
therefore PLB n = 7, PRO n = 6 for skeletal muscle samples. Values in brackets are the position of the metabolite peak in the
NMR spectrum in ppm.

To attribute the differences between PRO and PLB group post-Marathon to particular
metabolites, we implemented a multivariate approach by building a PLS-DA model of
two components. This approach revealed combinations of metabolites that were able to
discriminate between the two experimental groups post-Marathon (Figure 3A) with a ROC
score of 0.83. Amino acids predominated as the most important variables of importance
in projection (VIP; Figure 3B), with lipids, ketone bodies, creatinine, creatine, mannose
and desaminotyrosine also identified as important variables (VIP score > 1). Many of
these metabolites corroborated the findings from our univariate tests presented in Figure 2.
Enriched metabolite sets reflected the predominance of amino acids in the model. Those
metabolite sets with a Holm-adjusted p-value < 0.05 included aminoacyl-tRNA biosynthesis,
D-glutamine and D-glutamate metabolism, and valine, leucine and isoleucine biosynthesis
(Table 2).
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Figure 3. Partial least squares discriminant analysis (PLS-DA) of serum samples. (A) PLS-DA score plot representing
component 1 and 2 for serum post-Marathon discriminating placebo (dark purple) vs. probiotic (light blue). Ellipses show
the 95% confidence region. (B) VIP variables are presented for component 2 showed the most influential metabolites in the
model. Metabolites with values over 1 were considered relevant. Values in brackets are the position of the metabolite peak
in the NMR spectrum in ppm.

Table 2. Results of the overrepresentation analysis using the hypergeometric test to evaluate whether a particular metabolite
set was represented more than expected by chance within the metabolites identified from PLS-DA analysis (VIP scores > 1).
One-tailed p-values are provided after adjusting for multiple testing.

Biological Process Total Expected Hits Raw p-Value
Holm

Adjusted
p-Value

FDR

Aminoacyl-tRNA biosynthesis 48 0.725 10 3.10 × 10−10 2.61 × 10−8 2.61 × 10−8

D-Glutamine and D-glutamate
metabolism 6 0.0907 4 5.85 × 10−7 4.85 × 10−5 2.46 × 10−5

Valine, leucine and isoleucine
biosynthesis 8 0.121 3 0.000161 0.0132 0.00451

Arginine biosynthesis 14 0.212 3 0.000986 0.0798 0.0207
Valine, leucine and isoleucine

degradation 40 0.604 4 0.00253 0.202 0.0425

Nitrogen metabolism 6 0.0907 2 0.00316 0.25 0.0442
Ascorbate and aldarate

metabolism 8 0.121 2 0.00579 0.452 0.0695

Alanine, aspartate and
glutamate metabolism 28 0.423 3 0.00772 0.595 0.0811

Glyoxylate and dicarboxylate
metabolism 32 0.484 3 0.0112 0.854 0.105

Arginine and proline
metabolism 38 0.574 3 0.018 1 0.151

Butanoate metabolism 15 0.227 2 0.0204 1 0.155
Histidine metabolism 16 0.242 2 0.0231 1 0.161
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2.2. Effects of Marathon Running and Probiotic Supplementation on the Skeletal
Muscle Metabolome

Unsupervised multivariate analysis of the skeletal muscle biopsy groups by PCA
showed no discernible difference post-Marathon between treatment groups (Figure 2C,D).
Univariate analysis found only nine significant bins corresponding to five different identi-
ties amongst biopsy metabolite extracts between pre- and post-Marathon, and only one
metabolite bucket annotated as glutathione was significantly different between PLB tissue
extracts and none between PRO groups (Figure 2F).

3. Discussion

In order to generate new hypotheses and subsequently better characterise the mech-
anisms by which probiotic supplementation may incur beneficial physiological effects
during Marathon running, the current study examined the effects of multi-strain probiotic
supplementation in runners by serum metabolomics before and after a Marathon race. Prin-
cipal component analysis (PCA) identified a greater difference in the post-Marathon serum
metabolome in the PLB group vs. PRO. Univariate tests identified 17 non-overlapped
metabolites in PLB, whereas only seven were identified in PRO. By building a PLS-DA
model of two components, we revealed combinations of metabolites able to discriminate be-
tween PLB and PRO post-Marathon. PCA of muscle biopsies demonstrated no discernible
difference post-Marathon between treatment groups. Collectively, the analysis shows for
the first time that four weeks of multi-strain probiotic supplementation can attenuate the
substantial change in the metabolome induced by running a Marathon and opens avenues
for prospective research studies.

We recently reported novel findings that supplementation with a probiotic for 28-days
prior to a track Marathon race was associated with lower incidence and severity of GI
symptoms when compared with a placebo control and is associated with a better mainte-
nance of running pace at the latter stages of the Marathon [10]. In this current study, the
use of untargeted serum metabolomics on samples derived from the aforementioned track
Marathon and by univariate analysis demonstrated that whilst 94 spectral buckets were
altered in the placebo group in pre–post Marathon comparisons, only 15 were found to be
significantly different in the probiotic cohort. Multivariate analysis highlighted that the
difference between groups post-Marathon was mainly attributed to amino acids with lipids,
ketone bodies, creatinine, creatine, mannose and desaminotyrosine also identified as impor-
tant variables (Figure 3B). Together these data suggest a possible protection effect against
the alteration of the pre-exercise metabolome derived from the probiotic supplement.

Our main theory is that probiotics offer a protective effect to the gut, preventing the
substantial alteration of the serum amino acid profile post-Marathon. Endurance exercise
and high-intensity interval exercise both cause gut damage and GI distress, presumably due
to splanchnic hypoxia, oxidative stress, hyperthermia and mechanical stress related to exer-
cise and malabsorption of CHO consumed before and during exercise [3,4,16]. Mounting
evidence suggests that probiotics confer protective effects to the gut [7,9]. These protective
effects are thought to be mediated by the release of molecules by the probiotic, activating
signalling pathways responsible for the strengthening of tight junctions (intercellular adhe-
sion complexes in epithelial and endothelial cells that control permeability), and may also
confer cytoprotective properties by preventing disruption of tight junctions by damaging
stimuli [reviewed by 16]). In support of this finding, we observed a significant decrease in
the gut-derived microbial metabolite desaminotyrosine (DAT) in our placebo group after
Marathon running, recently demonstrated to be a crucial anti-inflammatory molecule that
modulates local and systemic immune homeostasis and protects gut barrier integrity [17].
It is also possible to speculate that the significant elevation of citrate in PLB could indicate
inflammation since citrate is produced by immune cells and acts in a pro-inflammatory
fashion [18]. The cause of this inflammatory response may be exercise-induced GI distress,
which disrupts tight junctions and permits the release of lipopolysaccharide, in turn, act
upon monocyte and macrophage activity and stimulating the release of pro-inflammatory
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cytokines [19]. Probiotics may also directly reduce the susceptibility of tight junctions
to injurious stimuli. The scaffold protein zonula occludens (ZO)-1 and transmembrane
protein occludin have been found to be significantly increased in the vicinity of the tight-
junction structures in vivo following administration of Lactobacillus plantarum [20]. Another
lactobacillus species, Lactobacillus rhamnosus GG, also confers protection of the gut to hy-
drogen peroxide-induced disruption of tight junctions and barrier function in Caco-2 cell
monolayers [21]. Protein kinase C, extracellular related kinase 1/2 and mitogen activated
protein kinase all appear to be key signalling proteins involved in the protective effects
of probiotics on cells of the intestinal barrier [16]. Whilst a direct relationship between
probiotic supplementation and gut integrity were not demonstrated by our dataset, it
can be hypothesised that the attenuation of the substantial change in the metabolome
induced by the injurious stimulus of Marathon running in our probiotic group, is due to
the protective effects of probiotics on the structural properties of the gut. This may have
important consequences for the absorption of nutrients during exercise, particularly CHO.

We hypothesise that probiotics can maintain intestinal integrity and therefore maintain
CHO absorption and oxidation during prolonged exercise. Given that CHO ingestion
may attenuate skeletal muscle degradation caused by exercise [22], maintenance of CHO
absorption and utilisation during exercise may protect skeletal muscle during exercise and
explain some of the alterations observed in the amino acid profile observed in the placebo
group of this study. We report a greater decrease in the glucogenic amino acids alanine
and arginine and a greater increase in 3-hydroxybutyrate in the placebo group, which
point towards a shift to lipid metabolism and increased reliance on amino acids as a source
of glucose production potentially via the glucose-alanine cycle. Previous reports [23,24],
including a recent publication from our group [25], showed that CHO ingestion during
prolonged endurance exercise (2 h at 55% Wmax) reduces endogenous glucose production
by the liver to maintain blood glucose concentrations. It is important to consider that
metabolomics measures metabolite abundances but not pathway activity, and therefore,
future experiments could combine isotope tracers into metabolomic studies to determine
pathway flux [26].

It is likely that the turnover of skeletal muscle also contributes to the change in the
serum amino acid profile. Skeletal muscle protein turnover is increased following dif-
ferent modalities and durations of acute [27–29] and chronic endurance exercise [30,31].
Significant elevations in creatinine seen in this study may also indicate damage to skeletal
muscle, which is common following Marathon running and long endurance events [32–36].
Increased protein turnover is exacerbated by low muscle CHO availability [22] and may
be more pronounced when there is a higher mechanical load (acceleration/deceleration
forces associated with running, for example). Notably, some glucogenic amino acids and
precursors, particularly alanine and arginine, showed significant decreases following the
Marathon only in the placebo group, despite regular CHO feeding during the Marathon
in the form of CHO gels at a rate of 66 g/h. It can be suggested that there is an increased
requirement for amino acids as a gluconeogenic substrate for the glucose-alanine cycle,
potentially due to lower rates of CHO oxidation in the muscle. This hypothesis is supported
by our recent findings that 4 weeks of multi-strain probiotic supplementation increased
peak oxidation rates of ingested maltodextrin and total carbohydrate oxidation, accompa-
nied by a reduction in fat oxidation whilst exercising for 2 h at 55% maximal aerobic power
output [25]. A practical consequence of the increased protein turnover and amino acid
oxidation due to endurance exercise is an elevation of the estimated daily protein require-
ments of endurance athletes, recently determined by the indicator amino acid oxidation
method during a 3-day simulated training study (total running volume of 35 km) [37]. This
work supports recent recommendations that protein nutrition for the endurance athlete is
an important consideration, particularly after competition. These data also suggest that
CHO feeding before and during Marathon racing is integral to support high rates of CHO
utilisation and to limit glucose production from alternative gluconeogenic sources, such as
protein. Despite high CHO intake in the day preceding the race (8 g per kg body mass), the
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pre-race breakfast (128 g) and CHO gels at a rate of 66 g/h, evidence of a shift to a greater
reliance on alternative substrates for glucose production was still observed.

We also investigated the muscle metabolome from biopsy samples obtained at the
same time as serum samples. Interestingly, we observed little difference between probiotic
and placebo groups in the number of spectral buckets altered by the Marathon. Only one
metabolite bucket annotated as glutathione (GSH) was significantly elevated in placebo
tissue extracts, whereas no differences were observed between probiotic group samples.
The redox state of GSH is an indicator of oxidative stress, and oxidised GSH increases
in response to an exercise stimulus [38]. The current study did not measure oxidised
and reduced GSH, only total glutathione. Resting concentrations of GSH increase as an
adaptation to endurance exercise training, presumably to deal with frequent production
of reactive oxygen species [39]. A systematic review and meta-analysis revealed that
probiotic supplements improve the antioxidant defence system, increase the abundance
of antioxidant enzymes and improve resistance to oxidizing agents [40]. Alternatively,
metabolites secreted by probiotics, such as acetate (short-chain fatty acid; SCFA), have been
shown to directly impact mitochondrial metabolism [41]. SCFA act as ligands for free fatty
acid receptors 2 and 3 (FFAR2, FFAR3) that regulate glucose and fatty acid metabolism [42].
SCFA also regulates SIRT1 activity [41], a NAD-dependent deacetylase that deacetylates
peroxisome proliferator initiated receptor gamma and coactivator 1 alpha (PGC-1α), a key
player in mitochondrial biogenesis [43]. Whilst the concentration of the SCFA acetate was
not significantly affected by Marathon running, basal and post-Marathon serum acetate
concentration was higher in the probiotic group in the current study and one of the top
5 VIP variables in our PLS-DA model able to discriminate between placebo and probiotic
post-Marathon (Figure 3B). Although we only had access to a small sample of biopsies
(PLB n = 7, PRO n = 6 for skeletal muscle samples), these results may indicate that probiotic
supplementation confers protection to oxidative stress and/or improves mitochondrial
function during strenuous exercise and is worthy of further investigation.

Metabolomics studies are very sensitive to study design, and as such, intrinsic partici-
pant variation (such as sex, age genetic composition, habitual diet) is a limitation on this
modest cohort size. Metabolomics, unlike other omics, is still very much a developmental
field presenting difficulties in the identification of metabolites in complex mixtures, such
as serum [44]. Furthermore, NMR metabolomics, albeit consistent and robust [45,46], are
an untargeted technique and, as such, reports primary metabolites only [47]. Moreover, the
technique presents challenges when interpreting metabolite changes in the biological con-
text [48]. The pathways available on KEGG are not exhaustive for metabolite mapping and
an overrepresentation of diseases, such as cancer, which may skew pathway analysis. All
these limitations emphasise the need for more nutrition and exercise metabolomic datasets
in order to improve biological contextualisation of exercise/nutrition metabolomics studies.

In conclusion, we present here a novel NMR metabolomics dataset in Marathon
runners that received a probiotic or placebo supplement for four weeks prior to a track
Marathon. Our data demonstrated a potentially protective effect of probiotic supplemen-
tation on the metabolic perturbations induced by a Marathon and raise new questions
regarding the effects of probiotic supplements for exercise performance and metabolism.
More sport and exercise nutrition studies are needed to improve the biological contextu-
alisation of metabolomics data and to identify the mechanisms underpinning favourable
metabolic effects of probiotics during endurance exercise. Moreover, it remains to be
determined how the metabolic disturbance caused by the Marathon is resolved by time,
and future studies should obtain multiple samples in the hours and days following the
Marathon. From a practical perspective, the data provided here and in our previous re-
ports [10,25] highlight the potential role probiotic bacteria may play in athlete metabolism
and GI function and symptomology. Dose-response studies, investigation into different for-
mulations of probiotic strains, and on the minimum effective duration of supplementation
are still lacking.
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4. Materials and Methods
4.1. Participants

Twenty-four runners (20 male, 4 female) participated in the study (Table 3). All
participants were required to have run a Marathon race quicker than 5 h within the previous
2 years. Participant characteristics are presented in Table 3. All participants were free of
medications, such as non-steroidal anti-inflammatory drugs (NSAIDs), antidepressants, or
diuretics, nutritional supplements at the time of volunteering for the study, and any history
of GI-related medical issues (IBS or abdominal surgery). After explaining the nature and
risks of the experimental procedures to the participants, participants informed written
consent was obtained. The study was approved by the University’s local ethics committee.

Table 3. Participant characteristics. Values are means ± SD. Differences between groups for all measures were not significant
(p < 0.05). LT = lactate threshold. Gender split (10 Males and 2 Females per group. Values are running speed at LT. PLB =
placebo, PRO = probiotic.

PLB PRO
Mean ± SD Range Mean ± SD Range

Age (years)
Height (m)

Body Mass (kg)
VO2peak (mL·kg·min−1)

LT (km·h−1)
Most recent Marathon time (min)

36.1 ± 7.5
1.75 ± 1.11
73.5 ± 11.3
56.4 ± 8.6
11.9 ± 1.9
220 ± 40

29–50
1.52–1.86

48–95
47.2–70.0

9–16.0
150–283

34.8 ± 6.9
1.79 ± 0.6
76.5 ± 9.4
57.6 ± 8.0
12.3 ± 1.9
222 ± 46

22–43
1.68–1.90

61–92
48.1–66.7
10–15.5
152–315

4.2. Experimental Design

In a double-blind, block randomised and matched-pairs design, participants under-
went a 28-day period of supplementation consuming either a commercially available probi-
otic (PRO) or a visually identical placebo (PLB). Participants also consumed an additional
supplement capsule on the morning of the race, two hours before the start. Participants
were matched according to their most recent Marathon performance (PRO: 222 ± 46 min;
PLB 220 ± 40 min) and body mass (Table 3). The probiotic supplement capsules con-
tained the active strains Lactobacillus acidophilus CUL60, Lactobacillus acidophilus CUL21,
Bifidobacterium bifidum CUL20 and Bifidobacterium animalis subs p. Lactis CUL34 (Proven
Probiotics Ltd., Port Talbot, Wales, UK). The minimum dose was 25 billion colony forming
units (CFU) per capsule. The placebo capsules were visually identical and consisted of
300 mg maltodextrin (Proven Probiotics Ltd., Port Talbot, Wales, UK). Participants were
instructed to swallow the capsule daily after their first meal. The randomisation code was
held by a third party, unlocked for analyses upon sample analysis completion. During the
supplementation period, participants were instructed to refrain from all probiotic foods
(i.e., fermented yogurts) and avoid any probiotic supplements.

4.3. Serum Sample Collection

Venous blood samples were collected in 8 mL serum separator vacutainers (BD),
inverted 5–6 times and clotting proceeded at room temperature for 30 min prior to centrifu-
gation (1300× g, 10 min, 4 ◦C). Serum was aliquoted and stored at −80 ◦C until analysis.
All blood samples (pre- and post-Marathon) were processed in the same manner (with time
between blood draw and freeze consistent throughout).

4.4. Tissue Sample Collection and Extraction

Muscle biopsies were extracted from the vastus lateralis pre- and immediately post-
Marathon via perpendicular punch using 12-gauge × 10 cm biopsy gun needle (Bard.
Crawley, UK) according to standard protocols [49]. Biopsies were transferred to sterile
labelled cryovial tubes and were immediately snap-frozen in liquid N2 and stored at
−80 ◦C until analysis. Tissue was resuspended in 50:50 v/v ice-cold acetonitrile:water



Metabolites 2021, 11, 535 11 of 14

(HPLC grade) and sonicated in 3 × 30 s bursts using a micro-tip sonicator (50 kHz) in an
ice-bath. Extracts were then centrifuged at 4 ◦C 21,500× g for 5 min to pellet cell-debris
with clarified supernatant lyophylised and stored at −80 ◦C prior to NMR acquisition.
Muscle tissue samples were only collected from 13 participants (PLB n = 7, PRO n = 6) due
to willingness to provide a biopsy.

4.5. Sample Preparation for NMR

Serum samples were prepared according to standard protocols [49] with NMR samples
consisting of 50% serum, 10% 2H2O with 100 mM sodium phosphate buffer pH 7.4 and
0.1% azide. Lyophilised tissue extracts were resuspended to a final sample composition of
100% 2H2O with 100 mM sodium phosphate buffer pH 7.4, 100 µM Trimethylsiylpropionate
(TSP) and 0.1% azide.

4.6. NMR Set-Up and Acquisition

Spectra were acquired on Bruker 700 MHz avance IIIHD spectrometer equipped
with TCI cryoprobe and chilled autosampler (SampleJet, Ettlingen, Germany). Standard
vendor pulse sequences were applied to collect 1D 1H-NMR spectra (cpmg1dpr). A Carr–
Purcell–Meiboom–Gill (CPMG) edited pulse sequence was employed to attenuate signals
from macromolecules present (proteins, etc.). Serum spectra were collected at 37 ◦C with
32 transients, whereas tissue extract spectra were collected at 25 ◦C with 128 transients
for optimal sensitivity, with all other parameters kept constant. Full parameters sets were
deposited along with raw and processed spectra in the EMBL European Bioinformatics
Institute (EBI) repository MetaboLights with ID MTBLS1357 [50].

4.7. Spectra Processing and Quality Control

All spectra were automatically pre-processed at spectrometer by Fourier-transformation,
phase correction and baseline correction using standard vendor routines (apk0.noe) and
referenced either directly to TSP (tissue extracts) or indirectly via anomeric glucose signal
(serum). Spectra were subjected to quality control criteria as recommended by Metabolomics
Standards Initiative (MSI) [51,52]. Quality control criteria consisted of appraisal of baseline,
line-width, residual water signal width, phase and signal-to-noise. Spectra were bucketed
according to peaks boundaries defined with each bucket, the sum of the integral for that
region divided by the region width.

4.8. Metabolite Annotation and Identification

Metabolites were annotated via the use of metabolite recognition software Chenomx
(Chenomx v 8.2, Chenomx Ltd., Edmonton, AB, Canada), and the respective buckets
were annotated prior to statistical analysis. Metabolites identities were confirmed (where
possible) via comparison to the in-house metabolite library.

4.9. Statistical Analysis

Spectra were normalised via the probablistic quotient normalisation (PQN) method [53].
Samples of participants before and after the Marathon were compared via paired Welch
tests, in which p-values were corrected for false discovery rate by the Benjamini-Hochberg
method, and an adjusted p-value of <0.05 was considered significant. Differences between
placebo and probiotic samples were appraised with both univariate (Welch tests) and
multivariate approaches, including principal component analysis (PCA) and partial least
squares discriminant analysis (PLS-DA). All statistical analyses were performed with the
statistical software R [54]. Multivariate models were applied, combining the metabolomics
data (using one signal per metabolite) and the biochemistry variables measured in the
participants. PLS-DA models were built using the package mixOmics [55]. The number of
components to retain for each model was calculated via 50 times 5-fold cross-validation
using seventy percent of the data (training data), using the function perf within mixOmics.
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The 30% data left was used to test the accuracy of the models (test data). Details of each
model are presented in the results.

Significant metabolites after the univariate tests and most important variables from the
PLS-DA model were used for metabolite set enrichment analysis independently. We used a
combined approach: MetaboAnalyst 3.0 [56] was used to enquire about the enrichment of
the default pathways sets and diseases sets; with MetExplore [57], we tested the significance
for pathways within the database KEGG (release 92) for Homo sapiens.

Author Contributions: Conceptualisation, D.J.O., J.N.P., J.P.M., G.L.C.; methodology, D.J.O., J.N.P.,
M.M.P., G.L.C.; software, M.M.P., E.C.-G.; formal analysis, D.J.O., J.N.P. M.M.P., E.C.-G.; investigation,
D.J.O., J.N.P., G.L.C., S.A.S.; resources, M.M.P., E.C.-G., S.A.S.; data curation D.J.O., J.N.P. M.M.P.;
writing—original draft preparation, D.J.O., J.N.P.; writing—review and editing, all authors; visual-
isation, D.J.O., M.M.P., E.C.-G.; supervision, D.J.O., G.L.C., J.P.M.; funding acquisition, G.L.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Vega Nutritionals Ltd. through an industry partnership with
G.L.C. of the Liverpool John Moores University.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki and approved by the Institutional Ethics Committee of Liverpool John
Moores University (ethical approval number 17SPS012).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: Full parameters sets are deposited along with raw and processed
spectra in the EMBL European Bioinformatics Institute (EBI) repository MetaboLights with ID
MTBLS1357 [50].

Acknowledgments: The authors would like to thank the technical assistance of Dean Morrey and
Gemma Miller for their help with laboratory testing as well as Paul Smith-Johnson, Craig Thomas,
Daniel Sadler, Victoria Benford, Gemma Sampson, Mark Hearris and Sarah-Jayne Pugh for their help
on race day. The authors would like to express their sincerest gratitude to all the participants for their
time, effort and hard work. By assisting in this study, those acknowledged are not implying their
endorsement for the work or supplements used in this study. In addition, thank you to the Liverpool
John Moores University and the University of Liverpool Shared Research Facilities for providing the
funding for NMR analysis and computational services and Edge Hill University for the use of their
facilities to collect samples and conduct the track Marathon.

Conflicts of Interest: G.L.C. and J.N.P. have both consulted for companies that sell probiotics, though
not the current funder. The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References
1. Pugh, J.N.; Kirk, B.; Fearn, R.; Morton, J.P.; Close, G.L. Prevalence, Severity and Potential Nutritional Causes of Gastrointestinal

Symptoms during a Marathon in Recreational Runners. Nutrients 2018, 10, 811. [CrossRef]
2. Keeffe, E.B.; Lowe, D.K.; Goss, J.R.; Wayne, R. Gastrointestinal symptoms of marathon runners. West J. Med. 1984, 141, 481–484.

[PubMed]
3. De Oliveira, E.P.; Burini, R.C. Carbohydrate-dependent, exercise-induced gastrointestinal distress. Nutrients 2014, 6, 4191–4199.

[CrossRef]
4. Van Wijck, K.; Lenaerts, K.; van Loon, L.J.; Peters, W.H.; Buurman, W.A.; Dejong, C.H. Exercise-induced splanchnic hypoperfusion

results in gut dysfunction in healthy men. PLoS ONE 2011, 6, e22366. [CrossRef] [PubMed]
5. Currell, K.; Jeukendrup, A.E. Superior endurance performance with ingestion of multiple transportable carbohydrates. Med. Sci.

Sports Exerc. 2008, 40, 275–281. [CrossRef] [PubMed]
6. Coyle, E.F.; Hagberg, J.M.; Hurley, B.F.; Martin, W.H.; Ehsani, A.A.; Holloszy, J.O. Carbohydrate feeding during prolonged

strenuous exercise can delay fatigue. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1983, 55, 230–235. [CrossRef] [PubMed]
7. Valdes, A.M.; Walter, J.; Segal, E.; Spector, T.D. Role of the gut microbiota in nutrition and health. BMJ 2018, 361, k2179. [CrossRef]
8. Wosinska, L.; Cotter, P.D.; O’Sullivan, O.; Guinane, C. The Potential Impact of Probiotics on the Gut Microbiome of Athletes.

Nutrients 2019, 11, 2270. [CrossRef]
9. Jager, R.; Mohr, A.E.; Carpenter, K.C.; Kerksick, C.M.; Purpura, M.; Moussa, A.; Townsend, J.R.; Lamprecht, M.; West, N.P.; Black,

K.; et al. International Society of Sports Nutrition Position Stand: Probiotics. J. Int. Soc. Sports Nutr. 2019, 16, 62. [CrossRef]

http://doi.org/10.3390/nu10070811
http://www.ncbi.nlm.nih.gov/pubmed/6506684
http://doi.org/10.3390/nu6104191
http://doi.org/10.1371/journal.pone.0022366
http://www.ncbi.nlm.nih.gov/pubmed/21811592
http://doi.org/10.1249/mss.0b013e31815adf19
http://www.ncbi.nlm.nih.gov/pubmed/18202575
http://doi.org/10.1152/jappl.1983.55.1.230
http://www.ncbi.nlm.nih.gov/pubmed/6350247
http://doi.org/10.1136/bmj.k2179
http://doi.org/10.3390/nu11102270
http://doi.org/10.1186/s12970-019-0329-0


Metabolites 2021, 11, 535 13 of 14

10. Pugh, J.N.; Sparks, A.S.; Doran, D.A.; Fleming, S.C.; Langan-Evans, C.; Kirk, B.; Fearn, R.; Morton, J.P.; Close, G.L. Four weeks of
probiotic supplementation reduces GI symptoms during a marathon race. Eur. J. Appl. Physiol. 2019, 119, 1491–1501. [CrossRef]
[PubMed]

11. Kekkonen, R.A.; Vasankari, T.J.; Vuorimaa, T.; Haahtela, T.; Julkunen, I.; Korpela, R. The effect of probiotics on respiratory
infections and gastrointestinal symptoms during training in marathon runners. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 352–363.
[CrossRef]

12. Roberts, J.D.; Suckling, C.A.; Peedle, G.Y.; Murphy, J.A.; Dawkins, T.G.; Roberts, M.G. An Exploratory Investigation of Endotoxin
Levels in Novice Long Distance Triathletes, and the Effects of a Multi-Strain Probiotic/Prebiotic, Antioxidant Intervention.
Nutrients 2016, 8, 733. [CrossRef] [PubMed]

13. Wikoff, W.R.; Anfora, A.T.; Liu, J.; Schultz, P.G.; Lesley, S.A.; Peters, E.C.; Siuzdak, G. Metabolomics analysis reveals large effects
of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA 2009, 106, 3698–3703. [CrossRef]

14. Stander, Z.; Luies, L.; Mienie, L.J.; Keane, K.M.; Howatson, G.; Clifford, T.; Stevenson, E.J.; Loots, D.T. The altered human serum
metabolome induced by a marathon. Metabolomics 2018, 14, 150. [CrossRef] [PubMed]

15. Martin, C.K.; Correa, J.B.; Han, H.; Allen, H.R.; Rood, J.C.; Champagne, C.M.; Gunturk, B.K.; Bray, G.A. Validity of the Remote
Food Photography Method (RFPM) for estimating energy and nutrient intake in near real-time. Obesity 2012, 20, 891–899.
[CrossRef]

16. Rao, R.K.; Samak, G. Protection and Restitution of Gut Barrier by Probiotics: Nutritional and Clinical Implications. Curr. Nutr.
Food Sci. 2013, 9, 99–107. [CrossRef] [PubMed]

17. Wei, Y.; Gao, J.; Kou, Y.; Liu, M.; Meng, L.; Zheng, X.; Xu, S.; Liang, M.; Sun, H.; Liu, Z.; et al. The intestinal microbial metabolite
desaminotyrosine is an anti-inflammatory molecule that modulates local and systemic immune homeostasis. FASEB J. 2020, 34,
16117–16128. [CrossRef]

18. Palsson-McDermott, E.M.; O’Neill, L.A.J. Targeting immunometabolism as an anti-inflammatory strategy. Cell Res. 2020, 30,
300–314. [CrossRef] [PubMed]

19. Dokladny, K.; Zuhl, M.N.; Moseley, P.L. Intestinal epithelial barrier function and tight junction proteins with heat and exercise.
J. Appl. Physiol. 2016, 120, 692–701. [CrossRef]

20. Karczewski, J.; Troost, F.J.; Konings, I.; Dekker, J.; Kleerebezem, M.; Brummer, R.J.; Wells, J.M. Regulation of human epithelial tight
junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. Am. J. Physiol. Gastrointest.
Liver Physiol. 2010, 298, G851–G859. [CrossRef]

21. Seth, A.; Yan, F.; Polk, D.B.; Rao, R.K. Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC-
and MAP kinase-dependent mechanism. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 294, G1060–G1069. [CrossRef] [PubMed]

22. Borsheim, E.; Cree, M.G.; Tipton, K.D.; Elliott, T.A.; Aarsland, A.; Wolfe, R.R. Effect of carbohydrate intake on net muscle protein
synthesis during recovery from resistance exercise. J. Appl. Physiol. 2004, 96, 674–678. [CrossRef]

23. Coyle, E.F.; Jeukendrup, A.E.; Wagenmakers, A.J.; Saris, W.H. Fatty acid oxidation is directly regulated by carbohydrate
metabolism during exercise. Am. J. Physiol. 1997, 273, E268–E275. [CrossRef]

24. Jeukendrup, A.E.; Moseley, L. Multiple transportable carbohydrates enhance gastric emptying and fluid delivery. Scand. J. Med.
Sci. Sports 2010, 20, 112–121. [CrossRef]

25. Pugh, J.N.; Wagenmakers, A.J.M.; Doran, D.A.; Fleming, S.C.; Fielding, B.A.; Morton, J.P.; Close, G.L. Probiotic supplementation
increases carbohydrate metabolism in trained male cyclists: A randomized, double-blind, placebo-controlled crossover trial. Am.
J. Physiol. Endocrinol. Metab. 2020, 318, E504–E513. [CrossRef]

26. Jang, C.; Chen, L.; Rabinowitz, J.D. Metabolomics and Isotope Tracing. Cell 2018, 173, 822–837. [CrossRef]
27. Carraro, F.; Hartl, W.H.; Stuart, C.A.; Layman, D.K.; Jahoor, F.; Wolfe, R.R. Whole body and plasma protein synthesis in exercise

and recovery in human subjects. Am. J. Physiol. 1990, 258, E821–E831. [CrossRef] [PubMed]
28. Tipton, K.D.; Ferrando, A.A.; Williams, B.D.; Wolfe, R.R. Muscle protein metabolism in female swimmers after a combination of

resistance and endurance exercise. J. Appl. Physiol. 1996, 81, 2034–2038. [CrossRef] [PubMed]
29. Harber, M.P.; Konopka, A.R.; Douglass, M.D.; Minchev, K.; Kaminsky, L.A.; Trappe, T.A.; Trappe, S. Aerobic exercise training

improves whole muscle and single myofiber size and function in older women. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009,
297, R1452–R1459. [CrossRef] [PubMed]

30. Short, K.R.; Vittone, J.L.; Bigelow, M.L.; Proctor, D.N.; Nair, K.S. Age and aerobic exercise training effects on whole body and
muscle protein metabolism. Am. J. Physiol. Endocrinol. Metab. 2004, 286, E92–E101. [CrossRef] [PubMed]

31. Pikosky, M.A.; Gaine, P.C.; Martin, W.F.; Grabarz, K.C.; Ferrando, A.A.; Wolfe, R.R.; Rodriguez, N.R. Aerobic exercise training
increases skeletal muscle protein turnover in healthy adults at rest. J. Nutr. 2006, 136, 379–383. [CrossRef]

32. Weight, L.M.; Alexander, D.; Jacobs, P. Strenuous exercise: Analogous to the acute-phase response? Clin. Sci. 1991, 81, 677–683.
[CrossRef] [PubMed]

33. Starkie, R.L.; Rolland, J.; Angus, D.J.; Anderson, M.J.; Febbraio, M.A. Circulating monocytes are not the source of elevations in
plasma IL-6 and TNF-alpha levels after prolonged running. Am. J. Physiol. Cell Physiol. 2001, 280, C769–C774. [CrossRef]

34. Kratz, A.; Lewandrowski, K.B.; Siegel, A.J.; Chun, K.Y.; Flood, J.G.; Van Cott, E.M.; Lee-Lewandrowski, E. Effect of marathon
running on hematologic and biochemical laboratory parameters, including cardiac markers. Am. J. Clin. Pathol. 2002, 118, 856–863.
[CrossRef] [PubMed]

http://doi.org/10.1007/s00421-019-04136-3
http://www.ncbi.nlm.nih.gov/pubmed/30982100
http://doi.org/10.1123/ijsnem.17.4.352
http://doi.org/10.3390/nu8110733
http://www.ncbi.nlm.nih.gov/pubmed/27869661
http://doi.org/10.1073/pnas.0812874106
http://doi.org/10.1007/s11306-018-1447-4
http://www.ncbi.nlm.nih.gov/pubmed/30830390
http://doi.org/10.1038/oby.2011.344
http://doi.org/10.2174/1573401311309020004
http://www.ncbi.nlm.nih.gov/pubmed/24353483
http://doi.org/10.1096/fj.201902900RR
http://doi.org/10.1038/s41422-020-0291-z
http://www.ncbi.nlm.nih.gov/pubmed/32132672
http://doi.org/10.1152/japplphysiol.00536.2015
http://doi.org/10.1152/ajpgi.00327.2009
http://doi.org/10.1152/ajpgi.00202.2007
http://www.ncbi.nlm.nih.gov/pubmed/18292183
http://doi.org/10.1152/japplphysiol.00333.2003
http://doi.org/10.1152/ajpendo.1997.273.2.E268
http://doi.org/10.1111/j.1600-0838.2008.00862.x
http://doi.org/10.1152/ajpendo.00452.2019
http://doi.org/10.1016/j.cell.2018.03.055
http://doi.org/10.1152/ajpendo.1990.258.5.E821
http://www.ncbi.nlm.nih.gov/pubmed/2333990
http://doi.org/10.1152/jappl.1996.81.5.2034
http://www.ncbi.nlm.nih.gov/pubmed/8941526
http://doi.org/10.1152/ajpregu.00354.2009
http://www.ncbi.nlm.nih.gov/pubmed/19692660
http://doi.org/10.1152/ajpendo.00366.2003
http://www.ncbi.nlm.nih.gov/pubmed/14506079
http://doi.org/10.1093/jn/136.2.379
http://doi.org/10.1042/cs0810677
http://www.ncbi.nlm.nih.gov/pubmed/1721863
http://doi.org/10.1152/ajpcell.2001.280.4.C769
http://doi.org/10.1309/14TY-2TDJ-1X0Y-1V6V
http://www.ncbi.nlm.nih.gov/pubmed/12472278


Metabolites 2021, 11, 535 14 of 14

35. Smith, J.E.; Garbutt, G.; Lopes, P.; Tunstall Pedoe, D. Effects of prolonged strenuous exercise (marathon running) on biochemical
and haematological markers used in the investigation of patients in the emergency department. Br. J. Sports Med. 2004, 38,
292–294. [CrossRef] [PubMed]

36. Suzuki, K.; Peake, J.; Nosaka, K.; Okutsu, M.; Abbiss, C.R.; Surriano, R.; Bishop, D.; Quod, M.J.; Lee, H.; Martin, D.T.; et al.
Changes in markers of muscle damage, inflammation and HSP70 after an Ironman Triathlon race. Eur. J. Appl. Physiol. 2006, 98,
525–534. [CrossRef]

37. Kato, H.; Suzuki, K.; Bannai, M.; Moore, D.R. Protein Requirements Are Elevated in Endurance Athletes after Exercise as
Determined by the Indicator Amino Acid Oxidation Method. PLoS ONE 2016, 11, e0157406. [CrossRef] [PubMed]

38. Sen, C.K.; Atalay, M.; Hanninen, O. Exercise-induced oxidative stress: Glutathione supplementation and deficiency. J. Appl.
Physiol. 1994, 77, 2177–2187. [CrossRef]

39. Leeuwenburgh, C.; Hollander, J.; Leichtweis, S.; Griffiths, M.; Gore, M.; Ji, L.L. Adaptations of glutathione antioxidant system to
endurance training are tissue and muscle fiber specific. Am. J. Physiol. 1997, 272, R363–R369. [CrossRef] [PubMed]

40. Heshmati, J.; Farsi, F.; Shokri, F.; Rezaeinejad, M.; Almasi-Hashiani, A.; Vesali, S.; Sepidarkish, M. A systematic review and
meta-analysis of the probiotics and synbiotics effects on oxidative stress. J. Funct. Foods 2018, 46, 66–84. [CrossRef]

41. Clark, A.; Mach, N. The Crosstalk between the Gut Microbiota and Mitochondria during Exercise. Front. Physiol. 2017, 8, 319.
[CrossRef]

42. Den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M. The role of short-chain fatty acids in the
interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [CrossRef]

43. Rodgers, J.T.; Lerin, C.; Haas, W.; Gygi, S.P.; Spiegelman, B.M.; Puigserver, P. Nutrient control of glucose homeostasis through a
complex of PGC-1alpha and SIRT1. Nature 2005, 434, 113–118. [CrossRef]

44. Wishart, D.S. Advances in metabolite identification. Bioanalysis 2011, 3, 1769–1782. [CrossRef]
45. Dona, A.C.; Jimenez, B.; Schafer, H.; Humpfer, E.; Spraul, M.; Lewis, M.R.; Pearce, J.T.; Holmes, E.; Lindon, J.C.; Nicholson, J.K.

Precision high-throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic phenotyping.
Anal. Chem. 2014, 86, 9887–9894. [CrossRef] [PubMed]

46. Jimenez, B.; Holmes, E.; Heude, C.; Tolson, R.F.; Harvey, N.; Lodge, S.L.; Chetwynd, A.J.; Cannet, C.; Fang, F.; Pearce, J.T.M.; et al.
Quantitative Lipoprotein Subclass and Low Molecular Weight Metabolite Analysis in Human Serum and Plasma by (1)H NMR
Spectroscopy in a Multilaboratory Trial. Anal. Chem. 2018, 90, 11962–11971. [CrossRef] [PubMed]

47. Psychogios, N.; Hau, D.D.; Peng, J.; Guo, A.C.; Mandal, R.; Bouatra, S.; Sinelnikov, I.; Krishnamurthy, R.; Eisner, R.; Gautam, B.;
et al. The human serum metabolome. PLoS ONE 2011, 6, e16957. [CrossRef] [PubMed]

48. Viant, M.R.; Kurland, I.J.; Jones, M.R.; Dunn, W.B. How close are we to complete annotation of metabolomes? Curr. Opin. Chem.
Biol. 2017, 36, 64–69. [CrossRef]

49. Beckonert, O.; Keun, H.C.; Ebbels, T.M.; Bundy, J.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Metabolic profiling, metabolomic and
metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2007, 2, 2692–2703.
[CrossRef]

50. Haug, K.; Salek, R.M.; Conesa, P.; Hastings, J.; de Matos, P.; Rijnbeek, M.; Mahendraker, T.; Williams, M.; Neumann, S.; Rocca-
Serra, P.; et al. MetaboLights–an open-access general-purpose repository for metabolomics studies and associated meta-data.
Nucleic Acids Res. 2013, 41, D781–D786. [CrossRef]

51. Salek, R.M.; Steinbeck, C.; Viant, M.R.; Goodacre, R.; Dunn, W.B. The role of reporting standards for metabolite annotation and
identification in metabolomic studies. Gigascience 2013, 2, 13. [CrossRef] [PubMed]

52. Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.; Fiehn, O.; Goodacre, R.; Griffin, J.L.;
et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics
Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [CrossRef] [PubMed]

53. Kohl, S.M.; Klein, M.S.; Hochrein, J.; Oefner, P.J.; Spang, R.; Gronwald, W. State-of-the art data normalization methods improve
NMR-based metabolomic analysis. Metabolomics 2012, 8, 146–160. [CrossRef] [PubMed]

54. R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/
(accessed on 21 November 2018).

55. Le Cao, K.-A.; Rohart, F.; Gonzalez, I.; Dejean, S. mixOmics: Omics Data Integration Project, R package version 6.1.3; 2017.
56. Xia, J.; Sinelnikov, I.V.; Han, B.; Wishart, D.S. MetaboAnalyst 3.0–making metabolomics more meaningful. Nucleic Acids Res. 2015,

43, W251–W257. [CrossRef] [PubMed]
57. Cottret, L.; Frainay, C.; Chazalviel, M.; Cabanettes, F.; Gloaguen, Y.; Camenen, E.; Merlet, B.; Heux, S.; Portais, J.C.; Poupin,

N.; et al. MetExplore: Collaborative edition and exploration of metabolic networks. Nucleic Acids Res. 2018, 46, W495–W502.
[CrossRef]

http://doi.org/10.1136/bjsm.2002.002873
http://www.ncbi.nlm.nih.gov/pubmed/15155430
http://doi.org/10.1007/s00421-006-0296-4
http://doi.org/10.1371/journal.pone.0157406
http://www.ncbi.nlm.nih.gov/pubmed/27322029
http://doi.org/10.1152/jappl.1994.77.5.2177
http://doi.org/10.1152/ajpregu.1997.272.1.R363
http://www.ncbi.nlm.nih.gov/pubmed/9039030
http://doi.org/10.1016/j.jff.2018.04.049
http://doi.org/10.3389/fphys.2017.00319
http://doi.org/10.1194/jlr.R036012
http://doi.org/10.1038/nature03354
http://doi.org/10.4155/bio.11.155
http://doi.org/10.1021/ac5025039
http://www.ncbi.nlm.nih.gov/pubmed/25180432
http://doi.org/10.1021/acs.analchem.8b02412
http://www.ncbi.nlm.nih.gov/pubmed/30211542
http://doi.org/10.1371/journal.pone.0016957
http://www.ncbi.nlm.nih.gov/pubmed/21359215
http://doi.org/10.1016/j.cbpa.2017.01.001
http://doi.org/10.1038/nprot.2007.376
http://doi.org/10.1093/nar/gks1004
http://doi.org/10.1186/2047-217X-2-13
http://www.ncbi.nlm.nih.gov/pubmed/24131531
http://doi.org/10.1007/s11306-007-0082-2
http://www.ncbi.nlm.nih.gov/pubmed/24039616
http://doi.org/10.1007/s11306-011-0350-z
http://www.ncbi.nlm.nih.gov/pubmed/22593726
https://www.R-project.org/
http://doi.org/10.1093/nar/gkv380
http://www.ncbi.nlm.nih.gov/pubmed/25897128
http://doi.org/10.1093/nar/gky301

	Introduction 
	Results 
	Effects of Multi-Strain Probiotic Supplementation on the Alterations to the Serum Metabolome Induced by Marathon Running 
	Effects of Marathon Running and Probiotic Supplementation on the Skeletal Muscle Metabolome 

	Discussion 
	Materials and Methods 
	Participants 
	Experimental Design 
	Serum Sample Collection 
	Tissue Sample Collection and Extraction 
	Sample Preparation for NMR 
	NMR Set-Up and Acquisition 
	Spectra Processing and Quality Control 
	Metabolite Annotation and Identification 
	Statistical Analysis 

	References

