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Tunable phenotypic variability through an
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Abstract

Genetically identical individuals in bacterial populations can display
significant phenotypic variability. This variability can be functional,
for example by allowing a fraction of stress prepared cells to survive
an otherwise lethal stress. The optimal fraction of stress prepared
cells depends on environmental conditions. However, how bacterial
populations modulate their level of phenotypic variability remains
unclear. Here we show that the alternative sigma factor σV circuit in
Bacillus subtilis generates functional phenotypic variability that can
be tuned by stress level, environmental history and genetic pertur-
bations. Using single-cell time-lapse microscopy and microfluidics,
we find the fraction of cells that immediately activate σV under lyso-
zyme stress depends on stress level and on a transcriptional
memory of previous stress. Iteration between model and experi-
ment reveals that this tunability can be explained by the autoregu-
latory feedback structure of the sigV operon. As predicted by the
model, genetic perturbations to the operon also modulate the
response variability. The conserved sigma-anti-sigma autoregula-
tion motif is thus a simple mechanism for bacterial populations to
modulate their heterogeneity based on their environment.
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Introduction

Cells live in a changeable environment and experience a wide range

of environmental stresses. Bacterial populations have evolved

strategies to survive these stresses. One strategy is for all cells to

immediately respond to stress with the activation of the relevant

stress response pathway (Hilker et al, 2016). Alternatively, a bacte-

rial population can generate a broad range of cellular states, which

allows it to hedge its bets against the changeable environment

(Veening et al, 2008b). Noise in gene expression has been proposed

as a mechanism for generating phenotypic variability in genetically

identical cells (Raj & van Oudenaarden, 2008; Martins & Locke,

2015). This phenotypic variability has also been shown to be

affected by changes in the cellular environment, such as a shift in

stress level or growth conditions (Megerle et al, 2008; de Jong et al,

2012; Mitosch et al, 2019), as well as by previous ‘priming’ stresses

(Mitosch et al, 2017). However, how the bacterial population regu-

lates individual cell decisions to modulate the fraction of cells that

enter an alternative transcriptional state remains unclear (Fig 1A).

The σV mediated lysozyme stress response pathway in Bacillus

subtilis is an ideal model system to examine how bacterial popula-

tions can tune their phenotypic variability. σV is an extracytoplasmic

function (ECF) alternative sigma factor. Alternative sigma factors

replace the ‘housekeeping’ sigma factor, σA, in the RNA polymerase

holoenzyme and redirect it to regulons that control distinct regula-

tory programmes. They have already been shown to display a high

level of gene expression variability in B. subtilis (Locke et al, 2011;

Young et al, 2013; Cabeen et al, 2017; Park et al, 2018), and the σV

activation pathway is both well characterized and specific to one

stress condition, which greatly simplifies analysis of its activation.

σV is the only pathway activated in response to C-type lysozyme

(Guariglia-Oropeza & Helmann, 2011; Ho et al, 2011; Ho & Eller-

meier, 2012). Lysozyme is produced by animals as part of their

innate immune system and kills bacteria by cleaving the peptidogly-

can of the cell wall between the N-acetylmuramic acid residue and

the β-(1,4)-linked N-acetylglucosamine (Lal & Caplan, 2011). In its

inactive form, σV is bound to its anti-sigma factor RsiV, a transmem-

brane protein (Fig 1B). If lysozyme is present, RsiV binds to lyso-

zyme (Hastie et al, 2014; Hastie et al, 2016) and activates a signal

transduction cascade to release σV. First RsiV undergoes a confor-

mational change that allows signalling peptidases to cleave RsiV at

site-1 (Hastie et al, 2014; Castro et al, 2018; Lewerke et al, 2018)

(Fig 1B). Bacillus subtilis has five type 1 signal peptidases, of which

the two major peptidases are SipS and SipT (Tjalsma et al, 1998).

Either SipS or SipT is sufficient for site-1 cleavage (Castro et al,

2018; Ho & Ellermeier, 2019). The truncated RsiV can then be

cleaved by RasP (a site-2 protease), which results in the release of

σV (Hastie et al, 2013; Hastie et al, 2014) (Fig 1B).
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Once σV is released it can bind to RNA polymerase and redirect

transcription to the σV regulon. The regulon contains genes that

allow adaptation to lysozyme stress, such as the penicillin-binding

protein PbpX and the D-alanyl-D-alanine carrier protein ligase DltA.

Both these genes are also part of other sigma factor pathways

(Guariglia-Oropeza & Helmann, 2011; Ho et al, 2011). Like many

alternative sigma factors, one of σV’s targets is its own operon. The

sigV operon includes sigV (the gene that codes for σV) and its anti-

sigma factor rsiV, and so its activation results in ‘mixed’ positive

and negative feedback loops. In addition, the operon contains oatA,

one of the main lysozyme resistance genes and yrhK, which is of

unknown function (Hastie & Ellermeier, 2016). OatA contributes to

lysozyme adaptation by transferring an acetyl group to the C-6-OH

position of N-acetylmuramic acid in the peptidoglycan, thus block-

ing cell wall cleavage by lysozyme (Bernard et al, 2011; Ho et al,

2011).

Although the molecular mechanisms underlying σV activation by

lysozyme have been elucidated, previous work was carried out

using bulk experiments that average out single-cell dynamics

(Guariglia-Oropeza & Helmann, 2011; Ho et al, 2011) and mask cell-

to-cell heterogeneity. This heterogeneity can be crucial in identifying

and distinguishing between regulatory strategies (Munsky et al,

2012). In this study, we used single-cell time-lapse microscopy of

fluorescent reporters for σV activity to characterize σV induction

dynamics in individual cells in response to lysozyme stress. We

found that upon induction by sub-lethal levels of lysozyme, σV is
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activated heterogeneously, with some cells activating σV rapidly,

whereas some cell lineages do not activate σV for multiple genera-

tions. This heterogeneity is functional, as cells that respond to an

initial sub-lethal stress are more likely to survive a subsequent lethal

stress of lysozyme. Through experiment and modelling, we found

that these dynamics can be explained solely by the autoregulatory

feedback of σV on its own operon. Our model predicted that the

observed heterogeneity could be tuned by environmental history

and by genetic perturbations, which we confirmed experimentally.

The conserved sigma-anti-sigma autoregulation motif is thus a

simple mechanism for bacterial populations to tune their levels of

phenotypic variability.

Results

Individual cells activate σV heterogeneously
under lysozyme stress

To characterize σV activation dynamics, we first constructed a B.

subtilis reporter strain containing a chromosomally integrated fluo-

rescent reporter for σV activity, PsigV-YFP. This strain also contained

a reporter for the housekeeping sigma factor σA (PtrpE-RFP). PtrpE-

RFP expression was used as a constitutive control and to aid image

analysis (Materials and Methods). We then used time-lapse micro-

scopy to examine σV activity in individual cells grown in the mother

machine microfluidic device (Wang et al, 2010). This device allows

long-term tracking of hundreds of individual cells trapped at the

ends of channels. It also allows for fast switching between media

conditions during imaging (Materials and Methods). We first

measured σV expression dynamics in response to a step change to a

sub-lethal concentration of 1 µg/ml lysozyme (Fig 1C and D,

Appendix Fig S1 and Fig EV1 and Movie EV1). The first cells begin

to respond to the lysozyme stress with raised PsigV-YFP levels within

two frames (20 min), suggesting rapid activation given the ~ 15 min

maturation time of the YFP reporter protein (Appendix Fig S2).

However, our time-lapse movies revealed that PsigV-YFP was hetero-

geneously activated at the single-cell level (Fig 1C). While 20% of

cells reached the half maximum of σV activity within 70 min of

being exposed to lysozyme, it took 200 min (approximately four

generations) for 90% of all cells to activate σV (Fig 1D and

Appendix Fig S3B).

To test whether the observed heterogeneous activation of σV in

response to lysozyme was due to the growth conditions in the

mother machine, we investigated σV activation dynamics in liquid

culture (Appendix Fig S4) and using an alternative microfluidic

device (Appendix Fig S5). Both conditions showed similar heteroge-

neous σV activation to that observed in the mother machine. There-

fore, the observed heterogeneity in PsigV-YFP is independent of the

experimental setup. Previous work has shown that heterogeneous

gene expression could be due to intrinsic noise in the expression of

the PsigV-YFP reporter (Elowitz et al, 2002), rather than due to

heterogeneous σV activity. To test whether the observed heterogene-

ity was due to the intrinsic variability of the PsigV-YFP reporter, we

constructed a strain containing chromosomally integrated PsigV-YFP

and PsigV-mTurq reporters and exposed it to 1 µg/ml lysozyme in

liquid culture. In these snapshot experiments, the expression of

PsigV-YFP and PsigV-mTurq was highly correlated (R2 = 0.85)

(Appendix Fig S6). Thus, the observed heterogeneity in PsigV-YFP

reflects changes in σv activity and not intrinsic variability of the

PsigV-YFP promoter.

Next, we asked whether the observed heterogeneity in PsigV-YFP

is modulated by the level of lysozyme applied. We examined PsigV-

YFP expression after the application of 0.5, 1, 2 and 4 µg/ml lyso-

zyme. These values were all below the previously reported minimal

growth inhibitory concentration of 6.25 µg/ml (Ho et al, 2011) and

led to a transient decrease in growth rate (Appendix Fig S7). To

measure the distribution of σV activation times, for each time point

we calculated the fraction of cells that had crossed the half-

maximum of their respective final σV value (meaning the cell had

activated σV). We found that when increasing the lysozyme concen-

tration from 0.5 to 4 µg/ml the heterogeneity in σV activity was

reduced (Figs 1F and EV1 and Appendix Fig S8). The time for 90%

of cells to activate their σV pathway decreased from 300 min

(approximately six generations) for 0.5 µg/ml to 100 min (approxi-

mately two generations) for 4 µg/ml lysozyme (Appendix Fig S3). At

the same time, the fold change in induction between the unstressed

σV activity and the steady-state σV activity under lysozyme stress

increased from ~ 190 for 0.5 μg/ml to ~ 520 for 4 μg/ml (Fig 1G and

Appendix Fig S1). We also observed that under a 4 µg/ml

◀ Figure 1. σV is activated heterogeneously in response to lysozyme stress.

A It is unclear how genetic circuits (centre) tune phenotypic variability in a bacterial population in response to genetic perturbation, environmental stress and history
(left) to modulate the fraction of cells that activate a given pathway (right).

B Schematic of the σV circuit. In its inactive form, σV is bound to its anti-sigma factor RsiV. If there is lysozyme present in the environment, RsiV binds to lysozyme and
undergoes a conformational change. Only then the proteases SipS/ SipT and RasP can cleave RsiV to release σV. Once σV is released from RsiV, it can bind to RNA
polymerase to redirect transcription to the σV regulon. σV can initiate transcription of its own operon which includes sigV (σV), rsiV (R), oatA (O, one of the main
lysozyme resistance genes) and yrhK (Y, unknown function).

C Time-lapse microscopy of cells containing a PsigV-YFP promoter reporter reveals heterogeneous activation of σV in response to lysozyme stress. The stress (red line)
was added between the 200 and 300 min time points (at 240 min). The red arrow highlights a cell with a delayed activation of σV. Scale bar: 5 μm.

D Time traces of mean YFP fluorescence per cell. Each trace represents a single-cell lineage’s response to 1 µg/ml lysozyme. (109 traces from two independent
experiments). Lysozyme added at the black dashed line.

E Figure D replotted to allow examination of variable activation times.
F The observed heterogeneity is reduced with increasing stress levels. Each line represents the cumulative fraction of cells (N = ~ 50) with PsigV-YFP values that are

higher than the half maximum of their final values (representing cells that have activated).
G The fold change in mean YFP fluorescence increases with increasing stress levels, shown for two biological repeats (adjacent boxplots). Each day’s fold change

distribution consisted of > 40 manually corrected single-cell traces. On each box, the central mark indicates the median, and the bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively. The lower and higher whiskers of boxplot are extended to the first quartile minus 1.5 * interquartile range and the
third quartile plus 1.5 * interquartile range, respectively. The black dashed line is the mean fold change.

Data information: For more information on the number of repeats, please see Appendix Table S3.
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concentration of lysozyme some cells (8 and 21% in two different

repeat experiments) appeared sick and were wider than usual cells.

These cells also overshot their new σV activity steady-state before

relaxing to it. We removed these cells from our analysis

(Appendix Fig S9), although including them did not affect our results

(Appendix Fig S10). We also observed that the fraction of cells acti-

vating σV increased with increasing lysozyme in the alternative

microfluidic device, although in this device movies were stopped

before all cells activated due to crowding of the cells in the chip

(Appendix Fig S5F). Taken together, our results reveal that the level

of phenotypic variability in σV activation times is tuned by stress

levels, with the heterogeneity in σV activation reduced as lysozyme

levels increase.

We examined whether the differences in individual cell states

before applying a lysozyme stress could predict how a cell responds

to the stress. There was no correlation between either growth rate

or cell size before lysozyme application and response time after

lysozyme application (Appendix Figs S11 and S12). Alternative

sigma factors in B. subtilis display gene expression variability even

in the absence of stress (Locke et al, 2011; Park et al, 2018). We

found that, in the absence of stress, the coefficient of variation of

PsigV-YFP was over four times higher than that of the constitutive

control (0.65 � 0.29 vs 0.14 � 0.05) (Appendix Fig S13). Cells

which had elevated levels of PsigV-YFP before the addition of stress

were more likely to activate σV instantaneously (Fig EV2 and

Appendix Fig S14). However, some cells with low PsigV-YFP levels

also activate σV instantaneously (Fig EV2 and Appendix Fig S14).

Therefore, while noise in PsigV-YFP expression before stress contri-

butes to the observed heterogeneity in σV activation after the addi-

tion of lysozyme, it is not the only cause.

Given the heterogeneity in σV activation times, we examined

whether activating σV early had any effect on the survival against

future lethal concentrations of lysozyme. Cells that were exposed to

20 μg/ml of lysozyme for 20 min all died within 1 h (Fig 2 and

Appendix Fig S15). However, if the cells were first exposed to a

priming stress of 1 μg/ml of lysozyme for 30 min, which heteroge-

neously induced σV, and then subsequently to 20 μg/ml of lysozyme

for 20 min, some cells survived the high lysozyme stress (Fig 2A).

We chose this priming stress level and duration as previous experi-

ments had shown (Appendix Fig S4) that it ensured heterogeneous

activation of σV, with a large fraction of cells not having turned on

before the second higher stress. We found that the short exposure to

sub-lethal concentrations of lysozyme (during the priming stress)

improved survival to subsequent lethal stress levels from 0 to

12.5 � 2.7% (See Materials and Methods, Fig 2B and Appendix Fig

S15). Cells that survived until the end of the movie, 280 min after

the 20 μg/ml of lysozyme, had on average 1.57 � 0.33 fold higher

PsigV-YFP levels than perishing cells immediately before the applica-

tion of the lethal concentration of lysozyme (Fig 2C).

The heterogeneous activation of PsigV-YFP is solely due to σV and
its anti-sigma factor RsiV

We next attempted to understand how the single-cell activation

dynamics of the σV pathway are generated. First, to test whether the

heterogeneity that we observed in σV activation times was due to

lysozyme stress activating different stress response pathways, we

analysed the genome-wide transcriptional response of cells to 1 μg/
ml lysozyme. We carried out RNA-seq 30 min after the addition of

stress in the wild type and in the ΔsigV knockout. We chose this
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Figure 2. Rapid activation of σV after a first stress application increases survival after a second higher stress.

A Schematic of lysozyme application. Cells are either exposed directly to a high concentration of lysozyme (20 µg/ml) for 20 min (top) or exposed first to a short
(30 min) lysozyme priming stress (1 µg/ml) before exposure to the higher concentration (bottom).

B A priming (30 min) stress of 1 µg/ml lysozyme followed by the high lysozyme stress (20 µg/ml) improves survival. The solid blue lines are the biological repeats for the
no priming experiment (n = 2) whereas the solid red lines are the biological repeats for the priming experiment (n = 4). (Total number of cells shown for No Priming,
N = 2,013 and Priming, N = 4,937).

C Surviving cells have higher PsigV-YFP levels after the initial priming stress (1 µg/ml) than perishing cells. The cumulative distributions were normalized by their
maximum σV activity and baseline subtracted. Each dashed line is the mean of experiments from n = 4 biological repeats. The shaded areas correspond to the
mean � s.d. For more information on the number of repeats and cell numbers, please see the supplementary text.

Data information: For more information on the number of repeats, please see Appendix Table S3.
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stress level and duration as we had seen in previous experiments

that it resulted in heterogeneous σV activation (Appendix Fig S4). As

previously reported, only the sigV operon was strongly (> 5 fold

induction) induced by lysozyme (Guariglia-Oropeza & Helmann,

2011) in the wild type (Fig 3B). The lysozyme resistance gene pbpX,

which is part of the sigV regulon, was also upregulated in the WT

(4.9 fold induction), but was not upregulated in the ΔsigV back-

ground (0.88 fold induction), consistent with the known role of sigV

in its activation (Guariglia-Oropeza & Helmann, 2011). The ΔsigV
strain did not show any genes with strong (> 5 fold induction)

induction (Fig 3C). DltA, which is known to contribute to lysozyme

resistance and is part of the sigV regulon (Guariglia-Oropeza &

Helmann, 2011), was not upregulated in the WT or the ΔsigV strain.

Our results suggest that no other pathway is strongly induced by

1 µg/ml lysozyme. We therefore hypothesized that the observed

PsigV-YFP heterogeneity is due to the σV circuit itself (Ho et al, 2011;

Hastie et al, 2013; Hastie et al, 2014).

To test which components of the σV circuit play a role in the

heterogeneous activation of σV, we constructed IPTG-inducible over-

expression constructs of all genes in the sigV operon (sigV, rsiV,

oatA, yrhK), as well as genes in the σV circuit (sipS, rasP) and the

sigV regulon (pbpX) in a PsigV-YFP reporter background (Fig 3A).

We then investigated σV activation dynamics under lysozyme stress

after full induction of each circuit component. To do this, we took
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Figure 3. The observed σV heterogeneity can be explained by a simplified σV circuit.

A Schematic of the σV circuit. In the figure, R (orange) is the anti-sigma factor RsiV, R* (orange) is RsiV bound to lysozyme, S (red) is signalling peptidase, RP (light
blue) is RasP the site-2 protease, O (blue) is OatA, and Y (grey) is YrhK. For more information on the activation mechanism, see Fig 1B.

B, C RNA-seq experiment on WT (JLB130) and ΔsigV (JLB154) strains, showing quantification of the absolute expression of individual genes in the presence and absence
of lysozyme stress. The shaded grey box represents a � 5 fold change. DEseq was used to identify genes which were differentially expressed with a 5% P-value cut-
off between the WT and ΔsigV mutant in response to lysozyme treatment (default DEseq test was used). (B) Only the sigV operon is strongly activated (> 5 fold
change) in response to lysozyme stress in WT (JLB130), as previously reported (Guariglia-Oropeza & Helmann, 2011). (C) No genes were strongly upregulated in
ΔsigV (JLB154) by lysozyme stress.

D Effect of the overexpression of individual components of the σV pathway (Biological repeats: WT: n = 8, sigV+: n = 4, rsiV+: n = 3 oatA+: n = 4, yrhK+: n = 3, sipS+:
n = 3 and rasP+: n = 3, pbpX+: n = 6) on the fraction of activated cells. Only overexpression of sigV, rsiV or oatA changed the observed dynamics compared to WT.
The histograms of the shown data are shown in Appendix Fig S16.

E Deleting oatA did not alter the σV activation dynamics. However, deleting sigV or rsiV resulted in no further activation of σV in response to 1 ug/ml lysozyme. n ≥ 3
biological repeats for all data shown. The histograms of the shown data are shown in Appendix Fig S17.

F Schematic of simplified σV circuit with only σV and RsiV, where σV (green) activates its own expression and that of its anti-sigma RsiV (orange, R).

Data information: Bars correspond to the mean � s.d. For more information on the number of repeats, please see Appendix Table S3.
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single-cell snapshots of PsigV-YFP expression of cells grown in liquid

culture. The cells were either unstressed or were stressed for 30 min

with 1 μg/ml lysozyme. As a metric for the variability in activation

time of σV in response to lysozyme, we calculated the fraction of

cells with PsigV-YFP levels larger than a threshold above the

unstressed level of each strain (See Materials and Methods). Single-

cell snapshots of PsigV-YFP expression revealed that overexpressing

either yrhK, sipS, rasP or pbpX only had a minor effect on the frac-

tion of activated σV cells (Fig 3D) or on the level of PsigV-YFP expres-

sion (Appendix Fig S16). For cells overexpressing sigV itself, no

further activation of σV occurred on the addition of lysozyme (Fig 3

D). This was because PsigV-YFP expression was already at a high

level prior to stress (Appendix Fig S16). Conversely, overexpression

of rsiV caused cells not to express PsigV-YFP at all, preventing activa-

tion of all cells on addition of lysozyme (Fig 3D and Appendix Fig

S16). Finally, overexpressing oatA, which blocks lysozyme cleavage

of the peptidoglycan, shuts off the activation of σV (Fig 3D and

Appendix Fig S16). However, when we increased the lysozyme

concentration to 20 μg/ml in the presence of oatA overexpression,

the heterogeneous expression of PsigV-YFP reappeared (Fig EV3),

suggesting oatA is not responsible for the heterogeneous activation

dynamics. We repeated the experiment for rsiV overexpression, but

increased RsiV did not increase protect against lysozyme as a

concentration of 20 μg/ml lysozyme killed all cells.

To further validate the importance of sigV and rsiV as compared

to oatA for the observed heterogeneity in σV activation, we

constructed deletion mutants of sigV, rsiV and oatA. Only the dele-

tion of oatA left the activation σV dynamics unchanged (Fig 3E). In

the sigV mutant, PsigV-YFP levels did not increase in response to

lysozyme stress (Fig 3C and Appendix Fig S17). Deleting rsiV

caused all cells to have high PsigV-YFP expression even before the

addition of lysozyme and the addition of lysozyme did not activate

the system any further (Appendix Fig S17). These findings suggest

that the heterogeneity in σV activation only depends on σV and its

anti-sigma factor RsiV (Fig 3F). We found that the leakiness of the

inducible sigV construct (Phyperspank-sigV, without addition of IPTG)

increased the fraction of activated cells on the addition of lysozyme,

as well as causing an increase in the steady-state levels of PsigV-YFP

before and after stress (Appendix Figs S18 and S19). The leakiness

of the RsiV construct (Phyperspank-rsiV) caused the opposite effect.

These effects were still apparent for inducible constructs with lower

leakiness (Pspank-sigV, Pspank-rsiV (Appendix Figs S18 and S19)),

confirming that sigV activation dynamics are sensitive to these two

system components.

Mathematical modelling reveals that PsigV-YFP expression
dynamics can be explained by the ‘mixed’ σV autoregulatory
feedback loop

Based on our transcriptome and overexpression analysis, we

constructed a model of a simplified sigV operon consisting of sigV

and its anti-sigma factor rsiV, with positive autoregulation of the

operon by active σV (Fig 3F). We did not include oatA, as it is not

required for the heterogeneous activation of σV (Fig EV3). RsiV

binds σV to form an inactive complex σV-RsiV. On stress application,

RsiV is degraded and σV is free to activate the operon. The model

was simulated using Gillespie-type stochastic simulations, tracking

the changes in copy number of each species of the system by simu-

lating the individual reaction events (Gillespie, 1977). With the

exception of the production of σV and RsiV (which were imple-

mented through a Hill function of σV activity with a Hill coefficient

of 2), all reactions were modelled using mass action kinetics (See

Materials and Methods). A Hill coefficient > 1 was required to

generate heterogeneous activation dynamics as a degree of
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Figure 4. A model of the simplified σV circuit captures experimental results.

A Simulations display heterogeneous σV activation after lysozyme stress (N = 100). Dashed vertical line marks point of stress addition (parameter L changed from 0 to
1) in simulation.

B In simulations, cells activate σV faster as stress levels (the value of the L parameter) are increased, as observed experimentally (N = 100 simulations for each stress
level: 0.5, 0.75, 1, 2, 4).
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each lysozyme stress level).

Data information: For more information on the number of repeats, please see Appendix Table S3.
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ultrasensitivity is needed in the system to amplify the response to

molecule fluctuations. We note that other networks, including a

single positive feedback loop, can generate heterogeneous activation

dynamics (See Materials and Methods and Appendix Fig S20), but

that this is the simplest model that can simulate the role of both σV

and RsiV in the regulation of sigV activation.

We searched a range of biologically feasible parameters and

were able to find parameters that capture the heterogeneous σV

activation in response to lysozyme stress (Figs 4A and EV4). The

sigV operon components were assumed to be stable, so the dilution

rate was set to approximately match the division rate observed in

experiments. Simulations yielded plausible copy numbers for the

number of sigma factor molecules (Jishage & Ishihama, 1995;

Jishage et al, 1996). In addition, we verified that the heterogeneous

activation behaviour is robust to perturbations to the system

parameters (Appendix Fig S21). Using our model, we were able to

recreate several aspects of the experimental data, including the

dependency of induction time (Fig 4B) and steady-state levels of

sigV expression on levels of lysozyme stress (Fig 4C). Finally, the

heterogeneous activation dynamics were also modulated by small

increases in the baseline production rate of either σV or RsiV

(Appendix Fig S22), qualitatively matching the effects of the leaki-

ness of the inducible σV or RsiV construct observed in experiment

(Appendix Fig S18).

Our model consists of a mixed positive and negative feedback

loop. We tested the requirements of this feedback for the dynamics

by modelling a feedback-broken system, with constitutive expres-

sion of sigV and rsiV. For a range of constitutive expression, the

dynamic range of PsigV-YFP expression for the feedback-broken

system on addition of lysozyme was less than that of the WT system

(Fig EV5A and Appendix Fig S23). This reflected the role of the feed-

back loop in amplifying the system dynamics. To test this prediction

experimentally, we constructed a strain with no autoregulation of

the sigV operon by knocking out the sigV operon and replacing it

with a sigV operon driven by an inducible promoter. This allowed

us to study the system at different steady-state expression levels (by

varying IPTG induction level) to the WT system. We found that the

fold change induction of the WT on addition of lysozyme was at

least 4.5 times higher than that observed in the inducible operon

strain, regardless of the IPTG induction level (Fig EV5B and

Appendix Fig S24), matching the behaviour observed in our model

(Fig EV5A).

Phenotypic variability is tuned by doubling copy numbers of sigV
operon genes

To further test the assumptions of our model, we predicted the effect

on σV activation dynamics of introducing a second copy of each

component of the sigV operon (sigV, rsiV or both sigV and rsiV),

with each component driven by the sigV promoter (Fig 5A). Our

model predicted that these perturbations would modulate the

heterogeneity of the system’s response to lysozyme stress. A second

copy of rsiV meant that large fluctuations in sigV expression were

required to kick the system into the high σV expression state (Fig 5B

and Appendix Fig S25). This increased the cell-to-cell variability in

response times to lysozyme stress, as compared to the WT in the

simulations (Appendix Fig S25). Conversely, with a second copy of

sigV, or a second copy of both sigV and rsiV, smaller fluctuations in

sigV expression are required to kick the system into the high σV

expression state. Cell-to-cell variability in response times to lyso-

zyme therefore decreases in these simulations (Fig 5 and

Appendix Fig S25). In fact, a second copy of sigV caused an increase

in the levels of σV expression even before the addition of lysozyme

in the simulations (Appendix Fig S25).
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Figure 5. Phenotypic variability is tuned by additional copies of components of the σV circuit.

A Schematic of genetic perturbations to σV circuit. Second copies of σV components were added under the control of the PsigV promoter. ? = PsigV-sigV (2xsigV), PsigV-
sigVrsiV (2xsigV-rsiV) or PsigV-rsiV (2xrsiV).

B Model simulations predict that the 2xsigV or 2xsigV-rsiV strains have a homogenous σV response to lysozyme, while the 2xrsiV strain has increased heterogeneity. Bars
correspond to mean (N = 999 simulations) � s.d. (1,000 bootstraps).

C As predicted, the 2xsigV or 2xsigV-rsiV strains have a homogenous σV response to 1 µg/ml lysozyme, while the 2xrsiV strain has increased heterogeneity. Each bar plot
is the average of three biological repeats. The bars correspond to the mean � s.d.

Data information: For both (B) and (C), bars represent the fraction of cells that have activated σV 30 min after treatment with lysozyme. σV activated cells were defined
as those cells that had passed a threshold of the WT mean before lysozyme application plus six standard deviations. For more information on the number of repeats,
please see Appendix Table S3.
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To test these predictions, we constructed strains containing a

second copy of either sigV, rsiV or sigVrsiV driven by the sigV

promoter. As predicted by our model, snapshots of sigV expression

after induction by 1 μg/ml of lysozyme revealed that a second copy

of sigV or sigVrsiV reduced the observed heterogeneity in σV activa-

tion, while a second copy of rsiV caused an increase in the hetero-

geneity in σV activation (Fig 5C and Appendix Fig S26). Finally,

adding a second copy of sigV alone caused the activation of σV even

in the absence of stress, as predicted. These results validate our

model assumptions and also show that the heterogeneity in sigV

activation is easily tuned by simple genetic perturbations.

The heterogeneous activation dynamics of σV are dependent on
environmental history

Given that the σV activation dynamics appear sensitive to the base-

line levels of σV, RsiV and the σV-RsiV complex, any perturbations

to these levels should affect σV activation times. We hypothesized

that cells should have elevated levels of sigV operon components

after a lysozyme stress is removed due to the recent high expression

of the operon components. The elevated levels of σV stored in stabi-

lized σV-RsiV complexes should cause all cells to respond immedi-

ately to a subsequent reapplication of lysozyme. We investigated

this hypothesis in our model. We simulated the application of lyso-

zyme stress, which was then removed for the equivalent duration of

several cell cycles. The same level of stress was then reapplied and

the heterogeneity in σV activation disappeared (Fig 6A and

Appendix Fig S27). However, as the delay before the second applica-

tion of lysozyme was increased (allowing system components to

relax to pre-stress levels), the heterogeneity gradually returned

(Fig 6B and C and Appendix Fig S27). Thus, our simulations predict

the existence of a temporary molecular memory of the environmen-

tal history.

To test whether the σV circuit exhibits such a memory, we grew

cells in the mother machine device under 1 μg/ml lysozyme stress

before removing the stress for 6 h (approximately seven cell

cycles). All cells stopped activating σV as soon as lysozyme was

removed, as indicated by the decay in YFP fluorescence (Fig 6D

and Movie EV2). The decay in fluorescence was tightly synchro-

nized across the population and YFP decayed with a half-life time

of 51 � 1 min, which was similar to the cell cycle time of 51 � 13

min. When reapplying a 1 µg/ml lysozyme stress after 6 h (approx-

imately seven generations), all cells responded instantaneously. As

predicted by the model, the heterogeneity in σV activation was lost

(Fig 6D, Appendix Fig S28A and Movie EV2). Also as predicted by

the model, increasing the duration of the break in stress to 12 h

(approximately 14 generations) resulted in heterogeneous activa-

tion dynamics similar to those observed in response to the first

application of lysozyme stress (Fig 6E and F, Appendix Fig S28B

and C and Movie EV3). This return to a heterogeneous response

reflects the system’s loss of transcriptional memory through reduc-

tion in the sigV operon component concentrations to pre-stress

exposure levels. These results held for two different versions of the

mother machine microfluidic device (Appendix Fig S29). Taken

together, our results show how the autoregulatory σV circuit can

generate heterogeneous activation dynamics that can be tuned by

stress level, genetic perturbations and the environmental history of

the cell.

Discussion

Here, we report a general mechanism for a bacterial population to

tune its phenotypic variability based on stress levels, genetic archi-

tecture and environmental history. Using quantitative single-cell

microscopy and microfluidics, we found that the activation of the

alternative sigma factor σV in response to lysozyme stress was

heterogeneous. While some cells activated their σV pathway imme-

diately, others could take up to six generations to activate their σV

pathway. The observed phenotypic variability plays a functional

role, as cells that respond to a sub-lethal stress were more likely to

survive a subsequent higher stress application (Fig 2). Through

experiments and modelling, we found that this heterogeneity could

be understood by the ‘mixed’ positive and negative feedback of σV

activating both itself and its anti-sigma factor RsiV. Alternative

sigma factors are a common regulatory system in prokaryotes, often

controlling stress response and virulence pathways. The ‘mixed’

feedback loop is also a common motif, suggesting that this motif

can be a general mechanism for bacterial populations to tune their

phenotypic variability.

Our modelling and experiments found that recent exposure to

lysozyme stress modulates the heterogeneity observed on a second

stress application, even though the system turns off after removal

of the first lysozyme stress. The key to this behaviour appears to

be the ‘mixed’ feedback loop, as it allows amplified levels of inac-

tive σV-RsiV complexes in each cell after stress. These complexes

can be cleaved by a subsequent addition of lysozyme, releasing σV

to activate its operon. Similar transcriptional memories of previous

stress have been observed in bacterial systems, although typically

not to modulate phenotypic heterogeneity. For example, other

pathways such as the heat stress response in B. subtilis (Runde

et al, 2014) or the oxidative stress response in yeast (Kelley &

Ideker, 2009) have been shown to have a transcriptional memory

of past conditions. Often this transcriptional memory is facilitated

through an autoregulatory positive feedback loop that can lock the

cell into an ON state that is heritable through cell divisions

(Novick & Weiner, 1957; Biggar & Crabtree, 2001; Xiong & Ferrell,

2003; Acar et al, 2005; Hashimoto et al, 2013; Lambert & Kussell,

2014). However, it is difficult for a single positive feedback loop

to allow the system to be OFF but primed for future stress, as we

find to be the case for the ‘mixed’ feedback loop in the σV path-

way. Dilution during growth causes heterogeneous activation of

sigV to eventually return when levels of σV -RsiV drop to pre-

stress levels, so the memory is qualitatively different from that

generated by a positive feedback loop locking a system ON.

However, we find that the sigV transcriptional memory remains

for several generations. In the future, it will be important to inves-

tigate whether the ‘mixed’ feedback loop also tunes the levels of

phenotypic diversity by environmental history in other systems.

Interestingly, computational studies have proposed that a ‘mixed’

feedback loop structure in the MAR operon in Escherichia coli

allows the tuning of the fraction of cells prepared to survive

antibiotic exposure (Garcia-Bernardo & Dunlop, 2013). Addition-

ally, the mixed feedback loop mechanism could be compared to

other mechanisms proposed to allow the modulation of phenotypic

variability, such as multi-site phosphorylation (Libby et al, 2019)

or threshold-based mechanisms in toxin–antitoxin modules (Rotem

et al, 2010).
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While simple, our model allows qualitative matches to data. In

future, it will be important to increase the complexity of the model

to make more precise predictions of the behaviour of the sigV

system. One aspect of the system that can be modelled in more

detail is how noise in gene expression is generated in the circuit.

In our model, we do not model transcription and translation sepa-

rately and assume uncorrelated noise for each reaction channel. A

more detailed model could involve characterizing the noise in

terms of bursts of transcription and translation (Friedman et al,

2006). In turn, this would require experiments to characterize the

noise in transcription, such as single-molecule FISH (Raj &

Oudenaarden, 2008). Our assumption of uncorrelated noise is also

a simplification as, for example, we have modelled the degrada-

tion events as uncorrelated, which may not hold as these are

primarily caused by dilution. Additionally, the system requires

ultrasensitivity (in the form of a Hill coefficient n > 1 in the

operon production term) in order to amplify molecule fluctuations.

While other sigma factor response systems have been shown to

utilize ultrasensitivity (Narula et al, 2012; Narula et al, 2016),

there is no known source of it in the σV circuit (neither the bind-

ing of σV to RsiV, nor its operon, is cooperative). Further research

should examine possible sources of ultrasensitivity in the circuit,
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Figure 6. The σV circuit has a memory of previous stress.

Stress is removed from an activated system at time 0 and reapplied at a time indicated by the dashed line, lysozyme concentrations are indicated by the purple traces
above time course plots.
A Simulations predict that after a break in stress, on reapplication of stress all cells turn on σV immediately and homogeneously (N = 99).
B, C With increasing intervals between stresses, response heterogeneity reappears in the model, indicating a loss of memory. (C) Each line represents the cumulative

fraction of cells (N = 99) with σV concentration values that are higher than the half maximum of their final values (representing cells that have activated). If the
interval between stress is increased long enough, (800 au), the heterogeneity is the same as if the cells had not experienced a prior lysozyme stress (control).

D Experiments confirm memory in the σV circuit. For short intervals between stress applications, cells respond immediately and homogeneously. Each line
corresponds to one of 48 single-cell traces.

E, F For very long intervals between stress (12 h), the heterogeneity is the same as if the cells had not experienced a prior lysozyme stress (control). N > 50 single-cell
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Data information: For more information on the number of repeats, please see Appendix Table S3.
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one possibility being sigma factor competition for RNA polymerase

(Park et al, 2018).

Cells that activate sigV quickly after a priming stress have a

higher chance of surviving a subsequent high stress (Fig 2B). This

points to a potential benefit of early activation of sigV. Future

work should examine the costs of early sigV activation to see if

the heterogeneous activation dynamics we observe represent a

bet-hedging strategy (Veening et al, 2008a; Veening et al, 2008b),

where early responding cells suffer a fitness penalty in return for

protection against future stress. We do not observe a growth rate

difference in cells that activate sigV earlier compared to later,

suggesting that early responders are not suffering a growth rate

penalty. However, it is possible that we are missing small growth

rate effects, as the time resolution of our mother machine experi-

ments only allows approximately 5 time points to be measured

per cell cycle. Our experiments do indicate that high constitutive

expression of sigV or oatA reduces the growth rate in bulk culture

(Appendix Fig S30). It could also be that the fitness penalty is due

to early sigV activation blocking cells from responding to stress

with other alternative sigma factors, as it appears alternative

sigma factors compete for RNA polymerase (Nyström, 2004; Park

et al, 2018). Evolution experiments under changeable stressful

environments could reveal whether the heterogeneity in activation

and transcriptional memory that we observe evolve to optimally

match the external environment.

We have found that a combination of noise in gene expression

and a mixed feedback loop can generate tunable phenotypic diver-

sity in an alternative sigma factor circuit. Our work will be of utility

for synthetic biology, where alternative sigma factors are a promis-

ing system for engineering orthogonal gene circuits (Rhodius et al,

2013; Bervoets et al, 2018; Pinto et al, 2018). Going forward, it will

be important to observe whether alternative sigma factors more

generally are used as a mechanism for bacterial populations to tune

phenotypic diversity. This is particularly the case given that alterna-

tive sigma factors often control pathways critical to pathogenicity

and resistance to antibiotics. Noise in sigma factor activity has

already been observed in multiple alternative sigma factor circuits

in B. subtilis (Locke et al, 2011; Narula et al, 2016; Park et al, 2018),

as well as for the general stress response sigma factor in E. coli

(Patange et al, 2018). Additionally, an alternative sigma factor plays

a role in generating phenotypic diversity in Mycobacteria (Sureka

et al, 2008; Ghosh et al, 2011). Two other obvious candidates for

further study are the pathogens Enterococcus faecalis and Clostrid-

ioides difficile (Ho & Ellermeier, 2019), which also have a σV path-

way that is responsive to lysozyme.

Materials and Methods

Strains and media

All strains are derivatives of the PY79 background strain

(Appendix Table S1). Deletions were generated by replacing genes

of interest with an antibiotic resistance cassette by recombination of

a linear DNA fragment homologous to the region of interest. All

strains had a ΔytvA::neo deletion insertion. YtvA is a blue light

sensor, and it was deleted to avoid any activation of the general

stress response pathway σB by the microscope illumination

(Gaidenko et al, 2006; Locke et al, 2011). For strains used in mother

machine experiments, cells were made immotile by inserting a

ΔhaG:erm deletion cassette in order to improve the loading into the

microfluidic device. Additionally, all strains contained a house keep-

ing σA promoter-driven mCherry for segmentation and as a constitu-

tive control (Locke et al, 2011).

Cells were routinely grown in Spizizen’s Minimal Media (SMM)

(Spizizen, 1958). It contained 50 µg/ml tryptophan as an amino acid

source and 0.5% glucose as a carbon source. Cultures were started

from frozen stock in SMM and grown overnight at 30°C to an OD

between 0.3 and 0.8. The overnight cultures were resuspended to

an OD of 0.01 and regrown to an OD of 0.1 at 37°C.

Plasmids

Escherichia coli strain DH5α was used to clone all plasmids. The

cloning was done with a combination of non-ligase-dependent

cloning and standard molecular cloning techniques using Clontech

In-Fusion Advantage PCR Cloning kits. Plasmids were chromosoma-

lly integrated into the PY79 background via double crossover using

standard techniques. The list below provides a description of the

used plasmids, with details on selection marker and integration

position/cassette given at the beginning. Note that all plasmids

below replicate in E. coli but not in B. subtilis.

1 ppsB::PtrpE -mCherry PhleoR

This plasmid was used to provide uniform expression of

mCherry from a σA-dependent promoter, enabling automatic

image segmentation (cell identification) in time-lapse movie

analysis. A minimal σA promoter from the trpE gene was

cloned into a vector with ppsB homology regions (Locke et al,

2011). The original integration vector was a gift from A. Eldar

(Eldar et al, 2009).

2 sacA::PsigV -YFP CmR

The target promoter of sigV was cloned into the EcoRI/BamHI

sites of AEC12 (Eldar et al, 2009) (gift from M. Elowitz,

CalTech).

3 amyE::PsigV -mTurq SpectR

The target promoter of sigV and the mTurq gene from GL-FP-

31 (gift from E. Gardner, Harvard) were cloned into the sites

EcoRI/BAmHI and BamHI/HindIII of pdL30 (Locke et al,

2011).

4 amyE::Phyperspank -X SpectR

Where X is sigV, rsiV, yrhK, oatA, rasP, sipS, pbpX or YFP. The

coding region of the genes along with a 50 transcriptional

terminator was cloned downstream of the hyperspank IPTG-

inducible promoter in plasmid pDR-111 (gift from D. Rudner,

Harvard).

5 amyE::Pspank -X SpectR

Where X is sigV, rsiV, yrhK, oatA, rasP, sipS, pbpX or YFP. The

coding region of the genes along with a 50 transcriptional

terminator was cloned downstream of the spank IPTG-

inducible promoter in plasmid pDR-110 (gift from D. Rudner,

Harvard).

6 amyE::PsigV-X SpectR

The coding region of (where X is sigV, rsiV or sigVrsiV) along

with a 50 transcriptional terminator was cloned downstream of

the sigV promoter.
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Microscopy

A Nikon inverted Ti-E microscope (Nikon, Amsterdam, Nether-

lands) with a Nikon Perfect Focus System (PFS) hardware auto-

focus was used. All images were acquired using either a Photo-

metrics CoolSnap HQ2 CCD camera (Photometrics, Tucson, AZ,

USA) or a Photometrics Prime sCMOS camera (Photometrics,

Tucson, AZ, USA). The microscope stage was enclosed in an incu-

bator (Solent Scientific, Segensworth, UK) which was set to 37°C
for all experiments. Illumination was provided by a LED lamp

(CoolLED, Andover, UK). Epifluorescence was provided by a

Lumencore Solar II light engine (Lumencore, Beaverton, OR,

USA). Chroma filters (Chroma, Bellows Falls, USA) #41027 for the

RFP channel, #49003 for the YFP channel and #49001 for the CFP

channel were used. All experiments were done with a phase 100x

Plan Apo (NA 1.4) objective (Nikon, Amsterdam, Netherlands).

Metamorph (Molecular Device, Sunnyvale, CA, USA) controlled

the camera, the motorized stage (Nikon, Amsterdam, Netherlands)

and the microscope.

Snapshots
Agarose pads were made by pipetting 1 ml of 1.5% (wt/vol) low

melt agarose (Merck, Darmstadt, Germany) dissolved in PBS onto a

22 mm2 cover glass slide. Immediately after pipetting, another cover

glass slide was placed on top of the agarose creating a “sandwich”

with the agarose in the middle. Once the agarose had solidified, the

top cover glass was removed and the agarose was cut into squares

of approximately 5 mm × 5 mm with a scalpel.

Once the cultures had reached an OD of 0.1, they were split

into aliquots of 1 ml to which different concentrations of lyso-

zyme from hen eggs white (Sigma Aldrich, St. Louis, MO, USA)

were added. The aliquots were then incubated at 37°C for

30 min. For experiments with IPTG-inducible strains, 1 mM of

IPTG was added to the aliquots for 60 min before addition of

lysozyme, in order to allow for full induction of the promoter

before stress. Different concentrations of lysozyme were then

applied for 30 min before snapshot measurements. For snapshots,

2 µl of cell culture was pipetted onto the pads, which were left to

dry and then laid face down onto a cover glass-bottom dish

(#HBSt-5040, WillCO-dish, Amsterdam, Netherlands). The glass

dish was sealed with parafilm and put under the microscope to

image. Single-cell data were extracted using custom MATLAB

(Mathworks, Natick, USA) scripts based on the Schnitzcells pack-

age (Young et al, 2011).

CellAsic experiments
Overnight cultures were grown and then resuspended to an OD of

0.01 as described above. Once the cultures had reached an OD of

0.1, they were resuspended to an OD of 0.001 for loading into

CellAsic B04 microfluidic chips (Merck, Darmstadt, Germany). Cells

were loaded into the microfluidic chips with a pressure of 4–6.5 psi

for 2–4 s. The following lysozyme concentrations were investigated

with the CellAsic setup: 0, 0.5, 1 and 4 µg/ml. Fresh media was

perfused into the chip with a pressure of 1 psi. After 60 min of

growth in standard SMM, the media was switched to media contain-

ing lysozyme. Cells were imaged at regular intervals (every 10 min),

and the acquired movies were analysed with the standard Schnitz-

cells package for MATLAB (Young et al, 2011).

Microfluidics

Wafer fabrication
We used two different microfluidic designs of the mother machine:

1 All the mother machine data in this paper were acquired with

a microfluidic design based on the original mother machine

(Wang et al, 2010) unless stated otherwise. As a substrate for

the PDMS chip fabrication, we used an epoxy master which

was a kind gift from the Jun laboratory at the University of

California, San Diego, USA (Taheri-Araghi et al, 2015).

2 For data shown in Appendix Fig S29, a different mother

machine design was used. It was based on a mother machine

design first described by Norman et al (2013). The main dif-

ference to the Jun laboratory design is that the channels in

which cells grew were longer and that they have a shallow side

channel for better perfusion of media to the cells. As a

substrate for the PDMS chip fabrication, we used an epoxy

master which was a kind gift from the Elowitz laboratory at

the California Institute of Technology, Pasadena, USA (Park

et al, 2018).

Soft lithography
Sylgard 184 polydimethylsiloxane (PDMS) from Dow Corning

(Midland, MI, USA) was used to replica-mould the microfluidic

devices. A 10:1 (base:curing agent) PDMS mixture was cast onto

the epoxy master and cured overnight at 65°C. In the next morn-

ing, the chips were cut out and the inlets were punched using a

0.75 mm biopsy puncher (#504529, WPI, Sarasota, FL, USA). To

remove any uncured PDMS from the chips, these were chemically

treated in a pentane (Sigma Aldrich, St. Louis, Mo, USA) bath for

90 min and then washed twice for 90 min in acetone (Sigma

Aldrich, St. Louis, Mo, USA). The chips were then left to dry

overnight in the fume hood and were ready to use the next day

(Gruenberger et al, 2013).

Experimental preparation
The chips were plasma bonded to a glass-bottom dish (HBSt-5040,

Willco Wells, Amsterdam Netherlands) by treating the chip and the

glass dish surfaces with a plasma (Femto Plasma System, Diener,

Ebhausen, Germany) for 12 s at a power of 30 W and a pressure of

0.35 mbar. The chips were then put into the oven for 10 min at

65°C, in order to strengthen the bonding. In the meantime, a bovine

serum albumin (BSA) passivation buffer was prepared at a concen-

tration of 20 mg/ml in SMM. The chips were then passivated with

this buffer for 1 h at 37°C.
Cells were grown overnight as for the other movie experiments.

10 ml of the regrown cultures with an OD of 0.1 was spun down for

10 min at 3,000 g (4,000 rpm) and resuspended in 0.1 ml to a final

OD of 10. This cell suspension was loaded into the growth channels

by spinning the chip for 5 min at 3,000 rpm with a spin coater

(Polos SPIN150i, SPS, Harlem, the Netherland).

Setup of microfluidic mother machine experiments
Perfusion was provided by a Fluigent pressure pump setup. Briefly,

reservoirs were pressurized using a computer controllable pressure

controller (MFCS-EZ, 1 bar, Villejuif, Fluigent, France). A rotary

selection valve (M-Switch, Fluigent, Villejuif, France) allowed for

switching between different reservoirs. The flow rate was set to
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1 ml/h and by using a flow sensor (M-Flow Sensor, Fluigent, Ville-

juif, France) which feeds back onto the pressure controller.

For the experiments on the memory in the σV response,

syringe pumps (Legato 200, KD Scientific, Holliston, USA) were

used. Switching was provided by an electronic switching valve

(MXP9960, Rheodyne, Lake Forest, USA). The flow rate remained

at 1 ml/h.

The analysis of all movies was done using a modified version of

Schnitzcells (Young et al, 2011; Park et al, 2018) optimized for

mother machine experiments.

Memory experiments
For all shown memory experiments, the JLB221 strain (ΔespH) was

used instead of JLB130, unless stated otherwise. This was done in

order to prevent clogging of the microfluidic chip during these long-

term experiments due to the production of extracellular matrix. The

two strains had the same PsigV-YFP dynamics in response to lyso-

zyme (Appendix Figs S31 and S32).

Cells were inoculated in SMM and grown overnight to an OD of

0.3–0.8. In the morning, the cells were resuspended to an OD of

0.01 in SMM + 1 μg/ml lysozyme and grown to an OD of 0.1. Cells

were then loaded as described in the “Experimental preparation”

section.

In the mother machine, the cells were grown for 4 h with 1 μg/
ml lysozyme before removing the stress. The stress was then reap-

plied after 6 or 12 h.

Growth curve determination

Cultures were started from frozen stock in SMM and grown over-

night at 30°C. The overnight cultures were resuspended to an OD of

0.02 and grown for 2 h at 37°C before adding 1 mM of IPTG. The

cells were then grown for another hour before adjusting the OD to

0.1 and aliquoting the culture into 2 ml samples (with one 2 ml

sample used for each time point), and then, the samples were

returned to grow at 37°C. A sample was taken every hour, and the

OD600 was determined.

Data analysis

Cumulative activation time
The activation time in mother machine experiments was calculated

as the time between switching from SMM to lysozyme and the time

point when then PsigV-YFP passed its half maximum (Appendix Fig

S1). The cumulative fraction was then calculated as the cumulative

fraction of cells with PsigV-YFP values higher than the half maximum

of their final values (representing cells that have activated)

(Appendix Figs S1 and S8).

Removal of overshooting cells
For 4 μg/ml lysozyme, the PsigV-YFP activity overshot its steady-

state activity. Overshooting cells were sick and also wider. Thus,

overshooting cells could be removed based on their width. First,

the single-cell width traces were smoothed with a Gaussian filter,

and their maximum value was determined. All single-cell traces

with a maximum width larger than the mean width + 6 sigma of

cells before the stress were removed (Appendix Figs S9 and

S10).

Growth rate
The instantaneous growth rate as shown in Appendix Fig S11 was

calculated as in (Martins et al, 2018):

Gr¼ log leniþ1ð Þ� logðleniÞ
Δt

(1)

where leni is the length of the cell at frame i, and Δt is the time

between subsequent frames taken from the image metadata.

Growth rates were only calculated within one cell cycle and not

over a division.

Calculation of surviving cells in priming experiment
The lysis curve (Fig 2B) was calculated as the fraction of surviving

cells 280 min after the addition of 20 µg/ml lysozyme. We only

examined the survival rate of the top three cells in each channel at

the time of the addition of 20 µg/ml lysozyme to avoid problems

with cells being washed out of the chip during the 280 min after the

stress. Only one surviving lineage (the longest) was counted from

each of these top three cells, to avoid cell division artificially

increasing the number of survivors. The survival rate at the end of

the movie using this method was 12.5 � 2.7% (Fig 2B). To verify

this method, we also used an alternative approach. In this second

method, the end of each channel was approximated using the aver-

age cell position before a cell left the channel in the ~ 100 frames

before the stress was added. Cells that at their last recorded position

after the addition of 20 µg/ml lysozyme stress were within six stan-

dard deviations of the end of the channel were removed from the

analysis as they were assumed to have left the channel rather than

died. This second approach gave qualitatively similar results, with a

survival rate of 13.6 � 3.1%.

Statistical analysis of the effects of higher PsigV-YFP levels before
lysozyme stress application on response time
As the distributions in Appendix Fig S14 were not normal, we use

the non-parametric Kolmogorov–Smirnov test (ks test) to verify the

null hypothesis that cells with higher PsigV-YFP values before lyso-

zyme stress application would have the same activation time distri-

bution as cells with lower PsigV-YFP expression. Cells with high

PsigV-YFP were defined as cells with a YFP fluorescence higher than

the mean YFP fluorescence before the addition of lysozyme plus one

standard deviation. All other cells were defined as low PsigV-YFP. A

P-value below 0.05 was used to reject the null hypothesis. The ks

test was performed using the built in MATLAB function kstest2.

We found that for 0.5, 1 and 2 μg/ml lysozyme the null hypothe-

sis was rejected. Thus, cells with higher PsigV-YFP values before

lysozyme stress application had a shorter activation time. For 4 μg/
ml lysozyme, the null hypothesis was accepted. Therefore, cells

with higher PsigV-YFP values before lysozyme stress application had

the same activation time as cells with lower PsigV-YFP values.

Calculation of fraction of activated cells from snapshots
Cells which, after the application of lysozyme stress, had a higher

mean PsigV-YFP expression than the mean PsigV-YFP expression plus

six standard deviations before stress were defined as having acti-

vated. The fraction of activated cells was then calculated as the

number of cells which had activated normalized by the total number

of cells (Figs 3 and 5).
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RNA-seq experiment

Lysozyme treatment before RNA extraction
Overnight cultures were prepared as for snapshot or movie experi-

ments. Briefly, cultures were started from frozen stock in SMM and

grown overnight at 30°C to an OD between 0.3 and 0.8. The over-

night cultures were resuspended to an OD of 0.01 and regrown to

an OD of 0.1 at 37°C. Once the cultures had reached an OD of 0.1,

they were split into aliquots of 10 ml to which either 0 or 1 µg/ml

lysozyme from hen eggs white (Sigma Aldrich, St. Louis, MO, USA)

were added. The aliquots were then incubated at 37°C for 30 min.

RNA extraction and library preparation
10 ml of B. subtilis at OD 0.1–0.2 was centrifuged in 15-ml falcon

tubes for 10 min at 3,000 g (4,000 rpm). Cell pellets were resus-

pended in 1 ml of Qiagen RNAprotect Bacteria Reagent and flash

frozen in liquid nitrogen.

Defrosted cells were pelleted by a quick centrifugation. After

removing the supernatant, cells were resuspended in 1 ml buffer RLT

fromQiagen RNeasy kit. Resuspended cells were transferred in a Fast-

prep LysingMatrix B tube (MP Bio) and processed in Fastprep appara-

tus 45 s at speed 6.5 M/s. 700 µl of the supernatant, containing lysed

cells, was transferred to a new microcentrifuge tube, to which 500 µl
of absolute ethanol was added. After vortexing, the lysate was trans-

ferred to a RNeasy spin column and centrifuged 15 s at > 9,400 g

(10,000 rpm). RNA purification was then carried out following the

instructions of the Qiagen RNeasy kit. RNA quality and integrity were

assessed on the Agilent 2200 TapeStation, and RNA concentration

was assessed using Qubit RNA HS assay kit. Library preparation was

performed using ScriptSeq™ Complete Kit (Illumina, BB1224), for 2 µg
of high integrity total RNA (RIN > 8). The libraries were sequenced on

a NextSeq500 using paired-end sequencing of 75 bp in length.

RNA-seq analysis
The raw reads were analysed using a combination of publicly avail-

able software and in-house scripts. We first assessed the quality of

reads using FastQC (www.bioinformatics.babraham.ac.uk/projects/

fastqc/). Reads were aligned to the B. subtilis PY79 transcriptome

(NCIB no.CP006881) using Salmon (Patro et al, 2017). Read counts

for each gene were imported using the tximport R package (Soneson

et al, 2015). Genes differentially expressed (P-value < 5%) between

the WT and ΔsigV mutant, or in response to lysozyme treatment

were identified using the DESeq2 R package (Love et al, 2014). The

RNA-seq data of our study can be found here (Gene Expression

Omnibus: GSE171761, https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE171761).

Mathematical model

We constructed a mathematical model of the σV circuit that was

based on the core components that we found experimentally to

modulate the heterogeneity in σV activation (Fig 3). The model

consists of σV, RsiV and the σV-RsiV complex. Free σV that is not

bound in a complex activates the production of both σV and RsiV.

Lysozyme stress was modelled as activating the cleavage of the σV-
RsiV complex, releasing σV while degrading RsiV. We note that

although heterogeneous activation can be simulated through just a

positive feedback loop, (Tiwari et al, 2011; Frigola et al, 2012)

(Appendix Fig S20), our model is the simplest model that could be

compared to the mutations including both sigV and rsiV (Fig 5).

Model reactions
We used the following set of biochemical reactions to model the

dynamics of σV, RsiV and σV-RsiV.
Production:

∅ → σV + RsiV

The production rate of σV and RsiV was assumed to follow a Hill

function, where the production rate of both σV and RsiV were identi-

cal and activated by σV. The production rate is as follows: v0 + v*
(σV)ⁿ/((σV)ⁿ + Kⁿ), where v0 (= 0.1 molecules/min, is the operon

leakage), v (= 2.5 molecules/min, is the maximal operon activity),

K (= 60 molecules, is the apparent dissociation constant) and n

(= 2, is the Hill coefficient) are parameters.

Dilution/Degradation:

σV → ∅.

RsiV → ∅

σV-RsiV → ∅

We assumed a constant and identical dilution rate for all three

components of the system. The dilution rate is set by the parameter

kdeg (= 0.01 min−1).

Binding/Dissociation:

σV + RsiV → σV-RsiV

σV-RsiV → σV + RsiV

We assumed that σV and RsiV would bind to each other to form

a complex and that this complex could dissociate. We also assumed

the binding rate to be higher than the dissociation rate. The binding

rate is set by the parameter kB (= 10 molecules−1 min−1) and the

dissociation rate by the parameter kD (=5 min−1).

Cleavage:

σV-RsiV → σV

We assumed that the σV/RsiV complex would be cleaved by lyso-

zyme, with σV getting released and RsiV degraded. The cleavage rate

is set by the product of the two parameters L (which attains variable

values, is the amount of lysozyme stress experienced by the system)

and kC (= 0.05 min−1, is the base cleavage rate of the complex).

Splitting the rate into two parameters allows setting more natural

lysozyme input values (such as 1 and 2).

Model implementation
The model was implemented in the Julia programming language

using the Catalyst.jl modelling package. Simulations were made

using the DifferentialEquations.jl package (Rackauckas & Nie,

2017b). To account for the stochastic nature of the system, we use a

Gillespie-type model (Gillespie, 1977). Here, we tracked the copy

numbers of the three components of the system (σV, RsiV and σV-
RsiV), and their change due to the individual reaction events. We
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used Gillespie’s direct stochastic simulation algorithm to determine

the time to, and which, the next reaction event in the simulation

should be. We used DifferentialEquations.jl’s SSAStepper method to

simulate the model. For more details, please see the implementa-

tions in the files provided. The model parameters were hand-picked

by carrying out a coarse-grained search of feasible values. The

degradation rate was set to be similar to what would be produced

by the bacteria division rate in the experiments. This yields plausi-

ble copy numbers for the number of sigma factor molecules (Jishage

& Ishihama, 1995; Jishage et al, 1996). See Appendix Table S2 for

parameter values. The heterogeneous activation behaviour is robust

with respect to perturbations to the selected parameters

(Appendix Fig S21). Finally, we also note that a continuous SDE

model, based on the chemical Langevin equations, could reproduce

the features of the system, (Appendix Fig S33), suggesting that that

behaviour does not depend on choice of model approach (Gillespie,

2000; Rackauckas & Nie, 2017a).

Data availability

The RNA-seq data produced in this study can be found here:

Gene Expression Omnibus GSE171761: https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE171761.

Model simulation, data analysis and figure plotting code, as well

as source data for main and extended view figures can be found

here: https://gitlab.com/slcu/teamJL/schwall_etal_msb_2021.

Expanded View for this article is available online.
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