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ABSTRACT 

The concept of a protein’s fitness landscape – an abstract space in which related sequences are 

close together and matched with their fitness – is a useful tool to visualize core principles of 

protein evolution. Acquiring a new function, for example the laboratory evolution of an enzyme 

to convert an industrially relevant substrate, can be understood as a stepwise climb through a 

fitness landscape, reaching higher fitness (or activity) with each step (or mutation). The valleys 

of such a space relate to the starting points of protein engineering campaigns. Understanding 

this area could enlighten principles of how proteins quickly adapt in nature and help to identify 

starting points with a high potential for evolution, a high ‘evolvability’, speeding up protein 

engineering. In this study, high-throughput technologies will be developed that enable the read-

out of directed evolution on a large scale, tracking the exploration of the valley of a fitness 

landscape: the conversion of an amino acid- to amine dehydrogenase will be investigated as a 

model of enzyme evolvability with a drastic change of substrate specificity. A sensitive high-

throughput screening assay as well as a comprehensive sequencing read-out will be required to 

establish the identity of selected variants during evolution. 

I will first generate and characterize three different but related starting points and test their 

initial evolvability. Stabilizing the starting point results in increased mutational robustness, 

broadening the range of accepted mutations. However, increased initial stability does not 

necessarily correlate to higher functional improvement, hinting at a nuanced view of 

evolvability. A sensitive high-throughput assay is necessary to verify the full potential of the 

starting points and study the early steps of evolution comprehensively. Broadly applicable 

ultrahigh-throughput assays of enzyme function, such as absorbance-activated droplet sorting, 

currently lack the sensitivity of more specific fluorescence-based or low-throughput 

counterparts. A universal approach to increase detectability in single cell-lysate microfluidic 

enzyme assays is established by amplifying the enzyme content per droplet more than 10-fold 

via homogeneous clonal cell growth. Clonal amplification enables the sensitive and precise 

detection of newly introduced amine dehydrogenase activities, a feat restricted in conventional 

assays by low initial activity and stability. To generate a truly complete view of directed 

evolution in a fitness landscape, however, an equally powerful sequencing read-out is 



v 

 

necessary to identify all selected variants. Here, unique molecular identifiers are used to 

increase the accuracy of nanopore sequencing to levels that can reliably distinguish point 

mutations. I establish an inexpensive and straightforward long read amplicon sequencing 

workflow which is then applied to map the trajectories of two comparative long-term directed 

evolution campaigns. In the parallel evolution campaigns, initial beneficial mutations are 

exclusive to each starting point and lead to incompatible trajectories. Beneficial mutations are 

scarce and large improvements are unavailable until recombination occurs and a jump through 

the fitness landscape is realized. The recombined variant holds high evolvability and quickly 

evolves to take over the population and form the most successful lineages, indicating the power 

of recombination as a means to innovation in protein evolution. 

The tools established in this thesis can help protein engineers explore fitness landscapes more 

economically and comprehensively. Their application to mapping full trajectories of early 

adaptation uncovers differences in the evolvability of homologs, potentially aiding the 

identification of evolvable starting points as well as strategies to increase evolvability for 

efficient protein engineering in the future. 
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A. INTRODUCTION 

 

 

 

What are the tools necessary for directed evolution and what can we learn about proteins from 

performing it? In this chapter I will provide a general introduction to directed evolution and 

the high-throughput methods making it possible, with a focus on droplet microfluidics. I will 

also summarize the current state of literature around the lessons that can be derived from large 

scale directed evolution experiments combined with an equally powerful readout in high-

throughput sequencing, collectively known as deep mutational scanning. 

The content and figures of chapter A.3 were published as Neun et al, 2020. 
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A.1. DIRECTED EVOLUTION AND EVOLVABILITY 

A.1.1. FROM PROTEIN ENGINEERING TO FITNESS LANDSCAPES 

Directed evolution is a mimic of natural Darwinian evolution in the laboratory. Mutations are 

introduced to a protein and variants are assayed under defined conditions in a test tube, leaving 

the experimenter to direct the protein’s function outside of its original biological context 

towards the relevant task at hand (Arnold, 1996). For example, selection pressure can be set to 

evolve enzymes useful in industrial biocatalysis or to select new binding specificities of 

antibodies for pharmaceutical application. This has been proven with seminal work on enzyme 

evolution by Frances Arnold, and phage display by George Smith and Sir Gregory Winter; 

recognized with the Nobel Prize in Chemistry in 2018. Protein engineering by directed 

evolution has been established in these fields for many years thanks to its agnostic approach. 

Already in 1993, Chen and Arnold were able to mould the protease subtilisin E to work at high 

efficiencies in an artificial environment. The mutant enzyme, obtained after screening a total 

of ~4000 variants in three cycles of directed evolution, enabled catalysis in organic solvent at 

a 256-fold increased catalytic efficiency compared to the wild-type (Chen & Arnold, 1993). In 

such early studies, directed evolution of enzymes was commonly applied as iterative plate 

screening in which multiple rounds of mutagenesis (e.g. random mutagenesis, site-directed 

mutagenesis and/or recombination) were coupled with screening in 96-well plates for improved 

function in a variety of assays (Arnold, 1996, Fig. A-1). Selections, in contrast, were in parallel 

beginning to be employed to fish out functional variants of large pools of diversity by 

competition, traditionally affording much higher throughput but less assay flexibility compared 

to the individual measurements taken during screening (Winter et al, 1994; Yano et al, 1998). 

However, the lines between these approaches have started to blur with the application of 

emerging ultrahigh-throughput screening technologies (see chapter A.3) and non-iterative 

continuous directed evolution (Esvelt et al, 2011). In any case, all these approaches can be used 

to direct protein function to industrially useful properties by applying defined selection 

pressures while not requiring much prior knowledge about the protein. 

Directed evolution, however, is much more than a blind tool used for protein engineering. In 

fact, as directed evolution is an approximation of natural evolution in defined conditions and 

selection pressures, it can be used to test evolutionary theories and establish fundamental 

properties of proteins themselves (Peisajovich & Tawfik, 2007). Here, it helps to imagine 

directed evolution as a stepwise journey through a fitness landscape. First, the enormous 
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diversity in protein sequences can be visualized by imagining a space in which each sequence 

is neighboured by all the sequences which can be reached by one mutation. This concept of a 

sequence space was first introduced to protein evolution by John Maynard Smith in 1970, 

visualizing the principles that allow natural evolution to overcome the insurmountable 

combinatorial diversity of protein sequences (Maynard Smith, 1970). For a theoretical protein 

of two amino acids a sequence space is easily visualized in two dimensions (Fig. A-2a), but the 

dimensionality of sequence space and the contained possible combinations of amino acids get 

unimaginably large with longer sequences: There are 20 possible amino acids per position, 

resulting in a simple 20 × 20 space for 400 possible di-peptides, but rapidly expanding to more 

than 10130 members in the 100 dimensional space of a theoretical small protein of 100 amino 

acids. This diversity in possible protein sequences is thought to result in a globally extremely 

sparsely populated sequence space. Random proteins will likely not be functional and 

functional protein superfamilies, therefore, exist as island of active protein sequences in a 

vastness of non-functional sequences (Keefe & Szostak, 2001; Romero & Arnold, 2009).  

 

Fig. A-1: Cycles of directed evolution. Directed evolution follows a Darwinian process in three stages: 

introduction of random variation, selection for fitness differences, and amplification of successful variants. These 

three stages complete a cycle of directed evolution in the lab, with assays and molecular biological tools 

approximating natural evolution: Screening for fitness can be performed by measuring enzyme activity in a droplet 

microfluidic assay, the DNA of successful variants can be amplified recombinantly in cells, random variation can 

be introduced via error-prone PCR. 
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Directed evolution results in a stepwise accumulation of mutations conceptualised as a “walk 

through sequence space” from neighbouring sequence to neighbouring sequence, along an 

additional axis of protein fitness. It explores the local context of a protein sequence by 

randomly sampling many adjacent sequences for increased function, selecting a path towards 

higher activity visually represented as an ascend towards a peak in the fitness landscape. A 

fitness landscape reduces the overwhelming number of dimensions of the underlying sequence 

space into two dimensions, still arranging close sequences together, and adding a third 

dimension corresponding to variant fitness (Fig. A-2b). The concept of a fitness landscape was 

used in 1932 by Sewall Wright to conceptualize Natural evolution (Wright, 1932), but it also 

is immensely useful to visualize concepts in directed evolution and protein engineering. In the 

context of protein engineering, fitness is commonly defined as a function of interest, e.g. the 

enzymatic activity in defined reaction conditions, instead of organismal fitness in the sense of 

the production of viable offspring. A conventional directed evolution campaign then follows a 

single trajectory, at each point testing multiple randomly generated variants for higher fitness 

and selecting the very best variant to repeat the cycle (Fig. A-2b). It thus explores many variants 

at each step but follows only one evolutionary trajectory to reach higher fitness. 

 

Fig. A-2: Protein sequence space and fitness landscape. (a) A small protein sequence space. A sequence space 

of a theoretical two amino acid protein. All 400 possible combinations can be listed in a two-dimensional graph. 

(b) Fitness landscape showing multiple possible trajectories. The high dimensional sequence space of a full-

length protein is projected into two dimensions, where similar sequences are close together. The fitness of each 

variant is added in a third dimension, shaping a ‘landscape’. Directed evolution can be conceptualized as a 

stepwise exploration of this fitness landscape. Variants are tested for increased activity, the best variant taken into 

the next round of randomization and screening. 

The shape of a protein’s fitness landscape is not smooth leading to just one peak. Fitness 

landscapes have extensively been characterized as “rugged”; a result of pervasive epistatic 
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interactions (Sarkisyan et al, 2016; Starr et al, 2018). Epistasis describes non-linear 

interactions, or in the case of a protein sequence, an unexpected effect if two or more mutations 

are combined (Fig. A-3). Such intra-gene epistasis between mutations results in a fitness 

landscape with many distinct local optima that are reachable by different evolutionary 

trajectories. This context-dependence of mutation limits protein engineering by reducing 

predictability and transferability of beneficial mutations (Miton & Tokuriki, 2016). 

 

Fig. A-3: Epistasis results in the context-dependence of mutational effects. If no epistasis is present, mutation 

‘a’ to ‘A’ yields the same effect indifferent of genetic background (being either ‘b’ or ‘B’) and ‘AB’ is the linear 

combination of both mutations. In magnitude epistasis, the extent of the effect is increased when both mutations 

are combined, while in sign epistasis the sign of the fitness effect changes. If the sign of fitness effect changes for 

both mutations, the effect is termed reciprocal sign epistasis, which in the context of protein engineering would 

mean that two deleterious mutations combined have a beneficial effect. Such reciprocal sign epistasis could result 

in a fitness landscape with many peaks, as the reversal of just one mutation would leave the protein unfunctional. 

Figure from Poelwijk et al, 2007. 

The engineering of proteins, such as directed evolution to alter substrate-specificity of an 

enzyme and generate a valuable biocatalyst, is dependent on the choice of starting point. 

Usually, an enzyme is poorly adapted to an industrial process and needs to be engineered to 

perform in un-natural conditions and with new substrates. But how does a protein engineer 

choose a starting point to use for further engineering that has a high potential for adaptive 

evolution? In the context of fitness landscapes, this problem can be translated into identifying 

the points in valleys that have the steepest access to high peaks of the new function. Most 

studies of protein fitness landscapes, however, focus on already adapted enzymes and thus 

study the peaks of fitness landscapes (see also chapter A.4). Current knowledge about the 

factors influencing a protein’s potential for adaptation – its evolvability – is outlined in the 

following chapter. 
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A.1.2. THE POTENTIAL FOR ADAPTATION 

The classical view of enzymes with one structure related to one substrate, as a key fits into a 

lock (Fischer, 1894), has since been amended with the realization that enzymes exhibit catalytic 

promiscuity. The ability of enzymes to catalyse other reactions than their main activity has 

been postulated to provide stepping stones for the evolution of new functions (Jensen, 1976; 

O’Brien & Herschlag, 1999). Such secondary activities can shorten the evolutionary distance 

to a variant that provides a selective advantage, such as the breakdown of a new xenobiotic, 

increasing overall evolvability. This functional promiscuity has been linked to a dynamic view 

of proteins exhibiting conformational flexibility (Tokuriki & Tawfik, 2009a). 

Evolvability – defined here as the potential for adaptive evolution of a protein – is high when 

a fitness peak is close in sequence space, while other sequences might need to acquire multiple 

permissive mutations before large changes in fitness can be attained. Such permissive 

mutations are either stabilizing mutations, which can permit functionalizing but destabilizing 

mutations to become fixed – which is often termed global or threshold epistasis – or specific 

epistasis for example prohibiting the mutation of a key active site residue (Starr & Thornton, 

2016). Evolvability thus manifests itself experimentally as a high proportion of improved 

variants during directed evolution, e.g. as a result of a ‘stability buffer’, as well as a high 

amplitude of functional improvement per step, e.g. by enabling epistatically productive 

combinations of mutation. These effects are quantifiable and permit an estimation of the 

evolvability of an enzyme from sampling variants of a library (Boyer et al, 2016).  

Together, there are three properties of enzymes that relate to their evolvability: Stability, 

flexibility, and epistatic entrenchment. Investigation of these factors can lead to principles 

guiding the identification of good starting points for protein engineering. An evolvable starting 

point has to be identified in any protein engineering campaign, with general guidelines being 

rare (Trudeau & Tawfik, 2019). 

A.1.2.1. Mutational robustness as a result of stability 

Proteins tend to be marginally stable and mutations, on average, are destabilizing (Tokuriki et 

al, 2007). A protein, however, must be able to accept mutations and maintain its core structure 

and function in order to evolve. Consequently, excess stability should convey mutational 

robustness and thus increase evolvability by enabling acquisition of more functionalizing but 

destabilizing mutations (Tokuriki & Tawfik, 2009b). A stable protein can acquire more 

mutations before its stability is compromised in a way that diminishes activity and fold, thus 
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having greater access to potential functionalizing mutations (Fig. A-4). The stability threshold 

is the reason for prevalent unspecific epistasis in proteins, which occurs when a functionalizing 

but destabilizing mutation cannot be accepted on its own but must be compensated by any 

generally stabilizing yet functionally neutral mutation (Starr & Thornton, 2016; Bershtein et 

al, 2006). 

 

Fig. A-4: Stability and mutational robustness. A ‘stability buffer’ can convey mutational robustness leading to 

a greater number of accepted, generally destabilizing, mutations. By accepting more mutations, the chance of 

acquiring functionalizing mutations also increases, resulting in heightened evolvability. 

Mutational robustness due to stability was proven by early protein engineers (Bershtein et al, 

2006; Bloom et al, 2006), leading to a general rule-of-thumb to start engineering with very 

stable enzymes, such as proteins from thermophile organisms (Besenmatter et al, 2007; Finch 

& Kim, 2018). However, stabilizing mutations do not seem necessary to evolve active enzymes 

(Knies et al, 2017) and enzymes can be both stable and active (Giver et al, 1998). Furthermore, 

stability does not always correlate to mutational robustness, which can be seen with highly 

evolvable but instable and disordered viral proteins (Tokuriki et al, 2009). Nonetheless, some 

form of stabilization is usually employed in successful protein engineering campaigns (Romero 

& Arnold, 2009). 

Protein stability itself can be grouped into thermodynamic stability and kinetic stability, where 

thermodynamic stability relates to ‘conformational stability’ or more specifically to the free 

energy difference between native and unfolded states (Tokuriki & Tawfik, 2009b). It is 

typically measured by proxy via the melting point in heat-denaturation experiments. Kinetic 

stability, on the other hand, relates to foldability or the probability of folding intermediates 
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leading to aggregation in the folding pathway (Sanchez-Ruiz, 2010). Kinetic stability is often 

measured by implication in soluble expression level compared to aggregated protein at 

expression temperature. In most proteins, thermodynamic and kinetic stability are connected 

(Mayer et al, 2007). 

A.1.2.2. The role of flexibility in the adaptation to new substrates 

The hypothesis that functional promiscuity of proteins stems from protein dynamism was 

formalized by Tokuriki and Tawfik in 2009. Proteins are conformationally dynamic and 

transition between an ensemble of substates. A less frequently occupied substate might show a 

productive binding pose with a non-native ligand and thus enable the catalysis of a promiscuous 

substrate (Fig. A-5). Mutations along an evolutionary trajectory could freeze out unproductive 

substates, increasing the overall activity with the new substrate (Tokuriki & Tawfik, 2009a). 

This model of evolution of new functions via shifting the equilibrium of protein conformational 

substates also finds an explanation for the weak negative trade-offs previously observed 

between existing and new function (Aharoni et al, 2005b; Khersonsky et al, 2006). While the 

increase in frequency of a scarcely populated substate from 1% to 10% can increase the 

corresponding promiscuous activity 10-fold, the relative occupancy of the main substate would 

only be marginally affected, e.g. reducing occupancy from 60% to 51%, equalling a loss in 

main activity of 15%. 

Experimental evidence for this theory has accumulated in recent years (Campbell et al, 2018). 

Mutations far from the active site can have a great effect on enzyme activity, as shown in the 

earliest experiments of directed evolution, and can do so by changing the protein dynamics 

(Buller et al, 2018). Experimental directed evolution or ancestral sequence reconstruction can 

be used to study the effect of flexibility in protein evolution. For example, a reconstructed 

ancestral sequence of a non-catalytic solute-binding protein as well as ancestral intermediates 

along the evolutionary trajectory towards present-day cyclohexadienyl dehydratases was 

investigated with a variety of methods. A wide-open state was only present in the non-catalytic 

binding proteins and was steadily frozen out by remote mutation in the trajectory to the extant 

catalytic relatives (Kaczmarski et al, 2020). A similar effect can be seen in experimental 

directed evolution: The directed evolution of a designed retro-aldolase resulted in a 4,400-fold 

activity increase (Giger et al, 2013), which was further improved 30-fold by ultrahigh-

throughput droplet microfluidic screening (Obexer et al, 2017). Long molecular dynamics 

simulations revealed the populations of substates showing a productive binding pose shift with 
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the evolutionary intermediates until all substates provided a catalytically productive pose in the 

final evolved variant (Romero-Rivera et al, 2017). 

Together, the increasing body of work on the importance of protein dynamism in the evolution 

of new function culminates in a somewhat difficult challenge: identifying a flexible starting 

scaffold that remains robust in the overall fold, leading to a stable and evolvable protein. 

 

Fig. A-5: Protein dynamism and the evolution of new function. A protein exists as an ensemble of 

conformations, with each substate or conformer being a structural variation of different probability. The native 

state PN is most frequently assumed and binds the native ligand L. Less frequent substates might enable 

promiscuous functions, such as the promiscuous interaction of P4 with L*. The equilibrium of substates shifts 

during the evolution of a promiscuous function so that the new productive substate is assumed more frequently, 

increasing the protein’s promiscuous function. Figure from Tokuriki & Tawfik, 2009a. 

A.1.2.3. Entrenchment by cryptic genetic variation and epistatic ratchets 

Epistasis shapes the fitness landscapes of proteins and determines which paths to higher 

functions are accessible. Epistatic interactions among mutations are very frequent and thus 

each new mutation is likely contingent on the previous set of mutations, which itself might 

become entrenched by further subsequent mutations (Starr et al, 2018). The extent to which 

mutations in proteins interact is immense: 30% of multiple random mutations in GFP showed 

epistatic interaction (Sarkisyan et al, 2016) and 75% of mutations along the historical 

evolutionary trajectory of Hsp90 were either contingent on the previous state or entrenched by 

a later state (Starr et al, 2018). The implication of permissive mutations becoming entrenched 

by later contingent mutations leads to an irreversibility in evolution. Entrenchment and 

contingency continue to daisy chain with more mutations leading to a network of epistatic 
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interactions, so that experimental reverse evolution is likely to lead to a different solution 

instead of sequence reversal (Kaltenbach et al, 2015). 

By which mechanism does the current epistatic state relate to a protein’s evolvability 

specifically? In a recent example, differential evolvability of two homologue enzymes was 

related back to specific epistatic interactions instead of general differences in stability or 

flexibility. While one homologue enzyme quickly acquired a new function due to a crucial 

active site mutation, this active site mutation could not be acquired in the other homolog. 

Slightly different active site geometry resulted in steric hindrance with the strongly activating 

mutation, resulting in only marginal improvements over the course of 10 rounds of directed 

evolution (Baier et al, 2019). The evolvability of one starting point was thus much higher than 

the other, with the reason for it being hard to identify ‘cryptic’ epistatic effects emerging from 

the underlying sequence context, a concept known in genetics as ‘cryptic genetic variation’ 

(Paaby & Rockman, 2014). 

The high complexity and frequency of interaction in protein mutations renders the evolvability 

of a protein, or even just the impact of single mutations, very hard to impossible to predict, 

although recent deep neural networks have shown potential by extracting patterns of millions 

of natural sequences for state-of-the-art performance (Alley et al, 2019). 

For the time being, limits to evolvability by cryptic epistatic states can be circumvented by 

increased screening capacity and reduction of selection pressure. In so-called neutral drift, the 

selection pressure is removed or reduced and many variants with wild-type–like mutations are 

selected, which tend to accumulate stabilizing consensus mutations (Bershtein et al, 2008). 

This pool of neutral variation can be used as a collective starting point for adaptive evolution, 

increasing the chances to enable high fitness improvements from at least one of the variants 

contained in the pool, effectively broadening the available starting points for evolution. Small 

but intense neutral drift libraries with many mutations (Bershtein et al, 2008) or larger but less 

mutated pools of variants (Zheng et al, 2019) can be used to increase the likelihood of adaptive 

evolution and circumvent epistatic ratchets. Epistatic ratchets arise from seemingly innocuous 

variation preventing mutation in key residues (Bridgham et al, 2009).  

While neutral drift has been experimentally shown to generate more robust and evolvable 

proteins, it requires an ultrahigh-throughput screening to select many variants, which is not 

always available in protein engineering. Thus, one of the biggest questions in protein 

engineering remains: what determines the evolvability of an individual starting point and can 



Chapter A – Introduction 

11 

it be predicted? A good model to study the evolvability of a new function could be found in the 

engineering of amine dehydrogenases from amino acid dehydrogenases. 

A.2. AMINE DEHYDROGENASES 

Enzymes as industrial biocatalysts provide certain advantages: not only do they work in 

sustainable and energy-efficient conditions, such as mild aqueous solutions at low 

temperatures, but also enable conversions with remarkable selectivity and specificity (Walsh, 

2001). High regio- and enantioselectivity have led to the wide adoption of biocatalysts in the 

synthesis of many pharmaceuticals as well as a recent expansion into the fine and speciality 

chemicals field (Wu et al, 2020; Woodley, 2020). 

Much of the rising use of biocatalysts in the chemical industry is due to improvements in the 

methods used to discover and engineer new enzymes (Devine et al, 2018). One such example 

is found in the recent engineering of an imine reductase to catalyse a key step in the synthesis 

of a lysine-specific demethylase-1 inhibitor, a drug currently in Phase II clinical trials (Schober 

et al, 2019). An expensive multi-step chemical synthesis was replaced with a simple enzyme 

catalysed step to yield a sustainable process at reduced cost. For the process to reach desired 

performance, however, enzyme engineering was necessary. After three rounds of screening 

single-site saturation and recombination libraries, an enzyme with 36,000-fold improvement 

over wild-type was found which could be used in an efficient hydrogen borrowing cascade 

(Fig. A-6). The hydrogen borrowing cascade makes smart use of a keto-reductase to prepare 

the substrate for the engineered imine reductase, removing further chemical steps as well as 

regenerating the co-factor NADPH (Schober et al, 2019). 

A.2.1. OVERVIEW OF ENZYMATIC WAYS TO CHIRAL AMINES 

As seen in the example above, chiral amines are one of the most important groups in active 

pharmaceutical ingredients and fine chemicals that can well be made by biocatalysts. Chiral 

amines are found in 40% of active pharmaceutical ingredients with an estimated total revenue 

of 30 billion USD (Breuer et al, 2004; Schrittwieser et al, 2015). This trend has established 

itself with more than 90% of newly approved or current top-selling small molecules including 

amine groups (Wu et al, 2020). Enzymatic synthesis here again impresses with better atom 

economy, stereoselectivity and sustainable reaction conditions (Grogan, 2018).  
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Fig. A-6: A hydrogen borrowing cascade for the synthesis of a leucine-specific demethtylase-1 inhibitor. 

The redox-neutral imine reductase (IRED) / keto-reductase (KRED) cascade enables the efficient and sustainable 

synthesis of the secondary amine 4 from the alcohol 2, generating a precursor for the synthesis of the drug 

GSK2879552. Figure from Schober et al, 2019. 

However, there is not one enzymatic way to chiral amines. Instead, many different approaches 

have been realized in recent years (Fig. A-7). Monoamine oxidases can catalyse the 

enantioselective oxidation of amines to imines. This is employed in the deracemization of 

amines, effectively enriching the wanted chiral amine (Ghislieri et al, 2013). Kinetic resolution 

of racemic amines can also be performed with lipases, but it is usually less favoured than direct 

chiral synthesis because expensive metal catalysts and harsh conditions are needed to 

continuously racemize the substrate and circumvent the otherwise maximal yield of 50% 

(Paetzold & Bäckvall, 2005). Thus, transaminases have been used extensively for the direct 

asymmetric synthesis of primary amines from ketones (Wu et al, 2020). Additionally, a 

sacrificial amine donor is needed in high excess to drive the thermodynamic equilibrium which 

again complicates product separation and drives up cost (Höhne & Bornscheuer, 2009). 

Ammonia lyases can directly create chiral amines by addition of ammonia to an unsaturated 

substrate, circumventing many of the above-mentioned issues. However, ammonia lyases 

possess a very narrow substrate scope for a few amino acids and are mainly used to produce 

aspartic acid derivates or for the generation of aspartic acid itself from ammonia and fumarate 

as a precursor of the sweetener aspartame (Wu et al, 2020; Parmeggiani et al, 2018). 
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Fig. A-7: Selection of enzymatic routes to chiral amines. Many different approaches to generate chiral amines 

have been pursued, with reductive aminases (RedAm), a subgroup of imine reductases (IRED), showing a lot of 

promise (Marshall et al, 2020). Amine dehydrogenases, on the other hand, were engineered from amino acid 

dehydrogenases in 2012 and have since shown a high potential as biocatalysts with a simple reaction set up and 

high efficiencies for primary amines (Grogan, 2018; Abrahamson et al, 2012). Figure from Aleku et al, 2017. 

Imine reductases have been the focus of much recent biocatalysis literature. Imine reductases 

can catalyse the NADPH-dependent asymmetric reduction of prochiral cyclic imines, but a 

recent finding showed that some variants can also catalyse the imine formation, leading to the 

full reductive amination of ketones with broad substrate specificity (Aleku et al, 2017). These 

novel variants were called reductive aminases and have since attracted considerable attention 

(Wu et al, 2020; Grogan, 2018). Structure-activity relationships within the imine reductase 

family are just now starting to be studied, aiming to understand the link between variants that 

can and cannot catalyse full reductive amination (Montgomery et al, 2020). 

Finally, amine dehydrogenases (AmDHs) have shown great versatility for the generation of 

primary amines, promising direct chiral synthesis from a cheap nitrogen donor (ammonia) and 

many prochiral ketone substrates (Knaus et al, 2017). 

A.2.2. GENERATION OF AMINE DEHYDROGENASES 

Amino acid dehydrogenases (AADHs) catalyse the formation of amino acids from keto acids 

in the presence of ammonia and NADH (Brunhuber et al, 2000). Investigating the substrate 

specificity in more detail, Abrahamson and colleagues have found that AADHs can be 

engineered to accept the corresponding amine substrate via active site mutagenesis 
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(Abrahamson et al, 2012). Two key active site mutations in the carboxylate binding pocket are 

required to completely change the substrate specificity and generate an AmDH (Fig. A-8).  

 

Fig. A-8: Engineering of amine dehydrogenases from amino acid dehydrogenases. (a) Reductive amination. 

Phenylalanine dehydrogenases (PheDH) catalyse the reductive amination of the keto-acid phenylpyruvic acid to 

the amino-acid L-phenylalanine. The corresponding AmDH is engineered to accept a substrate without the 

carboxylate shown in blue, i.e. converting phenylacetone to (R)-amphetamine. (b) Phenylalanine dehydrogenase 

active site. Crystal structure of Rhodococcus sp. M4 PheDH in complex with phenylalanine and NAD+ (PDB ID 

1C1D). Residues K66 and N262 are highlighted, which were shown to coordinate the carboxyl group of the natural 

substrate and on mutation enable the conversion to an AmDH. 

Since then, this concept has been applied to leucine dehydrogenases (Abrahamson et al, 2012), 

phenylalanine dehydrogenases (Abrahamson et al, 2013; Ye et al, 2015) and chimeric versions 

(Bommarius et al, 2014) to broaden the substrate scope of these catalysts. The success of 

engineered AmDHs has also prompted a search for natural AmDHs, which came to fruition 

recently (Mayol et al, 2019). Nevertheless, the engineering of AmDHs from AADHs poses an 

interesting challenge to protein evolution, generating a complete shift to a new function while 

producing an industrially relevant enzyme class. AmDHs would especially benefit from further 

increases in activity which is likely to be limited by their dynamic properties, further posing a 

challenge to traditional protein engineering (Pushpanath et al, 2017). 
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A.3. ULTRAHIGH-THROUGHPUT SCREENING FOR ENZYME 

FUNCTION IN DROPLETS1 

Although directed evolution has established itself as a key method for protein engineering, to 

some it remains a source of frustration. Not every attempt leads to certain success and achieving 

improvements relies on a chance step within a vast and rugged fitness landscape (Romero & 

Arnold, 2009). Consequently, directed evolution is a numbers game: not only assay conditions 

and quality are critical for the success of a directed evolution campaign, but also the number 

of variants screened. Testing more variants increases the chance of finding improved variants. 

Ultrahigh-throughput screening thus makes directed evolution more successful by sheer force 

of explorative power. A prominent example of this is the evolution of an artificially designed 

aldolase. Directed evolution by iterative screening in 96-well plates had initially led to a more 

than 4400-fold improvement of aldolase activity (Giger et al, 2013). However, further 

improvement was challenging due to increasingly rare beneficial mutations. This optimization 

plateau – a common feature of protein evolution achieving large improvements with few 

mutations early on, followed by diminishing returns and low improvements by subsequent 

mutation (Tokuriki et al, 2012) – could be overcome with ultrahigh-throughput screening. 

Droplet microfluidic screening of millions of variants generated a further 30-fold improvement 

resulting in a final evolved artificial aldolase that rivals natural enzymes (Obexer et al, 2017). 

Ultrahigh-throughput screening is best applied in such scenarios where hit rates are low: the 

higher throughput allows increasingly daring projects and library designs to be completed, such 

as metagenomics (Colin et al, 2015a), active site remodelling (Debon et al, 2019) or even large 

sequence-function mapping experiments (Romero et al, 2015). 

One method to speed up assays and bring down cost is the miniaturization of reaction 

compartments to form separate water-in-oil emulsion droplets. Droplet microfluidics can scale 

down reaction volumes to the picolitre range, corresponding to a more than 107-fold reduction 

in assay volume compared to regular 200 µL wells in the 96-well format (Agresti et al, 2010; 

Kintses et al, 2012). Each compartment contains a single genotype, e.g. a single cell expressing 

an enzyme variant, combined with a substrate allowing for the enzymatic reaction to be 

monitored as the corresponding phenotype (Fig. A-9). For example, a library of gene variants 

can be used to transform E. coli cells, which are then singly encapsulated into droplets. In the 

 
1 This chapter is based on the publication Neun*, Zurek* et al, 2020. *: Equal contribution. 
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encapsulation step, substrate and lysis solution is added to each droplet so that the single cell 

can release the contained enzyme variant and reaction can progress to accumulate product as a 

detectable phenotype (Kintses et al, 2012). A directed evolution workflow using droplet 

microfluidics includes library generation as the first step, e.g. via error-prone PCR, followed 

by encapsulation, reaction progress and sorting of the most active variants. The genetic 

information of sorted variants is recovered and verified in a secondary assay, such as a 96-well 

plate lysate activity assay. Improved variants can then be subjected to another round of directed 

evolution, if necessary (Fig. A-9). Overall, this miniaturization of reaction volumes to picolitre 

droplets leads to reduced cost by decreasing reagent consumption and dramatic assay speed-

up. Droplets can be generated at rates of 1-15 kHz, leading to anywhere between 28-430 million 

droplets per 8 h working day. An equally impressive number of 28-86 million droplets can be 

assayed and sorted in the same time frame, with common frequencies of 1-3 kHz for droplet 

sorters (Baret et al, 2009; Debon et al, 2019). 

 

Fig. A-9: Droplet microfluidic workflow for enzyme engineering. The wild-type (WT) gene sequence or 

selected variant(s) from previous rounds of directed evolution are chosen as starting material. A library of variants 

is generated e.g. randomly by error-prone PCR and used to transform cells for expression. Each cell takes up one 

plasmid and thus expresses one enzyme variant. A diluted cell suspension, regulated so that no more than one cell 

is added per droplet, is co-encapsulated with substrate and lysis solution into monodisperse picolitre droplets. In 

each droplet, the cell is lysed and releases the enzyme variant. If the variant is active, reaction will progress and a 

detectable product accumulates within the droplet. A droplet sorter selects droplets with product concentration 

reaching a user-defined threshold, resulting in the enrichment of active variants. Figure from Zurek et al, 2020c. 
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A.3.1. DETECTION MODES 

Droplet microfluidic screening distinguishes itself from selection by enabling the direct 

monitoring and quantification of a reaction product of individual variants. Selections, in which 

competition leads to enrichment of desired properties, have also been greatly enabled by water-

in-oil emulsion droplets. The earliest experiments with droplets were not performed with 

microfluidic-generated monodisperse droplets, but used polydisperse emulsions. These 

artificial compartments of varying sizes still enabled assays that were not possible in 

conventional formats by removing crosstalk between variants. Now, enzymes that modify 

(Tawfik & Griffiths, 1998) or amplify (Ghadessy et al, 2001) their own gene in their separate 

compartment could selectively be enriched. Polydisperse droplets are attractive for their simple 

and fast generation, but they lack more gradual and quantitative readouts due to the varying 

droplet sizes, which might preclude detection of smaller activity differences. Still, polydisperse 

droplets are a useful tool for binary selection, in which the figurative needle is lost in the 

haystack of inactive enzymes (Colin et al, 2015b). 

The microfluidic generation of monodisperse emulsions adds a level of control by generating 

droplets of equal volume. Additionally, as all droplets have the same size, further manipulation 

can easily be undertaken: monodisperse droplets have been used in elaborate multi-step 

workflows including steps such as droplet fusion (Mazutis et al, 2009), splitting (Link et al, 

2004) or injection of a controlled volume of aqueous solution (Abate et al, 2010). 

The first successful screening of an enzyme reaction in monodisperse droplets was established 

as fluorescence-activated droplet sorting by Baret et al in 2009. The set-up allowed the reliable 

assaying of millions of droplets for their fluorescence intensity in a day, sorting active or 

improved enzyme variants. There are three main experiments performed for enzyme activity: 

(i) Active enzyme is sorted from a dilution in inactive variant in an enrichment experiment, 

which is a stringent test of the assay and helps evaluate the readiness of the technology (Baret 

et al, 2009). (ii) In functional metagenomics active enzyme is sorted from an environmental 

library, increasing demands on assay sensitivity to detect low promiscuous function of sub-

optimally expressed enzymes (Colin et al, 2015a). (iii) In a directed evolution campaign a 

gradual increase in activity is selected, needing the most reliable and quantitative assays 

(Kintses et al, 2012). Fluorescence-activated droplet sorting has been used for both, directed 

evolution and functional metagenomics, in many different ways and assays (Colin et al, 

2015b), and technical development still proceeds. Multi-laser set-ups have been developed, 

enabling the detection of multiple properties at once (Ma et al, 2018; Hung et al, 2020; Hengoju 
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et al, 2020) or pushing sorting speeds up to 30 kHz in more elaborate layouts (Sciambi & 

Abate, 2015). 

Most often, reaction progress is monitored with direct fluorogenic substrates. However, not all 

reactions are assayable with a fluorescent readout and the need for chemical synthesis of 

custom fluorescent substrates could preclude its use in many molecular biology labs. 

Furthermore, the non-natural substrate is only a mimic of the real-world substrate. The usually 

large hydrophobic fluorophores can lead to specialization to the assay substrate instead of the 

substrate of interest, an unwanted effect resulting from basic rule of directed evolution: “you 

get what you screen for” (You & Arnold, 1996). In some cases, indirect assays can enable an 

unbiased fluorescent readout, e.g. by detection of a co-factor in a cascade reaction (Debon et 

al, 2019). Cascade detections require extensive setup and finetuning of compatible reaction 

conditions, such as buffer composition, temperature and pH. Consequently, alternative 

detection modes were developed to extend the number of detectable reactions and enable more 

unlabelled detections. A summary of all detection modes that were miniaturized to the scale of 

droplet microfluidics is shown in Table 1. 

Table 1: Detection modes for droplet microfluidic enzyme assays. Only the main or most important technical 

innovation is stated as reference. SERS: Surface-Enhanced Raman Scattering. Optical methods grouped as light 

blue. Passive methods grouped as light yellow. Low: 1-10. Mid: 10-100. High: 100-1000. Table from Neun, Zurek 

et al, 2020. 

Detection mode Sensitivity Frequency Droplet size Applied to 
screening?a 

Introduced by 

Fluorescence 
intensity 

Low nM Low kHz Low pL ✅ Baret et al, 2009 

Fluorescence 
polarization 

Low nM n.a. Mid nL ❌ Gielen et al, 2017 

Fluorescence 
lifetime 

Low nM Low Hz High pL ❌ Hasan et al, 2019 

Absorbance Low µM High Hz High pL ✅ Gielen et al, 2016 

SERS  n.a. << 1 Hz Mid nL ❌ Hassoun et al, 2018 

Light scattering n.a. High Hz High pL ❌ Liu et al, 2016 

Image analysis n.a. Low Hz Low nL ❌ Girault et al, 2017 

Mass spectrometry Mid µM Low Hz Mid nL ❌ 
Holland‐Moritz et al, 
2020 

Electrochemical Low µM Low Hz Mid nL ✅ Goto et al, 2020 

Surface tension High nM Mid Hz High pL ❌ Horvath et al, 2019 

Density n.a. n.a.b Mid nL ❌ Schmitt et al, 2018 

aApplied in a monoclonal functional metagenomics or directed evolution experiment. 
bThis passive selection is theoretically only limited by the droplet formation frequency. 
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A lot of the assays common in molecular biology labs are based on absorbance measurements. 

The detection of absorbance in microfluidic droplets was enabled by on-chip fibre optics (Mao 

et al, 2015) and developed into absorbance-activated droplet sorting (AADS, Gielen et al, 

2016). Compared to fluorescence sorters, larger droplets were necessary to find a compromise 

between speed and sensitivity, resulting in a working path length of 50 µm. The resulting sorter 

enabled the label-free detection and directed evolution of phenylalanine dehydrogenase activity 

by measuring the absorbance of the co-factor NADH down to a 10 µM detection limit at 

0.3 kHz (Gielen et al, 2016). The layout of the flow-focussing device and sorter are shown as 

the photomask and manufactured chip images in Fig. A-10. Since the development of AADS, 

the only alternative detection mode that has been successfully applied within the stringent 

requirements of directed evolution has been the electrochemical detection of NADH for the 

evolution of an isocitrate dehydrogenase (Goto et al, 2020). 

 

Fig. A-10: Design of microfluidic devices for AADS. (a) Flow-focussing device for droplet generation. Droplets 

are generated as a co-encapsulation of diluted cell suspension and substrate in fluorinated oil. Droplets of ~300 pL 

size can be generated at > 1000 Hz. Chip dimensions at the flow focussing site are 50 µm width and 80 µm height. 

1: Inlet for fluorinated oil phase. 2: Passive filters. 3: Inlet for two aqueous phases. 4: Outlet. (b) Absorbance-

activated droplet sorter. Optical fibres are inserted into the chip to measure the absorbance of passing droplets 

(50 µm path length) at up to 300 Hz. The image shows a representative snapshot of a sorting event with false 

colours superimposed to illustrate sorted and unsorted droplets. 5: Inlet for droplets. 6: Channel for optical fibre. 

7: Salt-water (5 M NaCl) electrodes. Figure from Zurek et al, 2020c. 

Other detection modes have shown proof-of-concept abilities to expand the scope of detectable 

assays in droplet microfluidics, but currently lack the versatility or sensitivity for application 
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to directed evolution and functional metagenomics. For example, selections based on buoyancy 

of droplets impacted by catalase-mediated gas formation (Schmitt et al, 2018), changes in 

surface tension due to enzymatically altered pH values (Horvath et al, 2019) and label-free 

mass spectrometric detection of a transaminase substrate (Holland‐Moritz et al, 2020) have 

been able to detect enzymatic activity in microfluidic droplets. For these methods, however, 

increases in sensitivity are necessary to make them applicable to directed evolution and more 

stringently enable the detection of low promiscuous activities in functional metagenomics or 

the evolution of novel enzyme activities. 

A.3.2. AVAILABLE ENZYMATIC ASSAYS 

With all the available detection modes discussed above, a lot of different enzyme assays have 

been performed in droplets. A literature overview of chemical transformations that are 

detectable in droplets is shown in Table 2. Most assays use a fluorescence-activated droplet 

sorter or, less frequently, a fluorescence-activated cell sorter. If no dedicated droplet sorter is 

available, commercial flow cytometric cell sorters can be used when droplets are re-

encapsulated into an aqueous solution, forming water-oil-water double emulsions (Zinchenko 

et al, 2014). Most enzymes that have been assayed in droplets are hydrolases, as fluorogenic 

substrates are often available or easily synthesized by replacing the leaving group with a 

fluorophore. Creative assay design has further enabled the fluorescent detection of a wide range 

of different enzyme activities, e.g. by detecting co-product with an enzymatic detection cascade 

(Debon et al, 2019), coupling enzyme activity directly to cell growth (Femmer et al, 2020) or 

read-out to a reporter strain (Siedler et al, 2017). Here, only assays which have been shown to 

work monoclonally, i.e. containing one genetic element per droplet, and have been applied to 

an enrichment experiment proving technology readiness and applicability, are listed (Table 2). 

A.3.3. CONSEQUENCES OF ULTRAHIGH-THROUGHPUT SCREENING 

Primarily, droplet microfluidics perform the same assays as they are used in conventional 

formats but much faster, with less reagent consumption, and in some cases more sensitively, 

making biocatalyst discovery and engineering more efficient. However, the great increase in 

screening throughput afforded by droplet microfluidics enables completely novel approaches 

in protein evolution and engineering too. Four such directions are: 
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Table 2: Types of enzyme reactions detected in droplets. Only assays that worked monoclonally and at least in an enrichment experiment are shown. 

Catalytic reaction Screening host Format Screening type Emulsion Sorting Reference 
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Hydrolase 

β-Galactosidase 

                                    Mastrobattista et al, 2005 

                                       Baret et al, 2009 
                                    Fallah-Araghi et al, 2012 

β-Glucosidase                                        Romero et al, 2015 

α-Amylase 
                                       Sjostrom et al, 2014 
                                       Beneyton et al, 2016 

Cellulase 
                                       Najah et al, 2014 

                                       Ostafe et al, 2014 

Phosphonate hydrolase                                        Kintses et al, 2012 

Phosphotriesterase 

                      (    )           Griffiths & Tawfik, 2003 

                         (    )           Fischlechner et al, 2014 

                                       Colin et al, 2015a 

Organophosphate 
hydrolase 

                                       Gupta et al, 2011 

Esterase 

                         (    )           Hosokawa et al, 2015 

                                       Terekhov et al, 2017 

                                       Ma et al, 2018 

Sulfatase 
                                       Zinchenko et al, 2014 

                                       van Loo et al, 2019 

Thiolactonase                                        Aharoni et al, 2005a 

Oxidoreductase 

Peroxidase                                        Agresti et al, 2010 

Catalase                          (    )           Schmitt et al, 2018 

Laccase                                        Beneyton et al, 2014 

Cyclohexylamine oxidase                                        Debon et al, 2019 

Phenylalanine DH                                        Gielen et al, 2016 

Isocitrate DH                                     Goto et al, 2020 

Aldolase Retro-aldolase                                        Obexer et al, 2017, 2016 

Transferase 

Methyltransferase 
                                    Tawfik & Griffiths, 1998 
                                    Lee et al, 2002 

DNA/XNA polymerase 

                                       
Ghadessy et al, 2001; Pinheiro et al, 2012; 

Loakes et al, 2009; d’Abbadie et al, 2007 

                                       Vallejo et al, 2019 

                                       Larsen et al, 2016 

                                             Nikoomanzar et al, 2019 

Isomerase Ornithine racemase                                        Femmer et al, 2020 

Ribozyme 

DNA ligase                                     Paegel & Joyce, 2010 

RNA-cleavage 
                                    Ryckelynck et al, 2015 

                                    Matsumura et al, 2016 



Chapter A – Introduction 

22 

(i) Synthetic compartments created in the form of droplets resemble artificial cells and can be 

used for screening completely in vitro. Single genes can be encapsulated in droplets, amplified 

and the protein of interest expressed via in vitro transcription and translation (Fallah-Araghi et 

al, 2012). These approaches currently remain underrepresented (Table 2), but de-coupling 

assays from host survival should enable the screening of even larger libraries and the evolution 

of toxic proteins. 

(ii) Screening with ultrahigh-throughput methods leads to increasingly daring projects and 

library designs. Droplet microfluidics enable the sensitive and reliable recovery of rare ‘one in 

a million’ events (Zinchenko et al, 2014), and thus support experiments that would otherwise 

require unreasonable luck. In a functional metagenomics experiment, less than 10 enzymes that 

showed promiscuous activities for new-to-nature reactions were identified out of million 

member libraries (Colin et al, 2015a). The low hit rate and low activities of promiscuous 

variants would preclude such efforts with slower and less sensitive technologies. In directed 

evolution, increasingly ‘risky’ and large library designs become feasible. Deleterious libraries 

of insertions and deletions or libraries with multiple mutations at once will have very low hit 

rates due to strong destabilizing effects (Emond et al, 2020; Sarkisyan et al, 2016). Such 

libraries, however, are likely to contain epistatic interactions that increase the functional 

improvements to more than what would be achievable in successive additive approaches. For 

example, simultaneous mutations were necessary to remodel the active site of a 

cyclohexylamine oxidase and enable a 960-fold increase in catalytic efficiency in just one 

round of screening (Debon et al, 2019).  

(iii) Droplet microfluidics can speed up kinetic characterization. Conventionally, the pool of 

sorted variants after droplet screening has to be characterized in detail in microtiter plates, 

slowing down the overall process. Staying in droplets could automate obtaining kinetic 

parameters of many selected variants. The generation of concentration gradients in droplets 

was used to measure detailed Michaelis-Menten and inhibition enzyme kinetics (Gielen et al, 

2015). Using droplets to speed up enzyme characterization could find more routine application 

in the future. 

(iv) Combining ultrahigh-throughput screening with next-generation sequencing. By having a 

sequence readout of all selected variants, a map of the fitness landscape can be generated. Large 

datasets of sequence-function relationships based on microfluidic assays and next-generation 

sequencing have for example been established for single point mutations in a β-glucosidase 

(Romero et al, 2015) and a 48 amino acid domain of a DNA polymerase (Nikoomanzar et al, 
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2019). Generation of large datasets of sequence-function relationships in this way holds great 

promise for understanding and predicting protein evolution, as explained in the following 

chapter. 

A.4. MAPPING SEQUENCE-FUNCTION RELATIONSHIPS 

The combination of a high-throughput assay of protein function with high-throughput 

sequencing as a read-out is collectively known as ‘deep mutational scanning’ (Fowler & Fields, 

2014). It enables the large-scale sequence to function mapping of proteins such as binders 

(Fowler et al, 2010), enzymes (Firnberg et al, 2014), or viral capsids (Ogden et al, 2019) as 

well as regulatory DNA elements such as promoters (Sharon et al, 2012). Deep mutational 

scanning works by generating a library comprising variation in the gene of interest, which is 

then fully sequenced before and after functional selection (Fig. A-11). Changes to the relative 

frequency in sequence count, e.g. an enrichment of a particular mutation post-selection, is 

directly related to the functional effect of that mutation in the assay (Fowler & Fields, 2014). 

In this way, very large datasets of mutational effects can be generated, with up to 600,000 

variants measured in one assay (Fowler et al, 2010). 

 

Fig. A-11: Deep mutational scanning generates functional values for many variants. A library of variants is 

generated and subjected to a high-throughput assay. Pre- and post-selection libraries are then quantified via high-

throughput sequencing. Changes to relative frequencies in read counts of a mutation, such as enrichment, reflect 

the functional importance of that mutation. 

The libraries of deep mutational scanning are often generated as comprehensive single site 

saturation libraries, i.e. mutating every codon to every other codon individually (Hietpas et al, 

2011). However, multi-site saturation libraries (Wu et al, 2016), pairwise mutations (Olson et 

al, 2014), as well as multiple completely random mutations (Sarkisyan et al, 2016) have also 

been studied in deep mutational scanning. The functional assay is equally flexible: 

fluorescence-activated cell sorters (Sarkisyan et al, 2016) and droplet microfluidic screens 

(Romero et al, 2015) have been applied, although cell survival (Firnberg et al, 2014) or growth 

competition (Wrenbeck et al, 2017a) selections have been most frequently used for enzymes 
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(Table 3). The restricted availability of high-throughput enzyme assays has limited the 

application of deep mutational scanning to study enzyme evolution, with only 1 of 19 early 

deep mutational scanning studies targeting enzyme activity directly (Fowler & Fields, 2014). 

An overview of deep mutational scanning studies performed on enzyme activity is listed in 

Table 3. In cell survival selections, cells with active enzyme are selected at different 

concentrations of antibiotic, and cell survival and growth is dependent on the enzyme activity 

(Firnberg et al, 2014). Growth competition experiments, on the other hand, rely on auxotrophic 

strains or minimal media in which cell growth can only proceed when a metabolite is produced 

by an active enzyme (Wrenbeck et al, 2017a; Chan et al, 2017). 

Table 3: Deep mutational scanning studies performed on enzymes. 

Assay Target(s) Activity 
Library 
design 

Approx. 
library 
size 

Epistasis Reference 

survival 

TEM-1 β-lactamase ampicillin resistance (main) 
single-site 
saturations 

5000 no 
Firnberg et al, 
2014 

TEM-1 β-lactamase 
ampicillin (main) and 
cefotaxime (promiscuous) 
resistance 

single-site 
saturations 

5000 no 
Stiffler et al, 
2015 

TEM-1 β-lactamase: 
three mutants 

ampicillin resistance (main) 
single-site 
saturations 

3x 5000 yes 
Steinberg & 
Ostermeier 2016 

TEM-1 β-lactamase ampicillin resistance (main) 
sequential 
double 
mutations 

12000 yes 
Gonzalez & 
Ostermeier 2019 

TEM-1 β-lactamase ampicillin resistance (main) 
single 
insertions & 
deletions 

6000 no 
Gonzalez et al, 
2019 

APH(3’)II kinase 
resistance to six 
aminoglycoside antibiotics 
(main and promiscuous) 

single-site 
saturations 

5000 no 
Melnikov et al, 
2014 

FACS or 
microfluidic 
screening 

PhoQ protein kinase 
phosphorylation of response 
regulator (main) 

multi-site 
saturation 

160,000 yes 
Podgornaia & 
Laub, 2015 

Bgl3 β-glucosidase 
β-glucosidase activity 
(main), before and after heat 
treatment 

random 3000 no 
Romero et al, 
2015 

DNA polymerase 
activity with threose nucleic 
acids (promiscuous) 

single-site 
saturations 

1000 no 
Nikoomanzar et 
al, 2019 

FACS and 
survival 

Levoglucosan 
kinase and TEM-1 
β-lactamase 

two assays determining 
folded expression (no 
activity) 

single-site 
saturations 

5000 
and 
9000 

no 
Klesmith et al, 
2017 

phage 
display 

E3 ubiquitin ligase auto-ubiquitination (main) random 100,000 no 
Starita et al, 
2013 

growth 
competition 

indole-3-glycerole 
phosphate synthase: 
three homologs 

tryptophan synthesis (main) 
single-site 
saturations 

3x 5000 no Chan et al, 2017 

AmiE amidase 
three substrates (main and 
promiscuous) 

single-site 
saturations 

7000 no 
Wrenbeck et al, 
2017a 

AmiE amidase: two 
variants with low 
stabilities 

amidase activity (main) 
single-site 
saturations 

2x 7000 yes 
Faber et al, 
2019 

Levoglucosan 
kinase 

levoglucosan consumption 
(main) 

single-site 
saturations 

8000 no 
Klesmith et al, 
2015 
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A.4.1. DEEP MUTATIONAL SCANNING OF NEW FUNCTIONS 

What information can we gather from these large datasets of sequence-function relationships 

and how can we use this information for enzyme engineering? Most experiments are performed 

as single step explorations of mutational impact on the main activity, not necessarily 

representing the engineering of a new function (Table 3). In a recent example, however, 

Wrenbeck et al (2017a) studied the local fitness landscape of an amidase with three substrates 

of differing adaptation. A comprehensive single-site saturation library was generated, meaning 

that every residue in the 341 amino acid protein is mutated to every other amino acid 

individually resulting in a library of 20 × 341 = 6,820 members. A growth competition selection 

was then performed with three substrates of decreasing initial activity: acetamide (kcat/KM = 

12.6 mM-1 s-1), propionamide (kcat/KM =2.7 mM-1 s-1) and isobutyramide (kcat/KM = 0.04 mM-1 

s-1), followed by deep sequencing to establish the impact of every single mutation on activity. 

The main conclusions drawn from this dataset are (i) fitness landscapes are highly substrate 

dependent and (ii) substrate-specific beneficial mutations are globally distributed (Wrenbeck 

et al, 2017a). 

A re-analysis of this dataset provides some further interesting views on protein evolution: when 

the mutational impact is averaged per position, new conclusions emerge. Fig. A-12 shows the 

average impact of all mutations to a position versus the highest impact a mutation in this 

position can have. Evolutionary conservation is additionally calculated and overlain for 

visualization (Ashkenazy et al, 2016). The conservation of a position is related to its average 

impact upon mutation: when a conserved position is mutated the average impact on enzyme 

fitness is likely to be negative, while non-conserved positions are more likely to be functionally 

neutral upon mutation (Fig. A-12). Such a correlation of functional impact and evolutionary 

conservation is expected; evolutionary conservation has long been used to predict the 

pathogenicity of missense mutations in human genomes (Thusberg & Vihinen, 2009). 

Interestingly, the percentage of beneficial mutations in all mutations decreases with the initial 

activity of the substrate. The proportion of positions that can generate a fitness score ≥ 0.3 

increases from acetamide (2.6%) to propionamide (7.9%) and isobutyramide (10.3%). This is 

experimental proof of the protein engineer’s motto ‘innovation is easy, optimization is 

complicated’ which is based on often seen large improvement in the initial rounds of directed 

evolution followed by diminishing returns (Goldsmith & Tawfik, 2017; Newton et al, 2018). 

Additionally, the percentage of conserved positions in beneficial positions also increases along 

the promiscuity spectrum. Positions with a conservation score ≥ 7 increase from acetamide 
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(33.3%) to propionamide (40.7%) and isobutyramide (74.3%) in the respective set of beneficial 

positions. Consequently, conserved positions which on average decrease fitness are 

nonetheless important keys to unlocking new functions in proteins. Great functional 

improvements for new activities stem from positions where mutation is on average negative. 

Thus, this deep mutational scanning dataset provides a view on protein engineering that is 

intuitive – a new function evolves from conserved residues – but not yet broadly applied due 

to restrictive screening assays. If throughput is limiting, many approaches rely on engineering 

by mutating non-conserved residues around the active site (Jochens & Bornscheuer, 2010; Qu 

et al, 2020; Pavelka et al, 2009), which is likely to only provide marginal improvements. 

 

Fig. A-12: Deep mutational scanning data can inform protein engineering. A re-analysis of deep mutational 

scanning data obtained by Wrenbeck et al, 2017 for an amidase with three different substrates shows the 

importance of conserved positions in the evolution of new function. Analysis performed with custom python 

scripts: impact of individual mutations was grouped by amino acid position and averages and highest values are 

computed and plotted per substrate. Conservation scores were calculated with default settings on the ConSurf 

webserver (Ashkenazy et al, 2016, conservation calculated from alignment with 150 homologs of the UniRef90 

database) and used as colour-coding. 

This study (in fact, all studies of Table 3) provide a view of the local fitness landscapes of 

enzymes. Variants with merely single or at best few mutations are tested, providing a 

comprehensive and valuable yet short-sighted view of protein evolution, as many more 

mutations are usually needed to fully optimize an enzyme. For example, diminishing returns 

or closing in towards a fitness peak was observed for the evolution of a phosphotriesterase for 

arylesterase activity with 18 final mutations (Tokuriki et al, 2012). One limitation holding back 

long-term studies of directed evolution towards more global and multipeaked fitness 

landscapes is an unsuitable high-throughput sequencing technology. 
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A.4.2. APPLIED SEQUENCING TECHNOLOGIES 

With the knowledge of remote mutations contributing significantly to enzyme activity, 

excluding positions from analysis is unreasonable (Wilding et al, 2019; Wrenbeck et al, 

2017a). Ideally, multiple randomly distributed mutations throughout the whole protein will be 

analysed to fully understand how trajectories form in longer-term protein evolution. All studies 

of Table 3 sequence only part of the gene with either the deprecated Roche 454 or more recent 

Illumina sequencing-by-synthesis platforms. While Sanger sequencing remains a mainstay of 

modern molecular biology with highly accurate reads that can achieve full coverage of the 

average gene (0.9-1.4 kb, Xu et al, 2006), it is not cost-effective at high throughput. Illumina 

sequencing on the other hand offers incredibly high throughput and accuracy for two reads of 

75 to 300 b, resulting in its regular application for deep mutational scanning (Wrenbeck et al, 

2017b). 

The longest primary sequencing reads used for deep mutational scanning have thus been 600 b, 

obtained by the direct association of the 300 b forward and reverse reads in Illumina sequencing 

(Yoo et al, 2020). More and more approaches are being established to link short sequencing 

reads into longer synthetic reads (Wrenbeck et al, 2017b). One such example was used to 

establish the fitness landscape of GFP: multiple random mutations were introduced 

simultaneously throughout the full 714 b gene, which were then sequenced by associating 

multiple reads of the gene to the same molecular barcode (Sarkisyan et al, 2016). 

The method used by Sarkisyan et al (2016) involved successive restriction and ligation steps 

to pair the reads of one molecule to its barcode, which is work intensive, scales poorly to longer 

read lengths and risks the formation of chimeras by mispairing. Longer primary reads would 

not require assembly, making the developments of third-generation sequencers by PacBio and 

Oxford Nanopore interesting for future deep mutational scanning studies. Currently, these 

third-generation sequencing methods suffer from high direct error rates of ~15%, preventing 

the reliable identification of point mutations and their application in deep mutational scanning 

(van Dijk et al, 2018). 

A.5. STRUCTURE AND AIM OF THIS THESIS 

To understand protein evolution and evolvability on a larger scale, experimental directed 

evolution of a new function needs to be tracked for multiple rounds. The aim of this study is to 
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establish new technologies enabling this endeavour by (i) providing a general and sensitive 

ultrahigh-throughput screening method and (ii) increasing the accuracy of full-length nanopore 

amplicon sequencing. These methods combined are then used to establish the evolutionary 

trajectories in the directed evolution of two amine dehydrogenases, comparing their 

evolvabilities. 

First, starting points for such a comparative directed evolution campaign are generated. 

Stabilized amine dehydrogenases are prepared as a model for the acquisition of a new function 

and their initial evolvability from amino acid dehydrogenases is studied. Next, a general 

approach to increase the sensitivity of lysate-based ultrahigh-throughput microfluidic enzyme 

assays is developed, enabling the screening of the low activities of the newly generated amine 

dehydrogenases. To pair the ultrahigh-throughput screening with a suitable sequencing read-

out, a strategy to increase the accuracy of third-generation long-read sequencing methods is 

proposed. The new protocol enables the acquisition of many full-length reads at low cost by 

pairing gene variants with unique molecular identifiers to generate highly accurate consensus 

sequences. Finally, the two stabilized amine dehydrogenase starting points are subjected to 

parallel directed evolution and sequencing to study the contingencies and trajectories in protein 

evolution and hopefully derive principles for the engineering of novel activities in enzymes. 
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B. STARTING POINTS 

 

 

 

In this chapter, stabilized amine dehydrogenases (AmDHs) will be generated and 

characterized. First, phenylalanine dehydrogenase (PheDH) starting points will be generated 

via directed evolution for increased stability or by using computational tools based on energy 

calculations of consensus mutations. The stabilized PheDHs will subsequently be turned into 

AmDHs by active site saturation as a first assay of evolvability. The stabilized PheDHs accept 

more functionalizing mutations in their active site compared to the wild-type, establishing a 

stability-mutational robustness link. Mutational robustness, however, is not necessarily 

correlated to functional improvement.  
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B.1. INTRODUCTION 

A good starting point for directed evolution is a stable enzyme. Protein stability is related to 

robustness to mutation, thus enabling the acquisition of more functional – and on average 

destabilizing – mutations during engineering or evolution (Tokuriki et al, 2007; Bloom et al, 

2006). More accepted mutations increase the chance of finding improved mutants, as reflected 

in the use of stable enzymes from thermophile organisms or consensus and ancestral 

approaches as starting points for protein engineering (Trudeau & Tawfik, 2019). 

The stabilization of an existing enzyme helps to provide a ‘stability buffer’ (Fig. A-4), useful 

as the first step of a protein engineering campaign to make the protein more evolvable (Tokuriki 

et al, 2008), although stability is in all likelihood not the sole contributing factor to evolvability 

(see A.1.2). Stability can be generated itself by directed evolution or by utilizing many 

available computational approaches. 

Directed evolution is a straightforward and successful way to increase protein stability. 

Diversity is introduced to the protein of interest either in a random manner, e.g. via error-prone 

PCR (epPCR), or in a more focused manner via site saturation. The screening step is then 

usually performed with a focus on stability by selecting with stringent expression conditions 

or after heat incubation. Directed evolution to drive stability has certain advantages: the rate of 

false positives is low, because the selection step is based on a test for residual activity. 

Additionally, the method is sequence and structure agnostic, no homologous sequences or 

crystal structures are required to perform directed evolution. It is thus useful when not a lot of 

knowledge about the protein is available (Zeymer & Hilvert, 2018; Eijsink et al, 2005). 

Directed evolution does require a significant experimental investment, however, as the number 

of screened variants is high, often even requiring multiple rounds of diversification and 

selection to reach large effects (Table 4).  

Computer-aided methods for enzyme stabilization were established to reduce screening effort 

and increase the stabilization success. Here, two large sub-types can be distinguished: 

sequence-based approaches and energy-based approaches. Ever since it was shown that 

consensus mutations yield stabilized proteins (Bershtein et al, 2008), a back-to-consensus 

approach to protein stabilization was introduced. Consensus mutations from homologue 

sequences can be transplanted to the protein of interest, yielding a stabilized protein (Jones et 

al, 2017). A step further, the phylogenetic ancestral state can be computed from a set of 

homologue sequences, which has been shown to be a robust and promiscuous protein – in line 
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with the likely environmental requirements of an ancestral protein. Ancestral sequence 

reconstruction has thus also been used as a tool for protein stabilization (Gumulya et al, 2018). 

Energy-based models, on the other hand, try to compute the impact of mutations on a protein 

via physical force fields. Most notably, the FoldX and Rosetta energy functions can be used to 

predict stabilizing effects in proteins (Alford et al, 2017; Guerois et al, 2002) and are employed 

in many automated tools for stabilization (Musil et al, 2019). A drawback of purely energy 

function-based approaches is a high rate of false positives, however. Combination approaches 

have thus been most successful in recent years. A prevalent example of this is the ‘protein 

repair one stop shop’, or PROSS, which combines consensus information with energy 

calculations. Only mutations supported by evolutionary precedent from homologs will be 

subjected to energy calculation, reducing the rate of false positives. This has led to high 

stabilizations while activity is retained with only few experimentally characterized variants 

(Goldenzweig et al, 2016). 

Table 4: Examples for different enzyme stabilization methods. 

Method Variants screened Δ Tm (°C) Reference 

C
o

m
p

u
ta

ti
o

n
a

l 

Sequence 
Consensus 15 7 Xie et al, 2019 

Ancestor 1 16-30 
Gumulya et al, 

2018 

Structure 
Energy-
function 

52 6 Luo et al, 2016 

Combined PROSS 6 10-15 
Goldenzweig et al, 

2016 

Directed 
evolution 

  ~ 9000 14 Giver et al, 1998 

  > 70,000 35 
Palackal et al, 

2004 

 

Most recently, machine-learning approaches try to speed up the protein stabilization workflow 

and increase its successes. These statistical methods benefit from large datasets of natural 

sequences from which patterns can be extracted (Alley et al, 2019) or are trained on available 

experimental datasets (Musil et al, 2019). Their gaining focus in current research as well as not 

requiring physical models or 3D structures could lead to more frequent adoption of these 

algorithms for stabilization in the future. 

In this study, AmDHs are used as a model for innovation in protein evolution. An ultrahigh-

throughput screen is available (Gielen et al, 2016) and the AmDH function is completely new 

to PheDHs, which have almost no prior AmDH activity without the mutation of key active site 

residues (Abrahamson et al, 2012; Ye et al, 2015). They are thus a suitable model to study 
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evolvability in protein evolution and will be stabilized as the first step of a protein engineering 

campaign in this chapter. 

B.2. RESULTS & DISCUSSION 

With the stability-robustness link in mind, different ways to generate a stable enzyme were 

pursued. A general starting point for the engineering of AmDH activity is found in the PheDH 

of Rhodococcus sp. M4 (Brunhuber et al, 2000). This enzyme has been turned into an AmDH 

previously (Ye et al, 2015). However, it has also been shown to be only moderately stable and 

poorly expressed in E. coli (Gielen et al, 2016). Now, the generation of a stabilized starting 

point could circumvent evolvability issues due to marginal stability and afford greater AmDH 

activity. 

To verify this hypothesis, two approaches for protein stabilization will be used on the wild-

type (WT) PheDH. First, the above-mentioned combined approach of consensus and energy-

function information in the PROSS algorithm will be applied and resulting designs 

characterized.2 Second, a directed evolution approach will be used to stabilize the PheDH, 

continuing the work of Gielen et al (2016). The different ways of stabilization can then be 

compared for their benefit to engineering and evolvability. 

B.2.1. COMPUTATIONAL STABILIZATION 

Computational stabilization of the wild-type PheDH was done using the PROSS algorithm 

(Goldenzweig et al, 2016). The PROSS webserver was challenged with the Rhodococcus sp. 

M4 PheDH crystal structure (PDB 1C1D), while the active site was excluded from mutation 

by the algorithm by restricting all residues less than 8 Å from any of the two bound substrates. 

The webserver produced six potential designs with consecutively more permissive mutational 

threshold, here termed P1 to P6. The designs show an increasing number of mutations being 

included from 22 mutations in P1 to 57 mutations in P6, potentially achieving higher 

stabilization yet risking false positive mutations. All six designs were ordered as gene strings 

and cloned into the anhydrotetracycline (aTc)-inducible expression vector pASK-IBA63b+ 

containing a C-terminal strep-tag. Successful stabilization was tested by determining the 

 
2 Please note that the work on stabilization was initiated by Raphaëlle Hours, with whom some of the experiments 

in chapter B.2.1 were performed together, as indicated again in the relevant sections. 
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relative PheDH activity in cell lysate as well as densitometric analysis of SDS-PAGE gels to 

determine the soluble expression strength (Table 5). The soluble expression strength increases 

with the PROSS design’s number of mutations until design P4, reaching almost completely 

soluble expression at 94% compared to the 44% soluble expression of the wild-type PheDH. 

Designs with higher number of mutations than P4 show reduced soluble expression, indicating 

an accumulation of false positive destabilizing mutations. The same trend is observed in lysate 

activity, which is directly influenced by the amount of soluble expression. Here, P3 and P4 

show the highest activities with 80% and 77% of the activity of the non-mutated wild-type 

PheDH. Consequently, the design P4 (Supplementary Sequences) was chosen for all further 

characterization and evolution due to an indication of improved kinetic stability while retaining 

high levels of activity. 

Curiously, all PROSS designs exhibit a decreased lysate activity, prompting a deeper 

characterization of their kinetic parameters as well as the generation of a PheDH variant 

stabilized by directed evolution. 

Table 5: Computational stabilization with the PROSS algorithm. Data courtesy of Raphaëlle Hours. Wild-

type (WT) PheDH as well as six PROSS designs with increasing mutational load were tested. 

Variant WT P1 P2 P3 P4 P5 P6 

Number of mutations 0 22 27 37 43 52 57 

Soluble expressiona (%) 44 59 60 62 94 73 55 

Lysate activityb (relative to WT) 
1.00 ± 
0.24 

0.66 ± 
0.12  

0.46 ± 
0.02 

0.80 ± 
0.24 

0.77 ± 
0.13 

0.55 ± 
0.09 

n. d. 

aProtein expressed at 20 °C for 16 h. Expression cultures were lysed and cleared by centrifugation. Soluble fraction compared 

to insoluble fraction via SDS-PAGE gel densitometry to determine the amount of solubly expressed protein. Experiment 

performed by Raphaëlle Hours in one biological replicate. 
bInitial rate of PheDH activity was measured in lysate (5 mM L-phenylalanine, 2 mM NAD+ in 100 mM Glycine-KOH pH 10). 

Experiment performed by Raphaëlle Hours in three biological replicates, showing mean ± standard deviation. 

 

B.2.2. STABILIZATION BY DIRECTED EVOLUTION 

As an alternative to computational stabilization, enzyme stabilization by directed evolution was 

performed. An ultrahigh-throughput assay for PheDH activity was found in the detection of the 

co-product NADH coupled to the formazan dye WST-1 in absorbance-activated droplet sorting 

(AADS, Gielen et al, 2016). The wild-type PheDH was evolved towards increased activity for 

two rounds by Gielen et al, however, no improvements to catalytic efficiency were achieved. 

The selected variants were improved in expression strength and stability, resulting in increased 

lysate activity and selection frequency in the assay. The most improved variant (V28I N124S 

L195M T341I) was submitted to another round of directed evolution by Raphaëlle Hours, 
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yielding five improved variants in the third round of directed evolution (adding the mutations 

S6R V71I; N132Y; Q202R; L203V; T334K). These variants were not on par with the 

stabilization afforded by the PROSS algorithm (94% soluble expression), with the variants 

from round 3 reaching maximally 68% soluble expression (Fig. B-1). 

This prompted the continuation of the directed evolution efforts of Raphaëlle Hours, as a 

variant with comparable stabilization to the P4 variant was desired to study alternate effects 

other than stability on the evolution of a new function. A fourth round of directed evolution 

was thus performed specifically with stabilization in mind. A library was generated by 

shuffling the mutations of the five variants identified by and inherited from Raphaëlle Hours, 

using the staggered extension process (StEP, Zhao et al, 1998). In this modified PCR protocol, 

very short extension times (30 s) and low annealing temperatures (55 °C) combined with a high 

cycle number (100 x) result in the frequent recombination of similar template molecules. Each 

of the five variants from round 3 were subjected to DNA shuffling via StEP, generating a 

library of 1.3 × 107 transformants. To put emphasis on stabilization in the screening, selection 

pressure was put on expression strength by changing expression conditions from 16 h at 20 °C 

to a more stringent regiment, expressing the library at 37 °C for 2 h. The most active variants 

were selected via AADS as done in the previous rounds by Gielen et al (2016). Single cells 

were co-encapsulated with PheDH substrate (5 mM L-phenylalanine and 2 mM NAD+) and a 

lysis solution, releasing the enzyme from the cell in the droplet to start PheDH reaction progress 

(Fig. A-9). Sorting was performed at ~120 Hz and a droplet occupancy λ = 0.35, selecting ~100 

droplets from a total of ~400,000 droplets. The DNA from sorted droplets was isolated and 

used to transform cells for clonal recovery. The recovered sorted variants were subjected to a 

secondary activity assay in 96-well plates to confirm their activity. The four best variants were 

chosen for further analysis and characterization. 

All four final selected variants, as well as the non-mutated wild-type and the best 

computationally stabilized variant P4, were purified and characterized in regard to their steady 

state kinetics, their soluble expression strength and their relative activity in lysate (Fig. B-1, 

Table S1). Of the four tested variants in round 4, a variant with a high level in all properties 

was selected to continue directed evolution with. This final evolutionarily stabilized PheDH 

variant (S6R V28I V71I N124S L195M Q202R T341I, from now on termed E4) acquired seven 

mutations in four rounds of evolution and shows comparable stabilization properties to the P4 

design, making it a suitable candidate for further comparative investigation of evolvability. 
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Fig. B-1: Characterization of PheDH stabilization success via directed evolution. The wild-type PheDH (WT) 

was subjected to directed evolution in four rounds with AADS. Data of round 1 to round 3 were obtained from 

Raphaëlle Hours. Library generation via epPCR (round 1 and round 3) or StEP (round 2 and round 4). The variants 

showing the highest activity in lysate in each round were selected for protein purification and characterization. 

Detailed values with standard deviations are shown in Table S1. Directed evolution continues with P4 and E4 

variants, which are highlighted in blue and green, respectively. (a) Soluble expression strength. Soluble expression 

strength was determined via densitometric analysis of SDS-PAGE gels as the ratio of recombinant protein in the 

soluble lysate fraction compared to the insoluble pellet fraction. (b) Thermal stability. The thermal stability was 

determined via differential scanning fluorimetry with SYPRO orange. (c) Catalytic efficiency. Steady state 

kinetics were acquired with 0-15 mM L-phenylalanine and 5 mM NAD+ in 100 mM Glycine-KOH pH 10 at 22 

°C. (d) Relative lysate activity. Initial rate of activity in cell lysate compared to the non-mutated wild-type PheDH. 

The final evolutionarily stabilized PheDH variant E4 achieves a similar level of improvement 

in soluble expression level than the computationally stabilized variant P4 (Fig. B-1a). This 

stabilization of E4 is achieved with seven mutations in the course of four rounds of evolution, 

whereas P4 is stabilized with 44 mutations in one single design step. While P4 adds another 

5 °C of thermal stability (P4 reaching 59 °C compared to 54 °C for E4 and 47 °C for WT), E4 
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on the other hand has an only marginally reduced catalytic efficiency (Fig. B-1c) and improved 

activities in lysate (Fig. B-1d). 

These three variants, WT, P4 and E4, will now be compared for their evolvability towards a 

new function. WT is the non-stabilized non-mutated PheDH, whereas P4 and E4 both are 

stabilized to similar extents but in very different ways (Fig. B-2). Introducing a new function 

to all three variants, turning the AADHs to AmDHs, might provide an insight into the 

importance of stability over other factors for the acquisition of new function in protein 

evolution. 

 

Fig. B-2: Overview of starting points. Three PheDH starting points are available. WT: non-mutated wild-type 

PheDH Rhodococcus sp. M4. P4: Computationally stabilized variant of WT, design four of the PROSS algorithm. 

E4: Evolutionarily stabilized variant of WT, obtained after four rounds of directed evolution. WT structure (PDB 

ID 1C1D) with positions of mutation in stabilized variants highlighted. 

The increase in thermal stability afforded by the PROSS algorithm of 12 °C is similar to the 

achievements in stabilization of 8 to 20 °C seen for four different enzymes using the same 

algorithm (Goldenzweig et al, 2016). The stabilization by directed evolution reached an 

increase in Tm of 7 °C with just 7 mutations, bringing it considerably closer in thermal and 

folding stability to the P4 variant than the non-mutated WT variant. 

B.2.3. COMPARISON OF EVOLVABILITY – GENERATION OF AMDHS 

All three potential starting points were turned into AmDHs. The initial step to generate AmDH 

function in an AADH is the mutation of two key active site residues – K66 and N262 – 

coordinating the carboxyl group of the amino acid substrate of the AADHs, in this case L-

phenylalanine (Fig. A-8). A library of simultaneous randomization in these two positions was 
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screened in a 96-well plate lysate assay for activity with the amine substrate (R)-1-methyl-3-

phenylpropylamine to generate an AmDH. 

The WT PheDH from Rhodococcus sp. M4 had previously been screened and turned into an 

AmDH in this manner, resulting in the active site mutations K66Q N262C (Ye et al, 2015). 

Here, this assay is independently repeated for the WT in comparison to the stabilized variants 

E4 and P4. Screening the three starting points in parallel will provide a view on the impact of 

active site mutation and a comparison of accepted mutational diversity as a measure of active 

site plasticity and robustness. These first values can hopefully provide an indication towards 

the evolvability of starting points for a new function in a comparative manner. 

The WT PheDH shows very little promiscuous activity for the amine substrate (kcat/KM = 3.4 

s-1 M-1), providing catalytic efficiencies of < 0.01% of the AADH activity (kcat/KM = 7.1 × 104 

s-1 M-1, data courtesy of Raphaëlle Hours), thus requiring a very sensitive screening assay to 

pick out low activating mutations. Consequently, a 96-well plate assay measuring the initial 

slope of deamination activity of raw cell lysate expressing AmDH variants was performed, as 

the deamination activity is the more active reaction direction. The reduced throughput in lysate 

assay compared to NADH-cofactor detection in AADS was mitigated by using a reduced 

library design. Positions K66 and N262 were simultaneously mutated in all three starting points 

with the 22c-trick (Kille et al, 2013). Site saturation mutagenesis is performed with a mixture 

of degenerate primers instead of conventional NNN or NNK mutagenesis. If the codon of 

interest is exchanged with NNK, all 20 possible amino acids along with one stop codon are 

encoded in the library of 32 possible codons. Thus, higher oversampling in screening is 

required due to codon redundancy. This problem is reduced by applying the 22c-trick: A 

mixture of primers containing the codon NDT, VHG and TGG are added at a ratio of 12:9:1, 

encoding all 20 amino acids with 22 codons, thus requiring minimal additional screening 

oversampling (Kille et al, 2013).  

The K66X N262X libraries were generated and thus contained 400 amino acid variants in 484 

codon variants. To account for sufficient oversampling, twelve 96-well plates were screened, 

ensuring screening of the library to 90% completeness by analysing 1104 variants (Patrick et 

al, 2003). The activities of all 1104 randomly tested variants relative to the non-mutated 

starting point control are shown in Fig. B-3. Improvements in AmDH activity can be found for 

all three variants, however, the distribution of fitness effects differs between the starting points. 

The number of neutral and beneficial mutations (as defined by relative activity > 0.8) in the 

WT background amounts to 20.9%, while this number is considerably higher in the two 
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stabilized backgrounds: 38.5% and 35.6% for P4 and E4 backgrounds, respectively (Fig. B-3d). 

The same trend is observed for beneficial mutations alone (as defined by relative activity 

> 1.5): 9.3% of variants in the WT background show beneficial effects, while the stabilized 

backgrounds achieve 22.2% and 23.9% (P4 and E4, respectively). This increase in the amount 

of neutral and beneficial mutations in the stabilized background provides evidence to support 

that stability confers mutational robustness.  

 

Fig. B-3: Distribution of fitness effects of amine dehydrogenase key mutations in three starting points. 

Mutations K66X and N262X were introduced to three PheDH starting points (WT, P4, E4). The resulting libraries 

were screened in 96-well plate lysate assay for AmDH activity (5 mM R-1-methyl-3-phenylpropylamine, 1 mM 

NAD+ in 100 mM Glycine-KOH pH 10). The initial rate of product formation (measured via absorbance at 

340 nm) of 1104 variants relative to the respective non-mutated parent are shown in histograms. Axes clipped to 

show meaningful part of the histogram. (a) non-mutated wild-type PheDH. Rhodococcus sp. M4 PheDH shown 

in grey. (b) computationally stabilized PheDH P4. PheDH stabilized by the PROSS algorithm, shown in blue. 

(c) evolutionarily stabilized PheDH E4. PheDH stabilized in four rounds of directed evolution, shown in green. 

(d) cumulative histogram. Cumulative frequency shown for all three starting points. 

Interestingly, the evolvability – if defined by the highest achieved improvement – differs 

between the two stabilized backgrounds. While the P4 stabilized background increases 

mutational robustness, as established, it does not achieve high total improvements to the 

AmDH activity. The best AmDH variants observed for the three backgrounds provided relative 

increases to activity of 3.4-fold in the P4 background, while both WT and E4 achieved much 



Chapter B – Starting Points 

39 

higher increases (15.9-fold and 29.8-fold, WT and E4 respectively). More quantitatively, the 

number of variants providing a very high increase in AmDH activity (as defined by relative 

activity > 5) are 0% for P4, 1.2% for WT and 11.3% for the E4 background. While both 

stabilized backgrounds show a high number of active variants, indicated by the increased 

numbers of neutral and slightly beneficial variants, only the E4 genetic background achieves 

an increased number of highly active variants. In the respective histograms of relative activity 

(Fig. B-3) these effects are reflected in a long and drawn-out tail of the distribution for E4 and 

a condensed and compacted tail for P4. 

These findings hint towards a more nuanced view of evolvability than merely relying on 

stability. Potential confounding factors, such as direct epistasis with the active site mutations 

by the acquired stabilizing mutations, might hinder the adoption of greatly beneficial mutations 

in the P4 background, while these are accepted in the more closely related WT and E4 

backgrounds. To assess how the differences in evolvability affect the tolerated mutations on a 

sequence level, all variants improving the AmDH activity at least 1.2-fold were isolated, their 

activity improvements verified in triplicates in a more sensitive assay and the corresponding 

mutations identified via Sanger sequencing. The sensitivity of the lysate assay is increased by 

measuring the produced NADH indirectly. NADH reduces a chromogenic dye, the absorbance 

of which is measured instead with higher sensitivity (Fig. S1). The resulting heatmap for the 

combination of mutations generating AmDH activity is shown in Fig. B-4. The best 

combination of mutations for AmDH activity is K66Q N262M for all three starting points 

(relative improvements: 44.7±2.7-fold, 34.9±2.4-fold, 59.9±8.2-fold, for WT, P4, E4, 

respectively, SD shown, n=3), confirming the differences in highest achieved improvement in 

activity seen in the initial screening. The active site mutations in the positions K66 N262 are 

shortened for convenience from here on, e.g. P4QM referring to the P4 stabilized background 

with the mutations K66Q N262M. 

Curiously, the most activating mutations at these positions in previous AmDH engineering 

studies showed S/L as the best combination of mutations for PheDHs from Bacillus badius 

(Abrahamson et al, 2013) and Caldalkalibacillus thermarum (Pushpanath et al, 2017). 

Furthermore, Ye et al performed a similar screening of the two active site mutations with the 

same non-mutated WT PheDH from Rhodococcus sp. M4 and identified Q/C as the best 

combination of mutations (Ye et al, 2015), which is outperformed by Q/M in this study (Fig. 

B-4a). This speaks to prevalent interactions between the mutations accepted in the different 
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homologs as well as to simple chance of missing a mutation when screening a randomized 

library with low throughput methods. 

 

Fig. B-4: Combinations of activating mutations in positions K66 and N262 for three PheDH starting points. 

All variants that registered > 1.2-fold relative activity compared to their respective non-mutated parent in the 

initial library screening were chosen for sequencing and verification. AmDH activity verification was performed 

in independent biological replicates (n=3) in an indirect initial rate assay in lysate for deamination activity. 

Produced NADH was detected sensitively with the chromogenic dye WST-1 at 455 nm. (a) WT background. 

Active mutations introduced to non-mutated WT PheDH from Rhodococcus sp. M4 and measured for AmDH 

activity. (b) P4 background. Computationally stabilized PheDH background. (c) E4 background. Evolutionarily 

stabilized PheDH background. (d) Table of combinations. Combinations of mutations that are activating were 

counted. Activity with SD shown for the best variant. 

The diversity of accepted mutations, accepted here meaning that the mutations are neutral or 

beneficial, is increased for the two stabilized backgrounds (Fig. B-4) compared to the non-

stabilized WT. The pattern of mutations that are accepted are similar; many highly beneficial 

mutations are overlapping (K66/N262 mutated to Q/M, Q/C, S/C or M/C). Thus, there is no 

strong specific epistasis detectable between the most beneficial active site mutations and 
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mutations introduced during stabilization. As mutations around the active site were excluded 

from mutation during PROSS stabilization, a lowered impact on the active site is expected. The 

few mutations that are exclusive to one of the two stabilized backgrounds, such as mutation 

Q/L, might just not have been sampled in the initial screening, making conclusions from 

missing data difficult without additional verification. 

Stability-mediated threshold epistasis seems to be the major factor constricting the access to 

different mutations in the active site. Of the 400 possible combinations of K66/N262 residues, 

only 10 were found to be slightly beneficial (>1.2-fold relative initial rate) in the non-stabilized 

WT background, while 47 and 62 were slightly beneficial in P4 and E4 respectively (Fig. 

B-4d). Mutations are on average destabilizing (Tokuriki et al, 2007, 2008) and the active site 

mutations of AmDHs have been shown to be especially detrimental to stability, decreasing Tm 

by 2-11°C in different variants (Pushpanath et al, 2017). Such a strong negative effect could 

deplete active molecules of the non-stabilized WT, destabilizing it to an extent where it 

becomes completely unfunctional, while the same effect is buffered by the higher global 

stability of the P4 and E4 variants (Tokuriki & Tawfik, 2009b; Bloom et al, 2006). 

B.3. CONCLUSION & OUTLOOK 

Two different modes of enzyme stabilization, computational stabilization and directed 

evolution, were successfully employed to create stabilized starting points for AmDH evolution. 

Both the P4 and E4 variants show increased stability, especially improving on soluble 

expression compared to the WT, increasing from 28% to more than 90% solubly expressed 

enzyme. These stabilized starting points are good candidates to introduce and evolve AmDH 

activity, and the first step of creating an AmDH was performed by mutating key active site 

residues K66 N262 in all three variants comparatively. 

The data on mutations affecting AmDH activity in these three starting points again shows 

convincingly that stability does confer mutational robustness. Less mutations are accepted in 

the WT compared to P4 and E4, the two stabilized starting points. This effect has been well 

established (Bloom et al, 2006; Tokuriki & Tawfik, 2009b; Besenmatter et al, 2007) and its 

use in protein engineering is prevalent, with many protein engineers turning towards stable 

starting points from thermophile organisms (Finch & Kim, 2018). 
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More recently, however, a more nuanced view of evolvability has emerged. Factors other than 

mutational robustness seem to contribute to evolvability (see A.1.2). One such factor is 

conformational flexibility. Flexibility allows the enzyme to sample more conformational sub-

states, some of which might be productive with new substrates, contributing to a broad 

promiscuity profile (Campbell et al, 2018). Conformational flexibility has been shown to be 

high in ancestral protein states and to become more restricted with specialization (Risso et al, 

2017; Romero-Rivera et al, 2017; Campbell et al, 2016). Additionally, pervasive epistatic 

effects or so-called cryptic genetic variation can drastically affect which mutations are 

accessible to a protein and thus commit starting points to pre-determined trajectories and limit 

accessible fitness optima (Starr & Thornton, 2016; Baier et al, 2019). 

These effects may be evident in the data of this chapter: while less mutational diversity is 

accepted in the WT background, a high beneficial effect of the accepted mutations is observed, 

nonetheless. The best WT AmDH (WTQM) improves AmDH activity 45-fold, while the best 

P4 AmDH (P4QM) improves by only 35-fold (Fig. B-5). This may hint at differential 

evolvability that is not necessarily correlated to mutational robustness and stability, but to the 

other factors mentioned above. Furthermore, differential evolvability is indicated in the two 

stabilized starting points: While both E4 and P4 are robust to mutation, the relative 

improvements afforded by mutation is higher for E4QM (60-fold) compared to P4QM (35-fold). 

 

Fig. B-5: Overview of work performed in this chapter. Wild-type (WT) PheDH is computationally stabilized 

(P4, Tm + 12 °C, soluble expression + 70%) and evolutionarily stabilized (E4, Tm + 7 °C, soluble expression 

+ 63%). All stabilized PheDHs are then turned into AmDHs by active site mutation and their initial evolvabilities 

are compared. A different number of mutations is beneficial for each of the starting points, with WT accepting 

few combinations of mutations (10) and P4 and E4 accepting many (47 and 62, respectively). The best variants 

all carried the K66Q N262M mutations with different activity improvements of 45-fold, 35-fold and 60-fold for 

WTQM, P4QM and E4QM, respectively. Interestingly, the increase in mutational robustness of P4 (many different 

mutations accepted) does not correlate to higher activity improvements (P4QM not as active as WTQM or E4QM), 

hinting at a nuanced view of evolvability. 
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These apparent differences in evolvability are likely to stem from specific epistatic interactions, 

even though the active site was excluded from mutation in the stabilization process. Such 

epistatic interactions have been shown to extend over long ranges in unexpected manners 

(Sarkisyan et al, 2016; Miton et al, 2021). Furthermore, a study of protein flexibility and 

confirmational dynamics might be interesting in the future, for example by generating and 

comparing crystal structures of the variants, as protein flexibility has been shown to influence 

evolvability in the past (Campbell et al, 2016). In any case, these currently still anecdotal 

findings should be solidified with a large-scale comparative evolution, ideally further evolving 

both stabilized AmDHs created here in parallel towards higher AmDH function. A high 

throughput screening assay and multiple rounds of directed evolution could prove more 

convincingly that accessible fitness peaks differ for the two related enzymes. 
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C. INCREASING THE SENSITIVITY OF 

SINGLE CELL MICROFLUIDIC ASSAYS 

 

 

 

In this chapter, limitations to the current workflow for single cell lysate assays in microfluidic 

droplets will be introduced and a solution will be proposed: monoclonal and homogeneous cell 

growth can increase the recombinant protein content per compartment, thus increasing the 

reactivity. A workflow is established that uses modified reaction tubes as robust devices for 

droplet manipulation during growth as well as a new ‘pico-fusion’ chip design enabling the 

addition of large amounts of substrate and lysis buffer. The sensitivity of droplet microfluidic 

screening of AmDHs is increased > 10-fold and the variation in the assay is reduced by half. 

This enables the detection of wild-type AmDH activity, a feat not possible in the corresponding 

single cell microfluidic assays. 

The content and figures of this chapter were published as Zurek et al, 2021. 
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C.1. INTRODUCTION 

Biocatalysis enables the increasing field of sustainable ‘green’ chemistry, due to an enzyme’s 

remarkable specificity and selectivity in mild reaction conditions (Bornscheuer et al, 2012). 

However, the reactions to be performed are often not known to be enzyme catalysed, requiring 

efficient routes to generate enzymes with novel activities and properties. Here, secondary 

‘promiscuous’ enzyme activities broaden the range of available reactions for biocatalysis 

(Nobeli et al, 2009; Kazlauskas, 2005). Furthermore, large samples of natural biodiversity can 

be sieved for novel enzymes in functional metagenomics (Colin et al, 2015a; Uchiyama & 

Miyazaki, 2009) or computational design can be employed to generate new active site 

geometries and functions (Zanghellini, 2014; Röthlisberger et al, 2008). However, in all these 

cases, the initial reactivity is low. Directed evolution is commonly employed to increase the 

initially weak activities of enzymes for new reactions or mend activities to industrial reaction 

conditions and has led to many successful biocatalysts (Porter et al, 2016; Zeymer & Hilvert, 

2018). 

The prospects of a directed evolution campaign increase with a higher screening capacity, as 

larger diversity can be explored by high and ultrahigh-throughput screening and finding a hit 

thus becomes more likely. A valuable tool for ultrahigh-throughput enzyme screening has been 

the emergence of many different droplet microfluidic enzyme assays in recent years (see A.3). 

Here, single library members, e.g. single cells expressing individual enzyme variants, are co-

encapsulated with substrate and lysis solution to form small reaction compartments of few pL. 

In each compartment, the enzymes are released from the lysing cell and a detectable reaction 

progresses (Fig. A-9). Individual library members are then selected at kHz frequencies by 

interrogation of the reaction progress in droplets, enabling the screening of millions of enzyme 

variants per day with minimal reagent consumption (Agresti et al, 2010; Kintses et al, 2012; 

Neun et al, 2020). 

A crucial requirement for droplet microfluidic assays is the necessity to compartmentalize just 

one entity per droplet compartment. Multiple variants per compartment would confound 

measurements, thus requiring dilution of the input solution to achieve mostly single occupancy. 

Encapsulation events follow a Poisson distribution, enabling the calculation of expected 

single-, double- and multi-encapsulations from the dilution of the input cell solution (Fig. C-1). 

A trade-off is thus created between throughput, decreased by the number of empty droplets, 

and false positives due to double encapsulations. An acceptable compromise often committed 
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to in this study is found in a λ, the expected rate of occurrence, of 0.2, resulting in 81.9% empty 

droplets to 16.4% single- and 1.7% multi-encapsulations. 

 

Fig. C-1: Poisson distribution for different values of λ. The probability mass function of the Poisson distribution 

is given by 𝑓(𝑘; 𝜆) =  
𝜆𝑘𝑒−𝜆

𝑘!
 . The index k is the number of occurrences or, in the context of droplet microfluidics, 

the number of cells per droplet. The probability of k occurrences P(X=k) given different values of λ is plotted, 

with λ being the expected rate of occurrence. In this study, the droplet experiments are often set up to reach a λ of 

0.2, i.e. 81.7% empty droplets, 16.4% single encapsulations and 1.7% multi-encapsulations. 

After release of enzymes from the cell in the droplet reaction compartment, a detectable 

reaction progresses. Here, optical detection with a fluorescent reaction product is not only the 

earliest and most common detection mode, but also provides the highest sensitivity, e.g. 

enabling the detection of as little as 1 nM Amplex Ultrared in the directed evolution of a 

horseradish peroxidase, corresponding to ~3500 molecules in a 6 pL droplet (Agresti et al, 

2010). However, very low enzyme activities e.g. of promiscuous metagenomic hits with low 

expression strength, could still be precluded even with this superb detection sensitivity. 

Additionally, the detection sensitivity of other optical assays such as absorbance (Gielen et al, 

2016) or fluorescence anisotropy (Gielen et al, 2017) fall far lower than fluorescence intensity 

measurements, with detection limits of 10 µM and 0.1 µM, respectively. Sensitive detection is 

similarly challenging in recent non-optical detection modes for droplet microfluidics, such as 

electrochemistry (1 µM, Goto et al, 2020) or mass-spectrometry (30 µM, Holland‐Moritz et al, 

2020).  

These newer detection modes promise the label-free detection of a manifold of reactions (Neun 

et al, 2020). Using fluorescently labelled substrates for directed evolution poses the risk of 
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specialization towards the assay substrate, instead of the actual industrially relevant substrate, 

in line with the directed evolution principle ‘you get what you screen for’ (You & Arnold, 

1996). Here, novel detection modes can relieve this issue, e.g. by absorbant (Gielen et al, 2016) 

or electrochemical (Goto et al, 2020) detection of the reduced co-factor NAD(P)H in a 

dehydrogenase reaction, although at the cost of decreased sensitivity.  

While droplet monoclonality, e.g. the compartmentalization of a single cell, is necessary for 

accurate detection of the corresponding enzyme variant’s activity, it limits the available amount 

of enzyme molecules per reaction compartment. Expression can achieve > 105 molecules per 

cell (Gielen et al, 2016) or > 30,000 in vitro (Courtois et al, 2009), while surface display 

achieves 20,000 molecules on yeast cells (Agresti et al, 2010) or > 105 on E. coli cells (Jose, 

2006). These expression strengths can afford detection of less than one substrate turnover per 

enzyme molecule in small droplets for fluorescence detection, however, the droplet size and 

detection limits increase dramatically for absorbant as well as the new non-optical detection 

modes. These combined effects of limited enzyme supply per compartment with large droplet 

volumes and higher detection limits results in more drastic requirements to enzyme activity 

and stability for successful detection. Assuming a recombinant expression strength of ~ 8 × 105 

molecules per cell as identified by Gielen et al (2016), each enzyme molecule needs to convert 

1350 substrate molecules for absorbant detection (10 µM detection limit, 180 pL droplet 

volume, Gielen et al, 2016), or 22600 substrate molecules per enzyme molecule for 

electrochemical detection (1 µM detection limit, 30 nL droplet volume, Goto et al, 2020) and 

even 565000 substrate molecules per enzyme molecule for mass-spectrometric detection 

(30 µM detection limit, 25 nL droplet volume, Holland-Moritz et al, 2020). These high 

requirements to turnover per enzyme molecule prohibit screening and evolution of less active 

or less stable enzymes. For context, novel biocatalysts engineered towards new functions over 

multiple rounds of directed evolution have recently been improved from < 100 turnovers per 

catalyst to reach final total turnovers numbers of < 10000 (Chen & Arnold, 2020; Jia et al, 

2020). The high turnover per enzyme molecule requirements of the novel microfluidic 

detection modes thus exclude even these final engineered biocatalysts from further evolution 

in droplets with non-optical detection modes, let alone being able to detect new function in the 

early rounds. 

A general solution, theoretically applicable to all existing single cell lysate-based microfluidic 

assays, is proposed here: The recombinant protein content per compartment is multiplied by 

achieving cell growth and protein expression in droplets with the goal of increasing sensitivity 
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for droplet microfluidic assays and enabling the detection of the newly introduced AmDH 

functionalities in chapter B. AmDH activity is detected in droplets via AADS, measuring the 

absorbance of NADH via a coupled reaction with the formazan dye WST-1 (Fig. C-2, Fig. S1). 

 

Fig. C-2: AmDH detection in AADS. The deamination of R-1-methyl-3-phenylpropylamine to 1-phenyl-3-

butanone by AmDHs can be detected in droplets via the coupled detection of NADH in AADS. NADH is recycled 

to NAD+ by reducing the tetrazolium dye WST-1 to its absorbing form, detectable at 455 nm. The full detection 

cascade and dye structures are shown in Fig. S1. 

C.2. RESULTS & DISCUSSION 

A larger enzyme concentration per compartment would remedy the issues of high turnover 

requirements and make it easier to detect product in the described novel detection modes or 

enable the directed evolution of low promiscuous activities of weakly expressed enzymes with 

fluorescent detection. To address this problem, the enzyme content per compartment can be 

increased by monoclonal and homogeneous cell growth in droplets (Fig. C-3). In a new 

workflow, single cells are encapsulated in growth medium. Cell growth and protein expression 

are performed in modified reaction tubes that enable homogeneous growth and oxygenation. 

Now, substrate and lysis reagents are added in excess via ‘pico-fusion’ in a new chip design 

utilizing selective droplet coalescence. The whole workflow is demonstrated by the successful 

sorting of a newly introduced, low and industrially relevant activity, establishing the detection 

of AmDH activity by AADS. 
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Fig. C-3: Overview of microfluidic cell lysate assays. E. coli cells are transformed with the plasmid library 

coding for enzyme variants of interest. Cells are Poisson-distributed to microfluidic droplets, so that the majority 

of droplets are monoclonal, containing no or one cell per droplet. (a) Conventional single cell lysate assay. Cell 

growth and protein expression is performed in bulk. Single cells (a.2a) are directly co-encapsulated with substrate 

and lysis solution (a.2b). The enzyme molecules expressed by each single cell need to generate enough substrate 

turnover for detection and droplet sorting. (b) Clonal amplification in droplets to increase enzyme content. Single 

cells are encapsulated in growth medium (b.1) and cultured for growth and protein expression in droplets (b.2). 

Substrate and lysis solution are added in a second step by ‘pico-fusion’ and subsequently sorted on chip. 

C.2.1. A DEVICE FOR HOMOGENEOUS CELL GROWTH IN DROPLETS 

For the first step, a robust device for the storage and handling of large volumes of droplet 

emulsion needs to be prepared. Handling droplets, such as re-injection into sorting or fusion 

devices as well as incubation, was performed in modified 0.5 mL reaction tubes (Fig. C-4). 

These incubation chambers are easily manufactured by opening access holes at the top and the 

side of a conventional plastic reaction tube, using biopsy punches and attaching tubing with 

high-viscosity plastic glue. Now, droplets can directly be collected from the droplet generation 

device into an oil-filled incubation chamber via the top access. Excess oil from flow focussing 

is extracted via the side access and the droplets pack tightly on top of the oil. These practically 

easy droplet incubation chambers provide benefits over other incubation approaches (such as 

incubation in unmodified reaction tubes or syringes): droplets are compacted, making re-

injection more stable and regular, and destabilizing contact to air is minimized. Another benefit 

is the potential of pushing oil through the droplet emulsion from the top access, as done 

previously with custom 3D-printed devices for oxygenation of growing cells (Mahler et al, 

2015). 
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Fig. C-4: Droplet incubation chambers. (a) Schematic droplet incubation chamber. Incubation chambers are 

built from 0.5 mL reaction tubes by attaching polyethylene tubing with high viscosity plastic glue to openings 

made with biopsy punches. These chambers are quickly built and enable robust storage and convenient handling 

of droplet emulsions, which float and pack on top of the oil. Collection, storage, oxygenation and ejection of 

droplet emulsion is possible. (b) Photograph of multiple droplet incubation chambers during oxygenation. 

Oxygenation is performed by pushing oil through the emulsion via the top access tubing. 

Now, cell growth was established in droplets in these incubation chambers. Static and 

oxygenated growth conditions were compared to test the hypothesis that oxygen availability is 

a crucial factor to achieve strong and homogeneous growth in each droplet. To measure cell 

density in droplets NADH-detection coupled to the chromogenic dye WST-1 was employed in 

AADS as a proxy of live cell count. First, single cells were encapsulated in growth medium 

and incubated in static conditions, without oxygenation or mixing, at 37 °C for 16 h. The live 

cell stain WST-1 was injected and the absorbance of 2500 droplets was measured. In the 

histogram of absorbances of occupied droplets (empty droplets are ignored), a main peak at 

low absorbance is indicated with a very strong tail (Fig. C-5a). This measurement shows that 

most droplets contain little cell growth while few droplets provide conditions that enable very 

strong cell growth as seen by high absorbances in the tail of the distribution. To establish 

growth homogeneity in form of similar levels of growth in all droplets, oil was pushed through 

the droplet emulsion in the incubation chambers thus providing oxygen and gentle mixing. 

Even with relatively low oil flow rates (4 µl min-1 per 100 µl of emulsion), homogeneous cell 

growth was achieved. The droplet population now shows a much narrower distribution (as 

indicated by the corresponding box plots in Fig. C-5a), as well as increased median absorbance, 

indicating higher total growth per droplet. 
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To quantify the effects of oxygenation compared to static growth conditions on the distribution 

of absorbances, the interquartile range (IQR) is used. The IQR is a robust measure of scale and 

is appropriate to compare the spread of data in this case, as the distribution of absorbances are 

non-normal. By convention, outliers are defined as droplets with an absorbance greater than 

the third quartile plus 1.5-fold IQR (indicated with an asterisk for the static culture in Fig. 

C-5a), expected to qual 0.35% in case of a reference normal distribution. Outliers can be 

interpreted as droplets with extreme growth compared to the bulk of droplets. Such extreme 

growth prohibits qualitative activity read-out, which is correlated to the enzyme content and 

thus to the cell count. In static growth conditions, 12.1% of all occupied droplets are high 

outliers, or rather, droplets with extreme growth, as indicated by the strong tail of the 

distribution in Fig. C-5a. When oxygenation is applied during cell growth, the percentage of 

outliers is reduced to 1.1% of all occupied droplets, thus quantifying the beneficial effect of 

cell growth in droplets under oxygen supply by providing growth homogeneity. 

 

Fig. C-5: Gentle oxygenation via the oil phase enables strong and homogeneous cell growth in droplets. 

(a) Histograms of WST-1 absorbance as an indicator of cell growth. 2500 droplets measured. Cells were grown 

from initially singly compartmentalized E. coli cells in either static (grey) or oxygenated (blue) conditions for 

16 h at 37 °C. Static cell growth was performed without oxygenation or mixing, while oxygenated cell growth 

was performed by perfusing the droplet emulsion with 4 µl/min HFE-7500 with 1% RAN surfactant. 10 mM 

WST-1 was injected into the droplets after growth as an indicator for cell density by detection of NADH in AADS. 

Moderate outliers in the static conditions, as defined with greater absorbance than the third quartile plus 1.5-fold 

interquartile range, are highlighted in red and indicated with an arrow and asterisk. (b) Illustrative scenarios of 

oxygen availability during static and oxygenated cell growth in droplets. Oil perfusion (left) provides oxygen and 

gentle mixing, thus leading to a homogeneous oxygen level and cell growth throughout the droplet emulsion. In 

static incubation (right), on the other hand, little mixing and exchange happens resulting in an oxygen gradient 

from the oil phase to the centre of the droplet emulsion, where the growing cells are depleting oxygen. 

Static growth conditions have been used in previous studies (Hammar et al, 2015; Siedler et 

al, 2017; Beneyton et al, 2017), but do not lead to fast growth amplification and homogeneity, 
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a crucial requirement for precise assays. Identical conditions in every droplet are necessary to 

enable quantitative readouts of enzymatic activity, as the number of cells in every droplet 

directly determines the amount of enzyme per compartment. Previous studies using cell growth 

in droplets were based on qualitative selections, e.g. for antimicrobial resistance (Liu et al, 

2016), not requiring differentiation of degrees of activity, or employed initial filtering for 

average cell growth via scattering properties in flow cytometry (Duarte et al, 2017). These 

previous assays might not have shared the same sensitivity to growth homogeneity as 

enzymatic turnover. 

The heterogeneity in static growth conditions possibly stems from differential oxygen 

availability during incubation. Oxygen can diffuse into the emulsion from the oil phase; 

however, it is rapidly depleted by growing cells. This results in a gradient of oxygen availability 

within the emulsion in the device, with a lot of oxygen resulting in high cell growth closer to 

the bulk oil phase and a lack of oxygen limiting growth in most of the emulsion in the centre 

of the device (Fig. C-5b). Heterogeneity is thus introduced dependent on a droplets position in 

the device. Oxygenation during growth remedies this by supplying additional oxygen with the 

fresh supply of oil phase and provides a gentle mixing of droplets in the device, enabling 

stronger growth on average as well as more homogeneous growth. 

A similar conclusion is found in the work of Mahler et al (2015). In their work, a custom 3D-

printed incubation device is used with very strong oil flow (40 µl/min compared to 4 µl/min in 

this study), requiring a peristaltic pump in a closed circular setup, to provide a maximal amount 

oxygen to growing cells (Mahler et al, 2015). The set-up established in this chapter does not 

achieve maximal growth rates comparable to those in shaking flasks, yet oxygenation with 

comparatively low oil flow rates provides crucial growth homogeneity in a simple setup. Only 

regular syringe pumps and self-made incubation chambers from conventional reaction tubes 

are needed. 

C.2.2. INDUCTION OF RECOMBINANT PROTEIN EXPRESSION 

In the proposed cell growth workflow, recombinant protein expression must be induced after 

monoclonal growth in droplets (Fig. C-3). In the conventional single cell workflow, protein 

expression is conducted in bulk culture, as single cells containing the intracellularly expressed 

protein of interest are encapsulated subsequently. Here, growth and protein expression both 

must be performed in droplets. In many commonly used protein expression systems, such as 

the T7 promoter system with the inducer lactose or IPTG, external inducer is added after initial 
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growth allowing for fine control of cell density by induction timepoint and strength. Adding an 

external inducer poses a challenge to the microfluidic system, as the same amount of inducer 

needs to be added to each droplet, resulting in an increased workload and potentially reducing 

emulsion quality. Consequently, protein expression systems not requiring such an additional 

droplet manipulation step but offering similar control over expression strength and cell density 

were investigated. As a model system for protein expression, the oxygen-independent green 

fluorescent protein iLOV (Chapman et al, 2008) was used. This allowed facile measurement 

of protein content by determining fluorescence intensity, direct visualization in microscopy 

and heightened comparability of culturing conditions due to the oxygen-independent 

maturation. 

Firstly, auto-induction of the aforementioned T7 promoter system was investigated, as it does 

not require the external addition of inducers such as IPTG after an initial growth phase. Auto-

induction medium for the T7 promoter system contains lactose and glucose, as well as glycerol 

as the main carbon source (Studier, 2005). Glucose inhibits the recombinant protein expression 

from T7 promoters and is metabolised first by the growing E. coli cells. Once the available 

glucose is metabolised after an initial growth phase, the protein expression is freely induced by 

the lactose in the medium. Further cell growth and the recombinant protein expression is 

maintained by the available glycerol. To test the protein expression strength with T7 auto-

induction, single cells were encapsulated in 50 pl auto-induction medium and grown for 16 h 

at 37 °C. The expression strength and cell count per droplet were estimated by breaking the 

droplet emulsion and determining the iLOV fluorescence intensity and the number of colony 

forming units of 1 µl aqueous phase, as well as acquiring microscopy images of the droplet 

emulsion (Fig. C-6). Successful protein expression and cell growth were determined with this 

expression system, however, adjusting the medium composition (amount and ratio of glucose 

and lactose) to achieve strong expression proved challenging, as culture conditions successful 

for bulk expression were not directly transferable to droplet culture. This is likely a result of 

different growth dynamics in droplets compared to bulk culture due to limited oxygen 

availability and suspension mixing in droplets. 

Thus, a more straightforward expression system was tested next: constitutive expression. The 

iLOV gene was set under control of the constitutive lacI promoter. Now, continuous expression 

of the iLOV protein forgoes the problem of induction. In the same test, single cells grown in 

50 pl droplets, expression from the constitutive promoter results in increased fluorescence 

intensity. However, the cell count per droplet rises drastically, reaching the highest number of 
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all tested expression systems with an average of 628 cells per occupied droplet. While the 

increased cell density might not be an issue, it can influence many downstream analyses. Many 

assays are influenced by unspecific background activity of cellular components. In fact, the 

model assay studied in this chapter, the detection of AmDH activity via to reduction of the dye 

WST-1 by NADH, is negatively affected by high cell counts due to the presence of intracellular 

reducing compounds (Huang et al, 2019).  

 

Fig. C-6: Protein expression in monoclonal droplet culture with different induction systems. Encapsulation 

of single cells in droplets of 50 pl growth medium, expressing the oxygen-independent green fluorescent protein 

iLOV under control of different promoter systems, incubated at 37 °C for 16 h. Auto-induction performed in ZYP-

5052 medium, otherwise growth in TB medium. Induction via aTc is performed at different time points via 

solubilization of 400 ng ml-1 of aTc in the carrier oil used for oxygenation. (a) Expression strength and cell counts. 

Aqueous phase was generated from droplets by breaking the emulsion with an anti-static gun (Karbaschi et al, 

2017), of which the iLOV fluorescence intensity was measured at 475 nm/510 nm as a proxy for recombinant 

protein expression strength. Cell count was determined by plating dilutions of the aqueous phase and counting the 

colony forming units. Measurements taken from ~4000 droplets in one biological replicate. (b) Microscopy 

images. Droplets were visualized in a fluorescence microscope, containing cells expressing iLOV under control 

of different induction systems. Strong cell growth visible in the bright-field image for constitutive expression, 

while strong fluorescence is visible in the constitutive expression and the aTc diffusion samples. Scale bar 

indicates 100 µm. 

Consequently, an expression system resulting in strong protein production from few cells was 

sought next. The tetracycline promoter/operator system is another expression system 

frequently used for tight regulation and strong protein expression in E. coli strains (Terpe, 

2006). Protein expression can be induced with low concentrations of anhydrotetracycline (aTc), 

which shows stronger repressor binding and lower antibiotic effect than the natural inducer 

tetracycline (Skerra, 1994). As an external inducer, it was shown that aTc is barely soluble in 

the oil phase used in droplet microfluidics, the fluorocarbon oil HFE-7500, prompting aTc to 

diffuse into the aqueous droplets. Thus, cells can be grown in droplets as described and at any 

point inducer can be added by changing the oil phase used for oxygenation to oil containing 

inducer. This induction approach via diffusion from the oil phase is a practically convenient 

way to achieve strong protein expression from few cells by controlling the induction time point 

(Fig. C-6) and does not require any additional droplet manipulation step. The WST-1 assay 



Chapter C – Increasing the Sensitivity of Single Cell Microfluidic Assays 

55 

used to detect AmDH activity in droplets is affected by high cellular background, preventing 

the use of long incubation times before induction, which would result in increased expression 

strength at the cost of high cell counts. Consequently, induction times of 2 h were used 

(resulting in 20 cells per droplet at 5-fold increased florescence) instead of longer incubation 

times such as 4 h (386 cells per droplet at 19-fold increased fluorescence). However, in assays 

without influences from cellular background, these longer incubation times could be used, 

potentially resulting in higher improvements to assays sensitivity than found for the WST-1 

assay. 

C.2.3. ACTIVE DELIVERY OF ASSAY COMPONENTS 

To detect enzymatic turnover after cell growth, further assay components have to be delivered 

to the droplet. While for single cell assays lysate and substrate reagents can be added during 

encapsulation immediately leading to enzymatic reaction progress, the initial steps of cell 

growth and protein expression in droplets requires a delayed addition of reaction components. 

For the detection of intracellularly expressed enzyme, cell lysis is usually necessary to release 

the enzyme after cell growth. Additionally, a precise timing of the reaction start by the addition 

of substrate after growth allows for the adjustment of reaction time scales, potentially resulting 

in optimized signal to noise ratios and increasing the dynamic range for reactions with high 

chemical background. A high chemical background in form of a non-specific chemical 

reactivity that reduces available assay components can decrease assay sensitivity over long 

incubation times. Lastly, a step adding reaction components after cell growth can adjust the 

buffer composition of the droplet from the cell growth medium, widening the scope of 

detectable reactions. 

Consequently, active delivery systems of reaction components to droplets were investigated 

next. Reagent addition is an important step in bioassays, which in microfluidics is most 

commonly achieved by electro-coalescence (Weng & Spoonamore, 2019; Payne et al, 2020). 

In this study, pico-injection was tested initially as a simple and robust way to add reagent to 

droplets: in a pico-injection device, small volumes of new reagents can be added to droplets at 

high speeds with a continuous aqueous flow adding fluid to passing droplets destabilized in an 

electric field (Abate et al, 2010). While pico-injection proved reliable and fast in experiment, 

volumes larger than 50% of the droplet could not be injected (data not shown). However, 

substrate and buffer component stability did not allow for high enough concentration for 
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successful pico-injection. Thus, a new device based on selective droplet coalescence was 

designed and manufactured. 

With selective droplet coalescence, two populations of differently sized droplets can selectively 

be fused together (Mazutis & Griffiths, 2012). Thus, large droplets containing substrate and 

lysis solution could be generated on chip and fused with re-injected droplets after cell growth, 

allowing for the addition of large reagent volumes and thus buffer adjustment. Using AutoCAD 

2018, a new device design was generated, combining features of previous droplet coalescence 

approaches. While a previous approach required a specific oil/surfactant composition resulting 

in passive droplet fusion due to interface destabilization in special channel geometries (Mazutis 

et al, 2009), a more generally applicable approach was pursued utilizing the electro-

coalescence of droplets (Zagnoni & Cooper, 2009). 

The new ‘pico-fusion’ device (Fig. C-7) combines flow focussing functionalities to generate 

large droplets of substrate and lysis solution on-chip with a droplet injector, spacing incoming 

droplets containing grown cells. Droplet speeds are synchronized and stacked in a delay 

channel, followed by electro-coalescence in a fusion chamber. Following multiple generations 

of device geometry optimization and fabrication (e.g. fusion chamber size and delay channel 

length), a final master was generated that allowed for reliable fusion of droplet at 200 Hz in 

conventional HFE-7500 1% RAN surfactant conditions. The final device reached non-

detectable levels of multi-fusions and < 5% non-fused droplets. This additional step of droplet 

manipulation should not increase the sorting efficiencies, due to the very high rate of one-to-

one fusions. However, the comparatively high number of unfused droplets poses a challenge 

to the sorting algorithm, needing to reliably exclude small non-fused droplets. 

C.2.4. A SORTING ALGORITHM TO EXCLUDE DOUBLETS 

The detection signal in AADS is continuously monitored by an Arduino Due microcontroller. 

A simple point-over-threshold detection algorithm for droplets is currently employed (Gielen 

et al, 2016), which compares the detection voltage to a fixed threshold and actuates the sorting 

electronics should this threshold be crossed by an absorbant droplet. This approach is limiting 

the accuracy and applicability of AADS in two ways: Firstly, a negative sort is not possible: 

low absorbant droplets cannot be sorted out of a population of highly absorbant droplets. 

Secondly, droplet size cannot be distinguished potentially resulting in the erroneous sorting of 

small satellite droplets or large unwanted fusions in samples of bad emulsion quality, 

culminating in increased false positive rates. Droplet emulsion quality is reduced by many 
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factors, including the detergent based lysis agent used in microfluidic cell lysate assays as well 

as prolonged incubation and droplet manipulation. With the increased complexity of the cell-

growth workflow compared to the single cell assay, the emulsion quality is slightly reduced. 

Additionally, while the pico-fusion step is reliably leading to no more than one-to-one fusions, 

a comparatively high number of non-fused droplets is produced. These non-fused droplets must 

be distinguished from fused droplets in the sorting algorithm to reduce the false positive rate. 

 

Fig. C-7: Pico-fusion device for selective droplet coalescence. (a) Layout of the pico-fusion device. Droplets 

(e.g. containing grown cells) are injected and spaced in the droplet injection part (blue), while droplets containing 

substrate and lysis solution are generated on-chip in the flow focussing section (green). Both droplet types are 

synchronized and stacked in the delay channel leading up to the fusion chamber, where an electric field causes 

selective droplet coalescence. A microscopy image of the fusion section (red) during operation is shown in b). 

(b) Bright field image of the pico-fusion device in operation. Two populations of droplets are synchronized and 

stacked in a delay channel. An electric field is applied to the fusion chamber via salt-water electrodes, causing 

droplet coalescence. 

Thus, a new detection algorithm was designed, employing a true peak detection algorithm. The 

rising and falling edges of an event are identified, enabling the calculation of the true peak 

height as the maximum value in the event window. This allows the user to establish a sorting 

window and thus enables the selection of low absorbent values in the case of negative assays. 

More importantly however, the droplet size can be approximated as the droplet residence time 

in front of the detector by measuring the peak width as the time between the peak rising and 

falling edge. An intuitive visualization of the differences in the previously employed point-
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over-threshold and the new true peak detection algorithms is shown in Fig. C-8. While the 

visualization shows absorbance as the measured variable for intuitive understanding, the true 

measurement in AADS is light transmission, inverting the algorithm: A highly absorbent 

droplet blocks a lot of light from the detector, resulting in a decrease of transmitted light and 

thus a decreased detection voltage. The full negative algorithm developed for AADS is 

available at https://github.com/pauljannis/AADSutility. This algorithm is employable for any 

other type of peak detection, e.g. for the detection of fluorescence in fluorescence-activated 

droplet sorting after sign inversion. 

 

Fig. C-8: Comparison of detection algorithms employed in AADS. Four droplet types are exemplified, from 

left to right: Droplet with low absorbance, droplet with high absorbance, droplet fusion and droplet satellite. 

(a) Point-over-threshold algorithm used by Gielen et al, 2016. Sorting of droplets is actuated when the signal 

crosses a set threshold absorbance (green circles), potentially resulting in the erroneous sorting of fused large 

droplets (increased peak width) or satellites (lower peak width). (b) True peak detection employed in this study. 

Events are detected by rising and falling edges (blue circles), enabling the calculation of peak width corresponding 

to the droplet size. This allows for the exclusion of unwanted events such as large, fused droplets or small 

satellites. The true peak height can be calculated as the highest point within the event, enabling the user to set a 

selection window e.g. selecting low absorbant droplets. 

https://github.com/pauljannis/AADSutility
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C.2.5. DETECTION AND SORTING OF LOW ENZYME ACTIVITIES 

As a model system for a novel enzyme activity, AmDH activity was chosen. When an AADH 

is converted to an AmDH, this novel activity is too low to be conveniently detected. AADH 

and AmDH activity can, however, both be detected in the same way in AADS via the detection 

of the co-factor NADH (Fig. C-2). In the published WT-background AmDH (K66Q S149G 

N262C), the novel activity lacks behind the original AADH activity with a low catalytic 

efficiency of 0.5 s-1 mM-1 (Ye et al, 2015), corresponding to < 1% of the parental AADH 

activity with a kcat/KM of 71 s-1 mM-1 (Gielen et al, 2016). Consequently, AmDH activity was 

not detectable in conventional single cell lysate AADS assay (Fig. C-9a). All droplets shown 

in the histogram have a low absorbance, indicating that droplets containing a single Poisson-

distributed cell cannot generate any increased signal over the background compared to the 

unoccupied droplets without any cell. This is likely due to AmDH enzyme molecules supplied 

by a single cell not reaching the minimal turnover required for detection, determined as 1300 

substrate conversions per enzyme molecule (corresponding to 10 µM product) in the formazan-

dye coupled assay (Gielen et al, 2016). Insufficient product is produced in the case of the low 

AmDH activity and limited WT enzyme stability, preventing detection and sorting and, 

consequently, hindering directed evolution and engineering of AmDH variants with ultrahigh-

throughput droplet screening. 

This changes when the novel cell growth workflow is employed. Now, single cells are 

encapsulated in LB medium and grown for 2 h at 37 °C. Protein expression is then induced by 

oxygenation with inducer oil for 16 h at 20 °C: HFE-7500 containing 1% RAN surfactant and 

400 ng ml-1 aTc is pushed through the droplet emulsion at 4 µl min-1 per 100 µl of emulsion to 

provide oxygen to the growing cells and inducer for protein expression. An excess of substrate 

and lysis buffer is added via pico-fusion, adjusting buffer conditions and enabling precise 

reaction timing. The absorbance of droplets is again measured via AADS, corresponding to the 

AmDH activity, after 2 h incubation to allow for sufficient reaction turnover. Cells grown in 

droplets and expressing the AmDH now show increased absorbance compared to the bulk peak 

of droplets not containing any cell (Fig. C-9c). For easy visualization, absorbance values 

greater than the background of 0.02 are highlighted in blue. However, as the formazan-dye 

assay also detects cellular NADH background, an increase in signal stemming from an increase 

in cell count has to be excluded. Cells containing an empty plasmid (not expressing AmDH) 

were used as a negative control. Droplets containing cells are not distinguishable from the 
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background of empty droplets, although the peak width increased indicating a low amount of 

background activity (Fig. C-9b). 

 

Fig. C-9: WST-1 absorbance as a readout for AmDH activity in AADS with different growth conditions. 

Absorbance of WST-1 measured at 455 nm. 4000 droplet absorbances per histogram. Values greater than 0.02 are 

indicated in blue to highlight detectable activity over background. Values greater than 0.03 are indicated with an 

arrow and the percentage of droplets higher than this selection threshold is shown. (a) Single-cell AmDH 

measurement. Co-encapsulation of single Poisson-distributed AmDH expressing cells with substrate and lysis 

solution, measured after 16 h of incubation. (b) Cell-growth background. Single non-expressing cells (containing 

an empty plasmid) were encapsulated in growth medium as a background control. Growth in 100 pl droplets was 

performed for 2 h at 37 °C, followed by oxygenation with inducer oil for 16 h at 20 °C (HFE-7500 with 1% RAN 

surfactant and 400 ng ml-1 aTc). For detection, droplets are then fused with 200 pl of substrate and lysis solution 

and absorbances measured after 2 h of incubation. (c) Cell-growth AmDH measurement. Single cells harbouring 

the AmDH plasmid were submitted to cell growth and protein expression in droplets in the same way as the 

background control in b). A large peak of droplets with low absorbances is visible in the histogram, corresponding 

to unoccupied droplets. Additionally, a tail of droplets with higher absorbance is indicative of detectable AmDH 

activity. 

As the truest test to the technology, an enrichment experiment was performed. In an enrichment 

experiment, a dilution of active variants in inactive variants is recovered. It puts all components 

of a microfluidics assay together under biologically relevant time scales. Highly absorbent 

droplets were selected from a 0.5% dilution of AmDH expressing cells in non-expressing cells, 

following the cell growth protocol as described above. After sorting, a secondary lysate plate 

assay confirmed AmDH activity in 41% of tested variants (or 38 of 92 data points), 

corresponding to an enrichment factor of 82 achieved with the AADS AmDH cell growth 

assay. 

This enrichment was only achieved when the new peak detection algorithm (described in C.2.4) 

was employed to exclude erroneous large fusions and smaller non-fused droplets. To exemplify 

this issue, Fig. C-10 shows the 2D plot of absorbance values with corresponding droplet sizes 

(approximated by peak width) of the positive control also shown in Fig. C-9c. The size 

selection for the main droplet population is indicated by red lines, highlighting the importance 
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of segregating the majority of correct one-to-one fusions from erroneous multi-fusions (larger 

peak width) and non-fused droplets (small peak width) for a successful enrichment. 

 

Fig. C-10: Droplet size (as peak width) and absorbance (as peak height) measured of AmDH expressing 

cells in the growth workflow. Gating of droplet size (red lines) is applied in the sorting to exclude large multi-

fusions and non-fused droplets from correct one-to-one fusions. The filtered peak heights (converted to 

absorbance values) of this experiment are shown in Fig. C-9c. The large main population of droplets corresponds 

to non-occupied droplets, whereas a tail of droplets with increased peak height is distinguishable, corresponding 

to AmDH expressing cells. 

Consequently, all parts of the cell growth workflow (homogeneous growth via oxygenation, 

addition of large volumes via pico-fusion, sorting with doublet exclusion) together enable the 

detection and selection of AmDH activity from the non-stabilized WT background, which is 

unselectable in conventional single cell lysate assays. 

C.2.6. QUANTIFICATION OF IMPROVEMENTS 

To quantify the improvements achieved in the AmDH assay when the in-droplet cell growth 

workflow is applied, an AmDH with detectable levels of activity in the conventional single cell 

assay is required. While the low activity of the WT-AmDH was made detectable via the cell 

growth workflow in the previous chapter, the improvement to activity comparing the two 

assays is quantified now with the stabilized P4QM AmDH. The stabilization of P4QM allows it 

to reach detectable levels of turnover in the conventional single cell AADS assay. Single cells 

expressing the stabilized AmDH P4QM are either directly encapsulated with substrate and lysis 

solution after bulk aTc induction or encapsulated in growth medium and subjected to in-droplet 

cell growth and induction, followed by addition of substrate and lysis solution via pico-fusion. 
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The product formation is measured at multiple time points via interrogation of absorbance at 

455 nm in AADS. The difference in average detection voltage of occupied to unoccupied 

droplet peak at all time points is shown in Fig. C-11a, with the full histogram of exemplary 

time points shown in panels b and c. A stark increase in detection signal is recorded for droplets 

subjected to the cell growth assay: after 30 minutes, the detection voltage difference between 

occupied and unoccupied droplets approaches 4.0 V, corresponding to ~2.5 mM reduced 

WST-1. With progressing time the curve flattens indicating a quick conversion of most of the 

available 3 mM substrate. Contrastingly, the detection signal in the single cell assay starts 

plateauing after 2 h of incubation time at a signal of 1.3 V, corresponding to 1.1 mM reduced 

WST-1. The initial rate of product formation is thus increased 12-fold when using the in-droplet 

cell growth workflow compared to the conventional single cell assay. 

Furthermore, the variation in droplet absorbances was measured. The distribution of measured 

absorbances for cells expressing the same enzyme variant (P4QM) in many droplets gives an 

immediate measurement of the intrinsic assay variation. Normalizing the absorbances of 

occupied droplets for both approaches shows that the in-droplet cell growth assay not only 

increases the activity per droplet, but also reduces signal variation (Fig. C-11d). The peak of 

occupied droplets repeatedly showed 20-25 % relative standard deviation, whereas when cell 

growth is applied, the relative standard deviation dropped to 5-15 %. The variation in the assay 

was cut in half by measuring a signal from many cells instead of from a single cell per droplet. 

When a population of many cells is responsible for recombinant protein supply and thus 

activity readout, idiosyncratic effects such as variation of expression level per cell and time to 

lysis are averaged, resulting in a more consistent signal and reduced variation in the assay. 

C.3. CONCLUSION & OUTLOOK 

The developed workflow utilising in-droplet cell growth and protein expression to amplify the 

signal in microfluidic lysate-based enzyme assays improves upon the conventional single cell 

lysate assays by increasing its sensitivity, enabling the detection of previously unselectable low 

activities from unstable starting points, such as the WT AmDH (see C.2.5). The development 

of the in-droplet growth workflow delivers multiple improvements to key steps in its process: 

First, a new device for the incubation of droplets is used. Droplet emulsions are incubated and 

oxygenated for cell growth in modified reaction tubes that allow for the convenient and robust 
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handling of large emulsion volumes. These chambers allow access to densely packed emulsion 

in a much higher throughput and simpler set-up than previously used for cell analysis (Kleine‐

Brüggeney et al, 2019) or metagenomic screening (Mahler et al, 2015). Excess oil is drained 

from incubation chambers, resulting in a highly stable and compact droplet emulsion with easy 

access for manipulation such as oxygenation or ejection for pico-fusion and sorting. 

 

Fig. C-11: Quantification of improvements achieved by in-droplet cell growth. The stabilized AmDH P4QM 

was assayed in comparable conditions in conventional single cell and the proposed cell-growth workflows. 

(a) Signal strength comparison. The signal difference of occupied to unoccupied droplet peak is shown at multiple 

time points for the single cell (dashed line) and cell growth (solid line) workflows. Error bars represent standard 

deviation, n = 2500 droplets. (b) Example histogram for single cell assay. Single cells expressing the stabilized 

AmDH P4QM are co-encapsulated with lysis and substrate solution. Detection signal of n = 2500 droplets are 

shown after 4 h of incubation. A large peak of unoccupied droplets at a low detection signal is clearly separable 

from a broad peak of occupied droplets at higher detection signal. (c) Example histogram for cell growth workflow. 

Single cells are encapsulated in growth medium and subjected to the in-droplet cell growth workflow, inducing 

expression via aTc diffusion and adding substrate and lysis solution via pico-fusion. Detection signal of n = 650 

droplets are shown 30 minutes after addition of the substrate and lysis solution. A narrow and strongly separated 

peak of occupied droplets is visible. (d) Comparison of peak widths. Assay variation of the single cell (green) and 

cell growth assay (blue) is quantified by isolating the occupied droplet peak, calculating relative frequencies and 

normalizing to a mean of one. Representative time points were chosen in 4 h (single cell assay, shown in panel b) 

and 0.5 h (cell growth assay, shown in panel c). Assay variation in the conventional single cell assay is higher 

(22.7% relative standard deviation) than in the cell growth workflow (10.7% relative standard deviation), as 

indicated by sigma intervals corresponding to 68% of all droplets. 
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Second, a passive delivery of assay components via the oil phase is set up. Continuous oil flow 

increases oxygen supply and mixing, resulting in increased cell growth and growth 

homogeneity between all droplets. Additionally, the inducer of recombinant protein expression 

aTc can be delivered passively (not requiring any extensive droplet manipulation) at any time 

point (decoupling cell growth from protein expression, e.g. for toxic proteins or high cellular 

background assays). In a similar approach the pH inside droplets was recently regulated by 

diffusion of acetic acid or diethylamine from the oil phase (Tovar et al, 2020), strengthening 

this practically easy and robust approach to supplying droplets. The achieved clonal 

amplification in droplets by cell growth and the control over expression conditions leads to 

reproducible signal amplification in each droplet. 

Third, a device for the active delivery of an excess of assay components was established. The 

pico-fusion device enables the controlled addition of an excess of substrate and lysis buffer, 

favourably adjusting the reaction conditions and enabling precise timing of the reaction start. 

Now, reactions can take place outside of the growth medium conditions and the optimal ratio 

of enzymatic reaction to noise from uncatalyzed background reactions can be chosen, 

increasing the dynamic range for reactions with high chemical backgrounds. 

Fourth, clonal amplification leads to more product readout. The cell amplification leads to more 

expressed enzyme per droplet, thus increasing the product formation per droplet. The 

improvement in initial assay activity was 12-fold for AmDH activity, reducing the limit of 

detection from originally 1300 substrate turnovers per enzyme molecule (Gielen et al, 2016) 

to around 100 molecules. This reduction in turnover per enzyme molecule necessary for 

detection enables the screening of less stable and less strongly expressed enzymes, such as the 

WT AmDH in this case. This workflow will thus prove important not only in engineering novel 

enzyme activities but also in future metagenomic screenings or in the establishment of less 

sensitive detection modes in microfluidics, such as mass spectrometry (Holland‐Moritz et al, 

2020) or electrochemistry (Goto et al, 2020). In all these cases, an amplification of enzyme 

content per droplet can resolve issues e.g. of low expression from natural metagenomic 

promoters or the strong turnover requirements in the large droplets of the novel detection 

modes. In assays with less cellular background than the used WST-1 detection, higher cell 

growth per droplet could be achieved potentially resulting in up to 48-fold signal amplification, 

based on quantification of GFP expression (Fig. C-6). 

Fifth, the measurement of activity from multiple cells reduces variation compared to single cell 

assays. Strong variability in protein expression levels per individual cell (Elowitz et al, 2002; 
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Raj & van Oudenaarden, 2008) and stochasticity of cell lysis introduce variability to single cell 

assays that is not present when a population of multiple cells is measured and thus averaged. 

A reduction in assay variability will result in less false positive events and the recovery of more 

genuine hits. The problem of substantial cell-to-cell variability has been considered before 

(Duarte et al, 2017; Beneyton et al, 2017), but is here quantified for the first time and achieved 

in the context of enzyme activity. This advance to assay quality and reliability could 

furthermore prove useful in the context of deep mutational scanning (A.4), in which enrichment 

values are calculated by oversampling and reliable binning of variants, thus having special 

requirements to assay variability (Peterman & Levine, 2016). 

Sixth, the recovery of sorted variants is improved. After droplet sorting, plasmid DNA is 

recovered and used for subsequent cell transformation. In the case of a single cell per droplet, 

the contained amount of DNA is low, resulting in a low recovery efficiency. With an ultrahigh 

copy plasmid, a recovery efficiency of 87% was calculated in an early study on single cell 

lysate screening (Kintses et al, 2012). The number of colonies after recovery from the cell-

growth assay was usually 10 to 100 times the number of sorted droplets, varying with the actual 

time of cell growth applied, thus solidifying a higher chance of recovering all sorted variants 

with the medium-high copy number aTc-inducible plasmid. 

Future work might include the combination of lysis independent assays with cell growth, such 

as employing yeast-display (Agresti et al, 2010), E. coli autodisplay (van Loo et al, 2019) or 

protein secretion (Beneyton et al, 2017) with the cell-growth approach, potentially reducing 

the cellular background and consequently increasing the dynamic range and achieved signal 

amplification.  

Ultimately, the here presented workflow provides a general approach to increasing the 

sensitivity of microfluidic enzyme assays and will consequently make enzyme discovery and 

engineering campaigns more successful, bringing more challenging substrates and novel 

detection modes within reach of application. 
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D. ACCURATE LONG-READ 

SEQUENCING FOR THE ANALYSIS OF 

DIRECTED EVOLUTION 

 

 

 

Mapping directed evolution and its trajectories in a fitness landscape requires a high-

throughput readout of the identity of selected variants. With the ultrahigh-throughput activity 

assay for AmDHs established in the previous chapter, this chapter aims at developing an 

equally powerful sequencing readout. Accurate and full-length gene sequences are needed to 

provide the complete picture of a directed evolution phylogeny, containing mutations at any 

position and in any combination within the gene. The recent advent of third-generation 

sequencing technologies enables long reads at low quality, which in this chapter will be 

polished to accurate consensus sequences with the help of distinct molecular tags, so-called 

unique molecular identifiers (UMIs). 

The content and figures of this chapter were published as Zurek et al, 2020c. 
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D.1. INTRODUCTION 

The importance of directed evolution for the generation of novel biocatalysts is undisputable, 

as recognized by the Nobel Prize in Chemistry in 2018 (Arnold, 2019). The principles 

governing this intrinsically random process are yet to be fully understood. Mapping the 

sequence-function relationships of proteins (often called ‘deep mutational scanning’) has 

enabled great advances in our understanding of the local fitness landscape of proteins (see 

chapter A.4). Identifying the effect of many different mutations to a protein via the combination 

of high-throughput selection and sequencing has, for example, enabled the study of epistasis in 

the local fitness landscape of GFP (Sarkisyan et al, 2016), illuminated trade-offs between 

enzyme solubility and fitness (Klesmith et al, 2017) or investigated the determinants of 

substrate specificity of an amidase (Wrenbeck et al, 2017a). However, these studies are limited 

to the local exploration of sequence space and do not follow comprehensive random multistep 

evolutionary trajectories. Technical limits to assay throughput and sequencing read length 

result in many studies analysing either all single point mutations (e.g. Klesmith et al, 2017; 

Wrenbeck et al, 2017a) or defined multipoint mutations in short stretches or subdomains of the 

protein (e.g. Melamed et al, 2013; Olson et al, 2014; Araya et al, 2012). Additionally, most of 

these studies are performed on proteins for their native function, increasingly confining the 

studied effects to an existing fitness optimum (Table 3). Comprehensive multistep trajectories 

following function from initial to optimized activity would uncover previously unseen 

characteristics of protein fitness landscapes: by randomly distributing mutations throughout a 

whole protein and adding such mutations to variants consecutively in multiple steps, a 

comprehensive phylogenetic analysis of directed evolution is generated (Fig. D-1). Such a 

phylogenetic analysis of directed evolution would experimentally prove the extent of lineage 

formation in protein evolution, as expected by pervasive epistasis, and provide a solution to the 

question of the number of available distinct fitness optima (or the ‘ruggedness’ of a fitness 

landscape). These insights could inform future protein engineering campaigns regarding 

selection regimes or engineering approaches, by explaining the biochemical foundation of the 

distinct optimization solutions. 
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Fig. D-1: A topographical view of a fitness landscape. Deep mutational scanning (DMS, red dot) is usually (i) 

performed for the native protein function, thus being confined to mostly highly active variants near a fitness peak 

and (ii) performed with small steps, generally evaluating all single point mutations (Table 3). A phylogenetic 

analysis of directed evolution (blue dot), however, would start with a promiscuous low enzyme function and 

include many trajectories via many mutations in multiple rounds of evolution. The deep mutational scanning 

approach lays out a comprehensive view of the local fitness landscape, whereas a phylogenetic analysis of multiple 

rounds of directed evolution with long reads would capture the global architecture of the fitness landscape. 

Studying random mutations throughout a full protein, however, requires the determination of 

the complete gene sequence, which ranges from 0.9 to 1.4 kb for typical genes (Xu et al, 2006). 

While Sanger sequencing has remained the standard for accurate verification of individual 

variant sequences in protein engineering, its low throughput cannot match the explorative 

power afforded e.g. by ultrahigh-throughput droplet microfluidic assays as described in the 

previous chapter. To map sequence-function relationships, a high-throughput sequencing 

technology is required. Sequencing-by-synthesis platforms such as Illumina sequencing have 

established themselves for cost-efficient high-throughput sequencing at high accuracy. With 

Illumina sequencing, however, an individual primary sequencing read length of less than 300 b 

falls far short of the average gene length, making it unsuitable to study multiple randomly 

occurring mutations across a full gene. There are practical innovations overcoming this 

limitation by associating multiple short reads into long sequences, so-called ‘synthetic long 

reads’. These synthetic long reads are well established in the field of genomics and have been 

applied there to resolve haplotypes and structural variations (Kuleshov et al, 2014; Zheng et 

al, 2016). When a single template molecule is present in many variants, e.g. in amplicon 

sequencing of 16 S rRNA variants or genes mutated by directed evolution, however, these 
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methods are not applicable as multiple molecules are still pooled per barcoding compartment. 

Synthetic long read methods specifically designed for amplicon sequencing currently suffer 

from uneven read coverage (Hong et al, 2014; Stapleton et al, 2016), high rates of chimeric 

reads (Lundin et al, 2013; Borgström et al, 2015) or are still limited in maximal read length 

(Burke & Darling, 2016; Yoo et al, 2020) due the chemistries used; limiting overall suitability, 

efficiency and throughput. 

Third generation approaches, such as those developed by Pacific Biosciences and Oxford 

Nanopore Technologies, are capable of sequencing single molecules at immense read lengths. 

Because direct read lengths in nanopore sequencing are only limited by the DNA molecule 

length and not by the applied chemistry, impressive reads of more than 800 kb have recently 

been reported in a modified long-read protocol, while the read N50 in the standard protocol 

still exceeded 10 kb (Jain et al, 2018). A striking drawback of the technology, however, is the 

high raw read error rate of 5-15% (e.g. at least 50 bases in a 1 kb read are assigned incorrectly, 

van Dijk et al, 2018), preventing the accurate detection of true single nucleotide mutations in 

individual reads. Consequently, the innate high read length of third generation sequencing 

technologies would allow for the direct association of co-occurring mutations in gene variants 

to study epistasis in directed evolution, but low primary accuracy prohibits its use. 

Accuracy is commonly increased by the generation of consensus sequences, in which multiple 

read copies are acquired to generate accuracy by averaging out sequencing errors. For genome 

assemblies, this process is straightforward because every sequencing read maps to a unique 

position in a draft genome assembly and overlaps with many others, facilitating stacking and 

consensus polishing (Loman et al, 2015; Vaser et al, 2017, Fig. D-2a). By contrast, template 

diversity in an amplicon sequencing library is typically low: many copies of rather closely 

related members must be sequenced accurately e.g. in metagenomic 16 S rRNA samples, 

immune repertoires or medical diagnostics. Also in protein evolution gene variants differing in 

few or even single point mutations need to be identified, as they can show drastically altered 

function. Primary sequencing reads with high error rates, however, cannot reliably be assigned 

to their template molecules when many template molecule candidates differing merely in point 

mutations are possible (Fig. D-2b). Consensus-based polishing is thus not feasible for unliked 

reads in all these cases, calling for the development a suitable solution. 

Current approaches to increase nanopore amplicon sequencing accuracy rely on physically 

linking multiple copies of the same template molecule into one extended read (Fig. D-2c). 

Template molecules are circularized and amplified into one extended concatemerized fragment 
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containing many template copies in a single DNA molecule (Calus et al, 2018; Volden et al, 

2018; Li et al, 2016). This physical link of template copies allows for the generation of 

consensus sequences with up to 99.5% accuracy, depending on gene length and resulting copy 

number in the concatemer. The remaining lowered error rate (at least 5 bases in a 1 kb gene 

assigned incorrectly) is not sufficient to distinguish individual point mutations and the 

applicability is limited by the necessity of very high molecular weight DNA molecules, which 

are difficult to generate and handle. 

 

Fig. D-2: Consensus approaches to increase the accuracy of nanopore sequencing. (a) Draft genome assembly 

available for alignment. Long reads can be uniquely aligned to a draft genome assembly and used for consensus 

generation. Figure adapted from Vaser et al, 2017. (b) The amplicon challenge. Aligning is not possible when the 

template diversity is low: erroneous reads cannot be assigned reliably to a parent from a pool of highly similar 

variants, such as gene variants with single point mutations in directed evolution. (c) Gene repeats in one molecule. 

If alignment is not possible, accuracy can be increased by generating concatemerized repeats in a single molecule. 

Figure adapted from Volden et al, 2018. (d) Unique tags could identify the template molecule. Unique molecular 

identifiers (UMIs) could be used to generate distinct sequence tags for each template molecule that allow the 

assignment of erroneous sequencing reads to their origin. The clustering of those tags would allow for consensus 

generation at a more scalable level than repeats in one molecule. 

A bioinformatic link between reads would remedy these issues: A random sequence tag, a so-

called unique molecular identifier (UMI), added to each template molecule could be 

sufficiently distinct to allow the correct assignment of erroneous reads to their template 

molecule, even when these template molecules are very similar (Fig. D-2d). Such a UMI-
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tagged sample would be easier to handle experimentally and provide scalability in sequencing 

throughput, allowing for generation of deeper consensus sequences, potentially increasing 

accuracy even further. UMIs were first used to mark the identity of template molecules prior 

to PCR amplification for quality control (McCloskey et al, 2007), but have since been 

extensively applied in various high-throughput sequencing approaches, such as to remove bias 

in molecule counts of RNA-seq expression data (Kivioja et al, 2012; Islam et al, 2014) and 

increase the accuracy of rare mutation quantification (Kinde et al, 2011; Schmitt et al, 2012). 

In this chapter, an accurate nanopore amplicon sequencing workflow will be established based 

on UMI-links, which allows for the tracking of gene variants over three rounds of microfluidic 

directed evolution of an amine dehydrogenase. 

D.2. RESULTS & DISCUSSION 

D.2.1. THE UMIC-SEQ WORKFLOW AND TOOLS 

Linking nanopore reads to their template molecule with unique sequence tags, UMIs, enables 

scalable and reliable bioinformatic clustering for consensus generation. The proposed 

workflow of UMI-linked consensus sequencing (‘UMIC-seq’) is shown in Fig. D-3 and allows 

individual raw reads of high error rate to be reliably assigned to their template molecule, which 

differs only by few nucleotide exchanges from other template molecules, by assigning unique 

barcodes.  

A pool of similar variants – in this case selected gene variants during directed evolution – are 

identified by random sequence barcodes. These UMIs are tagged to the gene of interest by 

running two cycles of PCR with a stretch of random nucleotides in the PCR primers (Fig. D-3 

step 2). This deliberately chosen low amplification in PCR reduces bias compared to other 

methods (Aird et al, 2011; Karst et al, 2021). Because the number of possible UMI sequences, 

e.g. 450 ≈ 1030 possible sequences for a 50 b UMI, far exceeds the number of molecules in a 

PCR reaction (e.g. 10 ng of a 2 kb gene ≈ 109 molecules), each molecule will be tagged with a 

unique sequence. However, this number of uniquely tagged sequences is still too high to 

achieve deep sequencing coverage for consensus generation and the sample complexity needs 

to be further reduced. The sequencing capacity of a single MinION nanopore flow cell is 10-

30 Gb, corresponding to a potential of ~105 clusters for 2 kb genes of 100 reads each. To reduce 

the number of uniquely tagged gene variants to a defined number suitable for consensus 
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sequencing, a transformation step is performed (Fig. D-3 step 3). After assembly of the UMI-

tagged PCR product to a plasmid, the following transformation step serves two purposes: The 

number of assembled DNA molecules is defined in the colony count after transformation and 

easily controlled by plating dilution series. Additionally, the UMI-gene constructs are clonally 

amplified in the growing colonies. Thus, a small subset of UMI-gene variant combinations is 

selectively and homogeneously amplified, controlling the sample diversity with a simple 

molecular biology step.  

 

Fig. D-3: UMI-linked consensus sequencing (UMIC-seq) strategy for accurate amplicon sequences from 

nanopore long reads. (1) An amplicon library consisting of similar members, such as a plasmid pool of gene 

variants after directed evolution, is used as the input to the workflow. (2) UMIs are tagged to the gene variants in 

two cycles of PCR and re-assembled into plasmids, after which (3) the molecule diversity is restricted by 

transformation, resulting in the clonal amplification of a defined number of UMI-gene variant constructs. (4) 

Conventional nanopore sequencing is performed after excision of the UMI-gene construct, enabling the (5) 

clustering of reads based on UMI identity and the generation of accurate long-read consensus sequences. 

This step reduces bias compared to the alternative cell-free approach. Diluting the template 

concentration in the initial PCR to the desired molecule count, e.g. ~1 pg of DNA to achieve 

105 tagged sequences, could achieve a similar result. However, it relies strongly on accurate 

DNA quantification and requires many PCR reactions to amplify the low DNA molecule 
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numbers to required levels for sequencing, which will introduce strong bias due to PCR 

stochasticity (Kebschull & Zador, 2015). Consequently, the diversity restriction and clonal 

amplification in UMIC-seq is performed via cell transformation, combining the avoidance of 

PCR bias with experimental simplicity, rendering the molecule count easily identifiable in the 

number of colonies. To complete the practical aspects of the workflow, the plasmid is isolated 

from the grown colonies, the tagged gene of interest is excised via restriction digest and 

subjected to conventional nanopore sequencing with the SQK-LSK109 ligation sequencing kit. 

Computational analysis was performed with custom-made python scripts (Zurek et al, 2020a) 

in multiple steps as shown in Fig. D-4. First, experiment-specific barcodes can be used to 

demultiplex the sequencing reads into bins, e.g. one bin for each round of directed evolution. 

Next, clusters according to the UMI identity are generated. For this, the UMI needs to be 

extracted from the sequencing reads and assigned to groups based on similarity, representing 

erroneous UMI reads from the same parent molecule. The implementation in the custom-made 

python scripts uses a fast and ‘greedy’ agglomerative clustering algorithm, similar to the 

implementation of CD-HIT (Fu et al, 2012) but chooses a random sequence as the first cluster 

representative (instead of the longest sequence) and uses relative alignment scores as 

similarities (instead of word dictionaries). These changes were made to adapt a greedy 

agglomerative clustering to the challenges of UMI reads from nanopore sequencers, for which 

CD-HIT – programmed to reduce redundancies of highly similar sequences in large databases 

– was unsuitable due to the short and constant sequence length with many insertion and deletion 

errors as well as the general high error rate in nanopore reads. The UMIC-seq clusterer was 

implemented with efficiency in mind by using: (i) python parallelism with the multiprocessing 

package, (ii) a fast striped Smith Waterman alignment implementation of the scikit-bio 

package, (iii) memory efficient read parsing with the biopython package and (iv) an option to 

ignore processing for cluster outliers. Most alternative unsupervised clustering protocols 

require all-vs-all comparisons, computationally inaccessible due to the immense number of 

UMI sequences. In the UMIC-seq implementation, a randomly selected UMI is compared to 

all sequences by alignment, of which UMIs above a user defined similarity threshold are 

removed. This reduces the pool of remaining UMIs and thus comparisons necessary linearly. 

A tool to approximate a suitable threshold is supplied within the UMIC-seq python package. 

Threshold approximation is performed by calculating one-vs-all alignment score histograms 

for 25 randomly selected UMIs, which provide an overview of the distribution of alignment 

scores (Fig. S2a). Then, clusters are generated for these 25 randomly selected UMIs over a 
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range of thresholds, leading to saturation of within-cluster similarities at a suitable threshold 

(Fig. S2b). 

 

Fig. D-4: Overview of the bioinformatic tools used to generate accurate consensus sequences from UMI-

linked nanopore reads. Tools that were custom made for the purpose of UMIC-seq are highlighted in green and 

deposited on GitHub (Zurek et al, 2020a). External programs used are highlighted in red: MinKNOW (Oxford 

Nanopore Technologies, ONT), NanoPack (De Coster et al, 2018) and nanopolish (Loman et al, 2015). Additional 

inputs that are required to complete the full bioinformatic workflow are barcode sequences used to demultiplex 

pooled experiments and a probe sequence representing a constant region adjacent to the UMI for UMI extraction. 

Additionally, a clustering threshold can be approximated with the supplied clustertest functionality and the 

nanopolish consensus generation can be automated with the supplied generateSH and vcf2fasta tools. 

Finally, accurate consensus sequences can be generated form the read identities per cluster with 

the help of nanopolish (Loman et al, 2015). A full view of the individual steps taken in the 

bioinformatic pipeline, including all custom-made tools and external resources, are shown in 

Fig. D-4. A complete example of the UMIC-seq workflow is deposited on protocol exchange 

(Zurek et al, 2020b) with computational tools made available on GitHub (Zurek et al, 2020a). 
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D.2.2. AN EXEMPLARY AMDH EVOLUTION 

With an ultrahigh-throughput droplet microfluidic enzyme assay established (Fig. A-9, Fig. C-

2), a short directed evolution of the P4QM starting point for improved AmDH was performed. 

With the goal of showing the applicability of the UMIC-seq workflow to establish the 

phylogeny emerging from directed evolution, mutations were introduced over the full length 

of the gene and a permissive selection threshold was set for three rounds of directed evolution. 

Specifically, each round consisted of the introduction of 1-3 random mutations via epPCR to 

the pool of previously selected variants (or the non-mutated P4QM gene in the first round) and 

the selection of the best 1000 variants of a total of 1 million droplets (or ~250,000 variants at 

λ = 0.25) in the single cell droplet microfluidic AmDH assay (Fig. A-9). 

To verify sorting success, individual variants of the unsorted library as well as the output of 

each round of selection were tested for their activity. For each pool of variants, a lysate activity 

assay was performed for 46 randomly picked individual variants and the initial deamination 

rate in lysate was plotted relative to the non-mutated P4QM in Fig. D-5. The mean activity of 

sorted variants increases over the course of the directed evolution campaign from 0.17 to 0.80, 

showing successful application of droplet microfluidics to the screening of AmDHs. While a 

significant proportion of sorted variants is inactive (here defined as showing less than 20% of 

non-mutated P4QM activity) for all sorts, resulting from a high rate of false positives in droplet 

microfluidics, this number also drastically decreases from un-sorted library (76% inactive) to 

sorted library (48% inactive) in round 1. Thus, all sorted variants were next subjected to 

sequence analysis with the new UMIC-seq workflow.  

D.2.3. DETERMINATION OF UMI EFFICIENCY AND SEQUENCING ERROR-RATE 

The UMI in the UMIC-seq workflow has to be distinct enough to enable reliable clustering of 

reads originating from one template molecule at the error rates common to nanopore 

sequencing. Simulations were performed to establish the necessary UMI length and feasibility 

on a large scale prior to committing to experiment. Increasing the UMI length increases its 

potential diversity and thus increases the dissimilarities between two UMIs randomly attached 

to template molecules. High dissimilarities between UMIs enable greater confidence in cluster 

assignment but increased UMI length also heightens the risk of introducing unwanted sequence 

biases such as secondary structures or self-complementarities. 
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Fig. D-5: Lysate activity of sorted variants. Non-sorted library (naïve) and post-sort pools after each of the three 

rounds of directed evolution was tested for activity. 46 individual variants were randomly selected and assayed 

for AmDH activity as initial deamination rate relative to the non-mutated P4QM parental variant. The increase in 

mean activity confirms the successful enrichment of increasingly active variants over the course of the 

microfluidic directed evolution. 

Clustering efficiencies were thus estimated with different UMI lengths at a range of error rates 

common to nanopore sequencing (Fig. D-6a). UMIs were modelled at different error rates as 

1000 completely random sequences with 50±5 reads each. Errors were modelled as completely 

random substitution errors only. This set of 50,000 sequences was then clustered with the 

UMIC-seq clusterer (see D.2.1) and resulting clusters were compared to the original read 

identity. The clustering stringency was set to a consistently high level, automatically 

determined with via the ‘threshold approximation’ functionality, to exclude false assignments 

at the risk of not finding all members of a certain cluster. False assignments would increase 

error rates, but incomplete clusters could be compensated by increased sequencing depth. The 

comparison of UMIC-seq cluster assignment and information about the true sequence identity 

allows for the calculation of two clustering metrics: homogeneity and completeness. 

Homogeneity is a measure of correct assignment in clusters, a high homogeneity relates to a 

cluster containing only members of a single class. Completeness is a measure of efficiency in 

clustering, a high completeness relates to all members of a class being assigned to a single 

cluster (Rosenberg & Hirschberg, 2007). The high clustering stringency results in high 

homogeneities throughout, ideal to obtain high consensus accuracies from reliable clusters. 

Homogeneity is > 90% for all UMI lengths and often > 98% at lower error rates and higher 
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UMI lengths. At high error rates or for low UMI lengths, however, completeness of clustering 

is drastically reduced. This led to the conclusion of 50 bases as a suitable UMI length for 

experiment, as a good trade-off between sequence length and clustering efficiencies (>90% 

completeness at 14% error-rate). 

 

Fig. D-6: Influence of UMI length, error rate and library size on clustering efficiency. Cluster homogeneity 

relates to a cluster containing only reads of a single UMI. Cluster completeness relates to a single cluster 

containing all reads of one UMI. UMIs were generated as perfectly random sequences and sequencing errors were 

modelled as unbiased substitutions errors. (a) Influence of UMI length and sequencing error rate. 1000 UMIs 

were simulated with 50±5 reads each at different error rates and clustered using the UMIC-seq clusterer in 

triplicates. UMI lengths were varied from 20 b to 100 b indicated from light to dark. Completeness shown in blue 

with bands indicating standard deviation. A UMI of 50 bases was chosen for experiment as a trade-off between 

UMI length leading to unwanted biases and high clustering completeness (>90% at 14% error rate) (b) Influence 

of library size. Clusters of 103 to 106 UMIs with 50±5 reads each were generated at 8±1% error-rate and clustered 

using the UMIC-seq clusterer (circles) or MMseqs2 Linclust (squares). While the clustering completeness drops 

to 86% for libraries of 106 variants, it still shows the applicability for homogeneous clustering even beyond current 

flow cell capacity. 

To verify that these properties would scale to the sequencing of large libraries, the simulation 

was repeated with 50 b UMI length but at increasing sequence count. Now, 103 to 106 UMIs 

were generated with 50±5 erroneous reads each at an error-rate of 8±1% and subjected to 

clustering. The results show very efficient clustering of libraries of up to 105 variants, which 

proves applicability for larger future projects. For even larger libraries of 106 variants 

(corresponding to 106 × 50 erroneous reads), the exponentially increasing number of pairwise 

comparisons necessary for the UMIC-seq clustering algorithm reached its limit and a very fast 

linear clustering algorithm, MMseqs2 Linclust, was used instead (Steinegger & Söding, 2018). 

This resulted in a drop in completeness but still allowed for homogeneous clusters, showing 
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applicability of the UMI clustering approach for the generation of reliable clusters even in 

extreme cases greater than current flow cell capacity3. 

Sorted variants from the three rounds of directed evolution (D.2.2) were thus tagged with 50 b 

UMIs for clustering and consensus generation as well as experiment-specific barcodes 

indicating the round of directed evolution. The plasmid DNA of ~3000 UMI-tagged colonies 

was isolated from a dilution series after transformation to account for oversampling of the 

expected ~1000 sorted variants per round of directed evolution. Sequencing and base-calling 

followed the standard amplicon sequencing kit instructions (SQK-LSK109, Oxford Nanopore 

Technologies) on one MinION R9.4 flow cell. Sequencing was stopped when approximately 

100-fold sequencing oversampling was reached (~9000 consensus sequences of 1.2 kb at 100-

fold sequencing coverage: 1-2 Gb), to preserve the remaining flow cell capacity. Quality 

filtering, clustering and consensus generation was performed as described in D.2.1. The 

isolation of sequencing DNA from growing colonies did not seem to introduce bias, as the 

cluster sizes were almost normally distributed with an IQR from 57 to 129 centred around a 

median of 94 reads per cluster (Fig. S3). This highlights the robustness of this method: UMIC-

seq does not require accurate quantification of DNA concentrations, the molecule count is 

directly mirrored in the number of countable colonies which are uniformly amplified by the 

growing cells. This is in direct contrast to the recent results of Karst et al., in which the PCR 

amplification of very few initial molecules requires guessing due to unreliable DNA 

quantification and a very wide spread of consensus coverage with only few sequences showing 

high coverage due to strong PCR bias after a total of three PCR reactions (Karst et al, 2021).  

Potential mutations in the consensus sequences are identified with the non-mutated gene 

sequence as reference with nanopolish (Loman et al, 2015) and compared to 180 pairs of 

Sanger sequences (a total of 173 kb) for the calculation of error rates. Nanopolish conveniently 

associates each identified mutation with a confidence score, the so-called support fraction. 

Interestingly, filtering mutations based on their support fraction results in the reduction of false 

positive mutations (mainly insertions and deletions) while maintaining true mutations (mainly 

substitutions). When disregarding mutations with support in less than 60% of reads, errors 

which consistently occur in one of the two possible read directions are discarded, increasing 

the overall sequencing accuracy (Fig. D-7a), as shown in a recent study in a different context 

(Gilpatrick et al, 2020). 

 
3 A library of 106 gene variants of 2 kb length would require 100 Gb of sequencing output at 50-fold coverage. 

This lies far beyond current MinION flow cell capacities of ~10 Gb. 
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Fig. D-7: Analysis of errors in nanopore consensus sequences. Sanger sequences (180 pairs, 173 kb) can be 

paired to their respective nanopore consensus sequence via the UMI identity and were consequently used to 

confirm the error rate in nanopore sequences. (a) The support fraction of mutations distinguishes false positives 

from true mutations. The consensus mutations identified by nanopolish are associated with a read support fraction. 

Filtering of reads based on minimum accepted support fraction influences false negative (dashed line) and false 

positive (solid line) mutation calls. By accepting only mutations with a support fraction of at least 0.6, false 

positives are removed without increasing the false negative rate. (b) Influence of sequencing depth on error rate. 

Nanopore consensus sequences with a matching Sanger control are sampled and different depths and evaluated. 

The error rate is reduced to less than 0.01% when more than 35 reads per consensus sequence are available. 

Applying this filtering threshold resulted in a final average error rate per base of 0.008% 

calculated in reference to 173 kb of Sanger sequencing control. To investigate the effect of 

cluster size on error rate, nanopore clusters with a matching Sanger sequencing control were 

sampled at different cluster sizes from 1 to 50 reads. Calculation of consensus error rates for 

those sub-sampled clusters shows that 35 sequencing reads suffice to calculate an accurate 

consensus sequence (Fig. D-7b). The Sanger sequencing control identified a total of 654 true 

mutations, of which 98% were correctly identified in the nanopore consensus sequences. The 

average error rate per mutation mainly stemmed from false negatives (1.99%), with false 

positive mutations being the minority error in the nanopore consensus sequences (0.16%). The 

higher rate of false negatives is likely to arise from clustering errors, as mutations in a mixed 

cluster would not reach necessary support fraction and be ignored, resulting in non-mutated 

wild-type-like sequences.  

While a slight inflation of non-mutated sequences does not interfere with further downstream 

analysis, its cause was investigated. For some clusters containing false negatives, long 

homopolymer stretches in the UMI were identified, leading to a comprehensive analysis of the 

UMI composition. In fact, an AT-rich homopolymer bias was identified in all sequenced UMIs 
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(Fig. D-8), potentially leading to the reduction of the UMI diversity and in extreme cases 

leading to mixed clusters and consequently non-confident mutations and false negatives. This 

issue could be remedied by using a higher quality oligonucleotide and employing a non-

continuous UMI design, i.e. short stretches of fully randomised bases interspaced by few 

defined bases, so that long homopolymers are not allowed to form. In the end, a slight inflation 

of reference sequence is not an issue for downstream analysis and crucial variants will not be 

missed thanks to the oversampling on variant level. 

 

Fig. D-8: Analysis of UMI sequence composition. (a) Sequenced UMIs. All sequenced UMIs (n=6575) visibly 

show AT-bias and outliers with strong homopolymer composition. AT-homopolymers could reduce dissimilarity 

between UMIs and lead to clustering errors. A non-continuous UMI design, e.g. interspacing fixed bases, could 

reduce homopolymer content in future experiments. (b) Random UMIs. Perfectly random UMIs are simulated and 

analysed (n=6575) for comparison. 

D.2.4. A PHYLOGENY OF DIRECTED EVOLUTION 

The sequence information obtained in this workflow can identify multiple simultaneously 

occurring mutations throughout the whole gene. The number of mutations per variant increases 

per round of directed evolution, as expected, from a median of 1 to 3 to 5 mutations per variant 

(Fig. D-9). With multiple mutations randomly distributed throughout the gene and building on 

each other over multiple rounds of directed evolution, epistatic interactions could be prevalent. 

Epistatic interactions are difficult or impossible to predict but are the driving force of lineages 

and phylogenies (Miton & Tokuriki, 2016; Starr & Thornton, 2016) and can now be identified 

thanks to the long-read sequencing information. 
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Fig. D-9: Mutations per variant over the course of three rounds of directed evolution. The distribution of (a) 

base pair and (b) amino acid mutations per variant are shown for each round (n=1665, n=1620, n=2207). Box 

plots shown are defined by the three quartiles, whiskers as 1.5 IQR from the upper and lower quartile and outliers 

greater than the whiskers are highlighted independently. The median number of amino acid exchanges increases 

from 1 through 3, resulting in most variants having multiple mutations at the end of the evolution. 

A visually interpretable representation of the high dimensional sequence space can be achieved 

with dimensionality reduction tools, such as t-distributed stochastic neighbour embedding 

(tSNE, Maaten & Hinton, 2008). Such an approach, where similar sequences are presented in 

a lower dimensional space (e.g. 2D) based on their distance in the fully high-dimensional 

sequence space, are often called sequence similarity networks (SSN) in biological context 

(Atkinson et al, 2009). As similar sequences are expected to cluster around their starting points, 

lineages and phylogeny can be identified. In case of this experimental directed evolution, a 

phylogeny is identifiable as variants start to cluster and evidently form lineages in the later 

rounds of the experiment (Fig. D-10a). Interestingly, ‘founder variants’ of these clusters can 

be identified, in this context defined as the shared set of mutations that all variants in a cluster 

have in common (Fig. D-10b). Branches of a phylogeny can be distinguished even after just 

three rounds of directed evolution, e.g. as seen in the formation of sub-lineages by the 

acquisition of E323V or D308V to the previous founder variant A64E R102S.  

The identified founder variants are likely to contain beneficial mutations, resulting in more 

frequent selection in the microfluidic assay and the production of more related sequences in 

the following rounds of evolution. To verify this hypothesis and prove the biological relevance 

inferred from the SSN, all founder variants shown in Fig. D-10b were assayed for their activity. 

Additionally, as the information on co-occurring mutations could inform potentially important 
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epistatic interactions, all individual single and possible combinations of mutations in the 

founder variants were tested (Fig. D-11). Activity was tested as the initial reaction slope of cell 

lysate in 96-well plates, as these reaction conditions are a close representation of the conditions 

in the single cell lysate microfluidic assay that led to the selection of these variants. 

 

Fig. D-10: Phylogenetic analysis of directed evolution. (a) Full sequence similarity network with variants 

coloured by their round of first appearance. A graphical representation of sequence space in form of a tSNE 

illustrates the experimental phylogeny of three round of directed evolution. Each spot represents a unique variant 

with multiple mutations resulting in clustering of similar sequences. Non-mutated starting point sequence (wild 

type, green) highlighted with an increased spot size. (b) Cluster analysis. The core set of mutations shared between 

all variants within one cluster was identified and termed ‘founder variant’. A part of the SSN is shown with clusters 

coloured by their founding variant and spot sizes corresponding to total variant sequence count. The formation of 

clusters is uniquely defined by the long-read information of multiple simultaneously occurring mutations. 

Individual variants selected for testing were re-created: Mutations were introduced to the wild-

type sequence via mutagenic primers in a whole plasmid PCR. This was necessary as individual 

variants are not retained after microfluidic sorting, but a pool of selected variants is collected 

(and subjected to sequencing). The protocol used for this was in vivo assembly (IVA), which 

generates point mutated variants in a very quick and straightforward manner (García-Nafría et 

al, 2016). If a variant with many mutations is needed for testing, however, IVA cloning reaches 

its limits. In this case, a UMI dial-out PCR can generate any sequenced variant from the UMI-

tagged sequencing pool simply by amplifying DNA with a UMI specific primer (Schwartz et 

al, 2012).  
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Fig. D-11: Lysate activity of founder variants relative to non-mutated reference. Identified founder variants 

(and contributing mutations individually) were created and tested in lysate activity for their initial reaction rate 

v0. Mean value of n=4 independent biological replicates with standard deviations are shown. Reaction was tested 

in both reaction directions (Fig. C-2) and after heat-inactivation (10 min at 50°C) at 5 mM substrate concentration 

(deamination: R-1-methyl-3-phenylpropylamine. Amination: 4-phenyl-2-butanone). Sign epistasis can be 

identified in founder variant A64E R102S E323V: When E323V is introduced to previous variant A64E R102S, 

it provides a beneficial effect (121%-187% activity, 95% confidence interval, p = .012). However, when E323V 

is introduced into the wild-type background, its effect is strongly deleterious (14.6%-16.8% activity, 95% 

confidence interval, p = .012). Normal distribution was assumed and an ordinary one-way ANOVA (F(6,21) = 

42.6, p < .0001) with post-hoc multiple comparison via Tukey’s test was performed. 

Interestingly, an example of sign epistasis is found in the founder variant A64E R102S E323V 

(Fig. D-12a). In the phylogeny, the acquisition of mutation E323V to the lineage with A64E 

R102S as founding variant becomes apparent (Fig. D-10b), generating a large new lineage of 

A64E R102S E323V containing variants. The mutation E323V has a beneficial effect on 

variant A64E R102S, increasing its lysate deamination activity to 154±33% (95% CI), thus 

leading to its selection and propagation. When the mutation E323V is introduced to the wild-

type sequence, however, its effect is strongly deleterious. The mutation E323V individually 

decreases activity to 15.7±1.1% (95% CI) of the non-mutated starting point. The basis of 

interaction of these three mutations is not obvious, as they are located far apart in the protein 

structure (at least 18 Å between the three positions, Fig. D-12b). More importantly, however, 

this interaction would have been overlooked by conventional hotspot analysis. Hotspot analysis 

is based on short-read sequencing and will thus often look at each positions individually, 

without the context of other mutations, as seen in the comparable study of glycosidase function 
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with microfluidic deep mutational scanning (Romero et al, 2015). While hotspot analysis is 

useful to show the distribution of beneficial mutations throughout the full protein (Fig. D-12b), 

again highlighting the importance of distal sites to protein function and engineering, as seen 

before (Wrenbeck et al, 2017a; Wilding et al, 2019), it cannot report on the compatibility of 

mutation. Conventional hotspot analysis would have predicted all high frequency mutations as 

beneficial, yet E323V is only beneficial in the context of founder variant A64E R102S. 

 

Fig. D-12: Sign epistasis in founder variant A64E R102S E323V. (a) Lysate activities. Initial rates of 

deamination activity in lysate are shown (see also Fig. D-11). When mutation E323V is introduced in the context 

of previous founder variant A64E R102S it is beneficial. When it is introduced to the non-mutated wild-type 

sequence, however, it is strongly deleterious. With conventional short-read sequencing, E323V would have been 

misclassified as a beneficial mutation, although it is only beneficial in the sequence context of variant A64E 

R102S. (b) Hotspot analysis. Enrichment of mutations per position from round 1 to round 2 of directed evolution 

colour coded from green to yellow to red are mapped onto the AmDH structure (PDB 1C1D). Positions with 

enriched mutations are found throughout the whole protein. Positions exhibiting sign epistatic interaction are 

highlighted. 

The identification of random co-occurring mutations throughout a full protein can only be 

uncovered with long and accurate sequencing reads, highlighted by sign epistasis extending 

across 780 b in the gene and 18 Å in the protein in the most active and prevalent lineage 

identified here. 

D.2.5. CHARACTERISATION OF EPISTASIS IN FOUNDER VARIANTS 

The sign epistatic interaction in founder variant A64E R102S E323V was further investigated. 

All mutations individually and their possible combinations were purified and characterized 

regarding their catalytic parameters (Table 6). Additionally, performance as biocatalysts was 

measured as total turnover number in the industrially relevant amination direction. 
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Table 6: Biochemical characterization of A64E R102S E323V variants. 

Variant 

Steady state kineticsa 

Tm
b (°C) 

Soluble 
expressionc 
(%) 

Total turnover 
numberd kcat  

(s-1) 
KM  
(mM) 

kcat/KM  
(s-1 mM-1) 

WT 1.55 ± 0.02 0.40 ± 0.02 3.84 ± 0.06 50.5 ± 0.17 97 ± 0.25 20,100 ± 1,180 

A64E 6.12 ± 0.05 2.17 ± 0.06 2.83 ± 0.03 50.4 ± 0.08 99 ± 0.40 57,400 ± 730 

R102S 1.72 ± 0.03 0.33 ± 0.03 5.27 ± 0.08 49.7 ± 0.09 96 ± 0.11 22,000 ± 330 

E323V 1.20 ± 0.01 0.37 ± 0.02 3.28 ± 0.05 51.0 ± 0.09 79 ± 3.34 16,400 ± 700 

A64E R102S 5.38 ± 0.07 1.86 ± 0.07 2.90 ± 0.04 48.1 ± 0.08 97 ± 0.22 51,500 ± 720 

A64E E323V 4.94 ± 0.09 1.62 ± 0.09 3.05 ± 0.06 49.9 ± 0.05 94 ± 0.47 66,300 ± 2,990 

R102S E323V 1.36 ± 0.02 0.38 ± 0.02 3.62 ± 0.05 49.9 ± 0.07 98 ± 0.18 16,200 ± 2,030 

A64E R102S E323V 4.23 ± 0.07 1.27 ± 0.07 3.34 ± 0.06 48.9 ± 0.09 98 ± 1.45 65,900 ± 380 

All values show standard deviation from three independent technical replicates. 
aBuffer: 100 mM Glycine-KOH pH 10. Co-substrate: 2.5 mM NAD+. Temperature 22 °C. Substrate: R-1-methyl-3-phenyl-

propylamine from 0 mM to 12.8 mM. Michaelis-Menten curves in Fig. S4. 
bMeasured via differential scanning fluorimetry with SYPRO orange. 
cProtein expressed at 20 °C for 16 h. Soluble fraction compared to insoluble fraction via SDS-PAGE gel densitometry. 
dSmall scale transformations with 50 mM 4-phenyl-2-butanone and 0.1 µM enzyme at 30 °C for 72 h. Glucose dehydrogenase 

used for cofactor recycling. 

 

Mutation A64E contributes to a strongly altered catalytic profile, increasing both the KM and 

kcat in steady state kinetics. While the catalytic efficiency is thus not increased over the non-

mutated wild-type variant, the more than 4-fold increased kcat results in a very good biocatalyst, 

seen in a high total turnover number. The increases in both kcat and KM indicates a strong 

selection for fast substrate turnover at high concentrations, which is in line with the conditions 

in the droplet assay and thus follows the principle of directed evolution “you get what you 

screen for” (You & Arnold, 1996). The droplet assay, which requires high substrate turnovers 

for detection (Gielen et al, 2016), puts selection pressure on high kcat values due to long 

incubation times at high substrate concentrations. This selection regime, however, makes the 

absorbance sorter a very suitable tool for the engineering of biocatalysts, which are usually 

required to work at high rates and high substrate concentrations for long times (Ma et al, 2010). 

Furthermore, mutation A64E increases soluble expression strength, which is an important 

factor in lysate assays such as the droplet assay used for selection and the plate assay used for 

verification. High expression strength increases the amount of available protein in the 

compartment and thus increases the product detection in the compounded measurements in 

lysate. The effect of mutation on expression strength also forms the basis of the epistatic 

interaction between the mutations: The mutation E323V individually strongly reduces activity 

in lysate (Fig. D-11), which is a result of a reduction in expression. This reduction in expression 

strength, however, is compensated when E323V is combined with A64E, in which case the 
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negative effects of E323V are removed. The combined change in catalytic parameters, a 

reduction of KM by E323V and R102S and an increase in kcat by A64E, results in a rescued 

initial rate in lysate as well as increased performance as a biocatalyst for the triple mutant 

(Table 6). 

The triple mutant outperforms not only the WT but also the A64E single mutant in the 

biocatalytic assay, showing the applicability of phylogenetic analysis and consideration of 

epistatic interactions in protein engineering to solve an applied biocatalytic challenge. The 

study of such interactions will benefit from a suitably accurate and inexpensive high-

throughput sequencing strategy, as introduced in this chapter, opening the door to 

understanding of fundamental constrains in protein evolution (Sarkisyan et al, 2016; Diss & 

Lehner, 2018) and eventually training more and more efficient models for protein engineering 

(Alley et al, 2019; Yang et al, 2019). 

D.3. CONCLUSION & OUTLOOK 

Current deep mutational scanning relies on Illumina short-read sequencing as a functional read-

out of small focused or comprehensive single position libraries (see A.4). The short read length 

limitation is reflected in larger studies of pairwise epistatic interactions in proteins, which tend 

to focus on very small domains: blocks of 25 amino acid in the second RRM domain of Pab1 

(Melamed et al, 2013), 32 amino acids at the interface of Fos and Jun (Diss & Lehner, 2018), 

37 amino acids of the WW domain of Yap1 (Araya et al, 2012) or 56 amino acids of the IgG-

binding domain of protein G (Olson et al, 2014). Capturing effects of mutations throughout 

entire proteins would be necessary to reveal the presumably more complex and difficult-to-

understand long-range interactions. The biggest such experiment, the study of multiple 

simultaneously and randomly distributed mutations in a whole protein, was the study of the 

238 amino acid fitness landscape of GFP (Sarkisyan et al, 2016). Here, the read length of 

Illumina sequencing was extended by combining two pairs of reads with the same UMI after 

restriction and ligation to cover the full GFP gene. The impact of mutation on GFP function 

could thus be studied over the full ~700 b gene range. However, this method scales badly to 

longer gene lengths as multiple restriction and ligation steps would be required, amplifying the 

experimental difficulty and any potential imperfections by chimera formation in the ligation 

step or by mutation to any of the many necessary restriction sites. 
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UMIC-seq removes these ambiguities, a simple primary long read does not require assembly 

but only comparison to the reference gene for consensus generation. Different levels 

sequencing depth can easily be adjusted and always generating full length reads results in great 

scalability over possible template lengths. True long reads result in uniform sequencing 

coverage and the same workflow for any the target length. Practically, UMIC-seq is easy to 

implement: Only a benchtop sequencer and common molecular biology equipment is required. 

The workflow can be performed by a single operator in short time, requiring only 

straightforward steps such as PCR and Gibson assembly with intuitive control over UMI 

diversity in colony count after transformation. 

The sequencing workflow presented here affords pristine sequencing accuracy of amplicons of 

any length at reasonably low cost. Assuming a single MinION flow cell produces 10 Gb of 

sequencing output, approximately 100,000 accurate consensus sequences at 50-fold coverage 

can be produced of an amplicon of 2 kb length. This results in a cost per mutant sequence of 

less than 1 penny4, a 500-fold cost reduction compared ~£5 for comparable paired Sanger 

sequences. Other applications that could benefit from a long-read amplicon sequencing 

workflow could be the sequencing of immune repertoires, viral populations or metagenomic 

16S rRNA samples. However, part of the high accuracy of UMIC-seq can be expected to stem 

from a close and known reference sequence to which mutations are called. For the above-

mentioned applications involving unknown references or larger sequence deviation between 

variants, a reference sequence could be assembled from raw reads prior to polishing with tools 

such as Miniasm (Li, 2016), but final accuracy remains to be determined and will likely require 

higher sequencing depth than 50x. Consensus accuracy could be increased, on the other hand, 

if UMI design was adjusted. Sequenced UMIs showed an AT and homopolymer bias (Fig. 

D-8), which is hypothesized to contribute to the remaining consensus sequencing errors by 

facilitating incorrect clusters. This issue could be overcome by (i) choosing a higher quality 

oligo synthesis method and (ii) applying a non-continuous UMI design, such as regular 

constant bases interspaced the random UMI bases or using NNNYR-repeats (Karst et al, 2021). 

Finally, an affordable and accurate high-throughput long-read amplicon sequencing workflow 

will enable many more studies of sequence-function relationships in proteins. The increased 

 
4 At the time of writing, one R9.4 flow cell is sold for £720 and a library preparation kit (SQK-LSK109, containing 

6 reactions) is sold for £480 (£80 per reaction) by Oxford Nanopore Technologies. The NEBNext companion 

module (E7180S, 24 reactions) is sold for £890 (~£37 per reaction) by New England Biolabs. Thus, the total cost 

per sequencing run is ~£837. Prices accessed on 11/12/2020 at https://store.nanoporetech.com/ and 

https://www.neb.uk.com/. 

https://store.nanoporetech.com/
https://www.neb.uk.com/
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information content afforded by long reads will push phylogeny-based approaches and enable 

much more advanced machine-learning frameworks (Mazurenko et al, 2020), making use of 

true cooperative fitness effects instead of merely adding hotspots in protein engineering. In the 

next step, a larger dataset pushing to the limits of both the microfluidic assay and the nanopore 

sequencing capacity should be generated. Both technologies still hold untapped potential which 

will be used for a comparative study of enzyme evolvability in the next chapter. 
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E. ESCAPING LOCAL OPTIMA IN 

COMPARATIVE LONG-TERM EVOLUTION 

 

 

 

With an accurate high-throughput sequencing method and a suitable ultrahigh-throughput 

screening assay at hand, the trajectories of two large directed evolution campaigns will be 

investigated. The two similarly stabilized AmDH starting points, P4QM and E4QM, will be 

evolved for higher activity in parallel, prompting the comparison of their evolvabilities. 

Curiously, one starting point achieves higher relative and absolute improvements, expanding 

explored sequence space by means of recombination. 
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E.1. INTRODUCTION 

Protein engineering is a major force of the modern green chemistry revolution (Woodley, 2020; 

Bornscheuer et al, 2012). Unfortunately, general strategies and best principles for the efficient 

engineering of proteins are difficult to establish due to the idiosyncrasy of each example: 

functional effects of mutation are strongly dependent on the current genetic context (Miton & 

Tokuriki, 2016). Each engineering starting point has a different potential for adaptation – a 

different ’evolvability’ – meaning that improvements might be more or less difficult. These 

differences stem from pervasive cryptic epistasis (the many unexpected and non-additive 

interactions between mutations during protein evolution) that force evolutionary trajectories 

into different paths and thus towards different optima (Starr & Thornton, 2016). Evolvability 

manifests itself as the number of mutations necessary to reach an optimization plateau or a 

fitness peak as well as the achieved improvement or the height of the fitness peak (Goldsmith 

& Tawfik, 2017).  

Consequently, very different evolvabilities for seemingly innocuous differences between 

homologous starting points can be identified. For example, very large effect differences of 50- 

to 770-fold were found for the first single step towards increasing promiscuous activity in nine 

homologous γ-glutamyl phosphate reductases, with no correlation to the initial promiscuous 

activity (Khanal et al, 2015). However, the full evolutionary potential might only come to 

fruition after multiple rounds of accumulating mutations lead to a functional plateau or fitness 

peak (Bloom & Arnold, 2009). Following a single trajectory of 10 rounds of directed evolution 

of two homologous metallo-β-lactamases for promiscuous phosphonate monoester hydrolase 

activity, Baier et al show striking differences in evolvability also for long-term evolution (Baier 

et al, 2019). Again, no correlation of initial activity with final activity as well as vastly different 

evolvabilities between the two homologous starting points were found. In this case, differential 

evolvability is related back to specific epistasis hindering the acquisition of a strongly 

activating mutation in one of the two starting points, convincingly showing the importance and 

unpredictability of cryptic genetic variation implicated in evolvability and thus protein 

engineering (Baier et al, 2019). 

A possible way to increase the chances of successful directed evolution is neutral drift. If no 

direct optimization is possible, neutral mutations can be introduced to produce a pool of 

variation (Bershtein et al, 2008). If selection is then applied to this pool, chances of success are 

improved as a wider range of sequence space is covered and one of the many starting points in 
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the pool could lead to high function (Fig. E-1). This principle has for example been shown to 

be effective for the engineering of fluorescent proteins (Zheng et al, 2019). 

 

Fig. E-1: Neutral variation can increase evolvability. By diversifying the initial starting point (blue open circle) 

to a pool of variants with neutral mutations (red open circles), a lot of diverse adaptive peaks might become 

accessible. If selection is performed on just the initial starting point, a local optimum is found (V0). By starting 

the selection with the pool of diversified variants, cryptic epistatic effects could lead directed evolution towards 

different optima, which might reach higher function (VC). Figure adapted from Zheng et al, 2019. 

With the introduction of the UMIC-seq protocol and an ultrahigh-throughput microfluidic 

AmDH screen in the previous chapters, full-length trajectories of pools of randomly mutated 

genes can be tracked during directed evolution for multiple rounds. This technology could 

generalize the anecdotal findings of previously short (Khanal et al, 2015) or single comparative 

trajectories (Baier et al, 2019) and expand the knowledge gained from neutral drift experiment 

on single starting points (Zheng et al, 2019) by testing its reproducibility and overlap 

comparatively. Evolving two similarly stabilized AmDH starting points, P4QM and E4QM, in a 

large comparative long-term evolution would lead to a contrast of evolvabilities focused on 

cryptic genetic variation, while permitting more generalized conclusions due to the tracking of 

many trajectories in parallel, providing many evolutionary possibilities.  
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E.2. RESULTS & DISCUSSION 

The methods established in chapter D, the microfluidic screening combined with accurate long-

read sequencing of AmDH variants, were successfully used to map the trajectories of a short 

directed evolution campaign. This directed evolution test case, however, did not reach the full 

potential of either technology. Now, two AmDHs will be evolved for increased function in 

parallel at a larger scale. 

E.2.1. LONG-TERM MICROFLUIDIC DIRECTED EVOLUTION OF TWO AMDHS 

Two initial AmDH variants, the stabilized variants P4QM and E4QM, will be subjected to 

directed evolution in parallel with the aim of comparing their evolutionary trajectories. First, 

new plasmids with different antibiotic resistance genes were generated for both variants. The 

pASKamp plasmid used throughout this thesis contains an ampicillin resistance gene, which was 

replaced with a chloramphenicol resistance cassette and a spectinomycin resistance cassette to 

yield pASKca and pASKsm, respectively. The resulting expression plasmids pASKca-P4QM and 

pASKsm-E4QM were subsequently used for the comparative directed evolution campaigns. 

The long-term directed evolution was performed for eight rounds as follows: (i) introduction 

of 2-3 random mutations throughout the full gene with error-prone PCR (ii) absorbance-

activated droplet sorting selecting the most active 2% of 250,000 variants, thus sorting 5000 

droplets from 1,000,000 droplets at 25% occupancy (λ = 0.25) and (iii) recovery of plasmid 

DNA from sorted droplets and preparation as input for the next cycle. Dilution series were 

plated to verify transformation efficiencies so that library coverage and recovery efficiencies 

stayed comparable between the two starting points. Sorting success was verified by comparing 

the lysate activities of few randomly selected variants before and after the first selection (Fig. 

E-2). Randomly selected variants from the error-prone PCR libraries before sorting show a 

large percentage of inactive variants (54% and 82% for P4QM and E4QM, respectively) as well 

as a low mean relative activity compared to the non-mutated reference (0.3 and 0.1 for P4QM 

and E4QM, respectively). After the selection via absorbance-activated droplet sorting, only few 

variants remain inactive (15% and 36% for P4QM and E4QM, respectively) and the average 

activity is much closer to the non-mutated reference (0.7 for both P4QM and E4QM, 

respectively). Interestingly, some sorted variants of the E4QM library show increased activity, 

reaching up to 3-fold relative lysate activity, while sorted variants from the P4QM library are 

largely wild-type-like (Fig. E-2). 
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Fig. E-2: Relative lysate activities of randomly selected library variants before and after the first screening. 

92 variants were randomly picked from the initial error-prone PCR library before (“naïve”) and after the first 

screening (“sorted”) and assayed for their lysate deamination activity (5 mM R-1-methyl-3-phenylpropylamine, 

2.5 mM NAD+ in 100 mM Glycine-KOH pH 10). Activities were calculated from the initial slopes relative to the 

respective non-mutated reference. The percentage of inactive variants (relative activity < 0.1) and the mean 

activity of all variants is shown. (a) Tested variants of the P4QM directed evolution. (b) Tested variants of the E4QM 

directed evolution. 

Tracking the progress of the directed evolution campaigns on a functional level was performed 

similarly: 92 randomly selected variants were assayed after each of the eight rounds of sorting 

(Fig. E-3). Curiously, the P4QM directed evolution follows a neutral progression with the mean 

relative activity of functional variants fluctuating between 0.5 and 1.5 throughout the eight 

rounds. The directed evolution of E4QM, on the other hand, assumes a more traditional 

progression with the mean relative activity of functional variants increasing from 1.1 to 17.5. 

These two trajectories of functional improvement show a great difference in evolvability 

between the two starting points. 

No significant (Mann-Whitney U = 1669, two-tailed p > .05) differences in activity were 

measured, comparing the randomly selected variants after the first round (median 0.89) and the 

eighth round (median 0.91) of directed evolution for the P4QM campaign, while the E4QM 

variants show significant (Mann-Whitney U = 68, two-tailed p < .0001) differences in activity 

after round one (median 1.07) and eight (median 16.60). The striking differences in observed 

evolvability warrants a further investigation of the directed evolution on a sequence level. 
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Fig. E-3: Relative lysate activities of randomly selected variants after each round of directed evolution. 

After each round of directed evolution (r1 to r8), 92 sorted variants were randomly selected and assayed for their 

lysate deamination activity (5 mM R-1-methyl-3-phenylpropylamine, 2.5 mM NAD+ in 100 mM Glycine-KOH 

pH 10). Activities were calculated relative to the respective non-mutated reference. Additional values shown 

represent the percentage of inactive variants (relative activity < 0.1) and the mean activity of all active variants 

(relative activity > 0.1). (a) Tested variants of the P4QM directed evolution. (b) Tested variants of the E4QM directed 

evolution. 

E.2.2. UMIC-SEQ REVEALS THE AMDH SEQUENCE SPACE 

Targeting the retrieval of sequence information for all ~5000 selected variants per round of 

directed evolution for each of the two starting points requires a lot of sequencing data. Each 

variant will be tagged with a UMI, conferring unique variant identity, and a barcode identifying 

the round of directed evolution the variant occurred in. The resulting tagged sequencing library 

is transformed to reduce UMI complexity according to the UMIC-seq workflow (see chapter 

D.2.1). A 3-fold colony transformation oversampling as well as a 100-fold read sequencing 
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depth is required to achieve high completeness and accuracy. Consequently, each of the two 

directed evolution campaigns will require 15.6 Gb5 of sequencing data and thus be sequenced 

on an individual MinION R9.4 flow cell, which should be able to provide 10-30 Gb per 

sequencing run. The UMIC-seq workflow was performed just as the previous time with one 

exception: due to the observed AT-homopolymer bias in the UMIs (Fig. D-8) the UMI-tagging 

is performed with the UMI2-F primer containing [NNNYR]10-repeats instead of a [N]50 UMI, 

which breaks potential homopolymers to a maximal length of 5 bases (Karst et al, 2021). 

Nanopore sequencing was performed for 48 h yielding 23.76 Gb and 18.96 Gb for the E4QM 

and P4QM runs, respectively. After quality control (filtering for reads with length of 1250-

1400 b and a quality score greater than 8) and demultiplexing by round of directed evolution, 

1,418,506 ± 169,080 and 1,029,109 ± 64,749 reads were obtained for each round of evolution 

in the P4QM and E4QM campaign, respectively. The number of UMI clusters containing more 

than 30 reads ranged from 2826 to 13,813 (mean 9,066) and from 4,690 to 9,669 (mean 6,530), 

resulting in a total of 72,531 and 52,238 consensus sequences for the P4QM and E4QM 

campaigns, respectively. 

Unique variants, their corresponding total frequency (a variant can appear multiple times per 

round as well as in multiple rounds) and the round in which the variant first appeared were 

extracted. With this data, an overview of the phylogenetic architecture of the explored sequence 

space was established in sequence similarity networks (Fig. E-4a,b). Again, a structure in the 

directed evolution can be seen with many smaller and larger clusters forming with increasing 

progression. Interestingly, the explored sequence space in the directed evolution of P4QM 

appears well connected with large clusters forming in close proximity. The directed evolution 

of E4QM on the other hand shows more distant and less connected clusters. While the tSNE 

representations remain useful visualizations of the explored sequence space during directed 

evolution, their interpretation can be misleading for example in regard to absolute cluster sizes 

or distances between clusters, which might not be well preserved (Maaten & Hinton, 2008; 

Wattenberg et al, 2016). Consequently, more quantitative measures of the sequence space 

architecture are needed. In fact, most studies using sequence similarity networks have only 

used them for visualization and exploration (chapter D.2.4; Copp et al, 2018; Starr et al, 2017; 

Atkinson et al, 2009; Akiva et al, 2017). However, mathematical graph theory provides 

 
5 3-fold transformation oversampling × 5000 variants × 8 rounds × 1300 b gene length × 100-fold read 

oversampling for accuracy = 15.6 Gb 
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quantitative statistical tools for the analysis of large networks, e.g. previously applied to the 

networks intrinsic to antibody repertoires (Miho et al, 2019).  

Thus, network graphs were generated in which each node represents a unique variant and edges 

connect nodes within an edit distance of two or lower (two variants are connected in the graph 

if they can be interchanged by one or two mutations). Consequently, the resulting graphs 

contain 30,457 and 30,683 nodes with 1,196,340 and 338,942 edges for the P4QM and E4QM 

evolution, respectively. For visualization purposes, a simplified sub-graph containing only 

edges with an edit distance of one and only nodes with at least two connections (the 2-core) is 

shown in Fig. S5. Again, a densely populated P4QM sequence space is visually distinguishable 

from the disconnected wide E4QM sequence space, confirming the tSNE representation. More 

quantitatively, however, each node has multiple imputable properties such as its degree and 

betweenness. The degree of a node corresponds to the number of edges connecting to it and 

the betweenness of a node is inferred from its participation in all possible shortest paths 

between any two nodes. These two properties were computed for all nodes as they could 

potentially aid in the identification of important founder mutations or bridging variants between 

clusters, respectively. Key mutations as identified by their statistical properties in the network 

graph were chosen for functional verification, as their impact is likely beneficial to the protein 

(chapter E.2.3).  

To assess the overall differences in the sequence space architecture for the two directed 

evolution campaigns, global network properties were calculated (Fig. E-4c). First, a 

comparison of the average degree (78.6 for P4QM evolution, 22.1 for E4QM evolution) shows 

that the density of the P4QM sequence space is in fact very high, while the E4QM sequence space 

is more loosely connected. These findings are underlined by the differences in network 

diameter (13 and 31 for P4QM and E4QM, respectively) and average path length (3.4 and 11.3 

for P4QM and E4QM, respectively), quantifying a wide and distributed E4QM sequence space in 

contrast to a centralized and densely connected P4QM sequence space. Quantifying the level of 

sequence diversity explored by the two evolution campaigns was done by calculating the 

number of clusters the variants can be grouped into at different edit (Levenshtein) distances 

(Fig. E-4b, Byrant et al, 2021). The E4QM evolution consistently covers a larger volume of 

sequence space than the P4QM campaign. The cluster number of the E4QM sequence space 

increases with the cluster radius from 1.4- to 14-times the cluster number of P4QM, being on 

average 5.3±2.4-times higher. This higher diversity in the explored sequence space of E4QM is 

consistent with the wider network graphs.  
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Fig. E-4: Visualization and global properties of the P4QM and E4QM directed evolution sequence space. A 

tSNE (for visualization) and a network graph (for quantification) was calculated for unique variants of both 

directed evolution campaigns. Similar sequences are placed close together in the tSNE, resulting in clusters 

representing phylogenetic clades. While clusters in the P4QM evolution seem closer and more connected, the 

clusters in the E4QM evolution show a more separate and wide distribution. Colour coding indicates the round of 

first appearance of each unique variant. (a) tSNE of P4QM evolution sequence space. 30,457 unique variants. (b) 

tSNE of E4QM evolution sequence space. 30,683 unique variants. (c) Graph properties. The information of 

sequenced variants (30,457 and 30,683 unique sequences for P4QM and E4QM, respectively) was translated to a 

network graph, in which each unique variant constitutes a node which is connected to others if the variant is 

interchangeable by one or two mutations. Properties of this network were calculated: The average degree is the 

average numbers of connections of each node while the network density is the ratio of edges to all theoretically 

possible edges. The network diameter is the longest of all shortest paths between any two nodes while the average 

path length is the average of all shortest paths between any two nodes. The freeman centralization measures how 

central the most central node is compared to all other nodes, where in this case centralization is measured as node 

betweenness, which calculates the participation of a node in all possible shortest paths. The calculation of these 

properties provides a quantitative view on the differences of the two directed evolution campaigns, in which the 

P4QM evolution explores a dense and narrow sequence space and E4QM explores a wide and less-connected 

sequence space. (d) Diversity analysis. The number of clusters as a function of cluster radius is shown for the 

P4QM and E4QM evolution. To enable comparison, 40,000 sequences were randomly sampled for both evolution 

campaigns. The insert shows the method of clustering which was implemented as described by Bryant et al, 2021. 

Clusters are generated from the furthest sequence to the wild type consecutively including all sequences within 

an edit (Levenshtein) distance less than the radius. The E4QM sequence space consistently produces more clusters 

than the P4QM sequence space, speaking to a higher level of explored sequence diversity. 
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For the first time, measurable differences in the explored sequence space architecture are 

quantified here in the case of the directed evolution of two homologous enzymes. 

E.2.3. CHARACTERIZATION AND TRANSPLANTATION OF KEY MUTATIONS 

Key mutations in the directed evolution of both starting points (founder variants) were 

functionally tested. Variants central to big clusters show a high degree in the network, meaning 

that those variants are connected to many related sequences and thus constitute a founding 

variant of a cluster. Ten mutations were selected in each evolution based on their degree and 

betweenness values, making them likely founder variants (Table S2). These ten mutations were 

re-introduced to the non-mutated parental sequence individually via in vivo assembly 

(Materials & Methods G.2) and tested for their functional impact on lysate deamination activity 

(Fig. E-5). Again, most founder variants are beneficial, explaining their successful enrichment 

and the foundation of a lineage in the sequence similarity networks. On average, the impact the 

founder mutations have on relative activity is higher for the E4QM variants than for the P4QM 

variants (average relative activity 1.6±0.4 and 1.2±0.6, respectively). The directed evolution of 

P4QM remained neutral overall (Fig. E-3), which is in line with the finding that most founder 

variants also have a neutral effect on activity. E4QM, on the other hand, shows a high 

evolvability form the first round with many variants improving the activity in lysate (Fig. E-5). 

 

Fig. E-5: Relative lysate activity of founder variants. Initial rates of lysate deamination activities were 

measured in biological replicates (n=4, SD shown) for ten selected founder variants for both starting points. 

Activities are relative to the respective non-mutated parental variant. (a) Founder variants of P4QM directed 

evolution. Previously identified founder variant A64E is identified again. (b) Founder variants of E4QM directed 

evolution. The average impact of founder variants is higher than that for the P4QM founder variants. 

The most beneficial founder variant in the P4QM evolution is the mutation A64E, reproducing 

the findings of the short directed evolution in the previous chapter (Fig. D-11). In the E4QM 
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evolution the beneficial mutation S151G is identified, a mutation that was found to increase 

the activity of the non-stabilized WTQC AmDH in a previous study (Ye et al, 2015). Together, 

these results hint at the reproducibility of finding individual beneficial mutations even in large 

library sizes when an ultrahigh-throughput screening is employed. 

Only one mutation (A148V) is shared between the two starting points in the ten tested founder 

variants, which also leads to similar improvements in both starting points (1.85±0.02-fold and 

1.97±0.04-fold improvement in P4QM and E4QM, respectively). Thus, the question whether the 

founder mutations differ by stochasticity or by functional exclusiveness arises. Although the 

throughput of the microfluidic screen should suffice, in theory, to assay every possible 

individual point mutation more than 30-fold6 at each round of directed evolution, confounding 

factors such as true library composition make predictions of the real oversampling difficult. A 

founder mutation of one starting point might still not have occurred and thus not have been 

screened in the other starting point. Consequently, beneficial founder variants were tested for 

their compatibility in the other starting point experimentally (Fig. E-6).  

Beneficial P4QM founder mutations R30H and A64E were chosen for transplantation as well as 

beneficial E4QM founder mutations H104Q, N107C, S151G and F160L. The mutations were 

introduced individually to the respective other background and again tested for their relative 

lysate activity (Fig. E-6). Curiously, all four founder mutations that were beneficial in the E4QM 

starting point were neutral or slightly deleterious in the P4QM background. Beneficial P4QM 

mutations were either neutral to E4QM in case of A64E or highly deleterious in case of R30H. 

These results show that the different trajectories and founder variants between the two lineages 

are not a result of differential sampling of mutations but rather the result of verifiable 

differences in function. Beneficial mutations in one starting point are not beneficial in the other, 

although both variants are similarly stable (reducing the importance of threshold epistasis) and 

similar in sequence composition (86% sequence identity). This prevalence of context-

dependent mutations speaks to the pervasiveness of specific epistatic interactions and the 

difficulty of predicting the effect of individual mutations let alone the evolvability of a starting 

point. 

 
6 The AmDH consists of 357 amino acids, each of which would be mutated to the other 19 amino acids equally in 

a perfectly balanced library. Thus, a complete single mutation library would comprise 6783 variants, which could 

be oversampled 37-fold with a throughput of 250,000 variants assayed per round of directed evolution. 
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Fig. E-6: Activity of beneficial founder mutations measured in both P4QM and E4QM backgrounds. The initial 

slope of lysate deamination activity was measured in biological replicates (n = 4, SD shown) and normalized to 

the respective non-mutated background. Mutations show a highly differential effect depending on the genetic 

context they are introduced into, even in the similarly stable homologs P4QM and E4QM. Activity of R30H was 

below detection limit in the E4QM background. 

E.2.4. END-POINT VARIANTS 

To narrow down the search space for improved variants a final stringent round of directed 

evolution was performed. Again, an error-prone PCR was performed to introduce 2-3 

mutations per gene on the ~5000 selected variants of round 8. Now, a more stringent selection 

sorting the top 0.5% of 250,000 variants followed. Additionally, the sort was performed at a 

lower droplet occupancy (λ = 0.15) to reduce the false positive rate, assaying 250,000 variants 

in 1.7 million droplets. A traditional secondary screen was performed to identify the overall 

most active variants: individual colonies recovered after sorting were analysed in a 96-well 

plate lysate assay, in total screening 552 variants for each campaign. The five variants with the 

highest activity of both campaigns were isolated, their sequence identified, and their lysate 

activity verified in quadruplicates. The variant with the highest relative lysate activity (clone 

P4QM-G8: 5.0±0.2, clone E4QM-D1: 27.5±0.5) was chosen for purification and further 

characterization (Table 7). The E4QM-D1 variant not only shows the highest relative 

improvements in activity, but also the highest absolute lysate activity. Again, the final variants 

obtained from directed evolution show great increases in kcat, in agreement with the selection 

conditions. E4QM-D1 outperforms not only the non-mutated E4QM variant but also the P4QM-

G8 variant considerably, its kcat being 27.9- and 2.4-fold increased, respectively. A similar trend 
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transpires through the catalytic efficiencies, making these improved AmDHs serious 

candidates for biocatalysts. 

Analysing the Sanger sequencing data obtained from the five most improved variants for each 

directed evolution provides an interesting view of the mechanism with which activity was 

improved. Curiously, conversion mutations can be identified in all five final variants for both 

campaigns. The most improved P4QM-G8 variant contains a total of 11 mutations: 7 unique 

mutations (I4T A148V E198D L215Q M242L F287Y H311N) and 4 conversion mutations 

(A21R A22E V28I Q202R), which convert its state partially to the E4QM sequence state. Three 

of the best five P4QM variants show a similar pattern of combining founder mutations with the 

conversion mutations around A21R A22E. While the overall best variant P4QM-G8 does not 

contain the most active founder mutation A64E, one of the best five variants has the mutations 

D5H N9D R30H A64E V298I H311N, indicating the possibility of non-additive interactions 

between the founder mutations as well as overall distinct solutions for activity improvement 

and multiple fitness peaks. 

Table 7: Characterization of the most active P4QM and E4QM variants. 

Variant 

Steady state kineticsa 

Tm
b (°C) 

Soluble 
expressionc 
(%) 

Lysate 
activityd 
(abs360nm/h) 

kcat  
(s-1) 

KM  
(mM) 

kcat/KM  
(s-1 mM-1) 

P4QM 0.71 ± 0.02 0.56 ± 0.06 1.26 ± 0.11 49.8 ± 0.1 97.8 ± 4.1 56.7 ± 4.2 

E4QM 0.65 ± 0.01 0.59 ± 0.02 1.10 ± 0.04 51.3 ± 0.2 96.4 ± 2.0 19.0 ± 0.4 

P4QM-G8 7.71 ± 0.19 1.15 ± 0.10 6.71 ± 0.09 53.7 ± 0.1 100.0 ± 0.1 285.1 ± 11.8 

E4QM-D1 18.12 ± 0.21 2.09 ± 0.07 8.68 ± 0.04 54.3 ± 0.2 99.5 ± 0.1 522.5 ± 8.8 

All values show standard deviation from three independent technical replicates, except lysate activity which is measured in 

biological independent quadruplicates. 
aBuffer: 100 mM Glycine-KOH pH 10. Co-substrate: 2.5 mM NAD+. Temperature 22 °C. Substrate: R-1-methyl-3-phenyl-

propylamine from 0 mM to 12.8 mM. Michaelis-Menten curves in Fig. S6. 
bMeasured via differential scanning fluorimetry with SYPRO orange. 
cProtein expressed at 20 °C for 16 h. Soluble fraction compared to insoluble fraction via SDS-PAGE gel densitometry. 
dLysate activity measured for deamination activity (5 mM R-1-methyl-3-phenylpropylamine, 2.5 mM NAD+ in 100 mM 

Glycine-KOH pH 10). 

 

The most active E4QM variant, E4QM-D1, contains a total of 20 mutations: 6 unique mutations 

(H104Q N107C A148V V298I E337K A339S) and 14 conversion mutations (S124N S194K 

M195L A196L T248D S257K A260C I267L D269H S273A N330K I341E G344E A347M), 

which convert its state partially to the P4QM sequence state. The unique mutations, again, fix 

many of the activating founder mutations in different combinations between the five most 

active E4QM variants. Curiously, all highly improved E4QM variants show a partial conversion 
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to the P4QM sequence state, with conversion mutation count ranging from 14 to 19 in the five 

best E4QM variants, at an average of 15 mutations. 

P4QM and E4QM differ by a total of 50 mutations, which raises the question of potential 

recombination between the two directed evolution campaigns, as the most improved variants 

for both campaigns show a high number of converting mutations. An acquisition of ~30% of 

mutations converting to the other state (i.e. 15 of 50), additionally given that many of those 

mutations are achieved by swapping a complete 3 b codon. Variant E4QM-D1, for example, 

requires a total of 30 base pair mutations for its 14 amino acid conversion mutations, which is 

unlikely to naturally occur in an error-prone PCR library and thus warrants the investigation of 

recombination frequency during the parallel directed evolution. 

E.2.5. RECOMBINATION ESCAPES LOCAL OPTIMA 

To identify possible recombination between the two starting points, the sequencing dataset was 

analysed by counting the number of conversion mutations (mutations that would convert one 

starting point to the other, 50 in total) in each variant. This information is overlain on the tSNE 

sequence similarity networks (Fig. E-7a,b) and shows a cluster with many conversion 

mutations appearing isolated from the rest of the sequence space of E4QM. Variants with less 

conversion mutations are more tightly integrated and form part of many clusters towards the 

later rounds (as seen by the final variants having less conversion mutations as well as the 

colour-coding in Fig. E-4). To identify which conversion mutations are enriched, the total count 

of each conversion mutation in all rounds for each evolution campaign was calculated. In the 

P4QM evolution this count shows conversion mutations mainly effecting the start of the protein 

(amino acids 6 to 32, Fig. E-7c). For E4QM, contrastingly, all possible conversion mutations are 

detectable with a striking increase in count for the mutations in the latter half of the protein 

(amino acids 194 to 347, Fig. E-7d). This preference for conversion mutations in the second 

half of the protein supports the hypothesis of a contamination of the P4QM starting point into 

the E4QM evolution, which then quickly recombines with the E4QM starting point to yield a 

chimeric protein. The first half of the chimera is formed by E4QM and the second half by P4QM, 

crossing over between positions 157 and 194. During following rounds of directed evolution 

of the chimeric protein, some conversion mutations such as the stretch from positions 215 to 

227 are again removed, returning partly to the E4QM state.  
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Fig. E-7: Conversion mutations in the directed evolution of P4QM and E4QM. A tSNE representation of the 

explored sequence space was calculated for unique variants of both directed evolution campaigns in Fig. E-4. 

Here, it is colour coded to indicate the number of conversion mutations, mutations which convert one starting 

point to the other, in each unique variant. Furthermore, the total number of occurrences of each conversion 

mutation was counted. (a) Sequence space of P4QM evolution. 30,457 unique variants. (b) Sequence space of E4QM 

evolution. 30,683 unique variants. (c) Conversion mutation frequency in P4QM evolution. Conversion mutations 

accumulate at the N-terminus of the protein. (d) Conversion mutation frequency in E4QM evolution. While all 

conversion mutations are detectable in the E4QM evolution, a clear preference towards the C-terminal half of the 

protein is observable. 

A similar recombination is likely to have occurred later in the P4QM directed evolution, where 

a chimeric protein with N-terminal E4QM parts appears in a detached cluster (Fig. E-7a). Again, 

a recombination is more likely than the accumulation of individual substitutions through error-

prone PCR, as full codons are mutated e.g. using 3 base mutations (GCA to CGT) to fulfil the 

A21R amino acid conversion mutation of the P4QM-G8 variant. Consecutive mutations are 

statistically much less likely to occur than non-consecutive mutations in random libraries such 

as those generated by error-prone PCR, with the probability of exactly mutating the 3 bases of 

a codon instead of producing three dispersed mutations in a 357-codon gene being 
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approximately 1 in 500,0007. Conversely, even minute contamination in a PCR reaction can 

lead to recombination, an effect known to be due to template switching of the polymerase 

(Potapov & Ong, 2017; Pääbo et al, 1990).  

Further evidence supporting the hypothesis of recombination is found by analysing the 

frequency of all conversion mutations in each selected round (Fig. E-8). The frequency of the 

conversion mutations in the latter half of E4QM (S194K to A347M) increase dramatically 

during the directed evolution from round 2 to round 4, as highlighted by the lighter trajectories 

in Fig. E-8a. A slight contamination of the P4QM starting point into the E4QM evolution could 

have recombined, joining the first half of E4QM and the second half of P4QM between positions 

157 and 194. This chimeric version might have been much more active or evolvable than either 

original starting point, leading to its quick invasion of the E4QM evolution. The variant quickly 

propagates through the population before some of the more deleterious conversion mutations 

are removed (dashed curves of S308D, V309Q, V315R, H215L, A218E and E227D in Fig. 

E-8a). A second block of conversion mutations (dashed curves of I71V S72A N73G, Fig. E-8a) 

propagates through the population slowly on a different scale. Interestingly, a similar event can 

be seen for the evolution of P4QM, where a short block of mutations at the N-terminus of the 

protein (A21R A22E, Fig. E-8b) starts getting fixed quickly in the later rounds of the directed 

evolution campaign. 

As characterized in the previous chapter and verified on the sequence level in this chapter, the 

best final variants of both directed evolution campaigns were a product of recombination. 

However, it is still unclear whether the initial recombined variant improves activity to an extent 

that leads to it becoming quickly fixed in the population, or if its evolvability is higher than the 

original starting points, leading to the quick accumulation of mutations and the propagation 

through many subsequent lineages. 

 

 
7 357 codons are constructed from 1071 base pairs. While there are 

𝑛!

𝑟! (𝑛−𝑟)!
  possible combinations in which three 

mutations can be introduced to the gene, here equalling to 204,173,655 combinations, only 357 form codons. The 

probability of generating a completely mutated codon thus is 357 / 204,173,655 = 1.75 × 10-6 for a random library 

containing all three mutation variants. 
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Fig. E-8: Frequency of conversion mutations in each round of directed evolution. The frequency of each of 

the 50 mutations converting one starting point into the other were calculated for each round of directed evolution. 

A frequency of 100% would indicate each variant containing that mutation, whereas at 0% no variant contained 

that mutation in the given round of directed evolution. Mutations are colour-coded according to their position in 

the protein. An insert additionally shows the frequency of the contaminant starting point per round.  

(a) Conversions identified in the E4QM evolution. All conversion mutations are present at low frequency from the 

beginning. The contaminant sequence (P4QM) can be detected at ~0.1% frequency in round one of the E4QM 

evolution, but it is quickly removed from the population (see insert). Few variants, namely most mutations 

between S194K and A347M (dashed) are strongly enriched from round to round until reaching near full adoption. 

Some mutations in the latter half of the gene are initially co-enriched, but are phased out in later rounds, such as 

the cluster around mutations S308D V309Q V315R and H215L A218E E227D. Conversion mutations at the 

beginning of the gene (I71V S72A N73G) show a slower dynamic of adoption. (b) Conversions identified in the 

P4QM evolution. Conversion mutations at the beginning of the gene, especially A21R and A22E (dashed) strongly 

increase in frequency in the later rounds of directed evolution. Conversion mutations at other positions in the 

gene, such as N124S and Q202R, show a slow yet steady adoption. 

E.2.6. CHARACTERIZATION OF CHIMERIC VARIANTS 

Four chimeric variants were recreated, as schematized in Fig. E-9: (i) The initial recombination 

in the E4QM evolution is likely to have happened between mutations V157L and S194K, as a 

clear split in frequencies indicates (Fig. E-7d and Fig. E-8a). A chimera is thus generated that 

combines the beginning of the E4QM variant and the end of the P4QM variant, split before the 

S194K mutation. Each gene half is amplified via PCR and assembled in the pASKamp plasmid 

via Golden Gate assembly to yield a construct termed pASKamp-Full-Chimera. (ii) The inverse 

chimera, first half P4QM and second half E4QM, is created equivalently and called Inverse-

Chimera. It should provide a meaningful test of the biological relevance of the orientation and 

localisation of the recombination crossover. (iii) After the recombination, some conversion 

mutations are removed from the Full-Chimera variant (Fig. E-7d and Fig. E-8a). Consequently, 

a recombination variant with a more selected set of conversion mutations is generated by 

creating a variant containing only the most frequent conversion mutations (S194K M195L 

A196L S257K A260C I341E G344E A347M) with the conversion mutations that accumulate 
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in later rounds (I71V S72A N73G S124N). This variant is generated via in vivo assembly and 

termed Selected-Chimera. (iv) The conversion mutations strongly enriched in the P4QM 

evolution, A21R A22E, as well as late addition Q202R, were combined via in vivo assembly 

to a small conversion variant termed SmallP4-Chimera.  

All four chimeric variants were purified and characterized alongside the non-mutated variants 

(Table 8). The Full-Chimera, likely to have recombined initially, provides only a small 

improvement to enzyme activity. It thus has a decent chance of being selected in the assay, but 

more strikingly bears a high evolutionary potential. When the non-beneficial conversion 

mutations are removed again from the full chimera and the conversion mutations selected in 

the later rounds are added, the resulting variant (Selected-Chimera) readily improves in 

catalytic performance. From here, only few mutations are necessary to yield moderate further 

improvements in the best final variant, E4QM-D1. Consequently, the recombination event in the 

directed evolution of E4QM opened a completely new region of sequence space for exploration, 

providing high evolvability to subsequent variants. The recombined variant escapes the local 

optima of the E4QM starting point, leading to an easy access to overall greatly improved final 

variants. The inversed chimera, in contrast, is non-functional highlighting the biological 

relevance of the chosen set of mutations.  

 

Fig. E-9: Overview of P4QM-E4QM-chimeras generated for characterization. The Full-Chimera and Inverse-

Chimera are split between the conversion mutations at position 157 and 194, with the first half being formed by 

E4QM and the second half being formed by P4QM for the Full-Chimera. The inverse chimera has this orientation 

reversed. The Selected-Chimera is based on E4QM with only the highly enriched P4QM conversion mutations in 

the second half (S194K M195L A196L S257K A260C I341E G344E A347M) as well as conversion mutations 

enriched during the later rounds (I71V S72A N73G S124N). The SmallP4-Chimera is based on P4QM with the 

addition of enriched E4QM conversion mutations (A21R A22E and Q202R). 

In the directed evolution of P4QM, a recombination event likely occurred later in the campaign. 

Consequently, P4QM variants could not improve in activity as much as the E4QM variants, as 

reflected in the lysate activities of variants sampled in each round (Fig. E-3). Nonetheless, a 

recombination event likely yielded variants with the mutations A21R A22E that turned into 
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very active variants with merely three mutations (SmallP4-Chimera). Interestingly, the 

mutations R21A E22A were introduced to the WT variant by the PROSS algorithm as 

stabilizing mutations when the P4 starting point was generated (chapter B.2.1). These 

mutations clearly were false positives, as their removal is beneficial to the enzyme and quickly 

fixed in the population during directed evolution. Other conversion mutations showing 

enrichment during the P4QM evolution (V28I, N124S, Q202R), on the other hand, are mutations 

that E4QM acquired during stabilization (chapter B.2.2). The acquisition of those mutations thus 

speaks to the reproducibility of directed evolution with ultrahigh-throughput screening and, to 

some extent, the additivity found in stabilizing mutations. 

Table 8: Characterization of recombined variants. 

Variant 

Steady state kineticsa 

Tm
b (°C) 

Soluble 
contentc 
(%) 

Lysate 
activityd 
(abs360nm/h) 

kcat  
(s-1) 

KM  
(mM) 

kcat/KM  
(s-1 mM-1) 

P4QM 0.71 ± 0.02 0.56 ± 0.06 1.26 ± 0.11 49.8 ± 0.1 97.8 ± 4.1 56.7 ± 4.2 

E4QM 0.65 ± 0.01 0.59 ± 0.02 1.10 ± 0.04 51.3 ± 0.2 96.4 ± 2.0 19.0 ± 0.4 

Full-Chimera 1.15 ± 0.01 0.61 ± 0.02 1.89 ± 0.04 51.9 ± 0.2 99.5 ± 0.2 47.2 ± 3.6 

Inverse-Chimera 0.05 ± 0.01 0.54 ± 0.11 0.09 ± 0.21 n.d. 52.6 ± 11.7 15.1 ± 1.2 

Selected-Chimera 2.62 ± 0.12 0.50 ± 0.09 5.29 ± 0.19 52.4 ± 0.4 99.4 ± 0.6 117.1 ± 4.7 

SmallP4-Chimera 2.00 ± 0.04 0.49 ± 0.04 4.10 ± 0.08 53.5 ± 0.4 99.1 ± 1.6 55.2 ± 5.6 

All values show standard deviation from three independent technical replicates, except lysate activity which is measured in 

biological independent quadruplicates. Data was obtained together with the data of Table 7, resulting in the same values for 

P4QM and E4QM used here. 
aBuffer: 100 mM Glycine-KOH pH 10. Co-substrate: 2.5 mM NAD+. Temperature 22 °C. Substrate: R-1-methyl-3-phenyl-

propylamine from 0 mM to 12.8 mM. Michaelis-Menten curves in Fig. S6. 
bMeasured via differential scanning fluorimetry with SYPRO orange. 
cProtein expressed at 20 °C for 16 h. Soluble fraction compared to insoluble fraction via SDS-PAGE gel densitometry. 
dLysate activity measured for deamination activity (5 mM R-1-methyl-3-phenylpropylamine, 2.5 mM NAD+ in 100 mM 

Glycine-KOH pH 10). 

 

This serendipitous finding of recombination in both directed evolution campaigns speaks to the 

power it holds in enabling a vast exploration of sequence space and thus the generation of 

potentially highly evolvable enzymes. Local optima can be escaped by “jumping” through 

sequence space with recombination, acquiring a large set of mutations at once. A combinatorial 

library of chimeric proteins from homologous sequences is likely to cover a diverse area of 

sequence space and could provide very valuable starting points for directed evolution. Such an 

idea has been applied to the generation of new variants with diverse substrate scopes (Li et al, 

2007) or increased thermostability (Heinzelman et al, 2009). The so-called SCHEMA 

recombination is a structure-guided recombination approach that smartly generates a library of 

enzyme chimeras at crossover points that are unlikely to disrupt the protein structure (Voigt et 
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al, 2002). The mixed successes of this approach might be due to recombined variants not 

necessarily being very active. However, they might hold high evolvability and could be used 

as a pool of variation that can generate powerful enzymes with few additional cycles of directed 

evolution. 

Optimization plateaus and diminishing returns are regularly observed in the traditional directed 

evolution of proteins, which often proceeds by few substitution mutations at a time (Newton et 

al, 2018; Goldsmith & Tawfik, 2017). Here, the introduction of recombination with 

homologous enzymes might also hold the key to unlocking wider sequence space, in contrast 

to established shuffling methods that are generally used for the recombination of selected 

variants with few mutations (Stemmer, 1994; Zhao et al, 1998). Such an approach could again, 

as seen in this chapter, prove useful to escape local optima which cannot simply be escaped by 

accumulation of single mutations. 

E.3. CONCLUSION & OUTLOOK 

The comparative evolution of two stabilized AmDH starting points in this chapter revealed a 

striking incompatibility of founder variants. Only one mutation was identified as a founder 

variant in both evolutions and while founder variants were beneficial in their original starting 

points, they were neutral or deleterious in the other. This shows that the extent of epistasis 

determining the outcome of evolution is high: differential mutations are acquired because of 

specific interactions with the genetic context they appear in. It is unlikely that differential 

mutations are seen because of stability effects, as both starting points are similarly stable, or 

that differential mutations appear because of the stochasticity in the screening process, as the 

throughput of droplet screening covers all single point mutations sufficiently. 

However, even with the power of ultrahigh-throughput droplet microfluidic assays large 

improvements to enzyme activity might be precluded for variants isolated on fitness plateaus 

when conventional mutagenesis methods are applied. P4QM seems to be un-evolvable: 

improvements to activity in raw cell lysate, a metric similar to the selection in droplets, could 

not be increased more than 3.5-fold (Fig. D-11) during the three rounds of directed evolution 

of chapter D in which a total of 750,000 variants were screened to establish the nanopore 

sequencing workflow. Now, an approach borrowing ideas from neutral drift, the evolution of 

a large population of variants at once, could not generate much improved variants either. 
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Screening a total of more than 2 million P4QM variants over the course of nine rounds of 

directed evolution yielded a final variant showing 5-fold improved activity in lysate in this 

chapter (Table 7). Analysing the explored sequence space provides a view of a narrow and 

confined fitness landscape: the P4QM evolution is restricted to a local plateau that neutral drift, 

the accumulation of individual neutral substitutions, cannot bridge (Fig. E-4). E4QM, on the 

other hand, is a more evolvable starting point, as mutations confer a larger benefit to it (Fig. 

E-6). Most of the evolvability in the E4QM evolution, however, can be attributed to a 

recombination event taking place early in the campaign, manifesting itself as a quantifiably 

large and diverse sequence space for the E4QM evolution. The initial recombination is not very 

beneficial to activity, however, the recombined variant quickly evolves to take over the 

population and form the basis of the most active lineages and variants (Fig. E-8). This shows 

the power of recombination introducing a large amount of neutral variation at once, thus being 

able to escape local optima and subsequently find novel fitness peaks. 

These results show the importance of sexual recombination in evolution, a paradigm that is not 

used to its full potential in current approaches, which are mainly focused on few substitution 

mutations at once. It was previously shown that intense neutral drift could not escape the local 

optima in the directed evolution of RNA ligases (Petrie & Joyce, 2014). The authors concluded 

that adaptation, not neutral drift, is the primary driver of genetic change. However, their 

evolution campaign was based on substitution changes alone. While these results agree with 

the data observed for the P4QM evolution, it is also shown here that recombination can enable 

jumps between isolated islands of function in a sparsely populated fitness landscape, especially 

if they cannot be bridged by substitution errors alone. Consequently, the use of chimeric 

libraries might be better suited as collective starting points for directed evolution than a pool 

of neutral variants containing point mutations. Such libraries could be generated from a few 

homologous structures with a high probability of being functional using the SCHEMA 

approach (Voigt et al, 2002) and then be subjected to further directed evolution. Afterall, 

recombination and gene rearrangement are common ways of how natural enzyme families have 

evolved (Bornberg-Bauer & Albà, 2013; Lees et al, 2016) and the experimental mimicking of 

such processes in the lab has been possible (Peisajovich et al, 2006). Seeing their importance 

in the experimental evolution performed here as well as their prevalence in natural evolution, 

the use of recombination and gene rearrangement as tools for directed evolution should be 

considered and expanded. 
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Finally, a hypothesis of why the PROSS-stabilized AmDH P4QM cannot evolve by substitutions 

might be found in the method used for stabilization. By optimizing many of the possible 

interactions between amino acids in the protein to yield the most stable variant, a 

counterproductive overstabilization might have occurred. The introduction of 44 mutations 

optimized for stability introduces not only a restriction of their mutation, which would lead to 

a loss of stability and thus decrease of function, but also renders the mutation of residues 

interacting with the stabilizing mutations deleterious. The introduction of the P4 mutations to 

the WT in fact increases the total number of contacts in the structure by 145, as calculated by 

Arpeggio (Jubb et al, 2017). Thus, by removing accessible mutations the explorable sequence 

space and evolvability of the P4QM variant is reduced. Moreover, the enzyme could be rigidified 

and not be able to mould freely into new conformational substates, further reducing its 

evolvability (also see chapter A.1.2.2). This hypothesis is strengthened by analysis of the 

introduced mutations for their impact on flexibility: Using the normal mode analysis webserver 

DynaMut (Rodrigues et al, 2018) to analyse all 44 mutations that are introduced for the 

generation of the P4 variant and the 7 mutations for the E4 variant, a clear trend of rigidification 

for the PROSS mutations is observable. The total impact on vibrational entropy by the 

mutations introduced to form E4 is +0.10 kcal mol-1 K-1, not altering molecule flexibility 

meaningfully, while the P4 mutations together are decreasing molecule flexibility (-1.37 kcal 

mol-1 K-1 vibrational entropy) leading to potential rigidification. A potential overstabilization 

could also explain the reduced activity of the P4 starting point (20% of the catalytic efficiency 

of the WT starting point, Fig. B-1). These effects should be further investigated with the 

generation and analysis of protein and variant 3D structures and the impact of PROSS-

stabilization on protein flexibility should be investigated in depth with long molecular 

dynamics simulations, nuclear magnetic resonance studies or similar tools.  

As high stability leading to rigidity might only be circumstantial and differential evolvability 

could be manifested by chance through specific epistatic interactions, further investigation of 

homologs should be conducted. This could for example be tested by investigating further 

homologs or different PROSS designs, such as P1 to P3, to verify if an association between 

overstabilization and evolvability is detectable. A binary library introducing all possible 

combinations of P4 mutations to E4 could be analysed via AADS to identify the optimal set of 

recombined mutations.  

These approaches combined could narrow down on the mechanisms by which the evolvability 

is increased after recombination in this study. In the end, this data could inform future protein 
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engineering campaigns to be more efficient, diverting from the current go-to procedure of high 

stabilization. The most stable starting point might not be the most evolvable after all. 
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F. FINAL CONCLUSION AND 

PERSPECTIVE 

 

 

 

To close, I will summarize the conclusions of the previous chapters and emphasize their 

applicability to protein engineering. Furthermore, I will propose perspectives of how the tools 

developed for this thesis can be used to challenge fundamental properties of protein evolution 

in future projects. 
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Understanding the mechanisms and constraints of protein evolution is not only of fundamental 

scientific interest, but it will also undoubtedly benefit the approaches applied to protein 

engineering. Making protein engineering more efficient will lead to the broader adoption of 

biocatalysts for the sustainable production of bulk chemicals and expand its foothold in fine 

chemical synthesis, such as the production of pharmaceuticals or fragrances, as well as simplify 

the engineering of biologics as therapeutics or diagnostic sensors. In this study, two 

technologies were developed that enable the efficient exploration of fitness landscapes in 

protein evolution. 

First, a general strategy increasing the sensitivity of droplet microfluidic enzyme assays was 

created. The development of new microfluidic detection modes (Table 1) forebode improved 

assays for enzymatic reactions, such as the label-free screening of underrepresented enzyme 

classes (Table 2). However, high detection limits and large droplet volumes prevent the routine 

application of alternative detection modes to enzyme engineering, which requires monoclonal 

droplet populations, and thus imposes steep demands on enzyme total turnover numbers. A 

general workflow circumventing this issue is developed in chapter C. By amplifying clonal cell 

populations in droplets, enzyme content is increased leading to the detection of previously 

undetectable enzyme activities in droplets. The approach is developed with fluorescent read-

outs (Fig. C-6) and shown to be applicable to one such new detection mode, absorbance-

activated droplet sorting. By simply amplifying the enzyme content per compartment through 

monoclonal cell growth, the workflow is universally applicable to any previous lysate-based 

assay. This versatility should help it see speedy adoption with other detection modes, enzyme 

classes and reactions. Screening enzyme libraries at higher throughput directly increases the 

chances of engineering success by directly assaying more variants. Furthermore, ultrahigh-

throughput screening provides the confidence necessary for increasingly daring library designs, 

which have lower rates of positives but unlock greater overall potential (see chapter A.4.1). 

Second, an accurate long-read amplicon sequencing workflow meeting the requirements of 

protein engineering was developed. Knowing the sequence identity in conjunction with the 

function of many assayed variants fundamentally establishes the structure of the local fitness 

landscape (Sarkisyan et al, 2016) and can be used to train statistical models of protein function, 

enabling a computational exploration of sequence space for higher engineering outcomes 

(Ogden et al, 2019; Whitehead et al, 2012; Saito et al, 2018; Jenson et al, 2018). Long-read 

sequencing is necessary if the association of multiple co-occurring mutations throughout a full-

length gene is required, e.g. when epistasis effects are to be considered. Many current deep 
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mutational scanning studies do not investigate the effects of epistasis (Table 3) although it has 

been shown to be deeply pervasive to protein evolution (Starr et al, 2018; Sarkisyan et al, 

2016). Long-read amplicon sequencing workflows currently remain inaccurate or require the 

assembly of short reads, which can be error-prone (van Dijk et al, 2018). In the UMIC-seq 

workflow, inaccurate long-reads are matched to their template molecule with unique molecular 

identifiers to yield accurate long reads, with one flow cell providing around 100,000 consensus 

sequences of 1 kb. The practical simplicity and affordability of the workflow and its 

components will make it likely to be adopted as a quick verification of amplicon libraries in 

many laboratories, not only applicable to gene libraries in protein engineering but also to viral 

populations, immune repertoires, cancer diagnostics or metagenomics. 

These two technologies are used together to sketch out the sequence space through which 

evolution progresses from two different starting points. It is unclear to which extent 

evolutionary outcomes are predetermined by the current sequence state and its epistatic 

restrictions. To investigate this issue, two stabilized starting points were generated and 

compared for their initial adoption of AmDH activity (chapter B). Both stabilized starting 

points accepted more mutations than the non-stabilized wild type, in agreement with mutational 

robustness hypothesis for stable proteins (Besenmatter et al, 2007), however, the evolutionarily 

stabilized variant E4 showed greater improvements to activity than the computationally 

stabilized variant P4 (Fig. B-4).  

Both starting points were subjected to eight rounds of directed evolution and sequencing 

(chapter E). Interestingly, completely different outcomes are observed for both evolution 

campaigns, indicating a multi-peaked fitness landscape shaped by pervasive epistasis, in which 

two closely related enzymes (86% sequence identity) do not evolve towards the same solution. 

Furthermore, fitness plateaus cannot be escaped by sequential point mutations in the evolution 

of these AmDHs. For challenging evolutions in some starting points there might just not be 

any ‘paths that lead uphill, one step at a time’ (Tracewell & Arnold, 2009). A simple hill-

climbing approach following consecutive small steps in one trajectory cannot find the optimal 

solution and is at best slow at producing local optima (Yang et al, 2019). Recombination, on 

the other hand, can enable jumps through sequence space and is the method by which 

innovation is facilitated in the AmDH evolution (Fig. E-7). Local exploration by conventional 

substitutions is transported to vast regions of sequence space by recombining existing parts. 

Consequently, the use of recombined starting point libraries could greatly benefit evolvability 

and thus engineering success.  
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The findings of this study highlight the importance of choosing a suitable starting point for 

directed evolution, going against the conventional approach of highly stabilizing the starting 

point. Computational stabilization seems to have confined the P4QM variant into a local 

optimum, not being able to further evolve AmDH activity. The fact that not only stability is 

crucial for high evolvability is highlighted again (chapter A.1.2). However, if the necessary 

assay throughput for the evolution of a pool of recombined starting points, as suggested above 

to increase evolvability, is unavailable, how can a suitable starting point be identified? 

Recent developments in mathematical modelling have shown great ability to generalize to 

unseen regions of sequence space (Russ et al, 2020; Alley et al, 2019; Bryant et al, 2021). Deep 

neural networks can extract patterns of millions of sequences and thus could be able to generate 

some basic understanding of the epistatic state a protein is in. A recent model called UniRep, 

for example, was able to predict stability and function from natural sequence diversity alone 

(Alley et al, 2019). When deep learning approaches are combined with deep mutational 

scanning data, the engineering of a diverse set of proteins distinct from any naturally occurring 

variants is possible, as performed to generate viral capsids distinct form all known natural 

isolates (Bryant et al, 2021). It is not unreasonable to assume that such approaches could be 

used to predict the evolvability of a starting point for protein engineering in the future. While 

current model-guided approaches show promise in extending natural diversity, requiring some 

level of epistatic understanding, predicting protein evolvability or direct quantitative functional 

values loom on the horizon. 

Large datasets are required to train these model-guided approaches and remain a bottleneck for 

their broad usage. Here, UMIC-seq could be seamlessly integrated in long-read deep 

mutational scanning. When deep mutational scanning is focused on a small region, as currently 

common practice (Bryant et al, 2021, see chapter D.3), a large part of the accessible diversity 

is disregarded. By using long reads for deep mutational scanning, model-driven protein 

engineering will have a larger training ground. Furthermore, long-read deep mutational 

scanning datasets could be used for the construction of 3D structures when conventional 

methods fail or no information on homologous sequences is available for the construction of 

homology models (e.g. applicable to metagenomics). Small structures have recently been 

accurately derived from multi-point deep mutational scanning datasets (Schmiedel & Lehner, 

2019; Rollins et al, 2019). To scale these methods to full length proteins, mutational effects 

covering the full length of the gene must be identified (Chiasson & Fowler, 2019). UMIC-seq 

could provide such datasets for any of those use cases, be it for structure prediction, model-
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guided protein engineering or the exploration of long-range epistatic effects. A naïve library 

could be tagged with UMIs and sequenced according to the UMIC-seq protocol, providing a 

clear association between long-read variant information and unique identifier. This library can 

then be subjected to a suitable high-throughput assay and UMI frequencies before and after 

selection would be read out using conventional short-read sequencing. Thus, reliable UMI 

enrichment factors could be related back to the original variant information, providing 

functional values. 

Protein engineering methods are not very efficient yet and a lot of sequence space remains 

untapped by current approaches (chapter A.4.1). The combination of the here presented 

improvements to ultrahigh-throughput screening and long-read sequencing will not only 

inform future protein engineering campaigns but also help establish new and improved protein 

engineering methods themselves.  
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G. MATERIALS & METHODS 

 

 

 

Here, I will list the materials and methods used in this thesis. I will cite references to published 

methods where applicable, but nonetheless detail published methods to provide a complete 

experimental description. 
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G.1. MATERIALS 

All materials were bought from Sigma-Aldrich, unless otherwise noted. Enzymes were 

obtained from New England Biolabs (NEB) or Thermo Fisher. Oligonucleotides were 

purchased from Sigma-Aldrich. Plasmids were gifted from Raphaëlle Hours (pASKamp-WT, 

pASKamp-P4, pASKamp-E3, pASKamp-empty), ordered from Addgene (pET-iLOV #63723), 

purchased from Novagen (pRSFDuet-1) or constructed as described later on. 

G.2. MOLECULAR BIOLOGY 

General procedures. Common laboratory and maintenance procedures were performed 

according to manufacturer’s specification and are thus only briefly summarized here. 

Antibiotic stocks were used where appropriate and applied to growth medium or agar plates at 

final concentrations of 100 µg/mL ampicillin, 33 µg/mL chloramphenicol, 50 µg/mL 

kanamycin or 50 µg/mL spectinomycin. Inducer stock was used at 1000x concentration (200 

µg/mL aTc), prepared in ethanol and stored at -20 °C. PCR was performed using the Q5 master 

mix (NEB M0492) according to the manufacturer’s recommendation. DNA quantification was 

performed with a nano spectrophotometer (NanoDrop 2000, Thermo Fisher). Transformation 

of E. coli cells was done with commercial cells. For routine low-efficiency transformation, 

chemically competent cells were used, whereas libraries and recovery experiments were done 

with high efficiency via electroporation. For DNA amplification and maintenance, as well as 

sparingly for protein expression, subcloning efficiency DH5α chemically competent cells 

(Invitrogen #18265017) or E. cloni 10G ELITE electrocompetent cells (Lucigen #60051) were 

used. Both strains are abbreviated as DH5α. For protein expression, E. coli BL21 (DE3) 

chemically competent cells (NEB C2527) were used, abbreviated as BL21. DNA purification 

of plasmids was performed with the GeneJET Plasmid Miniprep Kit (Thermo Fisher K0503), 

PCR products and assemblies were directly purified with the Zymo Clean & Conentrator-5 

(Zymo Research D4004) or purified from agarose gel with the addition of Agarose Dissolving 

Buffer (Zymo Research D4001-1). For purification of many DNA fragments in parallel or in 

the sequencing library preparation, SPRI beads were used (AMPure XP, Beckman Coulter 

A63881). 
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Error-prone PCR libraries. Error-prone PCR (epPCR) libraries are generated using the 

GeneMorph II random mutatgenesis kit (Agilent). Conditions were adjusted to consistently 

yield error rates of 2-4 mutations per gene, as controlled via Sanger sequencing of randomly 

picked variants. Usually, the gene of interest is pre-amplified for 20 cycles using the high-

fidelity Q5 polymerase (NEB), 10 ng plasmid template DNA and the outer binding IF and IR 

primers (Table 9). The resulting PCR product is then used as a template for epPCR. Now, 600 

to 900 ng of target DNA fragment was used as a template for the low-fidelity Mutazyme II 

polymerase (Agilent), together with the Golden Gate cloning compatible inner primers epIN-

F and epIN-R and amplified for 25 cycles. The resulting PCR product was assembled in a 

Golden Gate reaction with the backbone fragment, amplified from pASK-empty with primers 

epBB-F and epBB-R, as described below, to yield the final library. 

Table 9: Primers used for the generation of error-prone PCR libraries. Features: Restriction enzyme site 

(green). 

Name Use Sequence 

IF 
Sanger sequencing, Pre-
amplification 

GAGTTATTTTACCACTCCCT 

IR 
Sanger sequencing, Pre-
amplification 

CGCAGTAGCGGTAAACG 

epIN-F Golden Gate cloning, epPCR 
TTTGGTCTCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATAT
ACC 

epIN-R Golden Gate cloning, epPCR TTTGGTCTCTGGCTCCAAGCGCTCTCGAG 

epBB-F Golden Gate cloning, epPCR TTTGGTCTCGAGCCACCCGCAGTTCG 

epBB-R Golden Gate cloning, epPCR TTTGGTCTCTCTAGATTTTTGTCGAACTATTCATTTCACTTTTC 

 

DNA shuffling. Shuffled libraries were generated via StEP (Zhao et al, 1998). A PCR with 

BioTaq polymerase (Bioline) was run at 55 °C annealing temperature and 30 s extension time 

for 100 cycles. The gene variants of interest were added equally to the PCR of 50 µL to a final 

DNA content of 400 ng. The PCR fragment was gel excised, purified and used for plasmid 

construction as described below. 

Plasmid construction. Plasmids were constructed by Golden Gate assembly (Engler et al, 

2008), following recommendations specified by the supplier NEB. Usually, a single insert 

fragment containing a gene or variants of a gene obtained via epPCR was combined with a 

backbone vector fragment containing the regulatory elements, origin of replication and 

resistance cassette in a molar ratio of 3:1. Reactions were set up in a PCR reaction tube and 

processed in a thermal cycler as follows: 
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 Reaction:   Cycling:   

 100 ng Insert  5 min 16 °C 30 cycles 

 100 ng Backbone  5 min 37 °C  

 1 µL BsaI-v2  20 min 55 °C  

 1 µL T4 Ligase  5 min 80 °C  

 0.5 µL DpnI     

ad 20 µL H2O     

 

Following the assembly reaction, DNA was purified and used for the transformation of 

electrocompetent E. coli. All plasmids gifted or constructed for this study are listed in Table 

10. 

Table 10: List of plasmids gifted or constructed for this study. 

Name From Feature 

pASKamp-empty Raphaëlle Hours Empty pASK-IBA63b+ 

pASKamp-WT Raphaëlle Hours Expression of Rhodococcus sp. M4 PheDH 

pASKamp-P4 Raphaëlle Hours PROSS stabilized PheDH variant 

pASKamp-E3 Raphaëlle Hours PheDH variant stabilized in three rounds of evolution 

pASKamp-WTqgc Raphaëlle Hours AmDH variant from Ye et al 2015 (K66Q S149G N262C) 

pASKamp-E4 This study PheDH variant stabilized in four rounds of evolution 

pASKamp-WTQM This study Rhodococcus sp. M4 AmDH (K66Q N262M) 

pASKamp-P4QM This study PROSS stabilized AmDH (K66Q N262M) 

pASKamp-E4QM This study Evolutionarily stabilized AmDH (K66Q N262M) 

pAB094a Addgene (#79241) Template for spectinomycin cassette 

BPK2101 Addgene (#65770) Template for chloramphenicol cassette 

pASKca-P4QM This study pASK-IBA63b+ with chloramphenicol resistance 

pASKsm-E4QM This study pASK-IBA63b+ with spectinomycin resistance 

pRSFDuet-1 Invitrogen Template for pLacI, subcloning of nanopore inserts 

pET-iLOV Addgene (#63723) iLOV expression under T7 promoter control 

pLacI-iLOV This study Weak constitutive iLOV expression 

pASKamp-iLOV This study Anhydrotetracycline-inducible iLOV expression 

pASKamp-FullChimera This study Chimeric variant of E4QM and P4QM 

pASKamp-InverseChimera This study Chimeric variant of P4QM and E4QM 

 

Generation of point mutation variants. In vivo assembly (IVA cloning) was used to quickly 

generate variants with single and multi-point mutations (García-Nafría et al, 2016). Primers 

were designed as outlined by García-Nafría et al, 2016, examples used for the generation of 

chimeric variants are shown in Table 11. Primers containing point mutations were used for 

whole-plasmid PCR with 1 ng template DNA. The template DNA was removed after PCR by 

adding 1 µL of DpnI and incubating for 30 min at 37 °C. This mixture was used to transform 

chemically-competent DH5α cells and the point mutation was verified by plasmid isolation and 

Sanger sequencing. 
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Table 11: Primers used for IVA cloning of chimeric variants Selected-Chimera and SmallP4-Chimera. 

Features: Mutated codon (red). Binding (black). Binding and homology (grey). 

Name Sequence 

P4_A21R-A22E-f GACCGTTACACGTTTTGATCGTGAAACCGGTGCACATTTTGTTATTCGTATTCATAG 

P4_A21+-r ATCAAAACGTGTAACGGTCATTTCACCATC 

P4_Q202R-f GCCGAAGCGGGTGCACGGCTGCTGGTTGCAGATACCGATACCG 

P4_Q202+-r TGCACCCGCTTCGGCCAGC 

E4_I71V-S72A-N73G-f ACCCTGCAGATGGCAGTTGCAGGTCTGCCGATGGGTGGTGGTAAAAG 

E4_I71+-r TGCCATCTGCAGGGTCATTGCG 

E4_S124N-f AGGTCCGGATGTTAATACCAATAGCGCAGATATGGATACCCTGAATGATAC 

E4_S124-r GGTATTAACATCCGGACCTGTCCAATAATTGC 

E4_S194K-M195L-A196L-f TGGTGGTTCACTGGCAAAACTGCTGGCCGAAGCGGGTGCACG 

E4_S194+-r TGCCAGTGAACCACCAACGGC 

E4_S257K-A260C-f CACGTACCCTGGATTGTAAAGTTGTTTGTGGTGCAGCAATGAATGTTATTGCAGATG 

E4_S257+-r ACAATCCAGGGTACGTGCAACTTCTG 

E4_I341E-G344E-A347M-f GATGAAGCCGCACGCGAACTGGCAGAACGTCGTATGCGTGAAGCATCAACCACCACCG 

E4_I341+-r GCGTGCGGCTTCATCCGGTG 

 

Sanger sequencing. Sequencing to control individual constructs or verify epPCR error rates 

was performed at the Department of Biochemistry’s sequencing facility. Analysis was 

performed by alignment in Benchling or with custom python scripts in the case of calculation 

of nanopore sequencing error rates. 

G.3. LYSATE ASSAYS 

Preparation of cell lysates. Protein expression for lysate activity assays was performed in 96-

well plates. Cultures (300 µL LB medium per well) were inoculated from single colonies and 

grown overnight at 37 °C and 900 rpm. Expression cultures were inoculated by adding 25 µL 

of the grown overnight culture to 425 µL fresh LB medium in a new 96-well deep well plate. 

At the same time, the overnight culture can be used to create glycerol stocks for long-term 

storage of variants at -80 °C (150 µL overnight culture added to 50 µL of 50% (v/v) glycerol) 

or be stored at 4 °C for short term storage. Expression cultures were growth at 37 °C for 2 h 

followed by addition of inducer (50 µL LB containing 10x aTc (2 µg/mL)) and protein 

expression at 22 °C for 16 h at 900 rpm. The cultures were sedimented (20 min, 3220 × g, 4 °C) 

and the supernatant discarded. Cell pellets were frozen for at least 1 h at -80 °C to aid cell lysis. 

Lysis was performed by addition of 200 µL 25 mM Tris-HCl pH 8.0 containing 0.1% (v/v) 

Triton X-100, 100 μg/mL lysozyme and 0.8 U/mL benzonase and incubation at 600 rpm and 
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RT for 30 min. Lysates were cleared (60 min 3220 × g 4 °C) and used in the lysate activity 

assays as described below. 

Lysate activity assay. Cleared lysate was diluted as appropriate to give a linear activity profile 

in the assay. Diluted cleared lysate was distributed at 20 µL in a clear 96-well plate. Reaction 

was started by addition of 180 µL substrate solution. PheDH activity was measured with 5 mM 

L-phenylalanine and 2 mM NAD+ in 100 mM Glycine-KOH pH 10. AmDH deamination 

activity was measured by addition of 5 mM (R)-1-methyl-3-phenylpropylamine and 2 mM 

NAD+ in 100 mM Glycine-KOH pH 10. AmDH amination activity was measured by addition 

of 5 mM 4-phenyl-2-butanone and 0.5 mM NADH in 0.5 M NH4Cl/NH4OH pH 9.6. The 

absorbance of NADH at 340 nm was measured in a spectrophotometer and the slope of the 

linear initial rate was extracted with a custom python script to ease data analysis, available at: 

https://github.com/pauljannis/96well_auto. 

G.4. PROTEIN PURIFICATION AND CHARACTERIZATION 

Protein purification. Expression cultures in 50 mL LB were inoculated to an absorbance at 

600 nm (OD600) of 0.05 from a well-grown overnight culture and grown at 37 °C 200 rpm for 

approximately 2 h or until an OD600 of 0.4-0.8 was reached. Protein expression was induced 

by addition of 200 ng/mL aTc and continued for 16 h at 20 °C 200 rpm. Protein purification 

was performed using Strep-Tactin Sepharose (IBA Lifesciences), largely as described by the 

manufacturer. All steps continued on ice with pre-chilled buffers. The expression culture is 

sedimented (20 min, 3220 × g, 4 °C) and lysed by suspension of the cell pellet in 5 mL lysis 

buffer (1x BugBuster (Merck #70921), 1 cOmplete Mini protease inhibitor tablet (Roche) per 

10 mL and 3 µL/mL lysonase (Merck) in 100 mM Glycine-KOH pH 9) and incubation at RT 

and 600 rpm for 1 h. The crude lysate is cleared by centrifugation (1 h, 17,000 × g, 4 °C). The 

Strep-Tactin Sepharose was prepared in gravity flow columns to a final column volume (CV) 

of 1 mL. The column was equilibrated with 4 CV water followed by three times 4 CV wash 

buffer (150 mM NaCl in 100 mM Glycine-KOH pH 9). Next, the cleared lysate is loaded and 

washed two times with 3 CV wash buffer. Bound protein is eluted 6 times with 0.5 CV elution 

buffer (2.5 mM desthiobiotin and 150 mM NaCl in 100 mM Glycine-KOH pH 9), fractions 

collected separately. Elution fractions and samples taken throughout the purification process 

are analysed for purity via SDS-PAGE (see below). Clean elution fractions are pooled, buffer 

exchanged to 100 mM Glycine-KOH pH 9 with a desalting column (PD-10, GE Healthcare) 

https://github.com/pauljannis/96well_auto
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and concentrated (Amicon Ultra-4 10 kDa, Merck). Protein concentrations are measured with 

a NanoDrop 2000 (Thermo Fisher) and adjusted to 50 µM. Purified protein is immediately for 

all further analyses. 

Analysis of soluble expression via SDS-PAGE. Small samples were taken at all steps during 

the purification process for quality control on SDS-PAGE (NuPAGE Bis-Tris gels, Thermo 

Fisher). Additionally, the remaining pellet after clearing the crude lysate is used to establish 

the amount of recombinant protein expression in soluble form. The soluble fraction is 

transferred to a new tube and the remaining pellet is suspended in diluted lysis buffer (1:5 

dilution with water). The pellet fraction is then washed twice (spun down 1 min at 14,100 × g 

and resuspend in diluted lysis buffer). The crude extract, soluble fraction and pellet fraction are 

prepared by denaturation at 95 °C for 10 min in sample buffer (NuPAGE LDS Sample Buffer 

containing 200 mM dithiothreitol) and run in an SDS-Gel and analysed after Coomassie 

staining (InstantBlue, Expedeon) for intensity of the recombinant protein band. The gel is 

scanned and gel densitometry is performed in ImageJ Fiji after conversion to grey scale, 

comparing the intensities of the recombinant protein bands in the different fractions. 

Steady state kinetics. Steady state kinetics were acquired for amination and deamination 

activities after determining suitable enzyme concentrations, usually 10 µM for amination and 

1 µM for deamination. Substrate concentrations of 0 – 12.8 mM were presented in a 96-well 

plate and the reaction was started by adding purified enzyme. Amination was performed with 

0.5 mM NADH in 0.5 M NH4Cl/NH4OH pH 9.6, whereas deamination was performed with 

2 mM NAD+ in 100 mM Glycine-KOH pH 10. Initial rates were obtained by measuring NADH 

absorbance at 340 nm in a spectrophotometer. 

Thermal stability. Thermal stability was measured as the melting point in differential scanning 

fluorimetry with SYPRO orange (Invitrogen). Concentrations of 1-10 µM protein with 1-10× 

SYPRO orange were prepared in 100 mM Glycine-KOH pH 9. The heat denaturation and 

fluorescence measurements were recorded every 30 s from 25 °C to 95 °C in 0.5 °C steps with 

a Corbett Rotor-Gene 6000 (Qiagen). Combinations of protein and SYPRO orange 

concentrations were measured and the combination yielding the greatest signal was used for a 

repeated measurement in triplicates. The melting point was determined by extracting the 

relevant signal, normalizing the fluorescence and fitting a four-parameter logistic curve in 

GraphPad Prism. 
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Total turnover number. Small scale biotransformations were set up as 500 µL reactions with 

a concentration of 0.1 µM enzyme and 10 mM 4-phenyl-2-butanone in 0.5 M NH4Cl/NH4OH 

pH 9.6. Co-factor was added (2 mM NAD+) and recycled over the course of the reaction with 

a glucose dehydrogenase system (50 mM glucose and 10 mg/mL GDH-101, Johnson Matthey). 

After reaction progress for 36 h at 30 °C and 800 rpm, reactions were extracted with 1 mL ethyl 

acetate and analysed via HPLC. A water-acetonitrile gradient with 0.1% (v/v) trifluoroacetic 

acid was applied (10% acetonitrile for 30 s, increase to 90% acetonitrile over 90 s, hold for 

30 s) at 20 °C with 0.3 mL/min on a 1290 Infinity II LC (Agilent) fitted with a XBridge Phenyl 

column (4.6x30 mm, Waters). Substrate (4-phenyl-2-butanone, 1.93 min) and product (1-

methyl-3-phenylpropylamine, 1.43 min) were detected at 210 nm and conversions were 

determined from observed uncorrected peak areas. The number of substrate turnovers per 

enzyme molecule is calculated from the relative conversion. 

G.5. MICROFLUIDICS 

Chip design, fabrication and replication. Chip masters were designed in AutoCAD and 

fabricated using standard soft lithography procedures (Xia & Whitesides, 1998). Silicon wafers 

of 3-inch diameter (Siegert Wafers) were coated with photoresist (SU-8 2050, Microchem) by 

spinning at the specified speeds according to the manufacturer’s instructions. Chip designs 

were imprinted on plastic film photomasks (Microlitho) and used to pattern the photoresist via 

UV exposure in a MJB4 mask aligner (SUSS MicroTech). After development and hard baking 

as in the photoresist’s specifications, these chip masters were coated by evaporating two drops 

of trichloro(1H,1H,2H,2H-perfluorooctyl)silane. The hardened chips can now be used to 

produce many replicas in polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning). PDMS 

is poured onto the master, degassed (30 min 25 mPa) and hardened for 4 h at 65 °C. Now, the 

inlet and outlets of the PDMS replica device are opened (1 mm biopsy punch) and the device 

is bonded onto a glass slide after being activated by exposure to oxygen plasma (Diener Femto 

SLS). The device is flushed with 1% trichloro(1H,1H,2H,2H-perfluorooctyl)silane in HFE-

7500 (3M Novec) to achieve a hydrophobic surface modification of the channels and is ready 

to use in subsequent microfluidic experiments. 

Preparation of droplet incubation chambers. Droplet emulsions were incubated in modified 

reaction tubes. The chambers (Fig. C-4) were built using a conventional 0.5 mL reaction tube, 

to which polyethylene tubing was attached (0.38 mm inner diameter, 1.09 mm outer diameter, 
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Smiths Medical). The tubing was inserted into access holes opened to the reaction tube with a 

1 mm biopsy punch and fixed in place with a high viscosity cyanoacrylate glue (PR1500, 

Scotch-Weld). 

Preparation of cell suspensions. To generate monoclonal microfluidic droplets, i.e. droplets 

containing predominantly single cells, regular cell suspensions have to be diluted. The 

encapsulation of a cells into a droplet follows a Possion distribution and in most experiments 

performed here the expected rate of occurrence λ is set to 0.2, thus resulting in 81.7% empty 

droplets, 16.4% single encapsulations and 1.7% multiple cells per droplets (Fig. C-1). To 

achieve the corresponding cell dilution, a cell density of 5×108 cells per mL is assumed for 

E. coli, multiplied by the targeted λ and divided by the generated droplet volumes. In this study, 

cells were encapsulated in either 100 pL or in 300 pL droplets, for cell growth or direct assay, 

respectively. The resulting dilutions are a final OD600 of 0.005 and 0.0017. 

Single cell lysate assay. For library sorts, all colonies of a fresh transformation are washed off 

the agar plate with 3 mL LB medium. A 4 mL expression culture is inoculated from this stock 

to an OD600 of 0.8 and immediately induced (200 ng/mL aTc). After 16 h of protein expression 

at 20 °C, a cell suspension is prepared at the required OD600 for encapsulation, as described 

above, by dilution in reaction buffer (100 mM Glycine-KOH pH 9) containing 25% (v/v) 

Percoll to prevent cells from sedimentation. Droplets of 300 pL volume are generated in a 

conventional droplet generator (80 µm height and 50 µm width at the flow focussing junction) 

by co-encapsulating the diluted cell suspension and the assay solution (6 mM WST-1 (NBS 

Biologicals), 6 mM (R)-1-methyl-3-phenylpropylamine, 2 mM NAD+, 5 µg/mL 1-methoxy-5-

methylphenazinium methyl sulfate (mPMS), 1 µL/mL rLysozyme (Merck) and 0.8x CelLytic 

B in 100 mM glycine-KOH pH 9) in fluorous oil (HFE-7500 containing 1% (v/v) 008-

FluoroSurfactant (RAN biotechnologies)). Flow rates for encapsulation were 8 µL/min for each 

of the aqueous phases and 30 µL/min for the oil phase and the resulting emulsion was collected 

in a droplet chamber for incubation.  

Oxygenation for cell growth. To achieve homogeneous cell growth, single cells were 

encapsulated in 100 pL droplets containing TB medium on a conventional droplet generator 

(50 µm height and 50 µm width at the flow focussing junction) by flowing the diluted cell 

suspension at 8 µL/min and the oil (HFE-7500 with 1% (w/v) 008-FluoroSurfactant) at 

24 µL/min. Droplets were collected in droplet incubation chambers. During growth, the 

emulsion was oxygenated by pushing 4 µL/min oil through the emulsion from the top (Fig. 
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C-4). If protein expression was induced via aTc, the oil phase was changed to inducer oil, 

additionally containing 400 ng/mL aTc.  

Cell growth lysate assay. For the cell growth assay, single cells were encapsulated in TB 

medium in droplet incubation chambers as described above. Oxygenation was performed for 

2 h at 37 °C for cell growth, before switching to inducer oil (HFE-7500 with 1% (w/v) 008-

FluoroSurfactant and 400 ng/mL aTc), enabling protein expression for 16 h at 20 °C. The 

substrate solution was supplied to these droplets via ‘pico-fusion’. A flow focussing junction 

(50 µm width, 50 µm height) on the pico-fusion chip (Fig. C-7) generates substrate droplets of 

200 pL containing 4.5 mM WST-1, 4.5 mM (R)-1-methyl-3-phenylpropylamine, 3 mM NAD+, 

7.5 µg/mL mPMS, 200 µg/mL streptomycin, 2 µL/mL rLysozyme and 0.6x CelLytic B in 

100 mM glycine-KOH pH 9 at flow rates of 2 µL/min and 3 µL/min for the aqueous and oil 

phase, respectively. The droplets containing the grown cells were injected at 200 Hz or 

1-2 µL/min and synchronized to the generated substrate droplets in a delay channel. The 

smaller cell droplets pack tightly behind the larger substrate droplets and are fused in the fusion 

chamber under application of an electric field (400 V, 10 kHz square wave). Fused droplets are 

collected in a droplet incubation chamber and sorted via AADS as described below. 

Absorbance-activated droplet sorting (AADS). Absorbance of droplets was measured in 

AADS, as described previously (Gielen et al, 2016). The droplet emulsion was injected into 

the sorting chip at 100-200 Hz or 1-3 µL/min. Spacing oil (HFE-7500) was added at 30-

40 µL/min and the absorbance of droplets passing through the interrogation point was analysed. 

At the interrogation point, optical fibers (M14, Thorlabs) are fixed (Fig. A-10). The fibers were 

inserted after de-cladding and cutting to an even edge and are coupled to a LED light-source 

(455 nm, M455F3 Thorlabs) and a detector (PDA100A2, Thorlabs). The signal is analysed live 

on an Arduino Due microcontroller, as well as recorded for later analysis and visualization on 

a computer. Sorting and analysis scripts written for this thesis are available online at 

https://github.com/pauljannis/AADSutility. The microcontroller actuates sorting by activating 

salt-water electrodes filled with 5 M NaCl (Sciambi & Abate, 2014), pulling droplets with high 

absorbance into the sorting channel (600 V, 10 kHz square wave, 5 ms pulse). Sorted droplets 

are collected in a DNA low-binding reaction tube (DNA LoBind 0.5 mL, Eppendorf) and their 

contained plasmid DNA is isolated and purified (Kintses et al, 2012). To recover plasmid DNA 

from the sorted droplets, the same volume 1H,1H,2H,2H-perfluorooctanol and 100 µL of 

nuclease-free water containing 100 ng/mL junk DNA (salmon-sperm) were added to the 

collected droplets. This mixture was vigorously mixed for 1 min and then spun down 

https://github.com/pauljannis/AADSutility
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(14,000 × g for 1 min) to enable extraction of the aqueous phase. This extraction was repeated 

two times with 100 µL water containing salmon-sperm DNA. The total collected 300 µL 

aqueous phase containing the recovered plasmids from sorted droplets was purified and 

concentrated using the Zymo Clean & Concentrator-5 (Zymo Research) and used to transform 

electrocompetent E. cloni 10G ELITE (Lucigen). 

G.6. NANOPORE SEQUENCING 

UMI complexity control. Plasmids with variants recovered from sorting were used as 

templates for UMI-tagging and subsequent nanopore sequencing with the primers listed in 

Table 12. The UMI and an experiment-specific barcode, here labelling the round of evolution, 

are introduced by tagging of the gene variants in two cycles of PCR. The experiment specific 

barcode is a unique 24 base stretch, distinctly identifiable after sequencing. Barcode sequences 

from the PCR Barcoding Expansion Pack 1-96 (EXP-PBC096, Oxford Nanopore Techologies) 

were used in custom primers (BCX-F). The UMI is introduced via the reverse primer (UMI-

R), containing a total of 50 randomized bases thus introducing a unique sequence to each 

molecule. Both primers contain 25 base homology overhangs for Gibson assembly in a later 

step. Two cycles of PCR are performed with the Q5 High-Fidelity 2X Master Mix (NEB 

M0492) to attach a barcode and a UMI to each DNA molecule in the following reaction: 

 Reaction:   Cycling:   

 25 µL Q5 2X master mix  98 °C 1 min  

 2.5 µL BC-F primer (10 µM)  98 °C 10 s  

 2.5 µL UMI-R primer (10 µM)  60 °C 30 s 2 cycles 

 500 ng Template DNA  72 °C 1 min  

ad 50 µL H2O  72 °C 5 min  

 

The PCR product is purified using the Zymo Clean & Concentrator-5 (Zymo Research) and 

used as input for a second PCR amplifying the UMI- and barcode-tagged DNA fragments via 

the common 25 base Gibson overhangs. The total purified DNA from the previous step is used 

as template in a PCR with Gibson-F and Gibson-R primers, amplified for 15 cycles. This PCR 

product is used in a Gibson assembly reaction with BamHI/KpnI linearized pRSFDuet-1 as 

acceptor. The linearized acceptor fragment is generated by restriction digest, followed by 

agarose gel purification, and the Gibson assembly is performed with the Gibson Assembly 

Master Mix (NEB E2611). 
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 Reaction:   Cycling:   

 100 ng Linearized pRSFDuet-1  50 °C 60 min  

 100 ng PCR fragment     

 10 µL Gibson Assembly Master 

Mix (2X) 

    

ad 20 µL H2O     

 

Next, the Gibson Assembly reaction is purified and used for the transformation of 

electrocompetent E. cloni 10G ELITE (Lucigen). Crucially, a dilution series is plated from this 

transformation and the required colony number is selected. Here, if 1000 variants were sorted 

and thus contained in the plasmid pool for sequencing, 3000 – 5000 colonies would be selected 

in the next step to account for statistical sampling of each of those variants. The colonies are 

used as input for plasmid isolation (GeneJET, Thermo Fisher K0503) to obtain the final UMI-

tagged and complexity restricted variant library. 

Table 12: Primers used for nanopore sequencing. Primers for the first nanopore run (chapter D, nano1) were 

slightly altered in the second run (chapter E, nano2). Features: Homology overhang for Gibson assembly (yellow). 

UMI (red). Restriction enzyme site (green). Experiment-specific barcode (blue). Binding (black). Spacer (grey). 

Name Sequence 

Nano1-UMI-R 
GTTTCTTTACCAGACTCGAGGGTACCGATACNNNNNNNNNNNNNNNNNNNNNNNNNGATACNNN
NNNNNNNNNNNNNNNNNNNNNNGCTCCAAGCGCTCTCGAG 

Nano2-UMI-R 
TACATCGAACTGGATCTCAACAGCGNNNYRNNNYRNNNYRNNNYRNNYRGATACNNNYRNNNYR
NNNYRNNNYRNNYRTGGCTCCAAGCGCTCTCGAG 

Nano2-BC1-F 
CTTACTTCTGACAACGATCGGAGGACAAGAAAGTTGTCGGTGTCTTTGTGTCGACAAAAATCTA
GAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATG  

Nano2-BC2-F 
CTTACTTCTGACAACGATCGGAGGACTCGATTCCGTTTGTAGTCGTCTGTTCGACAAAAATCTA
GAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATG  

Nano2-BC3-F 
CTTACTTCTGACAACGATCGGAGGACGAGTCTTGTGTCCCAGTTACCAGGTCGACAAAAATCTA
GAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATG  

Nano2-BC4-F 
CTTACTTCTGACAACGATCGGAGGACTTCGGATTCTATCGTGTTTCCCTATCGACAAAAATCTA
GAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATG  

Nano2-BC5-F 
CTTACTTCTGACAACGATCGGAGGACCTTGTCCAGGGTTTGTGTAACCTTTCGACAAAAATCTA
GAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATG  

Nano2-BC6-F 
CTTACTTCTGACAACGATCGGAGGACTTCTCGCAAAGGCAGAAAGTAGTCTCGACAAAAATCTA
GAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATG  

Nano2-BC7-F 
CTTACTTCTGACAACGATCGGAGGACGTGTTACCGTGGGAATGAATCCTTTCGACAAAAATCTA
GAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATG  

Nano2-BC8-F 
CTTACTTCTGACAACGATCGGAGGACTTCAGGGAACAAACCAAGTTACGTTCGACAAAAATCTA
GAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATG  

Nano1-BC1-F 
ACCATCATCACCACAGCCAGGATCCGATACAAGAAAGTTGTCGGTGTCTTTGTGCTAGAAATAA
TTTTGTTTAACTTTAAGAAGGAGATATACCATG 

Nano1-BC2-F 
ACCATCATCACCACAGCCAGGATCCGATACTCGATTCCGTTTGTAGTCGTCTGTCTAGAAATAA
TTTTGTTTAACTTTAAGAAGGAGATATACCATG 

Nano1-BC3-F 
ACCATCATCACCACAGCCAGGATCCGATACGAGTCTTGTGTCCCAGTTACCAGGCTAGAAATAA
TTTTGTTTAACTTTAAGAAGGAGATATACCATG 

Nano1-Gibson-F ACCATCATCACCACAGCCAG 

Nano1-Gibson-R GTTTCTTTACCAGACTCGAGGGTAC 

Nano2-Gibson-F 
ATACCATGGGCAGCAGCCATCACCATCATCACCACAGCCAGGATCCCTTACTTCTGACAACGAT
CGGAGGAC 

Nano2-Gibson-R 
GTTCAAATTTCGCAGCAGCGGTTTCTTTACCAGACTCGAGGGTACCTACATCGAACTGGATCTC
AACAGCG 
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Library preparation and sequencing. The region of interest (gene variant with UMI and 

barcode) is excised from the plasmid library obtained in the steps above. This is achieved by 

conventional restriction digest with BamHI and KpnI, followed by purification of the excised 

fragment after agarose gel electrophoresis. This DNA fragment is used at 200 fmol 

concentration as input for nanopore sequencing using the SQK-LSK109 kit (Oxford Nanopore 

Technologies). Further steps are performed as described by the manufacturer, using the Short 

Fragment Wash Buffer and sequencing with a FLO-MIN106 (R9.4.1 pore) flow cell (Oxford 

Nanopore Technologies) until an expected variant coverage of 100x is achieved. Base calling 

of raw reads is done with guppy 3.5.2 (Oxford Nanopore Technologies) on a GeForce GTX 

1050 with default settings. Sequencing metrics were visualized with NanoPlot and base called 

reads were filtered for length of 1250 – 1400 b and a minimum average base call quality score 

of 8 using NanoFilt (De Coster et al, 2018). 

Bioinformatic pipeline ‘UMIC-seq’. Filtered reads were further analysed with custom scripts 

written in Python, making use of open-source libraries such as biopython (Cock et al, 2009) 

and scikit-bio (http://scikit-bio.org/). Script are available at https://github.com/fhlab/UMIC-

seq. A workflow diagram using the custom scripts is shown in Fig. D-4. Firstly, the experiments 

are demultiplexed by aligning the available 24 b barcode sequences and assigning one barcode 

to each read, using the ‘UMIC-seq demultiplex’ functionality with default settings. Next, the 

UMI is extracted from the reads by identifying a 100 b constant region adjacent to the UMI, 

using the ‘UMIC-seq UMIextract’ function. The extracted UMIs are then clustered, i.e. placed 

into groups based on sequence similarity. Reads with the same UMI will stem from the same 

variant and can be used to generate accurate consensus sequences, however, a sequencing error 

cut-off needs to be found for the groupings, because reads of the same UMI will have slight 

alterations due to the high raw read error-rate in nanopore sequencing of approximately 10%. 

This cut-off, or rather clustering threshold, can be approximated by generating clusters at 

different cut-offs and estimating their diversity. This progression should yield a saturation 

curve, as once true clusters are established, a further increase in clustering stringency will not 

increase cluster homogeneity. Such a threshold approximation can be performed using the 

‘UMIC-seq clustertest’ functionality, and a suitable threshold for full clustering can be 

identified as a value beginning saturation. This value will usually be similar to the length of 

the UMI. Full clustering is then performed with the ‘UMIC-seq clusterfull’ functionality, 

generating all clusters of the full reads based on their UMI similarities. The reads of each cluster 

are then used to generate a polished consensus sequence from the raw signal with Nanopolish 

http://scikit-bio.org/
https://github.com/fhlab/UMIC-seq
https://github.com/fhlab/UMIC-seq
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0.10.2 (Loman et al, 2015), using the non-mutated gene as a reference sequence and the 

nanopolish variants module with parameters --consensus --min-flanking-sequence 3 --max-

round 100 --methylation-aware dam,dcm. 

Variant analysis. The consensus variants obtained from nanopore sequencing were analysed 

using custom python scripts. The main analysis was a t-SNE dimensionality reduction (Maaten 

& Hinton, 2008), as implemented in the scikit-learn python library (Pedregosa et al, 2011). For 

this analysis, unique variants and their frequencies in the total pool of sequences are analysed 

based on their similarity, here as a metric of Levenshtein distance (Yujian & Bo, 2007). Unique 

variants are represented as dots, closely placed to other similar variants, establishing patterns 

and phylogenies. The custom-made implementation in Python generated for this study is 

available at https://github.com/pauljannis/pySSN. 
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H. APPENDIX 

H.1. TABLE OF ABBREVIATIONS 

AADH amino acid dehydrogenase 

AADS absorbance-activated droplet sorting 

AmDH amine dehydrogenase 

aTc anhydrotetracycline 

BL21 E. coli BL21 (DE3) 

b base 

CI confidence interval 

CV column volume 

DH5a E. coli DH5a or E. cloni 10G 

E4 evolutionarily-stabilized PheDH variant of round 4 

epPCR error-prone PCR 

GFP green fluorescent protein 

IQR interquartile range 

mPMS 1-methoxy-5-methylphenazinium methyl sulfate  

NEB New England Biolabs 

OD600 absorbance at 600 nm 

ONT Oxford Nanopore Technologies 

P4 PROSS-stabilized PheDH design 4 

PCR polymerase chain reaction 

PDMS polydimethylsiloxane 

PheDH phenylalanine dehydrogenase 

RT room temperature 

SD standard deviation 

SSN sequence similarity network 

StEP staggered extension process 

tSNE t-distributed stochastic neighbor embedding 

UMI unique molecular identifier 

UMIC-seq UMI-linked consensus sequencing 

WST-1 water-soluble tetrazolium salt 1 

WT wild type 
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H.4. SUPPLEMENTARY FIGURES 

 

Fig. S1: NADH detection reaction in AADS. NADH, e.g. detected produced by the deamination activity of 

AmDHs or by live cells, is recycled to NAD+ by the mPMS-coupled detection reaction in AADS. NAD: 

Nicotinamide adenine dinucleotide. mPMS: 1-methoxy-5-methylphenazinium methyl sulfate. WST-1: water-

soluble tetrazolium salt 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium. Rib: Ribose. 

ADP: Adenosine diphosphate. Figure adapted from Gielen et al (2016). 

 

 

 

 



H – Appendix 

136 

 

Fig. S2: Threshold approximation for UMI clustering. Exemplary output of the UMIC-seq tools ‘clustertest’ 

functionality shown. (a) Alignment score histograms. 25 randomly selected UMIs are aligned against all other 

UMIs and the distribution of resulting alignment scores is shown. (b) Threshold approximation. 25 randomly 

selected UMIs are clustered with increasingly stringent alignment score threshold. The average internal similarity 

as well as the median cluster size of the 25 resulting clusters is shown for each selected alignment score threshold. 

 

 

Fig. S3: Distribution of cluster sizes. The total number of sequences as a function of cluster size is shown. The 

median number of sequences per cluster is 94. 
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Fig. S4: Michaelis-Menten kinetics of founder variants. Wild type is the non-mutated P4QM AmDH. Reactions 

performed with 0 to 12.8 mM R-1-methyl-3-phenylpropylamine and 2.5 mM NAD+ in 100 mM Glycine-KOH 

pH 10 at 22 °C. Independent technical replicates (n = 3, error bars show SD).  
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Fig. S5: Network graphs of 10 rounds of (a) P4QM and (b) E4QM directed evolution. Each node represents a 

unique variant which is connected via edges to each other node that is reachable by one mutation. Nodes are sized 

relative to their degree. Only nodes connected by at least 2 edges are shown. Force-directed layout generated via 

ForceAtlas 2 in Gephi 0.9.2. 



H – Appendix 

139 

 

Fig. S6: Michaelis-Menten kinetics of long-term evolution variants. Reactions performed with 0 to 12.8 mM 

R-1-methyl-3-phenylpropylamine and 2.5 mM NAD+ in 100 mM Glycine-KOH pH 10 at 22 °C. Independent 

technical replicates (n = 3, error bars show SD). 
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H.5. SUPPLEMENTARY TABLES 

 

Table S1: Characterization of evolutionarily stabilized PheDH variants. Wild-type (WT) PheDH from 

Rhodococcus sp. M4. Var4 was chosen as the E4 variant for further study, as it showed a good trade-off of activity, 

thermal and kinetic stability. Variables showing error were determined in independent technical triplicates and 

show standard deviation. 

  Var1 Var2 Var3 Var4 (E4) P4* WT 

kcat [s-1] 26.4 ± 1.3 35.1 ± 1.6 30.0 ± 1.7 32.2 ± 1.6 2.20 18.7 ± 1.3 

KM [mM] 0.80 ± 0.10 1.28 ± 0.14 1.28 ± 0.19 1.55 ± 0.19 0.19 0.28 ± 0.05 

Ki [mM] 28.3 ± 5.2 53.4 ± 12.2 72.1 ± 26.3 79.7 ± 25.9 n/a 8.1 ± 1.4 

kcat/KM [s-1 M-1] 32766 ± 0.1 27348 ± 0.1 23396 ± 0.2 20801 ± 0.1 11579 67292 ± 0.7 

Tm [°C] 50.7 ± 0.12 54.5 ± 0.13 54.0 ± 0.14 53.1 ± 0.13 59.0 49.0± 0.18 

Soluble  
expression [%] 

90.2 70.9 70.2 85.4 94.0 28.9 

 

*P4 data courtesy of Raphaëlle Hours. 

 

 

Table S2: Weighted degree and betweenness centrality calculated for founder variants of P4QM and E4QM 

directed evolution. A network graph was generated in which each node represents a unique variant which is 

connected by edges to any other node within an edit distance of 2 or less. 

 

Weighted 
Degree 

Betweenness 
Centrality 

  Weighted 
Degree 

Betweenness 
Centrality 

P4QM 4226 0.16039458  E4QM 1493 0.017597789 

R30H 1442 0.027926664  S151G 463.5 0.001399597 

A148V 1167.5 0.020809441  F160L 445.5 0.001012375 

W10R 1149 0.014050167  A314V 442 0.000938563 

A64E 1103 0.014616032  A148V 418.5 0.000560819 

S33N 946 0.006645116  S191P 406.5 0.000341824 

G59D 908 0.006986279  L226V 392.5 0.000213912 

I4T 854 0.005236744  H104Q 389.5 0.000125628 

M242L 787 0.003778797  V298I 387 0.000097647 

F287Y 761 0.002479989  S81G 380.5 0.000021612 

H311N 745.5 0.002567105  N107C 379.5 0.000028374 
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H.6. SUPPLEMENTARY SEQUENCES 

The amino acid sequences of the Rhodococcus sp. M4 wild-type PheDH (WT), the PROSS-

stabilized variant PheDH (P4) and the evolutionarily-stabilized PheDH (E4) are shown. The 

two key active site residues turning the PheDH into AmDH (K66 N262) are highlighted in 

purple. Mutations relative to the WT reference are highlighted in blue for P4 and green for E4. 

 

>WT 
MGSIDSALNWDGEMTVTRFDRETGAHFVIRLDSTQLGPAAGGTRAAQYSQLADALTDAGKLA

GAMTLKMAVSNLPMGGGKSVIALPAPRHSIDPSTWARILRIHAENIDKLSGNYWTGPDVNTN

SADMDTLNDTTEFVFGRSLERGGAGSSAFTTAVGVFEAMKATVAHRGLGSLDGLTVLVQGLG

AVGGSLASLAAEAGAQLLVADTDTERVAHAVALGHTAVALEDVLSTPCDVFAPCAMGGVITT

EVARTLDCSVVAGAANNVIADEAASDILHARGILYAPDFVANAGGAIHLVGREVLGWSESVV

HERAVAIGDTLNQVFEISDNDGVTPDEAARTLAGRRAREASTTTATA 

 

>P4 
MGSIDSALNWDGEMTVTRFDAATGAHFVIRIHSTQLGPAAGGTRAWQYSSWADALTDAGRLA

RAMTYKMAVAGLPMGGGKSVIALPAPRHSIDPSTWARILRAHAEMIDSLNGRYWTGPDVNTN

SADMDILADETEFVFGRSPERGGAGSSAFTTALGVFEAMKATVAHRGLGSLDGLTVLVQGLG

AVGGSLAKLLAEAGAQLLVADTDTERVALAVELGHTWVALDDVLSTPCDVFAPCAMGGVITD

EVARTLDCKVVCGAANNVLAHEAAADILHARGILYAPDFVANAGGAIHLVGREVLGWSEDQV

HERARAIGDTLKEVFEIADKDGVTPDEAARELAERRMREASTTTATA 

 

>E4 

MGSIDRALNWDGEMTVTRFDRETGAHFIIRLDSTQLGPAAGGTRAAQYSQLADALTDAGKLA

GAMTLKMAISNLPMGGGKSVIALPAPRHSIDPSTWARILRIHAENIDKLSGNYWTGPDVNTS

SADMDTLNDTTEFVFGRSLERGGAGSSAFTTAVGVFEAMKATVAHRGLGSLDGLTVLVQGLG

AVGGSLASMAAEAGARLLVADTDTERVAHAVALGHTAVALEDVLSTPCDVFAPCAMGGVITT

EVARTLDCSVVAGAANNVIADEAASDILHARGILYAPDFVANAGGAIHLVGREVLGWSESVV

HERAVAIGDTLNQVFEISDNDGVTPDEAARILAGRRAREASTTTATA 
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