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Constructing illoyal algebra-valued models of
set theory

Benedikt Löwe, Robert Paßmann and Sourav Tarafder

Abstract. An algebra-valued model of set theory is called loyal to its
algebra if the model and its algebra have the same propositional logic;
it is called faithful if all elements of the algebra are truth values of a
sentence of the language of set theory in the model. We observe that non-
trivial automorphisms of the algebra result in models that are not faithful
and apply this to construct three classes of illoyal models: tail stretches,
transposition twists, and maximal twists.
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1. Background

The construction of algebra-valued models of set theory starts from an algebra
A and a model of set theory forming an A-valued model of set theory. If the
algebra A is a Boolean algebra, this construction results in Boolean-valued
models of set theory which are closely connected to the theory of forcing and
independence proofs in set theory [1]. If the algebra A is not a Boolean algebra,
the construction gives rise to algebra-valued models of set theory whose logic
is, in general, not classical logic. Examples of this are Heyting-valued models of
intuitionistic set theory, lattice-valued models, orthomodular-valued models,
and an algebra-valued model of paraconsistent set theory of Löwe and Tarafder
[10,25,16,14,24].

The central idea of this construction is that the logic of the algebra A

should be reflected in the resulting A-valued model of set theory. E.g., if H is
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any finite Heyting algebra, then the logic of the H-valued model is classical if
and only if the logic of the algebra H is classical (i.e., H is a Boolean algebra;
cf. Proposition 3.3).

But how closely does the logic of the algebra-valued model of set theory
resemble the logic of the algebra it is constructed from? In this paper, we
introduce the concepts of loyalty and faithfulness to describe the relationship
between the logic of the algebra A and the logical phenomena witnessed in
the A-valued model of set theory: a model is called loyal to its algebra if the
propositional logic in the model is the same as the logic of the algebra from
which it was constructed and faithful if every element of the algebra is the
truth value of a sentence in the model.

The classical construction of Boolean-valued models and also the men-
tioned construction of a model of paraconsistent set theory from [14] are all
loyal (cf. Lemma 3.2 and Theorem 3.4). This raises the following natural ques-
tions:

(1) Are there models that are illoyal to their algebra?
(2) Can you characterise the class of algebras that only have loyal models?
(3) Can you characterise the class of logics that can hold in an algebra-valued

model of set theory?

In this paper, we solve question (1) by giving constructions to produce
illoyal models by stretching and twisting Boolean algebras. Our results can
also be seen as a first step towards solving questions (2) and (3). (Note that
question (3) depends on the precise requirements of being a “model of set
theory”, i.e., which axioms of set theory do you require to hold in such a
model.)

Related work

Our two main notions of loyalty and faithfulness were introduced by Paßmann
in a more general setting for classes of so-called Heyting structures in the
sense of [9] (cf. [17, Definitions 2.39 and 2.40]). The concepts of loyalty and
faithfulness also have proof-theoretic applications: de Jongh’s theorem states
that the propositional logic of Heyting arithmetic is IPC, the intuitionistic
propositional calculus; using our terminology, this theorem can be proved by
providing a loyal class of Kripke models of arithmetic (cf. [21,5]). Paßmann
recently constructed a faithful class of models of set theory to prove that the
propositional logic of IZF is IPC [18].

Outline of the paper

After we give the basic definitions in Section 2, we remind the reader of the
construction of algebra-valued models of set theory in Section 3. In Section 4,
we introduce our main technique: non-trivial automorphisms of an algebra A

exclude values from being truth values of sentences in the A-valued model
of set theory (Corollary 4.3). Finally, in Section 5, we apply this technique
to produce three classes of models: tail stretches (Section 5.2), transposition
twists (Section 5.3), and maximal twists (Section 5.4).
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2. Basic definitions

2.1. Algebras

As usual in logic, if Λ is a finite list of finitary logical connectives, a Λ-algebra
A is an underlying set A with a finite list of finitary operations on A corre-
sponding to the symbols in Λ. In this paper, we shall assume that

{∧,∨,0,1} ⊆ Λ ⊆ {∧,∨,→,¬,0,1}
and that (A,∧,∨,0,1) is a bounded distributive lattice. As usual, we use the
same notation for the syntactic logical connectives and the operations on A

interpreting them. In the rare cases where proper marking of these symbols
improves readability, we attach a subscript A to the algebra operations in A,
e.g., ∧A, ∨A,

∧
A
, or

∨
A
. We can define ≤ on A by x ≤ y if and only if x∧y = x.

An element a ∈ A is an atom if it is ≤-minimal in A\{0}; we write At(A) for
the set of atoms in A. If Λ = {∧,∨,→,0,1}, we call A an implication algebra
and if Λ = {∧,∨,→ ¬,0,1}, we call A an implication-negation algebra.

We call a Λ-algebra A with underlying set A complete if for every X ⊆ A,
the ≤-supremum and ≤-infimum exist; in this case, we write

∨
X and

∧
X

for these elements of A. A complete Λ-algebra A is called atomic if for every
a ∈ A, there is an X ⊆ At(A) such that a =

∨
X.

2.2. Boolean algebras, complementation, and Heyting algebras

An algebra B = (B,∧,∨,¬,0,1) is called a Boolean algebra if for all b ∈ B, we
have that b ∧ ¬b = 0 and b ∨ ¬b = 1. As usual, we can define an implication
by

x → y := ¬x ∨ y; (#)

using this definition, we can consider Boolean algebras as implication algebras
or implication-negation algebras. An implication algebra (B,∧,∨,→,0,1) is
called a Boolean implication algebra if there is a Boolean algebra
(B,∧,∨,¬,0,1) such that → is defined by (#) from ∨ and ¬ or, equivalently,
if the negation defined by ¬∗x := x → 0 satisfies ¬∗b∧ b = 0 and ¬∗b ∨ b = 1.

On an atomic bounded distributive lattice A = (A,∧,∨,0,1), we have a
canonical definition for a negation operation, the complementation negation:
since A is atomic, every element a ∈ A is uniquely represented by a set X ⊆
At(A) such that a =

∨
X. Then we define the complementation negation by

¬c(
∨

X) :=
∨

{t ∈ At(A) ; t /∈ X}.

In this situation, (A,∧,∨,¬c,0,1) is an atomic Boolean algebra. Moreover, if
(A,∧,∨,¬,0,1) is an atomic Boolean algebra and ¬c is the complementation
negation of the atomic bounded distributive lattice (A,∧,∨,0,1), then ¬ = ¬c.
Of course, for every set X, the power set algebra (℘(X),∩,∪, ∅,X) forms
an atomic bounded distributive lattice and, with the set complementation
operator, a Boolean algebra.

If (H,∧,∨,0,1) is a bounded distributive lattice, then an implication
algebra H = (H,∧,∨,→,0,1) is called a Heyting algebra if and only if the
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Law of Residuation holds, i.e., for all a, b, c ∈ H, we have that

c ∧ a ≤ b if and only if c ≤ a → b.

If H is a complete lattice, then this is equivalent to

a → b =
∨

{x ∈ H ; a ∧ x ≤ b} (†)
and we say that H is a complete Heyting algebra. In a Heyting algebra H, we
can define a negation ¬H by ¬Hx := x → 0. Note that Boolean implication
algebras are Heyting algebras.

It is well known that the class of Heyting algebras forms a variety [13,
p. 8] and that not every complete bounded distributive lattice can be turned
into a Heyting algebra (e.g., the dual of the Heyting algebra of open subsets
of R; cf. [2, Proposition 51.2]).

A Heyting algebra is called linear if (H,≤) is a linear order; the formula
(p → q) ∨ (q → p) characterises the variety of Heyting algebras generated by
the linear Heyting algebras [20,7,11] (cf. also [19] for a discussion of Skolem’s
1913 results).

We shall later use the following linear three element complete Heyting
algebra 3 := ({0, 1/2,1},∧,∨,→,0,1) with 0 ≤ 1/2 ≤ 1. Then → is uniquely
determined by (†):

→ 0 1/2 1
0 1 1 1

1/2 0 1 1
1 0 1/2 1 .

2.3. Languages

Fix a set S of non-logical symbols, a countable set P of propositional variables,
and a countable set V of first-order variables. We denote the set of well-formed
propositional formulas with connectives Λ and propositional variables P by LΛ

and the set of well-formed first-order formulas with connectives Λ, variables
in V and constant, relation and function symbols in S by LΛ,S . The subset of
sentences of LΛ,S will be denoted by SentΛ,S . Note that both LΛ and SentΛ,S

have the structure of a Λ-algebra and that the Λ-algebra LΛ is generated by
closure under the connectives in Λ from the set P .

For arbitrary sets Λ of logical connectives and S of non-logical symbols,
we define NFFΛ to be the closure of P under the logical connectives other
than ¬ and NFFΛ,S to be the closure of the atomic formulae of LΛ,S under the
logical connectives other than ¬. These formulas are called the negation-free
Λ-formulas. Clearly, if ¬ /∈ Λ, then LΛ = NFFΛ and LΛ,S = NFFΛ,S .

2.4. Homomorphisms, assignments, and translations

For any two Λ-algebras A and B, a map f : A → B is called a Λ-homomorphism
if it preserves all operations in Λ; it is called a Λ-isomorphism if it is a bijective
Λ-homomorphism; isomorphisms from A to A are called Λ-automorphisms.



Vol. 82 (2021) Illoyal algebra-valued models of set theory Page 5 of 19 46

If A and B are two complete Λ-algebras and f :A→B is a Λ-homomorphism,
we call it complete if it preserves the operations

∨
and

∧
, i.e.,

f(
∨

A
X) =

∨
B
({f(x) ; x ∈ X}) and

f(
∧

A
X) =

∧
B
({f(x) ; x ∈ X})

for X ⊆ A.
Since LΛ is generated from P , we can think of any Λ-homomorphism

defined on LΛ as a function on P , homomorphically extended to all of LΛ.
If A is a Λ-algebra with underlying set A, we say that Λ-homomorphisms
ι : LΛ → A are A-assignments; if S is a set of non-logical symbols, we say that
Λ-homomorphisms T : LΛ → SentΛ,S are S-translations.

2.5. The propositional logic of an algebra

A set D ⊆ A is called a designated set or filter if the following four conditions
hold: (i) 1 ∈ D, (ii) 0 /∈ D, (iii) if x ∈ D and x ≤ y, then y ∈ D, and (iv) for
x, y ∈ D, we have x ∧ y ∈ D. For any designated set D, the propositional logic
of (A,D) is defined as

L(A,D) := {ϕ ∈ LΛ ; ι(ϕ) ∈ D for all A-assignments ι}.

Since the classical propositional calculus CPC is maximally consistent, we
obtain that if B is a Boolean algebra and D is any designated set, then
L(B,D) = CPC [3, Theorem 5.11].

2.6. Algebra-valued structures and their propositional logic

If A is a Λ-algebra and S is a set of non-logical symbols, then any Λ-homomor-
phism �·� : SentΛ,S → A will be called an A-valued S-structure. Note that if
S′ ⊆ S, Λ′ ⊆ Λ, A is a Λ-algebra and A

′ its Λ′-reduct, and �·� is an A-valued
S-structure, then �·��SentΛ,S′ is an A-valued S′-structure and �·��SentΛ∗,S is
an A

∗-valued S-structure.
We define the propositional logic of (�·�,D) as

L(�·�,D) := {ϕ ∈ LΛ ; �T (ϕ)� ∈ D for all S-translations T}.

Note that if T is an S-translation and �·� is an A-valued S-structure, then
ϕ 
→ �T (ϕ)� is an A-assignment, so

L(A,D) ⊆ L(�·�,D). (‡)
Clearly, ran(�·�) ⊆ A is closed under all operations in Λ (since �·� is a homo-
morphism) and thus defines a sub-Λ-algebra A�·� of A. The A-assignments that
are of the form ϕ 
→ �T (ϕ)� are exactly the A�·�-assignments, so we obtain

L(�·�,D) = L(A�·�,D ∩ A�·�).

We should like to point out that the propositional logic of the structure
(�·�,D) as defined above treats all Λ, S-sentences as propositional atoms and
thus cannot take their internal construction into account; this is in line with
the usual definitions of propositional logics of first-order theories (cf., e.g., [5]).
Note that ignoring the internal structure of sentences can result in a situation
where a structure (�·�,D) is non-classical, but satisfies L(�·�,D) = CPC. E.g.,
consider the Heyting algebra H with H = Z ∪ {0,1} from Proposition 4.7
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where we prove that L(�·�H, {1}) = CPC. It is easy to see that the sentence
ϕ := ∀x∀y(x ∈ y ∨ x /∈ y) (cf. the proof of Proposition 3.3) evaluates to 0 in H,
so H is non-classical. (This was pointed out by one of the referees.)

2.7. Loyalty and faithfulness

An A-valued S-structure �·� is called loyal to (A,D) if the converse of (‡) holds
as well, i.e., if L(A,D) = L(�·�,D); it is called faithful to A if for every a ∈ A,
there is a ϕ ∈ SentΛ,S such that �ϕ� = a; equivalently, if A�·� = A. (Cf. the
paragraph on Related Work in Section 1 for the genesis of these notions.)

Lemma 2.1. Let Λ be any set of propositional connectives, S be any set of non-
logical symbols, A be a Λ-algebra, and �·� be an A-valued S-structure. Then, if
�·� is faithful to A, then it is loyal to (A,D) for any designated set D.

Proof. By (‡), we only need to prove one inclusion; if ϕ /∈ L(A,D), then
let p1, . . . , pn be the propositional variables occurring in ϕ and let ι be an
assignment such that ι(ϕ) /∈ D. By faithfulness, find sentences σi ∈ SentΛ,S

such that �σi� = ι(pi) for 1 ≤ i ≤ n. Let T be any translation such that
T (pi) = σi for 1 ≤ i ≤ n. Then �T (ϕ)� = ι(ϕ) /∈ D, and hence T witnesses
that ϕ /∈ L(�·�,D). �

A proof of Lemma 2.1 in the more general setting for classes of Heyting
structures can be found in [17, Proposition 2.50].

Note that faithfulness and loyalty depend on the choice of S. As men-
tioned above, if S∗ ⊆ S and Λ∗ ⊆ Λ then SentΛ∗,S∗ ⊆ SentΛ,S and thus we
can easily see the following:

Observation 2.2. Let A be a Λ-algebra, A
∗ its Λ∗-reduct, and �·� be an A-valued

S-structure. If �·��SentΛ∗,S∗ is faithful to A
∗, then �·� is faithful to A.

However, the converse is not true in general: faithfulness cannot hold if
the algebra A is bigger than the set SentΛ,S , so for countable languages, no
A-valued S-structure can be faithful to an uncountable algebra A. Thus, if A

is an uncountable algebra, S an uncountable set of non-logical symbols, �·� is
an A-valued S-structure that is faithful to A, and S′ is a countable subset of
S, then �·��LΛ,S′ cannot be faithful to A. The constructions in this paper will
give another example that does not use a cardinality argument (cf. the remark
after Theorem 5.10 at the end of this paper).

3. Algebra-valued models of set theory

In the following, we give an overview of general construction of an algebra-
valued model of set theory following [14]. The original ideas go back to Boolean-
valued models independently discovered by Solovay and by Vopěnka [28] and
were further generalised to other classes of algebras [10,22,25,26,15,16]. De-
tails can be found in [1].

In the following, we shall use the phrase “V is a model of set theory” to
mean that V is a transitive set such that (V,∈) |= ZF. Of course, the existence



Vol. 82 (2021) Illoyal algebra-valued models of set theory Page 7 of 19 46

∀x∀y[∀z(z ∈ x ↔ z ∈ y) → x = y (] Extensionality)

∀x∀y∃z∀w(w ∈ z ↔ (w = x ∨ w = y ()) Pairing)

∃x[∃y(∀z(z ∈ y → 0) ∧ y ∈ x) ∧ ∀w ∈ x∃u ∈ x(w ∈ u)] (Infinity)

∀x∃y∀z(z ∈ y ↔ ∃w ∈ x(z ∈ x ()) Union)

∀x∃y∀z(z ∈ y ↔ ∀w ∈ z(w ∈ x ()) Power Set)

∀p0 · · · ∀pn∀x∃y∀z(z ∈ y ↔ z ∈ x ∧ ϕ(z, p0, . . . , pn)) (Separationϕ)

∀p0 · · · ∀pn−1∀x[∀y ∈ x∃zϕ(y, z, p0, . . . , pn−1)

→ ∃w∀v ∈ x∃u ∈ w ϕ(v, u, p0, . . . , pn−1)] (Collectionϕ)

∀p0 · · · ∀pn∀x[∀y ∈ x ϕ(y, p0, . . . , pn) → ϕ(x, p0, . . . , pn)]

→ ∀zϕ(z, p0, . . . , pn) (Set Inductionϕ)

Figure 1. The axioms of ZF formulated in L{∧,∨,→,0,1},{∈}

of sets like this cannot be proved in ZF and requires some (mild) additional
metamathematical assumptions. The choice of ZF as the set theory in our base
model is not relevant for the constructions of this paper and one can generalise
the results to models of weaker or alternative set theories; however, we shall
not explore this route in this paper.

Since we are sometimes working in languages without negation, we need
to formulate the axioms of ZF in a negation-free context given in Figure 1,
following [14, Section 3]. Our negation-free axioms given are classically equiv-
alent to what is usually called ZF, but not exactly the same axioms: e.g., we
use Collection and Set Induction in lieu of Replacement and Foundation. Many
authors call this axiom system IZF.

If V is a model of set theory and A is any set, then we construct a universe
of names by transfinite recursion:

Nameα(V,A) := {x ; x is a function and ran(x) ⊆ A and

there is ξ < α with dom(x) ⊆ Nameξ(V,A)} and

Name(V,A) := {x ; ∃α(x ∈ Nameα(V,A))}.

We let SV,A be the set of non-logical symbols consisting of the binary relation
symbol ∈ and a constant symbol for every name in Name(V,A) (as usual, we
use the name itself as the constant symbol). The language LΛ,SV,A

is usually
called the forcing language.

If A is a Λ-algebra with underlying set A, we can now define a map �·�A
assigning to each ϕ ∈ LΛ,SV,A

a truth value in A by recursion (the definition
of �u ∈ v�A and �u = v�A is recursion on the hierarchy of names; the rest is a
recursion on the complexity of ϕ):



46 Page 8 of 19 B. Löwe, R. Paßmann and S. Tarafder Algebra Univers.

�0�A = 0,

�1�A = 1,

�u ∈ v�A =
∨

x∈dom(v)

(v(x) ∧ �x = u�A),

�u = v�A =
∧

x∈dom(u)

(u(x) → �x ∈ v�A) ∧
∧

y∈dom(v)

(v(y) → �y ∈ u�A),

�ϕ ∧ ψ�A = �ϕ�A ∧ �ψ�A,

�ϕ ∨ ψ�A = �ϕ�A ∨ �ψ�A,

�ϕ → ψ�A = �ϕ�A → �ψ�A,

�¬ϕ�A = ¬�ϕ�A,

�∀xϕ(x)�A =
∧

u∈Name(V,A)

�ϕ(u)�A, and

�∃xϕ(x)�A =
∨

u∈Name(V,A)

�ϕ(u)�A.

By construction, it is clear that �·�A is an A-valued SV,A-structure and hence,
by restricting it to SentΛ,{∈}, we can consider it as an A-valued {∈}-structure.
Usually, it is the restriction to SentΛ,{∈} that set theorists are interested in: to
reflect this shift of focus, we shall use the notation �·�A := �·�A�SentΛ,{∈} and
�·�Name

A
:= �·�A.

The results for algebra-valued models of set theory were proved for Boolean
algebras originally, then extended to Heyting algebras:

Theorem 3.1. If V is a model of set theory, B = (B,∧,∨,→,¬,0,1) is a
Boolean algebra or Heyting algebra, and ϕ is any axiom of ZF, then �ϕ�B = 1.

Proof. Cf. [1, Theorem 1.33 and pp. 165–166]. �

Lemma 3.2. Let H = (H,∧,∨,→,0,1) be a Heyting algebra and V be a model
of set theory. Then �·�Name

H
is faithful to H (and hence, loyal to (H,D) for

every designated set D on H by Lemma 2.1).

Proof. Consider u := ∅ ∈ Name1(V,H), v := {(∅, a)} ∈ Name2(V,H),
and ϕ := u ∈ v which is an element of SentΛ,SV,H

. It is easy to check that
�ϕ�Name

H
= a. �

We can now prove the result for finite Heyting algebras mentioned in the
introduction. The generalisation to infinite Heyting algebras is not true, as
Proposition 4.7 will show. (Cf. [17, Corollary 5.15] for more on the logic of the
class of all Heyting-valued models for a finite Heyting algebra.)

Proposition 3.3. Let H = (H,∧,∨,→,0,1) be a finite Heyting algebra and V
be a model of set theory. Then L(�·�H, {1}) = CPC if and only if H is a
Boolean algebra.
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Proof. To simplify notation, let ¬a := ¬Ha = a → 0. The direction “⇐” is
clear.

For the direction “⇒”, consider h :=
∧{a ∨ ¬a ; a ∈ H}. Since H is a

Heyting algebra, we have the following equalities for all a, b ∈ H:

¬¬(a ∨ ¬a) = 1,

¬(a ∨ b) = ¬a ∧ ¬b (de Morgan for ∨ ), and

¬(a ∧ b) = ¬¬(¬a ∨ ¬b) (weak de Morgan for ∧).

Using (weak) de Morgan, an induction shows for finite A ⊆ H that

¬¬
∧

{a ; a ∈ A} =
∧

{¬¬a ; a ∈ A}.

Thus, since H is finite, we have that

¬¬h = ¬¬
∧

{a ∨ ¬a ; a ∈ H}
=

∧
{¬¬(a ∨ ¬a) ; a ∈ H} = 1.

We now consider the sentence ϕ := ∀x∀y(x ∈ y ∨ x /∈ y). Clearly,

�ϕ�H =
∧

{�u ∈ v ∨ u /∈ v�H ; u, v ∈ Name(V,H)}
≥

∧
{a ∨ ¬a ; a ∈ H} = h.

For a ∈ H, let ua := {(∅, a)}; then, �u0 ∈ ua�H = a, and thus �ϕ�H ≤ a ∨ ¬a,
whence �ϕ�H = h.

If H is not a Boolean algebra, then there is some a such that a ∨ ¬a �= 1,
so h �= 1, but then ¬¬p → p /∈ L(�·�H, {1}), as witnessed by ϕ. �

In order to formulate results for implication algebras, Löwe and Tarafder
introduced NFF-ZF, the axiom system of all ZF-axioms where the two axiom
schemata are restricted to instances of negation-free formulas [14, p. 197].
They furthermore introduced a three-element algebra PS3 [14, Figure 2 and
Section 6] and proved the following result (for the sake of completeness, we
give the definition of PS3 in Figure 2; for more on the algebra PS3, cf. [4]; for
more on the set theory in the PS3-valued model, cf. [23]):

Theorem 3.4. If V is a model of set theory and ϕ is any axiom of NFF-ZF,
then �ϕ�PS3 = 1. Furthermore, �·�PS3 is faithful to PS3 and hence loyal to
(PS3,D) for every designated set D by Lemma 2.1.

Proof. Cf. [14, Corollary 5.2] for the first claim. Löwe and Tarafder give a
sentence ϕ ∈ SentΛ,{∈}, ϕ := ∃u, v, w(u = v ∧ w ∈ u ∧ w /∈ v), such that
�ϕ�PS3 = 1/2 which establishes faithfulness [14, Theorem 6.2]. �

4. Automorphisms and algebra-valued models of set theory

Given a model of set theory V and any Λ-algebras A and B and a Λ-homomor-
phism f : A → B, we can define a map

f̂ : Name(V, A) → Name(V, B)
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∧ 0 1/2 1
0 0 0 0
1/2 0 1/2 1/2
1 0 1/2 1

∨ 0 1/2 1
0 0 1/2 1
1/2 1/2 1/2 1
1 1 1 1

→ 0 1/2 1
0 1 1 1
1/2 0 1 1
1 0 1 1

¬
0 1
1/2 1/2
1 0

Figure 2. Connectives for PS3

by ∈-recursion via

dom(f̂(u)) := {f̂(v) ; v ∈ dom(u)} and

f̂(u)(f̂(v)) := f(u(v)).

Proposition 4.1. Suppose that V is a model of set theory, A and B are complete
Λ-algebras and f : A → B is a complete Λ-isomorphism. Let ϕ ∈ LΛ,{∈} with
n free variables and u1, . . . , un ∈ Name(V, A). Then

f(�ϕ(u1, . . . , un)�A) = �ϕ(f̂(u1), . . . , f̂(un))�B.

Proof. For atomic formulas, this is easily proved by induction on the rank of
the names involved. For non-atomic formulas, the claim follows by induction
on the complexity of the formula (where the quantifier cases need the fact that
f is a bijection). �

Corollary 4.2. Suppose that V is a model of set theory, A and B are complete
Λ-algebras and f : A → B is a complete Λ-isomorphism. Let ϕ ∈ SentΛ,{∈}.
Then

f(�ϕ�A) = �ϕ�B.

Corollary 4.3. Suppose that V is a model of set theory, A is a complete Λ-
algebra with underlying set A, a ∈ A, and that f : A → A is a complete
Λ-automorphism with f(a) �= a. Then there is no ϕ ∈ SentΛ,{∈} such that
�ϕ�A = a.

Proof. By Corollary 4.2, if �ϕ�A = a, then f(a) = a. �
Proposition 4.4. If A = (A,∧,∨,0,1) is an atomic bounded distributive lattice
and a ∈ A\{0,1}, then there is a {∧,∨,¬c,0,1}-automorphism f of A such
that f(a) �= a.

Proof. Note that the assumptions imply that A �= {0,1} and hence At(A) �= ∅.
By atomicity, every permutation π : At(A) → At(A) induces an automorphism
of A preserving ∧, ∨, ¬c, 0, and 1 by fπ(

∨
X) =

∨{π(t) ; t ∈ X} for X ⊆
At(A). Let a =

∨
Xa. Since a �= 0, we have Xa �= ∅; since a �= 1, we have Xa �=

At(A). So, pick t0 ∈ Xa and t1 ∈ At(A)\Xa and let π be the transposition
that interchanges t0 and t1. Then

t0 ≤
∨

Xa = a, but

t0 �≤
∨

{π(t) ; t ∈ Xa} = fπ

(∨
Xa

)
= fπ(a),

whence a �= fπ(a). �
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Corollary 4.5. If V is a model of set theory, B is an atomic Boolean (implica-
tion) algebra with more than two elements, and D is any designated set on B,
then �·�B is loyal, but not faithful to (B,D).

Proof. By Proposition 4.4, all elements except for 0 and 1 are moved by some
automorphism of an atomic Boolean (implication) algebra and hence by Corol-
lary 4.3, for each sentence ϕ ∈ LΛ,{∈}, we have that �ϕ�B ∈ {0,1}. In partic-
ular, this means that L(�·�B,D) = L({0,1}, {1}) = CPC = L(B,D). �

Clearly, atomicity is not a necessary condition for the conclusion of Corol-
lary 4.5: the Boolean algebra of infinite and co-infinite subsets of N is atomless
and hence non-atomic, but every nontrivial element is moved by an automor-
phism, so Corollary 4.3 applies. We do not know whether this result extends
to Boolean algebras without this property, e.g., rigid Boolean algebras (cf. [27,
Section 2]):

Question 4.6. Are there (necessarily countable) Boolean algebras B such that
�·�B is faithful to B for some designated set D?

We can use our method of automorphisms to show that Proposition 3.3
does not generalise to infinite Heyting algebras:

Proposition 4.7. There is an infinite complete Heyting algebra H that is not a
Boolean algebra such that L(�·�H, {1}) = CPC. Consequently, �·�H is illoyal
to (H, {1}).

Proof. Let Λ := {∧,∨,→,0,1} and let H := Z ∪ {0,1} with the order where
0 is the smallest element, 1 is the largest element, and the elements of Z lie
between them in their usual order. Then H = (H,min,max,→,0,1) with

a → b :=

{
1 if a ≤ b and
b otherwise

is a linear complete Heyting algebra with a nontrivial complete Λ-automor-
phism

π(a) :=

{
a + 1 if a ∈ Z and
a if a ∈ {0,1}

(cf. [6, Example 1.3.1]). By Corollary 4.3, for every ϕ ∈ SentΛ,{∈}, �ϕ�H ∈
{0,1}, so L(�·�H, {1}) = CPC. �

5. Stretching and twisting the loyalty of Boolean algebras

5.1. What can be considered a negation?

In this section, we start from an atomic, complete Boolean algebra B and
modify it to get an algebra A that gives rise to an illoyal �·�A. The first con-
struction is the well-known construction of tail extensions of Boolean algebras
to obtain a Heyting algebra. The other two constructions are negation twists :
in these, we interpret B as a Boolean implication algebra via the definition
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a → b := ¬a ∨ b, and then add a new, twisted negation to it that changes its
logic.

So far, all negations we considered were the negations in Boolean algebras
and Heyting algebras; now, we are going to modify these negations. Of course,
not every unary function on an implication algebra is a sensible negation, and
we need to argue that the modified negation operations in our examples meet
the requirements of being a negation operation. In his survey of varieties of
negation, Dunn lists Hazen’s subminimal negation as the bottom of his Kite
of Negations: only the rule of contraposition, i.e., a ≤ b implies ¬b ≤ ¬a, is
required [8]. In the following, we shall use this as a necessary requirement to
be a reasonable candidate for negation. (Cf. also [12].)

5.2. Tail stretches

Let B = (B,∧,∨,→,¬,0,1) be a Boolean algebra, and 1∗ /∈ B be an additional
element that we add to the top of B to form the tail stretch H as follows:
H := B ∪ {1∗}, the complete lattice structure of H is the order sum of B and
the one element lattice {1∗}, and →∗ is defined as follows:

a →∗ b :=

⎧
⎪⎨

⎪⎩

a → b if a, b ∈ B such that a �≤ b,

1∗ if a, b ∈ B with a ≤ b or if b = 1∗,
b if a = 1∗.

In H, we use the (Heyting algebra) definition ¬Hh := h →∗ 0 to define a
negation; note that if 0 �= b ∈ B, ¬Hb = ¬b, but ¬H0 = 1∗ �= 1 = ¬0.

Lemma 5.1. The tail stretch H = (H,∧,∨,→∗,0,1∗) is a Heyting algebra with
p ∨ ¬p /∈ L(H, {1∗}), so in particular, L(H, {1∗}) �= CPC.

Proof. If b �= 0 ∈ B, then by definition b →∗ 0 = ¬b where ¬ refers to the
negation in B. In particular, b ∨ ¬Hb = b ∨ ¬b = 1 �= 1∗. �

Lemma 5.2. If f : B → B is an automorphism of the Boolean algebra B, then
f∗ : H → H defined by

f∗(b) :=

{
f(b) if b ∈ B and
1∗ if b = 1∗

is an automorphism of H.

Proof. Easy to check. �

Theorem 5.3. Let V be a model of set theory, B an atomic Boolean algebra
with more than two elements, and H be the tail stretch of B as defined above.
Then the H-valued model of set theory V H is not faithful to H. Furthermore,
we have that

(p → q) ∨ (q → p) ∈ L(�·�H, {1∗})\L(H, {1∗}).

Consequently, V H is illoyal to (H, {1∗}).



Vol. 82 (2021) Illoyal algebra-valued models of set theory Page 13 of 19 46

Proof. Since B is atomic with more than two elements, each of the non-trivial
elements of B is moved by an automorphism of B by Proposition 4.4. By
Lemma 5.2, these remain automorphisms of H. As a consequence, we can apply
Corollary 4.2 to get that ran(�·�H) ⊆ {0,1,1∗} which is isomorphic to the linear
Heyting algebra 3 and thus the range is a linear Heyting algebra. As mentioned,
[11] proved that (p → q) ∨ (q → p) characterises the variety generated by the
linear Heyting algebras, so (p → q) ∨ (q → p) ∈ L(�·�H, {1∗}). However, since
B has more than two elements, we can pick imcomparable a, b ∈ B. Then
a →∗ b and b →∗ a are both elements of B, and thus (p → q) ∨ (q → p) /∈
L(H, {1∗}). �

We remark that ran(�·�H) = {0,1,1∗}: one can show that the �·�H-value
of the sentence formalising the statement “every subset of {∅} is either ∅ or
{∅}” is 1.

5.3. Transposition twists

Let B = (B,∧,∨,→,¬,0,1) be an atomic Boolean algebra, a, b ∈ At(B) with
a �= b, and let π be the transposition that transposes a and b. Since B is an
atomic Boolean algebra, ¬ = ¬c. Then fπ as defined in the proof of Proposition
4.4 is a {∧,∨,→,¬,0,1}-automorphism of B. We now define a twisted negation
by

¬π(
∨

X) :=
∨

{π(t) ∈ At(B) ; t /∈ X}
and let the π-twist of B be Bπ := (B,∧,∨,→,¬π,0,1). (Note that we do not
twist the implication → which remains the implication of the original Boolean
algebra B defined by x → y := ¬cx ∨ y.) We observe that the twisted negation
¬π satisfies the rule of contraposition.

Lemma 5.4. Let D be a designated set. If either ¬ca =
∨{t ∈ At(B) ; t �= a}

or ¬cb =
∨{t ∈ At(B) ; t �= b} is not in D, then ¬(p ∧ ¬p) /∈ L(Bπ,D). In

particular, L(Bπ,D) �= CPC.

Proof. Without loss of generality,
∨{t ∈ At(B) ; t �= b} = ¬cb = ¬πa /∈ D.

Since a ≤ ¬πa, we have that a = ¬πa∧ a, and so ¬π(¬πa∧ a) = ¬πa /∈ D. �
Lemma 5.5. There is an automorphism f of Bπ such that f(a) = b. In partic-
ular, �·�Bπ

is not faithful to Bπ.

Proof. We know that fπ is an automorphism of B. Since π is a transposition,
we have that π2 = id and π = π−1; using this, we observe that fπ still preserves
¬π:

fπ(¬π(
∨

X)) = fπ(
∨

{π(t) ∈ At(B) ; t /∈ X})

=
∨

{π(π(t)) ∈ At(B) ; t /∈ X}
=

∨
{t ∈ At(B) ; t /∈ X}

= ¬π(
∨

{π(t) ∈ At(B) ; t /∈ X})

= ¬π(fπ(
∨

X))).
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1 1

L R π L R

B 0 0 Bπ

Figure 3. The four-element Boolean algebra and its trans-
position twist. Negations are indicated by arrows

Thus, fπ is an automorphism of Bπ; clearly, fπ(a) = b. The second claim
follows from Corollary 4.3. �

Now let V be a model of set theory and �·�Bπ
the Bπ-valued {∈}-structure

derived from V and B.

Lemma 5.6. If x ∈ ran(�·�Bπ
), then ¬πx = ¬cx.

Proof. Let x =
∨

X for some X ⊆ At(B). By Corollary 4.3 and Lemma 5.5, if
x ∈ ran(�·�Bπ

), then fπ(x) = x. This means that either both a, b ∈ X or both
a, b /∈ X. In both cases, it is easily seen that ¬πx = ¬cx. �
Theorem 5.7. For any designated set D, L(�·�Bπ

,D) = CPC. In particular, if
either ¬ca or ¬cb is not in D, then �·�Bπ

is not loyal to (Bπ,D).

Proof. As mentioned in Section 2, if we let

C := B�·�Bπ
= (ran(�·�Bπ

,∧,∨,→,¬π,0,1),

then L(�·�Bπ
,D) = L(C,D). But Lemma 5.6 implies that

C = (ran(�·�Bπ
,∧,∨,→,¬c,0,1),

which is a Boolean algebra (as a subalgebra of B). Thus, L(�·�Bπ
,D) = L(C,D)

= CPC. The second claim follows from Lemma 5.4. �
As the simplest possible special case, we can consider the Boolean algebra

B generated by two atoms L and R; then, there is one nontrivial transposition
π(L) = R and all nontrivial elements of B are moved by the automorphism
fπ. As a consequence of Corollary 4.3, all sentences will get either value 0 or
value 1 under �·�Bπ

, and hence L(�·�Bπ
,D) is classical (cf. Figure 3).

Note that the {∧,∨,→,0,1}-reduct of Bπ is just the Boolean implica-
tion algebra underlying the Boolean algebra B that we started with. Thus,
Observation 2.2 and Theorem 5.7 yield an alternative proof of Corollary 4.5.

5.4. Maximal twists

Again, let B = (B,∧,∨,→,¬,0,1) be an atomic Boolean algebra with more
than two elements and define the maximal negation by

¬mb :=

{
1 if b �= 1 and
0 if b = 1

for every b ∈ B. We let the maximal twist of B be Bm := (B,∧,∨,→,¬m,0,1);
once more observe that the maximal negation ¬m satisfies the rule of contra-
position.
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Lemma 5.8. Let D be a designated set. If there is some 0 �= b /∈ D, then
(p ∧ ¬p) → q /∈ L(Bm,D). In particular, L(Bm,D) �= CPC.

Proof. Let c := ¬cb. Note that the assumption b �= 0 implies c �= 1. In partic-
ular, ¬mc = 1, and thus c ∧ ¬mc = c. Also

c → b = ¬cb → b

= ¬c¬cb ∨ b

= b ∨ b = b.

Thus, the assignment ι with p 
→ c and q 
→ b yields ι((p ∧ ¬p) → q) = b /∈
D. �

Lemma 5.9. For any b /∈ {0,1}, there is an automorphism f of Bm such that
f(b) �= b. In particular, �·�Bm is not faithful to Bm.

Proof. We claim that any automorphism f of B also preserves ¬m. Suppose
f is an automorphism of B. If b = 1, then clearly f(¬m1) = f(0) = 0 =
¬m1 = ¬mf(1). Now let b �= 1. Since f is bijective and f(1) = 1, we have that
f(b) �= 1. So f(¬mb) = f(1) = 1 = ¬mf(b). The second claim follows from
Corollary 4.3. �

Theorem 5.10. For any designated set D, L(�·�Bm ,D) = CPC. In particular,
�·�Bm is not loyal to (Bm,D).

Proof. Lemma 5.9 gives us that every nontrivial element of B is moved by an
automorphism, so we can apply the argument from the proof of Corollary 4.5:
since for each ϕ ∈ LΛ,{∈}, we have that �ϕ�Bm ∈ {0,1}, we get that

L(�·�Bm ,D) = L({0,1}, {1}) = CPC.

The second claim follows from Lemma 5.8. �

As mentioned at the end of Sect. 2, our examples show that restricting the
language can change faithful models into illoyal ones: for our twisted algebras
Bπ and Bm, the general faithfulness result Lemma 3.2 holds for �·�Name

Bπ
and

�·�Name
Bm

. However, Theorems 5.7 and 5.10 show that their restrictions �·�Bπ
and

�·�Bm are neither faithful nor loyal.
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