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Abstract

Background: Ovarian cancer survival rates have not changed in the last 20 years. The majority of cases are High-
grade serous ovarian carcinomas (HGSOCs), which are typically diagnosed at an advanced stage with multiple
metastatic lesions. Taking biopsies of all sites of disease is infeasible, which challenges the implementation of
stratification tools based on molecular profiling.

Main body: In this review, we describe how these challenges might be overcome by integrating quantitative
features extracted from medical imaging with the analysis of paired genomic profiles, a combined approach called
radiogenomics, to generate virtual biopsies. Radiomic studies have been used to model different imaging
phenotypes, and some radiomic signatures have been associated with paired molecular profiles to monitor
spatiotemporal changes in the heterogeneity of tumours. We describe different strategies to integrate
radiogenomic information in a global and local manner, the latter by targeted sampling of tumour habitats, defined
as regions with distinct radiomic phenotypes.

Conclusion: Linking radiomics and biological correlates in a targeted manner could potentially improve the clinical
management of ovarian cancer. Radiogenomic signatures could be used to monitor tumours during the course of
therapy, offering additional information for clinical decision making. In summary, radiogenomics may pave the way
to virtual biopsies and treatment monitoring tools for integrative tumour analysis.
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Key points

e Radiogenomics is the integration of radiomics and
genomics and holds the potential to improve
treatment response and outcome prediction in
ovarian cancer.

e Creating virtual biopsies to overcome the limitations
of invasive biopsies may be feasible due to recent
technological advances that allow integration of
imaging and molecular data.

e Radiogenomics studies that ensure reproducible,
tissue-matched radiomic signatures in large
prospective cohorts are needed for the clinical
implementation to become a reality.

Background

Ovarian cancer is the second most prevalent of gynae-
cological cancers [1]. While survival rates for most tu-
mours have improved over the last decades, the 5-year
survival rate of ovarian cancer has not changed since
1980 [2]. The majority of the ovarian tumours are high-
grade serous ovarian carcinomas (HGSOCs) [2, 3]
which are characterised by a high degree of heterogen-
eity that manifests on multiple levels. Biologically,
HGSOC is a solid tumour driven by recurrent point
mutations in TP53 and BRCA1/2 and by DNA copy
number alterations [4—6]. Copy number changes arising
from a variety of mutational processes, such as
insertion, deletion or duplication of chromosomal
fragments, are thought to allow for growing tissues to
adapt to environmental selection forces [7]. Addition-
ally, tumour microenvironment (TME) heterogeneity—
i.e., the varying proportions of tumour, stroma and
immune cells, as well as ascites components, such as
cytokines and growth factors—is known to be a
hallmark of HGSOC. The interplay of these factors is
yet to be understood [8].

Clinically, HGSOC is frequently diagnosed as an
advanced multi-site disease with lesions in the pelvis
and peritoneal cavity [9]. The standard of care treat-
ment is either primary debulking surgery followed by
adjuvant chemotherapy, or neoadjuvant chemotherapy
(NACT) followed by delayed primary surgery. HGSOC
is particularly sensitive to platinum-based NACT due
to defects in homologous recombination [10, 11].
However, treatment resistance develops in up to 90%
of patients over time and is the main cause of death in
HGSOC [12, 13]. The main hypothesis for the resist-
ance mechanism is the presence of tumour cell clones
with different genomic profiles that evolve to acquire
treatment resistance [14—-16]. Genomic changes are
also linked to the heterogeneity of the TME, which
may impose different selective pressures on clonal
populations [17-20].
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In order to improve the management of patients
with  HGSOC, new tools are required to enable
earlier detection of resistance to chemotherapy and
evidence-based therapeutic stratification. The main
challenge for the implementation of such tools re-
sides in accurately characterising the multi-scale
complexity of the disease, across tumour regions and
metastatic sites. So far, the main approach to evalu-
ate intra- and inter-lesion heterogeneity has been
multiple sampling. However, this approach is inva-
sive, expensive and impractical and may still provide
inadequate coverage of the disease depending on
sample location [21].

Tools based on standard of care or advanced radio-
logical imaging, both at diagnosis and throughout the
course of therapy, may capture the spatiotemporal
tumour complexity in a comprehensive and non-invasive
manner [22]. This information can be useful to predict
the probability of certain molecular profiles of interest,
by obtaining virtual biopsies from radiological images,
and allowing for real biopsies to be taken in a more
informed way.

In the following sections, we first describe how
radiomic analysis, the quantitative analysis of medical
images, can be integrated with molecular information
via radiogenomic studies. We then discuss the im-
portance of tumour habitats, defined as regions with
local distinct radiomic features, in this integrative
process. We also outline technological advances to
take habitat-specific samples to integrate molecular
profiles and radiomics in a spatial manner. This may
enable the creation of prediction maps for molecular
profiles, so-called “virtual biopsies”. An overview of
this process is presented in Fig. 1.

Main text

From radiomics to radiogenomics: comprehensive
measures of tumour biology

Medical imaging, primarily computed tomography (CT),
is crucial for diagnosing HGSOC, evaluating its extent
and assessing treatment response [23, 24]. Although
current routine evaluation is mostly semantic and
qualitative [25], it has become widely accepted that
mining images in a quantitative manner may add useful
information for clinical decision-making [26].

The analysis of quantitative features extracted from
imaging data on a large scale is commonly referred to as
radiomics [27-29]. Radiomic studies exploit the fact that
medical imaging encodes information of the underlying
tissues and aims to define quantitative imaging
biomarkers related to clinical endpoints [30]. The typical
radiomics workflow consists of five steps performed on
images of different modalities, usually CT, positron
emission tomography (PET) or magnetic resonance
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Fig. 1 Overview of the workflow leading to the creation of virtual
biopsy maps that can be used, together with real time biopsies from
key areas, to inform clinical decisions. These virtual biopsy maps
offer the possibility to be calculated at different stages of the clinical
process—e.g., between chemotherapy cycles—to study the
spatiotemporal variation of the molecular profiles

imaging (MRI). The steps are (i) formulation of the clin-
ical question and selecting the most appropriate type of
imaging, (ii) tumour segmentation, (iii) image pre-
processing, (iv) feature extraction from tumour regions
(e.g., intensity, shape, volume and texture on original or
filtered scans) and (v) predictive modelling of clinical
endpoints through machine learning algorithms—includ-
ing feature selection, model training and validation of
the findings in internal or external datasets [31]. These
steps and their limitations have been discussed in the
existing literature [26, 28, 30—34]. More recently, radio-
mic analyses have also included deep learning methods,
which have the advantage of being able to learn the most
useful quantitative representations of the data by
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themselves, therefore bypassing the need for handcrafted
features [35-37].

Radiomic studies have focused on understanding
treatment response, recurrence and survival [38, 39].
Conceptually, the hypothesis underlying these analyses
is that different imaging phenotypes capture the
pathophysiology of the lesions [29]. The study of the
association between radiomic and biological features,
particularly genomics, is usually called imaging
genomics or, more commonly, radiogenomics [40].
The field is still in its early stages, but initial results
are promising.

Although limited radiogenomics literature is
available in HGSOC, several studies showed a signifi-
cant association of radiomics with relevant molecular
profiles (Table 1). As discussed above, one of the
most frequent mutations in HGSOC patients is in
the BRCA1l or BRCA2 genes [49]. Patients with
BRCA mutations tend to have better responses to
chemotherapy due to the higher platinum sensitivity,
and this improves their overall survival when com-
pared to BRCA wild-type patients [50, 51]. Using fea-
tures from CT in a dataset with 108 HGSOC
patients, a higher likelihood of having mutant BRCA
was found to be related with nodular pelvic disease
and the presence of disease in the gastrohepatic liga-
ment, whilst infiltrative pelvic disease, mesenteric
presence and supradiaphragmatic lymphadenopathy
were related with decreased likelihood of BRCA
mutation [42]. Additionally, the same study reported
the higher likelihood of incomplete resection in BRCA
wild-type HGSOC in cases with mesenteric involve-
ment and lymphadenopathy in supradiaphragmatic, as
well as shorter PFS in both mutant and wild-type
BRCA patients with suprarenal para-aortic regions
and pelvic disease presence in the lesser sac and left
upper quadrant and the mesenteric involvement
relationship [42].

Looking also at the genomic level, a high-resolution
genome-wide study of copy number variations in 118
ovarian cancer patients revealed the association of
19q12 amplification, which contains the cyclin E1
gene (CCNE1), with failure of primary treatment and
worse survival [52]. CCNE1 is known to play a role
in different processes of tumour cells, such as G1 to
S phase transition, replication of DNA, apoptosis and
chromosomal instability [53]. Using CT-based radio-
mic analysis of 38 HGSOC patients, Vargas and co-
authors [43] reported that high variation of texture
features between lesions—described as high inter
lesion heterogeneity—was associated with the amplifi-
cation of 19q12.

Using transcriptomic information from The Cancer
Genome Atlas (TCGA) [54], four subtypes of
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Table 1 Summary of radiogenomics papers focusing on High Grade Serous Ovarian Cancer (HGSOC). CLOVAR refers to the

Classification of Ovarian Cancer proposed in [41]

Method Ref. Patients Imaging Level of Biological correlate  Results
association
Regular [42] 108 T Genomics BRCA mutation Nodular pelvic disease and the presence of pelvic disease in the
association gastrohepatic ligament associated with high likelihood of BRCA.
Infiltrative pelvic disease, mesenteric presence and supradiaphragmatic
lymphadenopathy were related with less likelihood of BRCA mutation.
[43] 38 cT Genomics 19912 amplification  High inter lesion heterogeneity is associated with the amplification
of 19g12.
[44] 46 cT Transcriptomics  CLOVAR Peritoneal disease and mesenteric infiltration related with the
classification mesenchymal subtype of the CLOVAR.
[45] 92 cT Transcriptomics  CLOVAR Peritoneal involvement and presence of disease in the pelvis and ovary
classification related with mesenchymal subtype.
[46] 20 cT Proteomics Selected proteins Intra- and inter-site heterogeneity associated with selected proteins
involved in aminoacid metabolism.
[471 297 cT Multilevel DNA damage and ~ CT-based radiomic signature with prognostic capacity positively
stromal phenotype  associated with a stromal phenotype and negatively correlated with
markers of DNA damage.
Targeted  [48] 1 MRI Multilevel Histology and Different imaging habitats were related to different growth patterns
analysis genomics when looking at the histopathological examination. Hypoxia and

neovascularisation markers also differ between habitats.

Using presence of somatic mutations and gene copy number variation,
phylogenetic tree reconstruction showed that the habitats derive from
different clones.

HGSOC with prognostic relevance known as the
CLOVAR Classification of Ovarian Cancer were de-
fined—differentiated, immunoreactive, proliferative
and mesenchymal [41]. The latter subtype, that is
characterised by higher platinum resistance and
worse prognosis, establishes the important role of
stromal TME in HGSOC [55]. A semantic classifica-
tion of CT scans based on the peritoneal disease and
mesenteric infiltration at diagnosis was found to be
associated with the mesenchymal subtype of the
CLOVAR classification in 46 patients with HGSOC
[44]. The importance of peritoneal involvement in
the patients that fall under the mesenchymal subtype
was further validated in a multisite cohort of 92
HGSOC patients in which 38 of the patients present
in [44] were included [45]. It was also reported that
the presence of disease in the pelvis and ovary is as-
sociated with the mesenchymal subtype [45].

The proteomic level relevance in HGSOC was shown
in the capacity to predict recurrence and survival of the
Protein-driven Index of Ovarian Carcinoma (PROVAR),
defined using reverse-phase protein arrays in 412 pa-
tients from the TCGA [56]. To explore the associations
of proteomics and radiomics, a cohort of 20 patients
with HGSOC was used together with the expression of
proteins involved in amino acid metabolism with highly
correlated protein and transcript levels [46]. Imaging
traits capturing intra- and inter- site heterogeneity from

CT in a similar manner to [43] were found to be associ-
ated with selected proteins such as STXVP2, ASS1 and
CBD [46].

Lastly, looking to associations with markers at differ-
ent levels—genomic, transcriptomic, proteomic and
histopathology—a CT-based radiomic signature obtained
from 297 HGSOC patients was found to be positively as-
sociated with a stromal phenotype, correlated to poor
prognosis in different tumour types including ovarian
cancer and negatively correlated with markers of DNA
damage [47].

Similar radiogenomic associations have also been re-
ported for other cancer types and imaging modalities
such as MRI (glioblastoma [57, 58], oligodendrogliomas
[59] and breast cancer [60, 61]), CT (lung cancer [62],
lung adenocarcinoma [63] and hepatocellular carcinoma
[64]) and PET (non-small cell lung cancer [65, 66] and
lymphoma [67]). Several reviews have already compre-
hensively compared these radiogenomic studies and
their main limitations [68, 69].

These radiogenomic studies suggest important
associations between radiomics and tumour biology,
but it is important to note that they are generally
based on datasets of limited size. Another key limita-
tion is that these studies look for associations
between radiomic features that are calculated for the
whole lesion (or lesions) whilst the molecular profil-
ing information is obtained from a single biopsy,
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sampling only a small part of the lesion or disease
burden. This biopsy is often obtained by an image-
guided procedure that provides anatomical informa-
tion without capturing radiomic phenotypes (Fig. 2,
approach 1). This strategy for guiding biopsies is the
standard of care in most cancer types, but a single
diagnostic biopsy cannot capture the complexity of
whole tumours [70]. Likewise, the association of
radiomic features with the molecular characteristics
studied only in a single region or lesion may be
hindering more specific and three-dimensional associ-
ations of imaging biomarkers with distinct molecular
profiles.

Habitat radiogenomics and targeted biopsies

Most radiomic analyses rely upon average quantitative
features over the whole tumour volume, assuming that
the imaging phenotype is the same across the lesion and
between metastatic sites and therefore disregarding
intratumoural heterogeneity [29]. Nevertheless, images
often reveal heterogeneous patterns that can be appreci-
ated quantitatively both in multiparametric functional
imaging and in anatomic imaging through texture ana-
lysis (Fig. 3) [68]. Regions within a tumour that present
a distinct imaging phenotype are called habitats [73, 74].
The presence of different habitats may indicate different

Regular approach: Global radiomics + single non-targeted biopsy

associated with

global radiomics
(average feature value
of the whole lesion)

associated with

local radiomic
feature values

associated with

local radiomic
feature values

Fig. 2 Comparison between the different approaches used for
radiogenomic studies. Regular approaches usually extract a single
value of each radiomic feature for the whole patient, obscuring
radiomic habitats by assuming radiomic features are well mixed. This
is then compared to the data obtained from a single biopsy from an
unknown or approximate location. Targeted approaches overcome
this limitation by utilising radiomic maps that convey local
information for each radiomic feature. The molecular data to which
the radiomic signatures are compared come from

co-localised biopsies
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underlying TMEs and tumour molecular profiles. Under-
standing the biological make-up of tumour habitats
could therefore be key to elucidating the mechanisms of
tumour evolution and resistance [75].

To date, only a few studies have investigated the
relationships between radiomic maps and spatially
targeted molecular profiles to describe radiogenomic
associations in a local manner. One of the key chal-
lenges presented by spatial associations is the accurate
co-registration of images with tissue biopsies. Several
methods have been proposed, and all of them are
based on comparing tissue sections against imaging
maps to guide the sampling. To achieve spatial over-
lap between imaging derived maps and tissue sections,
most studies proceed by sectioning a resected speci-
men parallel to the slices of a pre-surgical scan. This
sectioning process can be aided by 3D-printed moulds
that ensure a correct alignment of the specimen with
the MRI planes. Tissue sectioning can be facilitated
further by slots integrated into the moulds that allow
for specimen trans-sections parallel to the orientation
of imaging slices for improved co-registration. In
ovarian cancer, a 3D-printed mould for MRI-guided
sampling was tested for a single patient, and areas
with different imaging phenotypes obtained by com-
bining perfusion, diffusion and metabolic information
were shown to have different histology and genetic
compositions [48] (Fig. 4, Table 1).

The mould-guided biopsy approach has recently
gained popularity and has been used to investigate
the association of radiomic features and histopath-
ology phenotypes in different tumour types, such as
prostate cancer [76-79], liver cancer [80] and renal
cancer [81]. More recently, updates in the design of
these moulds have been proposed to choose the pre-
ferred tissue sectioning angle, transforming the images
and the corresponding maps [82]. This flexibility
makes it easier for patient-specific moulds to be used
in the clinical routine without disrupting the usual
protocols.

The latest methods for targeting biopsies using
radiomic maps have opened up new possibilities for
associating radiomics and biological features in a
localised manner. This is the first step toward
comprehensive data integration and multiscale under-
standing of tumour complexity and behaviour. Never-
theless, most of the methods presented have two
clear limitations: (i) very specialised technologies diffi-
cult to integrate in the clinical workflow and (ii) only
possible after tumour resection, making it impossible
to create multiscale models of tumours that track
these associations longitudinally. Some of the most
recent 3D mould technologies, such as the one pro-
posed in [82], are designed to address the issue of
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repository to visualise the presence of distinct radiomic phenotypes in the same lesion. Texture maps were extracted using the Computational
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clinical integration and may therefore also provide the
key to increasing dataset size.

Accurately, correlating in vivo biopsies with distinct
radiomic phenotypes is a different challenge for which
fewer solutions exist [22]. A proof of concept based on
MRI/US fusion was recently proposed in [83].

The future of radiogenomics: challenges and open
questions

Radiogenomics has emerged as a branch of radiomics
that aims to explore associations between imaging
phenotypes and biological correlates. Indeed, several
studies have been published in different cancer types
that support these interrelationships. When spatially co-
localised, these studies could facilitate the spatial associ-
ation of imaging phenotypes and biological pathways,
leading to the creation of virtual biopsy maps.

This type of technology is needed in the setting of
ovarian cancer to understand tumour evolution and
apply this knowledge to clinical management. Detailed
knowledge of the molecular tumour profile will
enable a more personalised targeted therapy. Current
analysis already shows the power of studying the
radiogenomics associations in ovarian cancer (Table
1). The design and validation of custom 3D printed
moulds to allow radiogenomics information to be
integrated is a major key step toward this goal,
especially in the surgical scenario. Nevertheless, the
design of targeted biopsy methods that can be applied

in the clinical setting in patients with HGSOC—using
standard of care CT for example—would allow us to
track these radiomic changes longitudinally during
therapy and ultimately serve as virtual biopsy surro-
gates to inform clinical decisions.

There are some challenges that need to be carefully
addressed before virtual biopsy methods can be inte-
grated into the clinical practice. First, the reproducibil-
ity of radiomic features needs to be ensured. The
calculation of different features varies between pack-
ages, and the numerical values are affected by scan
acquisition and reconstruction parameters [33, 84].
Several strategies are in place to address these barriers
and to ensure method robustness [38, 85, 86]. Second,
the cohort size and high dimensionality of the multi-
omics datasets to be integrated with the radiology in-
formation should be considered in the design of these
studies to uncover meaningful associations with signifi-
cant statistical power. Third, most of the studies on this
subject are performed in a retrospective setting. The
exploration of these associations in larger and prospect-
ive settings is mandatory for clinical translation. Finally,
to ensure that these techniques can be utilised routinely
in the clinic, targeted sampling methods need to inte-
grate smoothly with clinical practice. For surgical
biopsies, this will require robust and automated compu-
tational frameworks for 3D-printed mould production.
For in vivo biopsies, one of the key developments will
be a framework that allows radiologists to visualise
radiomic maps in real time as they obtain the biopsy.
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Conclusion

Targeted radiogenomics could become a powerful
addition to the integrative analysis of tumour biology
and, thus, a valuable tool in the clinical management of
HGSOC patients by predicting molecular profiles from

standard of care CT scans. These virtual biopsies could
revolutionise the current clinical practice in ovarian can-
cer, enable the development of biomarkers for treatment
selection and detect treatment resistance early during
the course of therapy.
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