
J Physiol 0.0 (2021) pp 1–26 1

Th
e
Jo
u
rn

al
o
f
Ph

ys
io
lo
g
y

TOP ICAL REV IEW

Gut peptide regulation of food intake – evidence for the
modulation of hedonic feeding

Orla R. M. Woodward, Fiona M. Gribble, Frank Reimann and Jo E. Lewis
Wellcome Trust – MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0QQ, UK

Edited by: Ian Forsythe & Michel Neunlist

The peer review history is available in the Supporting Information section of this article
(https://doi.org/10.1113/JP280581#support-information-section).

Gastrointestinal tract

Ghrelin

CCK

GIP

GLP-1

PYY

Secretin

InsI5

Neurotensin

L cells

Higher order nuclei

Brainstem

Vagus nerve

Vagus nerve

Afferent vagal
signalling

© 2021 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society. DOI: 10.1113/JP280581

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution
and reproduction in any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/475648705?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-5722-6778
https://doi.org/10.1113/JP280581#support-information-section
http://creativecommons.org/licenses/by/4.0/


2 O. R. M. Woodward and others J Physiol 0.0

Abstract The number of people living with obesity has tripled worldwide since 1975 with
serious implications for public health, as obesity is linked to a significantly higher chance of
early death from associated comorbidities (metabolic syndrome, type 2 diabetes, cardiovascular
disease and cancer). As obesity is a consequence of food intake exceeding the demands of
energy expenditure, efforts are being made to better understand the homeostatic and hedonic
mechanisms governing food intake. Gastrointestinal peptides are secreted from enteroendocrine
cells in response to nutrient and energy intake, andmodulate food intake either via afferent nerves,
including the vagus nerve, or directly within the central nervous system, predominantly gaining
access at circumventricular organs. Enteroendocrine hormones modulate homeostatic control
centres at hypothalamic nuclei and the dorso-vagal complex. Additional roles of these peptides in
modulating hedonic food intake and/or preference via the neural systems of reward are starting to
be elucidated, with both peripheral and central peptide sources potentially contributing to central
receptor activation. Pharmacological interventions and gastric bypass surgery for the treatment of
type 2 diabetes and obesity elevate enteroendocrine hormone levels and also alter food preference.
Hence, understanding of the hedonic mechanisms mediated by gut peptide action could advance
development of potential therapeutic strategies for the treatment of obesity and its comorbidities.
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Corresponding author J. E. Lewis: Wellcome Trust – MRC Institute of Metabolic Science Metabolic Research
Laboratories, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK. Email: jl2033@medschl.cam.ac.uk

Abstract figure legend: The gastrointestinal tract produces a range of peptides that regulate appetite and body weight.
Key peptides are highlighted here. These gut peptides are secreted from enteroendocrine cells in response to nutrient
intake and communicate with the brain directly, via the bloodstream, and indirectly, via the vagus nerve, to alter food
intake and reward signaling. Interactions between gut peptides and their receptors in the brainstem, hypothalamus and
higher order nuclei lead to downstream neural network activation resulting in changes to appetitive and reward-related
behaviour.

Introduction

The number of people living with obesity (body mass
index (BMI) >30 kg/m2) has tripled worldwide since
1975 (to 650 million in 2016), with serious implications
for public health, as obesity is linked to a significantly
higher chance of serious disease (metabolic syndrome,
type 2 diabetes, cardiovascular disease and cancer) and
early death (Whitlock et al. 2009; Rodgers et al. 2018).
Whilst food availability and intake vary by region, average
daily food intake has increased by ∼500 kcal per day
since the 1970s (Chan & Woo, 2010). Furthermore,
our diet contains more energy dense foods, with a
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greater role for fat, saturated fat and sugars, alongside
reduced intake of complex carbohydrates and dietary
fibre and reduced fruit and vegetable intake (Chan &
Woo, 2010). Changes in lifestyle – including reduced
physical activity at work and home – only exacerbate
the imbalance of caloric intake and energy expenditure
resulting in excess fat accumulation and weight gain
(Brock et al. 2009).
The rapidly increasing prevalence of obesity and the

associated economic cost have prompted efforts to better
understand the physiological control of food intake, key
to which is the central nervous system (CNS). The CNS
receives information from the periphery regarding energy
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balance through metabolic, endocrine and neural signals.
Integration of these signals by homeostatic and hedonic,
or reward-related, pathways governing food intake results
in behavioural changes, and can lead to chronic hyper-
phagia (Strader & Woods, 2005). Recently there has been
increased interest in the communication between the
gastrointestinal (GI) system and the CNS in the control
of food intake, reward and subsequently body weight.
Enteroendocrine cells (EECs) of the GI tract secrete
peptides in response to nutrient and energy intake, and
these communicate with the brain directly or via the vagus
nerve (recently reviewed by Cork, 2018) and alter homeo-
static and hedonic circuits.

In addition to a major role in food intake control, gut
peptides have gained clinical importance in the treatment
of type 2 diabetes and obesity. This is perhaps best
exemplified by glucagon-like peptide-1 (GLP-1). GLP-1
receptor (GLP-1R) agonists, such as liraglutide, have been
developed and approved for treatment of type 2 diabetes
due to their insulinotropic action. However, their effect
on food intake and body weight has fuelled interest and
led to their approval for the treatment of obesity in
non-diabetic patients. Liraglutide treatment is associated
with weight loss of 5–10% after 1 year in non-diabetic
obese patients and is FDA approved for patients with
a BMI > 27 kg/m2 and a weight-related comorbidity
(O’Neil et al. 2018). Similarly, treatment of overweight or
obese individuals with the GLP-1R agonist semaglutide
results in drastic weight loss (−15.3 kg body weight
change at week 68 compared with −2.6 kg in the placebo
group; Wilding et al. 2021). Emerging new treatments
targeting multiple gut hormone receptors, for example
the combination of GLP-1R agonists with agents targeting
the glucose-dependent insulinotropic peptide receptor
(GIPR), appear to have even greater efficacy onweight loss
(Frias et al. 2018).

It has now become clear that the effect of gut
peptide receptor activation extends beyond simple
homeostatic food intake control; hedonic mechanisms
governing appetite are also modulated. In this review, we
summarise current knowledge regarding the physio-
logy of appetite of the GI system and explore the
potential role of gut peptides in the neural systems of
reward.

Neuroendocrine regulation of food intake

EECs, which make up <1% of the total gut epithelium,
continuously monitor rates of nutrient absorption to
maximise assimilation of nutrients (Furness et al.
2013; Gribble & Reimann, 2019). Approximately 12
different EEC subtypes have been identified, traditionally
characterised by their hormonal and staining profiles;
however, there is evidence of overlap in hormone

expression between different cell types (Egerod et al.
2012; Habib et al. 2012). EECs vary in distribution
along the GI tract, from the stomach to the rectum,
reflecting the different stimuli and resulting physiological
responses at each stage of the GI tract (Latorre et al.
2016). Ingested nutrient signals are mostly detected by
G-protein-coupled receptors (GPCRs), transporters and
ion channels on EECs in the proximal intestine, while
more distally located EECs, which do not receive much
direct stimulation from ingested foodstuffs, respond
to a range of microbial products (Gribble & Reimann,
2019). In response to these stimuli, more than 20 peptide
hormones are secreted which target sites including
the CNS to indicate short term nutrient availability.
Gut peptides are transported in the circulation and act
directly on the brain via the circumventricular organs
in the hypothalamus and hindbrain, with evidence
that some gut peptides cross the blood–brain barrier
(Kastin et al. 2002; Nonaka et al. 2003). Gut peptides also
communicate with the brain via GPCRs on vagal afferent
fibres which synapse in the nucleus of the solitary tract
(NTS) and area postrema (AP) in the hindbrain dorsal
vagal complex (DVC) (reviewed by Cork, 2018). Recently
the importance of non-vagal, spinal afferent signalling
for the detection of ingested glucose, either downstream
of gut peptide secretion or by glucose sensors in the
hepatic portal vein, has been described, resulting in
downregulation of agouti-related peptide (AgRP) neuron
activity in the arcuate nucleus (ARC) of the hypothalamus
(Goldstein et al. 2021). In addition, many gut peptides
are also expressed as neuromodulators/neurotransmitters
in the peripheral and central nervous system, either
fairly widespread, as in the case of substance P
and cholecystokinin, or restricted to relatively rare
neuronal populations, such as the preproglucagon
(PPG)-expressing neurons found in the NTS, which
are the main source of central GLP-1 (Rehfeld, 2017;
Holt et al. 2019).
The hypothalamus plays a pivotal role in the control

of food intake (Hetherington & Ranson, 1983). The
best-characterised hypothalamic regions involved in food
intake are the lateral hypothalamus (LH), the ventro-
medial hypothalamus (VMH), the paraventricular hypo-
thalamus (PVH) and the ARC (Anand & Brobeck, 1951;
Cowley et al. 1999; Elmquist et al. 1999). Two distinct
populations of neurons in the ARC have been intensely
studied as they integrate peripheral cues, including gut
peptides, detected due to the leaky blood–brain barrier
in the adjacent median eminence. Proopiomelanocortin
(POMC)-expressing neurons within the ARC inhibit food
intake while neuropeptide Y (NPY)/AgRP co-expressing
neurons stimulate food intake via projections to other
hypothalamic nuclei and brain regions (Williams et al.
2001). Alongside the ability to sense gut peptides and
pancreatic β-cell-derived insulin, thought to reflect recent
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food intake and nutrient availability, these neurons are
modulated by longer term signals of energy balance, such
as adipocyte-derived leptin (Farooqi et al. 2007). While
AgRP neurons can be classified as key players in the
homeostaticmodulation of food intake, evidence that they
are at least transiently inhibited by the mere presentation
of food, independent of actual consumption, challenges
the exclusively homeostatic classification of these neurons
(Chen et al. 2015).

The neural reward system

In addition to homeostatic signals, food intake is strongly
influenced by memory, food cues and societal factors
which promote consumption of palatable foods evenwhen
homeostatic requirements have been met (Kenny, 2011).
This drive to consume food beyond homeostatic need
is coordinated by the hedonic, or reward, system in
the brain. It has been suggested that the reward system
can be distinguished into two components, ‘liking’ and
‘wanting’, which are regulated by distinct but interwoven
circuits. These circuits can be influenced simultaneously
or independently by emotional and physiological states,
societal norms and repeated food exposure (Robinson
et al. 2016; Berthoud et al. 2017). Indeed, reward-related
neurocircuitry is complex. Figure 1 highlights key brain
regions involved in reward, motivation and food intake.
Many of these regions project to, receive projections
from, and/or overlap with hypothalamic and hindbrain
regions involved in the homeostatic control of food
intake.
The corticolimbic system is well established in the

emotional, mnemonic and executive processing of food
intake (Kelley et al. 2005). Bidirectional communication
between the prefrontal cortex (PFC), hippocampus
and amygdala is thought to play a role in encoding
the reward value of food and in memory formation
surrounding food experiences (Björntorp & Rosmond,
2000; la Fleur, 2006). Regions of the corticolimbic
system also receive projections from the paraventricular
thalamus (PVT), midbrain dopaminergic neurons,
hypothalamus and parabrachial nucleus (PBN) and
send predominantly glutamatergic projections to the
striatum, hypothalamus and motor cortex (Kelley et al.
2005).
Themesolimbic pathway connects themidbrain ventral

tegmental area (VTA) and substantia nigra pars compacta
(SNc) with the striatum, corticolimbic system and hypo-
thalamus via dopaminergic projections (Nair-Roberts
et al. 2008; Ungless & Grace, 2012). This pathway is
critical in encoding the incentive salience, or ‘wanting’, of
food and conditioned responses to food cues (Salamone
et al. 2003; Wise, 2006; Fields et al. 2007; Palmiter, 2007;
Narayanan et al. 2010). TheVTA is also implicated in food

priming whereby synaptic density and excitatory synaptic
transmission are increased following brief exposure to
a highly palatable foodstuff leading to increased food
seeking and consumption for days after the initial
exposure (Liu et al. 2016).
The striatum, a key integration site for the reward

system, can be broadly divided into the dorsal striatum
(DS), comprising the caudate nucleus and putamen,
and the ventral striatum (VS), comprising the nucleus
accumbens (NAc) core/shell and olfactory tubercle. The
dorsal and ventral striatum are distinguished by their
anatomical location and distinct inputs and outputs
(Sesack & Grace, 2010; Kupchik et al. 2015; Yager et al.
2015). The DS integrates glutamatergic inputs from the
PFC, motor cortex and thalamus with dopaminergic
inputs from the SNc and sends projections to the globus
pallidus of the basal ganglia (Gerfen & Surmeier, 2011).
The NAc of the VS integrates glutamatergic inputs
from the PFC, hippocampus, amygdala and PVT with
dopaminergic inputs from the VTA and hypothalamic
inputs, and sends projections to the ventral pallidum
(VP), hypothalamus and VTA (Bocklisch et al. 2013;
Kupchik et al. 2015; O’Connor et al. 2015). These
striatal circuits upon activation or inhibition determine
the hedonic value of food and coordinate motivated
behavioural responses, with subregions of the NAc and
VP, termed ‘hedonic hotspots’, thought to specifically
generate ‘liking’ of foods (Söderpalm & Berridge, 2000;
Farooqi et al. 2007; Malik et al. 2008; Berridge et al.
2010).
As well as being pivotal in the homeostatic control of

food intake, the hypothalamus is a key node in the hedonic
circuit. The LH receives inputs from reward-related
regions including the PFC, basolateral amygdala, NAc and
bed nucleus of the stria terminalis (BNST) (Stuber&Wise,
2016). Projections to the central amygdala (CeA), VTA,
PVT and lateral habenula support the classification of the
LH as a reward centre (Borgland et al. 2008; Cádiz-Moretti
et al. 2017). The LH neurocircuitry alongside studies in
rodents suggest the LH integrates homeostatic and
hedonic cues to coordinate reward-seeking andmotivated
behaviour (Harris et al. 2005; Cason&Aston-Jones, 2013).
Research demonstrating projections from ARC POMC
neurons to the VTA and NAc of the mesolimbic system
suggests the ARC is also involved in linking homeostatic
cues to reward circuitry (King & Hentges, 2011; Lim et al.
2012). This is further supported by the increase in NAc
dopamine levels following α-melanocyte-stimulating
hormone (α-MSH) microinjection into the VTA
(Lindblom et al. 2001).
Recent research has demonstrated that the neural

reward system is influenced by the gut. However, the
exact mechanisms by which this occurs are poorly under-
stood. Here we provide a summary of the prominent
enteroendocrine hormones (from proximal to distal GI

© 2021 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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tract) with a known role in the control of food intake
and potential role in the regulation of neural systems of
reward. Whilst other gut peptides expressed in the enteric
nervous system, rather than enteroendocrine cells, have
also been implicated in the control of feeding behaviour,
including vasoactive intestinal peptide (VIP) implicated
in taste perception, pituitary adenylate cyclase-activating
polypeptide (PACAP) which reduces feeding behaviour
via the VMH, and bombesin-like peptides which suppress
food intake when administered peripherally or centrally
in rats, these are not the focus of this review (Ladenheim
et al. 1996; Martin et al. 2010; Hurley et al. 2016).

Gut peptides and the reward system

Ghrelin. Ghrelin, a 28 amino acid peptide, is pre-
dominantly found in the stomach, and stimulates
food intake via sites including orexigenic NPY- and
AgRP-expressing neurons, which co-express the ghrelin
receptor (growth hormone secretagogue receptor, GHSR)
(Tschöp et al. 2000; Nakazato et al. 2001; Cowley et al.
2003). Secretion of ghrelin is modulated by feeding;
plasma ghrelin increases during fasting and surges pre-
prandially, with a drop within 1 h postprandially. These
prandial changes in plasma ghrelin are associated with
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Figure 1. Schematic diagram showing the neural circuitry involved in reward, motivation and food
intake
Peripheral signals from vagal and spinal afferents and circumventricular organs are integrated by the hypothalamus
and hindbrain. These signals are relayed through thalamic and midbrain regions and integrated with cortico-
limbic reward signals in the striatum. Striatal projections to the pallidum and hypothalamus enable coordination
of reward-seeking and motivated behavioural responses. Pathways with predominantly glutamatergic projections
are shown in orange, GABAergic projections are shown in blue and dopaminergic projections are shown in purple.
Pathways where projections involve other or unknown neurotransmitters are shown in black. Regions with ‘hedonic
hotspots’, subregions which encode the ‘liking’ of food, are highlighted in red. Abbreviations: AP, area postrema;
ARC, arcuate nucleus; BNST, bed nucleus of the stria terminalis; DMH, dorsomedial hypothalamus; LH, lateral
hypothalamus; NTS, nucleus of the solitary tract; PBN, parabrachial nucleus; PVH, paraventricular hypothalamus;
PVT, paraventricular thalamic nucleus; VMH, ventromedial hypothalamus; VTA, ventral tegmental area.
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changes in hunger score (Cummings et al. 2002, 2004).
In addition to its role in short term energy balance,
ghrelin circulates in relation to long term energy stores
with evidence that its levels correlate inversely with
measures of adiposity and are modulated by changes in
body weight (Cummings, 2006). Ghrelin also alters
glucose metabolism, gut motility and gastric acid
secretion, thermogenesis, sleep, stress and anxiety, muscle
atrophy, and cardiovascular function (Masuda et al. 2000;
Tolle et al. 2002; Date et al. 2002b; Weikel et al. 2003;
Yasuda et al. 2003; Lutter et al. 2008; Reed et al. 2008;
Chuang et al. 2011; Porporato et al. 2013; Rizzo et al.
2013). Furthermore, ghrelin modulates taste sensation
and reward-seeking behaviour (Druce et al. 2005; Jerlhag
et al. 2007; Overduin et al. 2012; Skibicka et al. 2012b; Cai
et al. 2013).
Ghrelin engages reward pathways including the

mesolimbic, dopaminergic pathway. Administered to
the VTA or the NAc, ghrelin increases food intake via
increased dopamine (Naleid et al. 2005; Jerlhag et al.
2007; Skibicka et al. 2012a). As a result, ghrelin increases
an animal’s willingness to work for food by increasing
motivation, arousal and foraging, in addition to activity
that occurs during food anticipation. For example, in
sated rats, intra-VTA infusion of ghrelin significantly
increased intake of a high fat diet (HFD), with subsequent
body weight gain. Interestingly, in food-deprived rats,
ghrelin’s potency to increase HFD intake and subsequent
body weight was maintained. These orexigenic effects
were attenuated by administration of the ghrelin receptor
antagonist d-Lys3-GHRP-6 (d-Lys3) into the VTA (Wei
et al. 2015). d-Lys3 was subsequently shown to impair the
initiation of cue-potentiated feeding (Dailey et al. 2016).
The rewarding effect of ghrelin also extends to alcohol
(and other substances of abuse), a consequence of GHSR
stimulation in the VTA. This effect was shown to require
intact signalling at the dopamine receptors, D1R and
D2R, within the NAc (Skibicka et al. 2012a).
In rats offered a choice of palatable foods (sucrose

pellets and lard, with standard chow), acute intra-
cerebroventricular (i.c.v.) or intra-VTA ghrelin injections
increased chow intake of rats with a high baseline intake
of lard – a similar result was produced when animals were
fasted overnight, when endogenous levels of ghrelin are
elevated. These effects were suppressed in ghrelin receptor
antagonist-treated rats and ghrelin receptor knock-out
(KO, GHSR-/-) mice (Schéle et al. 2016). In rats, the effects
of ghrelin on food motivation are not limited to palatable
foods but extend to standard chow following i.c.v. ghrelin
or an overnight fast (Bake et al. 2019). Furthermore,
intra-VTA ghrelin enhances responses to palatable food
pellets even after a period of extinction (during which
time lever pressing has no programmed consequence –
in this case delivery of reward) suggesting that ghrelin
signalling facilitates relapse to preferred/palatable foods

(St-Onge et al. 2016). However, whilst i.c.v. infusion of
ghrelin in rats was shown to increase motivation for food
(tested using 5% sucrose), the hedonic value of food,
assessed by initial lickometer rates and lick-cluster size,
was not altered in this nuanced study (Overduin et al.
2012).
High fat feeding (for 12 weeks) has been shown

to induce ghrelin resistance in the hypothalamus,
specifically in NPY/AgRP neuronal populations in
mice; this resistance occurs after 3 weeks of exposure to
a HFD, and is reversed by weight loss (Briggs et al. 2010,
2013, 2014). A HFD, however, does not affect the ability
of ghrelin to increase food intake when administered
via intra-VTA infusion. In addition, ghrelin signalling
increases motivation for HFD in an operant conditioning
progressive ratio schedule, a measure of an animal’s
willingness to seek a reward (Perello et al. 2010). It was
subsequently shown that GHSR signalling is required
for the escalation of HFD consumption observed during
successive binge eating events (Valdivia et al. 2015).
In a palatable scheduled feeding paradigm, in which
chow-fed animals are entrained to the appearance
of a HFD (offered for a limited 2 h period), acute
i.c.v. ghrelin-treated animals consumed more chow,
whilst chronic treatment enhanced binge-like behaviour
(Bake et al. 2017). However, in the absence of food in
a conditioned placed preference test, treatment with
ghrelin induced aversion (Lockie et al. 2015). It was sub-
sequently shown that i.c.v. infusion of ghrelin produces
conditioned avoidance in both conditioned place pre-
ference and avoidance tests and in a conditioned flavour
preference/avoidance test (Schéle et al. 2017). It thus
appears that central ghrelin results in a non-pleasurable
sensation, when behavioural alteration, such as increased
feeding, is prohibited.
Mouse preference for sweet food (and place preference)

is reduced by genetic or pharmacological blockade of
ghrelin signalling (Disse et al. 2010; Egecioglu et al.
2010). Mice adapted to intermittent (3 days per week)
or daily access to HFD for 2 h, alongside 24 h ad
libitum standard chow, do not differ in 2 h HFD
consumption. However, GHSR−/− mice had attenuated
HFD consumption regardless of access condition; this was
associated with reduced activation of the NAc shell but
not core following HFD consumption (King et al. 2016).
In prairie voles, the GHS-R1A antagonist JMV2959 was
shown to reduce preference for 2% sucrose (without effect
at higher sucrose concentrations) (Stevenson et al. 2016).
The ghrelin receptor is also expressed in the LH,

and administration of ghrelin to the rat LH increased
food intake and motivated behaviour for sucrose in
both males and females. In females only, however,
ghrelin increased food-seeking behaviour and body
weight gain while blockade of LH GHSR reduced
food intake, sucrose-seeking behaviour and body weight

© 2021 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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(López-Ferreras et al. 2017). More recently, ghrelin was
shown to act in the ventral hippocampus to increase
meal size via downstream orexin receptor signalling in
the laterodorsal tegmental nucleus (Suarez et al. 2020).
In ad libitum-fed rats, intra-amygdala administration of
ghrelin produced an orexigenic response and in fasted
rats receiving intra-amygdala antagonists of the ghrelin
receptor, food intake was reduced (Alvarez-Crespo et al.
2012). Recently, intra-lateral parabrachial nucleus (LPBN)
ghrelin was shown to increase intake of standard chow
in rats but not lard or sucrose and did not affect
the progressive ratio for sucrose or conditioned place
preference for chocolate, suggesting that the ghrelin
LPBN circuit influences consummatory but not appetitive
behaviours (Bake et al. 2020). Evidently, ghrelin interacts
with multiple reward-related brain regions to influence
food intake, but the effects of ghrelin extend beyond the
motivation to consume sweet calorific food. In a single
bottle test, peripheral ghrelin increased the consumption
of saccharin, independently of the availability of food.
Under a free choice preference paradigm in which mice
could choose between two non-caloric foods, one of
which was flavoured with saccharin, increased saccharin
consumption was absent in GHSR1a−/− animals (Disse
et al. 2010).

In addition to its direct effect on the brain, ghrelin
may also act via the vagal afferents. Blockade of vagal
afferents attenuated ghrelin’s effect on food intake (Date
et al. 2002a). This, however, is controversial, as other
studies have reported that vagal afferents are not required
for the actions of ghrelin in the rat (Arnold et al. 2006).
Ghrelin analogues retain their effect in patients with
gastrectomy/vagotomy suggesting that the vagus is not
essential for ghrelin’s orexigenic effect (Dornonville de la
Cour et al. 2005; Adachi et al. 2010).

In humans, a functional magnetic resonance imaging
study in healthy participants demonstrated that fasting
sensitized the striatal reward system (as measured by
blood oxygen level dependent activity) to the anticipation
of food. Furthermore, in the satiated state, circulating
ghrelin was associated with increased neural processing
during the period in which food was expected. This
suggests that ghrelin signalling impacts hedonic food
intake (Simon et al. 2017).

In summary, administration of ghrelin or GHSR
antagonists i.c.v. or directly into reward-related regions
influences food intake/preference and the motivation to
consume food rewards in rodent models. There is also
evidence that ghrelin and GHSR signalling are involved in
binge eating-like behaviour. i.c.v. ghrelin administration
results in conditioned avoidance suggesting that central
ghrelin induces a non-pleasurable or negative emotional
state while circulating ghrelin appears to increase the
neural response to food anticipation. Collectively, the
highlighted studies suggest ghrelin’s role in hunger and

therefore meal initiation may extend to reward-driven
behaviour/motivation.

Cholecystokinin. Produced by enteroendocrine I-cells
and the CNS, cholecystokinin (CCK) is a gut satiating
peptide that is released postprandially in response to
ingestion of fat (both saturated and long chain fatty
acids), small peptides and amino acids (Lieverse et al.
1994a). Fasting results in a reduction in plasma CCK,
whilst peripheral administration before the onset of a
meal dose-dependently reduces meal size in rodents and
humans; it is therefore considered a short-term satiety
signal (Antin et al. 1975; Kissileff et al. 1981; Lieverse
et al. 1994b). This anorexigenic effect is mediated by
CCK1 receptors on vagal afferent fibres – vagotomy and
vagal deafferentation attenuate the effects of peripheral
CCK infusion (Smith et al. 1981; Moran et al. 1997).
CCK1 receptors are also located in the hypothalamus and
hindbrain; microinjection of CCK into the hypothalamus
decreases food intakewhilst lesions of theAP attenuate the
satiating effect of CCK (Edwards et al. 1986; Blevins et al.
2000). Furthermore, intra-cerebral infusion of CCK was
shown to decrease food intake (Konkle et al. 2000). This
may involve complex cross talk and integration of different
neurons, as CCK indirectly (through noradrenergic
neurons) increases electrical activity of hindbrain PPG
neurons, which project to mesolimbic reward centres
(Hisadome et al. 2011; Trapp &Cork, 2015). CCK has also
been implicated in thermoregulation, sexual behaviour,
anxiety and memory (Shian & Lin, 1985; Dornan et al.
1989; van Megen et al. 1996; Huston et al. 1998).
Peripheral administration of CCK reduces operant

responses for Noyes pellets in rats (Hsiao & Deupree,
1983; Babcock et al. 1985). Microinjections of CCK into
the NAc attenuated VTA intracranial self-stimulation
(ICSS – in which rodents self-administer rewarding
electrical stimulation via electrodes implanted in the
CNS) suggesting that CCK attenuates reward signalling
derived from the VTA (Vaccarino & Koob, 1984).
Infusion of proglumide, a CCK receptor antagonist,
into the caudal (but not rostral) NAc reduced ICSS
(Vaccarino & Vaccarino, 1989). Similarly, ipsilateral
electrical stimulation of themedial PFC results in elevated
local CCK, in addition to glutamate and dopamine. In
rats trained to lever press for stimulation, local CCK
production correlated with rewarding efficacy, suggesting
that it may modulate reward behaviour (You et al. 1998).
CCK administration to the anterior cerebral ventricles
of the rat reduces motivation for food, as measured
by running speed towards a food-based reward (Zhang
et al. 1986). It was previously shown that CCK reduced
feeding via aversion and not satiety – an effect which
was comparable to the nauseating toxin lithium chloride
(Ettenberg & Koob, 1984). CCK was subsequently shown
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to block the acquisition of conditioned place preference
associated with morphine treatment with high doses of
CCK suppressing locomotor activity (Wen et al. 2012).
Pharmacological blockade of CCK2 receptors with

the antagonist L-365,260 potentiated the food reward
response of animals to NAc amphetamine but produced
no effect in control animals suggesting that CCK2 may
inhibit potentiated reward-related behaviours (Josselyn
& Vaccarino, 1995). This finding was supported by a
subsequent study utilising the CCK2 receptor antagonist
PD-135158, which also potentiated the amphetamine
response (Josselyn et al. 1996b). Interestingly, devazepide,
a CCK1 receptor antagonist, blocked the development
of conditioned reward. This was not a consequence of
taste aversion, nor did it decrease food consumption;
rather, it affects incentive learning (Josselyn et al. 1996a).
This was supported by a subsequent study in which
CCK1 receptor antagonism was shown to attenuate the
development of conditioned place preference in response
to treatment with morphine, whereas this was not true of
CCK2 receptor antagonism (Josselyn & Vaccarino, 1996).
Interestingly, neither antagonist changed the effects of
morphine on gastro-intestinal motility (Singh et al. 1996).
CCK1 receptor antagonism was also shown to reduce
ethanol intake in rats, whilst CCK2 receptor antagonism
reduced cocaine consumption (Crespi, 1998). It is also
notable thatCCK, via its receptor subtypes, alsomodulates
anxiety-related behaviours (reviewed in Bowers et al.
2012).
To summarise, peripheral and central CCK injections

attenuate reward-related signalling and motivation for
food as measured by operant conditioning and ICSS
tests. CCK2 receptor antagonists potentiate food reward
responses while CCK1 receptor antagonists attenuate
conditioned responses to rewards. Together, this suggests
CCK and its receptors play a role in modulating
reward-related behaviours.

Glucose-dependent insulinotropic polypeptide.
Glucose-dependent insulinotropic polypeptide (GIP),
a 42 amino acid peptide hormone, is secreted from
enteroendocrine K cells in the duodenum and proximal
jejunum in response to nutrients (Buchan et al. 1978).
Historically GIP, a known regulator of glucose tolerance,
had been thought to play only a minor role in food intake
regulation, based on the following observations. Daily
peripheral treatment with the GLP-1R agonist exendin-4
(Ex4) and the GIPR agonist N-AcGIP was shown to
reduce body weight, a consequence of reduced food
intake which was not potentiated by N-AcGIP (Irwin
et al. 2009a). Chronic treatment of mice with age-related
glucose intolerance with longer-acting forms of GIP,
via PEGylation (attachment of polyethylene glycol to
increase solubility, decrease immunogenicity and increase

stability/reduce proteolysis), was demonstrated to have
no effect on food intake and body weight, whilst reducing
non-fasting glucose and increasing insulin concentrations
(Kerr et al. 2009). Aged GIPR−/− mice were shown to
have reduced fat mass, without a reduction in food intake
(Yamada et al. 2007). Active immunisation against GIP in
leptin-deficient ob/obmice had previously been shown to
increase glycaemic excursion, without altering food intake
or body weight (Irwin et al. 2009a). In addition, chronic
treatment with enzymatically stable forms of GIP (1–30
and 1–42) had no effect on food intake or body weight
in HFD mice, whilst lowering non-fasting glucose levels
and increasing insulin levels and improving glycaemic
response in an intraperitoneal glucose tolerance test
(Gault et al. 2011).
More recently i.c.v. infusion of GLP-1 and GIP reduced

food intake and body weight in mice – subeffective
doses were used in combination and recapitulated this
phenotype. This was associated with increased neuronal
activation and POMC expression in the ARC (NamKoong
et al. 2017). Peptide-basedGIP analogues were also shown
to reduce feeding and body weight in diet-induced obese
(DIO) mice with weight loss maintained in GLP-1R−/−
mice (Mroz et al. 2019). Tirzepatide, a dual GLP-1R
and GIPR agonist, was found to reduce food intake and
body weight to a greater degree than the GLP-1R-only
agonist liraglutide in both humans and mouse models
(Coskun et al. 2018; Frias et al. 2018), and another
GLP-1/GIP receptor dual agonist reduced food intake
and body weight in HFD mice (Wu et al. 2020). A
GLP-1/GIP/glucagon receptor triagonist also reduced
food intake and body weight in DIO and db/db mice
(Cui et al. 2020). The triple agonist approach was pre-
viously shown to reduce food intake, body weight and
fat mass in HFD mice, improving dyslipidaemia and
reversing diet-induced steatohepatitis (the latter to a
greater extent in female versus male mice) (Jall et al.
2017). To address the potential mechanism underlying
these findings, we mapped central GIPR expression in the
CNS using a novel GIPR-Cremouse, demonstratingGIPR
promoter-driven expression in the hypothalamus and
hindbrain DVC, well established centres of food intake
regulation. Chemogenetic activation of hypothalamic
GIPR-expressing cells reduced food intake (Adriaenssens
et al. 2019). A recent study further demonstrated the
importance of central GIPR for food intake regulation,
demonstrating that nestin-Cre-mediated GIPR deletion
in the CNS attenuated food intake and body weight
reduction in response to a peripherally administered
GIPR agonist, implicating neuronal activation in the ARC
and the VMH (Zhang et al. 2021).
However, it has been demonstrated that, somewhat

counterintuitive to these observations, reducing GIPR
signalling can reduce body weight. GIPR−/− mice fed a
HFD are protected from obesity and insulin resistance
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even on the hyperphagic leptin-deficient ob/ob back-
ground (Miyawaki et al. 2002). Alternatively, a reduction
in the number of K cells, and therefore the panel
of peptides they produce, via GIP promoter-driven
expression of diphtheria toxin A chain, reduced daily
food intake and body weight, and increased energy
expenditure, in HFD mice – whilst glucose homeostasis
was not affected (Althage et al. 2008). Daily treatment
of mice with a stable GIPR partial agonist/antagonist,
(Pro3)GIP, had no effect on food intake and body weight
(glucose tolerance was impaired, showing effectiveness
of the drug treatment), and feeding post-18 h fast
was unaffected by treatment with this GIPR antagonist
(Irwin et al. 2007b). However, other GIPR antagonists
do reduce weight in experimental models including
non-human primates (reviewed in Holst & Rosenkilde,
2020). Mice treated with a GIPR antagonistic antibody
(muGIPR-Ab) demonstrate reduced food intake and
body weight gain. These results were replicated in obese
non-human primates; the weight loss here was more
profound than in mice and in both species the weight loss
was potentiated in animals treated with a GLP-1R agonist
(Killion et al. 2018). Central administration of a different
GIPR blocking antibody inDIOmicewas shown to reduce
adiposity and body weight, via a reduction in food intake
(these effects were not apparent in normal chow-fed, lean
mice) (Kaneko et al. 2019) and, in this study, did not
notably synergise with concomitant GLP-1R activation.
Whilst Kaneko et al. (2019) propose a GIPR-dependent
leptin resistance in the ARC to underlie their findings,
the mechanism of how GIPR activation or inhibition
might result in body weight loss remains controversial.
Some studies indicate increased energy expenditure upon
GIPR KO or antagonism to be the critical protection from
diet-induced obesity (Gault et al. 2007; McClean et al.
2007; Irwin et al. 2007a, 2008), but this effect was not
apparent in ob/ob animals (Irwin et al. 2009b). In contrast,
in the ovariectomized (OVX) mouse model of obesity,
GIPR−/− mice showed significantly reduced cumulative
food intake associated with lower hypothalamic mRNA
expression of NPY (Isken et al. 2008).

It should be noted that no study has been able to
demonstrate increased food intake or even increased body
weight gain in response to GIPR agonists. The notion that
GIPR activation might promote weight gain is thus based
on the reduction ofweight gain seenwhenGIPR signalling
is blocked. Recently it has been demonstrated that similar
results can be achieved when GLP-1R signalling is
blockedwith aGLP-1R-blocking antibody (Svendsen et al.
2020). Given the proven anorexic activity of GLP-1RA,
no-one would conclude from this finding that GLP-1R
signalling is in any way orexigenic or obesogenic. Weak
anorexic effects of GIPR agonism and stronger effects of
GLP-1R/GIPR co-agonists thus remain important new
treatment opportunities and the importance of different

central GIPR-expressing nuclei is currently a hotspot of
research, but no clear link to hedonic feeding regulation
has yet emerged. In addition, in contrast to GLP-1, for
which there is a well characterised central source, no
convincing GIP-expressing central cell population has so
far been identified.
In a recent publication the effects of GIP, GLP-1 and

the combined incretins on food intake, appetite and
energy expenditure were assessed in overweight/obese
men. Whilst GLP-1 infusion lowered energy intake, GIP
infusion had no effect on intake, whereas simultaneous
GLP-1/GIP infusion did not potentiate the GLP-1 effect
(Bergmann et al. 2019). Intravenous (i.v.) GIP infusion
in healthy males did not alter gastric emptying, energy
intake, energy expenditure, removal of triacylglycerides or
free fatty acids and did not affect hunger, satiety, fullness or
food consumption versus saline, but did increase insulin
(versus saline-treated control individuals) (Asmar et al.
2010). A similar study, but in obese individuals with
type 2 diabetes, demonstrated that GIP infusion increased
hunger scores, but ad libitum energy intake post infusion
was unchanged (Daousi et al. 2009).
In short, GIP analogues reduce food intake and body

weight in rodent models and clinical trials both alone
and in combination with other gut peptide analogues.
Conversely, GIPR antagonists also reduce food intake and
body weight, and hence the role of GIP in body weight
regulation continues to be debated. Involvement of GIP
and GIPR signalling in reward-related feeding is yet to be
deciphered.

Glucagon-like peptide-1. GLP-1, derived from pre-
proglucagon and produced by intestinal L cells in
response to food ingestion, has a key role in glucose
homeostasis (Eissele et al. 1992). Its incretin action (to
induce glucose-dependent insulin release) has led to the
development of GLP-1R agonists, utilised in the clinic
to treat type 2 diabetes and obesity. The anorexigenic
effect of GLP-1R agonism is well established in animal
models and clinical studies in healthy and type 2 diabetic
individuals (Finan et al. 2013; Ten Kulve et al. 2016).
The obesogenic environment is often ignored in

animal studies. In one elegant study, the effects of Ex4
on food intake were attenuated in mice fed a cafeteria
diet (animals are offered the choice of foodstuffs high in
energy/fat/sugar, alongside a standard lab chow and HFD,
and choose which to consume) (Sclafani & Springer,
1976; Mella et al. 2017). Previously, the conditioned place
preference associated with a palatable food was reduced
in rats treated with Ex4, without malaise or locomotor
impairment. In satiated rats offered a choice between
standard chow and a HFD, Ex4 reduced consumption
of the more palatable HFD (Alhadeff et al. 2012). In a
conditioned place preference for chocolate, the cafeteria
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diet blocked the effect of Ex4 (Mella et al. 2017). This
may have long term consequences for the use of GLP-1R
agonists in the treatment of obesity. Semaglutide, a
GLP-1 analogue, was recently shown to suppress food
intake and reduce body weight in DIO mice and rats.
Furthermore, semaglutide was shown to reduce energy
intake in DIO rats offered standard chow and chocolate
in parallel; this decrease was driven by a reduction
in chocolate intake (Gabery et al. 2020). Whilst the
mechanism for this is unclear, previous data suggest the
involvement of dopamine release. Given that semaglutide
has been demonstrated to enable drastic weight loss
in overweight or obese humans (Wilding et al. 2021),
a greater understanding of how this analogue, and
GLP-1R signalling more widely, influences food intake
and body weight is required. The mesolimbic regions
of the brain (such as the VTA, NAc, lateral septum (LS)
and PVT) also express GLP-1R and receive projections
from PPG neurons in the NTS. Initial experimentation
demonstrated that peripheral administration of Ex4
increases c-Fos, a marker of neuronal activation, in
the NAc and direct activation of NAc GLP-1R reduces
food intake – it was concluded, however, that this was
a consequence of aversion or malaise. In addition,
the effect was specific to the NAc core; no effect was
observed when the NAc shell was targeted (Dossat et al.
2011). Ex4 delivered to the NAc core decreased operant
responding for sucrose under an operant conditioning
progressive ratio schedule (Dickson et al. 2012). Fast-scan
cyclic voltammetry demonstrated that central infusion
of Ex4 suppressed dopamine signalling/release in the
NAc core. GLP-1-based therapies, therefore, may reduce
the reinforcing properties of rewarding pathways if
the right region of the CNS is targeted (Fortin &
Roitman, 2017). μ-Opioid receptor activation in the
NAc increases the consumption of a sweetened fat diet
in rats – treatment with Ex4 attenuated this effect,
while GLP-1R antagonism with exendin-9 (Ex9) altered
μ-opioid receptor agonist-induced binge-like feeding,
extending feeding bouts and therefore increasing food
consumption (Pierce-Messick & Pratt, 2020). Inter-
estingly, Ex4 decreased food intake when infused into the
NAc core and shell in female rats (Abtahi et al. 2018).
Similarly, Ex4 administration into the NAc shell blocks
alcohol-induced locomotor stimulation and reduces
overall alcohol intake (Vallöf et al. 2019a). Furthermore,
pre-treatment with Ex4, either by intraperitoneal (i.p.)
injection or via intra-VTA infusion, attenuated the
increased operant responding for food reward induced by
ghrelin (Howell et al. 2019). In addition, mice receiving a
GLP-1 analogue demonstrate a reduction in motivation
to lever press for a high fat, high sugar reward. This
behaviour was further suppressed whenmice were treated
with an equimolar dose of a GLP-1–dexamethasone
conjugate. The effect was associated with transcriptional

changes of dopaminergic markers in the NAc, whilst
repeated treatment with the conjugate reduced body
weight (Décarie-Spain et al. 2019). The LS also contains
a high density of GLP-1R; intra-LS administration of
GLP-1 reduces food intake in ad libitum-fed mice, while
reducing operant responding for sucrose pellets in food
restricted mice (Terrill et al. 2019). Similarly, intra-VTA
infusion of Ex4 reduces HFD intake in rats by reducing
meal size and increasing tyrosine hydroxylase levels in the
VTA suggesting a modulation of dopaminergic signalling
in this region (Mietlicki-Baase et al. 2013). Intra-VTA
infusion of Ex4, in addition to peripheral treatment, also
reduces cocaine self-administration in rats (Schmidt et al.
2016; Hernandez et al. 2018). Whilst central infusion
of GLP-1 into the BNST reduced chow intake in the
dark phase, patch-clamp experiments demonstrated
BNST-GLP-1R neurons underwent depolarizing or
hyperpolarizing responses following GLP-1 treatment
(Williams et al. 2018).
Liraglutide was recently shown to suppress responses

to sucrose in trials in which an inhibitory stimulus was
also present; this favours the hypothesis that GLP-1
signalling pathways suppress appetitive behaviour by
enhancing hippocampus-dependent learned inhibition
(Jones et al. 2019). Administration of Ex4 into the
lateral ventricle was subsequently shown to suppress
the magnitude of cue-evoked dopaminergic activity and
sucrose consumption (Konanur et al. 2020). Central
(lateral ventricle) injection of Ex4 has been shown to
suppress reward behaviour in an operant conditioning
progressive ratio task; the effects of Ex4 on food
reward, but not intake, were attenuated by pretreatment
with an oestrogen receptor antagonist (Richard et al.
2016). Expression of GLP-1R was subsequently shown
in the supramammillary nucleus, where infusion of Ex4
reduced ad libitum standard chow, fat and sugar intake
in both sexes, and reduced motivated behaviours in
male but not female rats, measured via sucrose operant
conditioning (López-Ferreras et al. 2019). Previously, a
GLP-1–oestrogen conjugate had been shown to reduce
food reward, intake and body weight in rats via this
nucleus (Vogel et al. 2016). Similarly, motivation for food,
as assessed by an operant conditioning progressive ratio
schedule for sucrose, was reduced by activation of GLP-1R
neurons in the LH, as was food intake and body weight
(López-Ferreras et al. 2018, 2019). In addition, agonism of
PVT GLP-1R reduced food intake, motivation and food
seeking; PVT neurons receive GLP-1 innervation from
NTS PPG neurons (Ong et al. 2017).
Treatment of animal models with lithium chloride

(LiCl) results in an anorexigenic effect; this effect was
attenuated in rats receiving GLP-1R antagonism i.c.v.
(Rinaman, 1999). GLP-1, delivered to the lateral ventricle,
was subsequently shown to produce a conditioned taste
aversion in mice – this effect was absent in GLP-1R−/−
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mice. However, GLP-1R antagonism did not block the
aversive effects of LiCl in mice (Lachey et al. 2005). The
anorexigenic effect of oxytocin was also lost when rats
were pretreated with a GLP-1R antagonist suggesting that
GLP-1R receptor signalling is an important downstream
mediatory of anorexia in rats following oxytocin treatment
(Rinaman & Rothe, 2002).

GLP-1 producing neurons project to the LPBN and
GLP-1R stimulation of the LPBN reduces food intake
(both chow and palatable food) and body weight
in rats, associated with increased gene expression
of calcitonin gene-related peptide and interleukin-6
(Richard et al. 2014). In addition, electrophysiological
studies demonstrated that treatment with Ex4 increases
the firing of LPBN neurons (Richard et al. 2014). GLP-1R
activation in the LPBN also reduced motivation for food
(measured via a progressive ratio schedule) (Alhadeff et al.
2014). Light sheet fluorescence microscopy subsequently
demonstrated that liraglutide accessed the hypothalamus
and brainstem and activated brain regions intersected by
neuronal projections in the LPBN, whilst treatment with
semaglutide induced c-Fos in this region (Salinas et al.
2018; Gabery et al. 2020).

Hindbrain infusion, via the fourth ventricle, of Ex4
reduced food intake and body weight, increased protein
kinase a (PKA) and mitogen-activated protein kinase
(MAPK) activity, and decreased phosphorylation of
AMP-activated protein kinase (AMPK), while inhibition
of PKA and MAPK (by RpcAMP and U0126) or
stimulation of AMPK activity (by AICAR) attenuated the
effects of Ex4 (Hayes et al. 2011). Microinjection of Ex4
into the medial NTS reduces intake of a HFD and operant
responding for sucrose under a progressive ratio. The
conditioned place preference associated with a palatable
food is also reduced (Alhadeff et al. 2014). The lateral
dorsal tegmental nucleus also expresses GLP-1R; direct
activation reduces food intake independent ofmalaise and
nausea (Reiner et al. 2018). Knockdown of GLP-1R in the
NTS using a short hairpin RNA increased palatable food
intake under fixed and progressive operant conditioning
ratios, as well as increasing chow intake (via increased
meal size) (Alhadeff et al. 2017). Similarly, knockdown
of GLP-1R in the NTS attenuated the anorectic and
body weight effect of liraglutide in acute and chronic
studies; a chemogenetic strategy targeting a GABAergic
population of neurons within the NTS which express
GLP-1R replicated the effects (Fortin et al. 2020).

Ex4 infused into the NTS dose-dependently decreases
alcohol intake in rats, whilst pharmacological blockade
of GLP-1R in the NTS attenuates the alcohol-induced
locomotor stimulation effect (Vallöf et al. 2019b). Inter-
estingly, this effect extends to nicotine in mice (Tuesta
et al. 2017). However, unlike CCK, Ex4 had no effect
on morphine-induced conditioned placed preference
suggesting that GLP-1 analogues would not be suitable

for the treatment of opioid addiction (Bornebusch et al.
2019).
Higher fasting plasma GLP-1 concentrations are

associated with lower carbohydrate and simple sugar
intake in humans (with a BMI of 30.3 ± 9.5, without
type 2 diabetes) (Basolo et al. 2019). Similarly, higher
sugar intake is related to increased striatal response to
food cues and decreased GLP-1 release following glucose
intake in lean human volunteers (Dorton et al. 2017).
Changes in olfactory function have also been noted in
obese individuals with type 2 diabetes – these changes
are reversed following treatment with GLP-1R agonists
(Zhang et al. 2019). This suggests circulating GLP-1
influences food preference in humans, potentially through
interacting with neural reward systems as described in
animal models.
To summarise, GLP-1R is expressed in multiple

reward-related brain regions. GLP-1 andGLP-1 analogues
have been shown to reduce food intake, motivation to
consume food rewards, and conditioned reward responses
when administered peripherally, i.c.v. or via micro-
injection into reward-related brain regions. Reductions
in food intake and operant responses following Ex4
administration can be blocked by the consumption of a
high fat, high sugar cafeteria-style diet. GLP-1 signalling
may influence the reward system via changes to the
dopaminergic pathway in the mesolimbic system.

Secretin. Secretin (SCT) is a 27 amino acid peptide
secreted by the duodenum and the brain (Bayliss &
Starling, 1902; Charlton et al. 1981). Its receptor (SCTR)
is widely distributed throughout the CNS including in the
hippocampus, hypothalamus and medulla (O’Donohue
et al. 1981). SCTR−/− mice are protected against DIO
and have impaired fatty acid absorption, which might,
however, simply reflect defective exocrine pancreas
function (Sekar & Chow, 2014). Several studies have
implicated SCT in gastric emptying, social behaviour,
spatial learning, water homeostasis, motor coordination
and food intake (Charlton et al. 1983; Jin et al. 1994;
Nishijima et al. 2006; Chu et al. 2011; Jukkola et al.
2011).
In sheep, peripheral treatment with SCT reduced food

intake in the fed and fasted state (Anil & Forbes, 1980;
Grovum, 1981). The effects of SCT on food intake
in rats, however, are inconsistent, with at least one
study suggesting this effect involves oxytocin neuron
activation (Garlicki et al. 1990; Motojima et al. 2016).
Peripheral and central treatment (via i.c.v. infusion)
with SCT reduced food intake in fasted mice, an effect
dependent on the SCTR (Cheng et al. 2011). Treatment
with SCT increased Mc4r, Trh and Pomc gene expression
in the hypothalamus and the ability of SCT to reduce
food intake was attenuated by pre-treatment with a
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melanocortin-4-receptor antagonist (Cheng et al. 2011).
This was not a consequence of aversion or malaise. Inter-
estingly, i.v. infusion of SCT also increased plasma leptin
(Sobhani et al. 2000). Fos-immunoreactivity was detected
in the NTS, AP and DVC following i.p. infusion of SCT
– this effect was not apparent in vagotomised animals
or animals treated with capsaicin to cause degeneration
of unmyelinated sensory neurons including the nodose
ganglion and the vagus nerve (Chu et al. 2013). In
addition, peripheral administration of SCT activates vagal
afferent and AP neurons, and this activation within the
brainstem stimulates POMC neurons in the ARC (Yang
et al. 2004; Cheng et al. 2011). Microinjection of SCT
into the CeA significantly reduced food intake through
cAMP-PKA activation (Pang et al. 2015). More recently,
meal-stimulated secretin responses were reported to
activate brown adipose tissue and supress hunger via
inhibition of orexigenic neurons and stimulation of
anorexigenic signals via POMC neurons (Li et al. 2018).
Whether this translates to an effect on food preference
however remains to be demonstrated.

Peptide tyrosine tyrosine. Peptide tyrosine tyrosine
(PYY) is a 36 amino acid peptide with structural similarity
to both NPY and pancreatic polypeptide (Berglund et al.
2003). Released from L cells in the distal ileum and
colon, it exhibits a gradient of increased expression
along the intestine reaching its highest levels in the
colon/rectum (Billing et al. 2019). Following a meal,
plasma PYY concentrations rise and reach a peak within
1–2 h post-ingestion, remaining elevated for up to 6 h
(Adrian et al. 1985). The composition of a meal influences
secretion of PYY, with protein resulting in higher levels
than lipids and carbohydrates.
Peripheral administration of PYY3–36 reduces food

intake and body weight in experimental animals
(Batterham et al. 2003; Challis et al. 2003; Koegler et al.
2005; Abdel-Hamid et al. 2019). Treatment was associated
with increased c-Fos expression in the ARC and altered
hypothalamic neuropeptide expression (Batterham et al.
2002; Challis et al. 2003). Furthermore, intra-ARC
infusion of PYY3–36 reduces food intake. The effects of
PYY3–36 on food intake were blocked when animals were
pre-treated with a PYY receptor (Y2R) antagonist directed
towards the ARC, or in Y2R-/- animals (Batterham et al.
2002; Abbott et al. 2005). Other groups subsequently
confirmed that the anorectic effect of PYY was abolished
by Y2R antagonism (Scott et al. 2005; Lewis et al. 2020).
More recently, PYY was shown to increase food intake, by
increasingmeal size, via Y1R, whenmicroinjected into the
LPBN (Alhadeff et al. 2015). It was subsequently shown,
however, that subcutaneous PYY3–36 and Ex4 reduce food
intake in a synergistic manner in mice (Kjaergaard et al.
2019). In addition, PYY3–36 has been shown to reduce

the motivation to seek high fat food in a rodent model
(Ghitza et al. 2007).
The vagal–brainstem pathway may also respond to

circulating PYY3–36 as Y2Rs are expressed in vagal afferent
neurons – this, however, is controversial. Firstly, peri-
pheral treatment with PYY3–36 increased c-Fos expression
within brainstem regions (Halatchev & Cone, 2005; Koda
et al. 2005; Blevins et al. 2008). Secondly, vagotomy
or transection of hindbrain–hypothalamic pathways in
rodents abolished the anorectic effects of peripheral PYY
and the neuronal activation seen in theARC in response to
treatment with PYY (Abbott et al. 2005; Koda et al. 2005).
However, treatment with capsaicin or vagotomy failed to
attenuate the effects of PYY on food intake (Halatchev
& Cone, 2005). In the nodose ganglion, fasting (up to
48 h) resulted in a 5-fold decrease in Y2R mRNA (vs ad
libitum-fed control rats) (Burdyga et al. 2008).
In both lean and obese humans, i.v. infusion of PYY3–36

reduces food intake, and this anorectic effect is at least in
part mediated through Y2 receptors in the ARC, which
inhibit NPY/AgRP neurons, resulting in activation of
the anorectic POMC neurons (Batterham et al. 2002;
Batterham et al. 2003). It was subsequently shown that
PYY modulates other neural activity within corticolimbic
and homeostatic brain regions. In the fed state, when
plasma PYY is elevated, increased neural activity in the
caudolateral orbital frontal cortex was observed, whereas
in the fasted state, when plasma PYY is low, hypothalamic
activation was observed (Batterham et al. 2007). PYY
has been shown to be negatively associated with post-
prandial activity in the caudate nuclei in non-diabetic
humans (Weise et al. 2012). Furthermore, peripherally
administered PYY3–36 activates neurons in the AP and
NTS and results in conditioned taste aversion (Halatchev
& Cone, 2005). The nauseating effect of PYY at higher
doses has limited its value as an obesity target to date
(Gantz et al. 2007; Sloth et al. 2007; le Roux et al. 2008).
In short, evidence that PYY influences motivation to

seek high fat foods in a rodent model and modulates
neural activity in reward-related brain regions in humans
suggests PYY has some influence on hedonic food intake.

Insulin-like peptide 5. Insulin-like peptide 5 (INSL5),
a member of the relaxin peptide family and similar
in structure to insulin and insulin-like growth factors,
is an endogenous ligand for the G-protein-coupled
relaxin/insulin-like family peptide receptor-4 (RXFP4)
(Akhter Hossain et al. 2008). It is produced by a sub-
set of L cells in the distal colon, is up-regulated upon
caloric restriction and is reduced upon refeeding. It is
also an orexigenic signal (Grosse et al. 2014; Billing
et al. 2019). Interestingly, RXFP4−/− animals have altered
feeding patterns and food preference (Grosse et al.
2014). Subsequently, Insl5 expression was shown to be
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higher in germ-free and antibiotic-treated animals, and
HFD reduced Insl5 expression in these mice (Lee et al.
2016). INSL5−/− mice did not display an evident feeding
phenotype (Lee et al. 2016). Small molecule agonism
of RXFP3/RXFP4 was shown to increase food intake
in rats following central administration (DeChristopher
et al. 2019). However, pharmacological administration of
INSL5 (native and PEGylated forms) failed to affect food
intake, body weight or glucose homeostasis in lean and
obese mice (Zaykov et al. 2019). We recently observed a
possible orexigenic effect of INSL5 following stimulation
of colonic L-cells in mice which was, however, only
apparent when the anorexic effect of co-released PYY was
blocked (Lewis et al. 2020). Further work on the role of
INSL5 and its receptor is therefore required.

Neurotensin. Neurotensin, a 13 amino acid peptide,
is expressed in the CNS and GI tract. i.c.v. infusion of
neurotensin reduced feeding in fasted and ad libitum-fed
rats and the same was found with peripheral treatment
(Luttinger et al. 1982; Cooke et al. 2009; Ratner et al. 2016).
Chemogenetic activation of neurotensin-expressing
neurons in the LH increases locomotor activity and
suppresses food intake in ad libitum-fed and fasted mice
(Woodworth et al. 2017). In addition to its role in feeding
and reward, many studies have implicated neurotensin
in a variety of processes including body temperature,
analgesia and pain, and psychosis (Torruella-Suárez &
McElligott, 2020).

Neurotensin immunoreactivity is found in the VTA,
NAc shell, PVNandLPBN (Uhl et al. 1977; Schroeder et al.
2019). Infusion of neurotensin into the VTA results in rats
demonstrating conditioned placed preference – a possible
consequence of increased dopamine entering the NAc
(Glimcher et al. 1984; Sotty et al. 1998; Sotty et al. 2000;
Leonetti et al. 2004). A similar result was achieved when
neurotensin was infused into the CeA (László et al. 2010).
Subsequent studies suggested that neurotensin signalling
in the CeA reinforced and promoted learning (László et al.
2012; László et al. 2018).

Neurotensin-Cre mice will nose-poke for optical
stimulation of the LH terminals in the VTA (Kempadoo
et al. 2013). These neurons contain the long form of
the leptin receptor (LepRB) and when stimulated the
animals were motivated to consume both food and water
(Leinninger et al. 2011; Schiffino et al. 2019). LepRB KO
specifically in neurotensin-expressing LH neurons alters
reward-related feeding; these animals do not demonstrate
increased preference for sucrose following treatment with
ghrelin.

Substance P. The neurokinin systems play diverse roles
in physiological processes ranging from pain and cardio-
vascular function to behaviour (reviewed in Schank,

2020). Substance P, one of three neurokinin peptides,
has been shown to alter the response to alcohol, cocaine
and opiate drugs mainly via the neurokinin-1 receptor
(NK1R), but i.p. infusion of substance P in rats also
resulted in an anorexigenic effect, with increased latency
to eat in food-deprived animals (Cador et al. 1986;
Hasenöhrl et al. 1994). Peripheral treatment with sub-
stance P induced conditioned place preference (Oitzl
et al. 1990), an effect that appeared to be brain region
specific (reviewed in Lénárd et al. 2018). It was sub-
sequently shown that peripheral treatment with substance
P reduced operant responding and i.c.v. infusion of sub-
stance P in fasted rats reduced refeeding (Hasenöhrl et al.
1994; Dib, 1999). By contrast, substance P increased food
intake in mice, whilst antagonism of the NK1R in DIO
and ob/ob animals reduced food intake and body weight
(Karagiannides et al. 2008). In humans, treatment of
healthy individuals with a NK1R antagonist resulted in a
decrease in blood oxygenation level-dependent signals in
the NAc during gain anticipation (Saji et al. 2013). The
rewarding or aversive effects of substance P are thus brain
region specific.

Central versus peripheral mechanisms of activation

Gut peptides, and their receptors, clearly influence neural
mechanisms of reward. However, what is less clear is
whether gut peptides, with relatively short half-lives,
secreted fromepithelial enteroendocrine cells, can activate
their receptors deep within the brain, shielded by the
blood–brain barrier, thus forming a true gut–brain axis.
Many gut peptides have direct access to the ARC via the
leaky blood–brain barrier in this region or exert their
influence via the afferent neuronal pathway or brain-
stem. For example, CCK was originally identified as a
gastrointestinal peptide that controls food intake through
binding to receptors on the vagus nerve, activating the
NTS, which relays information to the hypothalamus.
However, it is also an abundant neuropeptide expressed in
the hippocampus, amygdala and hypothalamus (Beinfeld
et al. 1981;Williams & Elmquist, 2012). Indeed, a plethora
of other gut peptides are also expressed in the CNS –
cells expressing GLP-1 (often referred to as GCG+ or
PPG neurons) can be found in the brainstem, specifically
in the NTS, and the olfactory bulb, confirmed via in
situ hybridisation, immunohistochemistry and transgenic
mousemodels (Jin et al. 1988; Larsen et al. 1997; Reimann
et al. 2008). Interestingly, these hindbrain GCG+ neurons
lack GLP-1R and therefore cannot be activated by peri-
pheral GLP-1 (Hisadome et al. 2010). However, peri-
pheral GLP-1 can activate the vagal afferents, which in
turn activate GCG+ neurons in the NTS (Hisadome et al.
2010). Similarly, PYY has been centrally reported in the
hindbrain, with the highest density in the NTS (Glavas
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et al. 2008). Neurotensin- and substance P-producing
neurons are widely distributed throughout the CNS,
whilst secretin has been detected in numerous brain
regions (reviewed in St-Gelais et al. 2006; Mashaghi et al.
2016). GIP is reported to be synthesised by a subset of
neurons within the brain, limited to the large pyramidal
neurons in the cortex and hippocampus (Faivre et al.
2011). GIP has also previously been reported, via in situ
hybridisation, in the olfactory bulb (Usdin et al. 1993), but
we have so far not been able to detect Cre-reporter activity
in central neurons in GIP-Cre mice. Similarly, studies
investigating central sources of ghrelin or insulin-like
peptide-5 have been inconclusive (recently reviewed in
Cabral et al. 2017; Lewis et al. 2020). Hence, with the
current evidence it is not possible to determine whether
it is peripherally or centrally derived gut peptides that
modulate hedonic control of food intake. Nonetheless, the
studies examined in this review highlight the actions of
gut peptides, their analogues and their receptors in the
neural reward system. These actions could be harnessed
to improve treatments for food intake and reward-related
disorders including obesity.

Concluding remarks

At present, bariatric surgery is the only effective treatment
for severe obesity, with Roux-en-Y gastric bypass (RYGB)
and sleeve gastrectomy (SG) being the more commonly
used procedures. These operations result in self-reported
changes in taste and food preference (reviewed in Nance
et al. 2020; Moffett et al. 2021). After RYGB surgery,
patients report a shift in food preference away from
high-energy foods, correlating with reduced superior
parietal lobule and precuneus responses to high-energy
food odours and high-energy versus low-energy food
pictures, respectively. These changes in neural activity did
not correlate with changes in appetite-related hormone
concentrations (Zoon et al. 2018). A previous study
highlighted that gastric bypass patients have lower
hedonic responses to food than individuals who under-
went gastric banding. Postprandial plasma gut peptides
(the most consistently elevated of which are GLP-1 and
PYY), bile acids and symptoms of dumping syndrome
are all increased in the RYGB cohort compared to the
gastric banding cohort (Pournaras et al. 2012; Dirksen
et al. 2013; Scholtz et al. 2014). It is likely that the
distal gut’s response to nutrients underlies this altered
profile of hormones, whose roles in hunger, satiety, reward
and aversion have been highlighted. Recently, it also was
reported that individuals receiving bariatric surgery were
at increased risk from substance use disorder, further
suggesting that the reward system is altered by weight
loss surgery (reviewed in Orellana et al. 2019). Gastro-
intestinal peptides have been also implicated in eating

disorders (reviewed inTong&D’Alessio, 2011), a hallmark
of which is dysregulated reward signalling, and liraglutide
has recently been shown to reduce global eating disorder
psychopathalogy (Chao et al. 2019). It is therefore essential
that we increase our understanding of how gut peptides
influence the reward system to prevent unwanted side
effects of weight loss treatments and potentially develop
alternative therapies for obesity, eating disorders and other
reward-related disorders.
We often talk of having a ‘gut feeling’, but how our GI

tract regulates our emotional and motivational states,
particularly surrounding food intake, is incompletely
understood. Gut peptides are well established in the
homeostatic control of food intake. Here we have
highlighted the emerging role of specific gut peptides
in the hedonic control of food intake. Studies in rodent
models demonstrating activation of reward-related
regions following administration of gut peptides and/or
their analogues, alongside changes to intracranial
self-stimulation and operant conditioning responses,
indicate a role for gut peptides in reward-related signalling
and behaviour. This is supported by human studies
showing changes to reward-related region activation and
food preferences following administration of gut peptide
analogues and bariatric surgery. As gut peptide analogues
become increasingly utilised in the clinic as therapeutics
for type 2 diabetes and obesity, further research into how
gut peptides and their analogues influence food intake is
paramount.
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