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Abstract

We derive a multiscale generalisation of the Bakry-Émery criterion for a mea-
sure to satisfy a log-Sobolev inequality. Our criterion relies on the control of
an associated PDE well-known in renormalisation theory: the Polchinski equa-
tion. It implies the usual Bakry-Émery criterion, but we show that it remains
effective for measures that are far from log-concave. Indeed, using our criterion,
we prove that the massive continuum sine-Gordon model with � < 6� satis-
fies asymptotically optimal log-Sobolev inequalities for Glauber and Kawasaki
dynamics. These dynamics can be seen as singular SPDEs recently constructed
via regularity structures, but our results are independent of this theory. © 2021
The Authors. Communications on Pure and Applied Mathematics published by
Wiley Periodicals LLC.

1 Introduction and Results
1.1 Introduction

Log-Sobolev inequalities are strong inequalities with numerous general conse-
quences, including concentration of measure, relaxation and hypercontractivity of
stochastic dynamics, transport inequalities, and others. See [4, 47] for a review.
They originate from quantum field theory, where log-Sobolev inequalities were
first derived for Gaussian measures as a tool to study non-Gaussian measures in
infinite dimensions (Euclidean quantum field theories, EQFTs) [26, 32, 55]. As a
consequence of a general new approach, we prove log-Sobolev inequalities for the
massive sine-Gordon model. This is a fundamental example of a non-Gaussian
EQFT in two dimensions, and its stochastic dynamics is a prototypical example of
a singular SPDE.

As log-Sobolev inequalities provide strong control on the measures they apply
to, proving them remains in general a difficult problem even if the equilibrium
correlation functions are well understood. This applies especially to strongly cor-
related measures. For log-concave measures (or measures satisfying a curvature
dimension condition), the fundamental Bakry-Émery criterion provides a simple

Communications on Pure and Applied Mathematics, Vol. LXXIV, 2064–2113 (2021)
© 2021 The Authors. Communications on Pure and Applied Mathematics published by Wiley Peri-
odicals LLC.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-
NoDerivs License, which permits use and distribution in any medium, provided the original work is
properly cited, the use is non-commercial and no modifications or adaptations are made.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/475648691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


LSI FOR THE CONTINUUM SINE-GORDON MODEL 2065

and often quite sharp sufficient condition [2, 3]. In its proof, a log-Sobolev in-
equality for a Markov semigroup is derived by integration of local log-Sobolev
inequalities for the same Markov semigroup.

Our method also uses local log-Sobolev inequalities, but for a semigroup that
is different from the one for which the log-Sobolev inequality is proven. Namely,
our method uses the time-dependent semigroup driven by the Polchinski equation,
a version of the renormalisation semigroup. Unlike the original semigroup, this
Polchinski semigroup provides a notion of scale, and hence we effectively obtain a
multiscale version of the Bakry-Émery criterion.

The simplest version of our new Polchinski equation criterion for the log-Sobo-
lev inequality is stated in Section 1.2. In Example 1.3, we illustrate that it implies
the Bakry-Émery criterion. As an application of the new criterion, demonstrating
that it remains effective for measures that are far from log-concave, we prove the
following theorem for the continuum sine-Gordon model. For a precise statement
of this result and related discussion, we refer to Section 1.3. In Section 1.4, we
discuss further directions and related results.

THEOREM 1.1. The continuum massive sine-Gordon model with � < 6� satisfies
asymptotically optimal log-Sobolev inequalities for Glauber and Kawasaki dynam-
ics (under suitable conditions).

Throughout this paper, we make the assumption that all functions considered
are Borel measurable and that all functions to which derivatives are applied are
continuously differentiable of the required order.

1.2 Polchinski Equation and Log-Sobolev Inequality
In this section we state the simplest version of our new criterion for a probability

measure to satisfy a log-Sobolev inequality.
Given a linear space X � RN with the induced inner product . � ; � /, a symmet-

ric matrix A that acts positive definitely on X , and a potential V0 W X ! R, we
consider the probability measure �0 with expectation

(1.1) E�0F /
Z
X

e�
1
2
.�;A�/�V0.�/F.�/d�:

We call the set � D f1; : : : ; N g the index space and the space X the field space;
see also Figure 1.1. Let Qt D e�tA=2 be the heat semigroup associated with A
(acting on elements ' 2 X , i.e., functions ' W �! R on the index space), set

(1.2) PCt D Q2
t D e�tA; Ct D

Z t

0

PCs ds;

and denote by ECs the expectation of the Gaussian measure with covariance Cs .
For t > s > 0, we define the renormalised potential Vt , the renormalisation
semigroup Ps;t (acting on functions F W X ! R on the field space), and the
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FIGURE 1.1. The heat semigroup Qt acts on the index space � D

f1; : : : ; N g, i.e., “horizontally.” In our primary applications, the index
space � is identified with a finite approximation to Zd or Rd , and
A is the Laplacian on �. The original semigroup with Dirichlet form
E�0.rF /

2 acts on the field space X � R
�. It acts “vertically” in the

sense that the principal part of its generator is the standard Laplacian
on X , i.e., � id in the notation (1.11). The Polchinski renormalisation
semigroup Ps;t also acts on field space X , but it acts “diagonally” in the
sense that the principal part of its generator is time dependent and given
in terms of the heat kernel as �Q2

t

(see (2.8)).

renormalised measure �t by

e�Vt .'/ D ECt
.e�V0.'C�//;(1.3)

Ps;tF.'/ D eVt .'/ECt�Cs .e
�Vs.'C�/F.' C �//;(1.4)

E�tF D Pt;1F.0/ D eV1.0/EC1�Ct
.e�Vt .�/F.�//;(1.5)

where ' 2 X , the expectationECt
applies to �, and it is natural to define E�1F D

F.0/. Essentially equivalently to (1.3), Vt solves the Polchinski equation; see
(1.10) below.

In what follows, we will impose the following ergodicity assumption on the
semigroup P : For all bounded smooth functions F W X ! R and g W R! R,

(1.6) E�tg.P0;tF /! g.E�0F / as t !1.

Like the ergodicity assumption in the Bakry-Émery theory (see [1,4]), this assump-
tion is qualitative and easily seen to be satisfied in all examples of interest.

The following theorem bounds the log-Sobolev constant of the measure �0. For
its statement, recall that the relative entropy of F W X ! RC with respect to �0 is
given by

(1.7) Ent�0.F / D E�0�.F / ��.E�0F /; �.x/ D x log x;

where 0 log 0 D 0. We write r for the gradient on X and .rF /2 D .rF;rF /;
thus in particular if X D R

N then .rF /2 DPN
iD1.

@F
@'i
/2.
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THEOREM 1.2. In the setup above, assume (1.6), let � > 0 be the smallest eigen-
value of A, suppose there are real numbers P�t (possibly negative) such that for all
t > 0, as quadratic forms on X ,

(1.8) Qt HessVt .'/Qt > P�t id where Qt D e�tA=2,

and define �t D
R t
0 P�s ds. Then �0 satisfies the log-Sobolev inequality

(1.9) Ent�0.F / 6
2


E�0.r

p
F /2;

1


D
Z 1

0

e��t�2�t dt;

provided the integral is finite.

The proof of Theorem 1.2, given in Section 2, shares significant elements with
the celebrated Bakry-Émery argument, but with the crucial difference that it uses
the time-dependent Polchinski semigroup (1.4) rather than the original semigroup,
associated with the Dirichlet form E�0.rF /2, to decompose the relative entropy.
The above version of our criterion relies on the particular decomposition of the
matrix C1 D A�1 in terms of the heat semigroup PCt D e�tA. In Section 2, we
also consider variations of the criterion that apply to other decompositions.

To apply the theorem, the main task is to verify (1.8). It is not difficult to see
that the renormalised potential Vt solves the Polchinski equation (see Section 1.4
for its history)

(1.10) @tVt D
1

2
� PCt

Vt �
1

2
.rVt /2PCt

;

where we use the notation (and with w D id if the argument w is omitted)

(1.11) .u; v/w D
X
i;j

wijuivj ; .rF /2w D .rF;rF /w ; �wF D .r;r/wF:

In general, verifying (1.8) is a challenging problem because the Polchinski equation
is a nonlinear PDE in N dimensions, where in the examples of main interest N !
1. Nonetheless, we believe that the required estimates are true in many relevant
examples, including spin systems near the critical point. In particular, in Section 3,
we verify the condition for the continuum sine-Gordon model by analysing the
Polchinski equation.

To illustrate our new criterion, we note briefly that (1.8) is not hard to verify for
log-concave measures, in which case we recover the Bakry-Émery criterion as a
special case.

Example 1.3 (Bakry-Émery criterion). Consider a probability measure �0 with ex-
pectation

(1.12) E�0F /
Z
RN

e�H.�/F.�/d�;
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where HessH > � id holds uniformly for some � > 0. Equivalently, �0 can be
written as in (1.1):

(1.13) H.�/ D 1

2
.�; A�/C V0.�/ with A D � id and V0 convex.

It follows that Vt is convex for all t > 0 (see, e.g., [10, theorem 4.3]). Hence
�t > 0 for all t and thus  > � in (1.9). This is the Bakry-Émery criterion.

We remark that an alternative proof that Vt remains convex for t > 0 can be
deduced from the maximum principle for symmetric tensors [37, theorem 9.1].
This argument is in fact analogous to the proof that positive Ricci curvature remains
positive under the Ricci flow in [37].

Theorem 1.2 can be considered a multiscale version of the Bakry-Émery cri-
terion in which the global convexity assumption inf' HessV0.'/ > 0, which is
equivalent to inft>0 inf' HessVt .'/ > 0, is replaced by the assumption (1.8) on
the Hessians of the effective potential Vt at each scale t . We emphasise that these
Hessians are not required to be positive definite; in fact, in the example of the
continuum sine-Gordon model that we consider in Section 1.3 below, the effective
potential remains nonconvex at all scales t > 0. We also emphasise that the ap-
plication of the heat kernel Qt to HessVt .'/ in (1.8) has an important smoothing
effect. In particular, for the sine-Gordon model, we will see that this smoothing
effect is essential when � > 4� .

Remark 1.4. We have defined the renormalised potential Vt as the convolution
solution (1.3) to the Polchinski equation (1.10). Since equivalently Zt D e�Vt
solves the heat equation @tZt D 1

2
� PCt

Zt , the Polchinski equation has a unique
solution under weak conditions. Then one may equivalently solve (1.10) instead of
(1.3); for an example for which this is useful, see Section 3.

Remark 1.5. We remark that with the time-dependent metric gt D eCtA on X and
rgt and �gt defined as in Riemannian geometry, i.e., rgt D g�1t r and �gt the
Laplace-Beltrami operator, one has � PCt

D �gt and .rF /2PCt

D .rgtF /2gt . The
condition (1.8) then becomes Hessgt Vt > P�tgt .
1.3 Continuum Sine-Gordon Model

In Section 3, we apply Theorem 1.2 to prove asymptotically sharp log-Sobolev
inequalities for Glauber and Kawasaki dynamics of the massive continuum sine-
Gordon model with � < 6� . The massive sine-Gordon model is a fundamental
example of a two-dimensional interacting Euclidean quantum field theory, i.e., a
non-Gaussian probability measure on D0.R2/ sometimes formally written as

(1.14)
1

Z
exp

�
�
Z
R2

�
1

2
'.��'/C 1

2
m2'.x/2

C 2´ W cos.
p
�'.x// W

�
dx

� Y
x2R2

d'.x/:



LSI FOR THE CONTINUUM SINE-GORDON MODEL 2069

Here � is the Laplacian on R2, and the notation W denotes Wick ordering, i.e., that
´ is formally multiplied by a divergent constant (making the microscopic potential
extremely nonconvex); see (1.15)–(1.16) below for the precise definition that we
will use. The Glauber dynamics of the sine-Gordon model (also called dynamical
sine-Gordon model) can be realised as a singular SPDE that was recently con-
structed using the theory of regularity structures. References on the sine-Gordon
model are provided further below.

For clarity, we consider the model in a lattice approximation of a two-dimen-
sional torus and prove estimates uniformly in the lattice spacing and in the size of
the torus. Therefore, from now on, let d D 2, let �L D LTd be the torus of side
lengthL > 0, and let�";L D �L\"Zd be its lattice approximation with mesh size
" > 0 (where we always assume L is a multiple of "). The continuum sine-Gordon
model �";L in the lattice approximation is the probability measure on R�";L with
density proportional to e�H";L.'/ where H";L is defined for ' W �";L ! R by

(1.15) H";L.'/ D "d
X

x2�";L

�
1

2
'x.��"'/x C

1

2
m2'2x C 2´" cos

�p
�'x

��
;

with divergent coupling constant

(1.16) ´" D ´"��=4� ;

and where .�"'/x D "�2
P

y�x.'y � 'x/ is the discretised Laplacian, i.e., the
sum y � x is over nearest-neighbour vertices y of x in "Zd . Under suitable
assumptions, this normalisation ensures that, for 0 < � < 8� , the measures �";L
converge weakly to a non-Gaussian probability measure on D0.R2/ as " ! 0 and
L!1; see the discussion after the statement of the theorems below.

Our first theorem is a uniform log-Sobolev inequality for the Glauber dynamics
of the massive sine-Gordon measure �";L (with dimension always d D 2). The
Glauber Dirichlet form is given by

(1.17) D";L.F / D
1

"2

X
x2�";L

E�";L

��
@F

@'x

�2�
;

corresponding to the system of SDEs

(1.18)
@

@t
'"x D .�"'"/x Cm2'"x C "��=4�2´

p
� sin

�p
�'"x

�Cp
2 PW "

x ;

where PW " is space-time white noise (with discretised space), i.e., the .W "
x /x2�";L

are independent Brownian motions with quadratic variation hW "
x i.t/ D t="2.

THEOREM 1.6. Fix � < 6� , and let L > 0, m > 0, and ´ 2 R. Then there is
.�; ´;m;L/ > 0 independent of " > 0 such that, for all F > 0,

(1.19) Ent�";L.F / 6
2

.�; ´;m;L/
D";L.

p
F /:
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Moreover, there is �� > 0 such that if Lm > 1 and j´jm�2C�=4� 6 �� , then

(1.20) .�; ´;m;L/ > m2 �O� .m
�=4� j´j/;

where the constant O� depends on � only (and is thus uniform in L > 1=m).

Our next theorem is a (conservative) Kawasaki version of the previous result.
We thus consider the measure �0";L obtained by constraining the mean spin of the
measure �";L to

P
x2�";L

'x D 0, i.e., �0";L is supported on f' W Px 'x D 0g.
(The same proof also works for arbitrary nonzero mean of '.) The Dirichlet form
for Kawasaki dynamics with invariant measure �0";L is defined by

(1.21) D0
";L.F / D

1

"4

X
x�y2�";L

E�0
";L

��
@F

@'x
� @F

@'y

�2�
:

THEOREM 1.7. Fix � < 6� , and let L > 0, m > 0, and ´ 2 R. Then there is
0.�; ´;m;L/ > 0 independent of " > 0 such that, for all F > 0,

(1.22) Ent�0
";L
.F / 6

2

0.�; ´;m;L/
D0
";L

�p
F
�
:

Moreover, there is �� > 0 such that if Lm > 1 and j´jm�2C�=4� 6 �� , then

(1.23) 0.�; ´;m;L/ >
.2�/2

L2

�
m2 C .2�/2

L2
�O� .m

�=4� j´j/
�
;

where the constant O� depends on � only (and is thus uniform in L > 1=m).

For ´ D 0, the sine-Gordon model degenerates simply to the continuum Gauss-
ian free field with covariance .�� C m2/�1, as " # 0, for which the Glauber
log-Sobolev constant is m2 (by [32] or the Bakry-Émery criterion), and similarly
in the Kawasaki case. Note that, in this scaling in which the convexity of the Gauss-
ian measure is of order 1, the best lower bound on the Hessian of the interaction
term V0 is of order �"��=4� if ´ ¤ 0 and thus tends to �1 as " ! 0. Thus the
measure is far out of the scope of the applicability of the Bakry-Émery criterion if
´ ¤ 0. Our proof of the above theorems via Theorem 1.2 relies on the smoothing
of the effective potential Vt along the flow of the Polchinski equation.

The Glauber dynamics of the sine-Gordon model is considered in [16,36]. Using
the theory of regularity structures, it is shown in these references that versions of
(1.18) that are regularised in space-time instead of space only converge as " ! 0

pathwise in a space of distributions on a short noise-dependent time interval. In our
setting, it is essential that the noise be white in time for the regularised dynamics to
define a Markov process. The question of regularisation in space rather than space-
time was considered for the closely related problems of the subcritical continuum
'4 model and KPZ equation in [34, 35, 66] as well as in [23, 51, 54]. Presumably
similar arguments would also apply to the sine-Gordon model but have not been
carried out.
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Finally, we provide some references on the continuum sine-Gordon model. For
0 < � < 8� , at least when the domain is a torus and ´ ¤ 0 is small and m2 >

0, it is known that �";L ! � weakly, where � is a non-Gaussian measure on
D0.R2/ with a precise description in terms of renormalised expansions; see [28,
29], [9,56], [14], and [12,20,21] for different approaches. This result is simplest for
� < 4� , when in finite volume the continuum sine-Gordon measure is absolutely
continuous with respect to the Gaussian free field. For 4� 6 � < 8� , there
is an infinite sequence of thresholds at � D 8�.1 � 1=2n/, n D 1; 2; : : : ; at
which the partition function (but not the normalised probability measure) acquires
divergent contributions; see [9] for further discussion. The physical meaning of
these divergences remains debated [27].

The sine-Gordon model satisfies a very interesting duality with the massive
Thirring model, the Coleman correspondence, or bosonization [17]. For restricted
values of �, this correspondence has been established in finite volume or with a
mass term [8, 18, 29], but in general its proof remains an open problem, most im-
portantly in the formally massless casem2 D 0. In particular, under this correspon-
dence, for the special value � D 4� , the correlation functions of the sine-Gordon
model are equivalent to those of free fermions. In general, an important question
for the sine-Gordon model that has remained open is the formally massless case
L ! 1 and m2 ! 0, in which case correlations decay polynomially if ´ D 0.
For ´ ¤ 0, it is conjectured that the equilibrium correlation functions have expo-
nential decay for any � < 8� . Closely related results for small � were obtained
in [13, 64]. It would be very interesting to understand the dynamical behaviour in
this regime.

Our result extends up to the second threshold � < 6� and makes use of the
approach of [14]. It remains a very interesting problem to extend our results to the
optimal regime � < 8� . Recent progress in the direction of extending the method
of [14] includes [43]. Other recent results for the sine-Gordon model include [40].
For a one-dimensional analogue of the sine-Gordon model, a recent construction
using martingales was given in [44].

1.4 More Discussion of Our Approach and of Further Directions
Our approach to the log-Sobolev inequality involves the Polchinski equation

(1.10). The Polchinski equation is a continuous version of Wilson’s renormalisa-
tion group (which typically proceeds in discrete steps) and variations of it go back
to [62, 63], while the continuous point of view was first systematically used by
Polchinski [59]. See [42] for a review of its history as well as for an account of
the important role it has played in recent advances in perturbative quantum field
theory. The relation of the Polchinski equation to the Mayer expansion and its
iterated versions was investigated in [14], on which we rely for the sine-Gordon
model. Ideas related to the Polchinski equation were also used recently in [5] for a
simple construction of the continuum '4 model in d D 2; 3. We also mention that
approaches involving aspects of renormalisation have been used for a long time to
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study dynamics of spin systems, e.g., in the form of block dynamics [45, 50, 65]
and more recently in the two-scale approach [22,33,53,57]. Our approach involves
infinitely many scales.

The regime of the continuum limit considered in Section 1.3 is known as the
ultraviolet problem in physics, which for the two-dimensional sine-Gordon model
is well-posed for � < 8� . The long-distance behaviour is predicted to be indepen-
dent of ". For � < 8� , it can studied as a property of the continuum limit " ! 0,
but it makes sense for all � > 0 when the regularisation " is fixed (lattice problem).
For � > �c (where the curve �c.´/ passes through 8� at ´ D 0; see [24, 25]) and
small ´ and m2 D 0, the scaling limit is known to be Gaussian free field in a suit-
able sense for the model defined on the torus [19, 25]. This is called the infrared
problem in physics. However, we emphasise that, while the ultraviolet problem
can be translated to a lattice problem, as we do, the scaling of the infrared problem
is more delicate than that of the ultraviolet problem. For the sine-Gordon model,
in the ultraviolet limit, the microscopic coupling constant is very small, of order
"2��=4� � 1. For the infrared problem, the microscopic coupling constant is of
order 1, and unlikely field configurations play a more important role in understand-
ing the measure (large field problem); see [19, 24, 25]. We studied the spectral gap
for the hierarchical version of the infrared problem in [6]. Using Theorem 2.6 and
the estimates proved in [6], the results for the spectral gap stated in [6] can be
improved to results about the log-Sobolev constant; see Example 2.7.

The next natural class of models that would be interesting to apply Theorem 1.2
to is the '4 model. The problem analogous to the one considered for the sine-
Gordon model would be the continuum '4 model on Rd where d D 2; 3 with
sufficiently large mass (ultraviolet problem). On a finite two-dimensional torus, a
spectral gap result for the continuum '4 model has been shown in [61]. We stress
again that the Polchinski equation has also been used in [5] in the construction of
the continuum '4 model on a torus in d D 2; 3. As in the case of the sine-Gordon
model, the infrared problem appears more difficult than the ultraviolet problem.
For the latter we expect that the log-Sobolev constant of the lattice '4 model or the
Ising model in d D 4 (respectively d > 4) scales as u.� logu/´ (respectively u)
as the critical point is approached with distance u # 0. Again, for the hierarchical
'4 model, we proved the analogous statement for the spectral gap in [6], and the
results of this paper can again be used to improve the latter result to prove also an
analogous log-Sobolev inequality; again see Example 2.7.

In a different direction, the Bakry-Émery theory has a well-known formulation
in the context of manifolds (and beyond). The Polchinski equation is closely related
to the Gaussian convolution semigroup ECt

on X and thus to the linear structure
of X . However, with the disintegration of the Gaussian measure taking the role of
the reverse Ricci flow, there is an interesting resemblence of our construction to
those in [48, 52, 58]; see also Remark 1.5.
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Finally, we remark that log-Sobolev inequalities are a very useful tool to derive
mixing results in general; see, e.g., [49]. It would be very interesting to derive such
results in our context.

2 Log-Sobolev Inequality and the Polchinski Equation
In this section we prove Theorem 1.2 and variations of this result that apply in

slightly different setups. The proofs share many elements with the Bakry-Émery
argument, which we will review.

2.1 The Renormalisation Semigroup
Let t 2 �0;1� 7! Ct be a function of positive semidefinite matrices on RN

increasing continuously as quadratic forms to a matrix C1. More precisely, we
assume that Ct D

R t
0
PCs ds for all t , where t 7! PCt is a bounded function with

values in the space of positive semidefinite matrices that is the derivative of Ct
except at isolated points. As before, we denote by ECt

the expectation of the pos-
sibly degenerate Gaussian measure with covariance Ct . We consider a probability
measure �0 with expectation

(2.1) E�0F / EC1.e
�V0.�/F.�//

for a potential V0 W RN ! R. For t > s > 0, we recall the definitions

e�Vt .'/ D ECt
.e�V0.'C�//;(2.2)

Ps;tF.'/ D eVt .'/ECt�Cs .e
�Vs.'C�/F.' C �//;(2.3)

E�tF D Pt;1F.0/ D eV1.0/EC1�Ct
.e�Vt .�/F.�//;(2.4)

where the expectations again apply to �. We impose the following continuity as-
sumption: For all bounded smooth functions F W X ! R and g W R! R,

(2.5) E�tg.P0;tF / is continuous in t 2 �0;C1�:
The assumption (2.5) reduces to (1.6) when Ct is differentiable in t , as in Sec-
tion 1.2, and it is again clear in all examples of practical interest.

The following proposition collects some properties of the above definitions; we
postpone its elementary proof to Section 2.4.

PROPOSITION 2.1. Let .Ct / be as above, let V0 2 C 2, and assume (2.5). Then for
every t such that Ct is differentiable, the renormalised potential V defined in (1.3)
satisfies the Polchinski equation

@tVt D
1

2
� PCt

Vt �
1

2
.rVt /2PCt

:(2.6)

The operators .Ps;t /s6t form a time-dependent Markov semigroup with generators
.Lt / in the sense that Pt;t D id and Pr;tPs;r D Ps;t for all s 6 r 6 t , that
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Ps;tF > 0 if F > 0 and Ps;t1 D 1, and that for all t at which Ct is differentiable
(respectively s at which Cs is differentiable),

(2.7)
@

@t
Ps;tF D LtPs;tF; � @

@s
Ps;tF D Ps;tLsF .s 6 t /;

for all smooth functions F , where Lt acts on a smooth function F by

(2.8) LtF D 1

2
� PCt

F � .rVt ;rF / PCt
:

The measures �t evolve dual to .Ps;t / in the sense that

(2.9) E�tPs;tF D E�sF .s 6 t /; � @
@t
E�tF D E�tLtF:

Finally, for any smooth function F with values in a compact subset of .0;1/ and
�.x/ D x log x,

(2.10) E�t�.P0;tF / is continuous in t 2 �0;C1�:
Remark 2.2. The Polchinski semigroup operates from the right, that is, Ps;t D
Pr;tPs;r for s 6 r 6 t . Thus it acts on probability densities relative to �t : if
�0 D F d�0 is a probability measure, then �t D P0;tF d�t is again a probability
measure. For a time-independent semigroup Ts;t D Tt�s that is reversible with
respect to the measure �0 (as, for example, the original semigroup associated to the
Dirichlet form), one has the dual point of view that T describes the evolution of an
observable:

(2.11) E�t
G D

Z
G.TtF /d�0 D

Z
.TtG/F d�0 D E�0.TtG/:

Such a dual semigroup can be realised in terms of a Markov process .'t / as
TtF.'/ D E'0D'F.'t /. Since the Polchinski semigroup is not reversible and
time-dependent, this interpretation does not apply to the Polchinski semigroup. In-
stead, the Polchinski semigroup Ps;t can be realised in terms of an SDE that starts
at time t and runs time in the negative direction from t to s. Indeed, set 'r D z't�r
where z' satisfies

(2.12) d z'r D � PCt�rrVt�r.z'r/dr C
q
PCt�r dBr ; 0 6 r 6 t:

Since G.r; '/ D Ps;t�rF.'/ satisfies @rG CLt�rG D 0 for s < r < t by (2.7),
Itô’s formula and (2.12) imply that G.r; z'r/ D Ps;t�rF.'t�r/ is a martingale for
r 2 �s; t �. This implies

(2.13) Ps;tF.'/ D E'tD'F.'s/:

Thus if 't is distributed according to �t by the above backward-in-time evolution
's is distributed according to �s for s < t . Our interpretation of this is that, while
the renormalised measures �t are supported on increasing smooth (in the index
space) configurations as t grows, the backward evolution restores the small-scale
fluctuations of �0.
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For later use we also record the following useful relations for the derivatives
of Vt ; we will not use these in Section 2. The formulas follow immediately by
differentiating (2.2) using (2.3).

PROPOSITION 2.3. For all f 2 X and t > s > 0,

.f;rVt / D Ps;t .f;rVs/;(2.14)

.f;HessVtf / D Ps;t .f;HessVsf /(2.15)

� �Ps;t

�
.f;rVs/2

� � .Ps;t .f;rVs//2
�
:

2.2 Relative Entropy, Markov Semigroups, and the Bakry-Émery Argument
In a time-dependent generalisation, we now review the decomposition of the

relative entropy in terms of a semigroup that underlies the Bakry-Émery argument.
By approximation (see, e.g., [60, theorem 3.1.13]), to prove a log-Sobolev inequal-
ity, it suffices to consider smooth functions F W X ! R with values in a compact
subset of .0;1/, which we will do from now on.

We consider a curve of probability measures .�t /t>0 and a corresponding dual
time-dependent Markov semigroup .Ps;t / with generators .Lt / as in Proposi-
tion 2.1. Namely, we assume that (2.7) and (2.9) hold, that Lt is of the form
(2.8) for some positive semidefinite matrices PCt and functions Vt (not necessarily
satisfying (2.6)), and also that (2.10) holds. Denoting Ft D P0;tF and PFt D @

@t
Ft ,

using first (2.9) and then (2.8), it is then elementary to see that

� @
@t
E�t�.Ft / D E�t

�
Lt .�.Ft // ��0.Ft / PFt

�
D E�t

�
�0.Ft /LtFt C�00.Ft /

1

2
.rFt /2PCt

��0.Ft / PFt
�

D 1

2
E�t

�
�00.Ft /.rFt /2PCt

�
:(2.16)

Integrating this relation using (2.10), with �00.x/ D 1=x, it follows that

(2.17) Ent�0.F / D
1

2

Z 1

0

E�t

.rP0;tF /
2
PCt

P0;tF
dt D 2

Z 1

0

E�t .r
p
P0;tF /

2
PCt
dt:

To be precise, recall that Ct is differentiable except for at most countably many t .
For all t such that Ct is differentiable, the identity (2.16) holds and implies that the
continuous function t 7! E�t�.Ft / is differentiable at t with nonpositive deriva-
tive. In particular, this implies that E�t�.Ft / is decreasing, which justifies the use
of the fundamental theorem of calculus and together with (2.5) with t D C1 for
the limit gives (2.17).

In order to obtain a log-Sobolev inequality, the right-hand side of (2.17) must be
bounded by the Dirichlet form with respect to the measure �0. The same argument
with �.x/ D x2 would give a bound on the variance rather than the entropy and
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correspondingly a spectral gap inequality; the required bound is easier to obtain in
this case.

For measures that are log-concave (or, more generally, ones that satisfy a cur-
vature dimension condition; see [4]), sharp estimates have been obtained by cele-
brated arguments of Lichnerowicz (for the spectral gap) and of Bakry-Émery. We
review the latter briefly now.

Example 2.4 (Bakry-Émery [2, 3]). Assume the measure � D �0 has expectation
given by (1.12). Let �t D �0 for all t > 0, and define the semigroup Ts;t D Tt�s
with generator

(2.18) LF D �F � .rH;rF /:
This semigroup leaves �0 invariant. Bakry-Émery showed, for all F > 0,

@

@t
E�0.r

p
TtF /

2

D �1
2
E�0

�
TtF

�jHess logTtF j22 C .r logTtF; .HessH/r logTtF /
��

6 �1
2
E�0

�
TtF.r logTtF; .HessH/r logTtF /

�
:(2.19)

If HessH.'/ > � id > 0 as quadratic forms, uniformly in ' 2 RN , it follows that

(2.20)
@

@t
E�0.r

p
TtF /

2 6 �2�E�0.r
p
TtF /

2;

E�0.r
p
TtF /

2 6 e�2�tE�0.r
p
F /2:

Substituting this into (2.17) yields the log-Sobolev inequality

(2.21) Ent�0.F / D 4

Z 1

0

E�0

�rpTtF �2 dt 6 2

�
E�0

�rpF �2:
In fact, (2.19) follows as in Lemma 2.8 below.

2.3 Variations of Theorem 1.2
The following theorem generalises Theorem 1.2 by not assuming that PCt is given

by the heat kernel.

THEOREM 2.5. Let PCt and Vt be as in Section 2.1, assume that PCt is differentiable
for all t , and that (2.5) holds. Suppose there are P�t (allowed to be negative) such
that

(2.22) PCt HessVt .'/ PCt �
1

2
RCt > P�t PCt for all t > 0 and all ' 2 X;

and define

(2.23) �t D
Z t

0

P�s ds;
1


D j PC0j

Z 1

0

e�2�s ds
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where j PC0j is the largest eigenvalue of PC0. Then �0 satisfies the log-Sobolev in-
equality

(2.24) Ent�0.F / 6
2


E�0.r

p
F /2:

The proof of the theorem is given in Section 2.5. When PCt is given by the heat
kernel, as in the context of Theorem 1.2, the term RCt in (2.22) can be eliminated
explicitly and we can thus deduce Theorem 1.2 as follows.

PROOF OF THEOREM 1.2. Let Qt D e�tA=2 and PCt D e�tA D Q2
t . Then

RCt D �A PCt D �QtAQt , and the left-hand side of (2.22) is equal to

(2.25) Qt

�
Qt HessVt .'/Qt C

1

2
A

�
Qt :

Since by assumption A > � and Qt HessVtQt > P�t , we can choose P�t D 1
2
�C

P�t to get

(2.26)
1

2
ACQt HessVt .'/Qt > P�t id;

which with Q2
t D PCt implies (2.22). The claim (1.9) is thus implied by Theo-

rem 2.5. �

The next theorem provides a variation of Theorem 2.5 that does not rely on
differentiability or even continuity of PCt in t , and can therefore be applied with
more general covariance decompositions. The price is the less symmetric condi-
tion (2.27). However, this condition can for example be applied to discrete decom-
positions C1 D C0 C C1 C � � � by setting PCs D

P
j 1.j;jC1�.s/Cj . In particular,

this applies to the hierarchical spin models that we studied in [6]; see Example 2.7.

THEOREM 2.6. Let PCt and Vt be as in Section 2.1, and let Xt � X be the image
of the matrix C1 � Ct . Assume that (2.5) holds and that there are P�t (allowed to
be negative) such that

(2.27)
1

2

� PCt HessVt .'/C HessVt .'/ PCt
�
> P�t id for all t > 0 and all ' 2 Xt ;

and define

(2.28) �t D
Z t

0

P�s dt;
1


D
Z 1

0

e�2�s j PCsjds

where j PCt j is the largest eigenvalue of PCt . Then �0 satisfies the log-Sobolev in-
equality (2.24).

Again the proof is given in Section 2.5.

Example 2.7 (Hierarchical models). Let Cj D �jQj be the decomposition of the
hierarchical Green function as in [6, sec. 2.1] (where we here write �j instead of
�j ) and set PCt D

P
j 1.j;jC1�.t/Cj and PQt D

P
j 1.j;jC1�.t/Qj . Using the
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structure of the hierarchical decomposition, for ' 2 Xt , the matrix HessVt .'/ is
block diagonal with respect to scale-j blocks (see [6, sec. 1.3]) where t 2 .j; jC1�
and constant on each such block. This means that HessVt .'/ commutes with Qt

and by the hierarchical structure thus with PCt . In particular, for ' 2 Xt ,

(2.29) PC 1=2
t HessVt .'/ PC 1=2

t > P�t id

implies (2.27). For hierarchical versions of the four-dimensional lattice j'j4 model
in the approach of the critical point, and for the two-dimensional lattice sine-
Gordon model in the rough (Kosterlitz–Thouless) phase, we established the es-
timate (2.29) for integer t (and appropriate P�t ) in [6]. By the same methods, one
can extend those estimates to noninteger t with �P�t D O.�P�j / for t 2 .j; j C 1�.
Using Theorem 2.6 instead of [6, theorem 2.1], the theorems for the spectral gap
in [6] can thus be extended to analogous ones for the log-Sobolev constant.

Further variations of the conditions (2.22) and (2.27) for the log-Sobolev in-
equality are possible and might be useful in other applications, but we do not in-
vestigate these here.

2.4 Proof of Proposition 2.1
We start with the proof of Proposition 2.1. This is a straightforward computation

from the definitions.

PROOF OF PROPOSITION 2.1. Let Zt .'/ D ECt
e�V0.'C�/. By a well-known

computation (see, e.g., [7, sec. 2]), it follows that the Gaussian convolution acts as
the heat semigroup with time-dependent generator 1

2
� PCt

, i.e., if Z0 is C 2 in ', so
is Zt for any t > 0, that Zt .'/ > 0 for any t and ', and that for any t > 0 such
that Ct is differentiable,

(2.30)
@

@t
Zt D

1

2
� PCt

Zt ; Z0 D e�V0 :

Therefore Vt D � logZt satisfies the Polchinski equation

@

@t
Vt D �

@
@t
Zt

Zt
D �

� PCt
Zt

2Zt
D �1

2
eVt� PCt

e�Vt

D 1

2
� PCt

Vt �
1

2
.rVt /2PCt

:

(2.31)

That .Ps;t / is a semigroup, i.e., that Pr;tPs;r D Ps;t and Pt;t D id for any
s 6 r 6 t , follows immediately from the definition (1.4) and the convolution
property of Gaussian measures, i.e., that the sum of two independent Gaussian
vectors is Gaussian with covariance given by the sum of the covariances (again
see, e.g., [7, sec. 2]). The Markov property is obvious. To verify that its generator
Lt is given by (2.8), set Ft .'/ D P0;tF.'/ D eVt .'/ECt

.e�V0.'C�/F.' C �//.
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Then

@

@t
Ft D

�
@

@t
Vt

�
Ft C eVt

1

2
� PCt

ECt
.e�V0.�C�/F. � C �//

D
�
@

@t
Vt

�
Ft C eVt

1

2
� PCt

.e�VtFt /

D
�
@

@t
Vt

�
Ft �

�
1

2
� PCt

Vt

�
Ft C

1

2
.rVt /2PCt

Ft

C 1

2
� PCt

Ft � .rVt ;rFt / PCt

D 1

2
� PCt

Ft � .rVt ;rFt / PCt

D LtFt ;(2.32)

which is the second equality in (2.7). The third inequality in (2.7) follows analo-
gously, and the first inequality is clear from the fact that the Gaussian measure with
covariance 0 is the Dirac measure at 0.

The first equality in (2.9) holds by definition, and the second one is a direct
computation from the definition (1.3) and the fact that V satisfies (1.10):

� @
@t
E�tF D E�t

��
@

@t
Vt

�
F � 1

2
.� PCt

Vt /F C 1

2
.rVt /2PCt

F

C 1

2
� PCt

F � .rVt ;rF / PCt

�

D E�t

�
1

2
� PCt

F � .rVt ;rF / PCt

�
D E�tLtF:(2.33)

Finally, (2.10) follows from (2.5). Indeed, ifF takes values in a compact interval
I � .0;1/, then P0;tF also takes values in I . The function� is smooth on I and
can be extended to a bounded smooth function g on R such that gjI D �jI . The
claim now follows from (2.5). �

2.5 Proofs of Theorems 2.5–2.6
Theorems 2.5–2.6 can be proved in the same way as the Bakry-Émery criterion

with the crucial difference that the original semigroup is replaced by the Polchinski
semigroup, that the corresponding potentials depend on time, and that gradients are
taken in terms of a time-dependent quadratic form. We present the primary proofs
along the lines of [4]; see Remark 2.9 for alternative proofs using synchronous
coupling as in [15].
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LEMMA 2.8. Let Lt , P0;t , PCt , Vt be as in Section 2.1. Then the following identity
holds for any t -independent positive definite matrix Q:

.Lt � @t /.r
p
P0;tF /

2
Q D 2.r

p
P0;tF ;HessVt PCtr

p
P0;tF /Q

C 1

4
.P0;tF /

�� PC 1=2
t .Hess logP0;tF /Q

1=2
��2
2
;

(2.34)

where jM j22 D P
p;q jMpqj2 denotes the squared Frobenius norm of a matrix

M D .Mpq/.

PROOF. Throughout the proof, we drop the fixed index t , i.e., write F instead
of P0;tF , and L for Lt , and similarly for PCt and Vt . Then the left-hand side of
(2.34) can be written as

(2.35)
1

2

"
L
.rF /2Q
2F

� .rLF;rF /Q
F

C
.rF /2Q
2F 2

LF

#
:

To compute the three terms, we denote derivatives by subscripts i , j , k, and l , and
use the summation convention for these subscripts. The first term then is

L
.rF /2Q
2F

D 1

2
PCijQkl

��
FkFl

2F

�
ij

� 2Vi
�
FkFl

2F

�
j

�

D 1

2
PCijQkl

��
FikFl

F
� FkFlFi

2F 2

�
j

� 2Vi
�
FkFl

2F

�
j

�
(2.36)

where the last bracket can be expanded as�
FijkFl C FikFjl

F
� FikFlFj

F 2
� 2FkjFlFi C FkFlFij

2F 2

C FkFlFiFj

F 3
� 2Vi

�
FjkFl

F
� FkFlFj

2F 2

��
:

(2.37)

The sum of the second and third terms in (2.35) is

� .rLF;rF /Q
F

C
.rF /2Q
2F 2

LF

D 1

2
PCijQkl

��.Fkij � 2ViFkj � 2VikFj /Fl
F

C .Fij � 2ViFj /FkFl
2F 2

�

D 1

2
PCijQkl

�
2Vik

FjFl

F
� FkijFl

F
C FijFkFl

2F 2

C 2Vi

�
FkjFl

F
� FjFkFl

2F 2

��
:
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By adding all three terms, we obtain that (2.35) equals
1

2
PCijQkl

VikFjFl

F

C 1

4
PCijQkl

�
FikFjl

F
� FikFlFj C FjlFiFk

F 2
C FkFlFiFj

F 3

�
:

(2.38)

Using that for any given indices i; j; k; l ,

.logF /ik D
�
Fi

F

�
k

D Fik

F
� FiFk

F 2
;

.logF /jk D
�
Fj

F

�
l

D Fjl

F
� FjFl

F 2
;

(2.39)

equation (2.38) can be written as

(2.40)
1

2
PCijQkl

VkiFjFl

F
C 1

4
F PCijQkl.logF /ik.logF /jl :

Using that 2.
p
F /j D Fj =

p
F for the first term, and that, for any symmetric

matrix M ,

PCijQklMikMjl D PC 1=2
ip

PC 1=2
jp Q

1=2

kq
Q
1=2

lq
MikMjl

D PC 1=2
ip

PC 1=2
jp .MQ1=2/iq.MQ

1=2/jq

D . PC 1=2MQ1=2/pq. PC 1=2MQ1=2/pq(2.41)

for the second term, (2.40) can therefore be written as

�(2.42) 2.r
p
F ;HessV PCr

p
F /Q C 1

4
F j PC 1=2.Hess logF /Q1=2j22:

PROOF OF THEOREM 2.5. Lemma 2.8 with Q D PCs implies

.Ls � @s/.r
p
P0;sF /

2
PCs

D 2.r
p
P0;sF ;HessVs PCsr

p
P0;sF / PCs � .r

p
P0;sF /

2
RCs

C 1

4
.P0;sF /j PC 1=2

s .Hess logP0;sF / PC 1=2
s j22:

(2.43)

By the assumption (2.22) and since the last term is positive, it follows that

(2.44) .Ls � @s/.r
p
P0;sF /

2
PCs > 2

P�s.r
p
P0;sF /

2
PCs :

Equivalently,

(2.45)  .s/ WD e�2�tC2�sPs;t

��rpP0;sF
�2
PCs
�

satisfies  0.s/ 6 0 for s < t . This implies

(2.46)
.r
p
P0;tF /

2
PCt
D  .t/ 6  .0/ D e�2�tP0;t

�
.r
p
F /2PC0

�
6 j PC0j e�2�tP0;t �.r

p
F /2�:
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By (2.17), then (2.24) follows. �

PROOF OF THEOREM 2.6. Lemma 2.8 with Q D id implies

.Ls � @s/.r
p
P0;sF /

2 D 2.r
p
P0;sF ;HessVs PCsr

p
P0;sF /

C 1

4
.P0;sF /j PC 1=2

s .Hess logP0;sF /j22:
(2.47)

By the assumption (2.27) and since the last term is positive, it follows that, on Xs ,

(2.48) .Ls � @s/.r
p
P0;sF /

2 > 2 P�s.r
p
P0;sF /

2:

Equivalently, pointwise on Xt ,  .s/ WD e�2�tC2�sPs;t �.r
p
P0;sF /

2� satisfies
 0.s/ 6 0 for s < t . This implies, on Xt ,

.r
p
P0;tF /

2
PCt
6 j PCt j.r

p
P0;tF /

2 D j PCt j .t/ 6 j PCt j .0/
D j PCt je�2�tP0;t �.r

p
F /2�:(2.49)

Again by (2.17), using that �t is supported on Xt , (2.24) follows. �

Remark 2.9. Using the representation (2.12)–(2.13) of the semigroupPs;t in terms
of a stochastic process (that evolves backwards in time from t to s), one can alter-
natively prove the theorems using synchronous coupling as in [15].

3 Application to the Continuum Sine-Gordon Model
In this section, we prove Theorems 1.6 and 1.7 by applying Theorem 1.2. While

it is not necessary, we find it clearest to rescale the continuum sine-Gordon model
at scale " to a unit lattice problem.

3.1 Rescaling and Heat Kernel Decomposition
Identifying �";L with the unit lattice � D 1

"
�";L, the continuum sine-Gordon

model �";L is equivalent to a spin system whose coupling matrix is given by the
nearest-neighbour Laplacian on Zd . We will thus drop the subscripts " and L now,
and write �0 for the measure of the form (1.1) with X D R

� and

(3.1) A D ��� C "2m2; V0.'/ D
X
x2�

´"2��=4� cos
�p
�'x

�
;

where �� is the standard unit lattice Laplacian acting on the discrete torus of side
length L=". We emphasise that throughout this section �� denotes the lattice
Laplacian on � and not the Laplacian on R�, which we denoted � PCt

in the pre-
vious section. Note that ' is not rescaled. As is natural in this normalisation, we
normalise the Glauber Dirichlet form, for F W R� ! R, by

(3.2)
X
x2�

E�0

��
@F

@'x

�2�
:
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We note that in this normalisation the log-Sobolev constant of the noninteracting
(Gaussian) model with ´ D 0 scales as "2m2 (corresponding to the unit order log-
Sobolev constant m2 > 0 in the continuum scaling). Also note that the correlation
length of the noninteracting model scales as 1=.m"/, making it natural to assume
L > 1=m as in the statements of the theorems.

In the following, we will use Theorem 1.2 to prove the same scaling in " for
the log-Sobolev constant of the interacting model. To verify the assumptions of
Theorem 1.2, we will prove the following estimates on Vt as defined in (1.3). We
recall that Qt D e�tA=2 denotes the heat kernel on the index space �.

PROPOSITION 3.1. Let � < 6� , and L > 0, m > 0, and ´ 2 R. Then (1.6) holds,
and for all t > 0,

(3.3) Qt HessVt .'/Qt > P�t id;

where �t D
R t
0 P�s ds satisfies

(3.4) j�t j 6 ��

with �� D ��.�; ´;m;L/ independent of " > 0. Moreover, there is �� > 0 such
that if

(3.5) Lm > 1 and j´jm�2C�=4� 6 �� ;
then the optimal bound satisfies �� D O� .j´jm�2C�=4�/ uniformly in L.

Indeed, Theorem 1.6 is an immediate consequence of these estimates and The-
orem 1.2.

PROOF OF THEOREM 1.6. The smallest eigenvalue of A is � D "2m2. By (1.9)
and (3.4), therefore

(3.6)
1


D
Z 1

0

e��t�2�t dt 6 e2�
�

Z 1

0

e��t dt D e2�
�

�
D e2�

�

"2m2
;

and Theorem 1.2 implies that �0 satisfies a log-Sobolev inequality with constant
 . In the continuum normalisation of the Dirichlet form (1.17), the sine-Gordon
measure thus satisfies a log-Sobolev inequality with constant given by m2e�2�� .
Moreover, if (3.5) holds, then m2e�2�� D m2 CO� .m

�=4� j´j/. �

The proof of Theorem 1.7 for Kawasaki dynamics is almost the same as that
of Theorem 1.6. The constrained measure �00 can be written as in (2.1), with the
degenerate covariance matrix C 01 supported on the subspace X D R

�
0 D f' 2

R
� WPx 'x D 0g given by

(3.7) C 0
1 D PA�1P where P'x D 'x �

1

j�j
X
y2�

'y :
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In unit lattice scaling, the Dirichlet form for Kawasaki dynamics is given, for F W
R
�
0 ! R, by

(3.8)
X

x�y2�
E�0

0

��
@F

@'x
� @F

@'y

�2�
:

We decompose the covariance matrix C 01 in terms of

(3.9) PC 0
t D e�tAP; Q0

t D e�tA=2P;

and define V 0
t as in (1.3) with respect to PC 0

t . From now on, we will refer to the
case that Vt is replaced by V 0

t and PCt by PC 0
t as the conservative case. Then the

statement of Proposition 3.1 remains true in the conservative case.

PROPOSITION 3.2. Let � < 6� and L > 0, m > 0, and ´ 2 R. Then (1.6) holds,
and for all t > 0,

(3.10) Q0
t HessV 0

t .'/Q
0
t > P�tP;

where �t satisfies (3.4) with the same bound on �� if (3.5) holds.

Analogously as in the proof of Theorem 1.6, we deduce Theorem 1.7 from
Proposition 3.2.

PROOF OF THEOREM 1.7. Since � is a discrete torus of side length L=", the
smallest nonzero eigenvalue of the lattice Laplacian ��� on� is of order ."=L/2.
We thus denote the smallest nonzero eigenvalue of ��� on� by �2"2. Explicitly,
as "! 0,

(3.11) �2 !
�
2�

L

�2
:

As in the proof of Theorem 1.6, with � the smallest eigenvalue on X of A D
��� C "2m2,

(3.12)
1

0
6
e2�

�

�
D e2�

�

"2.�2 Cm2/
;

and Theorem 1.2 implies that �00 satisfies a log-Sobolev inequality with constant
0:

(3.13)
Ent�0

0
.F / 6

e2�
�

"2.m2 C �2/
E�0

0
.rF;PrF /

6
e2�

�

"4�2.m2 C �2/
E�0

0
.rF;���PrF /

where the last inequality again uses that the smallest nonzero eigenvalue of the
lattice Laplacian �� is "2�2. We emphasise that r denotes the continuous gra-
dient on R� while �� is the lattice Laplacian on �. Recalling the continuum
normalisation of the Dirichlet form given by (1.21) and (3.4), this is the claim of
Theorem 1.7. �
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3.2 Outline, Scaling Conventions, and Heat Kernel
To prove Propositions 3.1 and 3.2, we proceed in the following steps. We first

consider the main case (3.5). The proofs are simpler for � < 4� , and we begin
with this case in Section 3.4. In Sections 3.5-3.7, we extend this analysis to the
case � < 6� . Finally, in Section 3.8, we show that a crude argument suffices to
remove the assumption (3.5) at the cost of constants that are uniform in " but not
in L.

To prove Propositions 3.1–3.2, we will require estimates on the heat kernel de-
composition

(3.14) Ct D
Z t

0

PCs ds; PCs D Q2
s D e�sA:

In this section, we set up a convenient normalisation and also collect some ele-
mentary estimates. We have chosen the heat kernel decomposition (and not a finite
range decomposition, for example) to be able to directly apply Theorem 1.2. The
characteristic length scale of the heat kernel is defined by

(3.15) `t D .1 _pt / ^ 1

"m
;

and we set

(3.16) Qt D `tQt ; PCt D `2t
PCt ; #t D e�

1
2
m2"2t :

Standard estimates on the heat kernel imply that PCt .x; y/ is essentially supported
on jx�yj . `t , and the above normalisation is such that PC�2t .�x; �y/ � PCt .x; y/

and Q2
t D PCt . We will often express estimates in terms of these quantities and in

terms of `t (instead of t ), and write integrals over the scale in terms of the ap-
proximately scale-invariant measure dt=`2t � dt=t (instead of dt ). For estimates
involving the heat kernels Qt , PCt , Ct , and its scaled versions, we will always im-
pose the following assumption:

(3.17) Lm > 1 or t 6
1

"2

�
1

m2
^ L2

�
:

The next lemma provides some elementary estimates on the heat kernel. These
are sufficient for the case � < 4� ; for � > 4� more precise estimates are required
(and will be stated in the section in which they are used). All of these estimates on
the heat kernel are collected in Appendix 3.8.

LEMMA 3.3. Assume (3.17). For any x 2 �,

(3.18) Ct .x; x/ D
1

2�
log `t CO.1/; sup

x

X
y

j PCt .x; y/j D O.`2t #
2
t /;

and the same estimates hold in the conservative case.

PROOF. This follows from standard estimates on the heat kernel on Z2; see
Appendix 3.8. �
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Further, we define the scale-dependent coupling constant zt and its microscopic
version ´t by

(3.19) zt D `2t ´t ; ´t D e�
�
2
Ct .0;0/´0; where ´0 D "2��=4�´:

For later purposes, we will now collect some basic properties of this definition. By
(3.18) and the definitions of zt and `t , uniformly in t > 0,

(3.20) zt D O� .j´j."`t /2��=4�/ D O� .j´jm�2C�=4�/:
In the following, we write x . y or x D O� .y/ if jxj 6 C� jyj for a �-dependent
constant C� . For any � < 8� , by (3.20) then

(3.21)
Z t

0

jzsj#2s
ds

`2s
. jzt j;

as is straightforward to check from the definitions. For use in the proof for � > 4� ,
we also record the following estimates (again straightforward from the definitions):
for all positive integers n,Z t

0

j´sjn`2.n�1/s #2s
ds

`2s
.
1

n
j´t jn.C�`2t /n�1 for � < 8�.1 � 1=n/,(3.22)

Z t

0

j´sjn`2.n�1/s `�=4�s #2s
ds

`2s
.
1

n
j´t jn.C�`2t /n�1`�=4�t for � < 8� .(3.23)

3.3 Fourier Representation
To estimate the Hessian of the renormalised potential Vt , we use the Brydges–

Kennedy approach [14]. Namely, for any function V W R� ! R that is 2�p
�

-
periodic in each variable, we will write its Fourier series (assuming it converges
absolutely) as

V.'/ D
1X
nD0

V .n/.'/;

V .n/.'/ D 1

n�

X
�1;:::;�n

zV .n/.�1; : : : ; �n/e
i
p
�
Pn

kD1 'xk�k ;

(3.24)

where zV .n/ W .� � f�1g/n ! R and

(3.25) �i D .xi ; �i / 2 � � f�1g:
We think of �i as a particle with position xi and charge �i . Since the index n is
determined from the number of arguments of zV .n/, we will often omit it and write
zV .�1; : : : ; �n/ D zV .n/.�1; : : : ; �n/. The representation (3.24) is not manifestly
unique without further conditions, but in the relevant cases we will in fact construct
coefficients zV .�1; : : : ; �n/ such that (3.24) holds.

The initial potential V0 of the sine-Gordon model corresponds to

(3.26) zV0.¿/ D 0; zV0.�1/ D ´0; zV0.�1; : : : ; �n/ D 0 .n > 1/:
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Set

Pus.�i ; �j / D � PCs.xi ; xj /�i�j ;
Pus.�i ; �j / D `2s Pus.�i ; �j / D � PCs.xi ; xj /�i�j ;

(3.27)

and

(3.28) PWs.�1; : : : ; �n/ D
1

2

X
k;l2�n�

Pus.�k; �l/;

where �n� D f1; : : : ; ng. We define us and Ws analogously by replacing PCs by
Cs . For later use, we note that Wt � Ws > 0 holds for all arguments by positive
definiteness of PCs .

Then in terms of the Fourier representation (3.24), the two terms on the right-
hand side of the Polchinski equation (1.10) are represented by

1

2
B.� PCsV /.�1; : : : ; �n/ D �1

2

X
i;j2�n�

Pus.�i ; �j / zV .�1; : : : ; �n/

D � PWs.�1; : : : ; �n/ zV .�1; : : : ; �n/(3.29)

and

1

2
D.rV;rV / PCs .�1; : : : ; �n/

D �1
2

X
I1 P[I2D�n�

zV .�I1/ zV .�I2/
X

i2I1;j2I2
Pus.�i ; �j /:

(3.30)

The sum over I1 P[I2 D �n� is over all nonempty disjoint subsets I1 and I2 of �n�
with I1 [ I2 D �n�. Moreover, given �1; : : : ; �n and I D fi1; : : : ; ikg � �n�, we
denote by �I the vector .�i1 ; : : : ; �ik /.

Indeed, (3.29) is straightforward to verify in the sense that if V is given by (3.24)
andA� PCsV by (3.29), then

(3.31) � PCsV.'/ D
X
n

1

n�

X
�1;:::;�n

B.� PCsV /.�1; : : : ; �n/e
i
p
�
Pn

kD1 'xk�k :

To see (3.30), note that differentiating (3.24) gives

@

@'x
V .p/.'/

D 1

p�

X
�1;:::;�p

zV .�1; : : : ; �p/
pX

kD1
i
p
��k1xDxke

i
p
�
Pp

kD1
'xk�k

(3.32)
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and thus

.rV .p/;rV .q// PCs .'/

D �1
p�q�

X
�1;:::;�pCq

zV .�1; : : : ; �p/ zV .�pC1; : : : ; �pCq/
pX
iD1

pCqX
jDpC1

Pus.�i ; �j /ei
p
�
PpCq

kD1
'xk�k :

(3.33)

Therefore taking the sum over p and q, using that the number partitions of �n� into
two subsets with p and q D n � p elements is n�=.p�q�/ and that zV is symmetric
in its arguments, we find

.rV;rV / PCs .'/

D
X
n

1

n�

X
�1;:::;�n

D.rV;rV / PCs .�1; : : : ; �n/e
i
p
�
Pn

kD1 'xk�k(3.34)

ifD.rV;rV / PCs is given by (3.30).
By (3.29)-(3.30) and the Duhamel principle, the Polchinski equation has the

following formulation as an integral equation:

zVt .�1; : : : ; �n/
D e�Wt .�1;:::;�n/ zV0.�1; : : : ; �n/

C 1

2

Z t

0

ds
X

I1 P[I2D�n�

X
i2I1;j2I2

Pus.�i ; �j / zVs.�I1/ zVs.�I2/

e�.Wt .�1;:::;�n/�Ws.�1;:::;�n//:

(3.35)

For n 6 1, the unique solution to (3.35) is simply

(3.36) zVt .¿/ D zV0.¿/ D 0; zVt .�1/ D e�
1
2
ut .�1;�1/ zV0.�1/ D ´t ;

with ´t defined in (3.19). For n > 1, zVt .�1; : : : ; �n/ is then determined explicitly
by (3.35) in terms of zVs.�1; : : : ; �k/, k < n. Hence by induction, (3.35) has a
unique solution for any n and t . This is summarised in the following lemma along
with a uniqueness property.

LEMMA 3.4. The integral equation (3.35) has a unique solution zV for all n and t .
Moreover, if Vt defined in terms of zVt by (3.24) converges absolutely, locally uni-
formly in t > 0, then Vt is equal to (1.3), the convolution solution of the Polchinski
equation.

PROOF. We have already shown that (3.35) has a unique solution. For coef-
ficients zVt such that (3.24) and its derivatives converge absolutely, the function
Vt defined by (3.24) is smooth. Moreover, for smooth Vt , the integral equation
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(3.35) implies the Polchinski equation (1.10). Uniqueness of bounded solutions
to the Polchinski equation by Remark 1.4 then implies that Vt coincides with the
convolution solution of the Polchinski equation. �

3.4 Up to the First Threshold: Proof of Propositions 3.1–3.2
for � < 4� Assuming (3.5)

The following proposition, due to [14], gives good bounds when � < 4� . For
completeness, we reproduce their argument here in our setup and notation. (See
also [11, 30, 31, 38, 43] for related results.) We will then use the result to derive
Proposition 3.1 in the case � < 4� . Let

(3.37) k Pusk D sup
�1

X
�2

j Pus.�1; �2/j

and

k zV .1/k D sup
�1

�� zV .�1/��;
k zV .n/k D sup

�1

X
�2;:::;�n

j zV .�1; : : : ; �n/j .n > 1/:
(3.38)

PROPOSITION 3.5. For all n > 1, the solution to (3.35) satisfies

(3.39)
 zV .n/

t

 6 nn�2j´t jnM n�1
t where Mt D

Z t

0

dsk Puske�.Ct�Cs/.0;0/;

with ´t defined in (3.19). In particular, if ´tMt < 1=e, the Fourier series for Vt
converges and Vt coincides with the convolution solution to the Polchinski equa-
tion. The analogous statements hold in the conservative case.

PROOF. For n D 1, the bound (3.39) is obvious from (3.36). To prove the
bounds (3.39) for n > 1, we use induction. Note that the first term on the right-
hand side of (3.35) does not contribute for n > 1 since then zV .n/

0 D 0 by (3.26).
In the second term, we drop the exponential inside the integral (as Wt �Ws > 0)
to obtain

(3.40) j zVt .�1; : : : ; �n/j 6
1

2

Z t

0

ds
X

I1 P[I2D�n�

X
i2I1;j2I2

j Pus.�i ; �j / zVs.�I1/ zVs.�I2/j:

Note that if jI1j D n � k and jI2j D k, then

sup
�1

X
�2;:::;�n

j Pus.�i ; �j / zVs.�I1/ zVs.�I2/j 6 k Pusk
 zV .n�k/

s

 zV .k/
s

:(3.41)
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For example,

(3.42)

sup
�1

X
�2;�3;�4

�� Pus.�1; �3/ zVs.�1; �2/ zVs.�3; �4/��
6 sup

�1

X
�3

j Pus.�1; �3/j sup
�1

X
�2

j zVs.�1; �2/j sup
�3

X
�4

j zVs.�3; �4/j

6 k Puskk zV .2/
s k2:

Assuming the bound (3.39) for integers less than n, therefore

k zV .n/
t k 6 1

2

Z t

0

ds k Pusk
n�1X
kD1

 
n

k

!
k.n � k/k zV .n�k/

s k k zV .k/
s k

6
1

2

Z t

0

ds k Pusk
n�1X
kD1

 
n

k

!
j´sjnM n�2

s .n � k/n�k�1kk�1:(3.43)

Using that
Pn�1

kD1
�
n
k

�
kk�1.n � k/n�k�1 D 2.n � 1/nn�2 and n=2 6 n � 1 for

n > 2,

 zV .n/
t

 6 nn�2j´t jn.n � 1/
Z t

0

ds k Puske
n
2
�.Ct�Cs/.0;0/M n�2

s

6 nn�2j´t jn.n � 1/
Z t

0

dsk Puske.n�1/�.Ct�Cs/.0;0/M n�2
s

D nn�2j´t jnM n�1
t :(3.44)

For n > 2, the last equality follows from the following change of variables,

(3.45) .n � 1/
Z t

0

ds g.s/

�Z s

0

ds0 g.s0/
�n�2

D
�Z t

0

ds g.s/

�n�1
;

applied with g.s/ D k Puske��Cs.0;0/. Indeed,

.n � 1/
Z t

0

ds k Puske�.n�1/.Ct�Cs/.0;0/M n�2
s

D .n � 1/e�.n�1/Ct .0;0/

�
Z t

0

ds k Puske��Cs.0;0/
�Z s

0

ds0 k Pus0ke��Cs0 .0;0/
�n�2

DM n�1
t :

(3.46)
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Finally, using the assumption supt ´tMt < 1=e and the bounds (3.39) for
zVt .�1; : : : ; �n/, the series (3.24) for Vt .'/ converges absolutely since (by using
nn=n� 6 en),

jVt .'/j
j�j 6

1X
nD1

1

n�
nn�2j´t jnM n�1

t

6

1X
nD1

enj´t jnM n�1
t D ej´t j

1 � ej´t jMt
6 C <1;

(3.47)

and analogously for derivatives. Hence V solves the Polchinski equation (1.10) by
Lemma 3.4. �

Using the conclusion of the last proposition together with the basic estimates
for PCs given in Lemma 3.3, it is straightforward to complete the proof of Proposi-
tions 3.1–3.2 for � < 4� .

PROOF OF PROPOSITIONS 3.1–3.2 FOR � < 4� ASSUMING (3.5).
Since the proofs of the two propositions are identical, we only discuss Proposi-
tion 3.1. From (3.18),

(3.48) k Pusk 6 �#2s sup
x

X
y

j PCs.x; y/j 6 O�

�
#2s
�
:

For � < 4� , the definition ofMt in (3.39), the definition of `t in (3.15), and (3.18)
imply

(3.49) Mt 6 C�`
�=.2�/
t

Z t

0

ds #2s `
��=.2�/
s D O� .`

2
t /:

In this proof, the condition � < 4� is only needed in order to achieve the scaling `2t
in the previous upper bound. By (3.19)–(3.20) therefore, using in the last inequality
that j´jm�2C�=4� is sufficiently small,

(3.50) j´t jMt D O� .jzt j/ D O� .j´jm�2C�=4�/ 6
1

2e
:

Let

(3.51) kHessVt .'/k D sup
x

X
y

���� @2

@'x@'y
Vt .'/

����:
From (3.24) together with (3.39) and (3.49), and with nn=n� 6 en, we obtain

kHessVt .'/k 6 �
1X
nD1

1

n�
n2nn�2j´t jnM n�1

t

6 �

1X
nD1

enj´t jnM n�1
t D �ej´t j

1 � ej´t jMt
6 2�ej´t j:

(3.52)
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Since j.f;HessVt .'/f /j 6 kHessVt .'/kjf j22 and jQtf j2 6 #t jf j2, we obtain

(3.53) j.Qtf;HessVt .'/Qtf /j 6 O�

�j´t j#2t �jf j22:
In the notation of Theorem 1.2 we thus have that P�t > �O� .j´t j#2t /. Hence,
using the bounds for ´t from (3.21) and (3.20), for all t > 0,

�t > �
Z t

0

O�

�jzsj#2s �ds`2s > �O� .jzt j/

> �O� .j´jm�2C�=4�/ � ���:
(3.54)

Finally, the ergodicity assumption (1.6) follows from the weak-� convergence
�t ! �1 � �0 and P0;tF.'/ ! P0;1F.'/ uniformly in '. Indeed, �t ! �1
holds since the Gaussian measure covariance C1�Ct converges to �0 and Vt .'/ is
bounded (uniformly in ' and t ). The uniform convergenceP0;tF ! P0;1F holds
since Vt .'/! V1.'/ and ECse

�V0.'C�/F.'C �/! EC1e
�V0.'C�/F.'C �/,

both uniformly in ', where the last claim holds since the integrand is a bounded
Lipschitz function. �

3.5 Up to the Second Threshold: Proof of Propositions 3.1–3.2 for � < 6�

Assuming (3.5)
The remainder of Section 3 is devoted to extending the proof of Proposition 3.1

from � < 4� to � < 6� . For this, we will estimate the n D 2; 3; 4 terms in (3.24)
more carefully.

Indeed, for n D 2, a uniform bound on zVt .�1; �2/ as used for � < 4� is not true
when � > 4� , and we rely crucially on the smoothing effect of the heat kernel Qt

in (1.8) to obtain the required bound stated in the following proposition. (Note that
this estimate is best expressed in terms of Qt and zt rather than Qt and ´t .)

PROPOSITION 3.6. Let � < 8� and assume (3.17). Then

(3.55)
�
Qtf;HessV .2/

t .'/Qtf
� D O�

�jzt j2#2t �jf j22:
The analogous statement holds in the conservative case.

For the terms n > 2, the following proposition gives an analogue of Proposi-
tion 3.5 for � < 6� .

PROPOSITION 3.7. Let � < 6� and assume (3.17). Then there is C� < 1 such
that for all n > 3,  zV .n/

t

 6 nn�2j´t jn.C�`2t /n�1:(3.56)

The analogous statement holds in the conservative case.

These bounds together imply Propositions 3.1–3.2 when (3.5) holds.

PROOF OF PROPOSITIONS 3.1–3.2 ASSUMING (3.5). Since the proofs are once
again the same, we only prove Proposition 3.1. The bound (3.56) (together with the
qualitative fact that V .1/ and V .2/ are finite) implies that (3.24) converges, exactly
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as in (3.47). Moreover, exactly as in (3.52)–(3.53), for j´jm�2C�=4� sufficiently
small, it follows that

(3.57)
�
Qtf;

�
HessVt .'/ � HessV .2/

t .'/
�
Qtf

� D O�

�jzt j#2t �jf j22:
Combined with (3.55), this gives the required bound (3.3). The proof of the ergod-
icity assumption (1.6) is also identical to that in the proof of Proposition 3.1 for
� < 4� . �

To prove the above propositions, neutral configurations require more careful
treatment compared to the case � < 4� , where neutral means the following. For
a configuration � D .�1; : : : ; �k/ we define the charge �.�/ DPk

iD1 �i and call �
neutral if �.�/ D 0 and call � charged otherwise. We will sometimes decompose

V .n/.'/ D V .n;0/.'/C V .n;�/.'/
zV .0/.�/ D zV .�/1�.�/D0; zV .�/.�/ D zV .�/1�.�/¤0;

where V .n;0/ is defined as in (3.24) with the sum over � D .�1; : : : ; �n/ restricted
to neutral �, and V .n;�/ by restricting the sum to charged � . As in the proof for
� < 4� , the starting point for the proofs is (3.35), but now without dropping the
exponential inside the integral, i.e., for n > 1,

(3.58)

zVt .�1; : : : ; �n/

D �1
2

X
I1 P[I2D�n�

Z t

0

ds

� X
i2I1;j2I2

Pus.�i ; �j / zVs.�I1/ zVs.�I2/
�
e�.Wt .�/�Ws.�//

D �1
2

X
I1 P[I2D�n�

Z t

0

ds

`2s

� X
i2I1;j2I2

Pus.�i ; �j / zVs.�I1/ zVs.�I2/
�
e�.Wt .�/�Ws.�//:

3.6 Proof of Proposition 3.6: The Term n D 2

The following two lemmas give the explicit form of zV .�1; �2/ and bounds on
the heat kernel that imply the required bound.

LEMMA 3.8.

(3.59) zVt .�1; �2/ D �´2t .1 � e���1�2Ct .x1;x2//:

PROOF. By (3.35) and using that Vs.�/ D ´s D ´0e
��
2
Cs.0;0/ by (3.36),

zVt .�1; �2/ D �
Z t

0

ds Pus.�1; �2/ zVs.�1/ zVs.�2/e�.Wt .�1;�2/�Ws.�1;�2//

D �´20e�Wt .�1;�2/

Z t

0

ds Pus.�1; �2/e��Cs.0;0/eWs.�1;�2/:(3.60)
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Let � D �1�2. By (3.28), ��Cs.0; 0/ C Ws.�1; �2/ D ��Cs.x1; x2/, so the
integral can be evaluated as

(3.61)

Z t

0

ds Pus.�1; �2/e��Cs.0;0/eWs.�1;�2/

D
Z t

0

ds �� PCs.x1; x2/e��Cs.x1;x2/ D e��Ct .x1;x2/ � 1;

which after rearranging gives

zVt .�1; �2/ D �´20e��Ct .0;0/���Ct .x1;x2/.e��Ct .x1;x2/ � 1/

(3.62) D �´2t .1 � e���Ct .x1;x2//: �

LEMMA 3.9. Let Ut .x; y/ D e�Ct .x;y/ � 1. The following bounds hold for t > 0,
f W �! R, � < 8�:

sup
x1

X
x2

j1 � e��Ct .x1;x2/j D O� .`
2
t /;(3.63)

X
x1;x2

jUt .x1; x2/j.Qtf .x1/ � Qtf .x2//
2 D O� .`

4
t #

2
t /jf j22;(3.64)

and again analogous estimates hold in the conservative case.

PROOF. The lemma again follows from estimates for the heat kernel and is
given in Appendix 3.8. �

PROOF OF PROPOSITION 3.6. We first consider V .2;�/. By (3.59) and (3.63),X
y

j zVt ..x;C1/; .y;C1//j D O.j´t j2/
X
y

j1 � e��Ct .x;y/j

D O
�j´t j2`2t �;

(3.65)

which is analogous to the bound for � < 4� and thus gives���Qtf;HessV .2;�/
t .'/Qtf

��� D O�

�j´t j2`4t #2t �jf j22
D O�

�jzt j2#2t �jf j22;(3.66)

exactly as in (3.53). On the other hand, the neutral contribution to V .2/ is given by

V
.2;0/
t .'/ D ´2t

X
x;y

Ut .x; y/ cos.
p
�'x �

p
�'y/;

Ut .x; y/ D e�Ct .x;y/ � 1:
(3.67)

Therefore�
Qtf;HessV .2;0/

t .'/Qtf
�

D �´2t �
X
x;y

Ut .x; y/ cos
�p
�'x �

p
�'y

�
.Qtf .x/ � Qtf .y//

2:
(3.68)
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By (3.64), the right-hand side is bounded by

�(3.69) O�

�j´t j2`4t #2t �jf j22 D O�

�jzt j2#2t �jf j22:
Remark 3.10. Similarly as in (3.64), for t > 0, f W � ! R, � < 6� , assuming
(3.17), we have

(3.70)
X
x1;x2

jUt .x1; x2/jjQtf .x1/ �Qtf .x2/j D O� .`
2
t #t /jf j1I

see Appendix 3.8. Therefore, as in (3.68),�
Qtf;rV .2;0/

t

�
D �´2t

p
�
X
x;y

Ut .x; y/ sin.
p
�'x �

p
�'y/.Qtf .x/ �Qtf .y//

D O� .j´t j2`2t #t /jf j1 D O� .jzt´t j#t /jf j1 D O� .j´t j#t /jf j1;(3.71)

provided that zt D O.1/. Exactly as in (3.66), the same bound holds for V .2;�/,
and as in (3.57) for V � V .2/. In summary, whenever jzt j is sufficiently small and
(3.17) holds,

(3.72) max
x
j.QtrVt /xj D O� .j´t j#t /:

3.7 Proof of Proposition 3.7: The Terms n > 2

To bound the contributions due to (3.59), we need the following bounds on the
heat kernel. For the statement of the bounds, we set

�12 PCt .x1; x2; x3/ D PCt .x1; x3/ � PCt .x2; x3/;(3.73)

�34�12 PCt .x1; x2; x3; x4/ D . PCt .x1; x3/ � PCt .x2; x3//(3.74)

� . PCt .x1; x4/ � PCt .x2; x4//;

LEMMA 3.11. Let Ut .x; y/ D e�Ct .x;y/�1. The following bounds hold for t > 0,
� < 6�:

sup
x1

X
x2;x3

jUt .x1; x2/�12 PCt .x1; x2; x3/j D O�

�
`4t #

2
t

�
;(3.75)

sup
x1

X
x2;x3;x4

jUt .x1; x2/Ut .x3; x4/�34�12 PCt .x1; x2; x3; x4/j

D O�

�
`6t #

2
t

�
;

(3.76)

and the same bounds hold with the roles of the xi exchanged. Also, for all t > s >
0, xi 2 �,

(3.77) .Ct � Cs/.0; 0/ � .Ct � Cs/.x1; x2/
C .Ct � Cs/.x1; x3/ � .Ct � Cs/.x2; x3/ > �O.1/:

Again, analogous estimates hold in the conservative case.



2096 R. BAUERSCHMIDT AND T. BODINEAU

PROOF. The lemma again follows from estimates for the heat kernel and is
given in Appendix 3.8. �

LEMMA 3.12. Let � < 6� . Then k zV .3/
t k . j´t j3`4t . Analogous bounds hold in

the conservative case.

PROOF. We start from (3.58). We assume I1 D f1; 2g and I2 D f3g since the
other cases are analogous. We first consider the case that �I1 is neutral. Then

(3.78)
�
Z t

0

ds
X
iD1;2

Pus.�i ; �3/ zVs.�1; �2/ zVs.�3/e�.Wt .�1;�2;�3/�Ws.�1;�2;�3//

D ��
Z t

0

ds

`2s
. PCs.x1; x3/ � PCs.x2; x3//Us.x1; x2/´

3
s e
�.Wt .�1;�2;�3/�Ws.�1;�2;�3//:

By the definition of W in (3.28) and by (3.77),

Wt .�1; �2; �3/ �Ws.�1; �2; �3/ >
�

2
.Ct � Cs/.0; 0/ �O.1/

D �

4�
log.`t=`s/ �O.1/:

(3.79)

By (3.75),

(3.80) sup
x1

X
x2;x3

j�12 PCs.x1; x2; x3/Us.x1; x2/j . `4s#2s :

Substituting these bounds into (3.78) shows that the contribution to k zV .3/
t k from

neutral �I1 is bounded by

`
��=4�
t

Z t

0

ds

`2s
j´sj3`4s`�=4�s #2s . j´t j3`4t(3.81)

where we used (3.23).
We turn now to the charged case �1 D �2. Note that (3.79) follows as above if

�3 D ��1 and in fact holds with the better lower bound 3�
4�

log.`t=`s/ �O.1/ by
positive definiteness of Ct � Cs if �3 D �1, i.e., if all charges are the same. From
the explicit form (3.59) of zVs.�1; �2/, we thus get

�
Z t

0

ds
X
iD1;2

Pus.�i ; �3/ zVs.�1; �2/ zVs.�3/e�.Wt .�1;�2;�3/�Ws.�1;�2;�3//

. �

Z t

0

ds

`2s
. PCs.x1; x3/C PCs.x2; x3//j1 � e��Cs.x1;x2/jj´sj3

�
`s

`t

� �
4�

:

As the sum over x3 can be controlled uniformly in x1; x2 by O.`2t #
2
t / thanks to

(3.18) and then the sum over x2 can be estimated byO.`2t / thanks to (3.63), we end
up with the same upper bound as in (3.81). This completes the charged case. �

LEMMA 3.13. Let � < 6� and assume (3.17). Then k zV .4/
t k . j´t j4`6t . Analogous

bounds hold in the conservative case.
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PROOF. We again start from (3.58). Up to permutation of the indices, there are
terms with jI1j D 1, jI2j D 3, and jI1j D jI2j D 2. We begin with the case
jI1j D 1 and jI1j D 3. Using that jPusj . `2s#

2
s and that k zV .1/

s k . j´sj and
k zV .3/

s k . j´sj3`4s (by (3.36) and Lemma 3.12),

sup
�1

X
�2;:::;�n

��Pus.�i ; �j / zVs.�I1/Vs.�I2/�� 6 kPusk
 zV .1/

s

 zV .3/
s


. j´sj4`6s#2s ;

(3.82)

and we obtain the claimed bound exactly as in the proof for � < 4� .
In the remainder of the proof we bound the terms with jI1j D jI2j D 2. We be-

gin with the case that �I1 and �I2 are both neutral. Up to permutation of the indices,
we may then assume �I1 D ..x1;C1/; .x2;�1// and �I2 D ..x3;C1/; .x4;�1//.
By (3.59), using Put .�1; �j /C Put .�2; �j / D �1�j . PCt .x1; xj /� PCt .x2; xj // and anal-
ogously for the sum over j ,X

i2I1;j2I2
Put .�i ; �j / zVt .�I1/ zVt .�I2/

D ´4tUt .x1; x2/Ut .x3; x4/�34�12
PCt .x1; x2; x3; x4/:

(3.83)

Hence, by (3.76) and (3.22) for � < 6� ,

sup
x1

X
x2;x3;x4

Z t

0

ds

`2s

���� X
i2I1;j2I2

Pus.�i ; �j / zVs.�I1/ zVs.�I2/
����

.

Z t

0

ds

`2s
j´sj4`6s#2s . j´t j4`6t :

(3.84)

In the case that I1 is neutral and I2 is charged, we similarly use

sup
�1

X
�2;:::;�n

����12
Z t

0

ds

`2s

X
j2I2

hX
i2I1

Pus.�i ; �j / zVs.�I1/1�.�I1 /D0
i
zVs.�I2/1�.�I2 /¤0

����
6 �

Z t

0

ds

`2s

�
sup
x1

X
x2;x3

��. PCs.x1; x3/ � PCs.x2; x3//Us.x1; x2/
���

�
�

sup
�3

X
�4

j zVs.�I2/j1�.�I2 /¤0
�
:

By (3.75), the first bracket is bounded by

(3.85) O�

�j´t j2`4t #2t �:
Since �I2 is charged, the contribution from V.�I2/ term is bounded using (3.63) by

sup
�3

X
�4

j zVt .�I2/j1�.�I2 /¤0 . j´t j2 sup
x3

X
x4

j1 � e��Ct .x3;x4/j . j´t j2`2t :(3.86)
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So altogether these contributions to (3.85) are again bounded using (3.22) (and
� < 6�) by

(3.87)
Z t

0

ds

`2s
j´sj4`6s#2s . j´t j4`6t :

Again the case that �I1 and �I2 are both charged is easier and analogous to the proof
for � < 4� and so is omitted. �

LEMMA 3.14. Let � < 6� and assume (3.17). Then

(3.88)
 zV .n/

t

 6 nn�2j´t jn.C�`2t /n�1 for all n > 5:

Analogous bounds hold in the conservative case.

PROOF. Similarly as in the proof of (3.39), we make the inductive assumption
that, for some n > 4, the bound (3.56) holds for all 1 6 k 6 n, k ¤ 2. By (3.36)
and Lemmas 3.12–3.13, the inductive assumption is verified for n D 4. To advance
the induction, we again start from

(3.89) j zVt .�1; : : : ; �n/j 6
1

2

X
I1 P[I2D�n�

Z t

0

ds

���� X
i2I1;j2I2

Pus.�i ; �j / zVs.�I1/ zVs.�I2/
����:

For jI1j D n � k ¤ 2 and jI2j D k ¤ 2, we use

sup
�1

X
�2;:::;�n

j Pus.�i ; �j / zVs.�I1/ zVs.�I2/j 6 k Puskk zV .n�k/
s kk zV .k/

s k;(3.90)

and bound the terms on the right-hand side using the inductive assumption. Then
exactly as in the proof for � < 4� , i.e., of (3.39), the result is

sup
�1

X
�2;:::;�n

X
I1 P[I2D�n�

jI1j¤2;jI2j¤2

Z t

0

ds
X

i2I1;j2I2
j Pus.�i ; �j / zVs.�I1/ zVs.�I2/j

6 nn�2j´t jn
�
C�`

2
t

�n�1
:

(3.91)

The terms with jI1j D 2 or jI2j D 2 require special treatment. By symmetry we
may assume that jI1j D 2 and that I1 D f1; 2g and I2 D f3; : : : ; ng with n > 5. If
�I1 is neutral, we use

sup
�1

X
�2;:::;�n

����12
Z t

0

ds

`2s

X
j2I2

�X
i2I1

Pus.�i ; �j / zVs.�I1/1�.�I1 /D0
�
zVs.�I2/

����
6 .n � 2/

Z t

0

ds

`2s

�
sup
x1

X
x2;x3

��. PCs.x1; x3/ � PCs.x2; x3//Us.x1; x2/
���

�
sup
�3

X
�4;:::;�n

j zVs.�I2/j
�
:
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By (3.75), the first bracket is bounded by O� .´
2
t `

4
t #

2
t /, while for the second term

involving V.�I2/, using inductive assumption for zV .�I2/ (note that n� 2 > 3), we
get

sup
�3

X
�4;:::;�n

�� zVt .�I2/�� 6  zV .n�2/
t

 6 .n � 2/n�4j´t jn�2�C�`2t �n�3:(3.92)

So altogether these contributions to (3.92) are bounded by (using again (3.22) for
� < 6�),

O� .1/.n � 2/n�3C n�3
�

Z t

0

j´sjn`2.n�1/s #2s
ds

`2s

. C�2
� nn�4j´t jn

�
C�`

2
t

�n�1
6 nn�4j´t jn

�
C�`

2
t

�n�1
;(3.93)

where in the last bound we have chosen C� sufficiently large (independently of n).
Summing over the

�
n
2

�
6 n2 choices for I1 and I2 with jI1j D 2 leads to the

expected upper bound. The charged case holds in the same way. �

PROOF OF PROPOSITION 3.7. The bounds (3.56) follow by combining the pre-
vious three lemmas. �

3.8 Proofs of Propositions 3.1–3.2 Without (3.5)
Finally, we remove the assumption (3.5) at the cost of constants that are uniform

in " but not uniform in L. For t 6 t0, where t0 is sufficiently small but of order
1="2, we can apply the same analysis as before. On the other hand, for t > t0, a
very crude argument is sufficient to show that the Hessian of the effective potential
is bounded from below uniformly in ". Our starting point for this is (2.15), i.e.,

.f;HessVtf / D Pt0;t .f;HessVt0f /

� �Pt0;t

�
.f;rVt0/2

� � �Pt0;t .f;rVt0/
�2�
:

(3.94)

The input from the previous analysis is summarised in the following lemma.

LEMMA 3.15. Let � < 6� . Then there is a constant � D �.�/ > 0 such that for
all t > 0 satisfying jzt j 6 � and (3.17), the following bounds hold uniformly in
' 2 X , f 2 X , and x 2 �:

j.Qtf;HessVtQtf /j 6 O� .j´t j#2t /jf j22;(3.95)

j.QtrVt /xj 6 O� .j´t j#t /:(3.96)

PROOF. For � < 4� , these bounds follow exactly as in (3.52)–(3.53). For
� < 6� , the bound on the Hessian is as in (3.55) and (3.57), and for rVt , see
(3.72). �
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PROOF OF THEOREMS 3.1–3.2 WITHOUT (3.5). Recall from (3.18) that

e�
�
2
Ct .0;0/ � `

��=4�
t ;

and hence j´t j � "2."`t /
��=4� j´j and jzt j � ."`t /

2��=4� j´j. Here a � b

denotes that c� 6 a=b 6 1=c� for some constant c� > 0. Let t� > 0 be such that
jzt� j D �. Thus "`t� � .�=j´j/1=.2��=4�/ and hence

(3.97) j´t� j D O� ."
2."`t� /

��=4� j´j/ D O� ."
2j´j1=.1��=8�//:

Also, with tm;L D "�2.m�2 ^ L2/ as in (3.17),

(3.98) j´tm;L
j D O� ."

2.m�1 ^ L/��=4� j´j/:
We choose t0 D t� ^ tm;L so that, since j´t j in decreasing in t (see (3.19)),

(3.99) j´t0 j D O� ."
2/
�
.m�1 ^ L/��=4� j´j C j´j1=.1��=8�/� D O�;´;m;L."

2/:

With this and since j�j D "�2L2, it follows from (3.96) that, uniformly in ',

(3.100) jQt0rVt0 j22 D
X
x2�

.Qt0rVt0/2x 6 O�;´;m;L

�
"2#2t0

�
:

For any t > t0, by the Cauchy-Schwarz inequality and jQt�t0f j2 6 #t�t0 jf j2, in
particular,

(3.101) .Qtf;rVt0/2 6 O�;´;m;L

�
"2#2t0

�jQt�t0f j22 6 O�;´;m;L

�
"2#2t

�jf j22:
Similarly, by (3.95),

(3.102) j.Qtf;HessVt0Qtf /j 6 O� .´t0#
2
t0
/jQt�t0f j22 D O�

�j´j"2#2t �jf j22:
Substituting (3.101)-(3.102) into (3.94), using that Pt0;t is a Markov operator, we
conclude that, for all t > t0,

(3.103) .Qtf;HessVtQtf / > P�t jf j22 where P�t > �O�;´;m;L

�
"2#2t

�
:

For t 6 t0, we have P�t D O� .j´t j#2t / D O� .j´j/"2#2t exactly as in the proofs of
the theorems in the case (3.5). In summary, for all t > 0,

(3.104) �t > �.O� .j´j/CO�;´;m;L.1//

Z 1

0

ds "2#2s > ���.�; ´;m;L/;

with ��.�; ´;m;L/ independent of ". From this bound, the remainder of the proof
is the same as in the case (3.5). �

Appendix: Heat Kernel Estimates:
Proof of Lemmas 3.3 and 3.9–3.11

In this appendix, we prove Lemmas 3.3 and 3.9–3.11. These follow from stan-
dard estimates for the lattice heat kernel pt .x/ D et�.0; x/ on Zd and its torus
version pLt .x/ D

P
y2Zd pt .x C Ly/, where L 2 N. Throughout the appendix,

� and r denote the lattice Laplacian and derivative on Zd , not the Laplacian and
gradient on R�.
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A.1 Bounds on the Heat Kernel
We begin by collecting estimates on the heat kernel on Zd . To state these, let �

be a sequence of j�j � k unit vectors �1; : : : ; �k in Zd , i.e., �i 2 fe1�; : : : ; ed�g
is one of the 2d unit vectors ei� inZd , and writer� DQk

iD1 r�i withref .x/ D
f .xCe/�f .x/ the lattice gradient. For x 2 Zd , jxj denotes any fixed norm unless
stated.

LEMMA A.1. The heat kernel pt on Zd satisfies the following upper bounds for
t > 1, x 2 Zd , and all sequences of unit vectors �:

(A.1) jr�pt .x/j D O�.t
�d=2�j�j=2e�cjxj=

p
t /;

as well as the following asymptotics if d D 2, for t > 1 and x ¤ 0,

pt .0/ D
1

4�t
CO

�
1

t2

�
;Z t

0

.ps.0/ � ps.x//ds D
1

2�
log.jxj ^ pt /CO.1/:

(A.2)

Moreover, the heat kernel pLt on a discrete torus of side length L satisfies, for
t > 1, jxj1 < L=2,

(A.3) r�pLt .x/ D r�pt .x/CO�.t
�j�j=2L�de�cL=

p
t /;

and the mean 0 heat kernel on the torus is given by p0;Lt .x/ D pLt .x/ � 1=L2.

PROOF. Writing �i D ej�j with j 2 f1; : : : ; dg and �j 2 f�g for each
i 2 f1; : : : ; j�jg, the bound (A.1) can be seen by writing r�pt .x/ in its Fourier
representation:

td=2Cj�j=2r�pt .x
p
t /

D 1

.2�/d

Z
���;��d

j�jY
iD1

p
t .1 � ei��i k�i /

et
Pd
jD1.2 cos.kj /�2/ eikx

p
t td=2 dk;

D 1

.2�/d

Z
��t�;t��d

j�jY
iD1

p
t .1 � ei��i k�i =

p
t /(A.4)

et
Pd
jD1.2 cos.kj =

p
t/�2/ eikx dk:

For t > 1, the integrand is analytic on a strip k 2 .R C i ��c; c�/d with c >
0 independent of t , and hence (A.4) decays exponentially in jxj (see, e.g., [41,
chap. I.4, exer. 4]). The first estimate in (A.2) is standard and straightforward to
verify by writing the left-hand side in terms of the Fourier transform; we thus omit
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its proof. The second estimate in (A.2) is similarly standard if t D 1, in which
case the left-hand side is the Green function of the discrete Laplacian:

(A.5)
Z 1

0

.ps.0/ � ps.x//ds D
1

2�
logjxj CO.1/:

This estimate can be found, for example, in [39, p. 198] or [46, theorem 4.4.4] (with
normalisation there differing by a factor 2d D 4). To prove the second estimate in
(A.2) for 0 < jxj 6 p

t , we use that by (A.1) with j�j D 1,

(A.6)
Z 1

t

.ps.0/ � ps.x//ds D O.jxj/
Z 1

t

s�3=2 ds D O.jxj=pt /;
which using (A.5) impliesZ t

0

.ps.0/ � ps.x//ds D
Z 1

0

.ps.0/ � ps.x//ds CO.jxj=pt /

D 1

2�
logjxj CO.1/:

(A.7)

For jxj > p
t , we use that the first bound in (A.2) (and pt .0/ 6 1 for t < 1)

implies

(A.8)
Z t

0

ps.0/ds D
1

2�
log

p
t CO.1/;

and hence with (A.1) to bound ps.x/,

(A.9)
Z t

0

.ps.0/ � ps.x//ds D
1

2�
log
p
t CO.1/ �

Z t

1

O.s�1e�cjxj=
p
s/ds;

where the integral is bounded by a multiple of

(A.10)
Z t

1

e�jxj=
p
s ds

s
D
Z t=jxj2

1=jxj2
e�1=

p
s ds

s
6

Z 1

0

e�1=
p
s ds

s
D O.1/:

This completes the proof of (A.2).
For the torus of side length L, we use that pLt .x/ D

P
y2Zd pt .x C Ly/ and

set jxjL D infy2Zd jx C Lyj. Then

(A.11)
X
y2Zd

e�cjxCLyj=
p
t D e�cjxjL=

p
t CO..

p
t=L/de�

1
2
cL=

p
t /;

since the remainder between the left-hand side and the first term on the right-hand
side of the last equation can be controlled by (approximating the sum by an integral
and using polar coordinates)Z 1

1

e�crL=
p
trd�1 dr 6 e�

1
2
cL=

p
t

Z 1

1

e�
1
2
crL=

p
trd�1 dr

6 e�
1
2
cL=

p
t .
p
t=L/d

Z 1

1

e�
1
2
crrd�1 dr:(A.12)

This shows the estimates (A.3).
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The expression for the mean 0 heat kernel follows from

p
0;L
t .x/ D .�0; P e

�tP�x/ D .�0 � 1=L2; e�t .�x � 1=L2//
D pLt .x/ � 2=L2 C 1=L2 D pLt .x/ � 1=L2

with the projection P from (3.7). �

A.2 Proof of Lemma 3.3
We recall the definition PCt .x/ D p

L"

t .x/e�"2m2t D p
L"

t .x/#2t . Lemma 3.3 is
an elementary combination of the estimates from Lemma A.1, whose details are
given as follows.

PROOF OF LEMMA 3.3. Applying (A.1) and (A.3) with x D 0 to the torus of
side length L" D L=" and, for t > 1, we have

(A.13) jpt .0/ � pL"

t .0/j . L�d" e�cL"=
p
t ; p

L"

t .0/ . t�d=2 _ L�d" :

By the assumption (3.17), either t 6 1="2m2 or Lm > 1 holds. By the above
bound, if Lm > 1, the contribution to Ct .0/ from t > 1="2m2 is negligible sinceZ 1

1="2m2

p
L"

t .0/ e�"
2m2t dt .

Z 1

1="2m2

.t�1 _ "2L�2/ e�"2m2t dt

. "2m2

Z 1

1="2m2

e�"
2m2t dt . 1:(A.14)

For t 6 L2="2 (and thus for t 6 1=m2"2 when Lm > 1), we may moreover
replace pL"

t by pt since

(A.15)
Z t

0

�
ps.0/ � pL"

s .0/
�
ds D O.L�2" t / D O.1/:

Finally, the contribution to PCt .0/ from the infinite volume heat kernel pt .0/ is
(A.16)

pt .0/e
�"2m2t D

�
1

4�t
CO

�
1

t2

��
e�"

2m2t D 1

4�t
CO

�
1

t2

�
CO."2m2/;

which integrated up to t 6 1="2m2 gives the main contribution

Ct .0/ D
Z t

0

ps.0/e
�"2m2s ds CO.1/

D 1

4�
log t CO.1/ D 1

2�
log `t CO.1/:

(A.17)

This shows the first estimate in (3.18). The second estimate is straightforward since
PCs.x; y/ D PCs.0; x � y/ > 0 and the fact that the heat kernel defines a probability
density immediately imply

(A.18) sup
x

X
y

PCt .x; y/ D `2t #
2
t

X
y2�

pLt .y/ D `2t #
2
t

X
y2Z2

pt .y/ D `2t #
2
t :
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Finally, in the conservative case the estimates are unchanged since

C 0
t .0; 0/ D Ct .0; 0/ �

1

j�j
Z t

0

e�"
2m2s ds D Ct .0; 0/ �

1 � e�"2m2t

L2m2

D Ct .0; 0/CO.1/(A.19)

and

�(A.20)
X
x

j PC0
t .0; x/j 6

X
x

�
PCt .0; x/C

`2t #
2
t

j�j

�
D O.`2t #

2
t /:

A.3 Proof of Lemmas 3.9–3.11
To prepare for the proofs of the lemmas, we state the following consequences

of Lemma A.1 in the notation used in the lemmas. In particular, recall (3.73)–
(3.74). For x 2 �, abusing notation slightly, we write jxj for the torus distance
jxjL"

D infy2Zd jx C L"yj. In particular, jxj D O.L"/ for all x 2 �. Moreover,
in all of the following lemmas, we impose the assumption (3.17) without stating it
explicitly.

LEMMA A.2. The following estimates hold for PCt , Ct for t > 1 and jx � yj > 1:

Ct .x; y/ D � 1

2�
log.jx � yj=`t ^ 1/CO.1/;

j PCt .x; y/j . #2t e�cjx�yj=`t :
(A.21)

The first bounds also implies that

(A.22) Ct .x; y/ D
Z t

1

1

4�s
e�jx�yj

2=2se�"
2m2s ds CO.1/:

For any c0 > 0 small enough,

j�12 PCt .x; y; ´/je�c0jx�yj=`t
. #2t .jx � yj=`t /e�c

0jx�´j=2`t e�c
0jy�´j=2`t ;

(A.23)

j�34�12 PCt .x; y;w; ´/je�c0jx�yj=`t e�c0jw�´j=`t
. #2t .jx � yj=`t /.jw � ´j=`t /e�c0jx�wj=`t :

(A.24)

The same estimates hold with PCt replaced by `t#tQt , and if PCt and Qt are replaced
by PC0

t and Q0
t .

PROOF. The estimates (A.21) follow easily from those for the heat kernel in
(A.1)–(A.3). Indeed, the second bound in (A.21) is a special case of (A.1) and
(A.3):

PCt .x; y/ D `2t #
2
t p

L"

t .x; y/

. `2t #
2
t

�
1

t
e�cjx�yj=

p
t C 1

L2"
e�cL"=

p
t

�
. #2t e

�cjx�yj=pt ;
(A.25)
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where in the last inequality we used that `t=L" 6 1 follows from (3.17) and the
definition of `t in (3.15). Indeed, by (3.17), either t 6 L2" which implies `t 6 L",
or otherwise Lm > 1 and then also

`t=L" D .
p
t ^ 1=."m//=.L="/ 6

p
"2m2t ^ 1 6 1:

For the first bound in (A.21) we note that (A.2) impliesZ t

0

ps.x/ds D
1

2�
�log

p
t � log.jxj ^ pt /�CO.1/

D � 1

2�
log.jxj=pt ^ 1/CO.1/:(A.26)

The additional factor e�"2m2s multiplying ps.x/ leads to the replacement of
p
t

by `t exactly as in the proof of (3.18). By an analogous calculation, the same
formula holds with the discrete heat kernel replaced by the continuous one, i.e.,

(A.27)
Z t

1

1

4�s
e�jxj

2=2s ds D � 1

2�
log.jxj=pt ^ 1/CO.1/;

from which (A.22) follows after taking into account the additional factor e�"2m2s

as before.
To verify (A.23)–(A.24) for x; y 2 Zd , let xy be a path from x to y of length

jx � yj where jxj denotes the 1-norm in this proof. Then (A.1) and (A.3) imply

(A.28)

���12pL"

t .x; y; ´/
�� D ��pL"

t .x; ´/ � pL"

t .y; ´/
��

6
X
u2xy

��rpL"

t .u; ´/
�� . `�3t X

u2xy
e�cju�´j=`t :

For u 2 xy , we have jx�´j 6 jx�ujCju�´j 6 jx�yjCju�´j, and we deduce
from the symmetric estimate in y that �ju�´j 6 �jx�yj�jx�´j=2�jy�´j=2.
Choosing c0 < c, we get���12pL"

t .x; y; ´/
�� . `�2t .jx � yj=`t /e�c0jx�´j=2`t e�c0jy�´j=2`t eCc0jx�yj=`t :

This completes (A.23). Analogously, again applying (A.1) and (A.3) and choosing
c0 < c, we get���34�12pL"

t .x; y;w; ´/
��

6
X
u2xy

X
v2w´

jr2p
L"

t .u � v/j

. `�4t
X
u2xy

X
v2w´

e�cju�vj=`t

. `�2t .jx � yj=`t /.jw � ´j=`t /e�c0jx�wj=`t eCc0jx�yj=`t eCc0jw�´j=`t(A.29)

using that jx�wj 6 jx�ujC ju�vjC jv�wj 6 jx�yjC ju�vjC jw�´j. �
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LEMMA A.3. For all x; y; ´ 2 �, 0 6 s 6 t ,

(A.30) .Ct � Cs/.0; 0/ � .Ct � Cs/.x; y/
C .Ct � Cs/.x; ´/ � .Ct � Cs/.y; ´/ > �O.1/:

PROOF. It suffices to assume that s > 1. Throughout this proof, jxj denotes the
Euclidean norm. Suppose first that jx � yj 6 jx � ´j ^ jy � ´j. We will show that

(A.31) j.Ct �Cs/.x; ´/� .Ct �Cs/.y; ´/j 6
Z t

s

j PCu.x; ´/� PCu.y; ´/jdu . 1:

Indeed, this bound follows from the following two estimates: using (A.1) with
j�j D 0 for the first bound and with j�j D 1 for the second bound, and also (A.3)
for the error due to periodicity,Z jx�yj2

s

.j PCu.x; ´/j C j PCu.y; ´/j/du

. 1C
Z jx�yj2

s

u�1e�cjx�yj=
p
u du . 1;

(A.32)

Z t

jx�yj2
j PCu.x; ´/ � PCu.y; ´/jdu

. 1C jx � yj
Z t

jx�yj2
u�3=2 du . 1:

(A.33)

Here we have used that the remainder in (A.3) due to the periodicity is bounded by

jx � yj
L2"

Z t

jx�yj2
u�1=2e�cL"=

p
u�"2m2u

. 1C jx � yj
L2"

Z "�2m�2

jx�yj2
u�1=2e�cL"=

p
u . 1

(A.34)

when Lm > 1, and that an analogous bound holds when t 6 "�2.m�2 ^L2/. The
bound (A.30) then follows from (A.31) and .Ct �Cs/.0; 0/� .Ct �Cs/.x; y/ > 0,
which holds by the positive definiteness of Ct � Cs and translation invariance.

The same argument as above also applies if jy�´j 6 jx�´j^jx�yj. Therefore
suppose that jx � ´j 6 jx � yj ^ jy � ´j. From (A.22) recall that

(A.35) Ct .x; ´/ D
Z t

1

1

4�u
e�jx�´j

2=2ue�"
2m2u duCO.1/:

Since e�jx�´j2=2u > e�jy�´j2=2u,

(A.36) .Ct � Cs/.x; ´/ � .Ct � Cs/.y; ´/ > �O.1/:
The conclusion (A.30) now follows from .Ct�Cs/.0; 0/�.Ct�Cs/.x; y/ > 0. �
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LEMMA A.4. Let Ut .x/ D e�Ct .0;x/�1. Then for � < 2�.kC2/ and sufficiently
small c0 > 0,

(A.37)
X
x

jUt .x/j.jxj=`t /kec0jxj=
p
t . `2t :

The analogous estimate holds in the conservative case.

PROOF. By (A.21), Cs.0; x/ D � 1
2�

log.jxj=`s ^ 1/C O.1/ and j PCs.0; x/j .
#2s e

�cjxj=ps . Therefore

jUt .x/j D je�Ct .0;x/ � 1j 6
Z t

0

�j PCs.0; x/je�Cs.0;x/
ds

`2s

.

Z t

0

�
`�=2�s jxj��=2�e�cjxj=

p
se�"

2m2s
� ds
`2s
:(A.38)

Choosing c0 < c=2, we get ec
0jxj=pte�cjxj=

p
s 6 e�

1
2
cjxj=ps for t > s. Further-

more,

(A.39)
X
x

jxjk��=2�e� 1
2
cjxj=ps .

p
s
2Ck��=2�

holds if 2C k > �=2� and s > 1. Therefore

(A.40)
X
x

jUt .x/j.jxj=`t /kec0jxj=
p
t . `�kt

Z t

0

�p
s
2Ck

e�"
2m2s

� ds
`2s
. `2t :

The bounds are the same in the conservative case. �

With the above preparation, we now prove Lemmas 3.9–3.11.

PROOF OF (3.63). For (3.63), we use Ct .0; x/ > 0, which with 1 � e�x 6 x

for x > 0 gives the claim

(A.41)
X
x

j1 � e�Ct .0;x/j D
X
x

.1 � e�Ct .0;x// 6
X
x

Ct .0; x/ D O
�
`2t
�
:

In the conservative case, C 0
t .x/ > �1=L2 and the claim follows similarly from

j1 � e�xj 6 2jxj for x > �1. �

PROOF OF (3.64). For sufficiently small c0 > 0, we write

(A.42)
X
x;y

jUt .x; y/j.Qtf .x/ � Qtf .y//
2 D

X
x;y

AxyB
2
xy ;

where

Axy D jUt .x; y/j.jx � yj=`t /2e2c0jx�yj=`t ;(A.43)

Bxy D
jQtf .x/ � Qtf .y/j

jx � yj=`t
e�c

0jx�yj=`t1x¤y :(A.44)
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By (A.37), supx
P

y Axy . `2t for c0 > 0 small enough. By (A.23) for `t#tQt

instead of PCt and the inequality 2ab 6 a2 C b2, we have for x ¤ y,

jQt .x; ´/ � Qt .y; ´/j
jx � yj=`t

e�c
0jx�yj=`t .

#t

`t
e�c

0jx�´j=2`t e�c
0jy�´j=2`t

6
#t

2`t
.e�c

0jx�´j=`t C e�c
0jy�´j=`t /:(A.45)

Thus there are positive

Mxy DMyx D O.#t`
�1
t e�c

0jx�yj=`t /;

i.e., supx
P

yMxy . `t#t , such that

(A.46) Bxy 6
X
´

.Mx´ CMy´/jf´j:

Then (using .aC b/2 6 2a2 C 2b2 and Axy D Ayx),X
x;y

AxyB
2
xy

6
X
x;y

Axy

�X
´

Mx´jf´j C
X
´

My´jf´j
�2

6 4
X
x;y

Axy

�X
´

Mx´jf´j
�2
6 4

�
sup
x

X
y

Axy

�X
x

�X
´

Mx´jf´j
�2
:(A.47)

Similarly (with 2jabj 6 a2 C b2 and Mxy DMyx)

X
x

�X
´

Mx´jf´j
�2

D
X
x;´;w

Mx´Mxw jf´fw j

6
X
x;´;w

Mx´Mxw jf´j2 6
�

sup
´

X
x

Mx´

��
sup
x

X
w

Mxw

�X
´

jf´j2:(A.48)

ThereforeX
x;y

AxyB
2
xy 6 4

�
sup
x

X
y

Axy

��
sup
´

X
x

Mx´

��
sup
x

X
w

Mxw

�
jf j22:(A.49)

Since supx
P

y Axy . `2t and supx
P

yMxy . #t`t , the desired bound . #2t `
4
t

follows. The bounds are unchanged in the conservative case. �
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PROOF OF (3.70). We proceed analogously to the proof of (3.64), i.e., for suffi-
ciently small c0 > 0, we write

(A.50)
X
x;y

jUt .x; y/jjQtf .x/ � Qtf .y/j D
X
x;y

AxyBxy ;

where

Axy D jUt .x; y/j.jx � yj=`t /ec0jx�yj=`t ;(A.51)

Bxy D
jQtf .x/ � Qtf .y/j

jx � yj=`t
e�c

0jx�yj=`t1x¤y :(A.52)

By (A.37), again supx
P

y Axy . `
2
t for c0 > 0 small enough, but now using that

� < 6� due to the different power in the definition of Axy . The bound for Bxy is
the same. From this, we concludeX

x;y

AxyBxy 6 2
X
x;y

Axy

�X
´

Mx´jf´j
�

6 2

�
sup
x

X
y

Axy

��
sup
´

X
x

Mx´

�
jf j1 . `3t #t jf j1:(A.53)

Since Qt D `tQt , this is (3.70). The bounds are unchanged in the conservative
case. �

PROOF OF (3.75). By (A.23) and (A.37) (with � < 6�), one can find c0 > 0

small enough such that

sup
x1

X
x2;x3

jUt .x1; x2/jj�12 PCt .x1; x2; x3/j

. #2t sup
x1

X
x2;x3

jUt .x1; x2/jec0jx1�x2j=`t
jx1 � x2j

`t
(A.54)

e�c
0jx1�x3j=2`t�c0jx2�x3j=2`t . `4t #

2
t ;

where a factor `2t comes first by summing over x3 and another factor `2t from
(A.37). The same applies when the roles of x1, x2, and x3 in the sup and sum are
exchanged. The bounds are unchanged in the conservative case. �

PROOF OF (3.76). By (A.24), there is c0 > 0 small enough such that

j�34�12 PCt .x1; x2; x3; x4/je�c:jx1�x2j=`t�c0jx3�x4j=`t
� .jX1 � x2j=`t /.jx3 � x4j=`t /e�c0jx1�x3j=`t#2t :

(A.55)

Using (A.37) both for the sum over x2 and x4 (with � < 6�), as well as the
elementary bound supx1

P
x3
e�cjx1�x3j=`t . `2t , implies

(A.56) sup
x1

X
x2;x3;x4

jUt .x1; x2/Ut .x3; x4/jj�34�12 PCt .x1; x2; x3; x4/j . `6t #2t
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with one factor `2t from each of the sums. The bounds are unchanged in the con-
servative case. �
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