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Abstract

Advanced Bayesian Monte Carlo Methods for Inference and Control
Torben Sell

Monte Carlo methods are are an ubiquitous tool in modern statistics. Under the Bayesian
paradigm, they are used for estimating otherwise intractable integrals arising when integrating
a function h with respect to a posterior distribution π. This thesis discusses several aspects of
such Monte Carlo methods.
The first discussion evolves around the problem of sampling from only almost everywhere
differentiable distributions, a class of distributions which includes all log-concave posteri-
ors. A new sampling method based on a second-order diffusion process is proposed, new
theoretical results are proved, and extensive numerical illustrations elucidate the benefits and
weaknesses of various methods applicable in these settings.
In high-dimensional settings, one can exploit local structures of inverse problems to paral-
lelise computations. This will be explored in both fully localisable problems, and problems
where conditional independence of variables given some others holds only approximately.
This thesis proposes two algorithms using parallelisation techniques, and shows their empiri-
cal performance on two localisable imaging problems.
Another problem arises when defining function space priors over high-dimensional domains.
The commonly used Karhunen-Loève priors suffer from bad dimensional scaling: they
require an orthogonal basis of the function space, which can often be obtained as a product
of one-dimensional basis functions. This leads to the number of parameters growing expo-
nentially in the dimension d of the function domain. The trace-class neural network prior,
proposed in this thesis, scales more favourably in the dimension of the function’s domain.
This prior is a Bayesian neural network prior, where each weight and bias has an independent
Gaussian prior, but with a key difference to existing Bayesian neural network priors: the
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variances decrease in the width of the network, such that the variances form a summable
sequence and the infinite width limit neural network is well defined. As is shown in this
thesis, the resulting posterior of the unknown function is amenable to sampling using Hilbert
space Markov chain Monte Carlo methods. These sampling methods are favoured because
they are stable under mesh-refinement, in the sense that the acceptance probability does
not shrink to 0 as more parameters are introduced to better approximate the well-defined
infinite limit. Both numerical illustrations and theoretical results show that these priors are
competitive and have distinct advantages over other function space priors.
These different function space priors are then used in stochastic control. To this end, a
suitable likelihood for continuous value functions in a Bayesian approach to reinforcement
learning is defined. This thesis proves that it can be used in conjunction with both the
classical Karhunen-Loève prior and the proposed trace-class neural network prior. Numerical
examples compare the resulting posteriors, and illustrate the new prior’s performance and
dimension robustness.
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Chapter 1

Introduction

The mathematical analysis of data, interpreting it, and the extraction of useful information
from it, are key aspects of modern day statistics. The ultimate goal is often to infer something
about an unknown quantity, and further to quantify the (un)certainty of the inference objective.

Throughout this thesis the object of interest is some unknown random variable X defined
on a domain X, and the goal is to infer information about this variable from some data y ∈ Y.
Mathematically, this can be modelled using probability distributions, which are from now on
referred to simply as distributions.

This thesis uses the Bayesian framework, where a prior distribution π0 summarises
prior belief about X, and the likelihood function L(y|x) re-weights the prior proportional
to ‘how much more likely’ possible realisations x of X are in comparison to others, jointly
giving rise to the posterior distribution. This is justified by Bayes’ Theorem, named after
Reverend Thomas Bayes who developed an early version thereof (Bayes, 1763) which was
later generalised by Pierre Laplace (Hald, 1998). The posterior measure is defined by

π(dx) =
1
Z
L(y|x)π0(dx), (1.1)

where Z =
∫
L(y|x)π0(dx) is the normalising constant, ensuring that π is indeed a probability

distribution. Notably, the posterior is only well defined if 0 < Z <∞, a condition that is non-
trivial especially for infinite-dimensional spaces as we will discuss in Chapter 5. Intuitively,
this condition is satisfied whenever the likelihood A) is integrable with respect to the prior,
giving a finite normalisation constant, and B) does not rule out all sets with positive prior
mass, such that Z > 0.



2 Introduction

Inference, as well as decision making and quantification of uncertainty, is based on
this posterior distribution, and often requires integration of functions with respect to these
posterior measures,

I =
∫

h(x)π(dx). (1.2)

To give an explicit example, let X be the highest water level during a flood in a coastal
town. The data y consists of observations obtained throughout the year and in previous
flooding situations. The function h(x) corresponds to the economic cost of the damage which
arises if the water level reaches x. The integral (1.2) then describes the expected cost of a
coming flood. This impacts policy making: a local government can decide to improve dams
and other countermeasures, thereby reducing the probability of extensive flooding and thus
also the overall expected cost.

Generally, integrals of the form (1.2) are not analytically tractable, and need to be
approximated using Monte Carlo estimates. Given a set of samples {xi}

N
i=1 from the posterior

distribution, a Monte Carlo estimate to (1.2) is given by

ÎN =
1
N

N∑
i=1

h(xi). (1.3)

This estimator converges to the true integral ÎN → I with the Monte Carlo error decreasing as
O(N−1/2) independent of the dimensionality of the space X: if h(x) = 1 for all x, then

ÎN − I→N
(
0,
σ2
π

N

)
,

where σ2
π is the variance of the distribution π, which is assumed to be finite throughout this

thesis. This error decay stands in contrast to the error decay of numerical integration schemes
discretising the domain which usually depends on the dimension of the space X; this is one
of the main reasons for the popularity of Monte Carlo methods.

The intractable integration problem (1.2) has thus been reduced to a sampling problem to
obtain estimates (1.3).

Using pseudo-random numbers, sampling from simple distributions such as uniform
or Gaussian distributions is possible. For more complicated distributions, some kind of
importance sampling (Au and Beck, 1999; Glynn and Iglehart, 1989; Neal, 2001) might
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be an option, but for the vast majority of sampling problems, Markov chain Monte Carlo
methods are the go-to tool. These methods, discussed extensively in Chapter 2, rely on the
construction of a Markov chain to obtain correlated samples, but achieve the same error rate
of O(N−1/2) if the constructed Markov chain is ergodic (Hastings, 1970).

While these computational sampling methods were introduced to the Bayesian statistics
community in the middle of the 20th century, they were hardly used by Bayesian statisticians
prior to the 1990s due to the limited availability of computing power. Today, with faster
and more powerful computers standing in every research institution, this bottleneck has
been widened and Markov chain Monte Carlo methods are used daily by applied scientists
around the world. An active research community continuously improves the performance of
the methods and deepens the theoretical understandings thereof. An overview of the past,
present, and future of Bayesian computational methods is given by Green et al. (2015).

This thesis builds on these recently developed works. We propose new methodology,
provide further theoretical insights, and improve empirical understanding through multiple
numerical experiments; all of this with a focus on sampling problems on high- and infinite-
dimensional domains, where advanced Monte Carlo methods are essential for meaningful
inference.

The thesis is organised as follows: Chapter 2 gives an overview of several Markov
chain Monte Carlo algorithms. The first chapter with new contributions to the statistical
community is Chapter 3, which discusses sampling from non-differentiable distributions,
this chapter is part of the publication Goldman et al. (2020). Chapter 4 defines fully and
approximately localisable Bayesian inverse problems, and proposes methodology for such
problems which exploits the localised structure through parallel computing. Thereafter, we
move to infinite-dimensional spaces, and discuss existing and new function space priors
in Chapter 5. Chapter 6 formulates reinforcement learning for continuous value functions
under the Bayesian paradigm by introducing a likelihood for stochastic control problems
over function spaces. A modified version of Chapters 5 and 6 is submitted for publication as
Sell and Singh (2020).





Chapter 2

Markov Chain Monte Carlo

This chapter introduces the foundation of the chapters to follow: Markov chain Monte
Carlo methods. Not all these algorithms are confined to the Bayesian framework and work
for generic probability distributions π. Discussing all existing Markov chain Monte Carlo
methods is beyond the scope of this thesis, this chapter is thus restricted to the most popular
ones and those needed for the work in later chapters. Some popular samplers omitted here
include the elliptical slice sampler (Murray et al., 2010), which is a modification of the slice
sampler (Neal, 2003), and hit-and-run samplers such as in Bélisle et al. (1993), to name a
few.

This chapter is organised as follows: the first section summarises important definitions
and theorems relating to discrete-time Markov chains, in particular the notions of stationary
distributions and ergodic chains are introduced. Section 2.2 firstly explains how stochastic
differential equations can be used for sampling, before giving concrete examples of these,
namely the Langevin equations and Hamiltonian dynamics. In Section 2.3 we go back to
discrete-time Markov chains and discuss reversible sampling algorithms. A particular focus
of that section is the generic Metropolis-Hastings sampler, and some explicit variations
thereof. To conclude this chapter, we look at piece-wise deterministic Markov processes
and two examples of such processes in Section 2.4. Nothing in this chapter is novel work,
instead it introduces the basic algorithms used in the remainder of this thesis, with advanced
modifications discussed in the later chapters.

Throughout this chapter, the notation p(X = dy) clarifies which random variable proba-
bilities are calculated with respect to, wherever confusions are impossible, notations such
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as µ(dy) are used to improve readability. The same holds for conditional distribution where
µ(Y = dy|X = x) is simplified to µ(dy|x) where appropriate.

2.1 Discrete-Time Markov Chains

A discrete-time Markov chain on a state space X is a memoryless sequence of random
variables {Xi}

N
i=1, with Xi ∈ X for all i and N ∈ N∪{∞}, i.e.

p(Xk = dy|X1 = x1, . . . ,Xk−1 = xk−1) = p(Xk = dy|Xk−1 = xk−1),

for any k ∈ N assuming the first probability is non-zero.

A Markov chain is called ergodic, if for any initial distribution µ0, the estimator (1.3)
converges to the integral (1.2) almost surely for any sufficiently regular function h, and the
ultimate goal of Markov chain Monte Carlo is to define algorithms that result in ergodic
Markov chains. To establish ergodicity, we are relying on further concepts which we introduce
now.

Given a state x, the mapping x 7→ K(x,dy) defines a probability measure in the second
argument of the Markov transition kernel K. The name is justified as the kernel describes the
conditional transition probabilities

p(Xk = dy|Xk−1 = xk−1) = K(xk−1,dy).

Given this kernel and an initial distribution µ0, all unconditional distributions µk(dy) = p(Xk =

dy) of the chain can be calculated using

µk(dy) =
∫
X

· · ·

∫
X

K(xk−1,dy)K(xk−2,dxk−1) · · ·K(x1,dx2)µ0(dx1).

A measure µ is called a stationary measure if

µ(dy) =
∫
X

K(x,dy)µ(dx), (2.1)

intuitively speaking, the measure does not change if the transition kernel is applied.
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A kernel K is called reversible with respect to a measure µ if∫
A

K(x,B)µ(dx) =
∫

B
K(x,A)µ(dx) (2.2)

for any µ-measurable sets A and B, that is, the probability of being in A and transitioning
to B is as likely as being in B and transitioning to A. If the kernel K and the measure µ
have densities k and f with respect to some base measure, the reversibility condition can be
simplified to

f (x)k(x, y) = f (y)k(y, x), (2.3)

which we refer to as detailed balance condition.

Reversibility is a desirable property, as it immediately implies stationarity of µ:

µ(A) =
∫

A
µ(dx) =

∫
A

K(x,X)µ(dx)
(2.2)
=

∫
X

K(x,A)µ(dx),

giving (2.1) as desired. In practice, reversibility is often easier to show, but is no requirement
for stationarity. As we will see in the remainder of this chapter, reversible samplers are
often easy to construct, but can suffer from poor mixing behaviour, which motivated the
development of sampling algorithms based on non-reversible chains. Reversible samplers
are discussed in Section 2.3, some non-reversible ones in Section 2.4.

To conclude this section, we state the desirable property of ergodicity. A set A is called K-

invariant if it is measurable in the second argument of the kernel and furthermore K(x,A) = 1
for all x ∈ A. A measure µ is called ergodic if for any µ-measurable and K-invariant set A, it
holds that µ(A) ∈ {0,1}. Ergodicity of the measure µ implies ergodicity of the Markov chain
induced by K by Birkhoff’s theorem (Petersen, 1989).

In what follows, we will always first show that the constructed Markov chains have the
desired stationary measure, and then, if possible, that the chain is also ergodic. For general
ergodic theory, we refer the reader to e.g. Petersen (1989).

2.2 Sampling Using Stochastic Differential Equations

In this section, we discuss how diffusion processes, that is solutions to stochastic differential
equations, can be used to derive MCMC samplers. This can be done in two different
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ways: one can either simulate a diffusion process that has the desired target as its stationary
distribution, or one can use the diffusion process to construct reversible MCMC samplers.
We begin with a discussion of the former, and assume that the target distribution π admits a
density which can be written as

f (x) ∝ exp(−U(x)), (2.4)

where U is called the potential of π. Sometimes, it is useful to augment the target distribution
by an auxiliary variable, which often introduces some notion of velocity or momentum. The
discussion therefore continues by defining a variable z, where either z = x or z = (x, v). In the
latter case, the potential of the augmented variable will be referred to as the Hamiltonian H,

f (x, v) ∝ exp(−H(x, v)). (2.5)

The next paragraphs treat either case of z, and special cases are discussed in the following
subsections.

The continuous-time Markov processes of interest in this section can be written as
stochastic differential equation (SDE) on Rm of the form

dZt = b(Zt)dt+
√

2D(Zt)dBt, (2.6)

where Bt is a m-dimensional Wiener process, and b and D are the location dependent drift
and diffusion coefficients, respectively. If D = 0, the SDE has no stochastic part, and reduces
to an ordinary differential equation. The following theorem, taken from and proved in Ma
et al. (2015), states under which conditions the SDE (2.6) leaves the target distribution with
density given by (2.5) invariant:

Theorem 1. µ with density given by (2.5) is a stationary distribution of the dynamics (2.6) if,

for all z, µ-almost surely, the drift can be written as

b(z) = −[D(z)+Q(z)]∇H(z)+Γ(z) (2.7)

for a positive semidefinite matrix D(z), skew symmetric matrix Q, and Γ defined by

Γi(z) =
d∑

j=1

∂

∂x j

(
Di j(z)+Qi j(z)

)
.
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If D is positive definite, or if ergodicity can be shown, µ is the unique stationary distribution.

It can further be shown that in fact all SDEs of form (2.6) that have π as their stationary
distribution, permit the drift function to be written as in (2.7), see Ma et al. (2015). In what
follows, we will consider different choices of z, D, and Q to sample from a target distribution
µ.

2.2.1 The Langevin Equations

The overdamped Langevin equation is the special case of the generic (2.6) equation with
z = x, constant D(x) = D, and Q(x) = 0, such that b(x) = −∇U(x), resulting in

dXt = −D∇H(Xt)dt+
√

2DdBt, (2.8)

where U(x) is the potential given by (2.4).

The dynamics of the overdamped Langevin equation are characterised by reversible,
and very diffusive behavior. A generic way to alleviate these backtracking tendencies over
short time-scales is to introduce persistence in the trajectories via a notion of velocity.
To this end, the target space X is augmented with Rd, and on this space let v be a d-
dimensional vector of velocities drawn from N(0,σId). The augmented Hamiltonian of
interest is H(x, v) = U(x)+ ∥v∥22/(2σ). Defining z = (x, v) ∈ R2d, and choosing

D =

0 0
0 γσId×d

 , Q =

 0 σId×d

−σId×d 0

 ,
gives the underdamped Langevin equationsdXt = γVtdt

dVt = −∇U(Xt)dt−γσVtdt+
√

2σdBt

(2.9)

for σ > 0 and γ > 0 a speed parameter. This process has a stationary distribution with density
proportional to exp(−H(x, v)) = exp(−U(x)−∥v∥22/(2σ)), and the marginal distribution of x is
the desired target distribution π with density f (x) ∝ exp(−U(x)).
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ULA

To use the Langevin equations for sampling, one simply discretises the SDE. Using the
Euler-Maruyama scheme to discretise equation (2.8) results in the Unadjusted Langevin

Algorithm (ULA):

Xt+1 = Xt −δD∇U(Xt)+
√

2Dξt, (2.10)

where δ is a user-specified step size, and the ξt are drawn independently from a standard
normal distribution. This algorithm thus constructs an ergodic Markov chain to generate
samples that are approximately distributed according to the desired target distribution π. A
discretisation bias is inevitable (Kloeden and Platen, 2013) but can be reduced by choosing a
smaller step size, or it can be corrected for as we will discuss in Section 2.3.2. The simplest
discretisation is the Euler-Maruyama discretisation which is used in Algorithm 1.

Algorithm 1 Unadjusted Langevin Algorithm using a Euler-Maruyama discretisation scheme
1: procedure Unadjusted Langevin Algorithm
2: x0 ∼ π(·) ▷ Draw initial value x0
3: Pick step size δ
4: for n = 1 . . . do
5: ξn−1 ∼ N(0, Id×d)
6: xn← xn−1−δ∇U(xn−1)+

√
2δξn−1

7: end for
8: end procedure

SK-ROCK

To allow for larger step sizes while keeping the discretisation error under control, more
advanced integrators to discretise (2.8) can be used. One such class are stabilised explicit
integrators such as a stochastic second kind orthogonal Runge-Kutta-Chebyshev method (SK-
ROCK) (Abdulle et al., 2018), which are particularly strong for stiff stochastic differential
equations. We will see numeric evidence of their strong performance in Chapter 3, Algorithm
2 describes the implementation.
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Algorithm 2 SK-ROCK algorithm, modified from Pereyra et al. (2020), T j is the Chebyshev
polynomial of the first kind of order j

1: procedure SK-ROCK
2: x0 ∼ π(·) ▷ Draw initial value x0
3: Pick s ∈ {3, . . . ,15} ▷ Number of extrapolation points
4: η = 0.05
5: ls← ((s−0.5)2× (2−4/3η)−1.5
6: ω0← 1+η/s2

7: ω1← Ts(ω0)/T ′s(ω0)
8: µ1← ω1/ω0
9: ν1← sω1/2

10: k1← sω1/ω0
11: Pick step size δ
12: for n = 1 . . . do
13: ξn−1 ∼ N(0, Id×d)
14: K0← xn−1
15: K1← xn−1+µ1δ∇U(xn−1+ ν1

√
2δξn−1)+ k1

√
2δξn−1

16: for j = {2, . . . , s} do
17: µ j← 2ω1T j−1(ω0)/T j(ω0); ν j← 2ω0T j−1(ω0)/T j(ω0); k j← 1− ν j
18: K j← µ jδ∇U(K j−1)+ ν jK j−1+ k jK j−2
19: end for
20: xn← Ks
21: end for
22: end procedure

UULA

One possible discretisation of the underdamped Langevin dynamics (2.9) was studied in Ma
et al. (2019), which we present here as it is the one we use in the numerical experiments in
Chapter 3, another popular integrator is the BAOAB scheme which, amongst other integrators,
is discussed in Leimkuhler and Matthews (2016). If the current position and velocity are
(xt, vt), the next iteration is given byxt+1 = xt +

1−β
γ vt −

1
γ (ν− 1−β

γξ )∇U(xt)+Wx

vt+1 = βvt −
1−β
γξ ∇U(xt)+Wv,

(2.11)
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where ν = tn+1− tn is the step size, β = exp(−γξν), and (Wx,Wv) ∼ N(0,Σ) is Gaussian noise
with covariance

Σ =

1
γ

(
2ν− 3

γξ +
4β
γξ −

β2

γξ

)
Id×d

1+β2−2β
γξ Id×d

1+β2−2β
γξ Id×d

1−β2

ξ Id×d

 .
Recent theoretical advances have elucidated non-asymptotic properties and the speed of

convergence in probability metrics (KL-divergence, Wasserstein distance, etc.) for various
formulations of Langevin-based algorithms, see e.g. Cheng et al. (2017); Dalalyan (2017);
Wibisono (2019). In the case where the Hamiltonian H is m-strongly convex and Lipschitz-
differentiable with parameter L, the number of samples required to achieve ϵ precision in
Wasserstein-2 distance scales with O(

√
d) for the underdamped Langevin equation, with d

the dimension of the model, compared to O(d) for the overdamped dynamics Cheng et al.
(2017).

2.2.2 Hamiltonian Dynamics

Similar to the underdamped Langevin equations, Hamiltonian dynamics are defined on an
extended state space. We define the variable of interest to be z = (x, p) and the augmented
Hamiltonian as H(x, p) =U(x)+ pT M−1 p/2. M is called the mass matrix, motivated from the
origin of the dynamics in the physics literature, where the dynamics describe how an object
with position x, momentum p, and mass M moves on a frictionless surface. The Hamiltonian

dynamics are dXt = M−1Pt

dPt = −∇U(Xt)
. (2.12)

Notably, the Hamiltonian dynamics have no stochastic component, they indeed have D = 0
in the generic SDE (2.6) and further

Q =

 0 Id×d

−Id×d 0

 .
The use of these dynamics in sampling goes back to Duane et al. (1987), where the

method was developed as a hybrid Monte Carlo method, while the method is today better
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known as Hamiltonian Monte Carlo for obvious reasons. The desired target distribution
π is the marginal of x of the joint distribution which is proportional to exp(−H(x, v)) =
exp(−U(x)− pT M−1 p/2). While the stationarity of the desired target follows immediately
from Theorem 1, ergodicity is not normally given: the deterministic dynamics preserve the
energy of the system, and will thus not explore the full space. To alleviate this, the velocity
component is resampled, and ergodicity can be shown under mild assumptions, see Durmus
et al. (2017b); Livingstone et al. (2019).

While the continuous-time dynamics preserve the stationary distribution, discretising
it will normally lead to non-neglible numerical errors. A first step to reduce these is to
use a symplectic integrator (Leimkuhler and Matthews, 2016) such as the popular leapfrog
integrator. The leapfrog integrator with step size δ starting from (Xt,Pt) is defined by

Pt+1/2 = Pt −
δ

2
∇U(Xt)

Xt+1 = Xt +δM−1Pt+1/2

Pt+1 = Pt+1/2−
δ

2
∇U(Xt+1).

Furthermore, a correction step will also be added to correct for the discretisation bias, we
will discuss this in Section 2.3.2.

Hamiltonian dynamics can be seen as an example of a piece-wise deterministic Markov
process, characterised by deterministic dynamics combined with occasional jumps. Such
processes will be discussed in more detail in Section 2.4.

2.3 Reversible Sampling Algorithms

2.3.1 Gibbs Sampling

To sample from multivariate distributions π defined over X ⊂ Rd, a popular sampler is the
Gibbs Sampler (Geman and Geman, 1984) which breaks the full sampling problem into one-
dimensional ones. The Gibbs sampler in its simplest form requires conditional distributions
to be analytically tractable, this requirement can be relaxed as we will discuss in Section
2.3.2. Algorithm 3 describes an implementation of the Random Scan Gibbs Sampler.
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Algorithm 3
1: procedure Random Scan Gibbs Sampler
2: x0 ∼ π(·) ▷ Draw initial value x0
3: for n = 1 . . . do
4: i ∼U({1, . . . ,d}) ▷ Sample a coordinate uniformly
5: ω ∼ π(Xi = ·|X−i = x−i

n−1) ▷ Sample from full conditionals
6: xi

n← ω, x−i
n ← x−i

n−1
7: end for
8: end procedure

Instead of sampling a coordinate uniformly which characterises the random scan Gibbs
sampler, one may also iterate through the coordinates in a systematic fashion which, not
surprisingly, defines the systematic scan Gibbs sampler. The random scan version is π-
reversible while the systematic scan sampler is not, yet both versions have the desired
stationary distribution (Casella and George, 1992). However, we emphasise that this crucially
depends on the initialisation and that the chain might not explore the full space, and therefore
cannot be ergodic in general. As an illustration, take a simple distribution with point-masses
at two locations: π({(0,0)}) = π({(1,1)}) = 1/2. If initialised at either point, the sampler
will be stuck and never move to the other point, yet, as the chain is initialised by a draw
from the target, any sample obtained using Algorithm 3 will trivially be a sample from
desired distribution. On the other hand, taking the definition of ergodicity from Section
2.1, one can easily check that the set A = {(0,0)} is K-invariant, yet µ(A) = 1/2, so µ is not
ergodic. Ergodicity of the chain arising from the Gibbs sampler can thus only be shown
on a case-to-case basis. Other samplers do not suffer from such behaviour, as their global
proposal moves normally ensure complete exploration of the state space.

2.3.2 The Metropolis-Hastings Algorithm

Over 60 years after its first explorations, the workhorse of MCMC arguably remains to be the
Metropolis-Hastings algorithm, introduced to the statistical physics community in Metropolis
et al. (1953), and generalised in Hastings (1970) and again in Tierney et al. (1998). We
describe here the most basic ideas and algorithm, more elaborate schemes are discussed in
the subsequent sections and chapters.

In what follows, we assume the existence of a Markov transistion kernel Q(x,dy) which
admits a density q(y|x) with respect to some base measure (normally, but not always, the
Lebesgue measure). We further assume the target distribution π admits a density f , for
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simplicity with respect to the same base measure, and refer the reader to Tierney et al. (1998)
for the general case. Given a current state xn, the algorithm works as follows: a new state is
proposed by sampling from the transition kernel, which is then accepted or rejected according
to the Metropolis-Hastings criterion. Roughly speaking, a proposal y is accepted with a
probability a(x, y), proportional to how much more probable the proposal is in comparison to
the current iterate. More precisely, a(x, y) = 1 if f (x)q(y|x) = 0, otherwise

a(x, y) =min
(
1,

f (y)q(x|y)
f (x)q(y|x)

)
. (2.13)

Algorithm 4 describes the full Metropolis-Hastings algorithm.

Algorithm 4
1: procedure GenericMetropolis-Hastings Sampler
2: x0 ∼ π(·) ▷ Draw initial value x0
3: for n = 1 . . . do
4: y ∼ Q(xn−1, ·) ▷ Sample a proposal from the transition kernel
5: r← f (y)q(xn−1|y)/( f (xn−1)q(y|xn−1)) ▷ Calculate Metropolis-Hastings ratio
6: a←min(1,r) ▷ Calculate acceptance probability
7: u ∼U([0,1])
8: if u < a then
9: xn← y ▷ Accept proposed move

10: else
11: xn← xn−1 ▷ Reject proposal
12: end if
13: end for
14: end procedure

The stationarity of π follows from the Detailed Balance Condition 2.3 being satisfied,
with the Metropolis-Hastings kernel being given by

K(x,dz) =
∫

q(y|x)
(
(1−a(x, y))δx(dz)+a(x, y)δy(dz)

)
dy,

with a as defined in (2.13).

In the following sections we will look at some explicit examples of different MH al-
gorithms, ordered by increasing level of complexity. All of them require their step sizes
to go to 0 as higher dimensional distributions are considered: the scaling limits hold for a
product of d independent normal distributions, but this assumption can be slightly relaxed,
see e.g. Beskos et al. (2013). If the step size is kept fixed while increasing the dimension



16 Markov Chain Monte Carlo

of the target distribution, the acceptance rates of these MH algorithms will go to 0. Chapter
5 discusses two algorithms which allow step sizes to be kept constant when increasing the
dimensionality of the target, this is achieved through appropriate preconditioning and using a
Crank-Nicolson discretisation scheme for an underlying SDE.

Random Walk Metropolis Hastings

One of the most popular variants of Algorithm 4 for targets defined on Rd uses a Gaussian
transition kernel Q(x, ·) = N(·|x,C) with a covariance matrix specified by the user. With
this choice, q(x|y) = q(y|x), and the Metropolis-Hastings ratio simplifies to r = f (y)/ f (x).
Oftentimes, C = δI, that is, the transition kernel is a scaled isotropic Gaussian distribution
centered at the current iterate, this is the Random Walk Metropolis Hastings Algorithm

(RWMH). In the Bayesian setting, if the prior distribution π0 is a Gaussian distribution,
another popular choice it to set C to be the prior covariance, which is coined a preconditioned

version of RWMH. Preconditioning will play an important role in later parts of this thesis,
and can significantly improve the mixing behaviour of the chains.
While stationarity of the target measure follows from the Detailed Balance Condition 2.3,
ergodicity is similarly easy to show for the RWMH as the only K-invariant sets are A = ∅ and
A = Rd.

RWMH is arguably the simplest Metropolis-Hastings algorithm, it only requires evalua-
tions of the target density. Preconditioning already introduces some additional complexity,
as sampling from multivariate normal distributions with complicated covariances gets com-
putationally costly in high-dimensional spaces. Another problem with RWMH is that one
needs to take smaller steps if targeting higher dimensional distributions: the step size δ for
a product of d independent normal distributions should be scaled as O(d−1) to achieve the
optimal acceptance ratio of around 0.234 (Roberts et al., 1997). Under this acceptance ratio,
the resulting Markov chain decorrelates the fastest.

Metropolis-Within-Gibbs Sampler

As mentioned in Section 2.3.1, the Gibbs sampler requires sampling from the conditional
distributions. If this is not possible, one can use the Metropolis-Hastings algorithm to sample
from the conditional distributions. This procedure is known as the Metropolis-within-Gibbs
algorithm.
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Metropolis-adjusted Langevin Algorithm

The Euler-Maruyama discretisation of the unadjusted Langevin algorithm (2.10) leads to a
bias that is often corrected with a Metropolis-Hastings step, leading to the popular Metropolis-
adjusted Langevin Algorithm (MALA) Roberts et al. (1996), where the transition kernel in
Algorithm 4 is given by

Q(x, ·) =N(·|x−δ∇U(x), δC),

where again C = δI, and δ denotes a step size. As before, a preconditioned version uses
e.g. the prior covariance matrix as proposal covariance. The step size is tuned to achieve an
acceptance rate of around 50% to 70%, as this is close to the optimal acceptance rate for a
product of independent Gaussian distributions (Roberts and Rosenthal, 1998).

Various modifications and extensions of this method exist, such as the covariance being
dependent on the current location (Roberts and Stramer, 2002) to improve mixing, the
resulting chain arises from discretising SDEs with location-dependent diffusive behaviour
(Kent, 1978) with an additional MH correction step.
Here again, stationarity follows from the Detailed Balance Condition 2.3 being satisfied, and
ergodicity can be shown as for RWMH.

Whether this correction step is included or not, depends on the application: for large-scale,
data-intensive models the unadjusted Langevin algorithms (ULA) is often preferred, and
full gradient evaluations are replaced by stochastic gradients which use only a subset of the
data to calculate gradients (Welling and Teh, 2011). While giving up asymptotic exactness,
mixing is generally improved Durmus et al. (2017a) and costly gradient evaluations are not
wasted on rejected proposals.

MALA is more complex than RWMH, as it additionally requires evaluations of gradients
of the potential U. The benefit of this method is that the step size δ needs to be scaled only
as O(d−1/3) to achieve the algorithm’s optimal acceptance ratio, which for MALA is around
0.574 (Roberts et al., 2001).

HMC

As for the Langevin equations, simulating the Hamiltonian dynamics numerically leads to
errors that can badly impact the inference results. To alleviate this, a MH correction step is
included.
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Here again, several modifications and improvements exist. One such modification is a
location-dependent covariance (Girolami and Calderhead, 2011), another one addresses the
issue of choosing the number of leapfrog steps: the authors of Hoffman and Gelman (2014)
propose the No-U-Turn Sampler which runs leapfrog steps until the trajectories backtrack,
preventing this backtracking behaviour while at the same time maximising the number of
steps taken. Slight further modifications of the No-U-Turn Sampler further improved the
algorithm which is one of the most widely used MCMC algorithms today.

Stationarity of the chain follows, once more, from the Detailed Balance Condition 2.3,
where the momentum variable is flipped after the integration of the dynamics, i.e. after l

leapfrog steps one sets Pt+l←−Pt+l. As the momentum variable is resampled, this is not
impacting the performance of the sampler, and only aids the theoretical analysis. Ergodicity
is harder to show, and we refer the reader to Livingstone et al. (2019) for various results on
ergodicity of HMC.

In comparison to MALA, HMC is yet more complex, as an auxiliary variable is introduced
and more complicated dynamics need to be simulated. The advantage of this is that HMC
requires the leapfrog step size to be scaled only as O(d−1/4) to achieve an optimal acceptance
ratio of 0.651 (Beskos et al., 2013).

2.4 Piece-Wise Deterministic Markov Processes

While the reversibility of Markov chains gives rise to a simple-to-check criterion to ensure
that the chain targets the distribution of interest, the back-tracking behaviour also slows down
mixing. To alleviate this, non-reversible samplers have been of increased interest over the
last decade, and we will here introduce a subclass of them, the Piece-wise Deterministic
Markov Processes (PDMPs). These are almost everywhere continuous Markov processes,
characterised by deterministic dynamics interspersed with jumps occurring at random times.
They are described by a jump kernel that depends on the current state, which we denote by
Q(z, ·) indicating its Markovian nature, and a rate function ρ(z) which triggers events τ of an
inhomogeneous Poisson process (iPP):

p(τ > t) = exp
(
−

∫ t

0
ρ(z(s))ds

)
. (2.14)

A generic PDMP sampler is given by Algorithm 5, and one aims to find Q and ρ such that
the resulting Markov process admits the target distribution µ as a stationary distribution. In
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most cases, the deterministic dynamics are chosen to be easy to simulate, and the challenge
when using PDMPs then lies in the simulation of the iPP, which we discuss at the end of in
this section.

Algorithm 5
1: procedure Generic PDMP
2: z0 ∼ µ(z) ▷ Draw initial value z0 from µ
3: t← 0
4: for n = 1 . . . do
5: Solve ζ̇ = g(ζ), starting from ζ0 = zt ▷ Solve deterministic dynamics
6: τ ∼ iPP(ρ(ζt)) ▷ Calculate event time along trajectory
7: z[t:t+τ]← ζ[0:τ] ▷ Amend z trajectory
8: zt+τ ∼ Q(zt+τ, ·) ▷ Jump
9: t← t+τ ▷ Update time

10: end for
11: end procedure

In the processes discussed subsequently in this section, the target space X is once more
augmented by a velocity variable, and we define the augmented variable z = (x, v). Let ν be
the marginal of v, and let the desired joint target distribution be µ(dz) = µ(dx,dv) = π(dx)ν(dv).
We further restrict ourselves to processes where the trajectories in the variable of interest x

are continuous, and the jumps occur exclusively in the velocity component. In this, these
samplers are similar to the Hamiltonian Monte Carlo method (without the MH correction
step), where the momentum variable is resampled after fixed time steps (rather than being
sampled from an iPP), and the variables otherwise follow the deterministic dynamics (2.12).

The samplers discussed here further require µ to admit a differentiable target density,
and we again write this density as f (z) = f (x, v) ∝ exp(−H(x, v)). U will again denote the
potential of π.

The Zig-Zag Sampler

The Zig-Zag Sampler (ZZS), introduced by Bierkens et al. (2019a), derives its name from
the trajectories it produces, see the left panels in Figure 2.1. The augmented velocities
are of the form v ∈ {−1,1}d and the distribution over these velocities is uniform, such that
the joint distribution is given by µ(dx,dv) = π(dx)U(dv). The process (zt)t≥0 = (xt, vt)t≥0

leaves the joint distribution of x and v invariant. The deterministic dynamics are given as the
solution to the ordinary differential equation (ẋt, v̇t) = (vt,0), that is, they follow straight lines
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between jumps. The jumps are triggered through d inhomogeneous Poisson processes (iPPs),
which are associated with the individual dimensions of the problem. Intuitively, when the
trajectory is moving into less probable regions, a velocity component is flipped with a certain
probability, such that the process targets the desired distribution. The ideal rate at which a
velocity vi is flipped is given by

ρi
ZZ(t; x, v) =max

{
0,

∂

∂xi
U(x+ tv) · vi

}
. (2.15)

Globally, the rate at which any change in velocity occurs is given by

ρZZ(t; x, v) =
d∑

i=1

ρi
ZZ(t; x, v).

The inhomogeneous Poisson processes with rates (2.15) are simulated, returning proposed
event times t j and the first event is picked to initiate a jump:

j∗ = argmin
j=1,...,d

τ j, τ = τ j∗ .

The velocity variable is then updated by applying the Flip operator F j∗ to v:

F j∗(vi) =

−vi if i = j∗

vi else.

This continuous-time Markov process, arising from the combination of following the tra-
jectories and flipping velocity components at random times, has stationary distribution
π(dx)U(dv), and we refer the reader to Bierkens et al. (2019b) for proofs of ergodicity.

In practice, the main difficulty of using the ZZS lies in the simulation of the iPPs, a
problem not exclusive to the ZZS. We will postpone the discussion of simulating them until
after the next two subsections.

The Bouncy Particle Sampler

The Bouncy Particle Sampler (BPS) is also named after the looks of its trajectories, which
look like a particle moving through the x space and bouncing off an invisible wall at random
intervals, see the right panels in Figure 2.1. It was developed by Peters and de With (2012) to
solve problems in statistical physics, and introduced to the general statistics community by
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Bouchard-Côté et al. (2018). For the BPS, the augmented velocity variable is continuous,
following a standard normal distribution. The deterministic dynamics between jumps are the
same as for the ZZS, given by the flow (ẋt, v̇t) = (vt,0). The jumps are once more triggered by
an inhomogeneous Poisson process, with the (single) rate function given by

ρBPS (t; x, v) =max{0, ⟨v,∇U(x+ tv)⟩}. (2.16)

Whenever an event occurs, the velocity is updated by applying a reflection operator Rx(v)
(following the name of the method, alternatively called a bounce operator) which reflects the
velocity at a hyperplane orthogonal to the gradient at x:

Rx(v) = v−2
⟨v,∇U(x)⟩
∥∇U(x)∥2

∇U(x). (2.17)

The practical difficulty when using the BPS is again the simulation of the iPP which we
discuss in the next subsection. The continuous-time Markov process arising from the BPS has
stationary distribution π(dx)N(dv;0, I), but to ensure ergodicity of the sampler, the velocity
needs to be resampled regularly. For a full theoretical treatment of the ergodicity properties
of the BPS, we refer the reader to Deligiannidis et al. (2019); Durmus et al. (2020) and
for more general theoretical treatment of PDMPs to Andrieu et al. (2018). The BPS can
further be localised as described in Bouchard-Côté et al. (2018) if the potential function U

factorises over groups of variables, as we will see in Chapter 3, this is crucial for competitive
performance of the BPS when targeting higher-dimensional distributions.

The Hamiltonian Bouncy Particle Sampler

An alternative specification for the dynamics of the BPS was introduced in Vanetti et al.
(2017), which we will now detail. Consider the Hamiltonian of both the target variable and
the velocity H(x, v) defined by

H(x, v) = U(x)+
1
2
vtv = −ℓ(x)− logπ0(x)+

1
2
vtv+ c,

where c is the normalisation constant which we will drop from the calculations for notational
convenience, this does not affect the sampling properties. For an auxiliary spherical potential
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V(x) = 1
2 (x−m)TΣ−1(x−m), the Hamiltonian

H(x, v) = −ℓ(x)− logπ0(x)−V(x)︸                        ︷︷                        ︸
Û(x)

+V(x)+
1
2
vtv︸       ︷︷       ︸

Ĥ(x,v)

, (2.18)

naturally splits into two parts. The dynamics of the Hamiltonian Ĥ are available in closed
form and can be solved explicitly for any m and Σ:dxt = ∇vĤ(xt, vt) = vt

dvt = −∇xĤ(xt, vt) = Σ−1(x−m).
(2.19)

If the model under consideration has a Gaussian component in x, one is advised to choose
the auxiliary potential to equal this energy function. For example, if π0 is Gaussian, setting
V(x) = − logπ0(x) reduces the potential Û(x) in (2.18) to only depend on the likelihood. The
rates and reflection operator of the resulting Hamiltonian BPS (HBPS) are defined by (Vanetti
et al., 2017)

ρHBPS (t) =max{0, ⟨vt,∇Û(xt)⟩}

R̂x(v) = v−2
⟨v,∇Û(x)⟩
∥∇Û(x)∥2

∇Û(x),

and the deterministic flow is determined by the Hamiltonian dynamics (2.19). The resulting
continuous-time Markov process has π(dx)N(dv;0, I) as stationary distribution for any choice
of m and Σ. Choosing these auxiliary variables carefully, the Hamiltonian BPS can be
localised, in the sense that a factor decomposition is made explicitly available.

Simulating inhomogeneous Poisson processes

For both the ZZS and the BPS, the difficulty lies in the simulation the event times of the
respective inhomogeneous Poisson processes (iPP), which initiate a change in velocity. For a
single iPP with rate ρ(t) = ρ(t; x, v),we define

ϱ(t) =
∫ t

0
ρ(s)ds.
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For an iPP, the probability of the first event happening after time t is given by

p(τ1 > t) = exp(−ϱ(t)) = exp
(
−

∫ t

0
ρ(s)ds

)
.

The first event time τ1 can thus be sampled by sampling an event time of a homogeneous
Poisson point process with constant rate 1, and using an inverse transform to obtain τ1 =

ϱ−1(− log(u)), where u ∼U([0,1]). This inverse transform will in general be not available.

An alternative approach is the thinning method, which requires a bound ρ̄(t) on the rate
of interest ρ(t). This can be either a global bound ρ̄(t) = c for some constant c ∈ R, or a
bound calculated using a fixed look-ahead θ > 0: on the interval [0, θ], the rate function is
continuous and attains a maximum such that we can choose

ρ̄ = max
t∈[0,θ]

ρ(t)+γ, γ > 0,

where the extra rate γ ensures positivity of ρ̄. An event time is simulated using the exponential
distribution, τ ∼ Exp(ρ̄), and accepted with probability ρ(τ)/ρ̄; note that we can always
calculate this as ρ̄ is positive. If rejected, the procedure is repeated from t = τ; if τ > θ, the
procedure is repeated from t = θ.
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Fig. 2.1 Visualisation of trajectories from the BPS and ZZS.
Top row: Contours of a Gaussian potential in orange, ZZS trajectory (top left) and BPS
trajectory (top right). The need for velocity resampling is obvious for the BPS, without
velocity resampling, the trajectories will never enter the centre.
Bottom row: Contours of a Laplace potential in orange, ZZS trajectory (bottom left) and BPS
trajectory (bottom right). Resampling velocities is crucial for fast exploration of the space.



Chapter 3

Non-Differentiable Posteriors

A modified version of the work presented in this chapter, together with additional work by
Jacob V. Goldman which is excluded here, is published as Goldman et al. (2020). The article
is joint work with Sumeetpal S. Singh; Jacob V. Goldman and I are joint first authors as
our contributions to the publication are equal. Unless stated otherwise in the text, the work
presented here is my own.

Throughout this chapter, π(x) denotes the pdf of π and πλ(x) the pdf of πλ to simplify
notation.

3.1 Introduction

This chapter addresses the problem of efficient sampling from Bayesian posteriors that admit
only almost everywhere differentiable density functions. This class of distributions includes
all log-concave posteriors, as any convex function is almost everywhere differentiable;
the class further contains all posteriors which are a product of a log-concave prior and a
differentiable likelihood, or, more generally, posteriors which are the product of an almost
everywhere differentiable prior and an almost everywhere differentiable likelihood. Such
distributions can be found in numerous applications.

Their origins lie in optimisation, where the use of non-differentiable convex functions
to regularise optimisation objectives often results in desired sparse solutions. The Least
Absolute Shrinkage and Selection Operator (LASSO, Tibshirani (1996)), as well as its
Bayesian interpretation thereof (Park and Casella, 2008), are widely used, and various other
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penalties for sparse regularisation have been developed. These penalties can be interpreted
as potentials of priors, and can be thus be translated to the Bayesian paradigm. Popular
examples are the following:

• In image analysis, this approach has been used for image denoising (Rudin et al., 1992),
image deconvolution (Babacan et al., 2008; Chambolle et al., 2010), and compressed
sensing (Candès et al., 2006), amongst others.

• The non-convex but almost everywhere differentiable Bessel-K prior (Hosseini, 2019)
has been used for sparse regularisation (Goldman et al., 2020), as an alternative to the
Bernoulli-Laplace prior (Chaari et al., 2013) and the spike-and-slab prior (Ishwaran
et al., 2005).

• In circular statistics, the wrapped Laplace distribution is used in sound source sepa-
ration (Mitianoudis, 2012), and for modelling directional data in animal movements
(Fernández-Durán, 2004; McVinish and Mengersen, 2008). As shown in Example 3.4.7,
these circular posteriors can be multi-modal with many points of non-differentiability.

• The nuclear norm prior, corresponding to the 1-Schatten norm penalty in optimisation,
and used for low-rank matrix completion (Babacan et al., 2008; Koltchinskii et al.,
2011), is log-concave but not differentiable.

Sampling from all such distributions is challenging, as the (unadjusted) diffusion-based
algorithms discussed in Section 2.2 require gradients everywhere in order to control the
error from the discretisation bias. To evade this problem, one can target a smoothed density
function instead of the log-concave prior directly, using, for example, the proximal operator.
This operator is a minimisation programme which allows to smooth out non-differentiable
functions. It is popular in the convex optimisation community (Nitanda, 2014; Parikh et al.,
2014), the negative log-density function corresponding to the smoothed target is commonly
known as the Moreau-Yosida envelope (MYE, Bauschke et al. (2011)). The obtained prior
distributions will be called Moreau-Yosida priors in the subsequent sections, denoted by
πλ, and is continuously differentiable, allowing the employment of the diffusion algorithms
discussed above.

Since the introduction of proximal operators to the sampling literature by Pereyra (2016),
various extensions and modifications have been proposed. In Pereyra (2016), the author
proposed to use a Langevin diffusion on πλ to obtain proposals within a Metropolis-Hastings
scheme. As not every step gets accepted, the authors of Durmus et al. (2018) have considered
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the unadjusted Langevin diffusion on πλ, with the idea that no computation time is wasted
on rejected proposals. While a small bias is introduced when targeting πλ instead of π,
this can be chosen to be of a similar magnitude as the discretisation error of the diffusion,
and the fast mixing of the chain makes it the preferable choice whenever practitioners do
not need asymptotically exact solutions. This is, for example, the case in many imaging
applications. Furthermore, statistical models are (usually) only an approximation to reality,
such that the usefulness of asymptotic exactness can be questioned anyways. To allow larger
step sizes when targeting the diffusion, the use of stabilised integrators of the diffusion
have been considered in Pereyra et al. (2020). Lastly, a stochastic proximal algorithm and
its convergence properties have been studied in Salim et al. (2019). As the underdamped
Langevin equation is known to converge faster on strongly log-concave target distributions
(Cheng et al., 2017), we propose to use the same diffusion to target the MYE-smoothed target
πλ in Section 3.3.2.

The accuracy of Monte Carlo estimates obtained using the approximate target crucially
depends on a parameter λ, which controls the tightness of the approximation, and conse-
quently controls the error. Our Theorem 4 highlights this dependence. While a large λ leads
to better mixing of the associated Markov chains, a small λ results in better estimates. Good
guidance on how to choose this tuning parameter is available in Durmus et al. (2018). If
exact sampling is required, an additional Metropolis-Hastings correction step can correct for
the discretisation bias and the approximation error, at the cost of slower mixing behaviour.

An alternative sampling approach is the use of piece-wise deterministic Markov processes
(PDMPs), as they only require almost everywhere differentiability of the target density
(Goldman et al., 2020). These samplers are asymptotically exact, and are applicable as long
as global bounds on the gradients are available, defining the gradients to be 0 on the nullset
A = {x : π(x) is not differentiable}. In contrast to the methods using the MYE, PDMPs are not
restricted to log-concave posteriors.

This chapter is now organised as follows: in Section 3.2 we recapitulate properties of
proximal operators and the Moreau-Yosida envelope. Theorem 4 and Lemma 1 at the end of
that section are new, their proofs can be found in Appendix 3.6. Section 3.3 presents existing
sampling algorithms for the specified posteriors, and introduces a new second-order method.
Extensive numerical examples are reported in Section 3.4, and a discussion on the benefits
and disadvantages of the discussed methods in different settings can be found in Section 3.5.
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3.2 Proximal Operators and the Moreau-Yosida Envelope

3.2.1 Proximal Operators

We will now describe, and collect a few useful results about, the proximal operator. These al-
low to simplify the gradient evaluation of the approximations to non-differentiable posteriors
discussed in the next subsection. For any convex function g : Rd→ R, the proximal operator
proxλg with tightness parameter λ is defined through the minimisation problem

proxλg(x) = argmin
u

[
g(u)+

1
2λ
∥x−u∥2

]
. (3.1)

The proximal operator can also be interpreted as a generalisation of the Euclidean projection
operator (Parikh et al., 2014). Importantly, for differentiable functions g ∈C1(Rd) the proxλg
operator satisfies

p = proxλg(x) ⇐⇒ x− p = λ∇g(p), (3.2)

or, if g is convex but not differentiable, it still satisfies

p = proxλg(x) ⇐⇒ x− p ∈ λ∂g(p),

where ∂g(p) is the sub-differential ∂g(p) = {u ∈ Rd : ∀y ∈ Rd, (y− p)T u+g(p) ≤ g(y)}.

3.2.2 The Moreau-Yosida Envelope

The Moreau-Yosida envelope (MYE) which is defined by

gλ(x) = inf
z

[
g(z)+

1
2λ
∥x− z∥2

]
(3.3)

can be used to approximate any non-differentiable and convex function g. Intuitively, the
MYE enforces differentiability by adding a quadratic at any point of non-differentiability. It
is indeed possible to calculate the derivative of gλ using the proximal operator defined in the
previous section (Bauschke et al., 2011, Theorem 12.30):

Theorem 2. Let g : X→]−∞,∞] be a proper lower semi-continuous convex function, and

let λ > 0. Then gλ is Fréchet differentiable, and its gradient is 1/λ-Lipschitz continuous,
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given by

∇gλ(x) =
1
λ

(x−proxλg(x)). (3.4)

Furthermore, the MYE itself is also a convex function (as the infimum is a convex
function and the quadratic term preserves minima). If g is L-Lipschitz continuous, g is close
to its MYE gλ, as shown by the following theorem from (Hosseini et al., 2019, Proposition
3.4 with λ = 1/r):

Theorem 3. Let g : X→]−∞,∞] be a proper lower semi-continuous convex function, and

L-Lipschitz. Let λ > 0. Then for any x ∈ dom(g),

0 ≤ g(x)−gλ(x) ≤
L2λ

2
.

Therefore, the tightness parameter λ should be chosen of the order O(L−2), which ensures
the MYE is reasonably close to g. The upper bound is often achieved: in Figure 3.1 the
choice λ = 0.25 results in a Lipschitz constant L = 1, and for any x with |x| > λ it is easy to
see that g(x)−gλ(x) = λ

2 .

Rearranging Equation (3.4) reveals that iterative application of the proximal operator
just corresponds to gradient descent of the MYE-smoothed version of g. In Figure 3.1, we
provide a simple visual aid that illustrates the behaviour of both the MYE and proximal
operator and the respective densities in a basic example, g(x) = |x| such that g ∈ C0. The
resulting MYE in this case is the Huber loss function. In general, we do not have access to
closed-form solutions to either the MYE or the proximal operator, and finding the solution to
either using numerical methods can be quite computationally expensive.

Having recalled these basic facts about the proximal operator, we now provide an easily
verifiable bound on the precision achievable when using the MYE in sampling algorithms:
Theorem 4 quantifies the error obtained if we compute (exactly) an expectation with respect
to the smoothed target distribution versus the true (non-differentiable) distribution in the
sense that for suitably regular f :X→ R, Eπλ( f ) ≈ Eπ( f ). The benefit of the first inequality is
that we can easily verify the right-hand side numerically and thus get an error bound estimate.

Theorem 4. Let g = − logπ be the negative logarithm of a probability density function, with

g being a proper lower semi-continuous convex function, and L-Lipschitz. Let gλ be the

Moreau-Yosida envelope to g, and let πλ(x) = exp(−gλ(x))/(
∫

exp(−gλ(z))dz) be a probability
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Fig. 3.1 Left: Plot of the negative log-density (i.e. potential) of the Laplace distribution
(blue), and three MYE envelopes with different tightness parameters λ ∈ {0.25,0.5,1}. Right:
The densities corresponding to the potentials in the left plot. The normalising constant of the
MYE-adjusted density is Zgλ =

∫
R

exp{−gλ(x)}dx.

density function. Then for any π- and πλ-integrable f : X→ R:

|Eπλ( f )−Eπ( f )| ≤ (exp(L2λ)−1)Eπλ(| f |) (3.5)

|Eπλ( f )−Eπ( f )| ≤ (exp(L2λ)−1)Eπ(| f |). (3.6)

The same inequalities hold if g = g1+g2 with a convex and Lipschitz-continuous g1 and a

differentiable (but not necessarily Lipschitz-continuous) g2: in that case, one takes the MYE

of g1 only, resulting in the approximate pdf πλ(x) = exp(−gλ1(x)− g2(x))/(
∫

exp(−gλ1(z)−
g2(z))dz).

Proof. See Supplementary Material 3.6.1. □

Choosing f (x) = sgn(πλ(x)−π(x)) in this theorem allows to recover Proposition 3.1 in
Durmus et al. (2018) by only considering a one-sided inequality in Equation 3.20 in the proof
of the theorem, and can thus be viewed as a generalisation thereof. Theorem 4 shows that
for exact integral estimates, one wants to pick λ as small as possible. This, however, does
come at a cost, as the gradients of the MYE approximated target grow as λ→ 0 such that
one needs to take a smaller step size in the diffusion algorithms discussed in the next section.
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The relation between different approximation parameters and the size of the gradient is given
by the next lemma.

Lemma 1. Let g :X→]−∞,∞] be a proper lower semi-continuous convex function, and let

0 < λ1 ≤ λ2; then for the corresponding Moreau-Yosida envelopes gλ1 and gλ2 , we have

∥∇gλ1(x)∥ ≥ ∥∇gλ2(x)∥ ∀x ∈ X.

Proof. See Supplementary Material 3.6.2. □

3.3 Sampling Algorithms

Due to the non-differentiability of the target distribution, gradient-based methods cannot be
applied in a straightforward fashion. One should, however, exploit the almost everywhere
differentiability. This can be done in two ways.

If the target is log-concave (and thus almost everywhere differentiable), one can define
the approximate target πλ and sample from it using any algorithm discussed in Chapter 2. In
particular, the next two subsections define diffusion-based samplers targeting the approximate
πλ. For the first one, a Metropolis-Hastings correction step can be added to correct for the
discretisation and approximation error.

Another approach, that works for any almost everywhere differentiable target distribution,
is to use PDMPs as introduced in Section 2.4. As shown in Goldman et al. (2020), they do
not require global differentiability: one defines an extended gradient, which is the normal
gradient where it is defined, and 0 on the nullset A = {x : π(x) is not differentiable}. Crucially,
the proof to show that the target is a stationary measure under the PDMP requires integrating
the gradient with respect to the target, and changing it on a nullset does not affect the
calculations.

3.3.1 Overdamped Langevin Samplers

For a general non-differentiable distribution π one may, as proposed in Pereyra (2016) and
further studied in Durmus et al. (2018), target the MYE-smoothed version πλ instead. In
particular, the gradient of (2.8) is split into a likelihood derivative and an evaluation of the
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proximal operator via Theorem 2:

∇ logπλ(x) = ∇ℓ(x)+
1
λ

(
x−proxλlogπ0

(x)
)
=: −∇Uλ(x). (3.7)

The resulting sampler is known as proximal MALA (pMALA) or MY-ULA, depending on
whether or not a Metropolis-Hastings step is included.

If using the unadjusted version, the step-size is not forced to comply with theoretically-
optimal acceptance rates (Roberts and Rosenthal, 1998), rather, the step size is chosen to be
of the order of λ (Durmus et al., 2018).

As in Section 2.2.1, one can use a stablised explicit integrator instead of the classic Euler-
Maruyama scheme, which has been studied by Pereyra et al. (2020) who use a stochastic
second kind orthogonal Runge-Kutta-Chebyshev method (SK-ROCK) proposed in Abdulle
et al. (2018). This boils down to using Uλ instead of U in Algorithm 2.

3.3.2 An Underdamped Langevin Sampler

A natural extension of the MY-ULA algorithm is to use the more elaborate dynamics of the
underdamped Langevin SDE (2.9) to explore the smoothed target distribution πλ, where the
smoothed potential Uλ is used in the discretisation (2.11).

As with MY-ULA, the convergence of a discretisation of these dynamics depends on
the Lipschitz constant of the gradient Cheng et al. (2017), which implies that the trade-off
between posterior accuracy and mixing speed remains with MY-UULA. In spite of this, the
improved dimensional scaling of MY-UULA can provide improvements over MY-ULA, see
e.g. Examples 3.4.1 and 3.4.2.

All the experiments in this thesis were, unless stated otherwise, run with γ = 2, L = 1/λ,
and ν = λ/2, where λ is the tightness parameter of the respective MYE.

3.4 Numerics

In this section, we compare the various methods in multiple numerical examples. The
goal is to give practitioners guidance as to when to use which algorithm, which we discuss
in the subsequent Section 3.5. In most experiments, we compare the performance of the
Moreau-Yosida Unadjusted Langevin Algorithm (MY-ULA, Durmus et al. (2018)), the new
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Moreau-Yosida Unadjusted Underdamped Langevin Algorithm (MY-UULA), the stochastic
second kind orthogonal Runge-Kutta-Chebyshev method (SK-ROCK, Abdulle et al. (2018);
Pereyra et al. (2020)), the proximal Metropolis-Adjusted Langevin Algorithm (pMALA,
Pereyra (2016)), the Bouncy-Particle Sampler (BPS, Bouchard-Côté et al. (2018)), and
the Zig-Zag Sampler (ZZS, Bierkens et al. (2019a)). The rates for the BPS and ZZS are
computed using the thinning method described in Section 2.4, even though they are exactly
computable in the first examples. We believe this is a realistic and fair comparison, as the
findings generalise to more complicated setups where exact rates are not available.

In Example 3.4.7 the MYE-based methods are not applicable, and we instead compare
the BPS, the ZZS, and a Random Walk Metropolis-Hastings algorithm (RWMH).

The code for the first four experiments is available online at https://github.com/TorbenSell/
anisotropic-isotropic-laplace-gaussian.

3.4.1 Isotropic Laplace Distribution

A first simple example is a three-dimensional, isotropic, centered Laplace distribution, which
has the density

π(x) =
3∏

i=1

1
2βi

exp
(
−
|x|
βi

)
, (3.8)

with βi = 1 for i ∈ {1,2,3}. For the MYE-based algorithms, we set λ = 1/4, resulting in fairly
good approximations, see the first three rows in Figure 3.2. The tuning parameters were
chosen to be δ = λ/4 for MY-ULA, as in Section 3.3.2 for MY-UULA, δ = 0.012 and s = 15
for SK-ROCK, and δ = 2λ = 1.5 for pMALA, giving an acceptance rate of 65%. The effective
sample sizes per second (ESS/s) are summarised in Table 3.1, and the estimated marginals
within 120 seconds are shown in Figure 3.2.

It is worth noting that, in this isotropic example, the BPS and ZZS cannot compete
with pMALA. This is presumably due to the slightly more complicated implementation of
the PDMPs which requires the simulation of event times from an inhomogeneous Poisson
process, as discussed in Section 2.4. Furthermore, the additional complexity of SK-ROCK
does not yield an advantage over the naïve discretisations of the Langevin equations here,
indeed a large s on this target results in effectively wasted computation time. This remains
true for the next three experiments: SK-ROCK is generally strong on high-dimensional

https://github.com/TorbenSell/anisotropic-isotropic-laplace-gaussian
https://github.com/TorbenSell/anisotropic-isotropic-laplace-gaussian


34 Non-Differentiable Posteriors

0.0

0.2

0.4

M
Y

-U
L

A

Dimension 1

0.0

0.2

0.4

Dimension 2

0.0

0.2

0.4

Dimension 3

0.0

0.2

0.4

M
Y

-U
U

L
A

0.0

0.2

0.4

0.0

0.2

0.4

0.0

0.2

0.4

S
K

-R
O

C
K

0.0

0.2

0.4

0.0

0.2

0.4

0.0

0.2

0.4

p
-M

A
L

A

0.0

0.2

0.4

0.0

0.2

0.4

0.0

0.2

0.4

Z
Z

0.0

0.2

0.4

0.0

0.2

0.4

−4 −2 0 2 4
0.0

0.2

0.4

B
P

S

−4 −2 0 2 4
0.0

0.2

0.4

−4 −2 0 2 4
0.0

0.2

0.4

Fig. 3.2 All algorithms are targeting a three-dimensional isotropic Laplace distribution. All
algorithms were given the same computational budget of 120 seconds for a fair comparison.

Algorithm MY-ULA MY-UULA SK-ROCK pMALA BPS ZZS
β1 = 1 233.93 448.61 13.29 2148.79 293.35 447.52
β2 = 1 223.90 387.47 19.14 2034.02 252.21 513.01
β3 = 1 231.15 402.24 18.59 1896.67 239.32 468.11

Table 3.1 Effective sample size per second for the different algorithm when targeting an
isotropic Laplace distribution. Recall that the first three algorithms are asymptotically biased,
while the last three are asymptotically exact. Due to the isotropy, we expect the ESS/s to be
similar across dimensions.
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models, in which MY-ULA and MY-UULA require very small step sizes (to control the
discretisation error from the respective Langevin equations), and SK-ROCK allows for bigger
step sizes while controlling the error at a similar rate. pMALA will also perform badly in
high-dimensional examples as the step size will decrease with dimension to ensure proposals
are accepted with roughly the optimal rate. These experiments should thus not be interpreted
as evidence that SK-ROCK is bad, but rather showing the relative benefit of PDMPs on
anisotropic targets; as they highlight the difficulties that diffusion algorithms face when
targeting such distributions: the step sizes will need to be scaled to the most narrow marginal,
leading to bad mixing behaviour in the wide marginals.

3.4.2 Anisotropic Laplace Distribution

As a more complicated example, we now change the setup to an anisotropic Laplace dis-
tribution, where we set βi ∈ {1,0.1,0.01} in 3.8. For the MYE-based algorithms, we set
λ = 10−4, resulting in fairly good approximations even in the narrowest marginal, see the first
rows in Figure 3.3. The tuning parameters were chosen to be δ = λ/4 for MY-ULA, as in
Section 3.3.2 for MY-UULA, δ = 0.0012 and s = 15 for SK-ROCK, and δ = 2λ = 0.00034 for
pMALA, giving an acceptance rate of 65%. The ESS/s are summarised in Table 3.2, and the
estimated marginals within 500 seconds are shown in Figure 3.3. Even after this relatively
long runtime, the histogram estimates from the diffusion-based samplers are not perfectly
aligning with the first marginal density.

Algorithm MY-ULA MY-UULA SK-ROCK pMALA BPS ZZS
β1 = 1 7.81 6.64 2.47 4.81 2.73 22.06
β2 = 0.1 14.19 18.45 142.52 48.70 73.77 193.39
β3 = 0.01 943.88 1452.83 2578.15 4585.26 764.70 1480.38

Table 3.2 Effective sample size per second for the different algorithm when targeting an
anisotropic Laplace distribution. Recall that the first three algorithms are asymptotically
biased, while the last three are asymptotically exact.

In this setting, the marginal corresponding to β1 = 1 is the slowest mixing one, and the
ZZS outperforms all other samplers measured by the ESS/s. This a nicely illustrating the
strong performance of the ZZS in examples where dimensions are independent. SK-ROCK
can also be chosen to be run with a larger step size, in which case the ESS/s will increase
at the cost of the histogram estimate to the third marginal deviating from the truth. For
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Fig. 3.3 All algorithms are targeting a three-dimensional anisotropic Laplace distribution.
The first three rows correspond to the approximate algorithms, and none of them manage
to fully capture the narrowest component. The ZZS perfectly captures the last component,
and shows good results in the first component. The BPS (in its global form) mixes slowly in
the first component, but well in the last. All algorithms were given the same computational
budget of 500 seconds for a fair comparison.
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MY-UULA, increasing the step size too much will result in a bimodal target, emphasising
the importance of strong log-concavity for this method to work well.

3.4.3 Isotropic Gaussian Distribution

The Laplace distribution used in the previous experiments is weakly log-concave. To analyse
the behaviour of the different algorithms in strongly log-concave examples, we repeat
the previous two experiments with centered Gaussian distributions. While the Gaussian
distribution is everywhere differentiable, we pretend it has a point of non-differentiability
somewhere, and accordingly use the same algorithms as before.

In the first setup, we choose the identity matrix as the covariance matrix, and set λ = 0.1,
which gives good approximations, see Figure 3.4. MY-ULA is run with δ = λ/4, MY-UULA
as described in Section 3.3 but with ν = 2λ, SK-ROCK with δ = 0.048 and s = 15, and
pMALA works with δ = 2λ = 1 giving 73% acceptances. Table 3.3 summarises the ESS/s for
the different algorithms, and Figure 3.4 the visual results after 120 seconds runtime.

Algorithm MY-ULA MY-UULA SK-ROCK pMALA BPS ZZS
σ1 = 1 331.06 1110.52 123.69 2856.59 894.64 1343.55
σ2 = 1 339.86 1060.05 115.34 2879.52 969.02 1267.24
σ3 = 1 333.64 1122.32 143.43 2802.90 1038.68 1383.02

Table 3.3 Effective sample size per second for the different algorithm when targeting a
3-dimensional isotropic Gaussian distribution. Recall that the first three algorithms are
asymptotically biased, while the last three are asymptotically exact.

As for the isotropic Laplace example, the elaborate integration scheme used by SK-
ROCK does not yield any benefit in the isotropic Gaussian example. Interestingly, all exact
algorithms perform better than any approximate one. This is because the approximate
algorithms need to be run with comparatively small step sizes to ensure they do not deviate
too much from the desired target distribution. Running them with larger step sizes will
increase the discretisation bias. We refer the reader to Durmus et al. (2018) for a discussion
on how to choose both the envelope tightness and the step size of MY-ULA, and to Pereyra
et al. (2020) for a discussion on how to choose the step size of SK-ROCK.
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Fig. 3.4 All algorithms are targeting a three-dimensional isotropic Gaussian distribution. The
first three rows correspond to the approximate algorithms. All algorithms were given the
same computational budget of 100 seconds for a fair comparison.
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3.4.4 Anisotropic Gaussian Distribution

To complete the first examples, we look at an anisotropic Gaussian distribution, choosing the
three-dimensional diagonal covariance matrix to be such that Σi,i =σ

2
i , with σi ∈ {1,0.1,0.01}.

The variances are chosen such that the level of anisotropy (measurable by looking at the
ratio Varmax/Varmin which is 104 here) is the same as in Example 3.4.2. We chose λ = 10−5,
which gives good approximate histogram estimates, see Figure 3.5. We again set δ = λ/4
for MY-ULA, the parameters for MY-UULA as in Section 3.3, and δ = 0.000048 and s = 15
for SK-ROCK. For pMALA, we set δ = 2λ = 0.0003, giving an acceptance probability of
65%. Estimates of the ESS/s are summarised in Table 3.4, the histogram estimates of the
marginals as obtained by the different samplers are given in Figure 3.5.

Algorithm MY-ULA MY-UULA SK-ROCK pMALA BPS ZZS
σ1 = 1 11.31 5.83 1.31 4.27 3.15 56.30
σ2 = 0.1 13.15 15.58 14.64 93.49 161.44 570.76
σ3 = 0.01 322.43 1242.65 1056.08 4395.51 1247.77 2657.70

Table 3.4 Effective sample size per second for the different algorithm when targeting an
anisotropic Gaussian distribution. Recall that the first three algorithms are asymptotically
biased, while the last three are asymptotically exact.

As in Example 3.4.2 on the anisotropic Laplace distribution, all algorithms mix slowest
on the wide marginal, here corresponding to σ1 = 1. The ZZS again performs best on this
marginal in terms of the ESS/s.

3.4.5 Nuclear-Norm Models for Low-Rank Matrix Estimation

Another illustration of the methods’ performance in exact sampling, we consider a nuclear-
norm model example taken from Pereyra (2016). Let x ∈ Rd = Rn×n be an unknown low-rank
matrix, and let observations be noisy measurements thereof: y = x+ ξ, where the entries of ξ
are i.i.d. N(0,σ2). We assume that x is a low-rank matrix, and our aim is to sample from the
posterior distribution of x given by

π(x) ∝ exp
(
−

1
2σ2 ∥x−y∥F −α∥x∥∗

)
, (3.9)

where ∥·∥F denotes the Frobenius norm and ∥·∥∗ denotes the nuclear norm which favours
low-rank matrices and penalizes high-rank ones. Conveniently, the proximal operator of the
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Fig. 3.5 All algorithms are targeting a three-dimensional anisotropic Gaussian distribution.
The first three rows correspond to the approximate algorithms, and none of them manage
to fully capture the narrowest component. The ZZS perfectly captures the last component,
and shows good results in the first component. The BPS (in its global form) mixes slowly
in the first component, but well in the last. The last four algorithm were given the same
computational budget of 200 seconds for a fair comparison, MY-ULA and MY-UULA were
given 600 seconds.
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nuclear norm is available in closed form: Let x = QΣVT be the singular value decomposition
of x, with Σ = diag(σ1, . . . ,σn). Then the proximal operator is given by

proxλα∥·∥∗(x) = Qdiag
(
sgn(σ1)max(|σ1| −αλ,0), . . . ,sgn(σn)max(|σn| −αλ,0)

)
VT ,

i.e., one applies the soft thresholding operator to the singular values of x. We can thus
efficiently compute the gradient to use in the Langevin-based samplers,

∇Uλ(x) =
1
σ2 (x−y)+

1
λ

(
x−proxλα∥·∥∗(x)

)
. (3.10)

We generated y by adding Gaussian noise to a matrix xtrue ∈ R64×64 with entries xtrue
i, j ∈

{0,0.7,1}. The matrix xtrue is visually a checkerboard with white, grey, or black checks.

For SK-ROCK, MY-ULA, and MY-UULA, we set λ = σ2. The step size for MY-ULA is
set to δ= 2λ, for SK-ROCK we set s= 10 and δ≈ 0.242, and MY-UULA is tuned as described
in Section 3.3.2. For pMALA setting δ/2 = λ = 0.000035 gave around 65% acceptances. A
particular issue for the BPS in this model is the lack of factor decomposition due both to
non-linearity of the nuclear norm and the proximal operator, which prevents us from using
a localised, and therefore faster, version of the BPS. In an attempt to mitigate the resulting
debilitated dynamics, we note that the likelihood in this case is equivalent to a isotropic
Gaussian distribution in x as well. Defining an auxiliary potential by V(x|y) = ∥x− y∥2/2,
we propose to generate dynamics according to the Hamiltonian flow (see Section 2.4)
corresponding to (ẋ, v̇) = (vt,−(xt −y)/σ2), which has the explicit solutionxt

vt

 = v0 sin
(

t
σ

)
σ+ (x0−y)cos

(
t
σ

)
+y

−(x0−y) sin
(

t
σ

)
+ v0 cos

(
t
σ

)  .
By this choice of V it follows that the gradient employed in the rate and reflection operator
subsequently is

∇Ûλ(x) =
1
λ

(
x−proxλα∥·∥∗(x)

)
. (3.11)

Figure 3.6 shows the mean squared error between the posterior mean estimate of the
respective algorithms, as calculated every second, and the ‘true’ posterior mean, as estimated
by a very long run using an asymptotically unbiased algorithm. All algorithms are started at
the same point, not too far away from the region of high probability. One can see that while
MY-ULA quickly gives good estimates, the second-order scheme MY-UULA quickly yields
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better estimates. Interestingly, SK-ROCK performs worse here. The BPS does not yield
any useful estimates in reasonable time, but after a while the HBPS gives the second best
results. For completeness, we note that the Zig-Zag Sampler is not able to computationally
compete with any of the other methods, as a single reflection requires the evaluation of the
full gradient, which is prohibitively expensive. We also estimated the slowest and fastest
mixing components of the checkerboard by estimating the sample covariance matrix during a
long run of an exact sampler, and taking the first and last eigenvector thereof as the direction
where the chain mixes slowest, and fastest, respectively. The autocorrelation plots for these
components are shown in the second and third panel of Figure 3.6.
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Fig. 3.6 Results from the nuclear norm example. Left: MSE over time, for the different
algorithms, run for half an hour each, on a log-log-scale. Middle: Autocorrelation for the
slowest component, number of samples adjusted for a fair comparison. Right: Autocorrelation
for the fastest component, number of samples adjusted for a fair comparison.

3.4.6 Image Deblurring

Uncertainty quantification in images is generally a challenging computational problem, with
samples from the posterior used to estimate credible intervals or provide model comparisons.
We focus on a purely illustrative example involving the total variation prior similar to
Example 4.1.2 in Durmus et al. (2018). Let x ∈ Rd = Rd1×d2 be an image which we observe
through y = Hx+ ξ, where H is a blurring operator that blurs a pixel xi, j uniformly with its
closest neighbours (5× 5 patch), and ξ ∼ N(0,σ2Id1×d2). The log-prior is proportional to
−TV(x) = −α∥∇Dx∥1, where ∇D is the two-dimensional discrete gradient operator as defined
in Chambolle (2004), and α is a fixed parameter. The application of the TV prior is common
in a wide array of imaging applications, as it emphasises smooth surfaces bounded by distinct
edges. As the authors of Durmus et al. (2018) we chose the 256×256 ‘boat’ test image, and
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Fig. 3.7 Left: The original 256×256 image. Center: The image after the application of the
uniform blur operator. Right: A representative sample from the posterior distribution given
in equation (3.12), obtained using the LBPS.

set α = 0.03, σ = 0.47. The posterior is given by

π(x) ∝ exp
(
−

1
2σ2 ∥Hx−y∥22−αTV(x)

)
. (3.12)

The TV-prior decomposes into a sum where each entry only depends on neighbouring
points; the uniform blur operator is similarly local. This implies in combination that the
posterior can be factorised at granularities defined by the user, and we can therefore apply
the local BPS. We stress that the global BPS struggles in high dimensions (Deligiannidis
et al., 2018), and thus localisation is necessary for it to be a competitive algorithm in these
settings. The proximal operator is not available in closed form for the TV-prior, and hence
requires evaluation via numerical schemes such as the Douglas-Rachford algorithm (Lions
and Mercier, 1979) or the Chambolle-Pock algorithm (Chambolle and Pock, 2011). While
these algorithms in general are efficient, they slow down significantly as the precision of the
envelope is increased.

We compare the performances of the LBPS, the ZZS, pMALA, MY-ULA, MY-UULA,
and SK-ROCK. For both the LBPS and the ZZS we estimated bounds on the prior- and
likelihood-gradients to get constant upper bounds on the respective rates, we then used these
constant bounds to generate computationally cheap events, avoiding any global evaluations
of the gradient: these bounds were set to 4.06 for the ZZS and to 9.44 for the LBPS (with
4× 4 blocks). For the ZZS, the evaluated rates never exceeded this bound, for the LBPS
they did in a negligible 0.217% of events. For pMALA, we set λ = 2δ = 0.006, giving us
an acceptance ratio of 67%. For the last three samplers, we chose λ = 0.45 following the
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guidance in Durmus et al. (2018), and set δ = 0.9 and s = 10 for SK-ROCK. The goal is
to sample from the posterior distribution when observing a blurred image, see Figure 3.7.
Figure 3.8 shows the mean squared error (MSE) and the structural similarity index (SSIM)
between the mean estimates of the various algorithms and the ‘true’ mean, as estimated by a
long run of an asymptotically exact algorithm. Notably, unlike MY-(U)ULA, pMALA, and
SK-ROCK, which require the evaluation of the proximal operator (which is not localisable),
the LBPS and ZZS can be sped up using parallelisation techniques: the implementation
we used applied global rates to avoid recalculating the full posterior gradient after every
event, but one may calculate the factor gradients at hardly any extra computational cost if
one calculates them in parallel.
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Fig. 3.8 Results from the Image Deblurring example. Left: The MSE of the mean estimates,
estimated every 10 seconds. Right: The SSIM of the mean estimates, estimated every 10
seconds.

3.4.7 Circular Bayesian Statistics

Circular statistics addresses inference from periodic data such as angles and rotations, for
example when analysing the direction ants move in when responding to an evenly illumi-
nated black target Jander (1957), this can be modelled by an asymmetric wrapped Laplace
distribution Fernández-Durán (2004). This example illustrates the applicability of PDMPs
when dealing with circular, non-differentiable, and multi-modal posteriors. Here, the MYE is
not well defined, precluding the use of the samplers based on the MYE-approximation.

In Jander (1957), the author studies which direction ants walk in when being placed in
the middle of an evenly illuminated arena with two black discs on the side. These directions
were observed for 253 ants, the observations are summarised in Figure 3.9. For the one-disc
example, Fernández-Durán (2004) shows that the wrapped Laplace distribution is a good
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fit to the observations. For the two-disc model, we thus assume a mixture of two wrapped
Laplace distributions with means µi ∈ [0,2π), scale parameters λi > 0, and skew parameters
κi > 0, i ∈ {1,2}. The likelihood of a data point y ∈ [0,2π) given the mixture component is
calculated by

θ =

{
y−µi, for y−µi > 0
y−µi+2π, for y−µi ≤ 0

L(θ|µi,λi, κi) =
λiκi

1+ κ2
i

(
e−λiκiθ

1− e−2πλiκi
+

e(λi/κi)θ

e2π(λi/κi)−1

)
,

where the definition of the auxiliary variable θ handles the periodic extension due to the
shift by the mean. The prior on the µi are uniform distributions on [0,2π], the ones on the
scale parameters λi are Exponential(1) distributions, the one on the κi are Gamma(2,1/2)
distributions, and the one on the mixture parameter ρ is a Beta(100,100) distribution.
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Fig. 3.9 Left: Observations, taken from (Jander, 1957, Fig. 18B). Right: Marginal posterior
density for the mean parameter µ1.

Figure 3.9 shows the posterior distribution for µ1 as estimated by the BPS. The reader
should in particular note the multi modality of the distribution, which especially the BPS
samples from effectively: Table 3.5 summarises the effective sample size per second for the
BPS, the ZZS, and a Random Walk Metropolis Hastings Sampler.

3.5 Discussion

Both PDMPs and diffusion-based samplers have been shown to work in various examples,
albeit differently well. This discussion aims to provide the reader with an understanding of
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Algorithm µ1 λ1 κ1 ρ

BPS 3.36 164.80 6.29 2095.44
ZZS 0.64 20.90 1.12 655.00
RWMH 2.88 37.01 4.52 1153.13

Table 3.5 Effective sample size per second for different variables. The ESS/s for the variables
from the second mixture are similar, as is expected due to the mixture components being
indistinguishable from one another.

the strengths and weaknesses of the respective methods, and to guide the practitioner as to
which algorithm to use. In the following, we discuss the key aspects one needs to consider.

Dimensionality: PDMPs perform worse as the dimension increases: the ZZS requires
at least d events to completely change the direction of the velocity vector, and for each
of these event the gradient in the respective direction needs to be re-evaluated, which
(depending on the problem) can become prohibitively expensive. The BPS is known to
suffer in high-dimensions too, with problems arising even when targeting isotropic Gaussians
(Bouchard-Côté et al., 2018) requiring many refreshments. If the problem is localisable (such
as in Example 3.4.6), the local version of the BPS can alleviate these issues by reducing
the problem size to multiple smaller problems. An interesting direction for future research
would be to parallelise the dynamics of these smaller problems, which would be a strong
argument for PDMPs in high-dimensional settings, as discussed in Example 3.4.6. A first
step in this direction is to compute the gradients of the different factors in parallel which does
not impact the correctness of the algorithm: multiple workers calculate the local gradients in
parallel and pass them on to a master process, this master process then draws the exponential
variables using the calculated gradient and executes the respective PDMP jump. A second
step is in the spirit of Chapter 4, which would allow workers to work on different factors in
parallel; this requires further assumptions and a more careful analysis, as the factors interact
with each other, prohibiting naive parallelisation. The smoothing by the MYE always results
in a non-localisable target, such that the computation of the proximal operator cannot be
broken down into smaller problems. Furthermore, in the large data regime, data subsampling
is straightforward for the PDMP samplers.

Anisotropic targets: As illustrated in Example 3.4.2, and similarly in (the everywhere
differentiable) Example 3.4.4, especially the ZZS is able to adapt to highly anisotropic targets.
The diffusion-based samplers would improve if one has a preconditioner available, but if this
is not the case, they struggle: a tight envelope results in small step sizes such that mixing
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in the ‘slowly mixing components’ takes very long. However, if one chooses a rather crude
approximation, the approximation error in the ‘fast mixing components’ grows. This is
graphically visible in Figures 3.3 and 3.5.

Log-concavity: As illustrated in Example 3.4.7, PDMPs allow targeting any almost
everywhere differentiable posterior, while the diffusion-based algorithms rely on the MYE to
be well defined which it only is for log-concave targets. In strongly log-concave settings such
as Examples 3.4.3 and 3.4.4 when the almost everywhere gradient of the target is not globally
Lipschitz continuous1, a very tight envelope is needed to ensure a good approximation: this
however, results in small step sizes and thus slow mixing. To alleviate this problem, one
should try to split the posterior potential g into a non-differentiable part g1, which has almost
everywhere Lipschitz-continuous gradients, and a differentiable part g2, which may not have
a globally Lipschitz-continuous gradient. One then forms the MYE only over the first part,
and this is indeed the strategy implemented in Examples 3.4.6 and 3.4.5, for the latter see
Equation (3.10). An error bound for this split is stated in Theorem 4.
In weakly log-concave settings, the samplers based on the overdamped Langevin diffusion
struggle as the gradients do not grow when |x| diverges. In high-dimensional examples this
seemed to be less important, as the dimensionality becomes the decisive factor of efficiency.
In the absence of any log-concavity, such that the MYE of the target is not well defined,
PDMPs are a viable option.

Exact Sampling: The PDMPs are inherently asymptotically exact samplers, while the un-
adjusted diffusion-based samplers are not. However, it is possible to incorporate a Metropolis-
Hastings correction step in MY-ULA to account for this, giving the proximal Metropolis-
Adjusted Langevin Algorithm (pMALA, Pereyra (2016)). pMALA is recommended to be
tuned such that one achieves around 50% - 70% acceptances, which may result in slower
mixing in comparison to the unadjusted algorithms, and generally suffers in the same settings
as these algorithms, e.g. on very anisotropic target distributions, see Examples 3.4.2 and
3.4.4.

Proximal Operators and Event Rates: The proximal operators for some functions are
available in closed form (see e.g. Polson et al. (2015)), however often the minimisation
problems needs to be solved numerically, in which case the evaluation becomes expensive.
This is the case in Example 3.4.6, but the high dimension of the example was a more
important factor in terms of efficiency of the different samplers.

1Note that strong log-concavity implies the existence of a dominating quadratic, such that no Lipschitz
constant can globally exist.
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On the other end, the PDMPs will perform significantly worse if one cannot find good bound
on the event rates, in which case one needs to evaluate the gradients more often.

This chapter showed that sampling algorithms based on PDMPs allow exact sampling
from non-differentiable target distributions. In particular, gradients were exploited if they
exist almost everywhere, which is a common scenario in many real-world applications
using non-differentiable priors. This has particular relevance in cases like cancer tumor
classification (Golub et al., 1999) where accuracy is at a premium (Goldman et al., 2020),
and in situations where the proximal operator is prohibitively expensive to calculate. In
comparison to gradient-based methods, PDMPs can naturally handle anisotropy of the
posterior without preconditioning, and furthermore can be localised whenever the distribution
is of product-form. In contrast, the unadjusted diffusion algorithms perform well in cases
where low accuracy of the envelope is acceptable and when the posterior cannot be localised.
Utilising second-order information in the MY-UULA algorithm can prove beneficial to
mixing, but finding clear guidance as to when they are preferable remains an open problem.
Furthermore, we have illustrated efficient sampling of non-convex posteriors where Moreau-
Yosida methods are not applicable. In conclusion, this chapter has shown that PDMPs are a
very able tool whenever accurate posterior inference is required in complex non-differentiable
scenarios, and discussed which distribution characteristics suggest one or the other class of
algorithms to be preferable.

3.6 Appendix

3.6.1 Proof of Theorem 4

We now prove Theorem 4 which stated the following:

Theorem. Let g = − logπ be the negative logarithm of a probability density function, with

g being a proper lower semi-continuous convex function, and L-Lipschitz. Let gλ be the

Moreau-Yosida envelope to g, and let πλ(x) = exp(−gλ(x))/(
∫

exp(−gλ(z))dz) be a probability

density function. Then for any π- and πλ-integrable f : X→ R:

|Eπλ( f )−Eπ( f )| ≤ (exp(L2λ)−1)Eπλ(| f |) (3.13)

|Eπλ( f )−Eπ( f )| ≤ (exp(L2λ)−1)Eπ(| f |). (3.14)
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The same inequalities hold if g = g1+g2 with a convex and Lipschitz-continuous g1 and a

differentiable (but not necessarily Lipschitz-continuous) g2: in that case, one takes the MYE

of g1 only, resulting in the approximate pdf πλ(x) = exp(−gλ1(x)− g2(x))/(
∫

exp(−gλ1(z)−
g2(z))dz).

Proof of Theorem 4. From Theorem 3 we immediately get the inequalities

−g(x) ≤ −gλ(x) (3.15)

−gλ(x) ≤ −g(x)+
L2λ

2
, (3.16)

and thus also ∫
exp(−gλ(z))dz ≥

∫
exp(−g(z))dz = 1 (3.17)

and ∫
exp(−gλ(z))dz ≤

∫
exp(−g(z))exp(L2λ/2)dz = exp(L2λ/2). (3.18)

Let f ≥ 0, then

Eπλ( f ) =
∫

f (x)
exp(−gλ(x))∫
exp(−gλ(z))dz

dx

(3.17)
≤

∫
f (x)exp(−gλ(x))dx

(3.16)
≤ exp(L2λ/2)

∫
f (x)exp(−g(x))dx = exp(L2λ/2)Eπ( f ).

Similarly, again for f ≥ 0,

Eπλ( f ) =
∫

f (x)
exp(−gλ(x))∫
exp(−gλ(z))dz

dx

(3.18)
≥ exp(−L2λ/2)

∫
f (x)exp(−gλ(x))dx

(3.15)
≥ exp(−L2λ/2)

∫
f (x)exp(−g(x))dx

= exp(−L2λ/2)Eπ( f ).
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In summary, for any non-negative f , we have

exp(−L2λ/2)Eπ( f ) ≤ Eπλ( f ) ≤ exp(L2λ/2)Eπ( f ). (3.19)

Subtracting Eπ( f ) ≥ 0 from these inequalities lets us derive

−(exp(L2λ/2)−1)Eπ( f ) = −max{exp(L2λ/2)−1,1− exp(−L2λ/2)}Eπ( f )

=min{1− exp(L2λ/2),exp(−L2λ/2)−1}Eπ( f )

≤ (exp(−L2λ/2)−1)Eπ( f )
(3.19)
≤ Eπλ( f )−Eπ( f )

(3.19)
≤ (exp(L2λ/2)−1)Eπ( f )

≤max{exp(L2λ/2)−1,1− exp(−L2λ/2)}Eπ( f )

= (exp(L2λ/2)−1)Eπ( f ),

(3.20)

and therefore

|Eπλ( f )−Eπ( f )| ≤ (exp(L2λ)−1)Eπ( f ) (3.21)

holds for any non-negative f .

For general f , we consider the standard decomposition f = f + − f − with f + ≥ 0 and
f − ≥ 0. Then | f | = f ++ f −, and as

|Eπλ( f )−Eπ( f )| = |Eπλ( f +)−Eπ( f +)− [Eπλ( f −)−Eπ( f −)]|

≤ |Eπλ( f +)−Eπ( f +)|+ |Eπλ( f −)−Eπ( f −)|
(3.21)
≤ (exp(L2λ)−1)Eπ( f +)+ (exp(L2λ)−1)Eπ( f −)

= (exp(L2λ)−1)Eπ(| f |),

we have proved the first bound in the Theorem.

Since we can exchange the roles of π and πλ in (3.19), we can follow the same chain of
arguments to also get

|Eπλ( f )−Eπ( f )| ≤ (exp(L2λ/2)−1)Eπλ(| f |).
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If g = g1+g2 with Lipschitz-continuous g1 and differentiable, but not necessarily Lipschitz-
continuous, g2, one takes the MYE of g1 and notes that 3.15 and 3.16 hold for g1. Adding g2

on both sides of the inequality shows that these inequalities remain true for g such that the
proof still holds. □

3.6.2 Proof of Lemma 1

We now prove Lemma 1 which stated the following:

Lemma. Let g : X→]−∞,∞] be a proper lower semi-continuous convex function, and let

0 < λ1 ≤ λ2; then for the corresponding Moreau-Yosida envelopes gλ1 and gλ2 , we have

∥∇gλ1(x)∥ ≥ ∥∇gλ2(x)∥ ∀x ∈ X.

Proof. The case λ1 = λ2 is trivial so assume λ1 < λ2.
Firstly recall that for convex g any MYE is also convex. Further note that gλ2 is a Moreau-
Yosida envelope for gλ1 , with gλ2 = (gλ1)λ2−λ1 (Bauschke et al., 2011, Proposition 12.22 (ii)).
We may thus define h = gλ1 , λ = λ2−λ1, such that the statement of the lemma is equivalent to

Lemma (Equivalent Formulation of Lemma 1). For any convex and differentiable function

h : X→]−∞,∞], and for any λ > 0, the Moreau-Yosida envelope hλ satisfies

∥∇h(x)∥ ≥ ∥∇hλ(x)∥ ∀x ∈ X.

We define p = proxλh(x). By theorem 2, ∇hλ(x) = (x− p)/λ; and by convexity (and
differentiability) of h, we have for any x ∈ X:

0 ≤ ⟨∇h(p)−∇h(x), p− x⟩

= ⟨∇h(p)−∇h(x),−λ∇h(p)⟩

= −λ∥∇h(p)∥2+λ⟨∇h(x),∇h(p)⟩

≤ −λ∥∇h(p)∥2+
λ

2
∥∇h(x)∥2+

λ

2
∥∇h(p)∥2

=
λ

2
∥∇h(x)∥2−

λ

2
∥∇h(p)∥2,

where the first inequality is a necessary and sufficient condition for convexity of a dif-
ferentiable function, and the last inequality follows from Young’s inequality as ⟨x, y⟩ ≤
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∥x∥2/2+ ∥y∥2/2.

∥∇h(x)∥2 ≥ ∥∇h(p)∥2
(3.2)
= ∥

1
λ

(x− p)∥ = ∥∇hλ(x)∥

as required. The last equality is given by Theorem 2. □



Chapter 4

Parallelisation for Localisable Inverse
Problems

4.1 Introduction

We already saw in Chapter 3 how the performance of samplers can be significantly improved
if the problem factorises into smaller problems. This chapter will investigate this further by
exploring ways to parallelise computation when the target of interest is a localisable Bayesian
inverse problem.

Throughout this chapter, the variable of interest is x ∈ Rd. It will be illustrative to think
of Rd as Rd1×d2 , where the variables xi, j are defined on a grid. This is common when solving
two-dimensional partial differential equations (PDEs) or when the object of interest is an
image. Given x, the observations are obtained through

y = h(x)+ ξ, (4.1)

where h is the observation function, and ξ is noise from some known probability distribution.
Examples of observation functions are forward operators of PDEs, where the entries of x are
a discretisation of the domain (Stuart, 2010; Wróblewska et al., 2016), blurring kernels in
image analysis (Idier, 2013), and Fourier transforms, to name a few.

One talks about a Bayesian inverse problem if one defines a prior distribution π0 on
x, considers the likelihood L(y|x), and is interested in finding the posterior distribution
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π(dx) ∝ π0(dx)L(y|x). As discussed in the introductory chapter of this thesis, this normally
boils down to the problem of sampling from the posterior distribution.

Especially in high-dimensional problems, using global sampling strategies becomes
prohibitively costly, and exploiting the localised structure of the problem is key to successful
sampling strategies.

Intuitively, localised inverse problems are characterised by a spatial structure of the
variables, with variables being uncorrelated under the posterior if they are far from one
another. This is the case for many examples in imaging problems. There, the priors are
chosen to enforce some smoothness of the image, but pixels get more and more uncorrelated
as one increases the distance between them. Similarly, the likelihood often corresponds to
observing a blurred pixel with some noise, crucially, an observation will not normally depend
on what the image looks like at far away pixels. Outside of image analysis, localisation can
be found e.g. in numerical weather prediction. There, localisation is often enforced when
using ensemble Kalman filters (Hamill et al., 2001), which is achieved by taking a banded
forecast covariance matrix and setting small off-diagonal elements to zero (Gaspari and Cohn,
1999; Morzfeld et al., 2019) in a way that leaves the matrix positive definite.

While localised problems exist, one will find many problems to be only approximately
localised, in the sense that while variables are increasingly decorrelated in space, they are
never completely uncorrelated. In Morzfeld et al. (2019), the localised posterior is defined
and targeted, by setting correlations to zero if they are small enough. This introduces an
error, which is difficult to analyse. One way to circumvent this problem is to incorporate
the localised posterior within a delayed-acceptance method. These methods, going back to
Christen and Fox (2005), use an approximate target distribution to decide whether proposals
are promising or not, and only evaluate the costly posterior if they are. For fully localised
posteriors, this additional correction step is not necessary.

All methods proposed in this chapter are exploiting the localised structure of the problem
to define subsets of the variables which can be sampled from in parallel, which significantly
improves the performance of the sampling algorithms.

The new contributions of this chapter are as follows:

• We distinguish the localisation assumptions from Morzfeld et al. (2019) by defining
full localisation and approximate localisation, the latter assumption satisfied by a class
of inverse problems which contains all fully localised problems.
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• We propose two different samplers that both have processes working on different
blocks of variables in parallel. Both of them are proved to be asymptotically exact
on their respective class of problems, one for fully localised problems, the other for
approximately localised ones.

• The performance of the proposed samplers is empirically investigated in numerical
examples.

The rest of this chapter is organised as follows: Section 4.2 rigorously defines fully

localised and approximately localised problems. Section 4.3 introduces two new algorithms
to be used for (approximately) localised problems, which are used for sampling in Section
4.4. The chapter ends with a discussion in Section 4.5.

4.2 Localisation

Localised problems are characterised by priors and likelihoods that show correlations or
conditional dependencies of variables only in a neighbourhood.

In Morzfeld et al. (2019), only Gaussian priors and Gaussian noise in the observation
model (4.1) are considered, i.e. π0 =N(m,C) and ξ ∼N(0,R) for a covariance matrix R. The
assumption of Gaussian priors is overly restrictive, as other priors can also have meaningful
local properties. One such example is a prior where each xi follows an independent Laplace
distribution, similar to Example 3.4.2 in the previous chapter. It is thus useful to relax the
assumption of Gaussian priors, and define a fully localised inverse problem as one satisfying
the following assumptions, which are inspired by and similar to the ones found in Morzfeld
et al. (2019):

1. (a) the state dimension d is large and the number of observations k is of the same
magnitude, i.e., k = O(d);

(b) in the case of a Gaussian prior, the prior precision matrix is banded; in the case
of non-Gaussian priors, variables are conditionally independent given a small
number of other variables;

(c) each predicted observation [h(x)] j has dependence on only l≪ d components of
x, and R is diagonal. Normally the variables which [h(x)] j depends on are in a
neighbourhood of x j, but this is not strictly necessary.
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Fig. 4.1 Illustration of a fully localised Bayesian inverse problem. The variables in the set A
and the ones outside A∪∂A are conditionally independent given the ones in ∂A, similarly
for B and C. This allows working on the regions A, B, and C in parallel, see Algorithm 6. If
negligible dependence remains after conditioning on ∂A, Algorithm 6 is not targeting the
correct target, but a delayed-acceptance step can be incorporated to correct for the error, see
Algorithm 7.

Note that in contrast to the assumptions in Morzfeld et al. (2019), the stated assumptions
are stricter, and they are visualised in Figure 4.1. We will see how this is beneficial to one of
the algorithms in the next section, and emphasise that there are examples satisfying the strict
localisation assumptions: one example is an imaging problem, where the Gaussian prior has
a banded precision, and the observation function is a uniform blur kernel acting only locally.
This is the setup of the numerical Example 4.4.1.

As a second set of assumptions, we relax the strict localisation assumptions in the spirit
of those posed by Morzfeld et al. (2019). We refer to a problem as approximately localised if
the following conditions are satisfied:

2. (a) the state dimension d is large and the number of observations k is of the same
magnitude, i.e., k = O(d);

(b) in the case of a Gaussian prior, the prior precision matrix is nearly banded; in
the case of non-Gaussian priors, variables are almost conditionally independent
given a small number of other variables;

(c) each predicted observation [h(x)] j has significant dependence on only l ≪ d

components of x (i.e., the contribution from the remaining components of x is
small), and R is diagonal.



4.2 Localisation 57

This approximate localisation condition is fairly vague, and this is not without conse-
quence. The larger the dependencies of different variables get, the less localised the problem
is, and the worse the localisation error gets: this error is defined as the error ∥π−πloc∥, where
πloc is the localised posterior obtained by enforcing Assumptions 1. In the next subsection,
we will discuss how to obtain a localised posterior distribution.

4.2.1 Localised Posteriors

Under a compatibility assumption (Arnold and Press, 1989), a joint density function f (x1, . . . , xd)
is fully characterised by the full conditional distributions f (xi|x−i). This justifies the use
of the Gibbs sampler in the first place, and we will use this property here to define the
localised posterior distribution πloc through its density floc. We assume there exists, for each
j ∈ {1, . . . ,d} and suitable sets of neighbours denoted by ∂ j, a good approximation floc such
that

floc(x j|X∂ j = x∂ j) = floc(x j|X− j = x− j) ≈ f (x j|X− j = x− j), (4.2)

and define the localised posterior as the joint density arising from this approximation, assum-
ing the compatibility assumptions are satisfied. Good localised posteriors have conditionals
that are close to the full conditionals of π in some metric such has the total variation distance.
We emphasise that the localised posterior is not unique, and introduce a few examples in the
following.

Example 1: Gaussian density with tridiagonal precision matrix. Let π =N(0,Σ−1) for
a tridiagonal precision matrix Σ. Then Equation (4.2) holds for the Gaussian density with
the neighbourhood of variable j given by ∂ j = { j−1, j+1}. A similar result holds for sparse
precision matrices, where ∂ j = {i : Σi, j , 0}, this is the case for Example 4.4.1.

Example 2: Gaussian density with banded covariance matrix. If the prior covariance
matrix is banded, the precision matrix Σ will generally not be, but a banded approximation Σ̂
thereof exists (Bickel and Lindner, 2012) by setting all values below a certain threshold to 0.
Using this banded approximation of the precision matrix yields a localised posterior with
the same neighbourhood as in the previous example. The choice of threshold impacts how
localised the posterior is, as more entries in Σ̂ will be non-zero for larger thresholds. We will
see a localised Gaussian posterior in Example 4.4.2.
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Example 3: Localisation of a PDE model. Consider a PDE that maps a function u to
another function pu (for a specific example we point to the groundwater flow example in
Section 5.2). We aim to infer the true function u∗ from noisy observations yi of pu∗(xi),
i = 1..n, that is

yi− pu∗(xi)
i.i.d.
∼ N(0,σ2),

giving rise to the log-likelihood

ℓ(y|u) = −
1
σ2

∑
i

(yi− pu(xi))2.

When solving the PDE numerically, we will discretise the domain, and we may assume that
changing u on only a few grid points will not affect pu∗ on grid points far away. This can be
modelled by an approximate solution operator p̂u that solves the forward model on a smaller
domain, giving the approximate log-likelihood

ℓ̂(y|u) = −
1
σ2

∑
i

(yi− p̂u(xi))2.

The neighbourhood of a variable j is then the set of points included in the calculation of the
local solution, i.e.

∂ j = {i : ∀u, v s.t. ∀k , j, uk = vk and p̂u(xi) , p̂v(xi)}.

As in the previous example, the size of the local domain chosen influences the accuracy of
the approximation 4.2. Note that this neighbourhood structure considers only the likelihood,
the full neighbourhood is the union of the one arising from the prior and the one from the
likelihood.

4.3 Sampling Algorithms

4.3.1 Parallelisation of a Metropolis-within-Gibbs Algorithm

For completely localised problems, that is, problems satisfying Assumptions 1, it is possible
to modify the blocked Metropolis-within-Gibbs method to update conditionally independent
blocks in parallel. This method is a modification of the Gibbs sampler introduced in Chapter
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2, where instead of a single variable, a block of variables gets updated jointly. Given a
sample xn−1, one updates the variables in block A according to π(XA = dxA|X−A = x−A

n−1). For
fully localised problems, we have that the variables in a set A depend only on a subset of all
variables, which we denote by ∂A to indicate the localisation, i.e.

π
(
XA = dxA|X−A = x−A

n−1

)
= π

(
XA = dxA|X∂A = x∂A

n−1

)
.

Furthermore, if A∩∂B = ∅ and if ∂A∩B = ∅

π
(
XA = dxA,XB = dxB|X−(A∪B) = x−(A∪B)

n−1

)
= π

(
XA = dxA|XB = xB,X−(A∪B) = x−(A∪B)

n−1

)
π
(
XB = dxB|X−(A∪B) = x−(A∪B)

n−1

)
= π

(
XA = dxA|X∂A = x∂A

n−1

)
π
(
XB = dxB|X∂B = x∂B

n−1

)
,

(4.3)

where the second equality is due to conditional independence. This allows to update the
blocks A and B simultaneously, a generalisation to more blocks is straightforward.

One of the main benefits of this method is that no worker process ever needs to be idle:
once a local update has been completed, the worker process can release the region it just
worked on, which can then be used by other processes. The process will then pick another
available region, block it, propose a move, accept or reject it, and then repeat the process
of releasing the old region and finding a new region to work on. This requires some care
when implementing the method, but allows all worker processes to be used efficiently, rather
than forcing a worker process to wait until the other processes have finished their updates.
The proposals for a block of variables xS j are generated from a kernel conditioning on the
neighbourhood variables x∂S j , the transition kernel is accordingly defined by

Q(xS j ,dyS j |X∂S j = x∂S j)

and its density is, for ease of notation, denoted

q(yS j |xS j , x∂S j).

Algorithm 6 specifies the complete method.

To show that this method works, we view it as follows. Let K j be the transition kernels
arising from updating the j-th variable block (i.e. all variables in S j). A systematic scan
blocked Gibbs sampler would apply K1, then K2, etc. up to KM; a random scan blocked
Gibbs sampler would sample j uniformly from {1, . . . ,M}, and we here propose to pick K j
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Algorithm 6 Parallel implementation of the blocked Metropolis-within-Gibbs algorithm. In
the parallelised iterations, parts need to be executed using locks to ensure workers do not
accidentally work on the same region. Note that a new sample is created (lines 6 and 25)
which is then locally changed by the workers (lines 10 to 23, particularly line 19).

1: procedure Parallelised, blockedMetropolis-within-Gibbs
2: x0 ∼ π(·) ▷ Draw initial value x0
3: S = {S 1, . . . ,S M} ▷ List of blocks
4: Set τ ▷ Sample time
5: Set w ▷ Set number of workers
6: x1← x0 ▷ Copy first sample
7: for n = 1 . . . do
8: for j ∈ {1, . . . ,w} do ▷ Iterations run in parallel
9: t j←current time

10: while current time−t j < τ do ▷ While loop executed for fixed time
11: WITH LOCK: Sample S j from free blocks in S and block ∂S j ∈ S

12: propose yS j ∼ Q(xS j , ·|X∂S j = x∂S j) ▷ Propose local update
13: r j← q(xS j

n |y
S j , x∂S j)/q(yS j |xS j

n , x∂S j))
14: s j← f (yS j |X∂S j = x∂S j)/ f (xS j

n |X∂S j = x∂S j)
15: a j←min(1,r js j) ▷ Calculate acceptance probability
16: u j ∼ U([0,1])
17: if u j < a j then
18: Update xS j

n = y
S j ▷ Accept proposed move

19: end if
20: WITH LOCK: Release S j and ∂S j into free blocks in S
21: end while
22: end for
23: xn+1← xn ▷ Current global sample is stored, new sample prepared for local

changes
24: end for
25: end procedure

in a slightly more advanced way. Algorithm 6 corresponds to first apply one of the K j with
equal probability, and then allow only certain updates after that. The blocking in Algorithm
6 ensures that while some other kernels are applied, the required calculations for another
kernel Kl can be executed. This is possible as no variables involved in these calculations get
updated during the calculation process.
To be more precise, we assume for simplicity that only two worker processes are involved,
and define the set

κ = {(Ki,K j) : i , j,S i∩∂S j = S j∩∂S i = ∅}.
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Then Algorithm 6 can be interpreted as the following blocked Gibbs sampler:

• Initially, (Ki,K j) is drawn uniformly from κ;

• Initialise x0 ∼ π

• Iterate for n = 1..N:

Pick Ki or K j with a certain probability pw,n, wlog we pick Ki (if we pick K j,
change i and j in the next steps)

Apply the kernel Ki to xn, update xn+1 ∼ Ki(xn, ·)

Sample (Kl,K j) from κ, keeping K j fixed

Relabel l to i

Note that the probabilities pw,n depend on the runtime of the processors, but we assume
they are bounded away from 0. As each kernel is a Metropolis-Hastings update of some
variables, they are all π-reversible and thus leave π invariant. If the resulting Markov chain
admits a unique stationary distribution, this will therefore be π. As before in Section 2.3.1,
ergodicity can not be shown in general (it is straightforward to construct a target distribution
similar to the one in Section 2.3.1 that gets stuck). If for any initial choice of (Ki,K j), all
kernels in κ will be picked and all Ki are in a tuple in κ, Algorithm 6 results in a irreducible,
positive recurrent, and aperiodic Markov chain for the examples in Section 4.4. Aperiodicity
follows as the same kernel might be applied twice consecutively, which breaks any periodicity.
Irreducibility and positive recurrence follows from the choice of the kernels Ki and the fact
that for any sets A and B with π(A) > 0, π(B) > 0, there exists some t ∈ N and a sequence of
kernels K j1 ,K j2 , . . . ,K jt such that this sequence of kernels has positive probability of being
picked and further∫

B

∫
X

· · ·

∫
X

∫
A

K jt(xt−1, y)K jt−1(xt−2, xt−1) · · ·K j1(x0, x1)π(x0)dx0dx1 · · ·dxt−1dy > 0,

as for a Gaussian density with Gaussian proposals the kernels are irreducible and positive
recurrent on their respective variables. In summary, we start in A and end in B with positive
probability.

The general case for w worker processes follows similarly by defining κ to be the set of all
admissible w-tuples of kernels, such that the kernels in each tuple work on separated variable
blocks. If for any initial tuple choice all kernels will be picked, the arguments generalise.
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4.3.2 Parallelisation in a Delayed-Acceptance Metropolis-Hastings Al-
gorithm

In only approximately localisable problems satisfying Assumptions 2, one can still apply
Algorithm 6. However, as the conditional independence we used in (4.3) does not hold, the
algorithm will not target the correct posterior π, but the localised version thereof, πloc, which
is defined through the joint density f̂ when using the localised conditionals from Equation
(4.2). For Gaussian targets, this is discussed extensively in Morzfeld et al. (2019). Recall the
the error ∥π−πloc∥ is difficult to estimate, and a thorough analysis of the problem at hand is
required to ensure the localised posterior is close to the desired target distribution.

To circumvent this problem, we propose to use a delayed-acceptance scheme (Christen
and Fox, 2005) to target the full conditionals in a blocked Gibbs sampler. The delayed-
acceptance method is generally particularly strong when the posterior π is computationally
expensive to evaluate, but a cheap approximation π̂x is available. Both the posterior and its
approximation admit densities, denoted f and f̂x, respectively. As the subscript indicates,
the approximation may depend on the current state. Given a current state xn−1, the method
proposes a new state y and uses the approximation to decide if the proposal y should be
outright rejected, or if it is a promising candidate. The acceptance probability at this first
stage is given by

a1(x, y) =min
(
1,

q(y|x) f̂x(y)

q(x|y) f̂x(x)

)
.

If the proposal is rejected, one sets xn = xn−1. Otherwise, if the proposal is accepted in this
first stage, the true posterior is evaluated, and the proposal is finally accepted with probability

a2(x, y) =min
(
1,

a1(y, x)q(x|y) f (y)
a1(x, y)q(y|x) f (x)

)
, (4.4)

setting xn = y, or xn = xn−1 if the proposal is rejected at the second stage. The motivation
behind the delayed-acceptance is to reject bad proposals early, and save computational
resources by only investing into the evaluation of the posterior if the proposal looks promising.
As nicely pointed out by Quiroz et al. (2018), the second stage can be interpreted as the
proposal density arising from a mixture of two proposals: one either uses the proposal
density used in the first stage, or (if the proposal was already rejected in the first stage)
proposes to stay at xn. This allows to verify the detailed balance condition (2.3), ensuring the
delayed-acceptance kernel targets the desired posterior. It is useful to note that, if π̂x = π̂y or
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if π̂x does not depend on the current iterate x, the acceptance probability at the second stage
simplifies as stated in the following theorem:

Theorem 5. If the posterior approximation for a single iteration of the delayed acceptance

algorithm satisfies π̂x = π̂y, or if π̂ = π̂x does not depend on a sample x at all, the acceptance

probability at the second stage of the delayed acceptance algorithm simplifies to

a2(x, y) =min
(
1,

f̂ (x) f (y)

f̂ (y) f (x)

)
. (4.5)

Proof. See Appendix 4.6.1. □

This theorem is useful in practice, as in Algorithm 7 one targets the full conditional πx,∪S j

using the approximate conditional π̂x,∪S j with densities given by

fx,∪S j

(
y∪S j

)
:=

1
Zx,∪S j

∏
j

f
(
yS j |XS C

j = xS C
j

)
, (4.6)

and

f̂x,∪S j

(
y∪S j

)
:=

1
Ẑx,∪S j

∏
j

f̂
(
yS j |X∂S j = x∂S j

)
, (4.7)

respectively.

The normalisation constant Ẑx,∪S j depends only on the variables in ∪∂S j which is fixed
throughout one iteration and therefore does not change, and we can thus apply Theorem 5
even when the densities are only available up to a normalisation constant, and the simplified
acceptance rate (4.5) can be used.

If the problem satisfies Conditions 2 and one has access to a localised posterior with the
approximate conditionals π̂x,∪S j , we propose to use Algorithm 7 which is a blocked Gibbs
sampler using the delayed-acceptance algorithm to sample from the full conditionals. The
localised structure allows to calculate the approximate conditionals in parallel: given a set of
blocks S j1 , . . . ,S jw , the approximate target used in the first stage is the localised posterior
π̂x,∪S j with density f̂x,∪S j described in Equation (4.7). The costly full conditional πx,∪S j is
only evaluated if the proposals from the first stage are promising, and the acceptance proba-
bility at the second stage will be increasing as the correlations and conditional dependencies
between variables are decreasing. If the problem is fully localised, satisfying Assumptions 1,
all proposals passing the first stage will be accepted at the second stage as f̂ = f , and thus
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a2(x, y) = 1 in (4.5) always. In that case, the delayed acceptance step is superfluous, and
Algorithm 7 reduces to Algorithm 6.

From a computational point of view, the delayed acceptance algorithm has some disad-
vantages. While the local proposal processes can work in parallel, the global master process
has to wait until all worker processes have completed their calculations. This will cause some
workers to be idle, and, yet worse, the global second stage cannot be parallelised. This is
in stark contrast to Algorithm 6, as discussed in the previous subsection. To alleviate this
problem a little bit, each local proposal on the first stage can be rejected separately, such
that the proposal carried forward to the second acceptance stage is the concatenation of
all accepted local proposals, the rejected local proposals, and the variables not touched in
the first stage. While this is promising especially for large numbers of workers, we do not
investigate this further here.

4.4 Numerics

In this section we compare the algorithms developed in the previous section to a Metropolis-
Adjusted Langevin Algorithm (MALA) on two imaging examples. Throughout this section,
the prior is the normal distribution given by N(0, δL−1), where L is the two-dimensional
Laplacian, and δ = 0.1, which is the same prior as used in Example 5.4 in Morzfeld et al.
(2019). The two-dimensional Laplacian is the matrix which has Li,i = 4 on all diagonal
entries, and a Li, j = −1 on the entries corresponding to the four direct neighbour variables j,
assuming periodic boundary conditions. The precision matrix is Ω= 10L and as such trivially
localised, as each variable depends only on the four direct neighbours, and is conditionally
independent of all others given those.

The true image x is the 128×128 sector of the ‘airplane’ image pictured in the left panel
of Figure 4.2. It is observed through y = Hx+ ξ, where ξ ∼ N(0,σ2I128,128) with σ2 = 0.12,
and H is a blur operator to be specified below in the examples. The noise level is higher
than in the setup of Example 5.4 in Morzfeld et al. (2019), as the goal in that paper was
to show the better performance of the Gibbs sampler itself, while here the focus lies on
Metropolis-within-Gibbs schemes. The blur operators are again assumed to satisfy periodic
boundary conditions. We note the similarity of this example to the imaging example in
Section 3.4.6, where a total variation prior was used instead of a Gaussian prior. For both
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Algorithm 7 The delayed acceptance algorithm exploiting local proposals which can be run
in parallel. The second stage acceptance ratio is simplified as suggested in Theorem 5.

1: procedure Parallelised Delayed-Accpetance
2: x0 ∼ π(·) ▷ Draw initial value x0
3: Set w ▷ Set number of workers
4: for n = 1 . . . do
5: for j ∈ {1, . . . ,w} do
6: Sample S j ▷ Pick w blocks of variables such that they are approximately

conditionally independent given all other variables
7: end for
8: for j ∈ {1, . . . ,w} do ▷ Iterations run in parallel
9: propose yS j ∼ Q(xS j , ·|X∂S j = x∂S j) ▷ Propose local update

10: r j← q(xS j
n−1|y

S j , x∂S j)/q(yS j |xS j
n−1, x

∂S j))
11: s j← f̂ (yS j |X∂S j = x∂S j)/( f̂ (xn−1|X∂S j = x∂S j)
12: end for
13: r1←

∏
j r js j ▷ Calculate first stage MH ratio

14: a1←min(1,r1) ▷ Calculate first stage acceptance probability
15: u1 ∼U([0,1])
16: if u1 < a1 then
17: y← yS j , x(⋓S j)C

▷ Globalise proposals to a global one
18: r2← ( f (y)/ f (x))×

∏
j s−1

j ▷ Calculate second stage MH ratio
19: a2←min(1,r2) ▷ Calculate second stage acceptance probability
20: u2 ∼U([0,1])
21: if u2 < a2 then
22: xn← y ▷ Accept proposed move
23: else
24: xn← xn−1 ▷ Reject proposal
25: end if
26: else
27: xn← xn−1 ▷ Reject proposal
28: end if
29: end for
30: end procedure

examples, the resulting posterior is thus given by

π(x) ∝ exp
(

1
2σ2 ∥y−Hx∥22−

1
2δ

xT Lx
)
,
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where H is the used blur kernel, and the posterior mean is available analytically as

Eπ(x) =
[

1
σ2 H2+

1
δ

L
]−1 1

σ2 Hy.

The code for the numerical examples in this section is available online at https://github.
com/TorbenSell/localised-parallelised.

Fig. 4.2 Left: True image. Centre: Blurred observation using the uniform blur operator of
Example 4.4.1. Right: Blurred observation using the exponential blur operator of Example
4.4.2.

4.4.1 A Fully Localised Imaging Problem

In this example, the blur operator H is chosen to be such that it blurs a pixel xi, j with its
closest neighbours in a 5×5 patch. This results in a fully localised example, and the parallel
blocked Metropolis-within-Gibbs (para-MwG, Algorithm 6, with Q chosen to be a local
MALA propoal) is compared to MALA. For the latter, we set the step size δ = 1.1×10−3,
resulting in 65% acceptances. For para-MwG, 4 workers worked in parallel on 8×8 blocks,
conditioned on all other variables in a larger 16×16 block. The step size was set to δ = ×10−2,
resulting in 72% acceptances. The computer used for the simulations only has two processor
cores, and thus only two workers effectively work in parallel, such that the results are not
fully representing the full potential of the method. Theoretically, if the image is split into
256 fixed blocks, up to 36 workers can be employed in parallel if the computer architecture
allows this. Figure 4.3 shows the mean squared error (MSE) and the structural similarity
index (SSIM) between the ‘true’ posterior mean and the means as estimated by the two
algorithms. The ‘true’ posterior mean has been estimated by a long run of MALA.

https://github.com/TorbenSell/localised-parallelised
https://github.com/TorbenSell/localised-parallelised
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Fig. 4.3 Results from the fully localised Image Deblurring example. Left: The MSE of
the mean estimates, estimated every 15 seconds. Right: The SSIM of the mean estimates,
estimated every 10 seconds over an hour. Para-MwG can be sped up by a factor of around 18
by using a better computer architecture. Bottom: Log-posterior traceplots to assess mixing
behaviour of the chains.

4.4.2 An Approximately Localised Imaging Problem

In this example, an exponential blur operator with standard deviation 0.7 is used. This kernel
results in the posterior not being fully localised, but as the correlations and conditional
dependencies decay quickly, the approximate localisation assumptions are satisfied.

The following three algorithms are compared: MALA, the parallel delayed acceptance
algorithm (para-DA, Algorithm 7), and para-MwG (Algorithm 6). The latter one targets the
localised posterior, but the mean estimate is still close to the truth, and the mean squared
error (MSE) decays much more quickly than the MSE obtained from para-DA. Again, the
block sizes are chosen to be of size 8× 8, and the local proposals are conditioned on the
other variables in a 16×16 block. The step sizes were set to δ = 8×10−4 for MALA (giving
75% acceptances), δ = ×10−2 for para-MwG (giving 65% acceptances), and δ = 5× 10−3

for para-DA. For para-DA, 78% of proposals were rejected at the first stage, less than 1%
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was rejected at the second stage, and 21% were accepted. The results are summarised in
Figure 4.4. Para-DA performs significantly worse here. This is not surprising: the small
local moves are often rejected, as the approximation is not good enough to yield a high
acceptance rate at the second stage. The size of the conditioning regions ∂S j could be
increased, which would result in higher acceptance rates at the second stage. This, however,
would come at the price of computationally more expensive proposals. Therefore, para-DA
can only be efficiently employed if accurate estimations are crucial and the problem is almost
fully localised. Otherwise, MALA or para-MwG are the better options for sampling from
approximately localised problems.
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Fig. 4.4 Results from the approximately localised Image Deblurring example. Left: The MSE
of the mean estimates, estimated every 15 seconds. Right: The SSIM of the mean estimates,
estimated every 10 seconds over an hour. While para-MwG only targets an approximate
posterior distribution πloc, the mean estimate of πloc seems to be close to the true mean of π.
Bottom: Log-posterior traceplots to assess mixing behaviour of the chains.
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4.5 Discussion

Especially inference on the fully localised inverse problem massively profits from exploiting
the localised structure. The advantage of using a blocked and parallelised Metropolis-within-
Gibbs grows with the size of the problem at hand. In approximately localised inverse
problems, it may be worth accepting the error from completely localising the problem, as
global algorithms suffer: MALA is slow as the global proposals and calculating the global
acceptance ratio is computationally expensive, similarly, the global correction step in the
delayed acceptance method is often costly and results in very slow mixing of the resulting
Markov chain.

Multiple questions remain for future research:

• Can one find bounds on the localisation error, depending on the entries of the precision
matrix?

• The TV prior used in Example 3.4.6 is localisable, but the MYE smoothed version is
not. Is it possible to define a smooth envelope of the (non-differentiable) target to be
used in diffusion-based algorithms? An interesting approach is developed in Vono et al.
(2020), where an auxiliary variable allows to use a Gibbs sampler for sampling in a
TV example.

• If the target is non-differentiable, what is the best strategy for parallelisation? As seen
in Chapter 3, PDMPs are a viable option as they are strong on localisable targets,
see also the Gibbs Zig-Zag samplers (Sachs et al., 2020). Is a PDMP-within-Gibbs
algorithm the best way of global communication, or do more efficient strategies exist?

• How can one localise other priors to exploit the benefits of localisation in a larger class
of problems?

• What is the optimal balance between the numbers of workers and the size of the blocks
they work on?

To conclude, we note that parallelisation is key to successful and efficient sampling in high-
dimensional models, and para-MwG is a strong algorithm for fully localised problems and
many approximately localised ones.
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4.6 Appendix

4.6.1 Proof of Theorem 5

We now prove Theorem 5 which stated the following:

Theorem. If the posterior approximation for a single iteration of the delayed acceptance

algorithm satisfies π̂x = π̂y, or if π̂ = π̂x does not depend on a sample x at all, the acceptance

probability at the second stage of the delayed acceptance algorithm simplifies to

a2(x, y) =min
(
1,

f̂ (x) f (y)

f̂ (y) f (x)

)
.

Proof of Theorem 5.

a2(x, y) =min
(
1,

a1(y, x)q(x|y) f (y)
a1(x, y)q(y|x) f (x)

)

=


min

1, 1×q(x|y) f (y)
q(x|y)(̂y)

q(y|x) f̂ (x)
q(y|x) f (x)

 if q(x|y) f̂ (y) ≤ q(y|x) f̂ (x)

min

1, q(y|x) f̂ (x)
q(x|y) f̂ (y)

q(x|y) f (y)

1×q(y|x) f (x)

 if q(x|y) f̂ (y) ≥ q(y|x) f̂ (x)

=


min

(
1, f̂ (x) f (y)

f̂ (y) f (x)

)
if q(x|y) f̂ (y) ≤ q(y|x) f̂ (x)

min
(
1, f̂ (x) f (y)

f̂ (y) f (x)

)
if q(x|y) f̂ (y) ≥ q(y|x) f̂ (x)

=min
(
1,

f̂ (x) f (y)

f̂ (y) f (x)

)
.

Note that if q(x|y) f̂ (y) ≥ q(y|x) f̂ (x), the acceptance probabilities coincide, so a2 is still well
defined in that case. □



Chapter 5

Function Space Priors

A modified version of the work presented in this chapter and the next is under review for
publication as Sell and Singh (2020).

To emphasise that the object of interest in this chapter and the next is a function, the
distributions are from now on defined over variables u rather than x; x will, throughout this
chapter and the next, denote a location in X ⊂ Rd over which these functions u = u(x) are
defined. To avoid confusion between functions f and the probability density functions of
π and π0, the latter ones are denoted π and π0 as well, overloading the notation to achieve
better readability.

5.1 Introduction

Generating samples from probability measures on function spaces is both a challenging
computational problem and a very useful tool for many applications, including mathematical
modelling in bioinformatics (Quarteroni et al., 2017), data assimilation in reservoir models
(Iglesias et al., 2013), and velocity field estimation in glaciology (Minchew et al., 2015),
amongst many others. This chapter addresses the problem of defining a computationally and
statistically favourable function space prior.

In Bayesian inference on separable Hilbert spaces (Stuart, 2010), many posterior measures
π are absolutely continuous with respect to their prior π0 (often a Gaussian measure, see
Knapik et al. (2011) and Dashti et al. (2013), but not always, see Dashti et al. (2011), Hosseini
(2017), and Hosseini and Nigam (2017)), with the likelihood acting as the Radon-Nikodym
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derivative dπ/dπ0 ∝ L. When the priors are Gaussian measures, truncating their Karhunen-
Loève expansions reduces the problem of sampling from infinite-dimensional measures
to sampling from a finite-dimensional parameter space. This approximation to the true
posterior gets better by including more parameters in the truncated expansion. The practical
applicability of these priors are, however, restricted to inferring unknown functions with
low-dimensional domain, as the orthogonal basis required results in the complexity scaling
exponential with the dimension of the unknown function’s domain.

Another approach to define function space priors are Bayesian Neural Networks (BNNs)
(Neal, 1995, 2012) which drew a lot of attention in the machine learning community over
the past years. These priors are obtained by placing a prior distribution over the weights and
biases of a neural network, with the default choice being a centered Gaussian prior on the
weights with variances that scale as O(1/N(l)), where N(l) is the number of nodes in layer
l. Some authors argue for heavy-tailed priors on the parameters which has been initially
investigated in Neal (1995).

Although some theoretical results exist at least for the choice of Gaussian priors on the
parameters (Matthews et al., 2018), popular criticisms include the lack of interpretability of
the resulting BNNs, and recent work (Wenzel et al., 2020) has highlighted inter alia that novel
priors are needed. Sampling approaches include Hamiltonian Monte Carlo (Neal, 1995), and
more advanced integrators (Leimkuhler et al., 2019); However, inference is often limited to
finding the maximum-a-posteriori (MAP) estimate of the posterior (Welling and Teh, 2011),
and one cannot easily expand the parameter space to obtain more accurate estimates as is the
case for the Karhunen-Loève expansion: one would either have to adjust the prior variances
for all nodes within the amended layer, or have to deal with exploding functions.

Other popular function space priors include Deep Gaussian Processes (Damianou and
Lawrence, 2013), for which few theoretical results (Dunlop et al., 2018) are known. Another
prior is constructed as a mixture of Gaussian measures and results in a non-Gaussian prior;
even infinitely many mixtures can be considered through the Dirichlet process for which
inference algorithms exist (Neal, 2000). Taking a basis {ϕi}

∞
i=1 of a Hilbert space and placing

any prior on the coefficients βi in the expansion
∑
βiϕi yields another prior, known as a

random basis expansion. The latter two priors are examples of priors used in nonparametric
Bayesian statistics, and are discussed extensively in Ghosal and Van der Vaart (2017). None
of these prior can be straightforwardly used in conjunction with Hilbert space MCMC
techniques which is the focus of this work, and we thus omit a discussion thereof.
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To calculate expectations with respect to the respective posteriors, computational methods
are required as the integrals are usually not analytically tractable. Two popular sampling
algorithms for posteriors defined on Hilbert spaces are the preconditioned Crank-Nicolson
(pCN) algorithm and its likelihood-informed counterpart the preconditioned Crank-Nicolson
Langevin (pCNL), which arise from clever (and in a way optimal) discretisations of cer-
tain stochastic differential equations (Cotter et al., 2013), are asymptotically exact, and
are dimension-independent in the sense that their step-size does not depend on the dis-
cretisation (Eberle et al., 2014; Hairer et al., 2014). This stands in stark contrast to the
well-known dimensional-dependent scaling of popular MCMC algorithms such as Random
Walk Metropolis and Metropolis Adjusted Langevin Algorithm (Roberts and Rosenthal, 1998;
Roberts et al., 2001). Practical implementations of pCN and pCNL exploit the equivalence
of Gaussian measures and the Karhunen-Loève (KL) expansion which holds under fairly
general assumptions. Owing to the orthogonality of the basis in the KL expansion, these
methods come with a variety of theoretical results, such as concentration inequalities and
contraction rates, see e.g. Agapiou et al. (2013); Knapik et al. (2011); Nickl and Giordano
(2020); van der Vaart et al. (2008). Geometric (Beskos et al., 2017) and likelihood-informed
(Cui et al., 2016) modifications of pCNL can reduce the computational cost provided one
knows which basis functions are informed by the data, but they cannot circumvent the costly
scaling in the domain dimension. This is presumably the main reason why these methods
have rarely been used for inferring unknown functions with domains larger than dimension
two (i.e. R2) in reported examples in the literature.

This chapter introduces a new neural network based prior, coined trace-class neural
network priors, which allows for scalable (in the domain dimension) Bayesian function
space inference. Hilbert space MCMC algorithms are then used to sample from the resulting
posteriors, and, owing to their stability under mesh-refinement, enhances the practical utility
of our framework.

The new contributions of this chapter are as follows:

• We introduce a trace-class prior for neural networks, and demonstrate its practical
utility. The prior is independent, centred, and Gaussian across weights but is non-
exchangeable over the weights within each layer and has a summable variance sequence.
The latter ensures it is a valid prior for an infinite width network, while the former
results in parameters being better identified from an inference perspective.
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• We prove that this prior is appropriate for use with Hilbert space MCMC methods even
in the infinite-width limit (Theorem 6), and is thus suitable for application to problems
with high-dimensional state spaces owing to the inherent scalability of neural networks
to its number of inputs.

The rest of this chapter is organised as follows: we firstly motivate the work in this
Chapter in Section 5.2. In Section 5.3 we introduce the general inference problem, describe
the canonical approximation for functions on Rd, describe MCMC methods on an infinite-
dimensional Hilbert space including their construction and the assumptions under which
these methods are well-defined. Section 5.4 introduces the trace-class neural network prior
and states one of our main theoretical results, showing that the proposed prior satisfies the
necessary assumptions to be used with a Hilbert space MCMC algorithm. We conclude with
a comparison of the Karhunen-Loève and the trace-class neural network priors in Section
5.5.

5.2 Groundwater Flow - A Bayesian Inverse Problem

To motivate the work in this Chapter, consider the following example taken from Beskos et al.
(2017). The aim is to recover the permeability of an aquifer. The following PDE connects
the log-permeability u of a porous medium to the hydraulic head function p:

−∇ · (exp(u(x))∇p(x)) = 0

p(x) = x1 if x2 = 0

p(x) = 1− x1 if x2 = 1
∂p(x)
∂x1

= 0 if x1 ∈ {0,1}.

(5.1)

To enforce the permeability to be positive, it is defined as the exponential of the log-
permeability u(x), and we define the forward operator A which maps a log-permeability u to
the solution pu of the PDE (5.1), i.e. pu = A(u), which can be evaluated at a point x ∈ [0,1]2

as pu(x) = A(u)(x).
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We will later assume the existence of a true u∗. Consider the following (orthonormal)
functions on [0,1]2, defined using double indices i = (i1, i2):

φi(x) = 2cos
(
π

(
i1+

1
2

)
x1

)
cos

(
π

(
i2+

1
2

)
x2

)
. (5.2)

The true u∗ is defined as u∗(x) =
∑

i u∗i φi(x) with

u∗i = λi sin
(
(i1−1/2)2+ (i2−1/2)2

)
·δ[1 ≤ i1, i2 ≤ 10],

where

λ2
i =

1

(π2 (
(i1+1/2)2+ (i2+1/2)2)1.1 .

The data is simulated as follows. Taking u∗, one solves the PDE 5.1 on a 40×40 grid to get
the true hydraulic head function p∗, which is observed in 33 locations {xi}

33
i=1. The data is

given by yi = p∗(xi)+εi, where the noise is i.i.d. εi ∼ N(0,0.012). Figure 5.1 shows the true
permeability u∗, and the resulting hydraulic head function p∗ = A(u∗) with the location of the
33 observations.
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Fig. 5.1 The true permeability exp(u∗) (left), and its associated hydraulic head function with
the location of the 33 observations (right).

In practice, the true log-permeability is unknown, and a statistician’s task is to infer it
from the measurements {yi}

33
i=1. Within the Bayesian framework, this can be achieved by

defining a prior distribution π0 on u, and using the likelihood associated with the observations
to obtain the posterior π. The reader should note that both these distributions are defined
over the infinite-dimensional Hilbert spaceH = L2([0,1]2,R), the space of square-integrable
functions from [0,1]2 to R. In Stuart (2010), it is shown that this leads to a well-posed
inference problem, and we will discuss the general setup of Bayesian inference on infinite-
dimensional Hilbert spaces in the next section, before discussing two distinct ways of
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defining prior distributions on u. The first one is the Karhunen-Loève expansion arising from
a Gaussian measure onH , the second one is a trace-class neural network prior.

5.3 Problem Formulation

The objective is to sample from a target distribution π defined over an infinite dimensional
separable Hilbert space.
The targets of interest in this work are Bayesian posterior distributions arising from a Gaussian
prior measure π0 and a likelihood which can be evaluated point wise. One such likelihood is
a Gaussian likelihood given by observations of a PDE solution such as in Section 5.5, one for
continuous control problems will be introduced in Chapter 6. In what follows, we will assume
that the posterior has a density with respect to the prior, in which case the Radon-Nikodym
derivative is well defined and the posterior density with respect to the prior is given by

dπ
dπ0

(u) =
1
Z

exp(ℓ(y|u)),

where ℓ is the log-likelihood, and Z =
∫

exp(ℓ(y|u))π0(du) is the normalisation constant.
Remark: For the posterior to be well-defined, the normalisation constant has to be positive
and finite, i.e. 0 < Z <∞. For infinite-dimensional spaces, this is not generally the case even
for Gaussian prior measures. For Gaussian priors, Stuart (2010) shows that the likelihood
arising from Gaussian observations of forward solutions of certain PDEs (such as in the
motivational example in the previous section) gives rise to a well-defined posterior, our
Theorem 7 shows that the likelihood arising in stochastic control problems also results in a
well-defined posterior under an appropriate Gaussian prior.

For any such infinite-dimensional separable Hilbert spaceH , sayH = L2(X,R) to frame
the discussion in this section (or later on in Section 5.4 the sequence spaceH = ℓ2), there
exists an orthonormal basis {φi}

∞
i=1 such that any element u ∈ H can be obtained as the limit

u(x) = limN→∞
∑N

i=1 aiφi(x), where ai = ⟨u,φi⟩H . Let the prior π0 =N(0,C) be a Gaussian
measure onH . If the operator C is trace-class with orthonormal eigenvalue-eigenfunction
pairs (λ2

i ,φi(x)), i = 1,2, . . . , one can sample from π0 by sampling a sequence of ξi ∼N(0,λ2
i )

and by then defining

u(x) =
∞∑

i=1

ξiφi(x). (5.3)
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This is the Karhunen-Loève (KL) expansion (Giné and Nickl, 2016). One may thus think of
a sample from the Gaussian measure as the sum of a sequence of 1-dimensional Gaussians
with summable variances1. This allows us to truncate the series expansion such that we have
N active terms, with the remainder giving an estimate for the approximation error:

u(x) =
N∑

i=1

ξiφi(x)+
∞∑

i=N+1

ξiφi(x), ∥u(x)−
N∑

i=1

ξiφi(x)∥ ≤
∞∑

i=N+1

∥ξiφi(x)∥.

Other more elaborate truncation schemes are discussed in Cotter et al. (2013), but we will
focus on a fixed number of terms for computational and notational convenience. For some
applications, φi for large i can be interpreted as high-oscillating functions which may not be
discernible by the observation operator, see the example in Section 5.5.

We emphasise that the above discussion holds not only for the spaceH = L2(X,R), which
is predominantly how it is applied in Beskos et al. (2017, 2008); Cotter et al. (2013), but also
forH = ℓ2, which will be of particular importance in this chapter. In infinite-dimensional
spaces, one has to be careful to ensure the posterior is well defined, see Stuart (2010) for a
discussion on Gaussian priors and likelihoods given through possibly non-linear mappings,
observed with Gaussian noise. We will work with the following assumptions, which we
prove are satisfied for the likelihood defined in Chapter 6.

1. π0 is a Gaussian prior defined on a separable Hilbert space H , with a trace-class
covariance operator C, that is, the eigenvalues λ2

i corresponding to the eigenfunctions
φi satisfy

∑
iλ

2
i <∞;

2. The posterior is well defined, i.e. the integral of the likelihood with respect to the prior
is positive and finite.

5.3.1 A Canonical Approximation for Functions on Rd

Consider a d-dimensional hypercube X = [0,1]d, the Hilbert space H = L2(X,R), and a
Gaussian prior measure π onH . A Bayesian approach entails choosing the covariance matrix
C for the prior π, and we discuss a canonical choice below. If the problem requires it, as
in Section 5.5 where a PDE is solved, it is possible to choose C such that the samples are
almost surely differentiable.

1If the variances are not summable, the sum in (5.3) diverges with positive probability.
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One problem with this approach is that it scales badly with dimension: say one has
eigenvalues λi and basis functions φi for a 1-dimensional function, and truncates the KL
expansion (5.3) after N terms. The easiest way to scale this basis up to a d-dimensional
domain is by taking a tensor product of the basis, see e.g. Iserles and Nørsett (2009) for the
multivariate Fourier basis, or Wojtaszczyk (1997) for Wavelets and other basis expansions.
For the KL expansion, we thus get, for a multi-index k = (k1, . . . ,kd) with ki = 1, . . . ,N,

u(x) =
∑

k

ξkφk(x) =
N∑

k1=1

· · ·

N∑
kd=1

ξk1,...,kd

(
φk1(x1) · · ·φkd (xd)

)
, (5.4)

where ξk1,...,kd ∼ N(0,λ2
k1,...,kd

) with λk1,...,kd being a function of the respective eigenvalues λki

capturing the correlation between dimensions. In total, there are Nd active terms, that is, the
complexity is exponential in the dimension d. This will be computationally prohibitively
expensive, even for moderately small d.

To circumvent the exponential cost in the domain dimension, one may want to exploit
any knowledge of independence that one knows of. Assume, for example, that the function
of interest can be approximated as u(x) ≈ v0+

∑d
i=1 ui(xi) with ui : [0,1]→ R,

∫
ui(xi)dxi = 0.

With this approximation, the number of terms to be inferred is linear in d. In practice, this is
often oversimplifying. More generally, one can use approximations including higher order
functions following Sobol (1993), e.g.

u(x) ≈
d∑

i=1

ui(xi)+
d∑

i=1

d∑
j=i+1

ui, j(xi, x j), (5.5)

with dN + d(d−1)
2 N2 coefficients to be estimated. Using such an approximation can achieve a

massive dimension reduction, avoiding the inference of all Nd coefficients, but requires good
knowledge of the properties of the quantities of interest. With the approximation (5.5) in
mind, one restricts oneself to the prior on finitely many random functions ui and ui, j, each of
which themselves is sampled from a Gaussian measure N(0,C1), or N(0,C2), respectively.
One identifies each of these functions with their Karhunen-Loève expansion

ui(xi) =
∞∑

k=1

ξi,kφk(xi), ui, j(xi, j) =
∞∑

k=1

ξi, j,kψk(xi, x j) (5.6)

where the φk and ψk are the eigenfunctions corresponding to the eigenvalues λ2
φ,k and λ2

ψ,k,
respectively. The ξi,k and ξi, j,k are independent normal random variables ξi,k ∼ N(0,λ2

φ,k) and
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ξi, j,k ∼ N(0,λ2
ψ,k). As before one requires the covariance operators to be trace-class, and

truncates the expansion (5.6) after a finite number of term.

The numerical experiments using the KL function space prior in this chapter and the next
are based on the following Fourier basis functions, φk defined on [0,1], ψk = ψk1,k2 defined
on [0,1]2 and indexed by a double index k = (k1,k2):

φ2k(xi) = sin(πkxi)

φ2k+1(xi) = cos(πkxi)

ψ2k1,2k2(xi, x j) = φ2k1(xi)φ2k2(x j) = sin(πk1xi) sin(πk2x j)

ψ2k1+1,2k2(xi, x j) = φ2k1+1(xi)φ2k2(x j) = cos(πk1xi) sin(πk2x j)

ψ2k1,2k2+1(xi, x j) = φ2k1(xi)φ2k2+1(x j) = sin(πk1xi)cos(πk2x j)

ψ2k1+1,2k2+1(xi, x j) = φ2k1+1(xi)φ2k2+1(x j) = cos(πk1xi)cos(πk2x j),

(5.7)

for i , j, with corresponding eigenvalues

λ2
φ,2k = λ

2
φ,2k+1 =

1
kα
,

λ2
ψ,2k1,2k2

= λ2
ψ,2k1+1,2k2

= λ2
ψ,2k1,2k2+1 = λ

2
ψ,2k1+1,2k2+1 =

1(√
k2

1 + k2
2

)α . (5.8)

See Figure 5.2 for some representative draws from this prior, which is a modification
from the prior used in Section 4.2 of Beskos et al. (2017). The covariance operator is of
the form −∆−α where ∆ denotes the Laplacian, and we allow both Dirichlet and Neumann
boundary conditions, unlike the authors in Beskos et al. (2017) who consider Dirichlet
boundary conditions only.

Approximations such as (5.5) require a good understanding of the functions of interest,
which is generally overly restrictive: the statistician or researcher needs to have a good
understanding about which coefficients of the eigen expansion are informed by the likelihood,
and should therefore be included in the analysis. Section 5.4 will introduce a prior which
scales favourably with the domain-dimension as it does not require pre-defining an orthogonal
basis.
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Fig. 5.2 Three samples from the Karhunen-Loève prior; the basis functions are the two-
dimensional Fourier functions. In ascending order from left to right we set α ∈ {1.001,1.5,3}
with the eigenvalues scaling as λ2

k ∝ 1/(k2
1+k2

2)α, for the double index k = (k1,k2). The tuning
parameter α controls the smoothness of the samples.

5.3.2 Algorithms on Hilbert Spaces

This section recapitulates how to define ‘sensible’ Metropolis-Hastings Markov chain Monte
Carlo algorithms for inference over the ξi in (5.3). The use of Markov chains is a popular
approach to sample from distributions on finite-dimensional state spaces (see Brooks et al.
(2011) for an overview of MCMC methods). Here, we review algorithms which can the-
oretically deal with arbitrarily many basis coefficients, without the usual problem of the
acceptance probability degenerating as one includes more coefficients. This property, known
as stability under mesh refinement, is not satisfied by the popular Random Walk Metropolis
algorithm (RWMH, Hastings (1970)), or by the Metropolis Adjusted Langevin Algorithm
(MALA, Roberts et al. (1996)).

Two algorithms which are both dimension independent are the preconditioned Crank-
Nicolson (pCN) and the preconditioned Crank-Nicolson Langevin (pCNL) algorithms, the
former introduced as early as Neal (1998) and both derived and discussed in Cotter et al.
(2013), see also Beskos et al. (2017, 2008); Rudolf and Sprungk (2018) for further reading
and generalisations. Motivated by the idea of increasing dimensions translating to evaluating
a function on a finer mesh, we refer to the dimension independence of these algorithms
as stability under mesh refinement. Both algorithms can be seen as a discretisation of the
following stochastic partial differential equation:

du
ds
= −K(C−1u−γDℓ(u))+

√
2K

dB
ds
, (5.9)
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where Dℓ is the Fréchet derivative of the log-likelihood2, K is a preconditioner, C is the
covariance operator of the Gaussian prior measure, B is a Brownian motion, and γ a tuning
parameter: if γ = 0, the invariant distribution of (5.9) is the prior π0, and for γ = 1 the
invariant distribution is the posterior π. With the choiceK = C (the preconditioned case, such
that the dynamics are scaled to the prior variances), discretising (5.9) using a Crank-Nicolson
scheme results in pCN (for γ = 0) and pCNL (for γ = 1). The resulting discretisations can be
simplified to

v =

√
1−β2u+βw, w ∼ N(0,C), (pCN) (5.10)

v =
1

2+δ

[
(2−δ)u+2δCDℓ(u)+

√
8δw

]
, w ∼ N(0,C), (pCNL) (5.11)

for step sizes β ∈ (0,1] and δ ∈ (0,2), respectively. Note that due to the discretisation scheme
used, pCN is prior-reversible, and using it as a proposal in a Metropolis-Hastings sampler to
target the posterior, the proposal is accepted with probability min{1,exp(−ℓ(u)+ ℓ(v))}. If the
pCNL dynamics are used as a proposal for a MH scheme, the acceptance probability is given
by min{1,exp(ρ(u, v)−ρ(v,u))} where

ρ(u, v) = −ℓ(u)−
1
2
⟨v−u,Dℓ(u)⟩−

δ

4
⟨u+ v,Dℓ(u)⟩+

δ

4
∥
√
CDℓ(u)∥2.

Note that pCN and pCNL are special cases of Algorithm 4 with

Q(u, ·) =N
(√

1−β2u,β2C

)
(pCN)

and

Q(u, ·) =N
(
2−δ
2+δ

u+
2δ

2+δ
CDℓ(u),

8δ
(2+δ)2C

)
. (pCNL)

Both pCN and pCNL are such that, for an uninformative likelihood, all moves are
accepted. In practice, the likelihood Assumptions 3 and 4 ensure that, unlike RWMH or
MALA, neither pCN nor pCNL require their step size β or δ to go to 0 as one includes more
coefficients in the KL expansions (Cotter et al., 2013).

For mathematical completeness, we emphasise that in order to ensure that the processes
arising from the above defined transition kernels have the desired stationary distribution, one

2Note that we use the log-likelihood ℓ rather than the potential −ℓ as the authors of Cotter et al. (2013).
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needs to check that they yield a strong aperiodic, recurrent Harris chain (giving the existence
of a unique stationary distribution (Athreya and Ney, 1978)), and satisfy the detailed balance
condition (showing that the stationary distribution is the one of interest (Tierney et al., 1998)).

To conclude this section, we state the assumptions (Cotter et al., 2013, Assumptions
6.1) under which both pCN (Cotter et al., 2013, Thm 6.2) and pCNL (see Theorem 9 in the
appendix) are well defined, where Assumption 5 is only required for pCNL (Beskos et al.,
2017):

3. There exist constants K > 0, p > 0 such that 0 ≤ −ℓ(y|u) < K(1+ ∥u∥p) holds for all
u ∈ H ;

4. ∀r > 0 ∃K(r) > 0 such that for all u, v with max(∥u∥,∥v∥) < r:

|ℓ(y|u)− ℓ(y|v)| ≤ K(r)∥u− v∥;

5. ∀u ∈ H : CDℓ(u) ∈ Im(C1/2), that is, the preconditioned differential operator is in the
support of the prior with probability 1.

5.4 Trace-Class Neural Network Priors

The Gaussian prior on H = L2(X,R) exploits the isometry between the function space
L2(X,R) and the sequence space ℓ2 using the Karhunen-Loève expansion (Giné and Nickl,
2016), but the computational complexity of using a basis-expansion on a high-dimensional
domain is unfeasible even when using approximate function representations such as in Sobol
(1993).

Neural networks have shown excellent empirical performance in high-dimensional func-
tion regression tasks, and Bayesian neural networks (BNNs) use their architecture to define
priors over such functions. BNNs are popular as they empirically show good results, and are
computationally fast. While some theoretical results are known (Hornik, 1991; Matthews
et al., 2018), the interpretability of the posteriors arising from Bayesian neural networks are
limited, and priors are often understood as a regularisation method in optimisation (Welling
and Teh, 2011), rather than the actual prior belief one has on the weights; see also Lipton
(2018) for a broader discussion of interpretability.
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We now propose a prior that is also defined over the parameters θ of the neural network,
but is, in contrast to existing priors for neural networks, well-defined in the infinite-width
limit. As inference is done over the parameters which form a countable sequence, the
Hilbert space of interest isH = ℓ2, the space of square-summable sequences, for which the
dimension-independent MCMC methods discussed in Section 5.3.2 are applicable. Through
the architecture of the neural network, the prior π0 over the parameters implicitly defines
a prior on the output function of the neural network. Under mild assumptions on the
network architecture, and if X is compact, the output functions vθ are π0-almost surely
square-integrable over X, and the prior thus naturally defines a prior over L2(X,R) as well.
The proposed prior is also more flexible than the Karhunen-Loève expansion of a Gaussian
measure: one needs not to specify a covariance operator and find its eigenfunctions. By
giving up the orthogonality of these eigenfunctions which allow for a rich theoretical analysis,
one gains on the performance side. We coin the term trace-class neural network prior to
emphasise that the prior leads to a well-defined function space prior if the variances of all
parameters are appropriately summable. The term is well-established for Gaussian measures,
where these are called trace-class if the eigenvalues of the covariance operator are summable.

To set the scene, consider a n-layer feed-forward fully-connected neural network. Let
α > 1 be a fixed constant, and let σ2

wl
,σ2

bl
∈ R+ for l = 1 . . .n+1. The layer width of layer l is

Nl, the input is x ∈ [0,1]d, and the output is u(x) = f (n+1)
1 (x) ∈ R; for notational convenience

we write N0 = d and Nn+1 = 1. The network is described fully by the set of weights and
biases,

w =
{
w(l)

i, j

}Nl,Nl−1,n+1

i=1, j=1,l=1
, b =

{
b(l)

i

}Nl,n+1

i=1,l=1
, θ = (w,b), (5.12)

where we have summarised w and b as θ. The prior π0 is now defined as follows: the
individual weights and biases in each layer l are independent and normally distributed, and
we emphasise here that the novelty is to choose the variances not uniformly, but to decrease
them as one moves into the tail nodes:

W(1)
i, j ∼ N

0, σ2
w(1)

iα

 ,
W(l)

i, j ∼ N

0, σ2
w(l)

(i j)α

 for l = 2 . . .n+1,

B(l)
i ∼ N

0, σ2
b(l)

iα

 ,
(5.13)
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Fig. 5.3 A n-layer feed-forward neural network, used to define a function u : R2→ R. Note
that g(l)

i = φ( f (l)
i ).

where i, j, and l range over the obvious indices, cf. (5.12). The reader should note that the
prior is invariant with respect to permutation of the input variables, thus avoiding preferential
treatment of any of the inputs.

Given an activation function φ : R→ R, we define the random functions in the respective
layers by

f (1)
i (x) = b(1)

i +

d∑
j=1

w(1)
i, j x j, i = 1 . . .N1

f (l)
i (x) = b(l)

i +

Nl−1∑
j=1

w(l)
i, jφ( f (l−1)

j (x)), i = 1 . . .Nl, l = 2 . . .n

u(x) = f (n+1)
1 (x) = b(n+1)

1 +

Nn∑
j=1

w(n+1)
1, j φ( f (n)

j (x)),

(5.14)

see Figure 5.3 for an illustration.

The tuning parameter α controls how much information one believes concentrates on
the first nodes. If α > 1 we refer to the prior as trace-class, coining the term trace-class

neural network priors. If one believes that many nodes are important, one should choose
α close to 1, larger values of α result in strong concentration of information on the first
nodes. See Figure 5.4 for three representative draws from the neural network prior. As the
next theorem will show, this allows indeed to define an infinitely wide network by taking
Nl =∞, and the variances can be summarised in a diagonal covariance operator C; this prior
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is well-defined on an infinite-dimensional Hilbert space (isometric to ℓ2), and can thus be
used in the algorithms from Section 5.3. In practice, one truncates the number of nodes
within each layer as for the priors described before, or one may randomly switch nodes on
and off similarly to the random truncation prior used in Cotter et al. (2013).
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Fig. 5.4 Three samples from the trace-class neural network prior, for a network with 3
fully-connected layers using Tanh activation functions with 100 nodes per layer; inputs
are x1, x2, sin(πx1), and sin(πx2) (as in Example 5.5). Tuning parameters are set to α = 2,
σ2
w(l) = σ

2
b(l) = 1 for all l = 1 . . .n+1 (left), α = 1.0001, σ2

w(l) = σ
2
b(l) = 5 for all l = 1 . . .n+1

(centre), α = 1.001, σ2
w(l) = σ

2
b(l) = 10 for all l = 1 . . .n, σ2

w(n+1) = σ
2
b(n+1) = 1/30 (right). Note

the difference in the magnitudes on the z-axis.

In what follows, we will often write u(x) = uθ(x) to emphasise the dependence of the
function samples on the weights and biases. In order to be able to interpret the samples, we
generally want the prior to satisfy the following desirable properties:

6. ∀x ∈ [0,1]d one has | f (l)
i (x)| <∞ π0-almost surely, E f (l)

i (x) = 0, and ∃ σ2
l such that

E
[
( f (l)

i (x))2
]
< σ2

l /i
α, where the expectation is taken with respect to the prior on the

parameters of the neural network; in particular this holds for u(x) = f (n+1)
1 (x); this

assumption ensures that the prior is well-defined;

7. ∀x, y ∈ [0,1]d∃ cl ≥ 0 such that E
[(

f (l)
i (x)− f (l)

i (y)
)2

]
≤ cl∥x− y∥2/iα, with the expec-

tation again taken with respect to the prior; in particular this gives E
[
u(x)−u(y)

]2
≤

cn+1∥x− y∥2; this assumption ensures that the functions one samples behave nicely,
and that the output function u is sufficiently smooth;

8. ∂u(x)/∂x , 0 π0-almost surely, i.e. information from the input layer informs the output
layer.
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We now state a theorem which shows that the proposed prior satisfies the desired prop-
erties of a prior. To this end, we use an activation function3 φ : R→ R which satisfies the
following condition:

9. φ is Lipschitz continuous with Lipschitz constant 1 and φ(0) = 0. In particular this
implies ∀x ∈ R: |φ(x)| < |x|.4 Furthermore, this implies that φ is differentiable almost
everywhere, with the derivative being essentially bounded by 1.

Theorem 6. Under Assumption 9, if σ2
w(l) > 0 for all l, and if the neural network is trace-class

(i.e. α > 1), the prior is well-defined in the limit N(l)→∞ for all l, and satisfies Properties 1,

6, and 7. Property 8 holds if additionally, φ(x) = 0 only on a Lebesgue-nullset.

The proof can be found in Appendix 5.6.1.

Deep limit and the choice of tuning parameters

We briefly comment on the behaviour of the trace-class neural network prior in the deep limit,
and on the choice of the tuning parameters α, σ2

w(l) , and σ2
b(l) . From the proof of Theorem

6, in particular equations (5.25) and (5.30), it is obvious that these tuning parameters have
to depend on the numbers of layers used as one considers the deep limit n→∞. The same
observation will be made when considering Theorem 7, where equation (6.35) requires a
similar scaling of these tuning parameters in the deep limit. For the remainder of this thesis,
we will focus on finite layer depths.

5.4.1 Identifiability Issues and Remedies

It is well-known that the output function of a standard neural network does not depend on the
labeling of functions within each layer. However, unlike a prior that has uniform variances
within each layer, swapping f (l)

i and f (l)
i+1 (effectively by swapping their corresponding

weights and biases) will lead from θ to a new θ′ such that π0(θ) , π0(θ′), and thus avoid
the label-switching problem. To facilitate faster mixing by allowing jumps between these
different configurations, we propose Algorithm 8. The algorithm is in particular useful when

3As will be clear from the proof of Theorem 6, one may use different activation functions at different layers,
which will then all have to satisfy this assumption.

4The generalisation to arbitrary Lipschitz constants and the implication ∃ c > 0 such that ∀x ∈R: |φ(x)| < c|x|
is straightforward.



5.5 Illustrative Groundwater Flow Example 87

using likelihood-informed MCMC algorithms: the likelihood gradients help ‘selecting’ the
functions that are important, and then following with a swapping step ensures that they have
high prior mass as well. The posterior is invariant with respect to the transition kernel, as the
likelihood does not depend on the labelling of the nodes, and as the proposal is symmetric:

a(θ,θ′) =
π0(θ′)
π0(θ)

L(θ′)
L(θ)

q(θ|θ′)
q(θ′|θ)

=
π0(θ′)
π0(θ)

. (5.15)

Algorithm 8
1: procedure Node Swap(θ) ▷ Input current iterate θ
2: θ′← θ
3: l ∼U({1, . . . ,n}) ▷ Sample random layer
4: i ∼Geom(α−1) ▷ Sample random node
5: while i ≥ Nl do ▷ Repeat process until we have a valid node index
6: i ∼Geom(α−1)
7: end while
8: w(l) ′

i+1, j← w(l)
i, j

9: w(l) ′
i, j ← w(l)

i+1, j

10: w(l+1) ′
i, j+1 ← w(l+1)

i, j

11: w(l+1) ′
i, j ← w(l+1)

i, j+1

12: b(l) ′
i+1 ← b(l)

i
13: b(l) ′

i ← b(l)
i+1

14: u ∼ Uni f ([0,1])
15: a =min(1,π0(θ′)/π0(θ)) ▷ Metropolis-Hastings acceptance probability cf. (5.15)
16: if u<a then
17: return θ′ ▷ Accept node swap
18: else
19: return θ ▷ Reject node swap
20: end if
21: end procedure

5.5 Illustrative Groundwater Flow Example

We now return to the Bayesian inverse problem introduced in Section 5.2.

The code for the examples in this section is available online at https://github.com/
TorbenSell/trace-class-neural-networks and is similar to the setup in Beskos et al. (2017)5.

5While we could not perfectly replicate their results, we aimed to stick as close to their results as possible.

https://github.com/TorbenSell/trace-class-neural-networks
https://github.com/TorbenSell/trace-class-neural-networks
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5.5.1 Ability to Approximate Complicated Functions

The first aim is to show that the trace-class neural network prior is able to visually recover
relatively complicated functions. To this end we define the function u∗ : [0,1]2→ R+ as in
Section 5.2, and observe this function on a 20×20 grid with independent Gaussian noise
N(0,0.012). For the neural network prior we use three hidden layers with 10 nodes per
layer, Tanh activation function, and used a four dimensional input space with the inputs
(x1, x2,sin(πx1),sin(πx2)). We set the tuning parameters to α = 1.001, σ2

w1
= σ2

b1
= 100,

σ2
w2
= 1/30, and σ2

b1
= 1/10, and ran the preconditioned Crank-Nicolson algorithm on the

parameters of the neural network. As Figure 5.5 shows, the neural network prior is able to
approximate the true u∗ when given many, in this example 400, observations.
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(a) True log-permeability u∗.
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(b) Mean estimate obtained using the
NN-based posterior.

Fig. 5.5 The neural network estimates the true u∗(x) which is noisily observed on every
grid point x of a 20×20 grid. In real applications, only few observations will be available,
this example simply illustrates that many observations lead to close approximations for the
trace-class neural network prior.

5.5.2 Groundwater Flow - A Bayesian Inverse Problem

We now compare two priors when aiming to infer the unknown function u∗ in the setup
described in Section 5.2. The first one is the trace-class neural network prior described,
with the same choice of tuning parameters as before in Section 5.5.1. The second prior
is a Gaussian measure on [0,1]2 with the following orthonormal basis and corresponding
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eigenvalues defined using double indices i = (i1, i2):

φi(x) = 2cos
(
π

(
i1+

1
2

)
x1

)
cos

(
π

(
i2+

1
2

)
x2

)
,

λ2
i =

1

(π2 (
(i1+1/2)2+ (i2+1/2)2)1.1 .

(5.16)

Note that the basis functions φi(x) and the eigenvalues λ2
i are the same ones used to define

the true log-permeability u∗, and the experiment is thus tailored to good performance when
using this prior. In the experiments, we truncated the basis expansion using 1 ≤ i1, i2 ≤ 25,
which gives a similar number of parameters as we used in the neural network example. The
true u∗ used to simulate data is the same as in Section 5.2, and the log-likelihood is given by

ℓ(y|u) = −
1

2σ2

 33∑
i=1

(yi−A(u)(xi))2


with σ = 0.01, and A(u)(x) being the forward solution of the PDE (5.1) evaluated at location
x.

Both experiments used a similar number of iterations and stored 1000 MCMC samples
to obtain the mean estimates in Figure 5.6, the figure also includes representative prior
and posterior samples. Convergence diagnostics in the form of traceplots of the respective
Markov chains are displayed in Figure 5.7, and visual posterior predictive checks are shown
in Figure 5.8.

The results of this Example are worth a short discussion. As evident from the choice of
the eigenfunction and eigenvalues of the Gaussian prior, and the specific form of the true
log-permeability, the Gaussian posterior can be expected to perform reasonably well even in
the presented setting of a fairly uninformative likelihood that uses only 33 data points and a
highly non-linear forward operator. The trace-class neural network posterior can thus not be
expected to compete on the performance level, yet the obtained mean estimate is visually not
‘worse’ than the one from the posterior which uses the Gaussian prior.
The posterior samples displayed in Figure 5.6 are very different, and preference of one or
the other prior depends on what log-permeabilities may be expected in the problem at hand:
largely connected regions of different materials suggest the use of the trace-class neural
network prior; a surface of many different materials that are roughly mixed suggest to use
the Gaussian prior.
Lastly, this example was mainly to motivate the discussion, and show that the trace-class
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(a) Posterior mean estimate,
using the Gaussian prior.
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prior.
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(c) Sample from posterior
using the Gaussian prior.
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(d) Posterior mean estimate,
using the NN prior.
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(e) Sample from trace-class
NN prior.
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(f) Sample from posterior
using the trace-class NN prior.
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(g) True permeability exp(u∗).

Fig. 5.6 Top row: The mean estimate for exp(u) obtained using pCN for the Gaussian prior
(a), a sample from the KL prior (b), and a sample from the KL posterior (c). Middle row: The
mean estimate for exp(u) obtained using pCN for the neural network prior (d), a sample from
the trace-class neural network prior (e), and a sample from the trace-class neural network
posterior (f). Bottom row: The true permeability exp(u∗) (g), which was estimated by the
means in tiles (a) and (d).

neural network prior does not yield completely unfeasible estimates in this example tailored
to the Gaussian prior. The strength of the trace-class neural network prior only shows when
targeting functions on higher-dimensional domains, which was discussed in Section 5.4 and
will be validated empirically in Section 6.4 of the next chapter.
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Fig. 5.7 On the left the log-posterior values for the first 100,000 samples from the KL
posterior when running the pCN algorithm. On the right the first 100,000 log-posterior
values when running the pCN algorithm on the posterior distribution over the parameters of
the trace-class neural network.
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(a) KL posterior predictive.
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(b) NN posterior predictive.

Fig. 5.8 Visual posterior predictive check for both the KL- and NN-based posteriors. The
observed values at each of the 33 observation locations (see figure 5.6) are shown as a blue
dot, the box plots are 100 samples from the posterior predictive distribution (Gelman et al.,
2013, Section 6.3). Both posteriors show similar predictive performance indicating that they
arise from similarly well-suited priors.
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5.6 Appendix

5.6.1 Proof of Theorem 6

Proof of Theorem 6. We firstly show assumption 1: Let the Hilbert spaceH be the set

H =

θ = (w,b) :
n+1∑
l=1

∞∑
i=1

(b(l)
i )2+

∞∑
j=1

(w(l)
i, j)

2

 <∞
 (5.17)

equipped with the inner product

⟨θ,τ⟩ = ⟨(w,b), (ϖ,β)⟩ =
n+1∑
l=1

∞∑
i=1

b(l)
i β

(l)
i +

∞∑
j=1

w(l)
i, jϖ

(l)
i, j

 .
This Hilbert space can be interpreted as the l2 sequence space, and equivalently as the direct
sum of countably many l2 sequence spacesH (l)

i = {(w
(l)
i, j,b

(l)
i ) : (b(l)

i )2+
∑∞

j=1(w(l)
i, j)

2 <∞}. We

also define the layer-wise Hilbert spacesH (l) asH (l) = {(w(l)
i, j,b

(l)
i ) :

∑∞
i=1

[
(b(l)

i )2+
∑∞

j=1(w(l)
i, j)

2
]
<

∞}.

We now show that any sample from the prior (5.13) is in the Hilbert space H almost
surely. To see this, let (W,B) be a draw from the prior. We define the random variables

S (l)
k =

k∑
i=1

(B(l)
i )+

k∑
j=1

(W(l)
i, j )

 . (5.18)

It’s easy to check that S (l)
k is a L2-bounded martingale if

∞∑
i=1

E
[
(B(l)

i )2
]
<∞ and

∞∑
i, j=1

E
[
(W(l)

i, j )
2
]
<∞,

which is the case for our choice of the prior, as long as α > 1. Therefore S (l)
k converges almost

surely to some limit S (l) ∈ L2 by the L2-martingale convergence theorem, so the associated
sequence of weights and biases (W(l)

i, j ,B
(l)
i )i, j=1..∞ ∈ H

(l). As we have only finitely many
layers, this implies (W,B) ∈ H as required.
To see the second part of assumption 1, note that the sequences e1, e2, ... form a basis of l2,
and therefore ofH , and the summability of the variances (given if α > 1) ensures that the
prior covariance operator is indeed trace-class.
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To see Assumption 6, by looking at the first layer we can easily check that for fixed
x ∈ [0,1]d, f (1)

i (x) is a mixture of centered Gaussian distributions, and the claim follows by
noting that EB(1)

i = EW(1)
i, j = 0,

E
[
( f (1)

i (x))2
]
= E

[
(B(1)

i )2
]
+

d∑
j=1

E
[
(W(1)

i, j )2
]
(x j)2

≤
σ2

b1

iα
+
σ2
w1

iα
d (5.19)

=
1
iα

[
σ2

b1
+σ2

w1
d
]
. (5.20)

We use induction over l, and define the following random variables, for which we truncate
the i-th function of layer l after k terms:

f (l)
i,k (x) = B(l)

i +

k∑
j=1

W(l)
i, jφ( f (l−1)

j (x)) l = 2 . . .n+1.

It will be useful to note that by Assumption 9 and the induction hypothesis, we get

|φ( f (l−1)
j (x))| ≤ |( f (l−1)

j (x))| <∞. (5.21)

Furthermore, from the above and using Jensen’s inequality, we also obtain

|Eφ( f (l−1)
j (x))| ≤ E[|φ( f (l−1)

j (x))|] ≤ E[| f (l−1)
j (x)|] <∞, (5.22)

where the last inequality holds as f (l−1)
j (x) is L2 bounded by the induction hypothesis.

We now show that f (l)
i,k (x)→ f (l)

i (x) almost surely, and in L2, by applying the L2 martingale
convergence theorem. We thus need to show that S k(x) := f (l)

i,k (x) is a L2 bounded martingale,
where we dropped the indices i and l for notational convenience. Indeed, with the natural
filtration (Fk)k∈N

E[S k+1(x)|Fk] = 0,
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as W(l)
i, j and φ( f (l−1)

j (x)) are independent, the expectation of the former is centered, and the
latter is finite. Additionally, by exploiting the independence, Assumption 9 and 5.22, we get

E
[
(S k(x))2

]
= E[B(l)

i ]2+

k∑
j=1

E
[
(W(l)

i, j )
2
]
E
[
(φ( f (l−1)

j (x)))2
]

(5.23)

≤
σ2

b(l)

iα
+σ2

w(l)

k∑
j=1

1
(i j)α
E
[
( f (l−1)

j (x))2
]

≤
σ2

b(l)

iα
+
σ2
w(l)σ

2
l−1

iα

k∑
j=1

1
j2α

(5.24)

=
1
iα

σ2
b(l) +σ

2
w(l)σ

2
l−1

k∑
j=1

1
j2α

 . (5.25)

This series converges for α > 1, and we define the limit for i = 1 as σ2
l . Thus, S k is indeed a

L2 bounded martingale and trivially E f (l)
i = 0, proving Assumption 6.

It remains to show Assumption 7. For the first layer, we use independence to get

E
[
( f (1)

i (x)− f (1)
i (y))2

]
=

d∑
j=1

E
[
(W(1)

i, j )2
]
(x j−y j)2

=
σ2
w1

iα
∥x−y∥2. (5.26)

For the subsequent layers, we again use induction over l. We define S k(x) as before and
check that

E
[
(S k(x)S k(y))2

]
= E

[
(B(l)

i )2
]
+

k∑
j=1

E
[
(W(l)

i, j )
2
]
E[φ(F(l−1)

j (x))φ(F(l−1)
j (y))]. (5.27)
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Using the induction hypothesis, Assumption 9, (5.23) and (5.27) we get

E
[
(S k(x)−S k(y))2

]
= E

[
(S k(x))2

]
+E

[
(S k(y))2

]
−2E[S k(x)S k(y)]

= 2E
[
(B(l)

i )2
]
+

k∑
j=1

E
[
(W(1)

i, j )2
] (
E[φ( f (l−1)

j (x))2]+E[φ( f (l−1)
j (y))2]

)
−

k∑
j=1

2E[S k(x)S k(y)] (5.28)

= σ2
w(l)

k∑
j=1

1
(i j)α
E
[
(φ( f (l−1)

j (x))−φ( f (l−1)
j (y)))2

]
≤ σ2

w(l)

k∑
j=1

1
(i j)α
E
[
( f (l−1)

j (x)− f (l−1)
j (y))2

]
≤
σ2
w(l)cl−1

iα
∥x−y∥2

k∑
j=1

1
j2α

(5.29)

=
1
iα

σ2
w(l)cl−1

k∑
j=1

1
j2α

∥x−y∥2, (5.30)

such that the claim follows upon defining cl = σ
2
w(l)cl−1

∑∞
j=1 1/ j2α.

Lastly, Property 8 follows immediately, as the property is only violated if all weights
within a layer are 0, which is a zero probability event as long as σ2

w(l) > 0. □





Chapter 6

Bayesian Inverse Reinforcement
Learning

A modified version of the work presented in this chapter and the last is under review for
publication as Sell and Singh (2020).

6.1 Introduction

The applications of reinforcement learning are various, including the control of autonomous
cars (Pusse and Klusch, 2019), robotics (Kober et al., 2013), and chess (Silver et al., 2018)
where the resulting algorithms beat world-class chess players.

In inverse reinforcement learning one aims to learn an agent’s value function from
observing their series of states and actions; having the agent’s value function at hand allows
one to mimic the behaviour of the agent. In a Bayesian approach to this problem, one
defines a prior on a function space that includes all admissible value functions. The data
observed from an agent’s behaviour can then be used through a suitably defined likelihood
(Ramachandran and Amir, 2007) to infer the value function.

For discrete state spaces, Singh et al. (2013) provide a method to quantify the uncertainty
of the estimated value function. In this chapter, we will generalise those ideas to continuous
state spaces by using priors introduced in the previous section.
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We further demonstrate the usefulness of the methodology developed in Chapter 5 on a
challenging 17-dimensional reinforcement learning example where the aim is to learn control
strategies via a Bayesian formulation.

The new contributions of this chapter are as follows:

• We propose a suitable likelihood for Bayesian Reinforcement Learning (BRL) for
inferring the unknown continuous state value function that best describes an observed
state-action data sequence. Theorem 7 and Lemma 2 justify the use of this likelihood
with Gaussian prior measures on function spaces, and with our proposed neural network
prior. This likelihood is also potentially of interest to the machine learning community
in its own right.

• We apply Hilbert space MCMC methods to infer the unknown optimal value function
in two continuous state control problems, using both our new prior and likelihood
function. We provide numerical evidence that, in contrast to standard function space
priors, the trace-class neural network prior is scalable to higher dimensional problems.

The rest of this chapter is organised as follows: in Section 6.2 we recapitulate the
necessary definitions of Markov decision processes. In Section 6.3 we state the Bayesian
Reinforcement Learning (BRL) problem and introduce the likelihood to be used for inferring
continuous state value functions from state-action data. We then show that the likelihood
satisfies the assumptions needed to be admissible in a Hilbert space MCMC setting. Finally,
Section 6.4 provides numerical results for the proposed prior from the previous chapter and
the likelihood for different control problems. Proofs can be found in the appendix.

6.2 Markov Decision Processes

A Markov Decision Process is defined by a controlled Markov chain {Xn}n∈N called the state

process, the control process {An}n∈N, and an optimality criterion.
The state process takes values in a bounded set X ⊂ Rd, for simplicity we will consider the
domain to be the d-dimensional hypercube X = [0,1]d. The control process is A-valued,
whereA = {1, . . . ,M} is a finite set. Given realisations of the state and actions process until
time n ≥ 0, the state process propagates according to

p(Xn+1 = dxn+1|X1:n = x1:n,A1:n = a1:n) = p(Xn+1 = dxn+1|Xn = xn,An = an),
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where for any state-action pair (xn,an), we simply write p(xn+1|xn,an) to denote this is a
probability density function. In some applications, the state dynamics are deterministic, and
thus there exists a map T such that

Xn+1 = T (xn,an). (6.1)

The action process depends on a policy µ : X→A which is a mapping from the state
space into the action space. For a fixed state xn, the policy defines a probability distribution
over the actions; if the policy is deterministic, this can be written as

p(An = dan|X1:n = x1:n,A1:n−1 = a1:n−1) = δµ(xn)(dan)

As there are many possible mappings µ : X 7→A, we assume the agent executes a policy
that is in some way optimal. To be more precise, let r : X→ R be the reward function, then
the accumulated reward given a policy and an initial state X1 = x1 is

Cµ(x1) = Eµ

 ∞∑
n=1

βnr(Xt)|X1 = x1

 ,
where β ∈ (0,1) is a discount factor. The discount factor serves two purposes: it ensures
that the expectation is well defined, and also lets early actions be more important than later
actions, see Kaelbling et al. (1996) for a more detailed discussion.
A policy µ∗ is optimal if Cµ∗(x1) ≥Cµ(x1) for all (µ, x1). The solution to the Bellman equation
(Bellman, 1952)

v(x) =max
a∈A

r(x)+β
∑
x′∈X

p(x′|x,a)v(x′)


is called the optimal value function (Bertsekas, 1995). Given this fixed point solution v, we
can derive the optimal policy by

µ∗(x) = argmax
a∈A

∑
x′∈X

p(x′|x,a)v(x′)

 , (6.2)

that is, the optimal action at any state is the one that maximises the expected value function
at the next state.
For the observed actions, in what follows we assume the agent is not perfect, e.g. a human
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expert, and chooses an action with a certain error. At each time step the chosen action is a
random variable given by

An = argmax
a∈A

∑
x′∈X

p(x′|x,a)v(x′)+ ϵn(a)

 , (6.3)

where we assume ϵn ∼N(0,σ2IM×M). The Gaussian choice simplifies numerical calculations,
and it is reasonable to assume that the variances for different actions are independent and
identically distributed, but this assumption can be relaxed. When the state dynamics are
deterministic, see (6.1), action selections occur according to

An = argmax
a∈A

[v(T (x,a))+ ϵn(a)] , (6.4)

Our goal from now on will be to recover the agent’s value function, and quantify the
uncertainty thereof, by using the Hilbert space MCMC methods and the priors discussed in
Sections 5.3 and 5.4.

6.3 Likelihood Definition

The data consists of a collection of state-action pairs y = {yt}
T
t=1 = {(xt,at)}Tt=1 and the aim is

to infer the value function (and thus the policy through (6.2)) that leads to the actions at for
the current state xt. Using the noisy action selection procedure (6.3), the likelihood is

L(y|v,σ) =
T∏

t=1

p(at|xt, v,σ) =
T∏

t=1

p(at|vt,σ), (6.5)

by defining the vector vt, containing the relevant evaluations of the value function to calculate
the likelihood at yt, i.e. using equation (6.4), the k-th entry of vt is the evaluation of the
value function v(·) at the location T (xt,k), corresponding to starting at xt and taking action
a = k ∈ A.

For a single observation yt = (xt,at), we now drop the subscript t to simplify notation, and
assume wlog that the optimal action is action k = 1, permuting the labels if necessary. The
probability p(a = 1|v,σ) (where v is now a vector and p(a|v,σ) is a probability mass function)
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can be computed using (6.3) by

p(a = 1|v,σ) =
∫

1{u∈Rd:u1≥u j∀ j,1}N(u;v,σ2IM×M)du. (6.6)

To compute this term, we make use of the fact that the value of the integral is the same as
the probability P(X1 > X j, ∀ j , 1), where Xk ∼ N(v(T (x,1)),σ2)). This can be computed
numerically using the pdf ϕ1(·) of X1 and cdfs Φ j(·) of the respective X j:

p(a = 1|v,σ) =
∫ ∞

−∞

ϕ1(t)Φ2(t) . . .ΦM(t)dt (6.7)

=
1
σ

∫ ∞

−∞

ϕ
( t− v1

σ

) M∏
j=2

Φ

( t− v j

σ

)
dt. (6.8)

If the noise in (6.3) is not diagonal, this simplification cannot be made, and the integral (6.6)
is harder to compute. More advanced numerical methods exist to efficiently calculate such
integrals using Monte-Carlo simulations (Genz, 1992).

6.3.1 Likelihood Gradient

Following from (6.8) we can compute the gradient of the likelihood in a data point (xt,at)
with respect to vt. We again assume wlog that at = 1 ∈ A (by permuting the actions if
necessary), and drop the subscript t, emphasising that vk is the k-th entry of the vector v. The
partial derivatives with respect to the vk are given by

∂

∂v1
p(a = 1|v,σ) =

1
σ

∫ ∞

−∞

t− v1

σ2 ϕ
( t− v1

σ

) M∏
j=2

Φ

( t− v j

σ

)
dt (6.9)

∂

∂vk
p(a = 1|v,σ) = −

1
σ2

∫ ∞

−∞

ϕ
( t− v1

σ

)
ϕ
( t− vk

σ

) M∏
j=2, j,k

Φ

( t− v j

σ

)
dt k = 2 . . .M (6.10)

= −
1
σ2ϕ

(
v1− vk
√

2σ

)∫ ∞

−∞

ϕ

 t− vk+v1
2

σ√
2

 M∏
j=2, j,k

Φ

( t− v j

σ

)
dt, (6.11)

where the last identity follows from the product of two Gaussian pdfs. This allows us, when
using the neural network prior, to compute the gradient of the log-likelihood with respect to
the parameters of the neural network, θ. We emphasise that the vector v = v(θ) depends on
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these parameters, justifying the calculation of the JacobianDθv. Using the chain rule, we get

∇θ log p(a = 1|v,σ) =
∇θp(a = 1|v,σ)

p(a = 1|v,σ)
=

(Dθv)T∇vp(a = 1|v,σ)
p(a = 1|v,σ)

. (6.12)

To get the entire gradient of the log-likelihood, we simply need to sum over all data points:

∇θℓ(y|v,σ) = ∇θ log

 T∏
t=1

p(at|vt,σ)

 = ∇θ T∑
t=1

log p(at|vt,σ) =
T∑

t=1

∇θ log p(at|vt,σ), (6.13)

where we only need to keep in mind the permutation in the actions when using (6.12).

When calculating (6.12), we note that 1 · ∇vp(a|v,σ) = 0 by translation invariance of v:
L(y|v,σ) = L(y|v+ c,σ) for any constant function c, i.e. c(x) = c(x′) for all x, x′ ∈ X. To
avoid instabilities when calculating the gradient numerically, we can ensure that the mean of
these gradients is 0 by using the following modification, which enhances the performance in
practice:

(6.12) =

∑M
k=1((Dθv)T )k( ∂

∂vk
p(a = 1|v,σ)−

∑M
k=1

∂
∂vk

p(a = 1|v,σ))

p(a = 1|v,σ)
. (6.14)

The following theorem justifies the use of this likelihood in the function space MCMC
setting:

Theorem 7. The log-likelihood ℓ(y|v,σ) = logL(y|v,σ) defined in (6.5) satisfies Assumptions

3 and 4, where v ∈ H = L2.

The proof can be found in Appendix 6.6.1. We also note that when using the trace-class
neural network prior from Section 5.4, the statements remain true if the likelihood is seen as
a function of the parameters θ of the neural network:

Lemma 2. The log-likelihood ℓ(y|vθ,σ) defined in (6.5) satisfies Assumptions 3 and 4, where

now inference is over the weights and biases, θ ∈ H = ℓ2.

Proof. As v is a Lipschitz continuous function of θ, ℓ(y|v(θ),σ), as a composition of Lipschitz
continuous functions, is also Lipschitz continuous in θ; and, with an activation function
satisfying Condition 9, v grows at most polynomial in θ. □

The next theorem ensures that the pCNL algorithm is well-defined for both priors by
making sure that proposals are π0-almost surely in the image of the prior:
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Theorem 8. For any u∼N(0,C), we haveN(CDℓ(u),C)≃N(0,C), that is, the two Gaussian

measures are absolutely continuous with respect to one another. In other words, Condition 5

holds, i.e. the preconditioned gradient of the log-likelihood is in the image of the prior. This

holds for both the KL-prior where Dℓ(u) should be understood as the collection of derivatives

with respect to the ξi and the prior is overH = L2, and for the trace-class neural network

prior, where Dℓ(u) is the collection of derivatives with respect to each weight and bias and

inference is over the parameters of the neural network such thatH = ℓ2.

The proof can be found in appendix 6.6.2.

6.4 Numerical Illustrations

This section aims to validate the theory, and highlight the applicability of the proposed priors
and methodology. In particular, Section 6.4.2 confirms that, empirically, as the layer width
for the trace-class neural network prior grows, the acceptance probability does not go to 0, a
property known as ‘stable under mesh-refinement’ or ‘dimension-independence’; Section
6.4.3 compares the proposed trace-class neural network prior to the Karhunen-Loève prior,
and highlights that, unlike the latter, the former is scalable to higher-dimensional domains;
and Section 6.4.4 shows that the posteriors can learn and mimic policies, thus justifying the
use of these priors in the reinforcement learning setup.

Throughout we use the Fourier basis (5.7) as the series expansion of choice when using
the Karhunen-Loève based prior, as this proved to be a good choice for reinforcement
learning problems (Konidaris et al., 2011). As a tuning parameter for the corresponding
eigenvalues we set α = 2 in (5.8), forcing the samples to be very smooth which we expect to
be a sensible choice in the discussed control problems. For the trace-class neural network
prior we used fully connected layers with tanh activation functions throughout. We set the
variance parameters uniformly as σ2

b(l) =σ
2
w(l) = 2, and set α = 1.5, this again results in smooth

sample functions.

The code for all examples in this chapter is available online at https://github.com/
TorbenSell/trace-class-neural-networks.

https://github.com/TorbenSell/trace-class-neural-networks
https://github.com/TorbenSell/trace-class-neural-networks
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6.4.1 Control Problems: Setup

We set the scene by describing the setup of the control problems which we use in the
experiments.

Mountaincar

The first example is the popular mountaincar problem. The state space is the 2-dimensional
domain X = [−1.2,0.6]× [−0.07,0.07], where the first variable is the position x1 of the
car on a mountain slope, and the second variable represents its velocity x2. The set of
possible actions is A = {−1,0,1}, representing exerting force to the left, not adding force,
and exerting force to the right, respectively. The state transitions are deterministic, being
given by Newtonian physics, and we refer the reader to the OpenAI documentation or to our
code for the details. See Figure 6.1 for an illustration of the scenario.

Fig. 6.1 Left: The setup for the mountaincar example. The car’s goal is to reach the goal in
as few steps as possible. The slope on the right is too steep to simply drive up the mountain,
the car therefore has to gain momentum by going up the hill on the left first. Right: The
HalfCheetah has states xt in R17. Its goal is to run to the right as quickly as possible, while
not moving its body parts more than necessary.

In the mountaincar problem, the reward is constant r(x1, x2) = −1 per step, until the car
reaches the top of the mountain (x1 ≥ 0.5). The optimal policy is therefore to reach the
mountaintop as quickly as possible, and we terminate an episode if the car didn’t make it up
the hill after 200 time steps. All data was generated from an optimal deterministic policy
(Xiao, 2019) given by

µ(x1, x2) = −1+2I{min(−0.09(x1+0.25)2+0.03,0.3(x1+0.9)4−0.008) ≤ x2}×

×I{x2 ≤ −0.07(x1+0.38)2+0.07},

and we set the noise level to σ = 0.1.
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HalfCheetah

To show that our algorithm works in a more complicated setting, we looked at the HalfCheetah
example from the MuJoCo library (Todorov et al., 2012) where the state xt is a 17-dimensional
vector. The original continuous actions space of the problem is 6-dimensional. We discretised
the action space to M = 8 actions resulting in a computable likelihood (6.8), where we set the
noise level to σ = 0.1. Positive rewards are given for moving forward, and negative rewards
are given for moving backwards. A further penalty is deducted for ‘large’ effort actions,
causing the goal to be to move forward as quickly as possible with as little effort as possible.

To generate data, we used as the expert the best performing computed policies from
Berkeley’s Deep Reinforcement Learning Course1, and projected those actions onto ‘our’
discrete action space by choosing the discrete action minimising the Euclidean distance to
the expert’s action.

6.4.2 Dimension Independence of Trace-Class Neural Network Priors
Under Mesh Refinement

We ran pCN for different network widths on the mountaincar example. The Network used
has l = 3 hidden layers. As stated before, the tuning parameters in the prior are set to
σ2

b(l) = σ
2
w(l) = 2, and α = 1.5. Table 6.1 displays the acceptance probability of pCN for

fixed step size (βpCN = 1/10) when targeting the posterior arising from the trace-class neural
network prior and the mountaincar likelihood.

N(l), for all l 20 30 40 50 60 70 80 90 100
Acc. ratio (in %) 24.0 23.5 22.1 22.2 23.1 23.9 23.4 23.0 23.9
Total # of param. 921 1981 3441 5301 7561 10221 13281 16741 20601

Table 6.1 Acceptance ratios and total number of parameters (weights and biases) for different
layer widths. 3 fully connected layers were used, and pCN was run over 3 hours for each of
the layer widths. Notably the acceptance probability does not degenerate as more nodes are
included per layer.

1CS294-112 HW 1: Imitation Learning, https://github.com/berkeleydeeprlcourse/homework/
tree/master/hw1, accessed on December 4th, 2020.

https://github.com/berkeleydeeprlcourse/homework/tree/master/hw1
https://github.com/berkeleydeeprlcourse/homework/tree/master/hw1
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6.4.3 Comparison of Priors

To compare the trace-class neural network prior to the Karhunen-Loève prior, we used a
large number of parameters for each, such that the error from truncating after finitely many
nodes, or finitely many terms, is negligible. For both the mountaincar and the HalfCheetah
example, we used the same trace-class neural network prior, with 3 hidden layers, and 100
nodes per layer, resulting in 20,601 parameters to be estimated for the mountaincar example,
and 22,101 for the HalfCheetah example. For the Karhunen-Loève prior in the mountaincar
example we set the truncation parameter to kmax = 70 for (5.7) with eigenvalues (5.8) (recall
that here α = 2), resulting in a total of 19,880 coefficients to be estimated. For the KL
prior in the HalfCheetah example we used approximation (5.5), and otherwise the same
eigenfunctions and eigenvalues; due to the higher domain dimension d = 17, one would have
to estimate 2,667,980 parameters. As this is too memory-expensive for the computer used
for the experiments, we used kmax = 10 in the HalfCheetah example, resulting in 54,740
parameters to be estimated. Note that this increase in parameters to be estimated is already
due to the approximation (5.5) being used, and additionally truncating the expansions after
fewer terms, highlighting the benefits of the dimension-robustness of the trace-class neural
network prior.

To assess the quality of the priors, we ran pCN using 50 (for the mountaincar) and 100
(for the HalfCheetah) data points. For the mountaincar example, we fixed five test points
z j, j = 1, . . . ,5, and compared the posteriors by evaluating v(z j) at these new locations as
estimated through MCMC runs. The top row in Figure 6.2 shows the resulting uncertainty
estimates. As the value function is invariant under translations, we adjusted all samples such
that they take the value 0 at the state which the optimal action takes one to.

For the HalfCheetah example, we looked at one test point for illustration, see the bottom
row in Figure 6.2, and summarised the performance on another 100 data points in the Table
6.2, where we compared how the respective samples from the posterior do, as well as how
the mean of all samples from the posterior in Section 6.4.4 (with a smaller number of nodes
for the NN prior, and fewer active terms in the KL prior2) does on predicting the correct
action (last two columns). Not surprisingly, the mean function is better at picking the correct
action.

2To calculate the mean function it is necessary to store the samples which (due to the used computer’s
limited memory capacity) would not be feasible for the very wide layer prior, nor all the terms in the KL prior.
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Decision made by KL samples NN samples KL mean NN mean
Optimal Action 20.1% 32.1% 25% 42%
Non-optimal Action 79.9% 67.9% 75% 58%

Table 6.2 Optimal action picked by samples, and the sample mean at a data point, for two
different posteriors. The trace-class neural network prior outperforms the approximate KL
prior.

6.4.4 Ability to Learn Policy

To asses if the posteriors can truly learn an agent’s behaviour, we used the priors with a
smaller number of parameters, and stored 1000 samples for each posterior. We then used
these samples to obtain a mean value function which was used for decision making. For the
trace-class neural network prior we used 3 layers with 10 nodes per layer for both examples
(resulting in 261 parameters for the mountaincar example and 411 for the HalfCheetah);
for the KL prior we used kmax = 7 for the mountaincar example (giving a total of 224
parameters), and kmax = 5 in the HalfCheetah example (a total of 8,730 parameters). The
results are summarised in Figure 6.3.

6.5 Discussion

This chapter addresses the problem of effective Bayesian inference for unknown functions
with higher dimensional domains. Unlike priors which require an orthogonal basis for the
function space, and scale exponentially in the domain dimension, our proposed trace-class
neural network prior easily scales to higher-dimensional domains as the dependence on the
domain dimension is linear. When using the pCN sampling method, this prior also satisfies
the desired property of being stable under mesh-refinement, in the sense that the acceptance
probability of pCN does not degenerate to 0 when using more parameters for the neural
network. Various questions remain unanswered though, and interesting directions of research
open up: are there suitable further generalisations of the proposed prior, e.g. heavy-tailed or
hierarchical ones, which still satisfy the desired properties, enabling the use of these priors in
the function space setting? Furthermore, hierarchical priors could allow handling situations
in which some of the model parameters are unknown. This will normally be the case, and
rather than treating e.g. σ, the noise contaminating the actions, as fixed, a hyperprior on
σ can account for this uncertainty. This requires careful consideration though: the action
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Fig. 6.2 Uncertainty estimates arising from the two different priors for the mountaincar and
the HalfCheetah examples.
Top row: Mountaincar example. In each plot, five different states are looked at, the estimates
of the value functions are shown, standardised such that the optimal action has value 0 always.
Both the Karhunen-Loève based posterior and the neural network based posterior can make
no clear judgement as to what the optimal actions for the first three shown states are. For
the fourth and fifth states, both posteriors suggest a clear decision for action ‘Left’. The
reader should note that both the KL and the NN posteriors behave similarly in that they are
uncertain in the first three states, and very decisive in the last two states.
Bottom row: HalfCheetah example. The optimal action is the first one in both plots, and
samples are normalised such that they take the value 0 at the state the optimal value takes
one to. The NN posterior correctly estimates the optimal action, the KL posterior doesn’t.

variance σ and the choice of prior variances are closely related. To see this, consider finding
the argmax in Equation (6.4), and let for simplicity v(T (x,a1)) = v1 and v(T (x,a2)) = v2. Then

argmax
a
{v1+ ϵ1, v2+ ϵ2} = argmax

a
{10v1+10ϵ1,10v2+10ϵ2},
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(b) HalfCheetah: Results

Fig. 6.3 Results for the policy learning experiment.
Left: Mountaincar example. The number of steps until success is shown for different
posteriors. If the goal was not reached after 200 steps, the run was counted as failure. Out of
100 runs, the policy following the KL posterior when using pCN gave 34 failures (24 when
using pCNL), the NN posteriors gave 23 (for the posterior estimates obtained using pCN)
and 25 (pCNL).
Right: HalfCheetah example. The different policies arising from the KL posterior (obtained
once using pCN, once using pCNL) and the NN posterior were controlling the agent over 10
runs with 100 time steps. The distances covered per run are shown in the plot.

and we note that we get the same results to our original setup if we multiply the value function
by 10 (or any other constant c, and the variance in the noise by 100 (or generally any c2).
This requires us to carefully investigate the interplay of the action variance and the prior
parameters, which we will leave for future investigations.

Another question relates to the prior parameters, assuming now a fixed action noise: what
are the optimal settings for the tuning parameters σ2

w(l) , σ
2
b(l) and α? How does the prior

behave in the depth limit? Can one obtain contraction rates to ensure the concentration of
the posterior samples around the true functions? A first idea here is to exploit the various
generalisations of the universal approximation theorem, and combine them with the proof
methodology used in this chapter and the previous.

We further introduced a likelihood suitable for Bayesian reinforcement learning where
the underlying Markov decision process has a continuous state-space, and thus the unknown
value function to be estimated has domain Rd as opposed to a discrete set. An interesting
research direction is to generalise this to continuous action spaces as well.

Finally, we underscored the theory with numerical illustrations, illustrating the applica-
bility of the prior in various control problems.
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6.6 Appendix

6.6.1 Proof of Theorem 7

Proof of Theorem 7. In the following, we identify v with its finitely many observations vt.
One notes that the integral (6.6) is upper bounded by 1. For the lower bound we substitute
w = u− v in (6.6), allowing us to bound

(6.6) =
∫

1{w∈Rd:(w+v)1≥(w+v) j∀ j,1}N(w;0,σ2IM×M)dw

≥

∫
1{w∈Rd:(w+v)1≥0≥(w+v) j∀ j,1}N(w;0,σ2IM×M)dw

=

∫
1{w∈Rd:w1≥−v1,w j≤−v j∀ j,1}N(w;0,σ2IM×M)dw

=

∫
1{w∈Rd:w1≥−v1,w j≥v j∀ j,1}N(w;0,σ2IM×M)dw (6.15)

≥

∫
1{w∈Rd:w1≥|−v1|,w j≥|v j|∀ j,1}N(w;0,σ2IM×M)dw

≥

∫
1{w∈Rd:w1≥s,w j≥s∀ j,1}N(w;0,σ2IM×M)dw, (6.16)

where for (6.15) we exploited the fact that the normal is centered and isotropic, and to get
(6.16) we pick
s = ∥v∥∞ > 0 if v , 0. The case v = 0 is trivial as the integral is then non-zero. (6.16) can now
be treated as the tail probability for a centered multivariate normal distribution (see Hashorva
(2005)) which satisfies the Savage condition (Savage, 1962). We thus get the bound

(6.16) ≥ cexp(−s2) = cexp(−∥v∥2∞)

as long as ∥v∥∞ > 2d/σ4. For all other v, the integral (6.6) is bounded away from zero, and
the Assumption 3 holds trivially. The assumption thus holds for all v.
To see that Assumption 4 holds, note that the log-likelihood is continuously differentiable in
v, and thus locally Lipschitz. □

6.6.2 Proof of Theorem 8

Proof of Theorem 8. Firstly, note that the Assumptions in Theorem 6 hold by Theorem 7,
and additionally the log-likelihood ℓ satisfies

∑M
k=1

∂ℓ
∂vk
= 0 (where vk is the evaluation v(xk)
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of the value function at location xk) by the translation invariance, and
∑M

k=1

(
∂ℓ
∂vk

)2
<∞ for

any v µ0-almost surely.

For the KL prior, the claim follows immediately from the Feldman-Hajek theorem (see
e.g. Da Prato and Zabczyk (2014)).

For simplicity, we from now on assume that the likelihood consists of only one data point
and omit the respective index, but the generalisation to multiple data points is trivial.

Following a similar argument as in the proof of Theorem 6, we will show that for fixed x

S s = S s(x) =
n+1∑
l=1

s∑
i=1

σ
2
bl

iα

 ∂ℓ

∂B(l)
i

(x)

2

+

s∑
j=1

σ2
wl

(i j)α

 ∂ℓ

∂W(l)
i, j

(x)


2 (6.17)

defines a L1-bounded submartingale, converging almost surely to a random variable S∞ by
Doob’s martingale convergence theorem. Once we have established the convergence, we
note that this implies the equivalence

N(CDℓ(u),C) ≃ N(0,C) (6.18)

for all u π0-almost surely by applying (a simplified version of) the Feldman-Hajek theorem
(Da Prato and Zabczyk, 2014, Theorem 2.23) which states that two Gaussian measures
N(m1,Q) and N(m2,Q) are absolutely continuous with respect to one another if and only if
m1−m2 ∈ Q1/2(H), i.e.

∑
i(m1i−m2i)2/λ2

i <∞ (Da Prato and Zabczyk, 2014)3. Here, the
latter corresponds to

∞∑
i=1

(CDℓ(u))2
i

λ2
i

=

∞∑
i=1

λ4
i (Dℓ(u))2

i

λ2
i

=

∞∑
i=1

λ2
i (Dℓ(u))2

i (6.19)

being finite (Da Prato and Zabczyk, 2014). Note thatDℓ(u) is a random variable defined over
the parameters of the neural network; Equation 6.19 is, after substituting both the eigenvalues
of C and the derivatives with respect to the parameters into this expression, equivalent to
Equation 6.17. We will show that S s is finite π0-almost surely such that the equivalence
(6.18) holds.

3In our notation, the eigenvalues of C are λ2
i , in comparison to the ones used in Da Prato and Zabczyk

(2014) who define the eigenvalues of Q as λ.
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Remark: We here also note that, if we want to apply the same argument for the case
without preconditioning, we would require (by the same argument as above) that

∞∑
i=1

(Dℓ(u))2
i

λ2
i

=

∞∑
i=1

(Dℓ(u))2
i

λ2
i

<∞,

which will generally not be the case. One can check this by repeating the proof for the pCNL
case (note that the likelihood contribution would have to dominate the diverging 1/λ2

i terms).

It remains to show that S s is a L1-bounded submartingale. It is clear that S s is a (non-
negative) submartingale, and we only need to show that the expectation of S s is bounded.
We define g(l)

i (x) = φ( f (l)
i (x)) to simplify notation. From (5.25) we get E[( f (l)

i )2] ≤ σ2
l /i

α, and
combining this bound with Assumption 9, we get E[(g(l)

i )2] ≤ σ2
l /i

α.

We ask the reader to recall Definition 5.14. The partial derivatives with respect to the
biases and weights can be calculated by applying the chain rule multiple times, and they are
given by

∂ℓ

∂W(n+1)
1, j

=

M∑
k=1

∂vk

∂W(n+1)
1, j

∂ℓ

∂vk
=

M∑
k=1

g(n)
1, j(xk)

∂ℓ

∂vk
(6.20)

∂ℓ

∂B(n+1)
1

=

M∑
k=1

∂vk

∂B(n+1)
1, j

∂ℓ

∂vk
=

M∑
k=1

∂ℓ

∂vk
(6.21)

∂ℓ

∂W(l)
i, j

=
∂ f (l)

i

∂W(l)
i, j

∂ℓ

∂ f (l)
i

= g(l−1)
j

∂ℓ

∂ f (l)
i

l = 2 . . .n (6.22)

∂ℓ

∂B(l)
i

=
∂ f (l)

i

∂B(l)
i

∂ℓ

∂ f (l)
i

=
∂ℓ

∂ f (l)
i

l = 2 . . .n (6.23)

∂ℓ

∂W(1)
i, j

= x j
∂ℓ

∂ f (1)
i

(6.24)

∂ℓ

∂B(1)
i

=
∂ℓ

∂ f (1)
i

. (6.25)
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We will have to consider the following partial derivatives that show up in the ones above:

∂ℓ

∂ f (l)
i (x)

=
∂g(l)

i (x)

∂ f (l)
i (x)

∂ℓ

∂g(l)
i (x)

l = 1 . . .n (6.26)

∂ℓ

∂g(l)
i (x)

=

s∑
j=1

∂ℓ

∂ f (l+1)
j (x)

W(l+1)
j,i l = 1 . . .n, (6.27)

where in the last line we have already established the dependence of ∂ℓ

∂g
(l)
i (x)

on s. Using

Assumption 9, we get that |
∂g

(l)
i

∂ f (l)
i

| ≤ 1.

Now, for l = n, by independence:

E


 ∂ℓ

∂g(l)
i

2 = E

 ∂ℓ

∂ f (n+1)
1

W(n+1)
1,i

2 (6.28)

=
σ2
wn+1

iα

M∑
k=1

(
∂ℓ

∂vk

)2

, (6.29)

and further (again by independence), for l < n,

E


 ∂ℓ

∂g(l)
i

2 = s∑
j=1

E


 ∂ℓ

∂ f (l+1)
j

W(l+1)
j,i


2 (6.30)

=
σ2
wl+1

iα

s∑
j=1

1
jα
E


 ∂ℓ

∂ f (l+1)
j


2 (6.31)

=
σ2
wl+1

iα

s∑
j=1

1
jα
E


∂g

(l+1)
j

∂ f (l+1)
j

∂ℓ

∂g(l+1)
j


2 (6.32)

≤
σ2
wl+1

iα

s∑
j=1

1
jα
E


 ∂ℓ

∂g(l+1)
j


2 . (6.33)

We can use induction to show that for l = 1 . . .n,

E


 ∂ℓ

∂g(l)
i

2 ≤ dl

iα

M∑
k=1

(
∂ℓ

∂vk

)2

, (6.34)
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where

dl =

 n+1∏
r=l+1

σ2
wr


 ∞∑

j=1

1/ j2α


n+1−l−1

. (6.35)

Putting things together, we get that (6.17) defines a L1 bounded submartingale if α > 1 and∑M
k=1

(
∂ℓ
∂vk

)2
<∞:

E[S s] = E
n+1∑
l=1

s∑
i=1

σ
2
bl

iα

 ∂ℓ

∂B(l)
i

(x)

2

+

s∑
j=1

σ2
wl

(i j)α

 ∂ℓ

∂W(l)
i, j

(x)


2

≤max
l

[
max

(
σ2

bl
,σ2

wl

)]
E

n+1∑
l=1

s∑
i=1


 ∂ℓ

∂B(l)
i

(x)

2

+

s∑
j=1

 ∂ℓ

∂W(l)
i, j

(x)


2 ,

and it remains to show that the expectation part of this expression is finite:

E
n+1∑
l=1

s∑
i=1


 ∂ℓ

∂B(l)
i

(x)

2

+

s∑
j=1

 ∂ℓ

∂W(l)
i, j

(x)


2

= E
n+1∑
l=1

s∑
i=1


∂g(l)

i

∂ f (l)
i

∂ℓ

∂g(l)
i


2

+

s∑
j=1

g(l−1)
j

∂g(l)
i

∂ f (l)
i

∂ℓ

∂g(l)
i


2

≤ E
n+1∑
l=1

s∑
i=1


 ∂ℓ

∂g(l)
i

2

+

s∑
j=1
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j

∂ℓ

∂g(l)
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=
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i=1
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□
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6.6.3 Proof of pCNL Being Well-Defined

Theorem 9. The preconditioned Crank-Nicolson Langevin algorithm is a well-defined

MCMC algorithm in the function space setting if CDΦ(u) ∈ Im(C1/2).

Part of this proof can be found in Beskos et al. (2017).

Proof. We assume that Theorem 6.2 in Cotter et al. (2013) holds. We can then check that the
change of measure arising from the gradient term is absolutely continuous with respect to the
measures used in Theorem 6.2 if, and only if, CDΦ(u) ∈ Im(C1/2) by the Cameron-Martin
Theorem (Cameron and Martin, 1944). □
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