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Abstract
The Lambert W function is the multi-valued inverse of the function E(z) = z exp z.
Let ˜W be a branch of W defined and single-valued on a region ˜D. We show how
to use the Taylor expansion of ˜W at a given point of ˜D to obtain an infinite series
representation of ˜W throughout ˜D.
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1 Introduction

The Lambert W function is the multi-valued inverse of the holomorphic function
E : z �→ z exp z. It is well known that W has very many applications throughout the
sciences, and even though there are very few explicit formulae available for any of the
branches ofW , its usefulness has grown enormously in recent times due to our ability
to compute specific values of W . For more details on the Lambert W function and its
many applications we refer the reader to, for example [3–5].

It is well known that the function E is a bijective conformal map of the U-shaped
region Ω0 in Fig. 6 onto the cut plane C\(−∞,−1/e], which we denote by C. Here,
the region Ω0 is bounded by the curve x sin y + y cos y = 0, where −π < y < π ,
and this curve has (in the obvious sense) the lines y = π and y = −π as asymptotes.
This fact leads us to the (standard) definition of the principal branch W0 : C → Ω0 of
the Lambert W function as the single-valued inverse of the map E of Ω0 onto C.

If we expand W0 in a power series about the origin we obtain

W0(z) =
∞
∑

n=1

(−n)n−1

n ! zn, (1.1)
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Fig. 1 The principal branch W0 : C → Ω0 of the Lambert function

which, by the ratio test, has radius of convergence 1/e (and so converges in the shaded
disc in Fig. 1). This power series can be analytically continued from the shaded disc
to give the conformal map W0 of C onto Ω0, and the main result in this paper is the
following formula for this analytic continuation.

Theorem 1 For each z in C we have

W0(z) =
∞
∑

m=1

am

(√
ez + 1 − 1√
ez + 1 + 1

)m

, am =
m

∑

n=1

(−n)n−1

n !
(

4

e

)n (

m + n − 1

m − n

)

.

(1.2)

Theorem 1 gives a series representation of the principal branch W0 which is valid
throughout its the entire domain of definition C, and it appears that no such represen-
tation has been given before. In summary, (1.2) provides an analytic continuation of
(1.1) from the shaded disc {|z| < 1/e} to the entire cut plane C.

For the benefit of the reader, we now discuss the properties of E , the action of
E on the real axis, and the shape of the domain Ω0 bounded by the curve given by
x sin y+y cos y = 0; thismaterial, which is not new, is given in the next three sections.
We then prove Theorem 1, and follow this with a discussion of a possible extension
of it to other branches of the Lambert W function.

2 Properties of the Function E

LetC∞ (= C∪{∞}) be the extended complex plane. As E is holomorphic throughout
C with an essential singularity at ∞, Picard’s great theorem (see [2,7]) implies that,
for at most two exceptional values of a in C∞, the equation E(z) = a has infinitely
many solutions in C. As E �= ∞ in C, the value ∞ is one of these exceptional values.
Next, as E(z) = 0 if and only if z = 0, the value 0 is another exceptional value; thus
the two exceptional values for E do exist and are 0 and ∞. This shows that, for every
non-zero complex number a, the equation E(z) = a has infinitely many solutions
in C. In particular, E maps C onto itself, and each non-zero point of C is ‘covered’
infinitely often by E . As E ′(z) �= 0 when z �= −1, for each point z0 other than−1, the
map E provides a conformal bijection of some open neighbourhood N of z0 onto the
open neighbourhood E(N ) of E(z0), and the inverse of this conformal bijection is a
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Fig. 2 The graph of the function
E : R → R

x=−1

y=−1/e

branch of the LambertW function which maps E(N ) onto N . Finally, as E ′(−1) = 0
and E ′′(−1) �= 0, the map E near the point −1 is, up to a change of co-ordinates by
a conformal mapping, the map z �→ z2 of the open unit disc {z : |z| < 1} onto itself.

We end this section with a brief description of the asymptotic values of E even
though we shall not use them here. A number v is an asymptotic value of E if there
is a curve � in C∞ that starts at some point in C and ends at ∞, and which is such
that E(z) → v as z moves towards ∞ along �. As E(x) → ∞ as x → +∞, and
E(x) → 0 as x → −∞, the two exceptional values 0 and ∞ of E mentioned above
are also asymptotic values of E . In fact, as we shall now show, these are the only
asymptotic values of E . First, the entire function E is of order one (see [10] for the
definition of the order of an entire function). Next, it follows from the well-known
Denjoy–Carleman–Ahlfors theorem that as E has order one, it has at most two direct
singularities; see [6] for a discussion of this result. As 0 and∞ are direct singularities,
these are the only asymptotic values of E .

3 The Two Real Branches ofW

The function E maps the real line R into itself. The graph of E : R → R is shown in
Fig. 2, and this shows that E is

(i) a strictly decreasing map of (−∞,−1] onto [−1/e, 0), and
(ii) a strictly increasing map of [−1,+∞) onto [−1/e,+∞).

The inverse of the map in (i) is denoted by W−1; the inverse of the map in (ii) is W0.

4 The RegionÄ0

If z = x + iy and E(z) = u + iv, then

u(x + iy) = (x cos y − y sin y) exp x;
v(x + iy) = (x sin y + y cos y) exp x .

It follows that E(z) is real if and only if x sin y + y cos y = 0. Further, if x sin y +
y cos y = 0 and y = nπ , where n is an integer, then y = 0. This shows
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−1

y= π

y= π/2

t

x(t)

Fig. 3 The graph of
(

x(t), t
)

, where x(t) = −t cos t/ sin t and 0 < t < π

(i) if E(x + iy) is real then y = 0 or, for some integer n, nπ < y < (n + 1)π ;
(ii) if x sin y + y cos y = 0 and y �= 0, then E(x + iy) = −yex/ sin y;
(iii) if x sin y + y cos y = 0 and nπ < y < (n + 1)π then E(x + iy) > 0 when

n ∈ {1, 3, 5, . . .}, and E(x + iy) < 0 when n ∈ {0, 2, 4, 6, . . .}.
It follows from these observations that the set of points z in the strip {x + iy : 0 < y <

π} where E(z) is real is the curve given by

{(

x(y), y
) : 0 < y < π

}

, x(y) = −y cos y

sin y
,

and which is illustrated in Fig. 3.
The visual properties of this curve can easily be obtained analytically. Obviously,

x(y) → −1 as y → 0+, x(π/2) = 0, and x(y) → +∞ as y → π−. A calculation
shows that

dx

dy
(y) = y − 1

2 sin(2y)

sin2 y
> 0 (4.1)

so that the function y �→ x(y) is increasing on (0, π). Next, it is easy to check
that E maps the curve illustrated in Fig. 3 onto the segment (−∞,−1/e]. Finally, as
E

(

z
) = E(z), the map E is symmetric abut the real axis, and this determines the shape

of the curve x sin y + y cos y in the range −π < y < π which bounds the region Ω0
thatwas defined earlier. Standard arguments about analytic continuation now show that
there is a branch W0 of the Lambert W function which maps C conformally onto Ω0.

5 The Proof of Theorem 1

The Eq. (1.1) is needed for our proof of Theorem 1 and, as E(z) = ∑

n z
n+1/n!, this

follows from a standard application of the Lagrange Inversion formula (see [1,2]).
Nevertheless, it seems worth recording that it also follows much more simply from
the basic formula
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Fig. 4 The maps g, W0 and F

C Ω0

D

W0

F(z) =W0 g(z)g

f −1(w) = 1

2π i

∫

γ

z f ′(z)
f (z) − w

dz

which (by the Residue theorem) is valid when f is a conformal map of D onto D′, γ
is a simple closed curve in D, and w lies inside the simple closed curve f (γ ) in D′.
If we take f to be E : Ω0 → C, and γ a simple closed curve that surrounds 0, then,
for w sufficiently close to 0, we obtain

W0(w) = 1

2π i

∫

γ

z(1 + z) exp z

z exp z − w
dz = 1

2π i

∫

γ

1 + z

1 − w
z exp z

dz.

By expanding the denominator as a geometric series, this becomes

∞
∑

k=0

wk
[

1

2π i

∫

γ

(

1 + z

zk

)

exp(−kz) dz

]

,

and (1.1) now follows by writing exp(−kz) as a power series and then using the
Residue theorem.

Proof of Theorem 1 Let g be a conformal map of the open unit disk D onto C with
g(0) = 0 and, for z in D, let F(z) = W0

(

g(z)
)

; see Fig. 4.
Then F is a holomorphic map ofD ontoΩ0, and F(0) = 0. It follows that for some

coefficients am we can write

W0
(

g(z)
) = F(z) =

∞
∑

m=1

amz
m,

where (because F is holomorphic in D) this is valid throughout D. If we now select
any ζ in C, and put z = g−1(ζ ), we have

W0(ζ ) =
∞
∑

m=1

am [g−1(ζ )]m,

and it is now simply a matter of identifying g−1 and the coefficients am to obtain (1.2).
To construct the map g, we observe that

(i) z �→ ez + 1 maps C onto C\(−∞, 0];
(ii) z �→ √

z maps C\(−∞, 0] onto {x + iy : x > 0};
(iii) z �→ (z − 1)/(z + 1) maps {x + iy : x > 0} onto D.
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It follows that g is a conformal map of D onto C, with g(0) = 0, where

g(z) = 4z

e(z − 1)2
, z ∈ D,

and

g−1(ζ ) =
√
eζ + 1 − 1√
eζ z + 1 + 1

, ζ ∈ C.

Finally, we identify the coefficients am . For any complex number α, and any z with
|z| < 1, we have

1

(1 − z)α
=

∞
∑

k=0

(

k + α − 1

k

)

zk .

If we put α = 2n, where n is a non-negative integer, and multiply both sides by zn ,
we obtain

[

z

(z − 1)2

]n

=
∞
∑

k=0

(

k + 2n − 1

k

)

zk+n .

Next, if |z| is sufficiently small, then |g(z)| < 1/e so that

∞
∑

n=1

(−n)n−1

n !
[

4z

e(z − 1)2

]n

= W0
(

g(z)
) =

∞
∑

m=1

amz
m .

It follows that for all z in some neighbourhood of 0,

∞
∑

m=1

am zm =
∞
∑

n=1

∞
∑

k=0

(−n)n−1

n !
(

4

e

)n (

k + 2n − 1

k

)

zk+n .

Thus

am =
∑

k+n=m

(−n)n−1

n !
(

4

e

)n (

k + 2n − 1

k

)

=
m

∑

n=1

(−n)n−1

n !
(

4

e

)n (

m + n − 1

m − n

)

,

and this completes the proof.

6 An Extension of Theorem 1

The essence of Theorem 1 is that, starting with the particular branch (W0, C) of W ,
we have found a representation of W0 as an infinite series that is valid throughout C,
and which is constructed from two pieces of information, namely

(i) the Taylor series of W0 about the point 0 in C, and
(ii) a conformal mapping of C onto D.
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Fig. 5 The maps g, ˜W and F

D D

D

W

F(z) =W g(z)g

In fact, the argument used in the proof of Theorem 1 is valid for any branch of W as
we shall now show.

A branch ofW is (by definition) a pair ( ˜W , ˜D) (or simply ˜W when ˜D is understood
from the context), where ˜D is a simply connected region in C, and ˜W is a conformal
bijection of ˜D onto a simply connected region D inC such that the twomaps E : D →
˜D and ˜W : ˜D → D are inverses of each other. Suppose that ( ˜W , ˜D) is a branch ofW ,
and that ζ0 ∈ ˜D. Then ˜W has an expansion, say

˜W (ζ ) =
∞
∑

n=0

an(ζ − ζ0)
n, (6.1)

which is valid in, and only in, the largest disc with centre ζ0 that lies in ˜D. Thus, in
general, the expansion (6.1) will not be valid throughout ˜D. Now by the Riemann
mapping theorem, there is a conformal bijection g of the open unit discD onto ˜D with
g(0) = ζ0, and this has an expansion, say

g(z) =
∞
∑

n=0

bnz
n (6.2)

which is valid throughout D. Now let F be defined on D by F(z) = ˜W
(

g(z)
)

; see
Fig. 5. Then F : D → D is holomorphic in D so we can write

F(z) =
∞
∑

n=0

cnz
n,

where this is valid throughout D. It follows that, for all ζ in ˜D, we have

˜W (ζ ) =
∞
∑

n=0

cn[g−1(ζ )]n, (6.3)

and we shall now show how the coefficients cn in (6.3) can be computed from the
coefficients an and bn in (6.1) and (6.2). After this, we shall consider branches of the
Lambert W function other than the branch W0.

The formula for the coefficients cn is a straightforward application of Faà di Bruno’s
formula which is an identity that generalises the chain rule to higher derivatives.
Explicitly, given that the composition f

(

g(x)
)

is defined, and that the functions f
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and g are sufficiently smooth, Faà di Bruno’s formula (in a form that is best suited to
power series) is that

1

n!
dn

dxn
f
(

g(x)
) =

∑∗
⎧

⎨

⎩

(m1 + · · · + mn)!
m1!m2! · · ·mn !

(

f (m1+···+mn)
(

g(x)
)

(m1 + · · · + mn)!

)

n
∏

p=1

(

g(p)(x)

p!

)mp
⎫

⎬

⎭

,

where the sum
∑∗ is the sum over all n-tuples of non-negative integers (m1, . . . ,mn)

that satisfy the constraint m1 + 2m2 + 3m3 + · · · + nmn = n. If we now let f = ˜W
and take g to be the function defined in Sect. 1, then

an = ˜W (n)(ζ0)

n! , bn = g(n)(0)

n! , cn = F (0)(0)

n! ,

so that

cn =
∑∗ {

(m1 + · · · + mn)!
m1!m2! · · ·mn ! am1+···+mnb

m1
1 · · · bmn

n

}

,

which is a finite sum that depends only on the ai and b j . Apparently, Faà di Bruno
was neither the first to state the formula that bears his name, nor the first to prove it,
and for a history of the formula we refer the reader to [8].

7 Other Branches of the Lambert Function

In this section we illustrate how the extension of Theorem 1 might be applied to
branches ofW other thanW0. In the basic reference [4] for the LambertW function the
authors of [4] introduce a collection of (standardised) branches . . . ,W−1,W0,W1, . . .

of W , and discuss how one can evaluate (or estimate) these branches at a given point.
Briefly (we omit the details) these branches are defined by introducing branch cuts
along the negative real axis. However, we prefer to illustrate the idea here by applying
it to those branches ofW that are obtained by introducing branch cuts along the positive
real axis. From a topological perspective this seems more desirable since it provides
exactly two branches at the branch point −1/e of order two. In all of these cases we
can compute an explicit formula for the conformal mapping g of D onto the domain
˜D of the branch ˜W , but as yet an explicit formula for the Taylor expansion of ˜W about
some point˜ζ (of our choice) of ˜D does not seem to be available. Thus, in effect, our
method only provides an analytic continuation of a Taylor expansion of ˜W about a
point of ˜D to a series representation of ˜W that is valid throughout ˜D. In this context,
the branch W0 is exceptional as we do know the Taylor expansion of W0 about the
origin.

In order to find branches ofW , we need themonodromy theorem: if a single-valued
analytic function can be continued analytically over all curves in a simply connected
region then the resulting function is single-valued in that region ([9]). In the case of the
multi-valued functionW , it is clear that every local branch ofW extends univalently to
any simply connected domain which does not contain 0 or ∞ (the asymptotic values
of E) or the unique critical value −1/e.
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y = 0

y = π

y =−π

y = 2π

y =−2π

y = 3π

y =−3π

y = 4π

y =−4π

Γ3

Γ−3

Γ1

Γ−1

Γ +
0

Γ −
0

Ω1

Ω0

Ω∞

Ω−1

Fig. 6 The domain of E(z) = z exp z

Following the ideas in [4], we partition C into a collection of mutually disjoint,
non-overlapping regions as illustrated in Fig. 6. The curves � j , j = −1, 1,−2, 2, . . .,
constitute the inverse images under E of the positive real axis with

lim
x→−∞, z∈� j

E(z) = 0, lim
x→+∞, z∈� j

E(z) = +∞.

As before, the curves �+
0 and �−

0 (lying above and below the real axis, respectively)
are mapped by E onto the segment (−∞,−1/e] of the real axis. Each of the regions
Ω j , j = −1, 1,−2, 2, . . . are mapped by E onto the region C\[0,+∞) and (exactly
as for C) it is easy to find a conformal map of D onto C\[0,+∞). We have already
discussed the region Ω0 above, so it remains to consider the region Ω∞ as illustrated
in Fig. 6. Now E is a conformal map of the region Ω∞ onto the complex plane cut
along the positive real axis and along the segment (−∞,−1/e]; explicitly,

E
(

Ω∞
) = C∞\K , K = (−∞,−1/E] ∪ [0,+∞) ∪ {∞},

and when viewed from the perspective of the extended plane C∞ this is simply C∞
with a single cut from 0, through ∞, and on to −1/e. This region is mapped onto the
plane cut along the negative real axis by a suitable Möbius map, and it is now clear
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that we can find an explicit formula for a conformal map of D onto C∞\K . We leave
the details of this argument to the reader. Finally, the analytic and geometric details
concerning the curves � j can be found in a similar manner to the boundary of Ω0 (see
Sect. 4), and these details are also left to the reader.
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