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Time‑dependent branching 
processes: a model of oscillating 
neuronal avalanches
Johannes Pausch1,2*, Rosalba Garcia‑Millan2 & Gunnar Pruessner2

Recently, neuronal avalanches have been observed to display oscillations, a phenomenon regarded 
as the co-existence of a scale-free behaviour (the avalanches close to criticality) and scale-dependent 
dynamics (the oscillations). Ordinary continuous-time branching processes with constant extinction 
and branching rates are commonly used as models of neuronal activity, yet they lack any such time-
dependence. In the present work, we extend a basic branching process by allowing the extinction 
rate to oscillate in time as a new model to describe cortical dynamics. By means of a perturbative 
field theory, we derive relevant observables in closed form. We support our findings by quantitative 
comparison to numerics and qualitative comparison to available experimental results.

In the brain, electrical signals propagate between neurons of the cortical network through action potentials, 
which are spikes of polarisation in the membrane of the neuron’s axon. These spikes have an amplitude of about 
100 mV, typically last about 1 ms1 and can be recorded using micro-electrodes2,3. In order to study the signaling 
in larger regions of neurons, multielectrode arrays, comprising about 60 electrodes spread across ≈ 4 mm2 , are 
used to capture the collective occurrence of spikes as local field potentials (LFPs). In this setting, the electrodes 
are extracellular and each is sensitive to electrical signals from several surrounding neurons4–8.

The data of the LFP recordings are processed by putting them into time bins of a few milliseconds duration 
and by introducing a voltage threshold. In addition, a refractory period is imposed to avoid counting large volt-
age excursions more than once.

The details of processing can differ slightly between experiments5–9. However, after processing, the data is a 
time series of two values for each electrode: on (detected signal above threshold) and off (no detected signal or 
signal below threshold). A neuronal avalanche is then defined as a set of uninterrupted signals detected across 
the micro-electrode array. Each avalanche is both preceded and succeeded by at least one time bin where none 
of the electrodes detected a signal, defining the avalanche duration as the number of time bins where the ava-
lanche unfolds. Which and how many electrodes detect a signal varies during the avalanche5,6. The duration of 
avalanches typically ranges between a few milliseconds and 30 ms10. A prominent observable is the avalanche 
size, which is the total number of recorded signals during the avalanche. If there is only one electrode detecting 
a signal in each time bin of an avalanche, its size and duration are equal. However, the size of an avalanche is 
usually larger than its duration due to the simultaneous detection of signals by different electrodes. Histograms 
of the avalanche size show an apparent power-law distribution of sizes, with common small avalanches and rare 
large avalanches5,6, the fingerprint of scale-free phenomena. The exponent of the power law was observed to be 
−3/2 in Ref.5. However, its exact value was found to be significantly sensitive to the choice of time bin size8 and 
spatial sub-sampling of the neural network7.

The observation of this power-law distribution led to the hypothesis that neuronal avalanches can be mod-
elled adequately by models in the class of self-organized-criticality (SOC)5,8,11 or models of critical branching 
processes5,12–14, because both are avalanche models showing power-law distribution of the avalanche size15,16. In 
this article, we focus on modelling neuronal avalanches as branching processes.

A branching process is a stochastic process in which a particle can either randomly create identical copies of 
itself or spontaneously go extinct, triggering an avalanche of particles16–21, 21–27. The particle number N in the 
branching process is interpreted as the number of electrodes that detect a signal. The creation of a new particle 
is interpreted as the change of an electrode from no detection to the detection of a signal5, while the extinction 
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of a particle corresponds to the change from detection to no detection8,14,28. Branching processes display a phase 
transition from asymptotic extinction with probability 1 to asymptotic survival with a positive probability, 
depending on the average number of created particles. At the critical point, the avalanche size of a branching 
process is power-law distributed16.

Recently, there has been evidence that neuronal activity, when compared to branching processes, is not at 
criticality but in a reverberating regime close to criticality14,29,30. The reason for the strong interest in the system’s 
distance to a critical point is the criticality hypothesis, which states that information processing in the brain 
might be optimized by the cortical network being close to a critical point10,12,13,31,32. However, fitting power laws 
is notoriously difficult30,33 and other means of verifying the criticality of the neuronal avalanches are essential. 
For this reason, the avalanche shape, defined as the average temporal profile of the avalanches, has received more 
attention in recent years. It is debated whether, at criticality, the neuronal avalanche shape takes the universal 
form of an inverse parabola16,26, 34–38, which is the case of a critical branching process. The universality of this 
shape has been particularly challenged in Ref.38 by observations of oscillations that modulate the avalanche shape. 
In Ref.38, the oscillations are identified as γ-oscillations, which are a particular frequency band of brain waves 
between 30 and 100 Hz. Brain waves are electric oscillations spanning the entire brain that can be recorded using 
electroencephalography (EEG)39,40. The oscillations are organized into bands covering frequencies between 0.05 
Hz (slow 4 band) and 500 Hz (ultra fast band). Their power spectrum follows approximately a 1/f distribution41. 
Statistically, they are linked to the quiet time distribution between avalanches and correlations between avalanche 
sizes42. Their physiological role and the biological mechanisms that sustain them continue to attract attention 
in neuroscience43–48

The observation of oscillations in the EEG activity on the one hand, and the observation of scale-free ava-
lanches of LFP activity on the other hand raises the question of how these two seemingly incompatible descrip-
tions of the same phenomena can be reconciled. The experimental data in Ref.38 indicates that γ-oscillations 
modulate the avalanche shape. Can branching processes incorporate oscillations as well? Will those oscillations 
modulate the avalanche shape, widely regarded as a universal feature?

To answer these questions, we extend in this paper the field theory in Ref.16 by incorporating oscillatory 
extinction rates, see “Model”. We then calculate observables such as “Moments” of the particles number, its 
“Covariance”, “Survival probability”, and the “Avalanche shape” (or temporal profile) and compare them quali-
tatively to experimental results from Ref.38. We conclude in “Discussion and conclusion”.

Model
A branching process in continuous time t can be regarded as a reaction of a single particle type B that splits into 
K ∈ N0 copies of itself,

with Poissonian rate s18–20. The particle number at time t, which is also called population size, is denoted by N(t). 
In the event of a reaction, the population size increases by K − 1 particles. The waiting time for an individual 
particle to undergo any such reaction is exponentially distributed with rate s. The number of offspring K may be 
a random variable itself, with probability distribution P(K = k) = pk . We call the reaction in (1) a branching 
event if K > 1 and an extinction event if K = 0 . Throughout the present work we initialize the process with one 
particle at time t0 = 0 , so that N(0) = 1 . The totality of a realisation of a branching process, from the initializa-
tion until the termination after which the population size remains 0 indefinitely is referred to as an avalanche. 
Times between avalanches are not modelled49 and there are no correlations between avalanches42.

In Ref.16, we introduced a Doi–Peliti field theory for the continuous-time branching process with time-
independent but arbitrary offspring distribution pk . We refer to such a branching process as standard branching 
process. The action functional of this field theory is

with

and time-dependent Doi-shifted annihilation and creation fields φ(t) and φ̃(t) respectively. The parameter r is 
called the mass in the context of field theories and is, according to Eq. (3), closely linked to the first moment of 
the offspring distribution E[K] . Traditionally18, the branching process is called sub-critical if E[K] < 1 (and thus 
r > 0 ), it is called critical if E[K] = 1 (and thus r = 0 ), and super-critical if E[K] > 1 (and thus r < 0).

The time-scale of this branching process is set by s, the rate with which any single-particle event takes place. 
The rate with which any particle spontaneously disappears, the extinction rate, is thus ǫ = sp0.

In the following we will focus on binary branching processes, i.e. pk = 0 for all k except k = 0 and k = 2 , 
so that p2 and p0 = 1− p2 in Eq. (3) are determined by r/s = 1− 2p2 . The rest of parameters follow then 
immediately, such as E[K] = 2p2 , q2/s = p2 = 1/2(1− r/s) and qj = 0 for j ≥ 3 , as well as bounds such as 
s ≥ r + q2 ≥ 0 . In particular r = ǫ − q2 , so that the branching process is critical if q2 balances the extinction rate. 
Extensions to branching processes with other time-independent offspring distributions are straight forward16.

Our extension to this model (2) consists of a time-dependent, oscillating extinction rate
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where ν is the frequency of the oscillations. The dimensionless amplitude A is the small parameter of the field 
theoretic perturbation theory about A = 0 . Our model takes the oscillations as given and for simplicity idealizes 
them as sinus functions50. It does not model their emergence from underlying mechanisms. In the following, 
r ≥ 0 is considered. The magnitude |A| is bounded by p0 because ǫ(t) , as an extinction rate, has to be non-negative 
at all times. If the amplitude A is positive, then the extinction rate is initially suppressed, favouring more branch-
ing events. In the field theory, this extension amounts to adding the term (details in “Extension of the action”),

to the original action A0 , Eq. (2), where r = sp0 − sp2 is still the “bare mass”. Our extension can be summarised 
as a standard branching process where binary branching takes place with rate q2 = sp2 and extinction with rate 
ǫ(t) , Eq. (4). We retain the parameterisation p0 + p2 = 1.

It will turn out that the perturbation remains noticeable at all times in the process in all observables consid-
ered. In particular, even at criticality, the “Avalanche shape” carries a clear signature of the oscillations despite 
its expected universality34. The model and the analysis in the present work therefore provide an explanation for 
the shape of the temporal profile of neuronal avalanches recently reported by Miller et al.38.

Figure 1 shows two example trajectories of the population size N(t), together with the perturbation of the 
extinction rate, ǫ(t)/s − p0 = −A sin(νt) . In all figures, the latter is shown in green with the ordinate on the 
right. All data in this work is presented in dimensionless form, in particular time as st.

In the following, we state the central results, whose field-theoretic derivation is relegated to the Appendix. 
In particular, we consider the “Avalanche shape” at criticality, which is a common observable in LFP recordings 
of the brain5–8 and the “Covariance”, which recently gained more attention in neuroscience as a tool to estimate 
the system’s distance to the critical point14,29,30.

Moments
First moment.  Since the extinction rate varies periodically, we expect that the first moment varies accord-
ingly. As shown in “Appendix: First moment”, the expected particle number is,

where �(t) is the Heaviside function reflecting the initialization at t0 = 0 , henceforth dropped from all expres-
sions. This result is consistent with the known result of an inhomogenous Poisson process with a time-dependent 
event rate51.

Figure 2 shows an estimate of the first moment based on Monte-Carlo simulations together with the analytical 
result Eq. (6) for r = 0 . In addition to this exact result, the dashed line in Fig. 2 shows the first order approxima-
tion E[N(t)] = g

(0)
1 (0, t)+ Ag

(1)
1 (0, t)+O(A2) , Eq. (10), which is discussed below in “n-th factorial moment 

to first order”.
Because the extinction rate is reduced during the first half-period, Eq. (4), branching dominates the process 

and the population size increases at first. During the second half-period, extinction dominates and the population 
size decreases, perfectly balancing, on average, the creation of particles in the first half of the period. According 
to Eq. (6) and Fig. 2, the expected population size E[N(t)] at r = 0 is always equal or larger than unity, which is 
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Figure 1.   Two example trajectories of the number of particles N(t) (purple, left ordinate) of branching 
processes with r = 0 and periodically varying extinction rate ǫ(t) = s(p0 − A sin(νt)) , Eq. (4). Both 
trajectories were initialized with one particle at t0 = 0 . The perturbation of the extinction rate, −A sin(νt) with 
ν/s ∈ {π/4,π/2} , A = 0.5 is shown in green (right ordinate). When the extinction rate is lower, branching is 
effectively promoted.
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the expected number of particles of a standard branching process at criticality. Thus, while the extinction rate is 
not shifted on average, the expected particle number is on average larger than in the process without oscillations.

Just like in a standard branching process, E[N(t)] converges to 0 for r > 0 and diverges for r < 0 , indicating 
that the present process is critical at r = 0 . However, unlike a standard branching process, the expected popula-
tion size never converges for r = 0 as the oscillations never cease. It will turn out that the effective mass acquires 
no shift due to the perturbation.

Second moment.  The second moment can be calculated in closed form from a convolution integral involv-
ing the first moment only, “Appendix: Second moment”. From Eqs. (32b), (33) and (35),

At r = 0 the second moment is, to first order in A,

which diverges asymptotically linear in t. Because E[N(t)] is bounded, the variance also diverges linearly in t. 
Figure 2 shows the ratio E[N2(t)]/(1+ 2q2t) , which illustrates the deviation of the second moment at A > 0 from 
that at A = 0 . For large t, the second moment shows a linear increase with an amplitude that oscillates mildly 
with period ν , so that E[N2(t)] oscillates around the A = 0 behaviour. For large q2t the ratio E[N2(t)]/(1+ 2q2t) 
is to leading order 1− (As/ν)(2 cos(νt)− 1).

Although the extinction is not shifted on average, the second moment is shifted on average due to the oscil-
lations, see Fig. 2.

n‑th moment.  In principle, all moments of N(t) can be calculated exactly, following the same lines as in 
the previous section “Second moment” and in “Appendix: Second moment”. However, even the second moment 
involves an integral that cannot be carried out in closed form and, for higher moments, the procedure quickly 
becomes unpleasantly complicated. To calculate higher moments of the population size E[Nn(t)] , we resort to 
a perturbative expansion in powers of the amplitude A, which can be systematically expressed in terms of dia-
grams shown in the appendix.

Following16, all moments can be written in terms of factorial moments, which are naturally produced by the 
diagrammatics of the field theory. We denote the n-th factorial moment by gn(t0, t) , so that

where 
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Figure 2.   First and second moment of particle number for A ∈ {0.01, 0.02, 0.05} , ν/s = π/4 and r = 0 . The 
system was initialized with a single particle at t0 = 0 . Symbols: simulation results. Left: first moment ( 109 
realizations). Right: rescaled second moment ( 107 realizations). Full blue lines: exact analytic predictions, Eq. (6) 
(left), Eq. (7) (right). Dashed black lines: analytic approximation, see Eqs. (10), (12), (16a), and (16b). The 
perturbation of the extinction rate, Eq. (4), is shown in green (right ordinate).
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The n-th factorial moment at A = 0 , given by

was calculated in closed form from the diagrams as a matter of combinatorics16. The function g (0)n  is dominated 
by (q2(t − t0))

n−1 for small r(t − t0) ≪ 1 , while it is exponentially decaying for large r(t − t0) ≫ 1 . In the present 
work, the factorial moments acquire a dependence on the initial time t0 , when N(t0) = 1 . Only to zeroth order 
in A, at A = 0 , do the factorial moments become time-homogeneous and reduce to those calculated in Ref.16, 
g
(0)
n (t0, t) = g

(0)
n (0, t − t0) . The next order term in the small-A expansion equals

whose derivation is explained in "Appendix: n-th factorial moment to first order".
In the subcritical regime r > 0 , in large r(t − t0) ≫ 1 all moments vanish exponentially, because g (0)n  vanishes 

exponentially, see Eq. (11). For small r(t − t0) ≪ 1 and large q2(t − t0) ≫ 1 , the moments are dominated by the 
largest factorial moment,

This can be seen by expanding E[Nn(t)] in terms of the factorial moments which are asymptotically dominated 
by gn(t0, t) ∼ O

(
(q2t)

n−1
)
,

Within the small-A expansion of the n-th factorial moment, the terms g (0)n  and g (1)n  dominate E[Nn(t)] , such that

However, from Eq. (12) it can be seen that the oscillations in the amplitude of g (0)n (t0, t) in g (1)n (t0, t) will never 
cease, so that the limit limt→∞ E[Nn(t)]/(q2(t − t0))

n−1 strictly does not exist. In other words, gn(t0, t) captures 
the leading order of E[Nn(t)] in t, but (q2(t − t0))

n−1 does not.
The first two moments at r = 0 can be approximated to first order in A by 

 on the basis of Eqs. (12) and (15). The expressions are consistent with the exact expressions Eqs. (6) and (7) [as 
given in Eq. (8)], respectively. Figure 2 shows a comparison between the exact expressions (solid blue lines) and 
the approximation Eq. (16) (black dashed lines). Deviations are clearly noticeable only for large amplitudes A.

Further observables
In the following, we analyse observables that are somewhat more involved to derive in the present framework. 
In particular, the avalanche shape and covariance are more of immediate interest to experimentalists because 
these are more accessible from LFP recordings of the brain5–8,14,29,30.

Covariance.  The autocorrelation function

is the covariance of N(t1) and N(t2) and it is a common way to quantify how strongly correlated data are at dif-
ferent points in time. If the population size at different times was independent, the autocorrelation function at 
times t1 and t2 , t1  = t2 , would be zero (the converse does not hold in general52).

As shown in “Appendix: Covariance”, the covariance can be calculated in closed form up to an integral,

where tmin = min{t1, t2} and tmax = max{t1, t2}.
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Simulation results and analytical expression Eq. (18) are shown together in Fig. 3a,b. For A = 0 , the maxi-
mum of Cov(N(t1),N(t2)) occurs at t1 = t2 = t and equals (2q2/r + 1)(exp−rt − exp−2rt)16. Furthermore, its 
maximum rises with increasing t, provided that rt < log(2) . When A  = 0 , these results are only approximations 
and the exact position of the maximum depends on the phase and amplitude of the oscillations. In Fig. 3a, all st2 
are chosen to fulfil that condition, while in Fig. 3b, the larger st2 don’t meet this condition and show a decreas-
ing maximum.

As an autocorrelation function, the covariance quantifies how the activity in the system at one instance influ-
ences the system at later instances. This has recently proven to be a valuable tool for determining the distance 
of neural networks from the critical point14,29,30. What the imposed oscillations imply for this tool is discussed 
in “Discussion and conclusion”.

Survival probability.  The “First moment” shows that the expected number of particles is on average larger 
if A > 0 , i.e. if the extinction rate drops before growing in every period, compared to the case without oscilla-
tions or reversed order of rise and fall of extinction, A < 0 . As noted in “First moment”, the sign of the mass r still 
determines whether E[N(t)] ultimately vanishes or diverges, even when E[N(t)] oscillates indefinitely for r = 0 . 
This observation raises the question whether the survival probability Ps(t0, t) , that is the probability of N(t) > 0 
at a given time t after initialization at t0 , displays a corresponding behaviour.

Based on the derivation in “Appendix: Probability of survival to first order”, to leading order in A we find

The first term, which is independent of A, is the probability of survival of the critical branching process with 
constant extinction rate16 (Fig. 4). The second term is the first-order correction and indicates a shift of the prob-
ability of survival. For positive A (leading to an initial decrease of the extinction rate) the survival probability 
increases compared to the system without oscillations. For negative A (corresponding to an initial increase of 
the extinction rate) it decreases. For A > 0 , the initial push into the supercritical phase seems to dominate the 
entire survival probability, even many oscillations later, see Fig. 4.

Despite the shifted survival probabilities, Fig. 4, and shifted average number of particles, Fig. 2, the avalanches 
do not survive indefinitely. They die eventually with probability 1 at r = 0 . As the survival probability at criticality 
is shifted, Eq. (19), it can be expected that the avalanche duration distribution PT is affected by the oscillations. 
Considering that the avalanche duration is equal to the time of death T of an avalanche that started at t = 0 , it 
can be derived from the survival probability PT (t) = −

dPs(t)
dt

16:

It shows that the distribution of durations still follows the ∼ t−2 power law of conventional critical branching 
with constant extinction rate16, Fig. 5 (left panel). However, this power law has oscillations superimposed, which 
means that, strictly, scale invariance at criticality is broken. Yet, in a data-analysis based on binning the avalanche 
durations, these oscillations will be averaged out and thus not be visible. Similarly, simulations of the avalanche 
size distribution PS show that for small oscillation amplitudes, the power law distribution with exponent 3/2 
appears to be maintained and the effect of oscillations is averaged out, Fig. 5 (right panel).

To appreciate better the effect of the extinction oscillations on the ultimate survival limt→∞ Ps(t0, t) , we also 
consider the asymptotics of large t for r > 0 or equivalently p0 > p2,
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ν
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−
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Figure 3.   Covariance Cov(N(t1),N(t2)) Eq. (17) for r/s = 0.01 , ν/s = π/4 , A = 0.05 and (a) 
st2 = 5, 10, 15, . . . , 30 , (b) st2 = 40, 80, 100, 160, 320 . The system was initialized with a single particle at 
time t0 = 0 . Symbols: simulations results from 109 trajectories. Full lines: analytic expression, Eq. (18). The 
perturbation of the extinction rate, Eq. (4), is shown in green at the bottom of the figure (right ordinate).
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to leading order.
For r < 0 , or equivalently p0 < p2 , the limit is positive,

where we have to rely on Eq. (56) being the analytic continuation for the result obtained at positive mass r. 
Eq. (21) implies that Ps(t0, t) , with or without oscillations, vanishes in the limit of large times as extinction pre-
vails, since r > 0 . Eq. (22) indicates that the linear increase in −r of the ultimate survival probability is present 
with or without oscillations, however, that the amplitude of that increase depends on A. As far as the frequency 
ν is concerned, the effect of the oscillations on the ultimate survival is most pronounced for ν = ±r,

with the minimum attained if ν = r and the maximum for ν = −r . It is noteworthy that Eq. (23) no longer 
vanishes as r → 0 . The constraints mentioned above, such as As ≤ r + q2 , do not affect this result, as As = q2/2 
still produces limr→0− limt→∞ Ps(t0, t)|r<0 = 1/4 . Together with Eq. (19) this seems to suggest the possibility of 
a sudden onset survival, whereby limt→∞ Ps(t0, t) jumps from 0 at r → 0 to a finite value. However, it is crucial 
in which order limits are taken. Eq. (19) remains valid if r → 0 (tying ν = ±r ) before t → ∞ . When taken in 
this order, the ultimate survival probability is zero at the critical point.

We therefore conclude that the ultimate survival increases linearly and continuously from 0 for r ≥ 0 , 
Eqs. (19) and (21), to a finite value at r < 0 , Eq. (22). If the critical point of the present process is defined as the 

(21)for rt ≫ 1 Ps(0, t)|r>0 ≃
exp−rt

1+ q2/r

(
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Figure 4.   Difference between the probability of survival Ps(0, t) at r = 0 , Eq. (19) with and without oscillations, 
for ν/s = π/4 and A ∈ {0.01, 0.02, 0.05} . The system was initialized with one particle at time t0 = 0 . Symbols: 
simulations results using 3× 107 trajectories for A = 0.01 and 107 otherwise. Full blue lines: analytic prediction 
to first order in A. Full green lines: perturbation of the extinction rate, Eq. (4) (right ordinate).
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onset of ultimate survival, then it is not shifted by the oscillations. Figure 4 shows a comparison of the first-order 
corrected survival probability Eq. (19) as a function of time to simulation results.

Avalanche shape.  Shape depending on time of death T.  The (temporal) shape of the avalanche V(t, T) is the 
expectation of N(t) conditioned to the branching process going spontaneously extinct at some fixed termination 
time t = T , i.e. for all small δ > 0 , N(T − δ) > 0 and N(T + δ) = 0 . Typically, time is rescaled to τ = t/T53.

After suitable normalisation16 the time-homogeneous version of the process displays a universal, parabolic 
shape. Not least because of its universality, the shape has gained some popularity to serve as a fingerprint of a 
process34,54,55. However, as shown in Figs. 6 and 7, the periodic extinction imposes characteristic humps on the 
shape. They are of course rooted in the periodic extinction, as an analytical calculation shows, see “Appendix: 
Avalanche shape to first order” for details. These oscillations remain visible in the shape V(t, T) at all T and all 
t, but become particularly vivid whenever the termination time T is commensurate with the period of the oscil-
lations, 2π/ν . As we have used our field-theoretic scheme only to first order, the slight mismatch with simula-
tion results at larger A, such as those shown in Fig. 7, is not surprising. However, at such large amplitudes, the 
resulting shape resembles that of recent experimental results, where γ-oscillation modulated the average shape 
of neuronal avalanches38. Furthermore, for larger amplitudes A, the avalanche shapes are asymmetric, which can 
be seen particularly well in Fig. 7 for sT = 16. 

Comparison to experiments.  The mean avalanche shapes, such as in Figs. 6 and 7 can be qualitatively compared 
to avalanche profiles recorded in the brain. We reproduce in Fig. 8 plots from Miller et al.38 (Figure 4(a) in Ref.38), 
and adapt it by overlaying our analytical plots from Fig. 7, in accordance with the Creative Commons Attribu-
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tion 4.0 International License. The data was collected through multielectrode arrays implanted in three adult 
nonhuman primates (see Ref.38 for details).

The plots show qualitatively a good agreement between the data and our model. The general shape and 
periodicity is captured extremely well. Small qualitative disagreement occurs in the third and fourth plot in the 
relative heights of consecutive maxima and minima. This disagreement may be down to higher order correction 
terms in the amplitude A.

The figure illustrates that branching processes, which are commonly used to explain the statistical properties 
of avalanches recorded in the brain, can be extended to also incorporate neuronal oscillations. Although the 
observation of non-universal avalanche shapes questioned the criticality hypothesis of the brain10,32,38, our ana-
lytical results clearly show that criticality is compatible with avalanche profiles that are modulated by oscillations.

Universal parabolic shape.  The universal parabolic shape may be recovered by suitably averaging across differ-
ent termination times T. Devising such a scheme in a given numerical or experimental setting may not always 
be feasible56. Figure 9 shows the T-averaged and T-rescaled expected avalanche shape,

Varying small amplitudes do not seem to alter this shape and appear to converge to the universal parabola shape 
when criticality is approached r → 0.

Discussion and conclusion
Our discussion is two-fold: first, we focus on aspects of interest to research in stochastic processes. We then fol-
low with a discussion on the implications for research in the area of neuronal avalanches.

(24)V(τ ) =

∫∞

0 PT (T)V(τT ,T)dT
∫ 1
0

∫∞

0 PT (T)V(τT ,T)dTdτ
.

Figure 8.   Comparison of model to experimental data. Underlying figure (grey, black and red colors) from 
Miller et al.38, Fig, 4(a) therein, reproduced and adapted under Creative Commons Attribution 4.0 International 
License. Adaptation: overlay of blue colors: analytical results from Fig. 7 above. On y-axis, 〈s〉 is the mean profile 
in Ref.38, corresponding to our V(t, T); on x-axis, duration T from Ref.38 is denoted by time t in our article. Data 
was collected through multielectrode arrays implanted in adult nonhuman primates (see Ref.38 for details). Grey 
lines, single electrode data, black line mean of array, red mean size-per-timestep.
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In this paper, we extend the standard branching process by including time-dependent, deterministic vari-
ations of a reaction rate. While we focus on varying the extinction rate only, our approach is applicable to any 
reaction rate in a Doi–Peliti field theory.

Neuronal avalanches can show oscillating behaviour, which we capture with a branching process model with 
oscillating extinction rate. These oscillations can be observed in any moment, of which we present the zeroth 
(the survival probability), first and second, and in any correlation function, of which we present the two-time 
covariance. All of these observables are calculated exactly. Furthermore, we introduce an approximation scheme 
for factorial moments to first order in the amplitude of the extinction rate oscillations. This allows approximat-
ing more complicated observables such as the survival probability and the avalanche shape in the limit of small 
oscillation amplitudes.

All analytically calculated observables are compared with simulation results from Monte Carlo simulations. 
While the exact analytic results match perfectly, we also evaluate the first-order approximation scheme and find 
good agreement in the limit of small oscillation amplitudes.

Although the extinction rate is unchanged on average, its oscillation leads on average to a shift in the moments. 
For example, if the oscillations start with a decrease of the extinction rate, the expected particle number is always 
greater compared to the process without oscillations. Conversely, if the oscillations start by increasing the extinc-
tion rate, the expected number of particles is always lower than without oscillations. Despite the average shift of 
particle numbers, the onset of indefinite survival is not shifted by the oscillations. We therefore conclude that 
the critical point remains unchanged.

Both subcritical branching processes and neuronal activity show exponentially decaying auto-correlation 
functions whose decay rate is independent of the spatial sub-sampling of the neural network14. In particular, if 
the neural system is close to the critical point, in the reverberating regime, the exponential decay is slow and can 
be observed over more than 100ms even in a single neuron’s activity14. As the oscillations in the neuronal activity 
can have periods well below 100 ms (e.g. in the spindle band), they should be visible in the data.

Similarly, both the oscillating branching process presented here and recordings of neuronal avalanches show 
oscillating avalanche shapes38. In our model and in the data, the oscillations modulate the shape and are most 
pronounced when the avalanche duration is an integer multiple of the period of the oscillations. Surprisingly, 
these results defy the assumption that the avalanche shape is universal at criticality. However, when the shapes 
are also rescaled and averaged over the avalanche duration, our simulations indicate that the universal parabola 
shape is recovered.

In future research, the oscillating branching process should be compared quantitatively to local field potential 
recordings of oscillating neuronal avalanches. Thus, the presented model can contribute to the understanding of 
neuronal avalanches by rejecting or supporting the branching process picture of signal propagation in the brain. 
Furthermore, it would be interesting to find out whether other types of variation of the extinctions rate, such as 
random fluctuations, result in similar behaviour.

Appendix: Extension of the action
The extension of the model consists of making the extinction rate time-dependent. Hence, in the following 
derivation, we focus on introducing the new extinction rate and ignore the branching process.

Let P(n, t) be the probability that there are n particles in the system at time t, i.e. N(t) = n . Then, the master 
equation for the extinction process only is

The first step in the derivation of the field theory is the introduction of bra-ket vectors �n| and |n� , respectively, 
and ladder operators a and a† . The ket vector |n� represents that there are n particles in the system, while the 
bra vector �n| projects out the state of n particles, �n|m� = δn,m , the Kronecker function. The ladder operator a† 
creates an additional particle, i.e.a†|n� = |n+ 1� , and the operator a annihilates a particle (with the additional 
prefactor n) a|n� = n|n− 1� . Thus, the entire, probabilistic state of the system at time t can be represented by a 
ket vector |M(t)�,

which is nothing else than a representation of the probability generating function.
In the next step, following57, the master Eq. (25) is used to derive a corresponding equation for the state 

vector |M(t)�,

In the final step, based on work by Peliti58, equations such as (27) can be solved by a path integral with an action 
Aǫ , where in every normal-ordered compound operator, a is replaced by a field φ(t) and a† is replaced by a field 
φ†(t) , and where an additional time-derivative term is added:

(25)
d

dt
P(n, t) = ǫ(t)

(
(n+ 1)P(n+ 1, t)− nP(n, t)

)
.

(26)|M(t)� =

∞∑

n=0

P(n, t)|n�,

(27)
d

dt

∣∣∣M(t)
〉
= ǫ(t)

(
a− a†a

)∣∣M(t)
〉
.

(28)Aǫ =

∫ (
φ†(t)− 1

)(
−

d

dt
φ(t)

)
+ ǫ(t)

(
φ(t)− φ†(t)φ(t)

)
dt .
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In general, it is useful to shift the creation field φ† = φ̃ + 1 . An explanation of implications of the shift, as well as 
a more detailed derivation of the path integral can be found in Ref.59. Thus, a simpler action is obtained

The total action

enters the path integral in the form expA so that field theoretic expectations become

and are calculated by performing the path integral over the bilinear part of the action A0 , Eq. (2), and expanding 
perturbatively for the term with coupling sp0 − ǫ(t) , which is unaccounted for in A0 . In connection with the 
observation of oscillating neuronal avalanches, we choose ǫ(t) = sp0 − As sin(νt) and the perturbative part of 
the action becomes Eq. (5), giving rise to a perturbation theory in small A.

Appendix: Derivation of moments
In order to keep a readable, consistent notation, we use the mathematical notation, e.g. E[N(t)] , when we char-
acterize the statistical properties of N(t). When referring to field-theoretic calculations, we use the notation 
common in physics, i.e. 〈O〉 for the expectation of an observable O . Of course, the two are closely related, e.g. 〈
φ(t)φ†(t0)

〉
= E[N(t)|N(t0) = 1] but 

〈
φ2(t)φ†(t0)

〉
+

〈
φ(t)φ†(t0)

〉
= E[N2(t)|N(t0) = 1] , Eq. (33). Unless 

stated otherwise, observables are conditioned to the initialization of the branching process with one particle 
at time t0 = 0 , i.e. N(0) = 1 , routinely omitted in the mathematical notation. For example, E[N(t)] is short for 
E[N(t)|N(0) = 1].

Appendix: First moment.  In the field theoretic calculation, the first moment is calculated as the propaga-
tor. Due to the varying extinction rate the propagator acquires corrections which schematically depicted as dia-
grams. The red, full lines  represent the bare propagator 〈φ(t2)φ̃(t1)〉0 , while the black dashed lines 

ending in circles  represent correction terms, where t2 ≥ t ′ ≥ t1 . In a Doi–Peliti field theory, these dia-
grams are by convention read from right to left. The first moment is thus written as follows: 

exactly as expected for an inhomogeneous Poisson process with time-varying intensity that governs the 
extinction51. For t0 = 0 , this reproduces the result for E[N(t)] , Eq. (6).

Appendix: Second moment.  The second moment E[N2(t)] is determined field-theoretically on the basis 
of the square of the particle number operator, (a†a)2 =

(
a†
)2
a2 + a†a , which is easily expressed in terms of 

fields φ† and φ once in normal-ordered form,

Diagrammatically, the first term is

which is a convolution in direct time,

(29)Aǫ =

∫
φ̃(t)

(
−

d

dt
− ǫ(t)

)
φ(t)dt .

(30)A =

� 


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�
−

d

dt
− ǫ(t)+ sp2

�
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∞�
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

dt

(31)�•� =
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(32a)
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= �(t)e−rt
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= �(t)e−rt




∞�

ℓ=0

1

ℓ!

t�

t0

sA sin(νt ′)dt′



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
,

(33)
E[N2(t)] = �φ2(t)φ̃(0)� + �φ(t)φ̃(0)�︸ ︷︷ ︸

=E[N(t)]
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that can be calculated with the help of Eq. (32b) to produce Eq. (7).

Appendix: n‑th factorial moment to first order.  We define the n-th factorial moment of N(t)16 as the 
function

where the additional extinction −A sin(νt) , Eq. (4), is dealt with perturbatively about A = 0 . The zeroth-order 
correction g (0)n (t0, t) corresponds to the sum of binary tree diagrams with one in-coming leg and n out-going legs. 
Since the zeroth-order correction does not include any perturbation in the extinction rate, the process is homo-
geneous in time and, therefore, it does not depend on the initial time t0 , but rather on the amount of time t − t0.

In Ref.16, the function g (0)n (t0, t) was derived from the following forest (meaning it contains a sum of tree-like 
diagrams)

This zeroth-order correction satisfies the identity

which can be obtained by choosing an arbitrary time t ′ ∈ [t0, t] when a diagram has ℓ legs, cf. Eq. (40a), and 
reconstructing the entire forest. As the left-hand side of Eq. (38) does not depend on t ′ it might be tempting to 
differentiate with respect to t ′ , but for our purposes the sum

will prove particularly useful.
We proceed with the construction of the first order correction Ag (1)n (t) of gn(t) . This correction contains the 

external perturbation dt′As sin(νt′) once in each diagram. It needs to be attached to every tree diagram at time 
t ′ , as indicated by the vertical dotted line in the diagram below, 

where the last identity is obtained by the substitution t ′′ = t − t ′ and using the time-homogeneity 
g
(0)
ℓ (t0, t) = g

(0)
ℓ (0, t − t0) . Defining the sum

the first order perturbation can be written as

(35)�φ2(t)φ̃(0)� = 2q2

t∫

0

〈
φ(t)φ̃(t′)

〉2〈
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〉
dt′ ,

(36)gn(t0, t) =
〈
φ(t)nφ̃(t0)

〉
= g (0)n (t0, t)+ Ag (1)n (t0, t)+ A2g (2)n (t0, t)+ · · ·

(37)

(38)g (0)n (t0, t) =
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1
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The sum S(t − t0, t
′′) , Eq. (41), would be equal to g (0)n (t0, t) , Eq. (38), was it not for the factor ℓ in front of 

g
(0)
ℓ (0, t − t0 − t ′′) , corresponding to the ℓ legs at time t ′ to choose from to insert the external perturbation. 

Nevertheless, the summation Eq. (41) can be carried out by using g (0)n  of Eq. (37) as a generating function. The 
term ℓg (0)ℓ (t0, t) can be obtained from the time-derivative of the function g (0)n (t0, t) in Eq. (37),

which produces the identity

Rewriting ℓg (0)ℓ (0, t − t0 − t ′′) = ℓg
(0)
ℓ (t0 + t ′′, t) in Eq. (41) in terms of ∂

∂t g
(0)
ℓ (t0, t) and multiples of g (0)ℓ (t0, t) 

according to Eq. (44) allows the summation to be carried out, using Eqs. (38) and (39), which eventually gives

and therefore Eq. (12). For what follows, this is best re-written as

with 

Appendix: Further observables
Appendix: Covariance.  The covariance is defined as

where all expectations are conditioned to N(0) = 1 . In the field theory, the term E[N(t1)N(t2)] is calculated as

where tmax = max{t1, t2} and tmin = min{t1, t2} . The first term of Eq. (49) is a convolution similar to Eqs. (34) 
and (35),

while the second term is a product of two first moments,

At t1 = t2 , when 
〈
φ(tmax)φ̃(tmin)

〉
= 1 , Eq. (49) recovers Eq. (33).

Appendix: Probability of survival to first order.  The survival probability Ps(t0, t) is determined via 
the probability P(N(t) = 0|N(t0) = 1) = 1− Ps(t0, t) that the system contains no particles at time t. Field-
theoretically that is 

〈
exp−φ(t)φ†(t0)

〉
16, 59 so that

(42)g (1)n (t0, t) = s

∫ t−t0

0
sin(ν(t − t ′))S(t − t0, t

′′)dt′′ .

(43)∂

∂t
g
(0)
ℓ (t0, t) = rg

(0)
ℓ (t0, t)

ℓe−r(t−t0) − 1

1− e−r(t−t0)
,

(44)ℓg
(0)
ℓ (t0, t) = exp r(t − t0)

(
g
(0)
ℓ (t0, t)+

1

r

(
1− exp−r(t − t0)

) ∂

∂t
g
(0)
ℓ (t0, t)

)
.

(45)S(t − t0, t
′′) = g (0)n (0, t − t0)

(
1+ (n− 1)

e−rt′′ − e−r(t−t0)

1− e−r(t−t0)

)
,

(46)g (1)n (t0, t) = g(0)n (t0, t)
(
u(t0, t)+ (n− 1)v(t0, t)

)

(47a)u(t0, t) = s

∫ t−t0

0
sin(ν(t − t ′))dt ′ =

s

ν
(cos(νt0)− cos(νt))

(47b)

v(t0, t) = s

∫
t−t0

0
sin(ν(t − t

′))
e
−rt

′
− e

−r(t−t0)

1− e−r(t−t0)
dt ′

=
s

1− e−r(t−t0)

[ 1
ν
exp−r(t − t0)(cos(νt)− cos(νt0))

+
1

r2 + ν2

(
r sin(νt)− ν cos(νt)+ exp−r(t − t0)(ν cos(νt0)− r sin(νt0))

)]
.

(48)Cov(N(t1),N(t2)) = E[N(t1)N(t2)] − E[N(t1)]E[N(t2)],

(49)
E[N(t1)N(t2)] = �φ(tmax)φ

†(tmin)φ(tmin)φ
†(0)� = �φ(tmax)φ(tmin)φ̃(0)� + �φ(tmax)φ̃(tmin)φ(tmin)φ̃(0)�,

(50)

(51)
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To zeroth order the summation is easily carried out, since g (0)n (t0, t) , Eq. (37), may be written as gn(t0, t) = n!αβn−1 
with α = exp−r(t − t0) and β = q2(1− exp−r(t − t0))/r,

as shown in Eq. (42) in Ref.16. Using the first-order corrected gn(t0, t) , Eq. (46), the summation does not change 
significantly as far as the term Au(t0, t) is concerned, but A(n− 1)v(t0, t) requires some additional work. Rec-
ognising that Eq. (53) is effectively a generating function, the required sum is easily obtained from Eq. (53),

To reduce clutter, we expand u(t0, t) and v(t0, t) only for the specific case of t0 = 0 . Using

for the zeroth order approximation, the survival probability to first order reads

Appendix: Avalanche shape to first order.  In Refs.16, 59, it is shown that the avalanche shape (temporal 
profile) of a branching process can be related to the incompletely normalised average

which is the average population size N at time t taken over the joint probability P(N(t) = N ,N(T) = 0|N(t0) = 1) 
of having size N at time t and size 0 at time T, conditioned to having size 1 at time t0 . This quantity is easily 
captured in the field theory,

Using identities (B2) and (B3) of Ref.16 in the form

and

and writing gn(t0, t) = n!αβn−1 and gn(t,T) = n!abn−1 , Eq. (58) can be written at A = 0 after some tedious 
algebra

To zeroth order in A, we recover the result in Ref.16 with α = exp−r(t − t0) , β =
q2
r

(
1− exp−r(t − t0)

)
 , as 

used in “Probability of survival to first order”, as well as a = exp−r(T − t) and b =
q2
r

(
1− exp−r(T − t)

)
 . To 

incorporate the first-order correction, we adjust α , β , a and b so that gn(t0, t) and �N(t),N(t0) = 1,N(T) = 0� 
can be calculated order by order via generating functions. Defining 

(52)Ps(t0, t) = 1−
〈
exp−φ(t)φ†(t0)

〉
= −

∞∑

n=1

(−)n

n!

〈
φn(t)φ̃(t0)

〉
=

∞∑

n=1

(−)n−1

n!
gn(t0, t) .

(53)Ps(t0, t) = α

∞∑

m=0

(−β)m +O(A) =
α

1+ β
+O(A) ,

(54)Ps(t0, t) =
α

1+ β
(1+ Au(t0, t))+ β

∂

∂β

α

1+ β
Av(t0, t)

(55)P(0)s (0, t) =
exp−rt

1+
q2
r (1− exp−rt)

(56)

Ps(0, t) = P(0)s (0, t)

{
1+ As

[
1

ν
+ P(0)

s (0, t)
q2r

(r2 + ν2)ν

− cos(νt)

(
1

ν
+ P(0)

s (0, t)
q2

r

(
1

ν
−

ν

exp−rt(r2 + ν2)

))

− sin(νt)

(
P(0)s (0, t)

q2

exp−rt(r2 + ν2)

)]}
+O(A2) .

(57)E[N(t);N(T) = 0|N(t0) = 1] =
∑

N

NP(N(t) = N ,N(T) = 0|N(t0) = 1) ,

(58)

E[N(t);N(T) = 0|N(t0) = 1] =
〈
exp−φ(T)φ†(t)φ(t)φ†(t0)

〉

=

〈
φ(t)φ̃(t0)

〉
+

∑

n=1

(−1)n

n!

(〈
φn(T)φ(t)φ̃(t0)

〉
+

〈
φn(T)φ̃(t)φ(t)φ̃(t0)

〉)
.

(59)
〈
φn(T)φ(t)φ̃(t0)

〉
=

n∑

k=1

n∑

m1=1,...,mk=1

(
n

m1, . . . ,mk

)
gm1(t,T) . . . gmk

(t,T)gk+1(t0, t)
1

k!

(60)
〈
φn(T)φ̃(t)φ(t)φ̃(t0)

〉
=

n∑

k=1

n∑

m1=1,...,mk=1

(
n

m1, . . . ,mk

)
gm1(t,T) . . . gmk

(t,T)gk(t0, t)
1

(k − 1)!
,

(61)S := E[N(t);N(T) = 0|N(t0) = 1]α −
aα

1+ b
�
1+ aβ

b

�


1+ β


2−

a(1+ β)

1+ b
�
1+ aβ

b

�




 .
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 and the generating function G = n!αβn−1 , we recover gn(t0, t) to first order according to Eq. (46) in the form

and using the generating function S as defined in Eq. (61), similarly for the avalanche shape,

At this point, it is worth noting that Eq. (64) is a general expression whose dependence on the time-dependent 
extinction rate lies in the functions u and v. Hence, this expression of the avalanche shape holds for different 
time-dependent extinction rates as long as u and v are calculated along the lines of Eq. (47) As indicated earlier, 
the expression in Eq. (64) is the expectation of N over the joint probability of N(t) = N  and N(T) = 0 . This 
includes all trajectories that become extinct before time T. To calculate the avalanche shape of those instances 
that become extinct exactly at time T, we need the expectation of N(t) conditioned to N(T) = 0 and N(t) > 0 
for t < T,

Assuming dT > 0 , those trajectories that have N(T + dT) = 0 but N(T)  = 0 , have the desired feature of going 
extinct precisely at time T. Since N(T) = 0 implies N(T + dT) = 0 , the shape V(t, T) is equal to the expecta-
tion E[N(t);N(T) = 0|N(t0) = 1] differentiated with respect to T, and normalised by the probability density 
of extinction at exactly time T,

which can be calculated to first order in A by using Eqs. (56) and (64). However, numerically it is much easier 
to normalise the avalanche shape V(t, T) by the area under its curve

which is what is shown in the plots in Figs. 6 and 7.
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