
EDITORIAL

Since the emergence of COVID-19, researchers in ma-
chine learning and radiology have rushed to develop 

algorithms that could assist with diagnosis, triage, and 
management of the disease (1). As a result, thousands of 
diagnostic and prognostic models using chest radiographs 
and CT have been developed. However, with no standard-
ized approach to development or evaluation, it is difficult, 
even for experts, to determine which models may be of 
most clinical benefit. Here, we share our main concerns 
and present some possible solutions.

Systematic Errors in the Literature
In April 2020, during the first wave of the novel coro-
navirus outbreak in Europe and the United States, Gog 
published an editorial outlining how researchers could 
use their skills to help (2). Her article was a call for re-
searchers to proceed cautiously, stating that the priority 
should be to “amplify the signal” but avoid “adding to 
the noise” in the literature. In the several months since 
this appeal to caution, have we, as a research community, 
followed her guidance?

Our AIX-COVNET collaboration is a multidisciplinary 
team of radiologists and other clinicians working alongside 
image-processing and machine learning specialists to develop 
artificial intelligence tools to support frontline practitioners 
in the COVID-19 pandemic (3). We set out to quantify 
common problems in the enormous number of articles 
that developed machine learning models for COVID-19 
diagnosis and prognostication using thoracic imaging. We 
systematically reviewed every such study published between 
January 1 and October 3, 2020, and found two predomi-
nant sources of error (4). First, an apparent deterioration in 
standards of research, and second, a lack of collaboration be-
tween the machine learning and medical communities lead-
ing to inappropriate and redundant efforts.

To create models quickly, researchers frequently have 
relaxed standards for developing safe, reliable, and vali-
dated algorithms. This laxity is most obvious in the datas-
ets used to train these models. These datasets contain too 
few examples from patients with COVID-19, their qual-
ity is unreliable, and their origins are poorly understood. 
Many have been developed with access to only a few 
hundred COVID-19 images, where comparable mod-
els before the pandemic were trained using up to half a 
million examples (5). Few articles address this small-data 
issue, or the resulting imbalance of class sizes, making 
it unlikely that their results will generalize to the wider 
community. For example, because of the prevalence of 
data from China, many researchers train on small datasets 
from China when the model is intended for European 
populations, and recent research suggests such models 
are ineffective in practice (6). Differences between the 
training data and the target population, including patient 
phenotypes and data acquisition procedures, can all af-
fect a model’s generalizability (6). Training generalizable 
models from small amounts of labeled data is a com-
mon problem in medical imaging, and techniques such 
as transfer learning, self- or semisupervised learning, and 
parameter pruning can ameliorate this issue (7,8).

Although data sharing is critical for the research com-
munity to thrive, distributing or using public datasets of 
poor quality and unknown origins can further damage re-
search efforts. Many public datasets are combinations of 
images assembled from other public datasets and redistrib-
uted under a new name (9,10). This repackaging of data 
has led to researchers unknowingly validating their mod-
els on public datasets that contain their training data as a 
subset, likely producing an optimistic view of their perfor-
mance. There are also a surprising number of studies that 
unknowingly use a public dataset of pediatric patients for 
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non–COVID-19 cases (9). Additionally, many researchers have 
not acknowledged that some popular public datasets of patients 
with COVID-19 are composed of images taken from journal ar-
ticles with no access to the original DICOM files (11). Whether 
“pictures of pictures” provide the same quality data as original 
images is an issue that was discussed before the beginning of this 
pandemic (12,13) without an established consensus. In this time 
of crisis, these concerns have been ignored.

Given the prevalence of research quality standards for develop-
ing medical models, it is perhaps surprising that such widespread 
issues exist in the COVID-19 literature. We have determined 
that disconnects between research standards in the medical and 
machine learning communities partly explain these issues. For 
example, the Prediction model Risk Of Bias Assessment Tool 
(PROBAST) checklist (14) for assessing the risk of bias in medical 
models requires models to be validated on an external dataset, but 
in machine learning research, it is common practice to validate a 
model using an 80:20 training-to-testing split from the same data 
source. On the other hand, model quality checklists, such as the 
radiomics quality score (RQS) (15), suggest that to protect against 
overfitting, a model must train on at least 10 training examples 
per model parameter. However, deep learning models have been 
shown to generalize well despite heavy overparameterization (16), 
so this requirement is often inappropriate for deep learning mod-
els. Furthermore, with deep learning models, it is difficult to inter-
pret the extracted features, making it difficult to run standard risk-
of-bias assessments from the medical literature (17). These gaps 
between research standards in medicine and machine learning 
allow the dissemination of irreproducible research, and they ex-
tend far beyond the immediate COVID-19 crisis. Collaboration 
and communication between these communities to bridge these 
gaps will be necessary as more machine learning models phase into 
clinical deployment.

Recommendations for Clinical Model 
Development during the COVID-19 Pandemic and 
Beyond
Our collaboration is exemplary as it comprises clinicians, ma-
chine learning researchers, mathematicians, and radiologists. 
Given our own experiences and the findings presented in our dis-
cussion of the literature, we propose some guiding principles for 
developing clinical models in the COVID-19 era and beyond.

Work as a multidisciplinary team Many existing studies were 
performed without any input from clinicians. Because of this, 
models have been built to solve problems that do not necessarily 
provide significant clinical benefit (4). For example, in the United 
Kingdom, chest radiographs have a much more significant role in 
COVID-19 diagnosis than CT scans, but early models focused 
mostly on diagnosis from CT (18,19). Adapting to local medical 
practices is difficult without collaborating with clinicians.

Source original data The origins of public datasets are often 
unknown, so it is difficult to determine their quality or suitabil-
ity for inclusion in model development. Such datasets are also 
unlikely to represent a model’s target population, making it less 

likely for a model’s performance to generalize upon deployment. 
Training on high-quality data that are representative of the target 
community, with validation on data sourced externally, provides 
the best estimate of a model’s performance.

Streamline data acquisition and processing Collecting high-
quality data is always a challenge in machine learning, particu-
larly data on a novel virus, but preparation can make data collec-
tion easier. Researchers must be familiar with local guidance sur-
rounding the use and sharing of patient data, and pre-emptive 
protocols for obtaining, anonymizing, and securely storing data, 
including for anticipated future pandemics, are essential. The 
current crisis has demonstrated that without these pre-emptive 
protocols, data collection can be severely delayed. Equally im-
portant is developing efficient and potentially semiautomated 
data preprocessing pipelines to ensure rapid access to high-qual-
ity, well-curated datasets. Making these procedures publicly ac-
cessible also ensures that different groups do not need to spend 
time curating the same data.

Acknowledge the small-data problem Obtaining large 
amounts of labeled data for medical applications is difficult, espe-
cially when they relate to a novel virus. Models should be adjusted 
to respond to this small-data problem. Although this is an ongo-
ing area of research, several strategies have been shown to boost 
performance when working with small or sparsely labeled datasets, 
including semi- and self-supervised learning (7,20), weight trans-
fusion, and limiting the number of trainable parameters (8).

Follow and improve medical standards There are gaps be-
tween research standards in medicine and machine learning, 
and more research is required to resolve these inconsistencies. 
Machine learning researchers should be aware of the RQS (15) 
and the Checklist for Artificial Intelligence in Medical Imaging 
(CLAIM) (21), standard checklists to evaluate models using ra-
diomic features. It is also imperative to evaluate a model’s risk 
of bias using standards such as PROBAST (14) and to report 
results following guidelines such as the Transparent Reporting 
of a multivariable prediction model for Individual Prognosis 
Or Diagnosis (TRIPOD) checklist (22). Conversely, medical 
standards must be updated to support deep learning practices. 
Indeed, calls for an updated TRIPOD checklist (TRIPOD-ML) 
(23) and the related reporting guidelines SPIRIT-AI (24) and 
CONSORT-AI (25) are steps in this direction.

A Multimodal Approach to the Diagnosis and 
Prognosis of Patients with COVID-19 
With these considerations in mind, there remain plenty of 
opportunities for machine learning models to aid clinicians 
during the current pandemic and beyond, with much of the 
knowledge gained applicable to other diseases including future 
pandemics. Below, we outline several data sources that could be 
used to develop models that are helpful to clinicians (Figure).

Chest radiographs Chest radiographs are a first-line inves-
tigation in many countries, including the United Kingdom. 
Researchers could examine not only the initial imaging findings 
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and extent of respiratory involvement, but also how radiographic 
progression in serial studies correlates with patients’ clinical phe-
notypes. Many works have developed deep learning models us-
ing chest radiographs of patients with COVID-19, but further 
research is required to determine if similar models could be clini-
cally viable, especially for prognostic models.

Thoracic CT Another promising area of research that has re-
ceived some attention is in developing segmentation and clas-
sification methods to locate lung parenchyma that could be af-
fected by COVID-19 and classify these regions as a symptom 
of COVID-19 or a result of another disease. High-quality data-
sets for chest radiographs and CT include the British National 
COVID-19 Chest Imaging Database (NCCID) (26) and 
the Medical Imaging and Data Resource Center (MIDRC-
RICORD) datasets curated by the RSNA (27).

Comorbidities Given that patients with cardiovascular comor-
bidities are at higher risk of severe disease and mortality (28), it 
is natural to consider the cardiovascular information that is also 
contained in thoracic CT. Models that incorporate automated 
calcium scoring, for example, allow for the burden of atheroscle-

rotic disease to be incorporated into prognostic models, even in 
those patients with no prior cardiovascular diagnosis. The effects 
of COVID-19 on the heart have received little attention.

Flow cytometry Many diseases cause irregularities in the phys-
ical and chemical properties of blood cells, affecting distinct cell 
types differently. COVID-19 might cause a specific and unique 
set of changes that can be rapidly detected with flow cytometry.

Electronic health records This often-untapped plethora of granu-
lar and longitudinal data has recently shown promising results when 
used in models for COVID-19 prognostication (29). Multiple cen-
ters collect data in different formats, consider different features, and 
store data in potentially many different systems. One significant 
challenge is to design an algorithm robust to these factors.

Ideally, a model would use more than one data source. An es-
pecially promising direction for investigation is how to optimally 
combine clinical and radiomic features (4).

Many clinicians welcome helpful and appropriately vali-
dated models into the clinic. By making these projects open 
source, interested hospitals can integrate these models into 
their clinical workflow.

Our collaboration has identified five promising applications of machine learning in the COVID-19 pandemic. The AIX-COVNET col-
laboration’s vision for a multistream model incorporates multiple imaging segmentation methods (A, B, and C) with flow cytometry (D) 
and clinical data. (A) A saliency map on a radiograph from the NCCID dataset (26). (B) Segmented parenchymal disease on a CT 
scan from the National COVID-19 Chest Imaging Database (NCCID) (26). (C) Segmentation of calcified atherosclerotic disease on 
an image from the NCCID (26). (D) A projection of a flow cytometry scatterplot of side-scattered light (SSC) versus side-fluorescence 
light (SFL), giving insight into cell structures (analysis performed on a Sysmex UK [30] flow cytometer).
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The Impact of the Pandemic on the Future of 
Artificial Intelligence Development in Radiology
The COVID-19 pandemic presents an opportunity to accelerate 
cooperation between image scientists, data scientists, radiolo-
gists, and other clinicians; our collaboration is but one example. 
Researchers are close to realizing the potential of machine learn-
ing in health care, but there are still many barriers to deploy-
ment. To overcome many of these, we do not necessarily need 
more powerful machine learning models, but a better under-
standing of how to develop these tools responsibly. Bridging dis-
connects between machine learning and medical communities is 
an important step forward, and the current pandemic will forge 
vital collaborations with potential benefits beyond COVID-19.
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