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Abstract
We present techniques, inspired by monodromy considerations, for constructing com-
pactmonotoneLagrangians in certain affine hypersurfaces, chiefly ofBrieskorn–Pham
type. We focus on dimensions 2 and 3, though the constructions generalise to higher
ones. The techniques give significant latitude in controlling the homology class,
Maslov class and monotonicity constant of the Lagrangian, and a range of possible
diffeomorphism types; they are also explicit enough to be amenable to calculations of
pseudo-holomorphic curve invariants. Applications include infinite families of mono-
tone Lagrangian S1 ×�g in C3, distinguished by soft invariants for any genus g ≥ 2;
and, for fixed soft invariants, a range of infinite families of Lagrangians in Brieskorn–
Phamhypersurfaces. These are generally distinct up toHamiltonian isotopy. In specific
cases, we also set up well-defined counts of Maslov zero holomorphic annuli, which
distinguish the Lagrangians up to compactly supported symplectomorphisms. Inter
alia, these give families of exact monotone Lagrangian tori which are related neither
by geometric mutation nor by compactly supported symplectomorphisms.
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976 A. Keating

1 Introduction

We present techniques for constructing families of compact monotone Lagrangians,
including exact ones, in affine varieties. Our prefered setting will be Brieskorn–Pham
hypersurfaces, i.e. affine varieties of the form {za00 + · · · + zamm = 1} ⊂ C

m+1, though
our constructions will carry over to e.g. any affine variety which contains a suitable
(truncated) Brieskorn–Pham hypersurface as a Stein submanifold. The article focuses
on complex dimensions 2 and 3, though the techniques extend to give constructions
in higher dimensions, which will briefly be discussed.

1.1 Construction techniques

Loosely speaking, the Lagrangians are built via an iterative process, increasing
dimension one at a time. Suppose you start with a compact Lagrangian L in, say,
X = {za00 + · · · + zam−1

m−1 = 1}. Consider Y = {za00 + · · · + zam−1
m−1 + zamm = 1}, and a

Lefschetz fibration π : Y → C, with smooth fibre X , given by ε(z0, . . . , zm−1)+ zm ,
where ε is a small generic linear deformation.We use properties of Dehn twists in van-
ishing cycles in X (which follow from monodromy-type considerations) to construct
in Y embedded Lagrangians of the form L × S1, fibred over immersed copies of S1 in
the base of π . We are also often able to get connected sums of such Lagrangians, via
Polterovich surgery. The fact that the S1 are immersed, rather than embedded, allows
for considerable adaptability of the constructions; and the fact that the Lagrangians
are (essentially) fibred over the base will make them tractable computationally.

1.2 Soft invariants

The techniques are explicit enough to allow us to control ‘soft’ invariants such as the
homology class of the Lagrangian, its Maslov class, and its monotonicity constant.
Combined with results from geometric group theory, soft invariants give:

Theorem (Theorem 4.2) Fix g ≥ 2, and any monotonicity constant κ . Then there
exist infinitely many monotone Lagrangian S1 ×�g in C3, distinct up to Lagrangian
isotopy or symplectomorphism.

Experts may note that at least some of these can be arranged to have non-trivial
Hamiltonian monodromy group, see Sect. 4.2.1.

Discussion

The diffeomorphism classes of closed orientable 3-manifolds admitting monotone
Lagrangian embeddings into C

3 are understood, by work of Evans and Kedra [19,
Theorem B] building on Fukaya [25] and Damian [15]: if L is such a manifold, then L
is diffemorphic to S1 ×�g , where�g is a surface of genus g; moreover, the S1 factor
in a monotone S1 × �g ⊂ C

3 must have Maslov index two. At least one monotone
embedding of S1×�g exists for each g ([19, Proposition 12] and [18, Corrigendum]).
Our constructions give examples with all possible (necessarily even) Maslov classes
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Families of monotone Lagrangians... 977

for�g; by work of Waldhausen [55,57,58] applied to Diff(S1 ×�g), these classes are
enough to distinguish the Lagrangians whenever g ≥ 2.

For the g = 1 case, Auroux [6] showed that there are infinitely many distinct
monotone Lagrangian tori in C

3. This contrasts with the two- (and one-)dimensional
case: it is widely expected that there are only two closed monotone Lagrangians in
C
2: the Clifford and Chekanov tori (see related results in [16,17]). Auroux’s tori

all have the same ‘soft’ invariants—e.g. they automatically all have Maslov class
(2, 0, 0) ∈ H1(T 3;Z) ∼= Z

3 up to action by SL(3,Z); his proof uses counts of
holomorphic discs with Maslov index two to tell them apart. �

In all our examples the count of Maslov index two discs will be zero. On the other
hand, at least in the setting where the ai are sufficiently large, we can use calculations
of other ‘hard’ invariants to distinguish Lagrangians with the same soft invariants, up
to different possible types of equivalence depending on which hard invariant we use.

1.3 Lagrangian Floer theory

Our convention will be that an ‘arbitrary’ choice of Maslov class for a would-be
Lagrangian L is any class μ ∈ H1(L;Z) which satisfies the obvious restrictions
imposed by the topology of L: namely, that μ must pair to an even number with any
class in π1(L) which preserves a choice of local orientation; and to an odd number
with any class that reserves it. Suppose Lagrangians L and L ′ are diffeomorphic;
we say that their Maslov classes are the same if they agree under any equivalence
H1(L,Z) ∼= H1(L ′,Z) induced by a diffeomorphism from L to L ′.

1.3.1 Complex dimension two

Theorem 1.1 Let � be a connected sum of tori and Klein bottles. If r is sufficiently
large, then for any possible Maslov class and monotonicity constant, we can construct
an infinite family of homologous monotone Lagrangian �s in {x2 + y4 + zr = 1},
distinct up to Hamiltonian isotopy, with that Maslov class and monotonicity constant.

The proof uses the Lagrangian Floer cohomology of these Lagrangians with a
reference Lagrangian sphere. In particular, the conclusions remain true under exact
symplectic embeddings of {x2 + y4 + zr = 1} (truncated e.g. to have contact type
boundary) into larger Liouville domains.Also, inmany caseswe can compute the Floer
cohomology between two different members of one of the above infinite families; for
suitable choices of rank one local systems, it can have arbitrarily large rank (Theorem
6.8 and Remark 6.9). This implies the following:

Theorem (see Theorem 6.8) Consider one of the infinite families of monotone
Lagrangian tori given by Theorem 1.1. No two tori in this family can be related
by a sequence of geometric mutations.

This constrasts with most known constructions of interesting families of Lagrangian
tori—for further discussion, and more details on geometric mutation, see Sect. 6.2.
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978 A. Keating

1.3.2 Complex dimension three

Theorem 1.2 Let L = #li=1

(
S1 × (#gi T 2#g′

i
K )

)
, where T 2 is a torus and K a Klein

bottle, and l, gi , g′
i arbitrary. If r and s are sufficiently large, then for any possible

Maslov class and monotonicity constant, we can construct an infinite family of homol-
ogous monotone Lagrangian Ls in {x2+ y4+zr +ws = 1}, distinct up to Hamiltonian
isotopy, with that Maslov class and monotonicity constant.

As before, the conclusion remains true under exact symplectic embeddings of (suit-
able large compact subsets of) {x2 + y4 + zr +ws = 1} into larger Liouville domains.
For calculations of Floer cohomology groups between members of a fixed infinite
family, see Sect. 6.3.

1.3.3 Extensions

Proceeding iteratively gives statements in higher dimensions; see Proposition 7.1.
We flag that Theorems 1.1 and 1.2 and Proposition 7.1 give affine varieties with
monotone Lagrangians, including tori, with arbitrarily highminimumMaslov number.
(Experts may note that their homology class is primitive.) This contrasts with the
case of Cm , where it is known to be heavily restricted: for instance, Oh [43] showed
that if L is a compact monotone embedded Lagrangian in C

m , then 1 ≤ NL ≤ m,
where NL is the minimal Maslov number of L; and Damian [15] proved a number
results for compact monotone Lagrangians L in a monotone symplectic manifold M
such that every compact subset of M is displaceable through a Hamiltonian isotopy
(e.g. M = C

m): for instance, we always have 1 ≤ NL ≤ m + 1, and, if L is moreover
aspherical, then NL ∈ {1, 2} (necessarily 2 in the orientable case—for tori a number
of further proofs are available [8,12,23,33]).

In some circumstances our techniques give monotone Lagrangians with different
diffeomorphism types—see Sects. 6.1.1 and 7.1. For instance, we get�g bundles over
S1 with non-trivial, finite ordermonodromy in {z20+z41+za22 +za33 = 1} for sufficiently
large a2 and a3, including in infinite families—constrasting with the aforementioned
constraints on the topology of compact orientable monotone Lagrangians in C3.

Relation to other works

There are very interesting recent constructions by Oganesyan [41,42] and by
Oganesyan and Sun [45] of monotone Lagrangia submanifolds in C

n , typically for
large n, using ideas from toric geometry and building on work of Mironov [39];
with the exception of tori, this gives Lagrangians with different diffeomorphim types
from the ones that are considered in this paper. (The reader may also be interested in
Mikhalkin’s constructions of Lagrangian submanifolds in symplectic toric varieties
[37].) In dimension two, there are interesting constructions of monotone Lagrangian
embeddings of some non-orientable compact surfaces in CP2 and CP1 × CP

1 in [1].
While in the final stages of writing this article the author learnt about the results
of Casals and Gao [10]; in particular, [10, Corollary 1.8] gives infinite families of
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Families of monotone Lagrangians... 979

smoothly isotopic exact higher genus Lagrangians surfaces distinct up to Hamilto-
nian isotopy in Weinstein manifolds which are homotopic to S2 (but do not contain
Lagrangian spheres).

1.4 Hard invariants: holomorphic annuli counts

With string theoreticmotivations inmind [32], symplectic topologists have used counts
of Maslov index two holomorphic discs with boundary on the monotone Lagrangian
to tell such Lagrangians apart in a wide range of cases, starting e.g. with [6,11,13];
this naturally distinguishes monotone Lagrangians up to symplectomorphism rather
than merely Hamiltonian isotopy. On the other hand, this disc count vanishes if the
Lagrangians are exact or have minimal Maslov number greater than two. Even if it is
two, there are diffeomorphism types where one expects the count of Maslov two discs
to be zero for topological reasons: it should follow from the arguments in e.g. [25,33]
thatMaslov 2 counts vanish on a Lagrangian L whenever the fundamental class of L is
not in the image of the evaluation map from the homology of a non-trivial component
of its free loop space; one then gets vanishing counts, for instance for S1 ×�g , from
standard arguments about uniqueness of geodesics in spaces of negative curvature.

Stepping back, holomorphic discs can be thought of as the simplest of open
Gromov–Witten invariants; holomorphic annuli, the next simplest. (This also ties back
to the physics perspective, viewing the former as a first-order invariant and the latter as
a second-order one; for instance, in the setting of [29] the former should correspond to
hypermultiplets and the latter to vector multiplets, see e.g. Section 4.1 therein.) This
motivates us to consider counts of Maslov zero holomorphic annuli; in dimensions
2 and 3 we give settings in which these are well-defined invariants, which moreover
distinguish some of our Lagrangians:

Theorem (see Theorems 5.15 and 5.13) Dim 2: For any sufficiently large r , we can
construct an infinite family of homologous monotone Lagrangian tori in Xr = {x3 +
y3 + zr = 1}, with fixed arbitrary Maslov class and monotonicity constant, distinct
up to compactly supported symplectomorphisms of Xr .

Dim 3: Fix g. For any sufficiently large r and s, we can construct an infinite family
of homologous monotone Lagrangian S1 × �g in Yr ,s = {x3 + y3 + zr + ws = 1},
with fixed arbitrary Maslov class and monotonicity constant, distinct up to compactly
supported symplectomorphisms of Yr ,s .

Note both of the above statements include the monotone exact case. Added moti-
vation is that in complex dimension two, squares of Dehn twists act as the identity
on homology. They are by now a well-established tool for producing infinite families
of homologous Lagrangians none of which are Hamiltonian isotopic, following [49].
Given the wealth of Lagrangian spheres in Milnor fibres, including Brieskorn–Pham
hypersurfaces, it is particularly relevant to be able to show that Lagrangians cannot
be related by Dehn twists. Combined with 6.8, we get tori which are related neither
by mutations nor by symplectomorphisms.
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980 A. Keating

Technical discussion

A trade-off is that these invariants don’t behave well with respect to embeddings, as
defining them requires us to compactify the ambient symplectic manifold. (On the
other hand, a compactification or other modification is inevitable: by monotonicity
the Maslov zero annuli would otherwise have to be constant.) For technical reasons
we end up working with x3+ y3+ zr +ws rather than x2+ y4+ zr +ws ; note x2+ y4

is the singularity A3 while x3 + y3 is D4. The theorem stated immediately above (and
Theorems 5.15 and 5.13) extends toMilnor fibres of a few other singularities, see Sect.
5.5.

Recall that if a moduli space of pseudo-holomorphic annuli is regular, then after
quotienting out by reparametrisation its dimension is simply its Maslov index, by [35,
Theorem 1.2]. However, in dimension greater than 3, disc bubbling a priori gets in the
way of having a well-defined invariant.

Even in dimension at most 3, it can be difficult in general to extract well-defined
invariants from Maslov zero holomorphic annuli counts: as well as bubbling, one
needs to worry about the fact that the abstract moduli space of holomorphic annuli
has boundary. In the present work, we carefully restrict ourselves to a geometric set-
up in which the primary analytical difficulties can readily be ruled out. In particular,
the ‘modulus infinity’ boundary of the abstract moduli space is avoided by asking
that both boundary curves lie in homologically non-trivial classes; and the ‘modulus
zero’ one by using a displacement of the Lagrangian off itself, so that the boundary
curves formally lie on different components of a Lagrangian link—this is why all of
the Lagrangians in Theorems 5.15 and 5.13 have trivial cotangent bundle. Extra care
is then taken to rule out holomorphic disc bubbling. One could view our results as
motivation for studying how to get invariants in more general cases, as has been done
in [21] in a similar setting.

Structure of the paper

Section 2 gives background on Brieskorn–Pham hypersurfaces; in particular, in Sect.
2.3 we give explicit descriptions of their total monodromy. Section 3 gives construc-
tions of monotone Lagrangians surfaces, and explains how to calculate their soft
invariants. Section 4 is dedicated to monotone Lagrangians in C3, including the proof
of Theorem 4.2 stated above. A wider range of constructions of 3-dimensional mono-
tone Lagrangians is given in Sect. 5.1, with the rest of Sect. 5 devoted to defining and
evaluating counts of Maslov index zero annuli for these spaces, including a proof of
Theorems 5.15 and 5.13 stated above. Floer–theoretic properties in dimensions 2 and
3, and consequences thereof, are given in Sect. 6, including proofs of Theorems 1.1
and 1.2. Finally, Sect. 7 briefly covers extensions to higher dimensions.
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Families of monotone Lagrangians... 981

2 Preliminaries on Brieskorn–Pham hypersurfaces

2.1 Lefschetz (bi-)fibrations on Brieskorn–Pham hypersurfaces

Fix integers a0, . . ., am ≥ 1. Let Xa be the hypersurface given by

Xa =
{

m∑
i=0

zaii = 1

}
.

This carries the structure of an exact symplecticmanifold, inherited fromC
m+1. As the

polynomial
∑m

i=0 z
ai
i is weighted homogeneous, its only singularity is at the origin.

In particular, Xa is a representative, as an exact symplectic manifold, of the Milnor
fibre of the singularity

∑m
i=0 z

ai
i , with half-infinite conical ends glued to its boundary.

Many of our explicit constructions will involve two families of hypersurfaces, for
which we use dedicated notation, namely, for fixed integers r , s ≥ 1:

Xr = {(x, y, z) ∈ C
3 | x3 + y3 + zr = 1} (2.1)

Yr ,s = {(x, y, z, w) ∈ C
4 | x3 + y3 + zr + ws = 1}. (2.2)

For notational convenience, let am = b, and label the hypersurface accordingly
as Xa,b. Morsifying

∑m−1
i=0 zaii and projecting to zm realises Xa,b (appropriately cut

off) as the total space of a Lefschetz fibration � : Xa,b → C, with smooth fibre
Xa = {∑m−1

i=0 zaii = 1}.
This has a built-in Z/b symmetry: multiplying zm by a bth root of unity gives a

symplectomorphism of Xa,b which preserves fibres of �, and induces an automor-
phism of its baseC given by a rotation by 2π/b in the origin. Let� = ∏m−1

i=0 (ai −1).
The fibration� has b� vanishing cycles in total: ordered clockwise with a Z/b sym-
metric choice of vanishing paths, v1, v2, . . . , v� , v1, v2, . . . , v� , . . . , v1, v2, . . . , v�
(see Fig. 3). We will later use the observation that the base of the Lefschetz fibration
on Xa,kb can naturally be divided into k cyclically symmetric sectors, such that the
total space of the restriction of � to each sector is Xa,b.

We will again want special notation for the cases we will make the most use of, as
follows.

In the case of Xr , we call this fibration�r : Xr → C. It has smooth fibre the thrice-
punctured elliptic curve {x3 + y3 = 1}, i.e. the Milnor fibre of the two-variable D4
singularity, which we will denote by M . For a suitable choice of vanishing paths, the
critical points split into r groups of size four, each giving the same vanishing cycles;
these four cycles correspond to the ‘standard’ D4 configuration of vanishing cycles
on M . See Fig. 1.

In the case of Yr ,s , we call this fibration Pr ,s : Yr ,s → C. By construction, the
smooth fibre is Xr . There is a total of 4(r − 1)s critical points, and a Z/s cyclic
symmetry, with vanishing cycles grouped into collections of size 4(r − 1). We will
sometimes take advantage of the fact that the smooth fibre of Pr ,s is Xr to think of
Yr ,s as the total space of a bifibration (Pr ,s,�r ).
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982 A. Keating

Fig. 1 Lefschetz fibration�r on Xr . Themarked points in the base are singular values; the segments joining
them to the central point are vanishing paths, and the corresponding vanishing cycles are given in the fibre
above the central smooth point

2.2 Deformations and parallel transport

We’ll make repeated use of the following well-known fact.

Lemma 2.1 There is a global isotopy of Xa,b which takes the standard Kähler form ω
to ω+ k�∗ω0, where k ≥ 0 is a constant, and ω0 is the standard symplectic form on
the base of �.

Proof � is given by a polynomial map to C of the form zm + ε(z0, . . . , zm−1), where
ε is (for instance) a linear map with arbitrary small coefficients. For t ∈ [0, k] the
function t |�(z)|2 + ∑m

i=0 |zi |2 is a Kähler potential; this gives an interpolation of
exact symplectic forms between ω and ω + kπ∗ω0. Let ωt = ω + kπ∗ω0, t ∈ [0, k].
Let’s use the standard metric on Xa,b (induced by the one onCm+1) to estimate growth
rates of differential forms and vector fields. The natural primitive to ωt , say θt , grows
linearly with the distance to the origin; on the other hand, ωt is bounded (as, say, a
family of bilinear forms applied to the unit sphere with respect to the metric). Thus
the Moser vector field associated to the path ωt and θt grows linearly with the distance
to the origin. In particular, the vector field is integrable everywhere, which completes
the proof. 
�

Recall that on any Lefschetz fibration, there’s a parallel transport map on smooth
fibres, determined by taking the symplectic orthogonal of the tangent space of the
fibre inside the tangent space of the total space. In order for this to be well-defined,
technical care is required near the boundary of the fibres, whichwe haven’t yet worried
about beyond noting that the Milnor fibres of

∑m
i=0 z

ai
i , with a half-infinite conical

end attached, agrees with Xa.

Lemma 2.2 Consider � : Xa,b → C as above, and let ω be the standard Kähler
symplectic formon Xa,b. Then for any s, there exists R such that for all a ∈ Ds(0) ⊂ C,
�−1(a) � SR′(0) for all R′ ≥ R.Moreover there exists R̃ > R andan exact symplectic
form ω̃ on π−1(Ds(0)) such that
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Families of monotone Lagrangians... 983

• ω = ω̃ on π−1(Ds(0)) ∩ BR(0);
• ω̃ is a product outside of a sufficiently large bounded set, roughly points at distance
greater than R̃ to zero. More precisely, there exists an open set N ⊂ �−1(Ds(0))
such that (�−1Ds(0))\N is bounded, and parallel transport induces a symplec-
tomorphism from (N , ω̃) to

((
�−1(0)\B̄R̃(0)

) × Ds(0), ω|�−1(0) ⊕ ω0
)

intertwining � and the projection map to C, where ω0 is a symplectic form on
Ds(0) ⊂ C compatible with the standard complex structure. Denote by ρ the
pullback of the distance to zero function on �−1(0).

• ω̃ agrees with ω when restricted to any fibre of �.
• The form ω̃k = ω̃ + k�∗ω0, for k a non-negative constant, is also a symplectic
form. Moreover, for all sufficiently large k, there is an ω̃k–compatible almost-
complex structure on�−1(Dr (0)), say J̃k , agreeing with a product for ρ > R̃+1,
with the standard J for ρ < R̃, such that J̃k preserves vertical tangent spaces, and
such that � is ( J̃k, J0)–holomorphic, where J0 is the standard complex structure
on Dr (0).

Moreover, for any compact set L in the domain of definition of ωk , there is a Moser
isotopy ι such that ι∗ω = ω̃k on L.

Proof The statement in the opening paragraph (existence of R so as to ensure transver-
sality of �−1(a) and SR′(0) for all a, R′ as described) goes back to Milnor [38,
Corollary 2.8]. The point of the rest is to have a common technical set-up for a Lef-
schetz fibration, often knows as a ‘trivial horizontal boundary’—see e.g. [51, Section
15]. To obtain this set-up, one can proceed as follows.

Givena ∈ Ds(0), consider the symplectic parallel transport along a straight segment
from a to 0, say ψa . Note that away from critical points of �, parallel transport is
always well defined, as similar considerations to the proof of Lemma 2.1 show that
the relevant vector field is integrable (indeed, it has at worst polynomial growth). In
particular, outside of �−1(a) ∩ BR′(0), where R′ may be quite a bit larger than R,
ψa is always defined, and a symplectomorphism onto its image. (In fact, we see that
for a path outside of Br (0) with r large enough such that it contains all the critical
values, parallel transport along that path is defined on the entire (non-truncated) fibre.)
Wlog assume that R′ works for all a ∈ Ds(0). Now fix R̃ such that�−1(0)\BR̃(0) is
contained in ψa

(
�−1(a)\BR′(0)

)
for all a ∈ Ds(0).

Let

N =
⋃

a∈Ds (0)

ψ−1
a

(
�−1(0)\BR̃(0)

)
,

and define  by:

 : N → (
�−1(0)\BR̃(0)

) × Ds(0) (2.3)

p �→ (ψ�(p)(p),�(p)). (2.4)
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984 A. Keating

The map  is a diffeomorphism by construction. We will use Fa = �−1(a) ∩ N to
denote a (subset of a) fibre.

Let’s now construct ω̃. Let r , θ be radial and angle coordinates on the base C, and
x1, . . . , x2m−2 be local coordinates on the central fibre F0; together these pull back to
local coordinates on N via . Observe that there is a decomposition

ω = ωF + ωB + ωε
where ωF = ∑

fi j dxi ∧ dx j , for some functions fi j , and should be thought of as
a fibre term; ωB = hrdr ∧ dθ , for some positive function h, and should be thought
of as a base term; and ωε = ∑

εi dxi ∧ dθ consists of mixed fibre / base terms. By
construction, ωF = ∗(ω|π−1(0)); in particular, the fi j are independent of r and θ ,
and ωF is exact. Moreover, note that there are no terms of the form dxi ∧ dr in ω.
(This is because we are using parallel transport in the r direction to define.) Further,
by varying over coordinate charts for F0, we can patch forms together to get ωF , ωB

and ωε globally defined on N .
Say ω− ωF = dα, some one-form α. By construction, dα = β ∧ dθ , for β a one-

form. Now dβ∧dθ = 0, so, for fixed θ , we can integrate β on Kθ = {Fa | arg(a) = θ}
to bθ ∈ C∞(Kθ )with dbθ = β ∈ �1(Kθ ). As Kθ is connected, bθ is uniquely defined
up to a constant. Now one can choose constants so that bθ varies smoothlywith θ ∈ S1,
and extends over r = 0 by the zero constant. Let b ∈ C∞(N ) be the resulting function,
which is now uniquely determined; by construction we can choose α to be bdθ .

As defined before, let ρ be the distance to zero function on �−1(0), pulled back
via  to a function on N . Let η = η(ρ) be a smooth non-decreasing cut-off function
on [0,∞) which is identically zero for ρ ≤ R̃, and identically one for ρ ≥ R̃ + 1.

Let ωk = ∗(ω|�−1(0))⊕ k�∗(ω0) ∈ �2(N ), where ω0 is the standard symplectic
form on the base, and k a positive constant. By construction, ωk is a symplectic form
on N , and agrees with ω when restricted to fibres.

Consider the exact two-form

ω̃k = ωF + d(ηr2/2dθ)+ d((1 − η)α)+ k�∗(ω0)

where k ≥ 0 is a constant. As dη only involves terms of the form dxi , we see that

ω̃m
k = mωm−1

F ∧ (
ηrdr ∧ dθ + (1 − η)db ∧ dθ + k�∗(ω0)

)
(2.5)

which is positive everywhere. Thus ω̃k is symplectic. By construction, it’s equal to
ω+k�∗(ω0) for ρ ≤ R̃, and∗(ω|�−1(0))+(k+1)�∗(ω0) for ρ ≥ R̃+1; moreover,
it agrees with ω when restricted to fibres. This is true of ω̃k for all k ≥ 0. In particular,
ω̃ = ω̃0 works for the statement of the lemma.

Let us next check the claim about a Moser isotopy between ω and ω̃k . A similar
calculation to Eq. 2.5 shows that the linear interpolation between ω̃k and ω symplectic
for all time; in fact, the same would be true for ω̃k and ωl = ω+ l�∗ω0. Consider the
Moser vector field associated with the obvious choice of primitives for these. Its grow
at worst polynomially with distance to the origin. Further, if l � k, the vector field
points inwards along �−1{|z| = s}; thus for any L ⊂ �−1(Ds(0)), we can integrate
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the Moser vector field to get an isotopy ι : L → Xa,b such that ι∗ωl = ω̃k . The claim
then follows from Lemma 2.1.

In order to establish the final point, about almost-complex structures, we now want
to find a suitable one for any sufficiently large k, say J̃k , compatible with ω̃k .

For p ∈ N , consider a basis for TpN given by taking a basis for TpF�(p) followed

by one for its symplectic orthogonal TpF
(ω̃k ,⊥)
�(p) . With respect to this basis, we want

J̃k to be of the form

J =

⎛
⎜⎜⎜⎜⎜⎝

∗
J |Tφη(p)F�(φη(p)) ∗

...

∗
0 . . . 0 J0

⎞
⎟⎟⎟⎟⎟⎠

where φt , some fixed t ∈ [0, 1], denotes the parallel transport along a straight line
segment from Fa to F(1−t)a for any a ∈ Ds(0), and the entries ∗ are to be determined.
Note that any such matrix J satisfies J2 = −I (irrespective of the values ∗); moreover,
by construction it satisfies Dπ ◦ J = J0 ◦ Dπ and J(T Fa) = T Fa .

Now notice that the condition ω̃k(u, J̃kv) = ω̃k(v, J̃ku), for all u, v ∈ TpM ,
uniquely determines each of the entries ∗. For ρ ≤ R̃, we have arranged to have
ω̃k = ω + k�∗(ω0). Note that the standard J is of the form J, and is compatible
with both ω and ω + k�∗(ω0). This implies that J̃k = J for ρ ≤ R̃. Moreover, for
ρ ≥ R̃ + 1, ω̃k is a product, and it follows that J̃k is too (with all of the entries ∗
vanishing). Finally, notice that for any sufficiently large k, we have ω̃k(u, J̃ku) > 0
for u �= 0. This completes the proof. 
�
Remark 2.3 Applying the preceeding lemma iteratively, we can arrange to have sym-
plectic forms and almost complex structures which are standard on a large compact
set (up to a positive pullback of the base symplectic form), and fibred with respect to
the bifibration (Pr ,s,�r ) outside a slightly larger compact set.

2.3 Fractional boundary twists for Brieskorn–PhamMilnor fibres

Recall that

Xa,b =
{
m−1∑
i=0

zaii + zbm = 1

}
.

and that the Lefschetz fibration � : Xa,b → C is given by morsifying
∑m−1

i=0 zaii
and projecting to zm . The smooth fibre is Xa = {∑m−1

i=0 zaii = 1}. Recall that we let
� = ∏m−1

i=0 (ai − 1), which means that the fibration � has b� vanishing cycles in
total—ordered clockwise, v1, v2, . . . , v� , v1, v2, . . . , v� , . . . , v1, v2, . . . , v� , as in
Figure 3.

We start by recalling a result about the total monodromy of these Milnor fibres.
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Lemma 2.4 Let ν = τv1τv2 . . . τv� ∈ Sympc(Xa) be the total monodromy of za00 +
· · · + zam−1

m−1 . Then ν
lcm(a0,...,am−1) is compactly Hamiltonian isotopic to a boundary

Dehn twist on Xa ∩ BR(0), say �, defined using a periodic Reeb flow (R just needs
to be sufficiently large). In particular, � has support in a collar neighbourhood of the
boundary of Xa ∩ BR(0), which wlog is disjoint from all of v1, v2, . . . , v� . Thus �
commutes with each of τv1 , . . . , τv� .

Proof The singularity
∑m−1

i=0 zmi
i is weighted homogeneous with weight lcm(a0,

. . . , am−1). Thus we get a periodic Reeb flow on the boundary of {za00 +· · ·+ zam−1
m−1 =

1}∩BR(0) (contactomorphic to the boundary of {za00 +· · ·+ zam−1
m−1 = 0}∩BR(0)), and

νlcm(a0,...,am−1) is Hamiltonian isotopic to the boundary Dehn twist which it induces –
see the discussion in [50, Section 4c]. 
�

Assume for the rest of this section that b is a multiple of lcm(a0, . . . , am−1), say
b = k · lcm(a0, . . . , am−1). Pick r such that all of the critical values of� lie in Br (0).
Define a relative mapping class [ϕ] ∈ π0Diff cpt (C,Crit(�)), fixing the b� critical
values of� setwise, by a counterclockwise (i.e. positive) rotation by 2π/k on Br (0),
the identity outside Br+1(0), and a smoothing of the linear interpolation between the
rotation and the identity on the annulus between the two.

Fix a representative ϕ of [ϕ] which is a symplectomorphism of the base. As an
element of Sympcpt (C) (forgetting the marked points), ϕ is Hamiltonian isotopic to
the identity. Fix such an isotopy, say {ϕt }t∈[0,1], with ϕt = ϕ on a neighbourhood of
zero and ϕt = Id on a neighbourhood of 1. For simplicity we take ϕt to be rotationally
symmetric, as an element of Sympcpt (C), for all t .

Following Lemma 2.2, we fix a constant s such that Ds(0) contains all of the
critical values of � : Xa,b → C, and the supports of the ϕt . Given s, we also fix
constants R, R̃, and symplectic forms ω̃k , k ≥ 0 (ω̃0 = ω̃) as in Lemma 2.2, and a
large set K lying over Ds(0) and compact in the vertical direction, such that there
is a symplectomorphism  : �−1(Ds(0))\K → (

�−1(0)\BR(0)
) × Ds(0) such

that the product symplectic form pulls back to ω̃. (With the notation of Lemma 2.2,
�−1(Ds(0))\K = N .) There is a Moser isotopy such that ω pulls back to ω̃k on
K . Loosely speaking, K is capturing all of the topology of Xa,b. Also, we will use
the fact that symplectic parallel transport of fibres of � with respect to ω̃ is flat for
R̃ ≤ ρ ≤ R̃ + 1 (as ω̃ is a product).

Proposition 2.5 The map ϕ induces a compactly supported symplectomorphism � of
Xa,b which, up to a compactly supported Moser isotopy, has the following properties:

• � is the identity away from �−1(Ds(0)), and on the set identified with

�−1(0) ∩ {R̃ + 2 ≤ ρ} × Ds(0).

In particular, � has compact support.
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• The following diagram commutes:

K
�

�

K

�

C
ϕ

C

(2.6)

• On the set identified with
(
�−1(0) ∩ {R̃ + 1 ≤ ρ ≤ R̃ + 2}) × Ds(0), we have

that

�(y, a) = (y, ϕ
ρ−(R̃−1)a). (2.7)

The map � is uniquely defined up to compactly supported Hamiltonian isotopy.

Remark 2.6 Even though � is only fibred with respect to� over a large compact set,
we will sometimes refer to it, somewhat abusively, as a ‘fibred symplectomorphism’.

Proof Without loss of generality wework with ω̃ rather thanω. Fix a smooth reference
point � ∈ Ds(0) away from the support of the ϕt . Fix a system of smooth paths from
� to all other points of Ds(0). We can arrange for these to vary smoothly away from a
choice of cuts, which we can take to run cyclically between absolutely ordered critical
values (first to second, second to third, etc—but not from the final one back to the
first), and from the final critical value all the way out of Ds(0). Moreover, we choose
them so that they foliate the complement of the cuts. See Fig. 2. We also arrange for
the paths between � and points outside the support of the ϕt not to enter the support
of the ϕt .

Let γa be the paths from � to a, and let Fa = �−1(a) ∩ K .
By assumption, on K , if � is defined it must be given by a collection of maps

�z : Fz → Fϕ(z). Moreover, we require that �z = I d for z /∈ Ds+1(0). Given a path
γ : [0, 1] → B\Crit(�)with γ (0) = �, γ (1) = z, let σγ : F� → Fz be the symplectic
parallel transport map induced by γ . Now notice that if the map� is defined, then we
must have that σ−1

ϕ(γ ) ◦�z ◦ σγ is isotopic to ��, i.e. the identity Id, so �z is isotopic

to σφ(γ ) ◦ σ−1
γ . In particular, if � is well-defined, this should be independent of the

choice of γ . Let us check that this is the case for our system of paths: we will show
that for each of the paths γ1, . . . , γb� on Fig. 3, from � to 0, the symplectomorphism
�i = ρϕ(γi ) ◦ ρ−1

γi
is independent of i = 1, . . . , b� up to Hamiltonian isotopy. (This

will be enough to construct a well-defined symplectomorphism, which in turn will
imply the statement for all paths.)

We can read off the monodromy factorisation of each �i directly from Fig. 3:

�i = (
τvi τvi+1 . . . , τvi+�−1

)lcm(a0,...,am−1) = �

where indices are taken modulo � , and we are using the fact that � commutes with
each of the τvi for the second equality. Thus �i is independent of i .

We now use this to define a fibred map �̃ : K → K lifting ϕ such that:
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988 A. Keating

• �̃ intertwines �, and is given by fibrewise symplectomorphisms �̃z (including
for critical fibres, away from the critical points)

• Away from a thickening of the cuts, �̃z = σφ(γz) ◦ σ−1
γz

;

• For a point a on a cut (but not a critical point), there are two choices, say �̃l
a and

�̃r
a ; we know these to be Hamiltonian isotopic, so pick a Hamiltonian isotopy from

one to the other and realise this by symplectomorphisms along a segment across
the thickened cut (in particular, this is a smooth family of symplectomorphisms
with two parameters: the distance traveled across the thickened cut, and a, where
a varies between the two consecutive critical values on the cut).

• �̃z is the identity outside of the support of the ϕt .

In order to extend this over the critical fibres, we need to be careful with our choices
of Hamiltonian isotopies over cuts (as in general there is no reason to expect the space
of all Hamiltonian maps on a fibre to be simply connected). A ‘hands on’ way of
resolving this in this particular case is as follows:

Using our system of paths, the map on the central fibre is given by �1. Fix a
Hamiltonian isotopy ht , t ∈ [0, 1], from �1 to �.

Now notice that if we used instead a path going across the first cut (the one between
critical points of type v� and v�−1), the map on the central fibre would be given by
�� . This means that picking a Hamiltonian isotopy to use to define �̃z over the first
cut amounts to picking a Hamiltonian isotopy between�� and�1. As themonodromy
about the critical point v� is τv� , choosing the following Hamiltonian isotopy allows
us to extend the maps �̃z over that first critical point:

G1,t =
{
τv� h2tτ

−1
v�

for t ∈ [0, 1/2]
h2−2t for t ∈ [1/2, 1]

(This is well-defined at t = 1/2 as the τv j have support disjoint from that of our model
for νlcm(a0,...,am−1), i.e. ρ.) In order to extend over the next critical point (of type v�−1),
we need to pick a suitable Hamiltonian isotopy between ��−1 and �1, for instance:

G2,t =
{
τv�−1τv� h2tτ

−1
v�
τ−1
v�−1

for t ∈ [0, 1/2]
h2−2t for t ∈ [1/2, 1]

Proceeding iteratively, for the final cut (which stretches off out of the support of ϕ),
we use the Hamiltonian isotopy between �1 and �1 given by

Gb�,t =
{
(τv1 . . . τv� )

bh2t (τv1 . . . τv� )
−b for t ∈ [0, 1/2]

h2−2t for t ∈ [1/2, 1]

Now use the fact that b is a multiple of lcm(a0, . . . , am−1) to deform Gb�,t (rel. end-
points) to the constant isotopy. This allows us to ensure that �̃z is the identity outside
of the support of the ϕt .

As ω̃ is a product over Ds(0) for R̃ ≤ ρ ≤ R̃+1, �̃z is given by (p, z) �→ (p, ϕ(z))
on that region (using the identification ). This means that we’re free to extend the
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Families of monotone Lagrangians... 989

collection �̃z to a compactly supported diffeomorphism �̃ of the total space simply
by requiring that Eq. 2.7 hold (without isotopy) for �̃.

Recall ω̃k = ω̃ + k�∗ω0. Consider the family of closed two-forms, for λ ∈ [0, 1]
and k ≥ 0;

ω̃k,λ = λ(ω̃k)+ (1 − λ)�̃∗(ω̃k)

We claim that for sufficiently large k, ω̃k,λ is a symplectic form for any λ. The claim
follows from noticing the following:

• For ρ ≤ R̃ + 1, �̃∗�∗ω0 = �∗φ∗ω0 = �∗ω0. On the other hand, �̃ preserves
the restriction of ω̃ (or equally of ω̃) to each fibre. It follows that for sufficiently
large k, ωk,λ is certainly symplectic on this region.

• For R̃ + 1 ≤ ρ ≤ R̃ + 2, �̃∗ω̃k − ω̃k is of the form dρ ∧ dr , where r is a radial
coordinate on the base C. (Here we use the assumption that the ϕt are rotationally
invariant.) Now note that this term doesn’t contribute to ω̃m

k,λ.

• For R̃ + 2 ≤ ρ, as �̃ = Id, ω̃k,λ = ω̃k for all λ.
This then implies that we can perform a compactly supported Moser isotopy to

deform �̃ to a symplectomorphism with respect to the symplectic form ω̃ + k�∗ω0,
for sufficiently large k. (The support of the isotopy is contained in that of �̃, so we
needed worry about issues of compactness / being able to integrate the Moser vector
field.) We can now conjugate this with a Moser isotopy between ω̃k and ω to get a
symplectomorphism with respect to the original ω. 
�

From the discussion in [34, Section 2.5], we know that the matching cycles

V 1
1 , V

1
2 , . . . , V

1
� , V

2
1 , V

2
2 , . . . , V

2
� , . . . , V

b−1
1 , . . . , V b−1

�

as given by Fig. 4, are a distinguished collection of vanishing cycles in Xa,b considered
as the Milnor fibre of the singularity za00 + . . .+ zam−1

m−1 + zbm .

Proposition 2.7 Up to compactly supported Hamiltonian isotopy, the following sym-
plectomorphisms are equal:

� =
(
τV 1

1
τV 1

2
. . . τV 1

�
τV 2

1
τV 2

2
. . . τV 2

�
. . . τV b−1

1
τV b−1

2
. . . τV b−1

�

)lcm(a0,...,am−1)

.

Proof Let

τ = τV 1
1
τV 1

2
. . . τV 1

ζ
τV 2

1
τV 2

2
. . . τV 2

�
. . . τV b−1

1
τV b−1

2
. . . τV b−1

�
.

The map τ is presented as a fibred symplectomorphism, in the sense of Remark 2.6.
See Fig. 5. It is the monodromy of the singularity za00 + · · · + zam−1

m−1 . Note that after a
compactly supported Hamiltonian isotopy (induced by one of the base relative to the
critical points), we can take τ to be Z/b–symmetric; the action on the central fibre
(which is fixed set-wise) is precisely ν, the monodromy of the singularity za00 + · · · +
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Fig. 2 Base of � : Xa,b → C, with its b� critical values, and our choice of cuts (thicker segments), and
smooth system of paths (thinner segments) from � to points z ∈ C, say γz , used in the proof of Proposition
2.5

Fig. 3 Base of� : Xa,b → C, with a total of b� critical values, together with the paths γ1, . . . , γb� and
their images under ϕ, as used in the proof of Proposition 2.5
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Fig. 4 The matching cycles
V 1
1 , . . . , V

1
� , . . . , V

b−1
1 , . . . , Vb−1

�

zam−1
m−1 , i.e. τv1τv2 . . . τv� ∈ SympcptXa. In particular, τ lcm(a0,...am−1) and � agree on
the central fibre.

Now consider the fibred symplectomorphism�−1 ◦ τ lcm(a0,...am−1). After Hamilto-
nian isotopy, this is given by Fig. 6; in particular, the half-lines γ1, . . . , γb (relabelled
compared with Fig. 3) are preserved point-wise, as are the fibres above them. Thus
�−1 ◦ τ lcm(a0,...am−1) can be decomposed as a composition of cyclically symmetric,
compactly supported symplectomorphisms with disjoint support, each contained in a
‘sector’ between γi and γi+1. Let us focus on one such sector, say between γ1 and γ2;
let ϒ be the compactly supported symplectomorphism of the sector given by restrict-
ing �−1 ◦ τ lcm(a0,...am−1) . Notice that the total space of that (sub) Lefschetz fibration
is {za00 +· · ·+ zam−1

m−1 + zm = 1} ∼= C
m , with the map to C simply given by morsifying

za00 +· · ·+ zam−1
m−1 and projecting to zm . It now follows thatϒ is Hamiltonian isotopic to

the identity as a compactly supported symplectomorphism ofCm , albeit not as a fibred
map with respect to the Lefschetz fibration: smoothly ‘turn off’ the Morsification of
za00 + · · · + zam−1

m−1 to get a single critical point (the projection is now given by just
mapping to zm), and it’s now immediate that the ‘twisting’ which defines ϒ can be
unravelled, inducing a Hamiltonian isotopy to the identity. As this can be done in each
sector, the conclusion follows. 
�

Remark 2.8 In the final step of the proof above, in the case m = 2 one could also
appeal to Gromov’s theorem [30] that any compactly supported symplectomorphism
of C2 is Hamiltonian isotopic to the identity.

Remark 2.9 Proposition 2.7 implies that the symplectomorphism �k , which corre-
sponds to a 2π rotation of the base, is Hamiltonian isotopic to νk◦lcm(a0,...,am−1) = νb.
On the other hand, by assumption, b = lcm(a0, . . . , am−1, b), so this agrees with the
boundary Dehn twist constructed using the periodic Reeb blow in [50, Section 4c].

Remark 2.10 For simplicity, we’ve chosen to restrict ourselves to the case of
Brieskorn–Pham singularities. However, the discussion e.g. in [50, Section 4c] applies
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Fig. 5 The automorphism of the base of � which describes the map τ

more broadly to weighted homogeneous singularities. In particular, this means that the
constructions (and conclusions) of this section apply more broadly to any singularity
of the form f (z0, . . . , zm−1)+ zbm , where f is a weighted homogeneous singularity.
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Fig. 6 The automorphism of the base of � which describes the map �−1 ◦ τ lcm(a0,...,am−1). (Note the
indices on the γi have been renamed for simplicity.) Each vanishing path in the base rotates about the
relevant cluster of vanishing cycles lcm(a0, . . . , am−1) times

2.4 Monotone Lagrangians andMaslov indices

Let L ⊂ (X2m, ω) be a closed Lagrangian submanifold of a symplectic manifold. Let
LGr(2m)be theGrassmanian ofLagrangianm planes inR2m . Recallπ1(LGr(2m)) =
π1(U (m)/O(m)) = Z. An element β ∈ π2(X , L) induces a trivialization of T X |∂β ,
and a class

[
T L|∂β

] ∈ π1(LGr(2n)). This is called the Maslov index of β, denoted
μ(β). (This should not be confused with the total monodromy of a Lefschetz fibration,
also conventionally denoted μ, though we have avoided that notation in this article.)
Whenever L is orientable, μ(β) ∈ 2Z. If 2c1(X) = 0, we can fix a trivialisation of
( mT ∗X)⊗2 � C × X ; given a Lagrangian L , this determines the homotopy class
of a map L → C

∗; the induced class in H1(L,R) is called the Maslov class of L .
Dually, via the standard identification Hom(H1(L;Z),Z) ∼= H1(L,R), each class in
H1(L;Z) has a Maslov index (in particular, the Maslov index of a disc only depends
on its boundary).

Definition 2.11 L is monotone if there exists κ > 0 such that for all β ∈ π2(X , L),

[ω](β) = κ · μ(β). (2.8)
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If L is a Lagrangian in Xr , respectively Yr ,s , we have

π2(Xr , L) ∼= π2(Xr )⊕ π1(L) ∼= Z
4(r−1) ⊕ π1(L) (2.9)

π2(Yr ,s, L) ∼= π1(L) (2.10)

where 4(r − 1) is the Milnor number of the singularity fr . On the π1(L) term, both
maps fromπ2(X , L) toR in Equation 2.11 factor through H1(L).Moreover, all classes
in the image of π2(X), which are represented by Lagrangian spheres, have symplectic
area zero. In particular, the symplectic area of any class in π2(X , L) is determined by
the homology class of its boundary in H1(L).

We briefly review some relevant background concerning Maslov indices as well
as tools for computations which appear later. Recall that given any hypersurface
singularity f in m + 1 variables, its Milnor fibre Z f has trivial tangent bundle:
[Z f , BU (m)] = [∨i=1,...Mil( f )Si , BU (m)], where the Si are vanishing cycles and
Mil( f ) is the Milnor number of f ; now use the fact that for each Si , T (T ∗Si ) is a
trivial U (m) bundle.

In them = 1 case, using [Z f ,U (1)] = [∨i=1,...Mil( f )Si ,U (1)], we see that a choice
of trivialisation of T Z f is determined up to homotopy by the Maslov classes of all of
the vanishing cycles.

Now fix trivialisations of T Xr and TYr ,s as U (2) and U (3)–bundles, say σr :
T Xr ∼= Xr × C

2 and σr ,s : TYr ,s ∼= Yr ,s × C
3. Let L be a Lagrangian in Xr or Yr ,s .

Using the trivialisations, any path ρ : S1 → L induces a path ρ̃ : S1 → LGr(R2m),
m = 2, 3; the class ρ̃(S1) ∈ π1(LGr(R2m)) is the Maslov index of ρ. Note that
this class is independent of the choice of σr and σr ,s : σr , the trivialisation of T Xr , is
essentially unique, as the difference between two trivialisations is given by a class in

[Xr ,U (2)] = [∨i=1,...,4(r−1)S
2,U (2)] = {1}.

On the other hand, σr ,s , the trivialisation of TYr ,s , is not unique, as it determined up
to a class in

[Yr ,s,U (3)] = [∨i=1,...,4(r−1)(s−r)S
3,U (3)] = Z

4(r−1)(s−r),

where 4(r − 1)(s − 1) appears as the Milnor number of the singularity fr ,s—but as
S3 is simply connected this doesn’t affect Maslov indices.

Let Z denote either Xr or Yr ,s , and let m = 2 or 3 be its dimension. To calculate
Maslov indices, we fix a ‘reference’ Lagrangian plane Rm ⊂ C

n , and pull it back to
Lagrangian planes Lp ⊂ T Z at each point p ∈ Z via σr or σr ,s . Given an oriented
path {T L p}p∈ρ(S1), we count the non-transverse intersections with Lp. The Maslov
index μ(ρ) is given by the sum of the signed dimensions of these non-transverve
intersections.

For Xr , we can use the following. Suppose we are given a disc B ⊂ C in the base
of �r , containing no critical points. Then we may assume that the trivialization of
T Xr restricts to the product of trivialisations of the fibre M and the base B, and take
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Fig. 7 Reference Lagrangian
lines in T�

reference Lagrangian planes given by the product of two reference Lagrangian lines,
one in the tangent bundle to the fibre and one in the tangent bundle to the base. For the
base, we pick e.g. a constant horizontal line. A trivialisation of T M is determined up to
homotopy by the Maslov indices of the curves a, b, c, d (labelled as before following
Fig. 1); we pick one where these are all zero; for instance, we may take our reference
Lagrangian lines to be as in Fig. 7. (In a suitable identification with a thrice-punctured
square with sides glued in pairs, these tangent lines all have slope one.)

The trivialisation of T M is invariant in Dehn twists in a, . . . , d up to isotopy,
so our choices extend to give a trivialisation of T�−1

r (C\Dε(Crit(�r ))), where
Dε(Crit(�r )) is a small neighbourhood of the critical values of �r . Further, as we
have chosen the curves a, . . . , d to haveMaslov index zero, our choice of trivialisation
can be extended (up to homotopy) over the critical fibres (recall that a, b, c and d are
also the vanishing cycles for�r ).

For TYr ,s , we proceed similarly: using Pr ,s , start with the product of our triviali-
sation of T Xr with the obvious trivialisation of T B for a disc B ⊂ C\Crit(Pr ,s), and
notice that it can be extended to the whole space.

We will later use the following observation.

Lemma 2.12 Suppose �g ⊂ Xr is an orientable Lagrangian submanifold. Fix a
decomposition of�g (as an abstract surface) as a connect sumof g tori, say T1, . . . , Tg.
Then there are bases of H1(Tj ;Z), for each j = 1, . . . , g, such that for the basis of
H1(�g,Z) induced by the natural isomorphism

H1(�g;Z) = H1(T1;Z)⊕ · · · ⊕ H1(Tg;Z) (2.11)

the Maslov class of �g is equal to

(2n1, 0, 2n2, 0, . . . , 2ng, 0) ∈ Hom(H1(�g;Z);Z) (2.12)

for some integers ni ∈ Z≥0.

Proof As�g is orientable, all entries for the Maslov class with respect to any basis are
even, and wlog non-negative. In the case �g = T 2, a class of the form (2α, 2β) with
respect to some basis can be transformed to (2gcd{α, β}, 0) with respect to another
one. The claim is then immediate. 
�
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Fig. 8 Configuration of type BC . With our choices of comparison paths to the reference central fibre (the
dotted segments), the oriented b and c curves get swapped under parallel transport along the given arc

Fig. 9 Configuration of type BB. With our choices of comparison paths to the reference fibre, the curve b
is fixed setwise, and its orientation reversed

3 Building blocks: monotone Lagrangian surfaces

3.1 Distinguishedmonodromy actions

We will study Lagrangian tori and Klein bottles which are fibred over immersed
S1s in the base of �r . As a preliminary, we calculate the images of certain curves
under parallel transport along some distinguished arcs in the base of�r , and fix some
notation.

We will care about six configurations, each involving four critical points. Two of
them are given in Figs. 8 and 9; we will refer to these two configurations as being of
types BC and BB respectively. Configurations CC , BD, CD and DD are defined
similarly. (This shorthand will also be used on diagrams later when describing more
complicated configurations, to aid legibility.) As the vanishing cycles b and c do not
intersect, one could swap their order in Fig. 8; in particular, a configuration of type
CB would be the same as BC .

Remark 3.1 Each of the configurations just involves an A3 chain of vanishing cycles;
in particular, they could be defined for different fibres, the simplest of which would
be a twice-punctured elliptic curve, i.e. the fibre of the two-variable A3 singularity
x2 + y4.

3.2 The Lagrangian tori Tk,l,m

Consider an immersed loop γ ⊂ C\Crit(�r ). Suppose we’re given an exact
Lagrangian S1 in the fibre above a point � of γ , say V ⊂ M�. (In all the cases
we will consider, we just take V to be a vanishing cycle for�r .) We will be interested
in special cases in which the image of V under the total monodromy along γ will
happen to be Hamiltonian isotopic to V itself; in such cases, taking the union of the
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Families of monotone Lagrangians... 997

Fig. 10 Two examples of tori in Xr . We record the orientation of the meridional curve. As before, the dotted
lines define paths to a smooth reference fibre. For legibility, we have moved this a little bit off-centre in the
right-hand example

images of V under parallel transport along γ yields a Lagrangian in the total space
Xr , which, a priori, is immersed. If monodromy preserves the orientation of V , it is a
torus, and otherwise, a Klein bottle; call this hypothetical Lagrangian L . (We will give
a range of possible explicit constructions of such an L further down in this section.)

In very special cases, we can arrange for L to be embedded, as follows. Assume
wlog that γ is immersed with transverse double intersection points. We will give
examples of curves γ with the property that for each of their intersection points, the
images under parallel transport of V on each of the two segments do not intersect in
the fibre above the intersection point. To construct such curves, we will exploit the
fact that the b and c curves do no intersect, together with the fact that a BC ‘move’
trades them (and similarly with b and d, and c and d).

Two simple examples are given in Fig. 10. By greedily counting elements needed
and using Fig. 1, the left-hand one can be constructed in (Xr ,�r ) for any r ≥ 6, and
the right-hand one for any r ≥ 4.

We will mostly interested in more sophisticated families of tori, such as the three-
parameter one defined as follows.

Definition 3.2 Fix non-negative integers k, l, m. We define the immersed curve γk,l,m
in the base of�r to be as given by Fig. 11. As there are 7 basic configurations involved,
each of which containing four critical points, it can certainly be drawn in the base of
�r for r ≥ 28, and in fact one can check that r ≥ 18 suffices. There is an embedded
Lagrangian torus Tk,l,m ⊂ Xr , fibred over γk,l,m , also given by Fig. 11. The figure
also fixes an orientation of γk,l,m for future reference.

For l = 0, our convention is to delete the obvious BB configuration, namely, within
the right-hand ‘lobe’ of γk,l,m , the left-most of the two BBs.

Remark 3.3 To construct Tk,l,m we didn’t use the vanishing cycle d. In particular, we
could insteadwork in the total space of a Lefschetz fibrationwith fibre a two-punctured
elliptic curve (supporting an A3 configuration of vanishing cycles), e.g. {x2+y4+zr =
1}.
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Fig. 11 The fibred torus Tk,l,m above the immersed curve γk,l,m . The coloured sections of the base curve
encode the oriented vanishing cycle living above it, with respect to the choices of references given by the
small dotted lines. The purple curve represents a matching path between two type a critical points, say S;
the intersection points of S and Tk,l,m are labelled p1, . . . , pm , qm+1, . . . , qm+2k+1. This will be used
in subsequent sections. The cyan line, which will also be used later, denotes two possible thimbles, both
starting at an a type critical point (of which there are two in a BB configuration). We take the immersed
curve to lie in the base of X18

Remark 3.4 One can use slight variations on these monodromy techniques to get an
alternative construction of a monotone exact torus in the Milnor fibre of a simple
elliptic singularity (for instance, the affine hypersurface {x2 + y4 + z4 = 1}) whose
Floer cohomology with any vanishing cycle is zero, reproducing part of the results in
[34].

Remark 3.5 Let I denote the immersed interval in the base just before it gets closed to
an immersed S1. As mentioned above, the Lagrangian I × S1 given by using parallel
transport might need to be modified by a Hamiltonian isotopy, in order to get the
two ends to match up precisely. This will also be true with analogous constructions
later, though we shall hereafter omit explicitly saying so, except for Maslov index
calculations, to which the Hamiltonian isotopy will contribute.

3.3 Maslov indices, monotonicity and homology classes

As before, let L ⊂ Xr be a Lagrangian torus or Klein bottle fibred over an immersed
oriented S1, say γ ⊂ C\Crit(�r ). Pick a basis of H1(L;Z) given by the ordered pair
of:

(1) any lift of γ (with the induced orientation); and
(2) the restriction of L to the fibre of any point of γ (with any orientation), i.e. the

class of the cycle V which has been parallel transported.
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Lemma 3.6 Assume that there are choices of reference paths to a fixed (smooth) ref-
erence fibre such that the parallel transport of V along γ can be decomposed into
a concatenation of basic configurations (i.e. of types BB, BC, etc.), each traversed
either positively or negatively.

This is the case for instance for the examples of Fig. 10, and the Tk,l,m of Fig. 11.
Then, with respect to the basis given above, L has Maslov class

(2t − ν+ + ν− , 0),

where

• t is the total winding number of γ (in other words, γ has total curvature 2π t);
• ν+ is the number of basic configurations traversed positively (for our choice of
orientation of γ );

• ν− is the number of basic configurations traversed negatively.

In particular, for any m, Tk,l,m has Maslov class (2(l − k), 0).

Proof We use the set-up of Sect. 2.4 to calculate Maslov indices. The claim about the
Maslov index of ‘meridians’ V ⊂ M being zero is immediate, as they are vanishing
cycles for the Lefschetz fibration �r .

For the other index, suppose first that we have a trivial fibration M × B → B,
some disc B ⊂ C, and that γ ⊂ B is immersed. Fix V ⊂ M a vanishing cycle for�r ,
and let Lγ be the Lagrangian given by parallel transporting V along γ . Then Lγ is an
immersed Lagrangian, and the Maslov index of any lift of γ is 2t , where t is the total
winding number of γ .

More generally, the Maslov index of a lift of γ given by concatenating basic con-
figurations will be twice the total winding number of γ , adjusted for the effect of
each of the basic configurations; we need to show that the contribution of each basic
configuration, positively traversed, is −1.

Consider theKlein bottle K and the torus T given in Fig. 12, associated to positively
oriented embedded curves in the base. To show that the contribution of a (positively
traversed) BB configuration is −1, it suffices to show that any lift of the base S1

in K has Maslov index one; to show that the contribution of a positively traversed
BC configuration is −1, it is enough to show that any lift of the base S1 in T has
Maslov index zero. We shall prove the claim about T ; the one about K can be proved
analogously.

We will see that T is Lagrangian isotopic to a Lagrangian torus obtained by per-
forming Polterovich surgery on an ordered chain of four matching cycles, B, A1, C
and A2, as given in Fig. 15. We use the convention of [49, Appendix A]: in the case
where two Lagrangian spheres L1 and L2 intersect transversally at a single point,
the surgery L1#L2 is Lagrangian isotopic to τ−1

L2
L1 = τL1L2. Suppose L1 and L2

are two of the matching spheres at hand. To check our claim, one locally compares
the different descriptions of τ−1

L2
L1 = τL1L2: both viewed as τL1L2 and as τ−1

L2
L1

it can be described as a matching cycle, as in [51, Figure 18.2]. Now consider Fig.
13. This shows portions of τ−1

B (A1) = A1#B and of τA1(B) = A1#B; gluing these
together, one gets a different description of A1#B as a matching cycle, given in Fig.
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Fig. 12 Basic cases for the Maslov index computation: the Klein bottle K (left) and torus T (right)

Fig. 13 Portions of τ−1
B (A) = τA(B) = A#B used to compare the two descriptions of T . The brown cycle

is the fibre above the point of the green, respectively red, matching paths

14. Proceeding similarly at the intersections points of (C, A1), (A2,C) and (B, A2),
one recovers T (Fig. 15).

We calculate the Maslov index of a lift in T of the base S1 using the model for T
given by Polterovich surgery, and the choices of reference Lagrangian lines given at
the end of Sect. 2.4. The path of Lagrangian planes in the base direction is given by
following the matching paths, and the grey tangent directions at each of the surgery
points. The orange segments give our choices of reference Lagrangian lines (in the
fibre and base). Going around S1, the reference Lagrangian line in the base is crossed
twice, both times positively. The reference Lagrangian in the fibre is crossed twice (at
diagonally opposite surgery points), both times negatively. Thus the required Maslvo
index is zero. 
�

With the amount of information specified thus far, the paths γk,l,m (and the associ-
ated Lagrangian submanifolds Tk,l,m) are only defined up to by a compactly supported
isotopy ofC relative to the critical values of�r . Any such isotopy lifts to a compactly
supported isotopy of Xr . While this will not in general be a symplectic isotopy, it
restricts to a Lagrangian isotopy Tk,l,m and more generally of any Lagrangian L fibred
over an immersed path γ ⊂ C\Crit(�r ). We fix the Lagrangian isotopy class of Tk,l,m
by choosing a monotone representative, as follows.
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Fig. 14 Different description of A#B as a matching cycle

Fig. 15 Amodel for T as the result of four Polterovich surgeries, at the intersections of the matching cycles
B, C , A1 and A2

Lemma 3.7 Fix a constant κ > 0. There exists a compactly supported isotopy of C
relative to the critical values of�r such that the induced image of Tk,l,m is monotone,
with monotonicity constant κ .

Proof From Sect. 2.4 it’s enough to consider one disc for each of the generators of
H1(Tk,l,m). As the meridian curve on Tk,l,m , of Maslov index zero, is a vanishing cycle
for�r , it thus bounds a Lagrangian disc in Xr , which in particular has symplectic area
zero. This means that for Tk,l,m to be κ−monotone, we simply need to the symplectic
area of any oriented disc with boundary a lift of γk,l,m to be equal to 2κ(l − k). Start
with an oriented immersed disc with boundary γk,l,m , any pick any of its lifts. If it
has signed area greater than 2κ(l − k), we adjust by stretching outwards the outmost
loop in the right lobe of γk,l,m ; if it has area less than 2κ(l − k), we instead stretch the
outmost loop in the left lobe of γk,l,m . 
�

Note that for fixed κ , Tk,l,m is now determined up to Hamiltonian isotopy.
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We record the following property.

Lemma 3.8 Consider tori Tk,l,m and Tk′,l ′,m′ in Xr ,with pathsγk,l,m andγk′,l ′,m′ drawn
using the same BC and BB configurations (so that the paths are almost superimposed,
notwithstanding the different numbers of twists). They are homologous if and only if
m = m′ and either l, l ′ ≥ 1 or l = l ′ = 0. (The latter condition is required simply
because of our convention for l = 0.)

Proof To see that Tk,l,m and Tk′,l ′,m′ lie in different homology classes for m �= m′,
consider the path given in purple in Fig. 11, which we think of as a matching path
between two critical points of type a in the base of�r . Now notice that the associated
vanishing cycle intersects Tk,l,m transversally in the m points p1, . . . , pm , all with the
same sign, and then with alternating signs at the 2k points qm+1, . . . , qm+2k+1, which
cancel.

Let’s compare Tk,l,m and Tk+1,l,m . One could calculate intersections with a basis
for H2(Xr ), given by vanishing cycles. Alternatively, note that the classes of Tk,l,m
and Tk+1,l,m differ by the class of an immersed torus, given by joining up the two
extra loops in the base of Tk+1,l,m . Along each of the two loops, the meridian S1’s
(that is, the classes of the fibres of the Lagrangian above points of the loops) are the
same cycles, with opposite orientations. Thus it readily follows that this immersed
torus is null-homologous, so Tk,l,m and Tk+1,l,m are homologous. Similarly, Tk,l,m
and Tk,l+1,m are homologous if l ≥ 1. 
�

3.4 Further tori

We will want to consider variations on Tk,l,m . The ones defined in Fig. 16, which we
will call Rk,l,m and Sn,p,q (k, . . . , q ≥ 0), will be particularly useful. We’ll care about
the relative position of Rk,l,m and Sn,p,q . Note that as drawn in Fig. 16, they do not
intersect in Xr . Indeed, any intersection point in Xr would project to an intersection
point of the projections; restrict attention to those. Consider the fibre Mpt above an
intersection point of the two projections; now notice that we have constructed Rk,l,m

and Sn,p,q in Fig. 16 so that Rk,l,m restricts to the vanishing cycle b (with one or the
other choice of orientation) on that fibre Mpt , whereas Sn,p,q resticts either to c (for
half of the fibres above intersection points) or to d (for the other half). As b is disjoint
from c and d, it follows that Rk,l,m and Sn,p,q are disjoint Lagrangians. Further, as
there are twenty basic configurations involved in total, the whole picture certainly
(crudely) fits in the basis of �80.

It immediately follows from Lemma 3.6 that for Rk,l,m , the Maslov index of a lift
of the base S1 is 2(m − k − l), and that for Sn,p,q it’s 2(q − p − 1). As before, by
adjusting the area of the different lobes we can arrange for them to be monotone for
any monotonicity constant, and their homology classes only depend on l, respectively
n.

Remark 3.9 We will see in Sect. 5.4 that for any (k, l,m) and (n, p, q), these
Lagrangians are linkedwith respect to the fibration, in the following sense: there cannot
exist a Hamiltonian isotopy (or indeed, a compactly supported symplectomorphism)
such that the projection of their two images under the isotopy (or symplectomorphism)
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Fig. 16 The tori Rk,l,m and Sn,p,q . The purple star will be used later to build further Lagrangians from
Rk,l,m and Sn,p,q—for instance, note that they can be combined to form a single Lagrangian torus by
joining them along the dashed purple lines. As with Tk,l,m the cyan lines denote thimbles starting at an a
type critical point (there are two possible ones for a BB configuration); these will also be used later, for
Polterovich surgery

are disjoint. It will also follow from the arguments in that section that we get different
links for e.g. different pairs (k, l).

3.5 Higher genus

The cyan thimbles of Figs. 11 and 16 intersect Tk,l,m , Rk,l,m and Sn,p,q , respec-
tively, transversally in a single point. We can patch these thimbles together to get
matching paths, and perform Polterovich surgery at the intersection points of the asso-
ciated matching cycles with copies of Tk,l,m , etc., to construct higher genus monotone
Lagrangians in Xr for sufficiently large r . See Fig. 17 for a genus g Lagrangian which
we will denote  g(Tk1,l1,m1 , . . . , Tkg,lg,mg ), and which can be realised in X18g . One
can make constructions using some Rki ,li ,mi or Ski ,li ,mi completely analogously.
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Fig. 17 The genus g monotone Lagrangian  g(Tk1,l1,m1 , . . . , Tkg ,lg ,mg )

The following readily follows.

Corollary 3.10 Fix an integer g ≥ 1 and a constant κ > 0. Suppose r ≥ 18g. Then
there exist Lagrangian surfaces of genus g in Xr , say Lg such that

• the Lg are monotone with monotonicity constant κ;
• Lg can lie in countably infinitely many homology classes;
• in each of these homology classes, the Maslov class of Lg can take any possible
value.

We’ll see how to tell these apart for fixed ‘soft’ data as above in Sects. 5 and
6. Following Remark 3.3, note that these Lagrangians could even be realised in the
‘smaller’ variety X2,4,r for the same bounds on r .

3.6 Non-orientable examples

The above constructions also readily give non-orientable Lagrangian submanifolds:
replacing 2k with 2k±1, or 2l with 2l∓1, in the contruction of Fig. 11, yields a Klein
bottle. Lemma 3.6 shows that it has Maslov class

(2l − 2k∓1, 0) (3.1)

with respect to the obvious basis, and can be arranged to be monotone. Moreover, by
taking r sufficiently large, one can obtain connected sums of Klein bottles (or a Klein
bottle and several tori) of arbitrary length.

On the other hand, note that there are topological constraint on non-orientable
Lagrangians, going back to work of Givental [28] for the case where the ambient
manifold is C2, as follows.

Lemma 3.11 Suppose X2n is an exact symplectic manifold with trivial tangent bundle,
and that there is a Lagrangian immersion (S1)n−2 ×� � X, for a closed 2-manifold
�. Then � is either orientable, or the connected sum of an even number of RP2s.

Proof This follows from a calculation of the total Steifel–Whitney classes of the tan-
gent and normal bundles of (S1)n−2 × �, which must be both equal and inverse to
each other. 
�
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Note that by taking parallel copies of the same immersed S1 curve (e.g. in the right-
hand side of Fig. 10) and Polterovich surgering them with a fixed matching cycle, we
can get embedded Lagrangian �g in Xr for arbitrary g so long as r ≥ 5. (We need to
take r ≥ 5 rather than r ≥ 4 in order to also have the matching cycle for surgery.) Of
course this sacrifices monotonicity. Similarly for connected sums of Klein bottles for
r ≥ 4.

In particular, we readily get the following:

• So long as r ≥ 5, we can get Lagrangians surfaces of arbitrarily high genus in
{x2 + y4 + zr = 1}, which itself has an exact symplectic embedding into Xr

1;
the bound on r is sharp: {x2 + y4 + z4 = 1} can only contain Lagrangian tori
or spheres as it has a negative semi-definite intersection form. (It is a parabolic,
modality one singularity, see [2, Chap. 2, §2.5].)

• So long as r ≥ 9, all the diffeomorphism types of Lagrangian surfaces allowed by
Lemma 3.11 can be realised in {x2 + y4 + zr = 1}.

• As r increases we can gradually cover all possible Maslov types.

Of course, there is no reason for the later two bounds to be optimal.

3.7 Examples with non-trivial automorphisms

As an aside, we briefly note that our techniques allow us to construct examples of
monotone Lagrangians such that there are symplectomorphisms of Xr which fix them
set-wise but act non-trivially on e.g. their homology. The most naive such construction
is, for for odd g, to define a genus g Lagrangian, say ζg(k1, k2, l1, l2,m1,m2), embed-
ded inside X18(g−1), as in Fig. 18: this is given by taking (g − 1)/2 copies of Tk1,l1,m1

and Tk2,l2,m2 , and attaching them via Polterovich surgery with g−1 different matching
cycles. (Recall that to do a Polterovich surgery one needs to choose an ordering of the
two Lagrangians involved; in this case we want to pick any orderings that are cyclicly
symmetric.) Using the same techniques as in the proof of Lemma 3.6 (see in particular
Fig. 15), we get that the Maslov index of the ‘first’ longitude—the lift of the obvious
cyclically symmetric curve in the base (which travels around the blue and red match-
ing cycles, counterclockwise)—is 2(3 − g); we ensure that ζg(k1, k2, l1, l2,m1,m2)

is monotone by suitably adjusting the areas of the ‘overlaps’ between the blue and red
matching paths in the base of �r , as sketched in Fig. 18.

Let r = 18(g−1). Consider the automorphismρ of Xr corresponding to the positive
rotation of the base by angle 4π/(g − 1), which is a power of the map � defined in
Proposition 2.5. By Proposition 2.7, this is Hamiltonian isotopic to a product of Dehn
twists in spheres in Xr , which are themselves vanishing cycles for the singularity
x3 + y3 + zr , say ρ = τV1 . . . τVnρ . Moreover, if k2 = · · · = kg , and similarly for the
li and mi , ρ fixes ζg setwise, and acts as an order (g − 1)/2 rotation pointwise.

Remark 3.12 The Maslov index calculation would be the same if we had used type a
matching cycles (i.e. with the conventions of Figs. 11 and 17, cyan matching paths),
though in that case there would be no ready way of adjusting things to ensure mono-
tonicity. Dropping the monotonicity requirement, such a construction gives genus

1 This partially answers a question of Peter Kronheimer at the author’s thesis defense.
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Fig. 18 The genus g monotone
Lagrangian
ζg(k1, k2, l1, l2,m1,m2) inside
Xr , for r = 18(g − 1). The blue,
resp. red, curves correspond to
matching cycles of types b,
resp. c, attached to the critical
points of those two types in the
obvious BB configurations,
namely the ones also used for
the cyan (type a) matching
cycles of Fig. 17 (with more
details on Fig. 11)

g Lagrangians and a symplectomorphism of Xr which fixes them setwise and acts
as an order g − 1 rotation pointwise for arbirary g. (The lowest genus case would
need separate treatment: instead, one could for instance construct a genus 2 monotone
Lagrangian with a rotation of order two, by using Polterovich surgery on two copies
of Tk,l,m inside Xr for r ≥ 36.)

Remark 3.13 Following Remark 3.3, note that these constructions could instead have
been realised in X2,4,r , as the type d vanishing cycle is never needed.

4 Monotone Lagrangians inC
3

4.1 Infinitely manymonotone S1 × 6g

We will use the following result from geometric group theory.

Theorem 4.1 [55,57,58] Let � be a closed surface of negative Euler characteristic.
Suppose f is a diffeomorphism of S1 × �. Then f is isotopic to a product, i.e. an
element of Z/2 ⊕ Diff(�), where the first factor acts on S1, and the second factor on
�.

Proof This was established in work of Waldhausen [55,57,58]; for an account of the
results in English, see e.g. the exposition in [44, Section 8.1, Theorem 4]. 
�

This now allows us to ‘upgrade’ our constructions g to get Lagrangians in C3, as
follows.

Theorem 4.2 Fix g ≥ 2, and any monotonicity constant κ . Then there exist infinitely
many monotone Lagrangian S1 × �g in C

3, distinct up to any equivalence that
preserves Maslov classes. (This includes Lagrangian isotopy, and almost-complex
diffeomorphisms of C3—so in particular, symplectomorphisms.)
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Proof Step 1: Construction. Recall Yr ,1 = {x3 + y3 + zr + w = 1} ∼= C
3, and that

Pr ,1 : Yr ,1 → C has smooth fibre Xr . Given a monotone Lagrangian  g ⊂ Xr , with
monotonicity constant κ , our strategy will be to construct a monotone Lagrangian
S1 × g in C3 by taking a product with a suitable S1 in the basis of Pr ,1, away from
the critical values.

The map Pr ,1 has finitely many critical points and values; pick a disc D in the
base away from these; this can be chosen with arbitrary (finite) symplectic area. The
fibration Pr ,1 above D is essentially trivial. More precisely, following the ideas of
Sect. 2.2, for any fixed compact subset K ⊂ Xr , we can assume that after a Moser
isotopy, Pr ,1 restricts to the trivial fibration K × D → D, where K × D is equipped
with a product symplectic form.

Pick an embedding γ : S1 → D. Up toHamiltonian isotopy, the symplectic parallel
transport map about γ is trivial. In particular, by taking the union of the images of g

one gets a Lagrangian  g × S1 ⊂ C
3, fibred over γ . By construction, the positively

oriented curves {pt} × S1 have Maslov index two. Let Dγ ⊂ D be the (positively
oriented) disc with boundary γ . This lifts to a family of discs {pt} × Dγ ⊂ K × D,
with boundary on {pt} × γ , where {pt} varies in K . Adjusting γ , one can arrange for
these to have symplectic area 2κ . Then, by construction, S1× g ⊂ C

3 is a monotone
Lagrangian.

Step 2: Invariants. Recall that  g depended on some choices:

 g =  g(Tk1,l1,m1 , . . . , Tkg,lg,mg ).

Consider a basis for H1( g) given by (α1, β1, . . . , αg, βg), where αi is any lift of the
base S1 for Tki ,li ,mi , and βi is the meridian S1 for it (i.e. a cycle on M , the thrice-
punctured elliptic curve {x3 + y3 = 1}); this is the natural generalisation of the basis
considered in Lemma 3.6; moreover, by Lemma 3.6, with respect to the induced basis
for H1(S1× g) ∼= H1(S1)⊕H1( g), S1× g hasMaslov class given by the indices:

(2, 2(l1 − k1), 0, 2(l2 − k2), 0, . . . , 2(lg − kg), 0).

Suppose we’re also given  ′
g =  g(Tk′

1,l
′
1,m

′
1
, . . . , Tk′

g,l
′
g,m

′
g
). Let N = gcd{l1 −

k1, . . . , lg − kg} and N ′ = gcd{l ′1 − k′
1, . . . , l

′
g − k′

g}; 2N , respectively 2N ′, is the
minimal Maslov number of  g , resp.  ′

g . By Theorem 4.1, if N �= N ′, then there
cannot be any map taking S1 ×  g to S1 ×  ′

g and preserving the Maslov class:
irrespective of the choice of bases for H1( 1;Z) and H1( 

′
g,Z), we cannot get the

two collections of indices to agree. In particular, this means that the two cannot be
Lagrangian isotopic, and that there cannot exist any symplectomorphism ofC3 taking
one to the other. 
�
Remark 4.3 The following results from discussion with Georgios Dimitroglou-Rizell:
first, note that the Lagrangian  g in the fibre Xr is an isotropic subcritical surface in
the whole ofC3, and is exact inC3 whenever it is exact in Xg . At least in this case, our
construction should be equivalent to the circle bundle construction by Audin, Lalonde
and Polterovich [4]: the S1 ×�g can instead be thought of as the product of�g with a
circle in its (trivial) symplectic normal bundle. (The circle may need to be taken to be
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very small, which can be remedied by an overall scaling—in the non-exact case one
would have to be more careful.) Now recall that exact subcritical isotropics satisfy an
h-principle (one can use e.g. the h-principle for isotropic submanifolds in J 1(R3) as
given in [20, Theorem 12.4.1]); thus two exact subcritical isotropics with the same
soft invariants will be Hamiltonian isotopic, and, at the cost of sufficiently shrinking
the circles, it should be possible to carry along the circle bundle Lagrangians with
the Hamiltonian isotopy (and later perform an overall rescalling of C3 to make up for
having shrunk the circles).

4.2 Extensions

4.2.1 Non-trivial Hamiltonian Lagrangianmonodromy group

In general, given a Lagrangian L in a symplectic manifold (X , ω), we can study
the group of time-1 Hamiltonian isotopies of X which preserve L set-wise, called the
HamiltonianLagrangianmonodromygroup of L; often one simply studies its action on
a flavour of homology of L . Mei-Lin Yau [60] studied this in the case of the standard
(i.e. Clifford) and Chekanov monotone tori in C

2; in both cases, the Hamiltonian
Lagrangian monodromy group for Z–homology is Z/2. In contrast, Hu, Lalonde and
Leclerq [31] showed that if L is a weakly exact closed Lagrangian submanifold, i.e. if
[ω](π2(X , L)) vanishes, then the Hamiltonian Lagrangian monodromy group acts
trivially on the Z/2–homology of L .

As an aside on our main results, we note that our techniques give examples of
monotone Lagrangians in C

3 with non-trivial Hamiltonian Lagrangian monodromy
group. This builds on Sect. 3.7, as follows: consider a monotone Lagrangian of the
form S1 × ζg (g odd) in C3 ∼= Yr ,1 = {x3 + y3 + zr + w = 1}, given by the product
of a copy of ζg (described in that section) in a smooth fibre of Pr ,1 with an S1 in a
locally trivial part of the base—i.e. the same construction as in Sect. 4.1 above. Recall
that there exists a symplectomorphism ρ = τV1 . . . τVnρ of Xr which fixes ζg setwise
and acts as an order (g − 1)/2 rotation pointwise. The Vi are vanishing cycles for
the singularity x3 + y3 + zr , which implies that each of the τVi is the monodromy of
a path in the base of Pr ,1 (avoiding the critical points). It then follows that the map
Id × ρ : S1 × ζg → S1 × ζg is induced by a Hamiltonian isotopy of C3.

4.2.2 Non-orientable examples

Much of the constructions and arguments above extend to the non-orientable case. In
particular, combining the constructions of Sect. 3.6 with the ideas of Sect. 4.1, we get
infinitely many monotone Lagrangian S1 × � in C

3, where � is the connect sum of
an arbitrary number of Klein bottles and tori, which are distinguished by the minimal
Maslov number of �; and, using the ideas of Sect. 4.2.1, we can give families of
examples of such S1×� with non-trivial Hamiltonian Lagrangianmonodromy group.
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5 Monotone Lagrangians in affine 3-folds and holomorphic annuli

5.1 Further constructions of monotone S1 × 6g in Yr,s

The constructions of Lagrangian surfaces in Sect. 3 relied on one-dimensional features:
the existence of a sequence of positive Dehn twists on M (the smooth fibre of �r :
Xr → C) taking an exact Lagrangian, namely the vanishing cycle b, to a disjoint exact
Lagrangian, namely the vanishing cycle c; and the existence of a sequence of positive
twists taking c back to b.

Given a sequence of positive Dehn twists displacing one of our Lagrangian sur-
faces (e.g. Tk,l,m), and another one bringing the displaced copy back to the starting
point, one could use similar ideas to construct interesting monotone Lagrangians in
3-dimensional Brieskorn–Pham hypersurfaces. Propositions 2.5 and 2.7 provide these
sequences, possibly at the cost of passing to a larger r : they allow us to write down
lots of constructions of embedded Lagrangian S1 ×� in Yr ,s , for sufficiently large r
and s, where� ⊂ Xr is a Lagrangian surface from Sect. 3, and S1 ×� itself is fibred
over an immersed S1 in the base of Pr ,s .

We’ll shortly give examples, and explain how to calculate theMaslov index of the S1

factor. Of course, all of the constructions insideC3 also give monotone Lagrangians of
the form S1×�g in affine 3-folds, which can still be distinguished by theMaslov index
of the�g factor. On the other hand, recall that by [19, Theorem B], given a monotone
Lagrangian S1 ×�g in C3, the S1 factor must have Maslov index two. Of course this
need not be the case for such Lagrangians in a general affine hypersurface—indeed,
we’ll see examples where the S1 factor takes arbitrary (even) Maslov index, including
new Maslov two examples.

Instead of presenting the simplest possible construction for a given topological
type, we directly describe examples which are sophisticated enough to give all of the
applications we have in mind. In particular, to get a setting in which the count of
holomorphic annuli will readily be well-defined, we make slightly careful choices.
Concretely, our constructions will be in Yr ,s = X3,3,r ,s . For Floer-theoretic features,
explored in Sect. 6, it would typically be enough to work in X2,4,r ,s (following on
from Remark 3.3), which we will note when applicable.

We start with a variation on the genus g Lagrangian surfaces in Xr considered so
far: the monotone Lagrangian surface

!g({k0, l0,m0}, . . . , {kg, lg,mg})

described by Fig. 19, which in turn must be read with the conventions of Figs. 11 and
16. The surface !g has genus g, as Sk0,l0,m0 and Rk1,l1,m1 get combined to form a
single genus one component.

We take the immersed curves describing genus one components to each lie in
Crit(X81) or Crit(X18) as indicated. Let r ′ = r ′(g) = 243 + 36(g − 1), the smallest
multiple of 3 compatible with Fig. 19. Set ηg = (81 + 18(g − 1))/3 and η̃g =
(162+ 18g)/3. Note ηg + η̃g = r ′/3. Pick any r ≥ r ′. We can apply Propositions 2.5
and 2.7: there exist compactly supported symplectomorphisms of Xr , say ρ and ρ̃,
corresponding to positive rotations of the base of�r ′ by ηg , respectively η̃g , blocks of
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Fig. 19 The genus g monotone Lagrangian !g({k0, l0,m0}, . . . , {kg, lg,mg}) inside Xr , for r ≥ 243 +
36(g − 1), together with ρ(!g)

the form Crit(X3) (i.e. 12 critical points). Using the notation� of Sect. 2.3, ρ = �−ηg
and ρ̃ = �−η̃g . Both ρ and ρ̃ are given by a product of negative Dehn twists in
spheres which are matching cycles for �r ′ (and so for �r : the symplectomorphism
is extended from Xr ′ to Xr by the identity). Moreover, these matching cycles are
themselves vanishing cycles for the singularity x3 + y3 + zr—indeed, their ordered
list is a distinguished collection of vanishing cycles for x3 + y3 + zr

′
, say

V1, . . . , V4(r ′−1), . . . , V1, . . . , V4(r ′−1)

repeated 3ηg times in the case of ρ, and 3η̃g times in that of ρ̃.
Note that ρ(!g) is disjoint from !g , and that the intersection of the images under

�r of !g and ρ(!g) is precisely given by the intersection of the images of Sk0,l0,m0

and Rk1,l1,m1 . Moreover, ρ̃ρ(!g) = !g , pointwise up to Hamiltonian isotopy.
We can use this to construct various families of embedded monotone Lagrangian

S1 ×!g in Yr ,s for r ≥ r ′(g) and sufficiently large s. We will consider three different
variations, with S1 given by a path γi as follows:

• γ0 as given in Fig. 20;
• γ2 and γ4 as given in Fig. 21;
• γ6, and γ4n and γ4n+2 for n ≥ 2, as given in Fig. 22.

Our choice of indexing is explained by the following:

Proposition 5.1 For n ≥ 0, the Maslov index of the lift of γ2n to a path γ2n × {p},
given by the image under parallel transport of a point p ∈ !g, is 2n.
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Fig. 20 The monotone
Lagrangian γ0 ×!g , given by
its image in (part of) the base of
Pr ,t

Fig. 21 The monotone Lagrangian γ2 ×!g , given by its image in (part of) the base of Pr ,t

Proof Let D ⊂ C be a disc containing a small segment of �r (!g). Pick explicit
representatives for ρ and ρ̃, given by composing the ‘standard’ representatives for
Dehn twists inmatching cycles in a Lefschetz fibration, as fibred symplectomorphisms
(as before see [51, Figure 16.3]), with support away from �−1

r (D). Assume �r (p)
belongs to the segment in D. Let σ2n be the composition of copies of ρ and ρ̃ given
by the total monodromy about γ2n . We know that σ2n is Hamiltonian isotopic to
�t2nr ′

, where t2nr ′ is the signed total number of repeats of the list of Dehn twists
τV1τV2 . . . τV4(r ′−1)

. (Informally, σ2n corresponds to t2n full, i.e. of angle 2π , rotations
of the base of �r .)

Consider the Hamiltonian isotopy of Xr induced by dragging the disc D around
by a rotation of 2π (with large compact support), say ψ . Inspecting the proof of
Proposition 2.7, we see that the Hamiltonian isotopy taking ψ ◦ σ2n(!g) to !g can
then be arranged to be relative to�−1

r (ψ(D)). We can use this to calculate the Maslov
index of γ2n × {p}:
• the base contributes twice the winding number of γ2n ;
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Fig. 22 The monotone Lagrangian γ2n ×!g , for 2n ≥ 4, given by its image in (part of) the base of Pr ,t .
The labels for numbers of repeats apply to the sequence of vanishing cycles V1, . . . , V4(r ′−1). For legibility
we haven’t labelled the Figure with the (total) winding numbers of the γk , which are as follows: the curve γ6
has winding number two; for n ≥ 2, the curves γ4n and γ4n+2 have winding number n. (For γ8, resp. γ10,
the convention is that the two clusters of 3η̃g critical points (resp. the clusters of 3η̃g and 3η̃g + r ′ points)
are grouped together.) Finally, the blue arc gives a matching path, corresponding to some vanishing cycle
S, which will not in general be one of the Vi and we will consider in Sect. 6.1

• the fibre contributes 2t2n from the effect of ψ on p (recall that we arranged for a
neighbourhood of p to be fixed by σ2n).

This completes the proof. 
�
By adjusting the sizes of the different ‘lobes’ (e.g. taking the picture to be symmetric

for the n = 0 case), the lift of γ2n can also be arranged to bound a disc of arbitrary
symplectic area. Thus the Lagrangians we have constructed, which in a slight abuse
of notation we will denote γn ×!g , can be taken to be monotone.

Remark 5.2 One shouldn’t expect to be able to realise our construction γ2 × !g into
C
3: we’ll see in Proposition 6.4 that its Floer cohomology with a Lagrangian S3 is

non-zero.

Remark 5.3 There are plenty of variations using Polterovich sums of other combina-
tions of Tk,l,m , Rn,p,q and Su,v,w, or other tori constructed using the same ideas; and
also Klein bottles, as considered in Sect. 3.6.

Remark 5.4 Let� be the Polterovich connected sumof a collection of tori and/orKlein
bottles as before. We can use powers of � to write down a product of negative Dehn
twists ρ of Xr such that not only ρ�∩� = ∅, but also�r (�)∩�r (ρ�) = ∅. One can
then contruct Lagrangians in Yr ,s of the form γ2n ×�, where γ2n is an immersed curve
in the base of Pr ,s , such that above the transverse intersection points the Lagrangian
is given by � � ρ�. This may be useful in other circumstances.
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Fig. 23 The compactification �̄

Remark 5.5 If we allowed ourselves to work with more general classes of Liouville
domains, we could make similar constructions by using the trick of ‘doubling’ a
Lefschetz fibration, i.e. taking its double branched cover over a fibre as described
in [51, Section 18(a)]. This replaces a Lefschetz fibration π : U → D, with dis-
tinguished collection of vanishing cycles say v1, . . . , vr , with a Lefschetz fibration
π : U#U → D with the same smooth fibre, and distinguished collection of vanish-
ing cycles v1, . . . , vr , v1, . . . , vr . By construction, there are matching cycles, say Vi ,
between the critical values corresponding to the two vi . Further,we have that τV1 . . . τVr
acts as a Z/2 rotation on (large compact subsets of) the first and second copies ofU—
see [51, Lemma 18.1]. One can also further exploit this by instead trebbling, etc the
fibration.

5.2 Partial compactifications of Xr and Yr,s

5.2.1 Partial compactifications

Consider M = {x3 + y3 = 1}, the smooth fibre of Xr . Fix a partial compactification
of M corresponding to capping off one (and only one) of the punctures, between the
curves b and d, as in Fig. 23. Call this M̄ . This carries a symplectic formwhich extends
the one on a large compact subset of M . Note that we could have arranged for the
compactification to be arbitrarily ‘far out’, i.e. for the symplectic area of the cylinder
enclosed between b and d in M̄ to be arbitrarily large.

Using Lemma 2.2, we immediately see that this induces a partial compactification
of Xr , with each of the fibres of �r having one puncture capped off. Call it X̄r , and
keep the same notation for the fibration, namely �r : X̄r → C. The symplectic form
ω̃ given by Lemma 2.2 extends to a symplectic form on X̄r , which we also denote ω̃.
Outside a large compact set, it is a product with respect to �r . Similarly, the almost
complex structure J̃k given by Lemma 2.2 extends to one on X̄r , which is a product
outside a large compact set in Xr .

Iterating, using Lemma 2.2 and Remark 2.3, this induces in turn a partial compacti-
cation of Yr ,s , say Ȳr ,s , given by partially compactifying each of the fibres of Pr ,s .
This can be equipped with a symplectic form ω̃ and an almost complex structure J̃ ,
both of which are products with respect to the bifibration (Pr ,s, πr ) outside a large
compact set in Yr ,s . Note also that both projection maps are pseudo-holomorphic with
respect to these choices.

In order to prevent pseudo-holomorphic curves from ‘escaping to infinity’, through-
out this section we restrict ourselves to almost-complex structures which agree with
J̃ outside of a (possibly arbitrarily large) bounded set.
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The union of the ‘point at infinity’ on each copy of M̄ gives a divisor in X̄r , and in
turn in Ȳr ,s . We will call both of these ‘divisors at infinity’ D. (With the choices we
have made D is naturally almost-complex.)

5.2.2 Homology, first Chern class andmonotonicity

We have that

H2(X̄r ,Z) = H2(Xr ,Z)⊕ Z

where the second term is generated by, say, H , the class of the annulus in M̄ bounded
by curves b and d and capped off by two Lagrangian thimbles ending on each of b
and d. Moreover, H2(Ȳr ,s,Z) = Z〈H〉, and ω̃Ȳr ,s (H) = ω̃X̄r

(H) can be arbitrarily
large, depending on our choice of compactifications; in particular, neither of those
symplectic forms is exact.

Notice that the trivialisation of T M = T {x3 + y3 = 1} given in Fig. 7 and used for
Maslov class computations extends to a trivialisation of T M̄ ; in a suitable identification
with a twice-punctured square with sides glued in pairs, the reference tangent lines
have slope one. Further, this in turn readily induces trivialisations of T X̄r and T Ȳr ,s ,
extending those of T Xr and TYr ,s . In particular, c1(Ȳr ,s) = 0 and c1(X̄r ) = 0, and
all of our Maslov index computations are unchanged. (Note however that neither X̄r

nor Ȳr ,s are monotone, because of the class H .)

5.3 Holomorphic annuli counts in 3 dimensions

5.3.1 Annuli counts for monotone �2n × 4g for n �= 0

Fix a monotone Lagrangian γ2n × !g ⊂ Yr ,s , say with monotonicity constant κ .
Assume in this subsection that n �= 0. As the Lagrangian is monotone but not exact,
the Maslov class [μ] ∈ H1(S1 ×!g,R) is non-zero.

Recall that from Weinstein’s tubular neighbourhood theorem, Lagrangians suffi-
ciently close to γ2n × !g in Yr ,s correspond to graphs of closed one-forms α ∈
�1(γ2n × !g). As the class [μ] is non-zero, such a graph will itself be a monotone
Lagrangian in Yr ,s if and only if [α] ∈ H1(S1 ×!g,R) is a multiple of [μ]. We pick a
representative for this carefully, as follows. The class [μ] corresponds to a homotopy
class of smooth maps fμ : γ2n × !g → S1 such that d fμ ∈ �1(γ2n × !g) satisfies
[d fμ] = [μ]. As n �= 0, fμ is non-trivial on the first factor, and so has a representative
with no critical points. Moreover, any two such can be interpolated by representatives
with no critical points. Fix aWeinstein tubular neighbourhood for γ2n×�g . The graph
of εd fμ gives a displacement of γ2n × !g in the monotone direction, i.e. the direc-
tion determined by [μ], which is disjoint from the original, and itself monotone with
monotonicity constant κ ′ > κ . Moreover, the above considerations also show that for
fixed (and sufficiently close to κ) κ ′, any two such disjoint monotone displacements
are Hamiltonian isotopic, through other κ ′ monotone displacements disjoint from the
original. Let’s call L the original Lagrangian and L ′ its monotone displacement.
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Fig. 24 Boundary conditions
for the holomorphic map u

We will fix a choice of monotone displacement which is also fibred with respect to
Pr ,s and�r , given by pushing the S1 factor (i.e. γ2n) in the base of Pr ,s off itself, say to
γ ′
2n , to get a parallel copy enclosing sligthly more signed area, and, for the !g factor,

expanding lobes of S1 components in the base as needed to increase the monotonicity
constant by the same amount. (We then attach the tori fibred above these S1s via
Polterovich surgery using the same matching cycles as before to get the displacement
of!g , say!′

g .)While!′
g inside Xr will generally intersect!g (in particular whenever

g ≥ 2), γ2n × !g and its displacement are disjoint because of the effect of the γ2n
factor. (Note that the intersection points of γ2n and γ ′

2n are naturally in two-to-one
correspondence with the self-intersection points of γ2n . Suppose that!g � h(!g) lies
above one such point, where h is the monodromy from the self-intersection point back
to itself. Then we get!′

g ∪h(!g) and!g ∪h(!′
g) above the corresponding two points

of γ2n∩γ ′
2n ; and for!

′
g a sufficiently small displacement of!g , these are both disjoint

unions. It then follows that γ2n ×!g and its displacement are disjoint.)
Let α ∈ H1(L,Z) be any primitive class of Maslov index zero. (We follow the

standard convention that ‘primitive’ implies non-zero.) Let α′ ∈ H1(L ′,Z) be the
corresponding class under the natural isomorphism H1(L,Z) ∼= H1(L ′,Z) induced
by the displacement. Let A ∈ H2(Ȳr ,s, L � L ′;Z) be a class such that ∂A = α � α′ ∈
H1(L � L ′;Z) = H1(L,Z)⊕ H1(L ′,Z).

Definition 5.6 Let J be an almost complex structure on Ȳr ,s . We define the moduli
space

MJ (Ȳr ,s; A, α)

to consist of all ( j, J )–pseudo-holomorphic maps u : (A, j)→ (Ȳr ,s, J ) such that

• (A, j) is a holomorphic annulus (of arbitrary modulus), with oriented boundary
components ∂1 and ∂2 (these are intrinsically oriented but not ordered);

• u(∂1) ⊂ L and u(∂2) ⊂ L ′;
• [u(A)] = A, [u(∂1)] = α and [u(∂2)] = α′.

See Fig. 24.
Let M̄J (Ȳr ,s; A, α) be the quotient of MJ (Ȳr ,s; A, α) by rotations and the Z/2

involution of the annulus (which trades the two boundary components).

The abstract moduli space of annuli has one conformal parameter, namely the
modulus of the annulus. It also has a one-dimensional family of automorphisms,
given by the rotations and theZ/2 involution mentioned above. By [35, Theorem 1.2],
M̄J (Ȳr ,s; A, α) has expected dimension zero.

Proposition 5.7 Let J̃ be our choice of almost-complex structure on Ȳr ,s from Sect.
5.2. Let the pair (A, α) be any as above: A ∈ H2(Ȳr ,s, L � L ′;Z), α ∈ H1(L;Z) a
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Maslov zero primitive class, and ∂A = α � α′, where α′ ∈ H1(L ′;Z) is the image of
α under the displacement.

ThenM J̃ (Ȳr ,s; A, α) is empty for all but one choice of (A, α), for which J is regular.
(We will see that this choice of α is of the form (0, α̃) ∈ H1(S1)⊕ H1(!g), and that
this choice of A satisfies A · D = 1, where D ⊂ Ȳr ,s is the divisor at infinity.)

Moreover, for that choice of (A, α),M J̃ (Ȳr ,s; A, α) has dimension one, and, assum-
ing we are working with

!g = !g({k0, l0,m0}, {k1, l1,m1}, . . . , {kg, lg,mg}),

the signed count of points in M̄ J̃ (Ȳr ,s; A, α) is hnk1, where hn is the number of self-
intersections of the γ2n curve in the base of Pr ,s .

Proof Suppose u : A → Ȳr ,s is a ( j, J̃ )–pseudo-holomorphic map satisfying the con-
ditions above. The map Pr ,s ◦ u : A → C is holomorphic with boundary components
on γ2n and γ ′

2n . Now note from standard complex analysis that such holomorphic
annuli inC have boundary cγ2n ∪−cγ ′

2n , some integer c. As α and α′ are equal under
the identification given by the small perturbation, c = 0. It then follows that Pr ,s ◦ u
must be constant, with image lying in one of the intersection points of γ2n and γ ′

2n .
Thus u(A) ⊂ P−1

r ,s (p) ∼= X̄r , some p ∈ γ2n ∩ γ ′
2n .

Now consider the restriction u : A → X̄r . We can use similar considerations
again: �r ◦ u : A → C is a holomorphic map such that the images of the boundary
components ofA lie in�r (!g) and�r (ρ(!

′
g)) respectively. In this case openmapping

theorem type considerations applied to the configurations of Figs. 16 and 19 show that
the image of A must in fact lie in an intersection point of �r (!g) and �r (ρ(!

′
g)).

There are hn(2k1 + l1 + 1) such intersection points. Above each of these points, the
fibre of �r is M̄ , and there is a unique simple holomorphic annulus with boundaries
on the restrictions of !g and ρ(!′

g), which is just the ‘obvious’ annulus enclosed

between the vanishing cycles b and d in M̄ . (The covers of the simple annulus do not
have primitive boundary classes.)

Above hn(k1 + l1 + 1) of the intersection points of�r (!g) and�r (ρ(!
′
g)), these

annuli have boundaries of the form α � −α′, for some class α ∈ H1(!g); these corre-
spond to yellow and blue intersections in Fig. 16. Above the other hnk1 intersection
points live annuli with boundaries of the form α � α′, corresponding to yellow and
green intersections in Fig. 16; these are the ones we want. Note that this argument also
gives the claimed uniqueness of α.

Regularity follows from noticing that γ2n � γ ′
2n at the point Pr ,s ◦ u(A), and

�r (!g) � �r (ρ(!
′
g)) at the point�r ◦u(A), and applying one-dimensional regularity

results. The signs agree at each point of the moduli space as the local configurations
are identical. 
�
Proposition 5.8 The count of pseudo-holomorphic annuli is well-defined: for any pair
(A, α) as above and any regular J , the signed count of points in M̄J (Ȳr ,s; A, α) is
the same as for M̄ J̃ (Ȳr ,s; A, α).
Proof As J agrees with J̃ , and so with a product, outside a very large but bounded set,
we don’t need to be concerned about pseudo-holomorphic curves running off to infinity
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Fig. 25 The two possibilities for bubbling, depending on the position of the intersection point with D,
together with Maslov indices of boundary curves (n,m ∈ Z)

in the horizontal direction. This means we ‘only’ need to worry about two different
possible phenomena: first, the fact that the abstractmoduli space of holomorphic annuli
has boundary; and, second, the possibility of disc bubbling.

Excluding the boundary of the moduli space of annuli. The abstract moduli space
of holomorphic annuli has two boundary components: modulus zero and modulus
infinity (see [35, Figure 9]). In the modulus zero case, the two boundary components
of the annulus intersect; this is precluded in our case by the condition u(∂1) ⊂ L and
u(∂2) ⊂ L ′, as L ∩ L ′ = ∅. In the modulus infinity case, one boundary component
has shrunk to a point; this is precluded in our case by the conditions [u(∂1)] = α and
[u(∂2)] = α′ together with the assumption that α �= 0 ∈ H1(L,Z) (and similarly for
α′).

Excluding disc bubbling. It’s enough to consider the pair (A, α) for which
MJ0(Ȳr ,s; A, α) is non-empty. Note that the class A is primitive, and intersects the
‘divisor at infinity’ D in exactly one point, with multiplicity one. There are two sep-
arate possibilities for bubbling, depending on where the intersection point with the
divisor at infinity goes, as given in Fig. 25.

In the first case (left-hand side of Fig. 25), the pseudo-holomorphic disc cannot
be constant, as its boundary lies on L or L ′. Moreover, as the multiplicity of the
intersection of the disc with D is one, it must be a simple curve—following [40,
Section 3.2] in the closed case. Thus it is regular for a generic J ; after quotienting
out by holomorphic automorphisms, by [35, Theorem 1.2], the moduli space of such
discs has expected dimension 2n, and so n ≥ 0. The annulus lies in Yr ,s , and has
non-negative symplectic area, with oriented boundary components of Maslov indices
−2n and 0. Now notice that the component of Maslov index −2n can be filled in by a
(homotopy class of a) disc in Yr ,s with positive symplectic area (and boundary, with
the orientation induced from the disc, of Maslov index 2n). After the filling, we get a
class in π2(Yr ,s, L or L ′) which has positive symplectic area but Maslov index zero, a
contradiction. This rules out the first possibility for bubbling.

The second case is similar but simpler. Analogously to before the annulus must be
regular, and so m ≤ 0. But by monotonicity of L ⊂ Yr ,s , it must then be that m = 0
and the disc is constant. 
�

Remark 5.9 To rule out e.g. the first bubbling case, alternatively, one could note that

H2(Ȳr ,s, L;Z) ∼= Z〈H〉 ⊕ H1(L).
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We have that ω(A) = ω(H); on the other hand, if β ∈ H1(L) has Maslov index 2n
and β̂ is the lift of β to H2(Yr ,s, L;Z), then ω(β̂) = 2nκ , where κ is the monotonicity
constant of L . In particular, a disc through D with boundary β would have symplectic
area ω(H) + 2nκ , so at least equal to that of A as n is non-negative. This leaves no
energy for the annulus in Yr ,s—a contradiction.

5.3.2 Annuli counts for �0 × 4g

In the case where L is γ0 × !g , it does not have a disjoint monotone displacement
(except possibly when g = 0), because the Maslov index of γ0 is zero. We need to
refine the argument of the previous section to deal with this complication.

We make the following observation, the proof of which is immediate.

Lemma 5.10 Consider γ0 ⊂ C. It has open neighbourhoods ν1/2 ⊂ ν ⊂ C such that:

• ν does not not cover the entirety of any of the components of C\γ0 (think of ν1/2
and ν as small thickenings of γ0);

• there exists δ > 0 such that for any point p ∈ P−1
r ,s (C\ν), there is a symplectic

embedding of Bδ(0) centered on p and whose image is disjoint from P−1
r ,s (ν1/2).

Let γ ′
0 ⊂ C be a parallel displacement of γ0 enclosing signed area ε > 0. As this

can be taken to be arbitrarily small, assume that ε < δ2/4. Let L ′ be given by γ ′
0×!g .

Let α̃ ∈ H1(!g) be any primitive Maslov zero class, and α = (0, α̃) be the
corresponding class in H1(γ0 ×!g); let α′ ∈ H1(L ′;Z) be the image of α under the
displacement. Let A ∈ H2(Ȳr ,s, L � L ′;Z) be such that ∂A = α � α′.

Given an almost complex structure J on Ȳr ,s , we define MJ (Ȳr ,s; A, α) and
M̄J (Ȳr ,s; A, α) as before.
Proposition 5.11 We have the following analogues of Propositions 5.7 and 5.8.

(a) Let J̃ be our choice of almost-complex structure on Ȳr ,s from Sect. 5.2, and let
(A, α) be any pair as above. ThenM J̃ (Ȳr ,s; A, α) is empty for all but one choice of
(A, α), for which J is regular. Moreover, for that choice of (A, α),M J̃ (Ȳr ,s; A, α)
has dimension one, and the signed count of points in M̄ J̃ (Ȳr ,s; A, α) is k1.

(b) The count of pseudo-holomorphic annuli is well-defined: for any pair (A, α) as
above and any regular J , the signed count of points inMJ (Ȳr ,s; A, α) is the same
as for M J̃ (Ȳr ,s; A, α).

Proof For part (a), the proof of Proposition 5.7 completely carries over: nowhere does
it use monotonicity. Note that we in fact get something slightly stronger: as with
Proposition 5.7, the argument shows that the count is non-zero for a unique choice of
A ∈ H2(Ȳr ,s, L � L ′;Z) and α ∈ H1(L;Z) a Maslov zero primitive class such that
∂A = α � α′.

More care needs to be taken for part (b), for which the proof of Proposition 5.8
needs refining. As L and L ′ are disjoint, and α �= 0, we again do not need to worry
about the boundary of the abstract moduli space of annuli. Disc bubbling, however,
now requires more care. The casework of Fig. 25 is now further broken down into
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Families of monotone Lagrangians... 1019

Fig. 26 The two possibilities for bubbling, depending on the position of the intersection point with D,
together with the homology classes of the boundaries

four cases, depending on the position of the marked point and whether the bubble is
formed on the side of L or L ′.

Note that the regularity considerations for simple curves used in the proof of Propo-
sition 5.8 still hold, as do the virtual dimension counts of [35, Theorem 1.2].

Assume first the bubble is formed on the side of L .

• If the bubble doesn’t go through D, it must be constant, following the correspond-
ing part of the proof of Proposition 5.7.

• If the bubble goes through D, we get a contradiction as before by using symplectic
area considerations.

Now assume that the bubble is formed on the side of L ′. For concreteness, the two
possibilities are given in Fig. 26.

Let us first rule out the right-hand side scenario in Fig. 26. As before the annulus is
regular and so has non-negative Maslov index. Thus the disc has non-positive Maslov
index. With respect to the obvious decomposition, say −β = (kγ ′

0,−β̃) ∈ H1(γ
′
0 ×

!g), where −β̃ ∈ H1(!g) has non-positive Maslov index, and k is an integer. Thus
the disc has symplectic area kε + κμ(−β̃) ≤ kε, which in particular implies k > 0.
Let F = P−1(�) be the fibre above a point � in the middle of a lobe of γ0 and γ ′

0
(in particular, away from ν). Now notice that if −β̂ ∈ H2(Yr ,s, L ′;Z) has boundary
−β, then for topological reasons we must have that F intersects −β̂ at least k times,
counted with signs. Moreover, by the monotonicity lemma for minimal surfaces, −β̂
must have symplectic area at least kπδ2, a contradiction. (Readers will be familiar with
this flavour of application of themonotonicity theorem from one of the standard proofs
of Gromov non-squeezing, for instance as given in McDuff–Salamon [40, Theorem
9.3.1].)

Let us now look at the left-hand side scenario. Similarly we must have β =
(kγ ′

0, β̃) ∈ H1(γ
′
0 × !g), where k is a constant and β̃ ∈ H1(!g) has non-positive

Maslov index. We have α′ + β = (kγ ′
0, α̃+ β̃). The symplectic area of the annulus is

kε+ κμ(β̃) ≤ kε, so k > 0. Pick � ∈ C as before, and let C ∈ H2(Yr ,s, L � L ′;Z) be
the unique class with boundary α ⊕ α′ + β. Again, topological considerations show
that C must intersect P−1(�) a signed total of k times, and the monotonicity lemma
applies again to get a contradiction. 
�

Remark 5.12 For genus one, there are splittings of L as S1×�g other than the ‘obvious’
γ0 × !g . Assume that there is a compactly supported symplectomorphism f of Yr ,s
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takingγ0×!g toγ0×!′
g andwhichdoes not respect the splitting. Then the aboveproof,

using f (P−1(�)), etc, would show that the count of points in M̄J (Ȳr ,s; f (A), f (α)) is
well-defined. On the other hand, as noted in the proof, we know that it is non-zero for
a unique choice of A ∈ H2(Ȳr ,s, L � L ′;Z) and α ∈ H1(L;Z)Maslov zero primitive
such that ∂A = α � α′. This gives a contradiction: f must in fact have respected the
splitting.

5.3.3 Conclusion

Start with a monotone Lagrangian γ2n ×!g ⊂ Yr ,s , where recall that

!g = !g({k0, l0,m0}, . . . , {kg, lg,mg}).

Suppose you’re given a compactly supported symplectomorphisms of Yr ,s . Choosing
a compactification of Yr ,s to Ȳr ,s which contains the whole domain, the previous
section shows that the count of holomorphic annuli M̄J (Ȳr ,s, γ2n ×!g; A, α), for any
regular J and the one class (A, α) for which it’s non-zero, is an invariant of γ2n ×!g

which is unchanged under compactly supported symplectomorphisms. In particular,
if we’re also given!′

g = !g({k′
0, l

′
0,m

′
0}, . . . , {k′

g, l
′
g,m

′
g}) with k1 �= k′

1, we see that
the Lagrangians γ2n × !g and γ2n × !′

g must be distinct up to compactly supported
symplectomophisms. Putting everything together, we get the following theorem.

Theorem 5.13 Fix g. For any sufficiently large r and s, we can construct an infinite
family of homologous monotone Lagrangian S1 ×�g in Yr ,s = {x3 + y3 + zr +ws =
1}, with fixed arbitrary even Maslov class and monotonicity constant, distinct up to
compactly supported symplectomorphisms of Yr ,s . (This includes the exact case.)

Remark 5.14 The conclusion of Theorem 5.13 also hold for well-behaved non-
compactly supported symplectomorphisms, namely all of thosewhich can be extended
to the compactifications.

5.4 Holomorphic annuli counts in 2 dimensions

As annuli have Euler characteristic zero, by [35, Theorem 1.2] the expected dimen-
sion of a moduli space of annuli only depends on their Maslov class, and not on the
dimension of the ambient space. This means that we can hope for well-defined counts
Maslov zero annuli in complex dimension two. (In complex dimension four or higher,
one immediately runs into trouble because of the possible existence of discs with
negative Maslov indices.)

In particular, we’re able to get a two-dimensional version of Theorem 5.13 in the
case of tori.

Theorem 5.15 Forany sufficiently larger ,we can construct an infinite family of homol-
ogous monotone Lagrangian tori in Xr = {x3 + y3 + zr = 1}, with fixed arbitrary
even Maslov class and monotonicity constant, distinct up to compactly supported
symplectomorphisms of Xr . (This includes the exact case.)
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Families of monotone Lagrangians... 1021

Proof We will just use the family of Lagrangian tori given by Tk,l,m (see Fig. 11),
although completely analogous arguments can be carried out for other families, with
changes to the annuli count formulae. Our proof will follow from inspecting the
arguments of Sect. 5.3 and noticing that they can be replicated, indeed with some
simplifications. We briefly note what changes are to be made.

Let T = Tk,l,m . As before, let us first consider the case where T is monotone but not
exact. Define moduli spaces MJ (X̄r ; A, α) and M̄J (X̄r ; A, α) following Definition
5.6. For our favoured almost-complex structure J̃ from Sect. 5.2, one gets an analogue
to Proposition 5.7, with the one difference being that for the sole choice of (A, α)
such thatM J̃ (X̄r ; A, α) is non-empty (in which case it is as before one-dimensional),
the signed count of points in M̄ J̃ (X̄r ; A, α) is k1. To see that this count is a well-
defined invariant as J varies, let us re-visit the proof of Proposition 5.8. The boundary
of the abstract moduli space of holomorphic annuli gets avoided as before; and the
arguments to exclude disc bubbling carry over, in fact with small simplifications: in
this dimension, if a moduli space of index 2n discs is regular, then after quotienting
out by holomophic automorphisms it has expected dimension 2n − 1, so n > 0.

Let us now turn to the case where T is exact. We let T ′ be a small non-exact
deformation of T . We construct this analogously to Lemma 5.10, but using�r instead
of Pr ,s : we use a close parallel copy of the immersed S1 in the base of �r (which is
now playing the role of γ0), and don’t touch the ‘meridional’ S1 (which is in a fibre).
We’re then able to follow the proof of Proposition 5.11; as in the previous case, the
expected dimensions of spaces of holomorphic discs get adjusted in our favour. 
�

Note that the assertions of Remark 3.9 about the ‘linking’ of the tori Rk,l,m and
Sn,p,q now readily follow by considering similar such holomorphic annuli counts.

5.5 Extensions and limitations

Because of their reliance on partial compactifications, the proof of Theorems 5.13
and 5.15 will not survive under a general exact symplectic embedding of Liouville
domains: instead, if onewants the same conclusion for e.g. theMilnor fibre of a ‘larger’
singularity, one would need it to have a compactification in which holomorphic annuli
still appear.

In the two-dimensional case, by Remark 3.3, the conclusion of Theorem 5.15would
also hold for {x2 + y4 + zr = 1} for sufficiently large r .

More generally, we see that the constructions and arguments of Sects. 5.1 through
5.4 (and in particular Sect. 5.2) can also be made whenever x3+ y3, i.e. the singularity
D4, is replaced by x3 + xyu , i.e. the singularity Du+1 (while not Brieskorn–Pham,
this is still weighted homogeneous, so Remark 2.10 applies).

On the other hand, suppose we try to replace Du by an even larger singularity in
two variables. Suppose we’re given two disjoint vanishing cycles on the associated
Milnor fibre. One can check the following: if removing those vanishing cycles from
the Milnor fibre disconnects it, then both of the resulting components (there can’t be
more than two) have positive genus. This means that the analogue of counting pseudo-
holomorphic annuli would now be to count higher genus pseudo-holomorphic curves
(with Maslov index zero, and two boundary components). While in dimension 3 these
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have expected dimension zero, at least naively one can’t hope for a well-defined count,
as we can’t rule all of the possible configurations in the boundary of the abstractmoduli
space of such holomorphic curves: there is no a priori reason to be able to rule out an
internal connecting node on the curve (as in [35, Figure 8]).

6 Floer-theoretic properties

6.1 Distinguishing Lagrangians using Floer theory

We’ll show that the families of Lagrangians which we construct in Xr and in Yr ,s
(in Sect. 5.1) can be distinguished using their Floer homology group with a fixed
Lagrangian sphere. From one perspective, this is a weaker invariant than the pseudo-
holomorphic annuli counts of Sect. 5, as it shows that the Lagrangians in the family
are different up to Hamiltonian isotopy, rather than arbitrary compactly supported
symplectomorphisms; on the other hand, this invariant survives under e.g. exact sym-
plectic embeddings of Liouville domains.We’ll also see that it allows us to distinguish
some Lagrangians for which the holomorphic annuli counts were all the same, or for
which we didn’t define the count (for instance, genus g Lagrangians in Xr ).

For the standard almost-complex structure J , there are nonon-constant holomorphic
discs in Xr with boundary on Tk,l,m , as an immediate consequence of the openmapping
theorem. In particular, the count of Maslov index two discs with boundary on Tk,l,m
vanishes (of course this is automatic if Tk,l,m is exact or has minimal Maslov number
four ormore, so wewould in fact only have to worry about the case where a ‘longitude’
of Tk,l,m hasMaslov index two). This means that the Floer cohomology group of Tk,l,m
with e.g. a Lagrangian sphere L is well defined. We will take our Floer cohomology
groups to have coefficients in C, and decorate the Lagrangians with a choice of rank
one local system, following the set-up in [51, Chapter 2]. In the case where Tk,l,m is
exact, HF(Tk,l,m, L) can be equipped with aZ–grading; in general, it can be equipped
with a Z/2|k − l|–grading.
Proposition 6.1 Then we can find Lagrangian spheres in {x2 + y4 + z18 = 1}, say
S1, S2 and S3, which are vanishing cycles for the singularity x2 + y4 + z18 (and thus
given by matching cycles in the base of a Lefschetz fibration given by ε(x, y)+ z for
a small generic linear ε), such that for any choice of rank one local system on Tk,l,m,

rk H F(Tk,l,m, S1) = m + 2k + 1; rk H F(Tk,l,m, S2) = 2k + 1;
rk H F(Tk,l,m, S3) = 2l.

In particular, the Lagrangians Tk,l,m and Tk′,l ′,m′ , constructed in {x2 + y4 + z18 = 1}
using the same basic configurations (i.e. configurations of critical points of type BB
and BC) cannot be Hamiltonian isotopic whenever (k, l,m) �= (k′, l ′,m′).

Proof Let S1 be the matching cycle S of Fig. 11. (Following Remark 3.3, we drop the
d curve and work in X = {x2 + y4 + z18 = 1}.) While S isn’t one of the distinguished
collection vanishing cycles for x2 + y4 + xr which are given by matching cycles in
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Fig. 4, it is given by applying to one of them (a ‘type a’ matching cycle) negative
Dehn twists in a sequence of vanishing cycles which appear further down the list in
the distinguished collection (these also correspond to ‘type a’ matching cycles). In
particular, S itself in a vanishing cycle for x2 + y4 + zr .

The sphere S = S1 intersects Tk,l,m in m + 2k + 1 points, labelled p1,
. . . , pm, qm+1, . . . , qm+2k+1 on the figure.We claim that the standard almost-complex
structure is regular, and that for that choice there are no holomorphic discs between
intersection points.

First, we have that

CF(S, Tk,l,m) = C〈p1, . . . , qm+2k+1〉.

Moreover, as a holomorphic disc in X would project to one inCwith the sameboundary
conditions, single variable complex analysis heavily constrains the possibilities for
holomorphic discs: by inspection, the only possible differentials are from pi to p j

with j > i , pi to q j , or qi to q j with j > i ; see Fig. 27 for a possible disc.
On the other hand, the Maslov index calculations of Lemma 3.6 imply that these

topological discs have either Maslov index zero, in the case of pi and p j , or negative
Maslov index, in the case of pi (or qi ) and q j . Thus they must have zero or negative
symplectic area, and cannot have holomorphic representatives (even the area zero ones
are not constant). (Alternatively, one could note that by also by an application of the
open mapping theorem, the holomorphic discs contributing to the differential would
be the same for Tk,l,m and Tk,k,m—this just uses the fact that the image of such a disc
can’t cross the inflection point between the two ‘lobes’ of Tk,l,m—and then make use
of the Z–grading on CF(S, Tk,k,m).) This proves the claim for S1 = S.

Going back to Fig. 11, we can write down matching cycles S2 and S3, constructed
similarly to S1 but starting at a type a critical point in two different BB, such that S2
intersects Tk,l,m in 2k+1 points, and S3 in 2l points; a completely analogous argument
shows that with the standard almost-complex structure there are no holomorphic discs
contributing to the differential onCF(Tk,l,m, Si ), i = 1, 2, which completes the proof.


�

Remark 6.2 If we just cared about determining the triple (k, l,m), the Floer cohomol-
ogywith S1, togetherwith theMaslov class and the homology class,would suffice—the
characterisation using only Floer groups will be useful later.

There are clearly similar statements for Rn,p,q and Su,v,w the triples (n, p, q) and
(u, v, w) are determined by the rank of the Floer cohomology groups of Rn,p,q and
Su,v,w with some vanishing cycles for x3 + y3 + zr . Similarly for the parameters
definining the Klein bottles of Sect. 3.6 (and plenty of other multi-parameter families
of tori or Klein bottles one might construct analogously).

We also get the following corollary.

Corollary 6.3 Fix any r large enough such that the family  g({k1, l1,m1}, . . . ,
{kg, lg,mg}) can be realised in X2,4,r . Then all of the parameters (k1, l1,m1), . . . ,

(kg, lg,mg) are determined by the ranks of Floer cohomology groups of  g with
vanishing cycles for x2 + y4 + zr .
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Fig. 27 Image inC of topological discs between p1 and p2. We’ve omitted some labels for legibility; these
can be found in Fig. 11

Similarly for other genus g Lagrangians built using the same techniques, such as
ζg of Sect. 4.2.1 and !g of Sect. 5.1 (with vanishing cycles for x3 + y3 + zr ), as well
as further variations by taking a connected sum of a mixture of tori and Klein bottles.

Proof The Floer cohomology calculations of Proposition 6.1 are unaffected by the
Polterovich surgeries: open mapping theorem type considerations still apply to show
that there can be no Floer differentials for the standard almost-complex structure. 
�

Note that the calculations will remain valid under an exact symplectic embedding
of Liouville domains, e.g. by the integrated maximum principle [51, Lemma 7.5]. This
completes the proof of Theorem 1.1.

Upgrading to complex dimension three, we get the following.

Proposition 6.4 Fix n ∈ Z≥0, g ≥ 1, and r , s large enough such that the family of
Lagrangians γn ×!g of Sect. 5.1 can be constructed in Yr−1,s−1.

Then there are Lagrangian spheres in Yr ,s , which moreover are vanishing cycles
for x3 + y3 + zr + ws , whose Floer cohomology groups with γn × !g recover the
coefficients {k0, l0,m0},…, {kg, lg,mg} determining !g.

Proof Let S be one of the test Lagrangian 2-spheres used for determining the coeffi-
cients of!g in Xr (this uses the fact that!g itself can be constructed in Xr−1, to have
a ‘extra’ critical value for the second end of the matching path for the sphere). As it’s
a vanishing cycle for x3 + y3 + zr , we can find a matching path in the base of Pr ,s
which intersects γn in precisely one point, and such that in the fibre above that point,
the corresponding matching cycle, say S, restricts to S, and γn × !g restricts to !g .
It is given back in Fig. 22 for the case of a general n (n = 0, 2 are similar), and in
turn uses the assumption on s to get the ‘spare’ critical value needed to close off that
matching cycle.

As the images of S and S1 × !g in the base of Pr ,s intersect transversally in
a single point, using the standard almost complex structure, it’s immediate that the
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Floer cohomology of S and S1 ×!g is precisely given by the Floer cohomology of S
and !g , and the result then follows from Corollary 6.3. 
�
Remark 6.5 The conclusion of Proposition 6.4 applies much more broadly:

• to families of Lagrangians of the form S1 ×�, where the surface� is a connected
sum of an arbitrary number of tori and Klein bottles which could be constructed
using any of the variations of Remark 5.3. (In particular, the bounds on r and s
needed in order to get infinite families of S1 × �g can be significantly improved
from the naive ones one would get using the numbers in Sect. 5.1.)

• to families of Lagrangians of the form L = #li=1S
1 × �i , obtained by taking

Polterovich connected sums of the S1×�i with matching spheres. (As before, the
surfaces �i are themselves the connected sum of an arbitrary number of tori and
Klein bottles.) This connect sum procedure is the three-dimensional analogue of
the constructions  g , !g etc, and the same argument applies regarding ranks of
Floer cohomology. More precisely, just as in the two-dimensional case, consider a
matching cycleS use to detect the parameters used to define�i , andwhose image in
the base of Pr ,s only intersects the image of S1 ×�i for one i . The open mapping
theorem applies as before to show that discs contributing to the differential on
CF(L,S) are exactly the same as the ones contributing to CF(S1 ×�i ,S).

The discussion of Floer cohomology groups in the 3-dimensional case has been
conducted in Yr ,s , i.e. {x3 + y3 + zr + ws = 1}. However, if we only care about the
conclusions of Theorem 1.2, we claim that it’s enough to take {x2+ y4+zr +ws = 1},
for sufficiently large r and s, as ambient space: we only needed Yr ,s in Sect. 5.1 in
order to construct !g (Fig. 19), with the carefully arranged overlay of Sk0,l0,m0 and
Rk1,l1,m1 above some self-intersection points of γ2n , in order to get a non-trivial count
of holomorphic annuli. Working simply with Tk,l,m , we can write down similar but
simpler constructions in {x2 + y4 + zr +ws = 1}, with the chief difference being that
we get, above any self-intersection point of the base S1, Tk,l,m � ρ(Tk,l,m) ⊂ X2,4,r
for some ρ such that �(Tk,l,m) ∩ �(ρ(Tk,l,m)) = ∅, where � : X2,4,r → C is the
same Lefschetz fibration as before.

This completes the proof of Theorem 1.2

6.1.1 Further diffeomorphism types

We briefly note how the ideas Sects. 3.7 and 4.2.1 might be further developed when
the ambient manifold is (for instance) X2,4,r ,s for sufficiently large r and s. For con-
cretness, let ζg({k1, l1,m1}, {k2, l2,m2}) be as in Sect. 3.7 (g odd as before), and ρ
the product of positive Dehn twists in vanishing cycles for X2,4,r such that ρ fixes ζg
setwise but acts on it by an order (g−1)/2 rotation pointwise. Now note that at the cost
of enlarging r , we can use Propositions 2.5 and 2.7 to find another product of positive
Dehn twists in vanishing cycles for X2,4,r , say σ , such that σ(ζg) ∩ ζg = ∅; and also
σ̃ , again a product of positiveDehn twists in vanishing cycles, such that σ̃ σ (ζg) = ζg ,
where the latter identity holds pointwise (after deforming by a suitable Hamiltonian
isotopy).
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Taking s to be very large, we can now use ρ, σ and σ̃ to mimick the constructions
of Sect. 5.1 to get monotone Lagrangians in X2,4,r ,s which are �g bundles over S1

(as always immersed in the base of Pr ,s), with monodromy given by ρ. (Recall that
Xa is defined in general at the start of Sect. 2). The base S1 can be arranged to have
arbitrary even Maslov index; and Floer cohomology with matching cycles in Y2,4,r ,s
allows us to distinguish such Lagrangians up to isotopy. We can also use matching
cycles to take connected sums of several copies of such Lagrangians, and / or with
Lagrangians of the form �g × S1; and one can come up with variations replacing �g

with certain connected sums of tori and Klein bottles. (Also, dropping monotonicity
would readily allow for e.g. the case where g is even.)

For concretness, we record the one exact case, using the Maslov index calculation
of Sect. 3.7.

Proposition 6.6 Let E be the �3 bundle over S1 with monodromy of order two
described above, and let L be an arbitrary connected sum of copies of E and S1×�g,
where g can vary. Then for all sufficiently large r and s, there exists an infinite family
of exact monotone Lagrangians in Y2,4,r ,s which are diffeomorphic to L, homolo-
gous, and distinct up to Hamiltonian isotopy. This is preserved under exact symplectic
embeddings of Y2,4,r ,s .

Remark 6.7 We can’t hope to get non-zero holomorphic annuli counts for non-trivial
� bundles over S1 without significantly refining our constructions: the set-ups of Figs.
18 and 19 can’t readily be amalgamated while preserving all the features one would
need.

6.2 Floer cohomology for families of 2-dimensional Lagrangians and comparison
with cluster mutations

Aside from acting by symplectomorphisms, in the two-dimensional case a well under-
stood technique for getting new Lagrangians from old ones is to use disc surgeries,
also known as geometric mutations. More precisely, given a Lagrangian surface L in
a symplectic four-manifold together with a Lagrangian disc with boundary on it, one
can construct a new Lagrangian surface L ′ via so-called ‘disc surgery’ on the original
one [59]. If L is monotone, then under suitable conditions L ′ is too; similarly with
exactness. This construction has been shown to have rich connections with the theory
of cluster mutations, explored e.g. in [47,52], where the disc surgeries are refered to
as (geometric) mutations.

The torus case is particularly well understood; we follow the discussion in [47].
Given aLagrangian seed, i.e. amonotoneLagrangian torus T togetherwith a collection
of Lagrangian discs with boundary on T [47, Definition 4.7], the authors explain how
to iteratively perform mutations on the torus [47, Definition 4.9]. Moreover, the local
model for a single mutation is given by passing from the Clifford to the Chekanov
torus in C2\{xy = 1} (see [47, Sections 4.5–4.7]). Further, the Floer cohomology for
this local model is known, see e.g. the calculation in [48, Proposition 11.8], which
closely follows [5]. In this local model, depending on the choice of rank one local
systems, the two tori are either isomorphic or the Floer cohomology between them
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vanishes. (The matching of local systems to get non-zero Floer cohomology is what
gives the wall-crossing formula.) In the exact case, the same remains true of T and its
geometric mutation T ′.

Yau also introduces disc surgeries on higher genus Lagrangian surfaces [59]; they
are also included in the discussion in [52, Section 2] (though the reader may wish to
recall the caveats of e.g. [52, Sections 1.2.4 and 2.2] regarding iterations of mutations).
Note that there isn’t a single model for disc surgery in this case, as it depends on
the isotopy class of the boundary of the disc on the Lagrangian. However, given
the result on local systems and microlocal sheaves of [52, Equation 1], one might
nonetheless expect that depending on the choice of rank one local system, an exact
Lagrangian surface L and its geometric mutation L ′ are either isomorphic or have
Floer cohomology zero.

In contrast, our constructions yield the following.

Theorem 6.8 Let L be a copy of Tk,l,m with monotonicity constant κ , and, for λ > 0,
let L ′ be a copy of Tk+λ,l+λ,m with monotonicity constant κ ′, constructed using the
same basic configurations in Xu,v,r , for some u, v such that 1/u + 1/v ≤ 2/3 and
r ≥ 18.

Let (α, β) ∈ (C∗)2 parametrise choices of rank one local systems on L, with respect
to the same basis for H1(L,Z) as in Lemma 3.6; similarly, we’ll use (α′, β ′) ∈ (C∗)2)
for L ′. Then we have that

rk H F((L, (α, β)), (L ′, (α′, β ′)) =

⎧
⎪⎨
⎪⎩

2λ if β = β ′

2λ if β = −β ′

0 otherwise

This property is preserved under exact symplectic embeddings of Liouville domains.
Moreover, in the case where u = v = 3, we can combine this with Theorem 5.15 to get
families of Lagrangian tori not related by compactly supported symplectomorphisms,
in particular Dehn twists.

Remark 6.9 If instead r ≥ 18g (or greater), one can similarly go about calculating the
Floer cohomology groups of e.g. the genus g Lagrangians g(Tk1,l1,m1 , . . . , Tkg,lg,mg )

for varying values of ki , li andmi . While we don’t do this in detail here, it will be clear
from the proof of Theorem 6.8 that one can obtain infinite families of homologous
monotone genus g Lagrangians (all with the same Maslov class and monotonicity
constant) such that the Floer cohomology between them, for suitable rank one local
systems, takes arbitrary large rank finite rank.

Discussion

There is a general expectation that the smoothing of the singularity xu + yv + zr

(i.e. its Milnor fibre) should be mirror to a resolution of this singularity: Brieskorn–
Pham singularities fall into the framework of Berglund–Hubsch [7], and are their own
Berglund–Hubsch transposes; some versions of mirror symmetry have been proved in
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[22,24], or [14] in the case of An . In particular, onemight expect the (wrapped) Fukaya
category of Xu,v,r to be mirror to a category of coherent sheaves associated with the
resolution of the singularity xu + yv + zr . The mirror-symmetric counterpart to the
statement about mutations is that given their Floer-theoretic properties, the family of
tori we construct can’t correspond to cluster charts on some (fixed) mirror variety,
or more generally to structure sheaves of points of (C∗)2 affine charts inside such a
mirror variety. This contrast with what we understand of a number of families of tori
in two-dimensional examples, e.g. in the case of An [5,14,36], for CP2 [5,53] or del
Pezzo surfaces [3,54], and arguably most remarkably for log CY surfaces [26,27,46];
cluster structures associated to Grasmannians have also recenty been used to construct
families of exotic Lagrangian tori in them [9].

Proof We’ll again use fibredness over S1 to apply tools from standard complex anal-
ysis. First, we note that irrespective of κ and κ ′, we can always pick Hamiltonian
deformations of L and L ′ which are still fibred, and such that the intersection between
them is naively minimal, as given in Fig. 28 in the case of T2,2,0 and T1,1,0: namely, we
first arrange for there to be 2λ’s worth of fibrewise S1 intersections, and then deform
each of these S1s in the fibre direction to get two intersection points (the local model
in the fibre is the zero-section in T ∗S1 and a small Hamiltonian perturbation of it).
Given a fibred Tk+λ,l+λ,m , one can draw a fibred Tk,l,m by using its projection to C

as a guide, running closely parallel to it and then ‘skipping’ some twists in both the
left and right-hand sides lobes. (This was done in Fig. 28.) To see that one needn’t
worry about possible variations in κ and κ ′, note that one can first take a Hamiltonian
deformation of L ′ (in particular, preserving κ ′) such that the relative sizes of the area
contribuations from the parts of the left and right lobes that get ‘skipped’ are arbitrary.

With respect to these choices, CF((L, (α, β)), (L ′, (α′, β ′)) has 4λ generators.
Let’s calculate the differential. Work with the standard J . Suppose there’s a holomor-
phic disc u : D → Xu,v,r with boundary on L and L ′. We use the same trick as before:
� ◦ u : D → C must be a holomorphic map with boundary on �(L),�(L ′). We
claim that such holomorphic maps to C must be constant.

Let us first consider potential holomorphic discs between two intersection points
both on the left lobe. Start with the example of Fig. 28. Letm1,M1 be the intersection
points above the left green dot, andm2,M2 be the ones above the left blue dot, ordered
so that deg(Mi ) = deg(mi )+ 1. Using holomorphicity of� ◦ u, we see that the only
possible discs with non-constant projections have projections similar to the one in Fig.
27, which, given our ordering of L and L ′, would in our case give a differential from
m1 or M1 to m2 or M2. (To rule out other discs, it’s perhaps easiest to note that the
boundary of the projection of any other potential holomorphic disc would differ from
the one already described by an integer multiple of at least one of the two immersed
S1s in the base.)

On the other hand, the Maslov index calculations in the proof of 3.6 show that our
potential disc would have index −1 if it were from M1 to M2, or from m1 to m2; and
index zero from M1 to m2. If we generalise to work instead with λ > 1, we now see
that the indices of potential holomorphic discs (still between intersection points both
on the left lobe) would become more and more negative.
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Fig. 28 Calculating HF(T2,2,0, T1,1,0). There are two intersection points above each of the marked dots,
in each case coming from perturbing a fibrewise S1. The colour of the dot encodes the orientation of the
fibre type b cycle for T2,2,0, using the conventions of Fig. 11. The shaded region is a potential projection
of a holomorphic disc

The situation for holomorphic discs between intersection points both on the right
lobe is completely analogous. Finally, let us consider holomorphic discs going between
the two lobes.Holomorphicity of the projectionmap now implies that the point in right-
hand lobe must project to the outermost green point; the shaded region in Fig. 28 gives
the potential holomorphic disc projection; now notice that such configurations have
already been studied when thinking about the case with both intersection points in the
left-hand lobe.

This mean for index reasons, we only need to worry about holomorphic discs whose
image is contained entirely in a fibre of �. There are 4λ such discs, clearly regular:
two in each of the fibres where L and L ′ intersect. Tracking local systems, there
are two possible configurations: the meridian in T ∗S1 and a push-off with the same
orientation (green dot), in which case the contributions from the two discs cancel
themselves out precisely when β = β ′; and the meridian in T ∗S1 and a push-off with
the opposite orientation (blue dot), in which case the contributions from the two discs
cancel themselves out precisely when β = −β ′. 
�

Remark 6.10 One could simplify the argument above, at least in the exact case (where
theLagrangians carry an absolute grading) at the cost of increasing r andmodifying the
construction of Tk,l,m , for instance by adding two BB type elementary configurations
in each lobe to ensure that the indices of the intersection points were all further apart.

Remark 6.11 By constructing Lagrangians whose projections to C are disjoint, we
can of course also construct (finite) families of Lagrangians all of which are Floer-
theoretically disjoint.
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Fig. 29 Calculating the Floer
cohomology between
Lagrangians of the form
γ0 ×�g . (Some labels are
suppressed for legibility—we’re
using the same configuration as
Fig. 20. The Hamiltonian
perturbation of a Lagrangian
γ0 ×�g is fibred over the curve
γ ′
0

6.3 Floer cohomology within families of 3-dimensional Lagrangians

With suitable care, one would expect to be able to leverage the bifibration on Yr ,s ,
together with the fibred nature of the Lagrangians we construct, to calculate the Floer
cohomology groups between at members of various families of Lagrangians from
Sect. 5.1. We record the following observation for the exact case.

Proposition 6.12 Fix g. For suitably large r , s, there exists an infinite family of homol-
ogous, monotone exact Lagrangians of the form S1 × �g inside Yr ,s such that for
suitable choices of rank one local systems, the Floer cohomology between members
of that family can take arbitrarily large rank.

As before, we only need x2 + y4 + zr +ws , and the conclusion persists if we take
connected sums of such Lagrangians, or under inclusion of Liouville domains.

Proof This is similar to before. Let’s look at the case of γ0 × !g , for two different
choices of !g = !g({k0, l0,m0}, . . . , {kg, lg,mg}). Considering a Hamiltonian per-
turbation of one of them whose projection to the base of Pr ,s is given by Fig. 29, we
see that there are two collections of intersection points between the two Lagrangians
(above each of the dots in the base), in natural one-to-one correspondence. Moreover,
for each pair of such points, there are two holomorphic discs between them, whose
contributions cancel for suitable choices of rank one local systems (this is merely a
slightly unusual presentation of a standard configuration in T ∗S1; a neighbourhood
of the zero section therein is immersed in the same of the fibration). Using the same
circle of index and openmapping type considerations as before, the Floer cohomology
calculation then boils down to finding the holomorphic discs in the fibres above each
of the dots, which we already know from the proof of Theorem 6.8. 
�

7 Generalisations to higher dimensions

Starting with our three-dimensional examples, we can iteratively use the monodromy
tricks provided by Propositions 2.5 and 2.7, as well as Polterovich surgery, to construct
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interesting families of monotone Lagrangians in higher-dimensional Brieskorn-Pham
hypersurfaces.

More precisely, starting with the Lagrangians of Theorem 1.2 and iterating one
dimension at a time, we can do the following:

1. Given a monotone Lagrangian L in X1 = {za00 +· · ·+ zam−1
m−1 = 1}, get a monotone

Lagrangian S1 × L in X2 = {za00 + · · · + zam−1
m−1 + zm = 1} ∼= C

m by taking
a product with an embedded S1 ⊂ D ⊂ C such that the Lefschetz fibration
zm + ε(z0, . . . , zm−1) : X2 → C is essentially trivial above D. (The function
ε(z0, . . . , zm−1) is a generic linear perturbation.) The S1 factor has Maslov index
two.

2. Given a monotone Lagrangian L in X1 = {za00 + · · · + zam−1
m−1 = 1}, for sufficently

large am , get a monotone Lagrangian S1 × L in X ′
2 = {za00 + · · · + zam−1

m−1 +
zamm = 1} fibred over an immersed S1 in the base of the Lefschetz fibration zm +
ε(z0, . . . , zm−1) : X2 → C, analogously to the constructions of Sect. 5.1. The
total monodromy about the immersed S1 gives a symplectomorphism of the fibre
X1 which is, say, the lth power of the total monodromy � of X1 viewed as the
Milnor fibre of a singularity: using an auxiliary Lefschetz fibration of the form
zm−1 + ε′(z0, . . . , zm−2) : X1 → C and the notation of Sect. 2.3, one would have
� = �k , meaning that in a large compact set, � is induced by a 2π rotation of the
base of this fibration. (In particular, �l acts as the identity on L .)
The Maslov index for this S1 factor is calculated as in Proposition 5.1: twice the
total winding number of the immersed S1 in the base, adjusted down by 2l. In
particular, the S1 factor can take arbitrary even Maslov index.

3. Using Polterovich surgery, for sufficiently large am , we can get any connected
sums of the Lagrangians in (2), with the induced Maslov indices.

The examples in (1) are clearly null-homologous. In (2) or (3) one can check
that they are primitive in homology (with Z coefficients in the orientable case and
Z/2 otherwise)—for instance, for any such Lagrangian we can find a matching cycle
which intersects it in exactly one point. Let (†) the collection of possible pairs of
diffeomorphism types and Maslov classes described by the iterative process above.
(Note that for a given diffeomorphism type L , we can get as Maslov class any element
of H1(L,Z)which is not excluded by orientability-type considerations.) It is also clear
that in situations (2) and (3) – whenever am is sufficiently large—we can typically tell
two examples apart by calculating their Lagrangians Floer cohomology with a fixed
matching cycle. In particular,

Proposition 7.1 Fix an m-dimensional manifold L and μ ∈ H1(L;Z) such that
(L, μ) ∈ (†), and any constant κ > 0. Then for sufficiently large ai , there exist
infinitely homologousmonotone Lagrangian L ⊂ {z20+z41+za33 +. . .+zamm = 1} = X,
distinct up to Hamiltonian isotopy, with Maslov index μ and monotonicity constant
κ . The bounds on the ai only depend on the diffeomorphism type of L. The class
[L] ∈ Hm(X) is primitive, where coefficients should be taken in Z or Z/2 depending
on orientability of L.

This property is preserved under exact symplectic embeddings.
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In particular, we get families of examples of monotone Lagrangians, including
Lagrangian tori, which are primitive in homology but have arbitrarily high minimal
Maslov number.

7.1 Further diffeomorphism types

We briefly remark that with a little care, we can mimick the constructions of Sects. 3.7
and 6.1.1 in higher dimensions. Given a pair (L, μ) ∈ (†), fix a monotone Lagrangian
L ⊂ {za00 + · · · + zam−1

m−1 = 1} = X . Use this to construct a monotone Lagrangian

L̃ in {za00 + . . . + z2kam−1
m−1 = 1} = X̃ as follows: first take 2k copies of L , arranged

cyclically using the automorphism zm−1 �→ ζ zm−1 of X̃ , where ζ is a (2k)th root
of unity; now perform Polterovich surgery on the copies of L together with 2k (not
2k − 1) matching cycles, say k of them corresponding to a fixed vanishing cycle,
and k of them corresponding to a second vanishing cycle, which is disjoint from the
first one. By modifying the area enclosed by the chain of matching cycles we can
arrange for the resulting Lagrangian to be monotone, and for there to exist products of
positive Dehn twists on X̃ , say ρ, σ and σ̃ , such that ρ fixes X̃ setwise and acts as an
order k rotation pointwise; σ(L̃)∩ L̃ = ∅; and σ̃ σ (L̃) = L̃ , where this identity holds
pointwise up to Hamiltonian isotopy. For sufficiently large am , this then allows us to
construct monotone Lagrangians in {za00 + · · · + za2km−1

m−1 + zamm = 1} which are non-

trivial L̃ bundles over S1, with monodromy of order k. Further, as in Proposition 6.6,
for fixed ‘soft’ invariants these can often be distinguished up to Hamiltonian isotopy
by the Floer cohomology with a fixed matching cycle.
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