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Abstract

This paper proposes an estimator of factor strength and establishes its consis-
tency and asymptotic distribution. The estimator is based on the number of
statistically significant factor loadings, taking multiple testing into account. Both
cases of observed and unobserved factors are considered. The small sample prop-
erties of the proposed estimator are investigated using Monte Carlo experiments.
It is shown that the proposed estimation and inference procedures perform well
and have excellent power properties, especially when the factor strength is suffi-
ciently high. Empirical applications to factor models for asset returns show that
out of 146 factors recently considered in the finance literature, only the mar-
ket factor is truly strong, while all other factors are at best semi-strong, with
their strength varying considerably over time. Similarly, we only find evidence
of semi-strong factors using a large number of US macroeconomic indicators.
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1 INTRODUCTION
This paper is concerned with the characterisation and estimation of individual factor strengths in the context of multifac-
tor models, both when the factors are observed and when they are latent. We propose to measure the strength of a given
factor by the degree of its pervasiveness identified by the number of its associated nonzero factor loadings. The degree
of factor strength is measured by the rate at which the number of nonzero factor loadings rises with the total number of
loadings, n. A factor is said to have maximum strength (equal to 1) if all its associated loadings are nonzero. A factor is
deemed to be weak if the rate of nonzero factor loadings increase is less than 1/2, and factors with strength between 1/2
and 1 will be referred to as semi-strong in the sense that they are pervasive but not necessarily strong. More formally, for
illustrative purposes, consider the following single factor model

xit = ci + 𝛾i𝑓t + uit, i = 1, 2, … ,n; t = 1, 2, … ,T, (1)

where ft, is a known factor, ci is the unit-specific effect, uit∽IID(0, 𝜎2
i ) is an idiosyncratic error, and 𝛾 i is the factor loading

for unit i. In the standard factor literature, the strength of ft is measured by the rate at which 𝜔2
n =

∑n
i=1 𝛾

2
i rises with n.

Denoting the expansion rate of 𝜔2
n in terms of n by 𝛼, the standard large n and T latent factor models assume that 𝛼 = 1,

as required, for example, by Assumption B in Bai and Ng (2002) and Bai (2003). At the other extreme, a factor is deemed
to be weak if 0≤ 𝛼 < 0.5. This case is studied in Onatski (2012). Similar notions of factor strength are also used in recent
financial studies by Lettau and Pelger (2018) and Anatolyev and Mikusheva (2021).
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The rate 𝛼 is determined by the number as well as the size of nonzero loadings, 𝛾 i. In this paper, we focus on the former,
whereas a number of papers in the literature that consider the case of weak factors assume that 𝛾i = 𝛾in = 𝛿i∕n(1−𝛼)∕2, with
bounded and nonzero 𝛿i for all i, which yields𝜔2

n =
(

n−1 ∑n
i=1 𝛿

2
i

)
n𝛼 . See, for example, Kleibergen (2009) or Onatski (2012)

who consider factor models with 𝛼 = 1∕2. This approach restricts all loadings, 𝛾 in, to decline at the same rate with n,
when 𝛼 < 1. In our view, declining values for 𝛾 i, as n increases, make little empirical sense. Our chosen setup where
the main determinant of factor strength is the number of nonzero factor loadings is empirically more defensible and
verifiable. Estimation of 𝛼 under our formulation is also easier to implement as compared with the alternative formulation,
𝛾in = 𝛿i∕n(1−𝛼)∕2. To our knowledge, there is no literature on how to estimate 𝛼 under this alternative specification.

In most empirical applications, the value of 𝛼 is unknown. Incorrectly setting it to 𝛼 = 1 can result in misleading
inference. Also, as we shall see, without further a priori restrictions on the factor loadings, it is not possible to identify
𝛼 when the factor in question is weak (𝛼 < 1/2). But in most empirical applications in finance and macroeconomics, the
values of 𝛼 that are of interest and of consequence, are within the range 𝛼 ∈ (0.5, 1]. As recently shown by Pesaran and
Smith (2021), factor strengths play a crucial role in the identification of risk premia in arbitrage asset pricing models
and determine the rates at which risk premia can be estimated. The strength of macroeconomic shocks is also of special
interest, as its value has important bearing on forecasting and policy analysis. Contributions in terms of factor selection
and factor model estimation when 𝛼 ∈ (0.5, 1) include Freyaldenhoven (2021) and Uematsu and Yamagata (2019).

The analysis of this paper is also closely related to the literature on strong and weak cross-sectional dependence. One
important example is the role of dominant units in production or financial networks and how to identify and measure
their degree of dominance when interconnections are known (Acemoglu et al. 2012; Pesaran & Yang, 2020), or unknown
(Kapetanios et al. 2020). Bailey et al. (2016) (BKP hereafter) give a thorough account of the rationale and motivation
behind the need for determining the extent of cross-sectional dependence (CSD), be it in finance, microeconomics or
macroeconomics. To estimate the degree of CSD in a panel dataset, BKP analyse the rate at which the variance of the
cross-sectional average (CSA) of observations in that panel tends to zero and show that it depends on the degree or expo-
nent of CSD, which they denote by 𝛼. They explore a latent factor model setting as a vehicle for characterising strong
and semi-strong covariance structures as defined in Chudik et al. (2011). They relate these to the degree of pervasiveness
of factors in unobserved factor models often used in the literature to model CSD. In a follow-up paper to BKP, Bailey
et al. (2019) extend their analysis in two respects. First, they consider a more generic setting, which does not require
a common factor representation and holds more generally for both moderate and sizeable CSDs. They achieve this by
directly considering the significance of individual pair-wise correlations and base the estimation of 𝛼 on the proportion
of statistically significant correlations. Second, they show that their estimator also applies to the residuals obtained from
panel data regressions.

The estimators developed in Bailey et al. (2016, 2019) are helpful as overall measures of CSD, but they do not pro-
vide information on the strength of individual factors. This is of interest, for example, in the pricing of risk in empirical
finance and in identifying dominant factors in macroeconomic fluctuations. In this paper, we propose an estimator of
factor strength and establish its consistency and asymptotic distribution when 𝛼 > 1/2. The proposed estimator is based
on the number of statistically significant factor loadings, taking account of the multiple tests being carried out. We find
that it is a powerful and highly accurate estimator, especially for higher levels of factor strength. Despite its simplicity, the
distribution of the estimator, being based on sums of random variables that follow, potentially heterogeneous, Bernoulli
distributions, is quite complicated and nonstandard. Although the parameters of these distributions are hard to pin down,
they can be bounded in such a way as to provide both grounds for the validity of a central limit theorem for the asymptot-
ically dominant part of the estimator and an upper bound for the asymptotic variance. These two elements allow for the
construction of asymptotically conservative test statistics.

We focus mainly on the case where the factors are observed, which is of primary interest in tackling the financial empir-
ical example mentioned earlier, among many others. We also consider using CSAs as a proxy in the case of unobserved
common factors. In practice, we face a significant factor identification issue when there are more than one unobserved
common factors. In the case of multiple unobserved factor models, our contribution is best viewed as providing inferen-
tial information about the exponent of the strongest factor shared among the cross section units, even though we present
some results on estimating the strength of weaker factors with 1/2<𝛼 < 1.

We investigate the small sample properties of the proposed estimator by means of Monte Carlo experiments under
a variety of scenarios. In general, we find that the estimator and the associated inference perform well. The test is
conservative under the null hypothesis, but, nevertheless, has excellent power properties, especially when 𝛼 is close to
unity, even for moderate sample sizes.
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We illustrate the relevance of our proposed estimator by means of two empirical applications, using well-known datasets
in finance and macroeconomics. First, we consider a large number of factors proposed in the finance literature for asset
pricing. For example, Harvey and Liu (2019) document over 400 such factors, and Feng et al. (2020) consider the problem
of factor selection using penalised regressions. In view of recent theoretical results in Pesaran and Smith (2021), our
empirical contribution focuses on the estimation of factor strengths, since factor selection is only meaningful for asset
pricing if the factors under consideration are sufficiently strong. We compute 10-year rolling estimates of 𝛼 (together with
their standard error bands) for the excess market return (as a measure of the market factor) and the remaining 145 factors
considered by Feng et al. (2020). Out of the 146 factors considered, we find that only the market factor is sufficiently strong
over all rolling windows, with its average strength estimated to be around 0.99 over the full sample (from September 1989
to December 2017). In contrast, none of the other factors achieve strengths exceeding 0.90 over the full sample, but over
the sub-sample that includes the recent financial crisis, as many as 48 (out of 145) have average strength estimated to
lie between 0.9 and 0.94. Remarkably, the well-known size and value factors introduced in Fama and French (1993) are
not particularly prominent as compared with cash and leverage factors. Further, of special interest is the high degree of
time variation in the estimates of factor strengths, which cannot be attributed to sampling variation, considering the high
precision with which the factor strengths are estimated, particularly when the true factor strength is close to unity.

Our second empirical application considers an unobserved factor model and asks if there exists any strong latent factor
shared by the set of macroeconomic variables originally investigated by (Stock & Watson, 2012). In particular, we consider
an updated version of Stock and Watson (SW) dataset covering 187 variables over the period 1988Q1–2019Q2. Although
it is not possible to separately identify the strengths of individual latent factors, we are able to show that the strength of
the strongest of the latent factors in the updated SW dataset is around 0.94, which is sufficiently high for the factor to be
important for macroeconomic analysis, but yet statistically different from 1, usually assumed in the literature.

The rest of the paper is organised as follows: Section 2 introduces our proposed measure of factor strength and develops
the estimation and inference theory for the single factor case. A general multifactor setup is then considered in Section 3
which includes the main theoretical results of the paper. Section 4 discusses the case of unobserved factors and, after
highlighting the identification problem involved, considers first the estimation of the strength of the strongest factor
implied by the model, and then estimates the strength of all sufficiently strong unobserved factors. Sections 5 and 6 provide
extensive simulation and empirical evidence of the performance of our estimator. Section 7 provides some concluding
remarks. Mathematical proofs and additional empirical and simulation results are contained in Supporting information
Appendix S1.

Notation: Generic positive finite constants are denoted by Ci, for i = 1, 2, … . They can take different values at different
instances. If {𝑓n}∞n=1 is a real sequence and {gn}∞n=1 is a sequence of positive numbers, then 𝑓n = O (gn), if there exists a
positive finite constant C0 such that |𝑓n| ∕gn ≤ C0 for all n. 𝑓n = o (gn) if fn/gn → 0 as n→∞. If {𝑓n}∞n=1 and {gn}∞n=1 are
both positive sequences of real numbers, then 𝑓n = Θ (gn) if there exist n0 ≥ 1 and positive finite constants C0 and C1, such
that infn≥n0 (𝑓n∕gn) ≥ C0, and supn≥n0

(𝑓n∕gn) ≤ C1. →d denotes convergence in distribution as n, T→∞, jointly.

2 ESTIMATION STRATEGY

To illustrate the basic idea behind our estimation strategy, we begin with a single factor model where the factor is observed
and turn subsequently to the cases of observed or unobserved multiple factors. Suppose that T observations are given, on
n cross section units, namely, {xit, i = 1, 2, … ,n, t = 1, 2, … ,T}, and follow the single factor model (1), repeated here
for convenience:

xit = ci + 𝛾i𝑓t + uit, (2)

where ft, t = 1, 2, … ,T is a known factor, ci is the unit-specific effect, uit∽IID(0, 𝜎2
i ) is an idiosyncratic error and 𝛾 i is the

factor loading for unit i. The factor loadings are assumed to be nonzero for the first [n𝛼] units, and zero for the rest, where
[·] denotes the integer part function. More specifically, suppose that, for some c> 0,

|𝛾i| > c a.s. for i = 1, 2, … , [n𝛼],|𝛾i| = 0 a.s. for i = [n𝛼] + 1, [n𝛼] + 2, … ,n,
(3)
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where 𝛼 measures the strength of factor ft, which in the case of the single factor model coincides with the exponent of
cross-sectional dependence discussed in BKP.1 The exponent 𝛼 measures the degree of pervasiveness or strength of the
factor. It is important to reiterate that BKP focus on estimating an overall measure of cross-sectional dependence in xit,
without particular reference to a single specific factor. They base their estimator on the variance of the cross-sectional aver-
age, while noting the pros and cons of alternative approaches, based on other characteristics of xit, such as, the maximum
eigenvalue of the covariance of xit.

As we noted above, our aim is different. We wish to determine the strength or pervasiveness of particular factors and
use 𝛼, as defined through (3), as a tool for that purpose. To estimate 𝛼, we begin by running n least squares regressions of
{xit}T

t=1 for each i = 1, 2, … ,n on an intercept and ft to obtain

xit = ĉiT + �̂�iT𝑓t + �̂�it, t = 1, 2, … ,T

where ĉiT and �̂�iT are the ordinary least squares (OLS) estimates of ci and 𝛾i, Denote by tiT = �̂�iT ∕s.e. (�̂�iT) the t statistic
corresponding to 𝛾 i:

tiT =
(
f ′M𝜏f

)1∕2
�̂�iT

�̂�iT
=

(
f ′M𝜏f

)−1∕2 (f ′M𝜏xi
)

�̂�iT
, (4)

where M𝜏 = IT −T−1𝝉T𝝉
′
T , 𝝉T is a T× 1 vector of ones, f = (𝑓1, 𝑓2, … , 𝑓T)′, xi = (xi1, xi2, … , xiT)′, and �̂�2

iT = T−1 ∑T
t=1 �̂�

2
it.

Also assume that, for some c> 0, T−1f ′M𝜏f > c, which is necessary for identification of 𝛾 i. Consider the proportion of the
n regressions with statistically significant coefficients 𝛾 i:

�̂�nT = n−1
n∑

i=1
d̂i,nT , (5)

where d̂i,nT = 1
[|tiT| > cp(n)

]
, 1(A) = 1 if A> 0, and zero otherwise, and the critical value function, cp(n), is given by

cp(n) = Φ−1
(

1 −
p

2n𝛿
)
. (6)

Here p is the nominal size of the individual tests, 𝛿 > 0 is the critical value exponent and Φ−1(·) denotes the inverse
cumulative distribution function of the standard normal distribution.

Suppose that �̂�nT > 0, and consider the following estimator of 𝛼:

�̃� = 1 + ln �̂�nT

ln n
.

In the rare case where �̂�nT = 0, we then set �̃� = 0. Overall,

�̂� =

{
�̃�, if �̂�nT > 0,
0, if �̂�nT = 0.

(7)

Clearly �̂� ∈ [0, 1] a.s.; also �̂� and �̃� are asymptotically equivalent since for 𝛼 > 0, then P(n �̂�nT = 0) → 0 as n→∞.
It is tempting to argue in favour of using the proportion of nonzero loadings, 𝜋, instead of the exponent 𝛼. The two

measures are clearly related - 𝜋 =n𝛼 − 1 and coincide only when 𝛼 = 1. But when 𝛼 < 1, 𝜋 becomes smaller and smaller
as n→∞, and eventually tends to 0, for all values of 𝛼 < 1. The rate at which 𝜋 tends to zero with n is determined by
𝛼, and hence, 𝛼 is a more discriminating measure of pervasiveness than 𝜋. It is also unclear how a particular value of 𝜋
should be chosen as a measure of pervasiveness. It is also important to note that when 𝜋 is set to 𝜋0 > 0, a fixed value,
then 𝛼 = 1 + ln(𝜋0)∕ ln(n), and 𝛼→ 1 as n→∞, if 𝜋0 is fixed in n. Therefore, unlike 𝛼, which can be chosen to be fixed in
n, any choice of 𝜋 which is fixed in n implies 𝛼→ 1 as n→∞, albeit at the very slow ln(n) rate.

1More generally, we can have |𝛾i| = c1𝛾
i−[n𝛼 ], with |𝛾| < 1 and c1 > 0, for i = [n𝛼] + 1, [n𝛼] + 2, … ,n, in (3). But for simplicity of exposition, we opt for|𝛾i| = 0 a.s. instead.
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2.1 Asymptotic distribution
Denote the true 𝛼 by 𝛼0, let d0

i = 1 [𝛾i ≠ 0] and note that D0
n =

∑n
i=1 d0

i = n𝛼0 (the integer part symbol is dropped for
simplicity). Let

D̂nT = n�̂�nT =
n∑

i=1
d̂i,nT , (8)

and note that D̂nT∕D0
n = n�̂�−𝛼0 . Taking logs, we obtain

(ln n) (�̂� − 𝛼0) = ln
(

D̂nT

D0
n

)
= ln

(
1 + D̂nT − n𝛼0

n𝛼0

)
= ln (1 + AnT + BnT)

= AnT + BnT + Op
(

A2
nT
)
+ O

(
B2

nT
)
+ Op (AnTBnT) + … ,

(9)

where

AnT =

∑n
i=1

[
d̂i,nT − E

(
d̂i,nT

)]
n𝛼0

, (10)

BnT =

∑n
i=1 E

(
d̂i,nT

)
− n𝛼0

n𝛼0
. (11)

To motivate the proposed estimator and to simplify the derivations, here we assume 𝜎i is known and uit is Gaussian,
and turn to the more general multifactor case with non-Gaussian errors in Section 3. In this simple case, we have the
following lemmas proven in Supporting information Appendix S1-A.

Lemma 1. Let the model be given by (2) where (3) holds, 𝜎i is known and uit is a Gaussian martingale difference process
for all i. Then, for some C1 > 0,

BnT =
p (n − n𝛼0)

n𝛿+𝛼0
+ O

[
exp

(
−TC1

)]
, (12)

where p is the nominal size of the individual tests, and 𝛿 is the exponent of the critical value function defined in (6).

Lemma 2. Let the model be given by (2) where (3) holds, 𝜎i is known and uit is a Gaussian martingale difference process
for all i. Then, in the case where 𝛼0 < 1, for some C1 > 0,

Var (AnT) = 𝜓n(𝛼0) + O
[
n−𝛼0∕2 exp

(
−TC1

)]
, (13)

where
𝜓n(𝛼0) = p

(
n − na0

)
n−𝛿−2𝛼0

(
1 −

p
n𝛿

)
. (14)

If 𝛼0 = 1, for some C1 > 0,
Var (AnT) = O

[
exp

(
−TC1

)]
. (15)

As we note from the above lemmas, we need to distinguish between the two cases where 𝛼0 = 1 and where 𝛼0 < 1. In
the former case, AnT→p0 exponentially fast in T, and overall

(ln n) (�̂� − 1) = Op
[
n−1 exp (−C2T)

]
+ O

[
exp (−C1T)

]
,

for some positive constants C1 and C2. Furthermore, in the case where 𝛼0 < 1, using (13) and (14), it follows that

AnT = Op
[
𝜓n(𝛼0)1∕2] + O

[
n−𝛼0∕2 exp (−C1T∕2)

]
= Op

(
n1∕2−𝛿∕2−𝛼0

)
+ O

[
n−𝛼0∕2 exp (−C1T∕2)

]
.

Therefore, AnT = op(1) if 𝛿 > 1− 2𝛼0, which is in turn met if 𝛿 > 0, for all values of 𝛼0 > 1/2.
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It is clear that the distribution of �̂� experiences a form of degeneracy when 𝛼0 = 1, and �̂� tends to its true value of
1 exponentially fast. We refer to this property as ultraconsistency to distinguish it from the more usual terminology of
superconsistency that refers to rates of convergence that are faster than the usual one of the square root of the sample
size. Usually faster rates are polynomial in the sample size and not exponential, and therefore, the new term reflects this
important difference.

The above results suggest the following scaling of �̂� when 𝛼0 < 1:

𝜓
−1∕2
n (ln n) (�̂� − 𝛼0) = 𝜓

−1∕2
n AnT + 𝜓−1∕2

n BnT + op(1).

Also, using A.6 from Supporting information Appendix S1-A, we have

BnT =

∑n

i=1
E
(

d̂i,nT

)
− n𝛼0

n𝛼0
=

p (n − n𝛼0 )
n𝛿+𝛼0

+ O
[
exp (−C1T)

]
.

It is also easily seen that BnT = o(1) if 𝛿 > 1− 𝛼0.
Since 1/2<𝛼0 < 1 (recall that the case of 𝛼0 = 1 is treated separately), then for values of 𝛼0 close to unity (from below)

it is sufficient that 𝛿 > 0, and for values of 𝛼0 close to 1/2, we need 𝛿 > 1/2. In the absence of a priori knowledge of 𝛼0, it
is sufficient to set 𝛿 = 1∕2. In practice, factors that are sufficiently strong with 𝛼0 falling in the range [2/3, 1] are likely to
be of greater interest, and for precise estimation of such factors, it would be sufficient to set 𝛿 = 1∕4. Our Monte Carlo
results show that the estimates of factor strength are reasonably robust to the choice of 𝛿, so long as it is not too small and
lies in the range 1/4–1/2. Alternatively, one can consider various cross-validation methods to calibrate 𝛿.

Also, since [𝜓n(𝛼0)]−1∕2AnT = Op(1), then [𝜓n(𝛼0)]−1∕2A2
nT = Op (AnT) = o(1). Using these results, we can now write

[𝜓n(𝛼0)]−1∕2 (ln n) (�̂� − 𝛼0 − 𝜁n) = [𝜓n(𝛼0)]−1∕2AnT + op(1),

where

𝜁n (𝛼0) =
p (n − n𝛼0 )
(ln n)n𝛿+𝛼0

.

Finally, since uit are independent across i and d̂i,nT−E
(

d̂i,nT

)
have zero means, then by a standard martingale difference

central limit theorem, we have (as n and T→∞)

[𝜓n(𝛼0)]−1∕2AnT = [𝜓n(𝛼0)]−1∕2 1
n𝛼0

n∑
i=1

[
d̂i,nT − E

(
d̂i,nT

)]
→dN(0, 1).

Hence,

[𝜓n(𝛼0)]−1∕2 (ln n) [�̂� − 𝛼0 − 𝜁n (𝛼0)]→dN(0, 1), (16)

where

𝜁n (𝛼0) =
p (n − n𝛼0 )
(ln n)n𝛿+𝛼0

. (17)

To test H0 ∶ 𝛼 = 𝛼0, we utilise the following score statistics where 𝛼0 in the normalisation part of the test is replaced by
its estimator, �̂�:

z�̂�∶𝛼0 =
(ln n) (�̂� − 𝛼0) − p

(
n − n�̂�

)
n−𝛿−�̂�[

p
(

n − nâ
)

n−𝛿−2�̂�
(

1 − p
n𝛿

)]1∕2 . (18)

The null will be rejected if |z𝛼| > cv, where cv is the critical value of the standard normal distribution at the desired
significance level (which need not be the same as p). For a two-sided test at 5% level, cv = 1.96.



BAILEY ET AL. 7

3 A GENERAL TREATMENT WITH A MULTI-FACTOR MODEL

As a generalisation of the above setup consider the multifactor regressions

xit = ci +
m∑
𝑗=1
𝛾i𝑗𝑓𝑗t + uit = ci + 𝜸′ift + uit, for i = 1, 2, … ,n and t = 1, 2, … ,T (19)

where 𝜸i = (𝛾i1, 𝛾i2, … , 𝛾im)′, and it is assumed that the m-dimensional vector, ft = (𝑓1t, 𝑓2t, … , 𝑓mt)′, is observed. We
also assume that, for some unknown ordering of units over i,

|𝛾i𝑗| > c > 0 a.s. for i = 1, 2, … , [n𝛼𝑗0 ],|𝛾i𝑗| = 0 a.s. for i = [n𝛼𝑗0 ] + 1, [n𝛼𝑗0 ] + 2, … ,n.

Throughout the paper, we assume that 𝛼j 0 > 0.5, for 𝑗 = 1, 2, … ,m. As discussed in Section 1 and in Pesaran and
Smith (2021), this is most relevant case, empirically.

Then the following strategy may be employed to provide inference on 𝛼j 0, for 𝑗 = 1, 2, … ,m. For a given unit i, consider
the least squares regression of {xit}T

t=1 on the intercept and ft. ĉiT and �̂�iT are the OLS estimates of this regression. Denote
by ti𝑗T = �̂�i𝑗T ∕s.e.

(
�̂�i𝑗T

)
, the t statistic corresponding to 𝛾 ij:

ti𝑗T =

(
f ′
𝑗◦MF−𝑗 f𝑗◦

)−1∕2 (
f ′
𝑗◦MF−𝑗xi

)
�̂�iT

, 𝑗 = 1, 2, … ,m; i = 1, 2, … ,n,

f𝑗◦ =
(
𝑓𝑗1, 𝑓𝑗2, … , 𝑓𝑗T

)′, xi = (xi1, xi2, … , xiT)′, MF−𝑗 = IT−F−𝑗

(
F′
−𝑗F−𝑗

)−1
F′
−𝑗 ,

F−𝑗 = (𝝉T , f1◦, … , f𝑗−1◦, f𝑗+1◦, … , fm◦)′, �̂�2
iT = T−1

T∑
T

û2
it, and ûit = xit − ĉiT − �̂�′iTft.

Consider the total number of factor loadings of factor j, 𝛾 ij, that are statistically significant over i = 1, 2, … ,n:

D̂nT,𝑗 =
n∑

i=1
d̂i𝑗,nT =

n∑
i=1

1
[|ti𝑗T| > cp(n)

]
,

where 1(A) = 1 if A> 0, and zero otherwise, and the critical value function that allows for the multiple testing nature of
the problem, cp(n), is given by

cp(n) = Φ−1
(

1 −
p

2n𝛿
)
.

As before, p is the nominal size, 𝛿 > 0 is the critical value exponent and Φ−1(·) is the inverse cumulative distribution
function of the standard normal distribution. Let �̂�nT,𝑗 be the fraction of significant loadings of factor j, and note that
�̂�nT,𝑗 = D̂nT,𝑗∕n. As in the single factor case, we consider the following estimator of 𝛼j 0, for 𝑗 = 1, 2, … ,m

�̂�𝑗 =

{
1 + ln �̂�nT,𝑗

ln n
, if �̂�nT,𝑗 > 0,

0, if �̂�nT,𝑗 = 0.
(20)

We make the following assumptions:

Assumption 1. The error terms, uit, and demeaned factors ft−E (ft), are martingale difference processes with respect
to 

ui
t−1 = 𝜎

(
ui,t−1,ui,t−2, …

)
and 

𝑓

t−1 = 𝜎 (ft, ft−1, …), respectively. uit are independent over i, and of ft, and have
constant variances, 0 < 𝜎2

i < C <∞.

Assumption 2. E
{[

ft − E (ft)
] [

ft − E (ft)
]′} = 𝚺, where 𝚺 is some positive definite matrix.
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Assumption 3. There exist sufficiently large positive constants C0, C1 and s> 0 such that

supi,t Pr (|xit| > 𝜈) ≤ C0 exp
(
−C1𝜈

s) , for all 𝜈 > 0, (21)

sup𝑗,t Pr
(||𝑓𝑗t|| > 𝜈) ≤ C0 exp

(
−C1𝜈

s) , for all 𝜈 > 0. (22)

Then, we have the following theorem:

Theorem 1. Consider model (19) with m observed factors and let Assumptions 1–3 hold. Then, for any 𝛼j 0 < 1, 𝑗 =
1, 2, … ,m,

𝜓n(𝛼𝑗0)−1∕2 (ln n)
(
�̂�𝑗 − 𝛼𝑗0

)
→dN(0,C) (23)

for some C< 1, where
𝜓n(𝛼𝑗0) = p (n − n𝛼𝑗0 )n−𝛿−2𝛼𝑗0

(
1 −

p
n𝛿

)
. (24)

The above theorem provides the inferential basis for testing hypotheses on the true value of 𝛼j. The proof of the theorem
is provided in Supporting information Appendix S1-B. Below we discuss operational matters concerning the above result
and how to relax some of the assumptions of Theorem 1.

A test based on 𝜓n(𝛼𝑗0)−1∕2 (ln n)
(
�̂�𝑗 − 𝛼𝑗0

)
will be conservative, in the sense that the rejection probability under the

null hypothesis will be bounded from above by the significance level. The reason is that in general we cannot get an
asymptotic approximation for the variance of �̂�𝑗 − 𝛼𝑗0 but only an upper bound resulting in a conservative test.

Assumptions 1 and 3 can be relaxed. Rather than independence over i for uit in Assumption 1, one can assume some
spatial mixing condition, which would still allow the central limit theorem underlying (23), to hold. Further, the thin
probability tails in Assumption 3 can be replaced with a suitable moment condition in order to derive the variance bound
needed to construct a test statistic. We abstract from such complications by maintaining Assumption 3. The martingale
difference assumption for ft simplifies the analysis and allows the use of the theory in the main part of Chudik et al. (2018).
Relaxing this to a mixing assumption is possible at the expense of further mathematical complexity using, for example,
the results in Appendix S1 of Chudik et al. (2018).

Our distributional result is stated only for 𝛼j 0 < 1. Similar arguments would apply for the variance of �̂�𝑗 − 𝛼𝑗0 when
𝛼𝑗0 = 1. But the upper bound for the variance of �̂�𝑗 − 𝛼𝑗0 would be a function of nuisance parameters including 𝛾 ij. This
is the case since the dominant term in the variance is the one relating to units not affected by ft, when 𝛼j 0 < 1, and for
these units, 𝛾i𝑗 = 0. But when 𝛼𝑗0 = 1, the probability bounds that are used to derive the variance bound will not have
such a dominant term, and the remaining terms will contain 𝛾 ij. However, testing under the null hypothesis that 𝛼𝑗0 = 1
is further complicated by the fact that 𝛼𝑗0 = 1 is at the boundary of the parameter space for 𝛼j 0. It is well known (see,
e.g., Andrews, 2001) that such cases cannot be handled using standard asymptotic inference, and therefore, this case
is discussed separately, in the Supporting information Appendix S1-C. Nevertheless, it is clear from the discussion in
Section 2.1 that estimation when 𝛼0 = 1 has some very desirable properties, such as a very fast rate of convergence, which
we have referred to as ultraconsistency. We conjecture that in the case where 𝛼𝑗0 = 1 for some values of j, and 𝛼j 0 < 1 for
some values of j, the distributional results presented in Theorem 1 hold for factors for which 𝛼j 0 < 1.

4 CASE OF UNOBSERVED FACTORS

When the factors are unobserved, we can provide practical guidance on the strength of the strongest factor or factors,
and estimating the strength of other factors encounters a significant identification problem. This is related to the known
fact that latent factors are identified only up to a non-singular m×m rotation matrix, Q= (qi𝑗), where m is the assumed
number of factors.

It is instructive to review this fact. Consider the multifactor model (19) with ft unobserved. Without loss of general-
ity, suppose that m = 2 and assume that factors, ft = (𝑓1t, 𝑓2t)′, are unobserved with strengths 𝛼10 > 1/2 and 𝛼20 > 1/2.
Denote the principal component (PC) estimates of these factors by ĝt = (ĝ1t, ĝ2t)′, and note that under standard regularity
conditions in the literature (as n and T→∞)

𝑓1t = q11ĝ1t + q12ĝ2t + op(1), (25)
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𝑓2t = q21ĝ1t + q22ĝ2t + op(1). (26)

Then the estimates of the loadings associated with these PCs are given by

�̃�i =
(
�̃�i1
�̃�i2

)
=
(
Ĝ′M𝜏Ĝ

)−1Ĝ′M𝜏xi =
(
Ĝ′M𝜏Ĝ

)−1Ĝ′M𝜏F𝜸i +
(
Ĝ′M𝜏Ĝ

)−1Ĝ′M𝜏ui,

where Ĝ= (ĝ1, ĝ2, … , ĝT)′. Also since Q is non-singular, Ĝ→pFQ−1, and using the above, we have �̃�i→pQ𝜸i. It is now
easily seen that the strength of f1t (or f2t) computed using the estimates, �̃�i1, i = 1, 2, … ,n may not provide consistent
estimates of the associated factor strengths. To see this, write the result �̃�i→pQ𝜸i in an expanded format as

�̃�i1 = q11𝛾i1 + q12𝛾i2 + op(1),

�̃�i2 = q21𝛾i1 + q22𝛾i2 + op(1).

Squaring both sides and summing over i, we have

n∑
i=1
�̃�2

i1 = q2
11

n∑
i=1
𝛾2

i1 + q2
12

n∑
i=1
𝛾2

i2 + 2q11q12

n∑
i=1
𝛾i1𝛾i2 + op(1),

n∑
i=1
�̃�2

i2 = q2
21

n∑
i=1
𝛾2

i1 + q2
22

n∑
i=1
𝛾2

i2 + 2q21q22

n∑
i=1
𝛾i1𝛾i2 + op(1).

Now using the definition of factor strength in (3) and assuming that 𝛼10 >𝛼20, in general, we have2

n∑
i=1
�̃�2

i1 = ⊖(n𝛼10),
n∑

i=1
�̃�2

i2 = ⊖(n𝛼10),

namely, using the estimated loadings of the PCs does not allow us to distinguish between the strength of the two fac-
tors, and only the strength of the strongest factor can be identified. When 𝛼10 >𝛼20, identification of 𝛼20 requires setting
q21 = 0, and conversely to identify 𝛼10 when 𝛼10 <𝛼20 requires setting q12 = 0. It is worth noting that using covariance
eigenvalues does not help resolve this problem. There are two separate issues—ordering eigenvalues and how to identify
the factors associated with ordered eigenvalues. The eigenvectors associated with the largest eigenvalues are not uniquely
determined, and therefore, the identification issue remains. In conclusion, any estimate, �̂�2, is a function of the assumed
rotation and the utility of such an estimate, given the above analysis, is unclear.3

One approach to dealing with this identification problem is to estimate 𝛼0 = max(𝛼10,𝛼20). The exponent 𝛼0 can be
estimated using the estimators proposed in Bailey et al. (2016) and Bailey et al. (2019). The approach of this paper can
also be used to estimate 𝛼0 by computing the strength of the first PC, or that of the simple CSA, namely, x̄t = n−1 ∑n

i=1 xit.
One can also use the weighted CSA, x̄t,𝛾 =

∑n
i=1 ŵixit, where ŵi is estimated as the slope of x̄t in the OLS regression of xit

on an intercept and x̄t.4
Accordingly, we again emphasise on the assumption that the m unobserved factors are strong and/or semi-strong

with 1/2<𝛼j 0 ≤ 1 and we focus on estimation of 𝛼0 = max𝑗(𝛼𝑗0). In Section 4.1, we suggest how to identify, in
theory, the strengths of weaker factors. Reintroducing a subscript 0 to denote true parameters, we assume that
{xit, i = 1, 2, … ,n; t = 1, 2, … ,T} are generated from the multi-factor model (19) where the factors are unobserved with
strengths 𝛼10 >𝛼20 ≥ 𝛼30 ≥ … ≥ 𝛼m0 > 1/2. Clearly 𝛼0 = 𝛼10. To emphasise the focus on the strongest factor, we recast the
model as follows:

xit = ci + 𝛾i𝑓t + vit, for i = 1, 2, … ,n and t = 1, 2, … ,T (27)

2Note that ||∑n
i=1 𝛾i1𝛾i2|| < supi |𝛾i1| (∑n

i=1 |𝛾i2|) = ⊖(n𝛼2 ).
3It may be the case that using a rotation criterion can provide an interesting avenue for further research on this issue. See, for example, Kaiser (1958),
Ročková and George (2016) and Freyaldenhoven (2021).
4In most applications, 𝛼 can be estimated consistently using the simple average. But as shown in Pesaran (2015), pp. 452–454, the weighted average is
more appropriate when the loadings of the strong factors have zero means. Also note that by construction

∑n
i=1 ŵi = 1.
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vit =
m∑
𝑗=2
𝛾i𝑗𝑓𝑗t + uit, (28)

where the strongest factor ft has strength 𝛼0 while the rest of the factors have strengths 𝛼20 ≥ 𝛼30 ≥ … ≥ 𝛼m0 > 1/2. We
assume that the m-dimensional vector, ft = (𝑓t, 𝑓2t, … , 𝑓m,t)′, is unobserved. We also assume that, for some unknown
ordering of units over i,

|𝛾i| > c > 0 a.s. for i = 1, 2, … , [n𝛼0 ],|𝛾i| = 0 a.s. for i = [n𝛼0 ] + 1, [n𝛼0] + 2, … ,n.
(29)

|𝛾i𝑗| > c > 0 a.s. for i = 1, 2, … , [n𝛼𝑗0 ], 𝑗 = 2, … ,m|𝛾i𝑗| = 0 a.s. for i = [n𝛼𝑗0 ] + 1, [n𝛼𝑗0 ] + 2, … ,n, 𝑗 = 2, … ,m.
(30)

In what follows, we continue to consider that Assumptions 1 and 3 hold for the above representation and use the
simple CSA, x̄t, to consistently estimate 𝛼0 = 𝛼10. Taking the first factor to be the strongest is made for convenience (with
𝛼0 − 𝛼j 0 > 0, for 𝑗 = 2, 3, … ,m). The strength of the strongest factor, 𝛼0, is defined by (with 𝛾 i denoting the associated
loadings)

n∑
i=1

|𝛾i| = ⊖ (n𝛼0 ) ,

and the strengths of the remaining factors by

n∑
i=1

|𝛾i𝑗| = ⊖ (n𝛼𝑗0 ) , for 𝑗 = 2, 3, … ,m.

In addition, we assume that the nonzero factor loadings have nonzero means, namely,

lim
n→∞

n−𝛼0

n∑
i=1
𝛾i ≠ 0, and lim

n→∞
n−𝛼𝑗0

n∑
i=1
𝛾i𝑗 ≠ 0,

and hence,

�̄� = �̄�1 = n−1
n∑

i=1
𝛾i = ⊖

(
n𝛼0−1) ,

�̄�𝑗 = n−1
n∑

i=1
𝛾i𝑗 = ⊖

(
n𝛼𝑗0−1) , for 𝑗 = 2, … ,m.

Note that we do not assume any particular ordering of the zero loadings across the units.
For each i, consider the least squares regression of {xit}T

t=1 on an intercept and the CSA of xit, x̄t, and denote the resulting
estimators by ĉiT and 𝛽iT , respectively. As in the single factor case, 𝛼0 = max𝑗(𝛼𝑗0) is estimated by (7), except that when
computing the t statistics, tiT, defined by (4), f is replaced by x̄= (x̄1, x̄2, … , x̄T)′. Denote by t̄iT = 𝛽iT∕s.e.

(
𝛽iT

)
, the t

statistic corresponding to 𝛾 i:

t̄iT =
(
x̄′M𝜏 x̄

)−1∕2 (x̄′M𝜏xi
)

�̂�iT
,

xi = (xi1, xi2, … , xiT)′, and �̂�2
iT = T−1x′

i MH̄xi, where MH̄ = IT − H̄
(
H̄′H̄

)−1H̄′, with H̄= (𝝉T , x̄).
As before, consider the number of regressions with significant slope coefficients:

D̄nT =
n∑

i=1
d̄i,nT =

n∑
i=1

1
[|t̄iT| > cp(n)

]
,
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where the critical value function, cp(n), is as specified earlier. Then, setting �̄�nT = D̄nT∕n, we have

�̂� =

{
1 + ln �̄�nT

ln n
, if �̄�nT > 0,

0, if �̄�nT = 0.

To investigate the limiting properties of �̂� we first consider the value of t̄iT under (19) and note that

x̄ = c̄𝝉T + F�̄� + ū , and xi = ci𝝉T + F𝜸i + ui,

where F= (f1, f2, … , fT)′, 𝜸i = (𝛾i, 𝛾i2, … , 𝛾im)′, �̄� = n−1 ∑n
i=1 𝜸i, ui = (ui1,ui2, … ,uiT)′ and ū=n−1 ∑n

i=1 ui. Using these
results, we have

t̄iT =
T−1∕2 (x̄′M𝜏xi

)
�̂�iT(T−1x̄′M𝜏 x̄)1∕2 =

T−1∕2(F�̄�+ ū)′M𝜏

(
F𝜸i + ui

)
�̂�iT

[
T−1(F�̄�+ ū)′M𝜏(F�̄�+ ū)

]1∕2 , (31)

and

�̂�2
iT = T−1(F𝜸i + ui

)′MH̄
(
F𝜸i + ui

)
. (32)

Before proceeding, we slightly modify our assumptions to address the identification issue inherent in considering
unobserved factors.

Assumption 4. E
{[

ft − E (ft)
] [

ft − E (ft)
]′} = Im.

Lemma 3 below, which is of fundamental importance, is proven in Supporting information Appendix S1-A and provides
probability bounds for t̄iT . It uses results from the auxiliary Lemma 4 (also stated and proved in Supporting information
Appendix S1-A) in terms of the rates in probability and probability tail bounds for the constituent parts of t̄iT .

Lemma 3. Consider model (27)–(28) with factor loadings given by (29)–(30), where ft is unobserved, and let Assump-
tions 1,3 and 4 hold. Then, as long as

√
Tn(𝛼20−𝛼0) → 0, for some C> 0,

Pr
[|t̄iT| > cp(n)|𝛾i ≠ 0

]
> 1 − O

[
exp(−TC)

]
, (33)

and
Pr

[|t̄iT| > cp(n)|𝛾i = 0
]
≤

Cp
n𝛿
. (34)

Equations (33) and (34) provide the crucial ingredients for the main result given below, as (33) ensures that the t statistic
rejects with high probability when a unit contains a factor, while (34) ensures that the probability of rejection for a unit
that does not contain a factor, is small.

Overall, we have the following theorem, proven in Supporting information Appendix S1-B, justifying the proposed
method for unobserved factors.

Theorem 2. Consider model (27) and (28) with factor loadings given by (29) and (30), where ft is unobserved, let Assump-
tions 1,3 and 4 hold and denote by 𝛼0 the true value of 𝛼 (the strength of the strongest unobserved factor). Then, as long
as

√
Tn(𝛼20−𝛼0) → 0, for any 𝛼0 < 1,

𝜓n(𝛼0)−1∕2 (ln n) (�̂� − 𝛼0)→dN(0,C)

for some C< 1, where 𝛼20 denotes the strength of the second strongest factor, and

𝜓n(𝛼0) = p (n − n𝛼0 )n−𝛿−2𝛼0

(
1 −

p
n𝛿

)
.

The above theorem provides the inferential basis for testing hypotheses on the true value of 𝛼, in the case of unobserved
factors. Clearly, since 1≥ 𝛼0 ≥ 𝛼20 ≥ 0.5, T/n→ 0 is a necessary condition and, of course, the sufficient conditions may be
more restrictive depending on the values of 𝛼0 and 𝛼20.
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The above analysis readily extends to the case where two or more of the unobserved factors have the same strength. For
example, suppose that 𝛼0 = max𝑗(𝛼𝑗0) = 𝛼10 = 𝛼20 > 𝛼30 ≥ 𝛼40 ≥ … . ≥ 𝛼m0. Then it is easily seen that 𝛼 is consistently
estimated by �̂�, even though 𝛼10 = 𝛼20. What matters for identification of 𝛼0 in this case is that

√
Tn(𝛼30−𝛼0) → 0. This case

is further investigated below using Monte Carlo techniques.

4.1 Multiple unobserved factors of differing strengths
Our analysis has focused on 𝛼0 = 𝛼10 = max𝑗(𝛼𝑗0). A possible way to provide some information on 𝛼j 0, j> 1, may be based
on a sequential application of weighted CSAs. In particular, once the least squares regression of {xit}T

t=1 on an intercept
and the CSA of xit, x̄t, has been fitted, residuals can be obtained. Simple CSAs of these residuals are easily seen to be
identically equal to zero. However, weighted CSAs can be constructed, along the lines discussed in Pesaran (2015), pp.
452–454, and the t-statistics of the relevant loadings can be used, in a similar way to that discussed above, to construct
estimators for 𝛼20 and, sequentially via the construction of further sets of residuals, for 𝛼j 0, j> 2. It is possible to show
that, if

√
Tn(𝛼𝑗+1,0−𝛼𝑗0) → 0, j> 1, a result similar to that of Theorem 2 holds for 𝛼j 0, j> 1. This is stated formally in the

following theorem.

Theorem 3. Consider model (27) and (28) with factor loadings given by (29) and (30), where ft is unobserved. Suppose
that Assumptions 1, 3 and 4 hold, and denote by 𝛼j 0 the true value of 𝛼j. Then, as long as

√
Tn(𝛼𝑗+1,0−𝛼𝑗0) → 0, j> 1, for

any 0.5<𝛼j+ 1, 0 <𝛼j 0 < 1,
𝜓n(𝛼𝑗0)−1∕2 (ln n)

(
�̂�𝑗 − 𝛼𝑗0

)
→dN(0,C)

for some C< 1, and
𝜓n(𝛼𝑗0) = p (n − n𝛼𝑗0 )n−𝛿−2𝛼𝑗0

(
1 −

p
n𝛿

)
.

The proof of the theorem is provided in Supporting information Appendix S1-B. However, this result clearly requires
considerable differences to exist between the successive values of 𝛼's and/or very large values for n. The need for large
values of n in the case of unobserved factors, contrasts to our results for the case of observed factors, where a less stringent
condition on the relative expansion rates of n and T is required. The conditions of Theorem 3 must be considered when
attempting to estimate second or third (semi) strongest unobserved factors. Estimation of factor strength in the case of
unobserved factors involves the additional difficulty of how to distinguish between the strongest, the second strongest,
the third strongest, and so on, factors. The condition

√
Tn(𝛼𝑗+1,0−𝛼𝑗0) → 0, j> 1 in Theorem 3 relates to this identification

problem and requires a sufficient degree of difference between successive factor strengths for consistent estimation. In
practice, we can only hope to identify the first two or three strongest factors so long as their strengths are close to unity
and at the same time are not too close to one another.

Finally, one may wish to have some indication of the value of m0 (the true number of factors), and to this end some
preliminary investigation might be required. One possibility would be to consider various existing methods for selecting
the number of factors with all the attendant, well-known, performance issues such methods present. Of course, these
issues are further exacerbated if factors under consideration are not sufficiently strong. In short, special care needs to
be exercised when estimating factor strength in the case of unobserved factors. In practice, it might only be possible to
identify and estimate the strengths of top 2 or 3 unobserved factors, at most. Also, when factors are unobserved and
their strengths are not known a priori, the meaning of m0 itself is ambiguous and must be defined with reference to
the strengths of the factors themselves. In our setup, m0 refers to the number of factors with 𝛼j 0 > 1/2. But condition√

Tn(𝛼𝑗+1,0−𝛼𝑗0) → 0 of Theorem 3 suggests that only factors with 𝛼j 0 sufficiently large can be identified. This contrasts to
the standard factor literature that assumes all factors are a priori strong with 𝛼𝑗0 = 1, for 𝑗 = 1, 2, … ,m0. The concept of
m0 and its identification in the more general setting where 𝛼j 0 ≤ 1 requires further investigation.

5 MONTE CARLO STUDY

5.1 Design
We investigate the small sample properties of the proposed estimator of 𝛼 under both observed and unobserved factors
using a number of Monte Carlo simulations. We consider the following two-factor data generating process (DGP):

xit = ci + 𝛾i1𝑓1t + 𝛾i2𝑓2t + uit, (35)
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for i = 1, 2, … ,n and t = 1, 2, … ,T. We generate the unit-specific effects as ci ∼ IIDN(0, 1), for i = 1, 2, … ,n. The
factors, ft = (𝑓1t, 𝑓2t)′, are generated as multivariate normal: ft ∼ N

(
0,𝚺𝑓

)
, where

𝚺𝑓 =
(

𝜎2
𝑓1

𝜌12𝜎𝑓1𝜎𝑓2

𝜌12𝜎𝑓1𝜎𝑓2 𝜎2
𝑓2

)
,

with 𝜎𝑓1 = 𝜎𝑓2 = 1, and 𝜌12 = corr (𝑓1t, 𝑓2t), using the values 𝜌12 = 0.0, 0.3. The factors are generated as autoregressive
processes (considering both stationary and unit root cases):

𝑓𝑗t =
⎧⎪⎨⎪⎩
𝜌𝑓𝑗𝑓𝑗,t−1 +

√
1 − 𝜌2

𝑓𝑗
𝜀𝑗t, if |||𝜌𝑓𝑗 ||| < 1

𝑓𝑗,t−1 + 𝜀𝑗t, if 𝜌𝑓𝑗 = 1
, for t = −49,−48, … , 1, … ,T

with 𝑓𝑗,−50 = 0 and 𝜀jt ∼ i.i.d.N(0, 1), 𝑗 = 1, 2. In the stationary case, we set 𝜌𝑓1 = 𝜌𝑓2 = 0.5.
For the innovations, uit, we consider two cases: (i) Gaussian, where uit∽IIDN(0, 𝜎2

i ) for i = 1, 2, … ,n; (ii) non-Gaussian,
where the errors are generated as uit = 𝜎i

2

(
𝜒2

2,it − 2
)

, where 𝜒2
2,it for i = 1, 2, … ,n are independent draws from a 𝜒2

distribution with 2 degrees of freedom, and 𝜎2
i are generated as IID(1 + 𝜒2

2,i)∕3.
In terms of the factor loadings, 𝛾 i1 and 𝛾 i2, first we generate vij ∽IIDU(𝜇v𝑗 − 0.2, 𝜇v𝑗 + 0.2), for i = 1, 2, … ,n and 𝑗 = 1, 2

(such that E
(

vi𝑗
)
= 𝜇v𝑗 ). Next, we randomly assign [n𝛼10] and [n𝛼20 ] of these random variables as elements of vectors

𝜸𝑗 =
(
𝛾1𝑗 , 𝛾2𝑗 , … , 𝛾n𝑗

)′, 𝑗 = 1, 2, respectively, where [.] denotes the integer part operator.5 For 𝛼10 and 𝛼20, we consider
values of (𝛼10, 𝛼20) starting with 0.75 and rising to 1 at 0.05 increments, namely, 0.75, 0.80, … , 0.95, 1.00, comprising 36
experiments for all combinations of a10 and a20 in the range [0.75, 1.00].6 We set 𝜇v1 = 𝜇v2 = 0.71 so that both means are
sufficiently different from zero. We then select the error variances, 𝜎2

i , so as to achieve an average fit across all units of
around R̄2

n = n−1 ∑n
i=1 R2

i ≈ 0.34. This coincides with the average fits of regressions from our finance application. Scaling
𝜎2

i by 3/4 achieves R̄2
n ≈ 0.41. To this end, we note that

R2
i =

𝛾2
i1 + 𝛾

2
i2

𝛾2
i1 + 𝛾

2
i2 + 𝜎

2
i

=
𝜛2

i1 +𝜛
2
i2

1 +𝜛2
i1 +𝜛

2
i2

, if for the i th unit: both 𝛾i1 ≠ 0 and 𝛾i2 ≠ 0,

where 𝜛2
i𝑗 = 𝛾2

i𝑗∕𝜎
2
i , for 𝑗 = 1, 2. Similarly, R2

i = 𝜛2
i1∕

(
1 +𝜛2

i1

)
, if 𝛾 i1 ≠ 0 and 𝛾i2 = 0, R2

i = 𝜛2
i2∕

(
1 +𝜛2

i2

)
, 𝛾 i2 ≠ 0 and

𝛾i1 = 0, and clearly R2
i = 0, if 𝛾i1 = 𝛾i2 = 0.

We consider the following experiments:

EXP 1A: (observed single factor—Gaussian errors): using (35) with 𝛾i2 = 0, for all i, and Gaussian errors.
EXP 1B: (observed single factor—non-Gaussian errors): using (35) with 𝛾i2 = 0, for all i, and non-Gaussian
errors.
EXP 2A: (two observed factors—Gaussian errors) a two-factor model with correlated observed factors
(𝜌12 = 0.3) and Gaussian errors.
EXP 2B: (two observed factors—non-Gaussian errors) a two-factor model with correlated observed factors
(𝜌12 = 0.3) and non-Gaussian errors.
EXP 3A: (unobserved single factor—non-Gaussian errors): using (35) subject to 𝛾i2 = 0, for all i, and
non-Gaussian errors with 𝛼0 = 𝛼10 computed using the simple CSA x̄t = n−1 ∑n

i=1 xit.
EXP 3B: (two unobserved factors—non-Gaussian errors): using (35) with 𝜌12 = 0.0 and non-Gaussian errors,
𝛼10 = 0.95, 1.00, and 𝛼20 = 0.51, 0.75, 0.95, 1.00. In this case, 𝛼0 = max (𝛼10, 𝛼20) is estimated using the simple CSA
x̄t = n−1 ∑n

i=1 xit.
EXP 3C: (two unobserved factors—Gaussian errors): using (35) with 𝜌12 = 0.0, 𝛼10 = 0.90, 1.00; 𝛼20 =
0.51, 0.75, 0.90, and Gaussian errors. For this experiment, 𝛼10 and𝛼20 are estimated using sequentially weighted CSAs

5The randomisation of loadings becomes important when analysing the case of unobserved factors, as discussed in Section 4.
6Results for combinations of 𝛼10 and 𝛼20 below 0.75 are available upon request.
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of xit, namely, x̃1t = n−1 ∑n
i=1 ŵ1ixit, where ŵ1i =

∑T
t=1 x̄txit∕

∑T
t=1 x̄2

t , and then the weighted CSAs of the residuals,
x̃2t, obtained from the first stage regression of xit on an intercept and x̃1t.7

Further, we consider an additional experiment that assumes a misspecified observed factor model that mirrors the
analysis of our empirical finance example in Section 6.1:

EXP 4: (observed misspecified single factor—Gaussian errors): a misspecified single observed factor model,
where the DGP is a two-factor model with correlated factors (𝜌12 = 0.3) and Gaussian errors in (35), 𝛼10 = 1,
and 𝛼20 = 0.75, 0.80, … , 0.95,1.00. For this experiment, we report the estimates of 𝛼10 computed based on the
misspecified single factor model xit = ci + 𝛾 i1f1t + eit.

The factor strengths are estimated using (7), with the nominal size of the associated multiple tests set to p = 0.10 and
the critical value exponent to 𝛿 = 1∕4.8

For all experiments, we report bias and root mean square error (RMSE) of �̂�𝑗 , size and power of tests of H0 ∶ 𝛼𝑗 = 𝛼𝑗0
against 𝛼𝑗 = 𝛼𝑗a, 𝑗 = 1, 2, using the test statistic given by

z�̂�𝑗∶𝛼𝑗0 =
(ln n)

(
�̂�𝑗 − 𝛼𝑗0

)
− p

(
n − n�̂�𝑗

)
n−𝛿−�̂�𝑗[

p
(

n − nâ𝑗
)

n−𝛿−2�̂�𝑗
(

1 − p
n𝛿

)]1∕2 , 𝑗 = 1, 2. (36)

We consider two-sided tests throughout. Empirical size is computed as

size𝑗,R = R−1
R∑

r=1
I
(|||z�̂�𝑗∶𝛼𝑗0 ||| > cv |H0

)
, 𝑗 = 1, 2,

where cv is the critical value of the two-sided normal distribution test which we set to cv = 1.96 (for 95% coverage). The
empirical power of the tests of H0 ∶ 𝛼𝑗 = 𝛼𝑗0 against the alternatives H1 ∶ 𝛼𝑗 = 𝛼𝑗a, are obtained for 𝛼𝑗a = 𝛼𝑗0 + 𝜅,
𝜅 = −0.05,−0.045, … , 0.045, 0.05 (20 alternatives) for values of 𝛼j 0 ∈ [0.75, 1.00). Here, DGP (35) is generated under H1,
and the rejection frequency is computed as

power𝑗,R = R−1
R∑

r=1
I
(|||z�̂�𝑗∶𝛼𝑗0 ||| > cv |H1

)
, 𝑗 = 1, 2,

where z�̂�𝑗∶𝛼𝑗0 is given by (36). When 𝛼j 0 and/or 𝛼ja is equal to unity, we can compute size and power following the
randomisation procedure proposed in Supporting information Appendix S1-C.

For all experiments, we consider all combinations of n = {100,200, 500,1000} and T = {60,120, 200,500, 1000}, and set
the number of replications per experiment to R = 2000. The parameter values of ci and 𝛾 ij in the DGP are redrawn at each
replication.

5.2 MC findings
We start with the more general two-factor model where the factors are observed (Experiments 2A and 2B). Overall, the
outcomes are very similar when the model is generated under a one- or two-factor specification or under normal and
non-normal errors. To save space, here we report the results for Experiment 2B with moderately correlated factors (𝜌12 =
0.3) and non-Gaussian errors.9 Table 1 reports bias, RMSE and size for the estimator of the strength of factor f1t, namely,
�̂�1, for different values of 𝛼10, and different (n, T) combinations, when the strength of the second factor is set to 𝛼20 = 0.85.
As to be expected, bias and RMSE are universally low and gradually decrease as n, T and 𝛼10 rise. Especially when 𝛼10 = 1,
bias and RMSE are negligible even when T = 60. Similar results hold when 𝛼20 is set to different values in the range 0.75
to 1.00. These are available in Supporting information Appendix S1-D.

7Details of the estimation procedure can be found in Supporting information Appendix S1-D.
8We also consider other values of p and 𝛿, namely, p = 0.05 and 𝛿 = 1∕3 or 1/2, and found the results to be qualitatively very similar to those obtained
when p = 0.10 and 𝛿 = 1∕4. See Tables S21–S25 in Supporting information Appendix S1-D, which show bias, root mean square error (RMSE) and size
results for Experiment 2B corresponding to these values.
9Corresponding results when factors are uncorrelated (𝜌12 = 0.0) or under Gaussian errors are given in Supporting information Appendix S1-D.
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TABLE 1 Bias, root mean square error (RMSE) and size (×100) of estimating different strengths of the first factor in the
case of experiment 2B (two observed factors - non-Gaussian errors), when the strength of the second factor is set to 0.85

Bias (×100) RMSE (×100) Size (×100)
n∖ T 60 120 200 500 1000 60 120 200 500 1000 60 120 200 500 1000

𝛼10 = 0.75, 𝛼20 = 0.85
100 1.13 1.18 1.15 1.07 1.03 1.65 1.54 1.52 1.43 1.40 9.00 4.10 3.65 2.40 2.25
200 1.46 1.46 1.39 1.32 1.32 1.68 1.62 1.55 1.47 1.47 14.50 9.50 8.30 7.10 6.60
500 1.28 1.30 1.21 1.15 1.13 1.41 1.37 1.28 1.22 1.20 22.40 13.55 10.00 8.05 8.20
1000 1.27 1.25 1.20 1.12 1.10 1.36 1.30 1.24 1.16 1.14 26.30 15.00 11.45 7.70 6.40

𝛼10 = 0.80, 𝛼20 = 0.85
100 0.63 0.67 0.65 0.61 0.58 1.13 1.00 1.00 0.95 0.92 27.60 18.10 18.55 17.95 19.70
200 0.90 0.97 0.91 0.89 0.86 1.11 1.10 1.05 1.01 0.98 20.45 12.60 11.45 9.75 7.75
500 0.82 0.90 0.85 0.82 0.80 0.94 0.96 0.90 0.87 0.86 22.00 12.45 8.30 7.00 7.10
1000 0.78 0.85 0.81 0.76 0.75 0.87 0.88 0.84 0.79 0.77 28.35 17.05 11.60 8.40 6.65

𝛼10 = 0.85, 𝛼20 = 0.85
100 0.51 0.66 0.68 0.62 0.61 0.87 0.85 0.87 0.81 0.79 21.60 9.65 9.15 7.65 6.90
200 0.49 0.61 0.59 0.55 0.54 0.70 0.71 0.69 0.65 0.64 14.15 5.45 4.15 3.15 3.45
500 0.38 0.52 0.49 0.46 0.46 0.51 0.57 0.53 0.51 0.50 29.35 11.95 7.40 8.45 7.10
1000 0.37 0.49 0.48 0.44 0.43 0.46 0.52 0.50 0.47 0.45 31.50 11.00 7.65 5.45 4.10

𝛼10 = 0.90, 𝛼20 = 0.85
100 0.21 0.39 0.39 0.37 0.36 0.58 0.54 0.54 0.52 0.51 23.60 4.15 3.60 3.10 2.85
200 0.10 0.27 0.26 0.24 0.24 0.38 0.38 0.35 0.33 0.34 36.30 15.10 12.60 12.25 12.55
500 0.11 0.29 0.28 0.27 0.26 0.29 0.32 0.31 0.30 0.29 42.40 11.05 7.05 7.90 7.40
1000 0.10 0.27 0.28 0.26 0.25 0.24 0.29 0.29 0.27 0.27 48.70 11.25 9.85 5.55 6.70

𝛼10 = 0.95, 𝛼20 = 0.85
100 −0.16 0.06 0.08 0.06 0.06 0.44 0.25 0.24 0.22 0.22 38.35 7.20 3.65 2.25 2.35
200 −0.10 0.10 0.11 0.10 0.10 0.30 0.19 0.17 0.18 0.17 46.80 8.85 4.40 4.75 3.95
500 −0.11 0.10 0.11 0.11 0.10 0.25 0.13 0.13 0.13 0.13 68.20 14.45 8.65 7.55 7.80
1000 −0.12 0.09 0.10 0.09 0.09 0.23 0.10 0.11 0.10 0.10 77.10 11.45 5.60 4.60 5.05

𝛼10 = 1.00, 𝛼20 = 0.85
100 −0.28 −0.02 0.00 0.00 0.00 0.41 0.06 0.02 0.00 0.00 — — — — —
200 −0.25 −0.02 0.00 0.00 0.00 0.33 0.05 0.01 0.00 0.00 — — — — —
500 −0.26 −0.02 0.00 0.00 0.00 0.32 0.03 0.01 0.00 0.00 — — — — —
1000 −0.25 −0.02 0.00 0.00 0.00 0.31 0.03 0.00 0.00 0.00 — — — — —

Note: The parameters of data generating process (DGP) (35 ) are generated as follows: for unit-specific effects, ci ∼ IIDN(0, 1), for i =
1, 2, … ,n. The factors, (𝑓1t , 𝑓2t), are multivariate normal with variances 𝜎2

𝑓1
= 𝜎2

𝑓2 = 1 and correlation given by 𝜌12 = corr(𝑓1, 𝑓2) = 0.3.
Each factor assumes an autoregressive process with correlation coefficients 𝜌𝑓𝑗 = 0.5, 𝑗 = 1, 2. The factor loadings are generated as vij

∽IIDU(𝜇v𝑗 − 0.2, 𝜇v𝑗 + 0.2), for [n𝛼𝑗0 ] units, 𝑗 = 1, 2, respectively, and zero otherwise. We set 𝜇v1
= 𝜇v2

= 0.71. Both 𝛼10 and 𝛼20 range

between [0.75, 1.00] with 0.05 increments. The innovations uit are non-Gaussian, such that uit =
𝜎i
2

(
𝜒2

2,it − 2
)

, with 𝜎2
i ∼ IID(1 + 𝜒2

2,i)∕3,
for i = 1, 2, … ,n. In the computation of �̂�𝑗 , 𝑗 = 1, 2, we use p = 0.10 and 𝛿 = 1∕4 when setting the critical value. Size is computed under
H0: 𝛼j=𝛼j 0, for 𝑗 = 1, 2, using a two-sided alternative. The number of replications is set to R = 2000.

Moving on to the rejection probabilities under the null hypothesis, we note that since the variance of our proposed
estimator is quite small, the rejection probabilities are sensitive to the bias of �̂�1. Hence, for smaller values of 𝛼10, the
test is considerably oversized, which is to be expected. However, as the sample size and 𝛼10 increase, the size distortion
reduces considerably, resulting in a well-behaved test under the null hypothesis. For 𝛼10 = 0.95, correct empirical size is
achieved even for moderate values of T, while, as mentioned earlier, when 𝛼10 = 1 our estimator has an exponential rate
of convergence and rapidly converges to its true value. Next, we turn to the power of the test and consider the rejection
probabilities under a sequence of alternative hypotheses. Figure 1 depicts power functions corresponding to the strength
of factor f1t under non-Gaussian errors, for values of 𝛼10 = 0.80, 0.85, 0.90 and 0.95 when 𝛼20 = 0.85, T = 200, and as n
increases from 100 to 1000. This figure clearly shows that the proposed estimator is very precisely estimated for all values
of 𝛼10 considered, and for all (n, T) combinations. Also as 𝛼10 rises towards unity, the power approaches unity even for very
small deviations from the null. We do not report power results for 𝛼10 = 1, due to the ultraconsistency of the estimator in
this case.

Similar findings hold when we consider models with one observed factor (Experiments 1A and 1B), irrespective of
whether the errors are Gaussian. Bias, RMSE and size results under Gaussian and non-Gaussian errors are shown in



16 BAILEY ET AL.

FIGURE 1 Empirical power functions associated with testing different strengths of the first factor in the case of Experiment 2B (two
observed factors—non-Gaussian errors), when the strength of the second factor is set to 0.85, n = 100,200, 500,1000 and T = 200. Notes: See
the notes to Table 1 for details of the data generating process. Power is computed under H1: 𝛼1a=𝛼10 + 𝜅, where
𝜅 = −0.05,−0.045, … , 0.045, 0.05. The number of replications is set to R = 2000 [Colour figure can be viewed at wileyonlinelibrary.com]

Tables S1a and S1b of Supporting information Appendix S1-D. Corresponding power functions are shown in Figure S1a,b
of the same supporting information appendix and give a similar picture as the one we discussed for the two-factor case.

We now consider experiments where at the estimation stage the number and/or the identity of factors are assumed
unknown. In the case of Experiment 3A, the DGP is generated with a single factor, whereas under Experiments 3B and 3C,
the DGP is generated with two uncorrelated factors. In the first of these experiments, the factor strength 𝛼10 is computed
with respect to the pervasiveness of the simple CSA, x̄t. This case is analysed in Section 4. The results corresponding to
Experiment 3A when errors are non-Gaussian are summarised in Table 2 with the associated power functions in Figure 2.
As can be seen, the small sample performance of the estimator of factor strength deteriorates somewhat as compared
with when the factor is known, particularly for values of 𝛼0 that are not sufficiently close to unity. The empirical size is
particularly elevated for values of 𝛼0 ≤ 0.9 when compared with the case of observed factors. However, for large sample
sizes and values for 𝛼0 close to unity, the proposed estimator seems to be reasonably well behaved even if the factor is
unobserved.

In the case of two unobserved factors (Experiment 3B), we estimate 𝛼0 = max (𝛼10, 𝛼20), again using the simple CSA,
x̄t, first when 𝛼10 = 1 and 𝛼20 = 0.51, 0.75, 0.95, 1. As shown in the top panel of Table 3 under non-Gaussian errors,
when 𝛼20 is set to the lower bound (= 0.51), then bias and RMSE results are again universally very low and match the
results of the case of one unobserved factor, which is expected. Some deterioration in the results can be detected as 𝛼20

is increased towards unity, for small values of T, for example, T = 60 or 120, but again the size distortions vanish as T
increases. The ultraconsistency of our estimator when 𝛼10 = 1 is evident by the values for both bias and RMSE measures,
which are so small that we have scaled them up by 10,000 in the top panel of Table 3. When 𝛼10, 𝛼20 < 1, estimating 𝛼0

becomes more challenging. This is clear from the bias and RMSE results shown in the bottom panel of Table 3, when
𝛼10 = 0.95 and 𝛼20 is set to the same values as before (here the scaling of all bias and RMSE values is returned to 100). In
line with the conditions of Theorem 2, namely,

√
Tn(𝛼20−𝛼10) → 0, results worsen for values of 𝛼20 relatively close to 𝛼10,

http://wileyonlinelibrary.com
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TABLE 2 Bias, root mean square error (RMSE) and size (×100) of estimating the strength of the strongest factor in the
case of Experiment 3A (unobserved single factor—non-Gaussian errors) using cross-section average

Bias (×100) RMSE (×100) Size (×100)
n∖ T 60 120 200 500 1000 60 120 200 500 1000 60 120 200 500 1000

𝛼10 = 0.75
100 2.22 2.40 2.70 4.34 6.69 2.76 2.84 3.12 4.70 6.98 25.40 28.15 35.35 73.55 98.15
200 2.07 2.02 2.10 2.60 3.49 2.41 2.26 2.33 2.80 3.69 31.40 29.80 32.10 51.80 82.70
500 1.66 1.61 1.56 1.61 1.81 1.88 1.75 1.67 1.72 1.92 33.00 29.30 28.05 30.15 43.60
1000 1.54 1.45 1.39 1.36 1.43 1.72 1.55 1.45 1.42 1.49 38.30 30.00 26.65 24.85 30.00

𝛼10 = 0.80
100 1.21 1.28 1.40 2.17 3.32 1.65 1.64 1.73 2.46 3.58 33.10 28.25 30.40 55.55 85.55
200 1.22 1.22 1.21 1.40 1.78 1.46 1.37 1.36 1.54 1.93 29.30 25.35 23.70 34.00 55.95
500 1.02 1.03 0.99 0.99 1.04 1.16 1.11 1.05 1.05 1.09 26.50 20.60 16.90 17.65 21.05
1000 0.92 0.92 0.87 0.85 0.86 1.02 0.97 0.91 0.88 0.89 32.40 24.45 19.95 17.35 17.70

𝛼10 = 0.85
100 0.87 0.93 0.96 1.27 1.72 1.15 1.14 1.16 1.46 1.91 25.90 20.80 22.05 37.40 63.10
200 0.68 0.72 0.69 0.75 0.89 0.86 0.83 0.80 0.86 1.00 15.70 10.65 8.90 12.50 20.25
500 0.46 0.57 0.55 0.53 0.53 0.62 0.62 0.59 0.57 0.58 25.35 13.60 10.75 9.50 11.00
1000 0.46 0.52 0.49 0.47 0.47 0.54 0.55 0.51 0.50 0.50 27.20 14.75 9.30 7.85 7.25

𝛼10 = 0.90
100 0.41 0.50 0.50 0.61 0.78 0.66 0.64 0.66 0.76 0.93 17.55 7.25 7.20 12.15 22.55
200 0.24 0.31 0.30 0.32 0.36 0.44 0.40 0.39 0.41 0.44 28.10 12.75 12.85 12.35 12.90
500 0.20 0.30 0.30 0.28 0.28 0.32 0.34 0.33 0.32 0.31 30.75 10.65 8.40 7.20 8.65
1000 0.17 0.29 0.28 0.27 0.26 0.26 0.31 0.29 0.28 0.28 38.65 14.25 9.45 7.65 7.75

𝛼10 = 0.95
100 0.00 0.10 0.11 0.14 0.19 0.36 0.26 0.26 0.29 0.34 25.30 5.40 4.95 6.75 10.20
200 0.00 0.12 0.11 0.12 0.13 0.25 0.19 0.18 0.19 0.20 32.90 7.20 4.85 5.75 6.15
500 −0.02 0.11 0.12 0.11 0.11 0.18 0.14 0.14 0.13 0.14 54.55 11.65 7.10 7.60 9.65
1000 −0.05 0.10 0.10 0.09 0.09 0.16 0.11 0.11 0.11 0.10 64.50 8.60 5.60 5.90 4.75

𝛼10 = 1.00
100 −0.15 −0.01 0.00 0.00 0.00 0.26 0.04 0.00 0.00 0.00 — — — — —
200 −0.16 −0.01 0.00 0.00 0.00 0.23 0.03 0.00 0.00 0.00 — — — — —
500 −0.18 −0.01 0.00 0.00 0.00 0.23 0.02 0.00 0.00 0.00 — — — — —
1000 −0.18 −0.01 0.00 0.00 0.00 0.23 0.02 0.00 0.00 0.00 — — — — —

Note: The parameters of data generating process (DGP) (35 ) are generated as follows: for unit-specific effects, ci ∼ IIDN(0, 1), for i =
1, 2, … ,n. The factor, f1t, is normally distributed with variance 𝜎2

𝑓1
= 1. The factor assumes an autoregressive process with correlation coef-

ficient 𝜌𝑓1
= 0.5. The factor loadings are generated as vi1 ∽IIDU(𝜇v1

−0.2, 𝜇v1
+0.2), for [n𝛼10 ] units, and zero otherwise. vi2 = 0, for all i. We

set 𝜇v1
= 0.71. 𝛼10 ranges between [0.75, 1.00] with 0.05 increments. The innovations uit are non-Gaussian, such that uit =

𝜎i
2

(
𝜒2

2,it − 2
)

,
with 𝜎2

i ∼ IID(1 + 𝜒2
2,i)∕3, for i = 1, 2, … ,n. 𝛼0 = 𝛼10 is estimated by regressing observations, xit, on an intercept and the cross-sectional

average of xit, x̄t = n−1 ∑n
i=1 xit , for t = 1, 2, … ,T. In the computation of �̂�1 we use p = 0.10 and 𝛿 = 1∕4 when setting the critical value.

The number of replications is set to R = 2000.

but improve as the distance between 𝛼10 and 𝛼20 widens, for any given value of n and T. When 𝛼20 = 1, then the estimator
of 𝛼0 = max (𝛼10, 𝛼20) becomes ultraconsistent, as was the case in the top panel of Table 3.10

Experiment 3C continues with the case of two unobserved factors. In this case, we estimate both 𝛼10 and 𝛼20, using the
sequential weighted CSA (CSA) procedure set out in Section 4.1. Table 4 presents bias and RMSE results for 𝛼10 and 𝛼20

over 2000 replications when 𝛼10 = {0.90, 1}, and 𝛼20 = {0.51, 0.75, 0.90}, with 𝛼10 >𝛼20. From these findings, it is evident
that the stronger factor strength, 𝛼10, is accurately estimated universally using this approach as well, especially so when
𝛼10 = 1. For the weaker factor with exponent 𝛼20, the estimates show a larger bias and RMSE, as to be expected, but
continue to be clustered around the true values as n and T rise, and 𝛼20 is sufficiently distinct from 𝛼10, namely, when the

10Using the first PC of xit instead of the CSA produces similar results when 𝛼𝑗0 = 1, 𝑗 = 1, 2, but under performs in comparison to CSA when 𝛼j0 < 1.0.
These results are available in Supporting information Appendix S1-D. See also sect. 19.5.1 of Pesaran (2015) where the asymptotic properties of CSA
and the first PC are compared.
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FIGURE 2 Empirical power functions associated with testing different strengths of the strongest factor in the case of Experiment 3A
(unobserved single factor—non-Gaussian errors) using cross-sectional averages, when n = 100,200, 500,1000 and T = 200. Notes: See the
notes to Table 2 for details of the data generating process. Power is computed under H1: 𝛼1a=𝛼10 + 𝜅, where
𝜅 = −0.05,−0.045, … , 0.045, 0.05. The number of replications is set to R = 2000 [Colour figure can be viewed at wileyonlinelibrary.com]

gap, 𝛼10 − 𝛼20, is relatively large. Given the challenges associated with the latent multifactor setting in terms of identifying
and estimating the true factor strengths, the sequential weighted CSA approach produces encouraging initial results.11

Finally, consider Experiment 4 designed to reflect the setting of the empirical finance application presented in sub-
section 6.1. Here we focus on a DGP with two factors that are correlated, but a single observed factor model is used for
estimating the strength of the first factor, f1t. The results for 𝛼10 = 1 are shown in Table S20a of Supporting information
Appendix S1-D, and as can be seen, omitting a second relevant and correlated factor in this case does not unduly affect
the performance of the estimator of the strength of the first factor.12 This seems to be the case for all (n, T) combinations
and for different values of 𝛼20.13 However, misspecification is likely to be consequential if the first factor is not sufficiently
strong.

6 EMPIRICAL APPLICATIONS TO FINANCE AND MACROECONOMICS

6.1 Identifying risk factors in asset pricing models
The asset pricing model (capital asset pricing model [CAPM]) of Sharpe (1964) and Lintner (1965), and its multifactor
extension in the context of the arbitrage pricing theory (APT) developed by Ross (1976) are the leading theoretical contri-
butions implemented widely in modern empirical finance to analyse the cross-sectional differences in expected returns.
Both approaches imply that expected returns are linear in asset betas with respect to fundamental economic aggregates,
and the Fama–MacBeth two-pass procedure (Fama & MacBeth, 1973) is one of the most broadly used methodologies to
assess these linear pricing relationships. The first stage in this approach entails choosing the risk factors to be included in
the asset pricing model. Given the upsurge in the number of factors deemed relevant to asset pricing in the past few years,
a rapidly growing area of the finance literature has been concerned with evaluating the contribution of potential factors
to these models. Harvey and Liu (2019) document over 400 such factors published in top ranking academic journals. The
primary focus of this literature has been on factor selection on the basis of performance metrics such as the Gibbons, Ross
and Shanken statistic of Gibbons et al. (1989), or the maximum squared Sharpe ratio of Fama and French (2018) among

11Similar observations can be made when considering nonzero correlation between f1t and f2t, 𝜌12. Results when setting 𝜌12 = 0.3, 0.7 are available upon
request.
12The bias and RMSE values for this experiment are negligible so that in Table S20a they are reported after scaling them up by the factor of 10,000.
13Corresponding results for the case of uncorrelated factors (𝜌12 = 0.0) are also available in Supporting information Appendix S1-D.

http://wileyonlinelibrary.com
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TABLE 3 Bias and root mean square error (RMSE) of estimating the strength of the strongest factor in the
case of Experiment 3B (two unobserved factors—non-Gaussian errors) using cross-sectional averages, when
𝛼10 = 1.00 and 𝛼10 = 0.95

Bias (×10,000) RMSE (×10,000)
n∖ T 60 120 200 500 1000 60 120 200 500 1000

𝛼10 = 1.00, 𝛼20 = 0.51
100 −16.43 −0.76 −0.02 0.00 0.00 28.19 4.20 0.69 0.00 0.00
200 −18.70 −1.02 −0.06 0.00 0.00 26.79 3.43 0.76 0.00 0.00
500 −19.00 −1.09 −0.07 0.00 0.00 24.47 2.37 0.48 0.07 0.00
1000 −19.25 −1.24 −0.07 0.00 0.00 24.16 2.09 0.34 0.00 0.00

𝛼10 = 1.00, 𝛼20 = 0.75
100 −17.02 −0.94 −0.01 0.00 0.00 28.75 4.68 0.49 0.00 0.00
200 −18.06 −1.16 −0.09 0.00 0.00 26.22 3.74 0.90 0.00 0.00
500 −18.99 −1.10 −0.08 0.00 0.00 24.71 2.38 0.52 0.00 0.00
1000 −19.65 −1.24 −0.08 0.00 0.00 24.80 2.05 0.34 0.00 0.00

𝛼10 = 1.00, 𝛼20 = 0.95
100 −19.08 −1.80 −0.10 0.00 0.00 34.54 6.72 1.46 0.00 0.00
200 −20.83 −2.07 −0.16 0.00 0.00 31.80 5.33 1.22 0.00 0.00
500 −21.20 −2.07 −0.21 0.00 0.00 29.65 3.76 0.89 0.00 0.00
1000 −22.34 −2.24 −0.25 0.00 0.00 29.65 3.76 0.89 0.00 0.00

𝛼10 = 1.00, 𝛼20 = 1.00
100 −1.16 −0.01 0.00 0.00 0.00 5.49 0.49 0.00 0.00 0.00
200 −1.48 −0.02 0.00 0.00 0.00 4.25 0.42 0.00 0.00 0.00
500 −1.55 −0.02 0.00 0.00 0.00 3.30 0.27 0.00 0.00 0.00
1000 −1.63 −0.03 0.00 0.00 0.00 2.81 0.23 0.03 0.00 0.00

Bias (×100) RMSE (×100)
𝜶10 = 0.95, 𝜶20 = 0.51

100 0.02 0.17 0.22 0.39 0.59 0.38 0.34 0.39 0.54 0.72
200 0.01 0.16 0.16 0.22 0.30 0.28 0.24 0.24 0.30 0.38
500 −0.03 0.13 0.13 0.14 0.17 0.19 0.16 0.16 0.17 0.20
1000 −0.06 0.10 0.11 0.11 0.11 0.17 0.12 0.12 0.12 0.13

𝛼10 = 0.95, 𝛼20 = 0.75
100 0.68 1.25 1.58 1.72 1.80 0.97 1.40 1.67 1.79 1.87
200 0.47 1.00 1.26 1.51 1.54 0.70 1.11 1.33 1.54 1.57
500 0.23 0.60 0.84 1.19 1.26 0.43 0.71 0.91 1.21 1.27
1000 0.10 0.42 0.58 0.95 1.07 0.31 0.51 0.66 0.97 1.08

𝛼10 = 0.95, 𝛼20 = 0.95
100 3.51 3.99 4.05 4.05 4.05 3.56 4.01 4.07 4.07 4.07
200 3.35 3.88 3.95 3.96 3.96 3.39 3.89 3.96 3.97 3.96
500 3.17 3.73 3.82 3.82 3.83 3.20 3.74 3.82 3.83 3.83
1000 3.02 3.62 3.71 3.73 3.72 3.05 3.63 3.71 3.73 3.72

𝛼10 = 0.95, 𝛼20 = 1.00
100 −0.19 −0.02 0.00 0.00 0.00 0.32 0.07 0.02 0.00 0.00
200 −0.21 −0.02 0.00 0.00 0.00 0.30 0.06 0.01 0.00 0.00
500 −0.21 −0.02 0.00 0.00 0.00 0.29 0.04 0.01 0.00 0.00
1000 −0.21 −0.02 0.00 0.00 0.00 0.29 0.04 0.01 0.00 0.00

Note: The parameters of DGP (35) are generated as described in Table 1, with 𝜌12 = corr(𝑓1, 𝑓2) = 0.0. 𝛼0 = max(𝛼10, 𝛼20)
is estimated by regressing observations, xit, on an intercept and the cross-sectional average of xit, x̄t = n−1 ∑n

i=1 xit , for t =
1, 2, … ,T.

many others. More recent contributions further allow for the possibility of false discovery when the number of potential
factors is large and multiple testing issues arise—see Feng et al. (2020).

Our application focuses on determining the strength of these factors as a means of evaluating whether their risk can
be priced correctly and abstracts from the question of factor selection as such. As shown by Pesaran and Smith (2021),
the APT theory requires that risk factors should be sufficiently strong if their associated risk premium is to be estimated
consistently. The risk premium of a factor with strength 𝛼 can be estimated at the rate of n−a/2, where n is the number
of individual securities under consideration. As a result,

√
n consistent estimation of the risk premium of a given factor
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requires the factor in question to be strong with its 𝛼 equal to unity. Factors with strength less than 0.5 cannot be priced
and are absorbed in pricing errors. But in principle, it should be possible to identify the risk premium of semi-strong
factors (factors whose 𝛼 lies in the range 1>𝛼 > 1/2), but very large number of securities are needed for this purpose.
In practice, where n is not sufficiently large, at best only factors with strength sufficiently close to unity can be priced.14

As an illustration of their theoretical results, Pesaran and Smith (2021) consider the widely used Fama and French (1993)
three-factor model applied to the constituents of the S&P500 index and assess the strength of each of the factors included
in the model, namely, the market, size and value factors. In what follows, we carry out a more comprehensive investigation
of this topic, by assessing the strength of a total of 146 factors.

6.1.1 Data
We consider monthly excess returns of the securities included in the S&P 500 index over the period from September 1989
to December 2017. Since the composition of the index changes over time, we compiled returns on all 500 securities at the
end of each month and included in our analysis only those securities that had at least 10 years of history in the month
under consideration. On average, we ended up with n = 442 securities at the end of each month. The 1-month US treasury
bill rate (in percentage) was chosen as the risk-free rate (rft), and excess returns were computed as r̃it = rit − r𝑓 t, where
rit is the return on the ith security between months t− 1 and t in the sample, inclusive of dividend payments (if any).15

In addition to the market factor (measured as the excess market return), we consider the 145 factors considered by Feng
et al. (2020), which are largely constructed as long/short portfolios capturing a number of different characteristics.16 In
order to account for time variations in factor strength, we use rolling samples (340 in total) of 120 months (10 years) each.
The choice of the rolling window is guided by the balance between T and n and follows the usual practice in the finance
literature.17

6.1.2 Factor models for individual securities
We commence with the following regressions:

rit − r𝑓 t = ai + 𝛽im
(

rmt − r𝑓 t
)
+

k∑
𝑗=1
𝛽i𝑗𝑓𝑗t + uit, for i = 1, 2, … ,n𝜏 , (37)

where n𝜏 are the number of securities in 10-year rolling samples from September 1989 to December 2017, with 𝜏 =
1, 2, … , 340. rmt denotes the return on investing in the market portfolio, which here is approximated by a value-weighted
average of all CRSP firms incorporated in the US and listed on the NYSE, AMEX or NASDAQ that have data for month
t. As such, this definition of the market portfolio is wider than one which assumes an average of the 440 or so S&P500
securities considered in this study. The excess market return,

(
rmt − r𝑓 t

)
, then approximates the market factor. fjt for

𝑗 = 1, 2, … , 145 represent the potential risk factors in the active set under consideration. As explained in sect. 5 of Pesaran
and Smith (2021), the strength of factor j is defined by

∑n
i=1

(
𝛽i𝑗 − 𝛽𝑗

)2 = (n𝛼𝑗 ), and once the market factor is included
in (37), it is the case that the coefficients are expressed as deviations of the factor loadings from their means, as required.

Initially, we set k = 0 and consider the original CAPM specification of Sharpe (1964) and Lintner (1965),

rit − r𝑓 t = aim + 𝛽im
(

rmt − r𝑓 t
)
+ uit,m. (38)

14In an early critique of tests of asset pricing theory, Roll (1977) argued that for a test to be valid, it is required that all assets traded in the economy are
included in the empirical analysis. In effect requiring n to be very large, and much larger than the number of securities traded on exchanges.
15Further details relating to the construction of this dataset can be found in Supporting information Appendix S1-D and in Bailey et al. (2016, 2019).
16The authors would like to thank Dacheng Xiu for providing the dataset that covers all the 146 factors, inclusive of the market factor. Apart from 15
factors obtained from specific websites, the remaining factors are constructed using only stocks for companies listed on the NYSE, AMEX or NASDAQ
that have a CRSP share code of 10 or 11. Moreover, financial firms and firms with negative book equity are excluded. For each characteristic, stocks are
sorted using NYSE breakpoints based on their previous year-end values, then long-short value-weighted portfolios (top 30%–bottom 30% or 1–0 dummy
difference) are built and rebalanced every June for a 12-month holding period. Further details regarding the construction of this dataset can be found
in Feng et al. (2020).
17We also consider rolling samples of size 60 months (5 years). The results are shown in Supporting information Appendix S1-D.
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TABLE 4 Bias and root mean square error (RMSE) (×100) of estimating factor strengths 𝛼10 and 𝛼20 in the case
of Experiment 3C (two unobserved factors—Gaussian errors) using sequential weighted cross-sectional averages

Factor strength estimate �̂�1 Factor strength estimate �̂�2

Bias (×100)
n∖ T 60 120 200 500 1000 60 120 200 500 1000

𝛼10 = 0.90, 𝛼20 = 0.51
100 0.655 0.800 0.879 1.051 1.266 11.520 17.727 22.232 31.552 37.511
200 0.356 0.472 0.501 0.583 0.698 9.113 13.627 17.095 25.466 32.358
500 0.277 0.403 0.397 0.427 0.469 7.169 10.353 12.142 17.343 23.671
1000 0.243 0.339 0.343 0.351 0.364 6.631 8.889 9.879 12.731 17.033

𝛼10 = 0.90, 𝛼20 = 0.75
100 2.581 3.391 3.680 3.874 3.875 8.156 13.379 16.248 18.683 19.677
200 1.993 2.772 3.121 3.372 3.367 8.859 14.382 16.381 18.260 18.661
500 1.458 2.054 2.380 2.792 2.843 8.650 13.955 16.164 17.735 17.864
1000 1.136 1.621 1.944 2.374 2.510 7.374 12.704 15.281 17.201 17.495

𝛼10 = 1.00, 𝛼20 = 0.51
100 −0.124 −0.003 0.000 0.000 0.000 13.553 20.193 25.998 36.385 42.517
200 −0.138 −0.006 0.000 0.000 0.000 9.794 14.891 19.284 28.406 35.852
500 −0.156 −0.007 0.000 0.000 0.000 7.089 10.842 13.649 20.566 27.360
1000 −0.153 −0.008 −0.001 0.000 0.000 5.646 8.736 10.842 15.815 21.321

𝛼10 = 01.00, 𝛼20 = 0.75
100 −0.156 −0.007 0.000 0.000 0.000 16.121 22.226 24.081 24.962 24.999
200 −0.158 −0.009 −0.001 0.000 0.000 14.141 20.615 23.234 24.829 24.989
500 −0.162 −0.009 −0.001 0.000 0.000 10.813 17.304 21.024 24.277 24.901
1000 −0.157 −0.009 −0.001 0.000 0.000 8.388 14.591 18.867 23.453 24.680

𝛼10 = 1.00, 𝛼20 = 0.90
100 −0.228 −0.021 −0.002 0.000 0.000 −2.407 2.234 4.407 6.852 7.902
200 −0.224 −0.021 −0.002 0.000 0.000 0.527 4.578 6.362 8.159 8.855
500 −0.226 −0.020 −0.002 0.000 0.000 2.759 6.436 7.890 9.123 9.544
1000 −0.213 −0.019 −0.002 0.000 0.000 3.777 7.336 8.576 9.551 9.817

RMSE (×100)
𝜶10 = 0.90, 𝜶20 = 0.51

100 0.888 0.995 1.074 1.223 1.399 12.701 18.343 22.719 31.855 37.731
200 0.536 0.592 0.621 0.698 0.804 9.945 14.022 17.433 25.727 32.541
500 0.377 0.449 0.441 0.477 0.523 7.947 10.581 12.367 17.633 23.940
1000 0.317 0.362 0.368 0.377 0.391 7.244 9.012 10.002 12.921 17.258

𝛼10 = 0.90, 𝛼20 = 0.75
100 2.839 3.508 3.752 3.937 3.934 12.877 15.886 17.454 19.209 20.028
200 2.225 2.885 3.176 3.401 3.397 12.394 15.677 17.188 18.430 18.755
500 1.670 2.191 2.457 2.805 2.853 10.661 14.519 16.417 17.741 17.866
1000 1.325 1.767 2.035 2.392 2.515 9.026 13.051 15.387 17.202 17.496

𝛼10 = 1.00, 𝛼20 = 0.51
100 0.237 0.028 0.000 0.000 0.000 14.918 20.940 26.616 36.856 42.860
200 0.215 0.025 0.002 0.000 0.000 10.874 15.395 19.622 28.686 36.158
500 0.211 0.019 0.003 0.000 0.000 8.265 11.196 13.849 20.671 27.482
1000 0.199 0.015 0.003 0.000 0.000 7.011 9.146 11.031 15.892 21.366

𝛼10 = 1.00, 𝛼20 = 0.75
100 0.278 0.039 0.008 0.000 0.000 17.007 22.340 24.133 24.962 24.999
200 0.248 0.032 0.008 0.000 0.000 15.182 20.762 23.265 24.831 24.989
500 0.221 0.021 0.004 0.000 0.000 11.951 17.603 21.095 24.293 24.901
1000 0.208 0.016 0.003 0.000 0.000 9.338 14.955 18.965 23.457 24.680

𝛼10 = 1.00, 𝛼20 = 0.90
100 0.411 0.075 0.018 0.000 0.000 3.562 2.663 4.554 6.892 7.924
200 0.349 0.054 0.012 0.000 0.000 2.140 4.706 6.406 8.170 8.860
500 0.332 0.039 0.008 0.000 0.000 3.249 6.486 7.904 9.126 9.545
1000 0.308 0.033 0.006 0.000 0.000 4.191 7.365 8.583 9.552 9.817

Note: The parameters of data generating process (DGP) (35) are generated as described in Table 1, with 𝜌12 = corr(𝑓1, 𝑓2) = 0.0.
𝛼10 and 𝛼20 are estimated using sequentially regression of observations, xit, on an intercept and the weighted cross-sectional
average of xit, x̃1t = n−1 ∑n

i=1 ŵ1ixit , where ŵ1i =
∑T

t=1 x̄txit∕
∑T

t=1 x̄2
t , for t = 1, 2, … ,T. Next, by running the same regres-

sion using residuals obtained from the first stage. Details of the estimation procedure can be found in Supporting information
Appendix S1-D.
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We apply our estimator (7) to the loadings 𝛽 im, i = 1, 2, … ,n𝜏 , and obtain estimates of the strength of the market factor
across the rolling windows, �̂�m,𝜏 , 𝜏 = 1, 2, … , 340.18

Next, in order to assess the effect on the market factor strength estimates of adding more factors to (38), as well as
to quantify the strength of these additional factors, we add the 145 factors to the CAPM regression, (38), one at a time;
namely, we run the regressions

rit − r𝑓 t = ais + 𝛽im|s (rmt − r𝑓 t
)
+ 𝛽is𝑓st + uit,s, i = 1, 2, … ,n𝜏 (39)

for each s = 1, 2, … , 145, and each rolling window 𝜏 = 1, 2, … , 340. Our choice of model is motivated by the fact that
once we have conditioned on the market factor, we can use the One Covariate at the time Multiple Testing (OCMT)
methodology of Chudik et al. (2018) as an additional step for selecting the factors that ought to be included in our final
asset pricing model. Again, we compute the strength of the market factor with the sth factor included, which we denote
by �̂�m,𝜏|s , as well as the strength of each of the additional factors, which we denote by �̂�s,𝜏 , for all 340 rolling windows,
𝜏 = 1, 2, … , 340. As with the Monte Carlo experiments, in the computation of factor strength we set the nominal size of
the associated multiple tests to p = 0.10, and the critical value exponent to 𝛿 = 1∕4.

6.1.3 Estimates of factor strengths
First, we consider the rolling estimates obtained for the strength of market factor, 𝛼m, when using the CAPM and the
augmented CAPM specifications given by (38) and (39). Figure 3 displays �̂�m,𝜏 , 𝜏 = 1, 2, … , 340; the 10-year rolling
estimates obtained using the CAPM regressions over the period September 1989 to December 2017. As can be seen, all �̂�m,𝜏
are quite close to unity, and it can be safely concluded that the market factor is strong and its risk premium can be estimated
consistently at the usual rate of

√
n . There is some evidence of departure from unity over the period between December

1999 and January 2011, which saw a number of sizeable financial events such as the Long-Term Capital Management
(LTCM) crisis, the burst of the dot-com bubble and, more recently, the global financial crisis. �̂�m,𝜏 records its minimum
value of 0.958 in August 2008, around the time of the Lehman Brothers collapse.19 As implied by our theoretical results
in Section 3, standard errors around these estimates are extremely tight and hard to distinguish graphically from the
point estimates.20 It is also interesting that the estimates of market factor strength are generally unaffected if we consider
the augmented CAPM regressions. For each rolling window, we now obtain 145 estimates of 𝛼m, denoted by �̂�m,𝜏|s for
s = 1, 2, … , 145. We display the average of these estimates, namely, ̄̂𝛼m,𝜏 = (1∕145)

∑145
s=1 �̂�m,𝜏|s , in Figure 3. It is clear

that ̄̂𝛼m,𝜏 closely track �̂�m,𝜏 . The two series are almost identical during the periods September 1989 to December 1999 and
January 2011 to December 2017. There are some minor deviations between �̂�m,𝜏|s and �̂�m,𝜏 during the period December
1999 to January 2011, when they both deviate marginally from unity, with a maximum deviation of 0.011 in September
2008. The average estimates of 𝛼m, 𝜏 also have very narrow confidence bands, with an average standard error of 0.0038
over the full sample, taking its maximum value of 0.0099 in September 2008. Overall, it is evident that the inclusion of an
additional factor in (39) has little effect on estimates of the market factor strength, which is in line with the Monte Carlo
evidence for Experiment 4 summarised in the previous Section.

We can safely conclude that the market factor is strong with the exception of a short period during the recent financial
crisis. We now consider the 10-year rolling estimates of the strength of the remaining factors, denoted by 𝛼s, 𝜏 , using the
augmented CAPM regressions. These estimates together with their 90% confidence bands are shown in Figures SA1–SA10
of Supporting information Appendix S1-D. They show considerable time variation, especially during December 1999 to
January 2011. However, even though a rise in the average pair-wise correlations between the 146 factors is evident in the
build up to the 1999 crisis, at no point during the full sample (September 1989 to December 2017) do any of these factors
become strong in the sense that �̂�s,𝜏 is clearly below 1, for all s and 𝜏. The market factor dominates all other factors in
strength. Indeed, in Figure 4, we observe that the proportion of factors (out of the 145 in total) whose strength exceeds the
threshold values of 0.85, 0.90 and 0.95 in each rolling window progressively drops so that there are no factors left whose
strength exceeds 0.95 throughout our sample period. This suggests that only the market factor can be considered to be

18A similar analysis using the simple CAPM model was conducted in the empirical application of (Bailey et al. 2016) where a preliminary suggestion
of our estimator of factor strength was originally made. This accompanied the main empirical analysis of quantifying the degree of cross-sectional
dependence inherent in the rolling panels of S&P500 security excess returns studied, making use of the estimator formally developed in that paper.
19Any deviations of �̂�m from unity are not necessarily viewed as signs of market inefficiency. Factor strength could deviate from unity even during
non-crises periods.
20The corresponding plot of �̂�m,𝜏 estimates under (38), which includes its standard errors, is shown at the top left corner of Figure SA1 in Supporting
information Appendix S1-D.
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FIGURE 3 Comparison of the market factor strength estimates obtained from the original single factor capital asset pricing model(CAPM)
(�̂�m,𝜏 ) and the average estimates of its strength when computed using 145 two-factor asset pricing models ( ̄̂𝛼m,𝜏 ), over 10-year rolling
windows. Notes: The market factor strength rolling estimates are computed using (7). The market factor strength average estimates produced
from the 145 two-factor CAPMs are computed as ̄̂𝛼m,𝜏 = (1∕145)

∑145
s=1(�̂�s,𝜏 ), for 𝜏 = 1, 2, … , 340 rolling windows [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 4 Percentage of factors (out of 145) whose estimated strength (�̂�s,𝜏 ), 𝜏 = 1, 2, … , 340 exceeds the thresholds of 0.85, 0.90 and
0.95, in each 10-year rolling window. Notes: The 145 factor strength estimates, �̂�s,𝜏 , s = 1, 2, … , 145, are computed using (7) [Colour figure
can be viewed at wileyonlinelibrary.com]

a risk factor whose risk premium can be estimated consistently at the standard
√

n rate. The role of the remaining 145
factors in the asset pricing models (39) could be to filter out the effects of any additional semi-strong cross-dependence
in asset returns in order to achieve weak enough cross-sectional dependence in the errors uit, required for

√
n consistent

estimation of market risk premia.
Next, we rank the 145 factors (plus the market factor) from the strongest to the weakest in terms of the percentage of

months in our sample period (340 in total) that their strength exceeds the threshold value of 0.90. As shown in Table SA1 of
Supporting information Appendix S1-D, there are 65 factors that meet this criterion at least in some instances during the
sample period. As expected, the market factor ranks first with an average estimated strength of 0.99, followed by factors
associated with leverage, and the ratios of sales to cash, cash flow to price, net debt to price and earnings to price. The
second ranking factor, leverage, has average strength of 0.827, with only 37.9% of the time being above 0.9. Interestingly,

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 5 Comparison of the market factor strength estimates obtained from the original single factor capital asset pricing model
(CAPM) (�̂�m,𝜏 ) and those from using the cross-sectional averages (CSA) of S&P500 securities' excess returns (�̂�csa,𝜏 ), over 10-year rolling
windows. Notes: The market factor and CSA of S&P500 securities' excess returns strength estimates over 𝜏 = 1, 2, … , 340 rolling windows
are computed using (7) [Colour figure can be viewed at wileyonlinelibrary.com]

the Fama French value factor (high minus low) ranks 34th in our table whereas the size factor (small minus big) does
not even enter the group of 65 factors, recording values of �̂� below 0.90 across all rolling windows. For completeness,
Table SA1 also includes time averages of each factor strength over the full sample (September 1989–December 2017),
and the three sub-samples: September 1989–August 1999, September 1999–August 2009 and September 2009–December
2017. Although on average, the strengths of these factors are around 0.80 in the first and the last decades in our sample,
in the period between September 1999 and August 2009, the strength of many factors rises to around 0.91. This rise could
be due to nonfundamental factors gaining importance over the fundamental factors during the recent financial crisis and
can be viewed as evidence of market decoupling.

Finally, it is of interest to investigate whether the strength of the strongest latent factor implied by the panel of S&P
500 securities' excess returns coincides with that of the market risk factor, which we identified as the strongest observed
factor under our previous analysis. In line with the discussion in Section 4, the strength of the strongest unobserved factor
will be captured by the strength of the CSA of the excess returns in each rolling window, noting the stricter conditions on
the (n, T) dimensions of the panel implied by Theorem 2. Figure 5 plots the 10-year rolling �̂�csa,𝜏 estimates implied by the
CSA of excess returns against the 10-year rolling �̂�m,𝜏 estimates implied by the simple CAPM regression (38). It is evident
that the two series are almost identical throughout our sample period except for the period between September 1999 and
January 2011 where they deviate from each other to some extent. The average correlation between �̂�csa,𝜏 and �̂�m,𝜏 over
𝜏 = 1, 2, … , 340 stands at 0.93. On this basis, we also computed the rolling correlation coefficients between the CSA of
individual securities' excess returns and the observed market risk factor again over the rolling windows 𝜏 = 1, 2, … , 340.
These are consistently close to unity with an average value across all the rolling windows of 0.95, and with the lowest
value of 0.85 obtained for the period between September 1999 and January 2011.

6.2 Strength of common macroeconomic shocks
Similar considerations apply to macroeconomic shocks and their pervasive effects on different parts of the macroeconomy.
As discussed in Giannone et al. (2021) and references therein, the advent of “high-dimensional” datasets has led to the
development of predictive models that are either based on shrinkage of useful information inherent across the whole set of
data into a finite number of latent factors (e.g., Stock & Watson, 2002, and references therein), or assume that all relevant
information for prediction is captured by a small subset of variables from the larger pool of regressors implied by these
data (e.g., Hastie et al. 2015; Belloni et al. 2011, among others). Such methods are appealing in macroeconomics since they
tend to provide more reliable impulse responses and forecasts over traditional models, when used for macroeconomic
policy analysis and forecasting. However, as argued in Giannone et al. (2021), it is not evident that either approach is
always clearly supported by the (unknown) structure of the given data and that model averaging might be preferable.

http://wileyonlinelibrary.com
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TABLE 5 Strength estimates of the strongest unobserved factor using the cross-sectional averages (CSA)
of the Stock and Watson (2012) dataset (n = 187 variables) and the corresponding exponent of
cross-sectional dependence (CSD)

Q1 1988–Q4 2007 Q1 1988–Q2 2019
(T = 80) (T = 126)

�̂�∗
0.05 �̂� �̂�∗

0.95 �̂�∗
0.05 �̂� �̂�∗

0.95
p = 0.10

Strength of CSA (𝛿 = 1∕4) 0.962 0.964 0.966 0.928 0.930 0.933
Strength of CSA (𝛿 = 1∕2) 0.957 0.958 0.959 0.918 0.920 0.922
Exponent of CSD 0.833 0.873 0.913 0.858 0.920 0.981

p = 0.05
Strength of CSA (𝛿 = 1∕4) 0.962 0.963 0.964 0.927 0.929 0.931
Strength of CSA (𝛿 = 1∕2) 0.953 0.954 0.955 0.912 0.914 0.915
Exponent of CSD 0.828 0.869 0.908 0.856 0.918 0.979

Note: In the computation of the strength of CSA, parameters p and 𝛿 are used when setting the critical value (6). The exponent
of CSD corresponds to the most robust estimator of cross-sectional dependence proposed in Bailey et al. (2016) and corrects
for both serial correlation in the factors and weak cross-sectional dependence in the error terms.*90% confidence bands.

To measure the pervasiveness of the macroeconomic shocks, we make use of an updated version of the macroeconomic
dataset compiled originally by Stock and Watson (2012) and subsequently extended by McCracken and Ng (2016). Here,
we assume that the macroeconomic shocks are unobserved and estimate the strength of the strongest of such shocks from
the updated dataset which consists of balanced quarterly observations over the period 1988Q1–2019Q2 (T = 126) on
n = 187 out of the 200 macroeconomic variables used in Stock and Watson (2012).21 Ten out of the 200 macroeconomic
variables used in Stock and Watson (2012) are no longer available in the updated version of the dataset.22 Further details
on this dataset can be found in Supporting information Appendix S1-D.

6.2.1 How strong is the strongest of the unobserved macroeconomic shocks?
As discussed in Section 4, identifying and estimating the strengths of unobserved factors of varying strengths becomes
challenging due to the fact that, in general, factors are identified only up to a nonsingular rotation matrix. However,
as argued above, we are still able to identify and estimate the strength (𝛼) of the strongest shock using the CSA of the
variables in the dataset.23 We computed estimates of 𝛼 for the pre-crisis period, 1988Q1 to 2007Q4, as well as for the full
sample period ending on 2019Q2. The factor strength estimates are shown in Table 5. They are clustered around 0.94,
and are quite robust to the choice of the parameters p and 𝛿 in the critical value function (6), as well as to the time period
considered. These estimates are consistently below 1 and suggest that although there exist strong macroeconomic shocks,
the effects of such shocks are not nearly as pervasive as have been assumed in the factor literature applied to macro
variables. This finding is further corroborated by the estimates of the exponent of cross-sectional dependence of BKP, also
shown in Table 5.24

7 CONCLUSIONS

Recent work by Bailey et al. (2016, 2019) has focused on the rationale and motivation behind the need for determining
the extent of cross-sectional dependence, be it in finance or macroeconomics, and has provided a conceptual framework
and tools for estimating the strength of such interdependencies in economic and financial systems. However, this litera-

21The raw data, which include both high-level economic and financial aggregates as well as disaggregated components, are updated regularly and can
be found on the Federal Reserve Bank of St Louis website (https://research.stlouisfed.org/econ/mccracken/static.html). All variables were screened for
outliers and transformed as required to achieve stationarity. Details about variable definitions, descriptions and transformations can be found in the
accompanying FRED-QD appendix to McCracken and Ng (2016) which links to Stock and Watson (2012) and is downloadable from the aforementioned
website.
22These are (1) construction contracts, (2) manufacturing and trade inventories, (3) index of sensitive materials prices (disc), (4) spot market price index
BLS&CRB: all commodities, (5) NAPM commodity price index, (6) 3 m Eurodollar deposit rate, (7) MED3-TB3MS, (8) GZ-spread, (9) GZ excess bond
premium and (10) DJIA.
23Again, one needs to take into consideration the stricter conditions on the (n, T) dimensions of the panel, as implied by Theorem 2.
24Using the sequential multiple testing (SMT) detection procedure developed in Kapetanios et al. (2020), we also checked to see if any of the unit(s) in
the macro dataset can be viewed as pervasive, namely, sufficiently influential to affect all other variables. The SMT procedure could not detect any such
variables for all choices pmax = 0, 1, … , 6, where pmax denotes the assumed maximum number of potential factors in the dataset.

https://research.stlouisfed.org/econ/mccracken/static.html
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ture does not address the problem of estimating the strength of individual factors that underlie such cross dependencies,
which can be of interest, for example, for pricing of risk in empirical finance, or for quantifying the pervasiveness of
macroeconomic shocks. The current paper addresses this gap. It proposes a novel estimator of factor strength based on
the number of statistically significant t-statistics in a regression of each unit in the panel dataset on the factor under con-
sideration, and provides inferential theory for the proposed estimator. Detailed and extensive Monte Carlo and empirical
analyses showcase the potential of the proposed method.

The current paper considers estimation and inference when the panel regressions are based on a finite number of
observed factors. Some theoretical evidence is also provided for the case when the model contains unobserved factors.
Further research is required to link our analysis to the problem of factor selection discussed by Feng et al. (2020). Also,
it would be of interest to address the identification problem when there are multiple unobserved factors. One possibility
would be to exploit the approach recently developed in Kapetanios et al. (2020) to see whether the unobserved factors can
be associated with dominant units or some other observable components.
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