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Abstract

The origins of personalised instructional sequencing can be dated back to the times of the

Ancient Greeks to the times of Alexander The Great’s tutor, Aristotle. However, over the

centuries the demand for education and growth of students has been disproportionately

greater than the number of teachers in training. Therefore, there has been a longstanding

interest in finding a way to scale education without negatively affecting learning outcomes.

This interest was fuelled further with the advent of computers and artificial intelligence,

where a plethora of systems and models were built to bring technology driven personalised

instructional sequencing to the world. Unfortunately, results were far from groundbreaking

and many challenges still remain.

In my thesis, I investigate three aspects of personalised instructional sequencing: the

personalised instructional sequencing mechanism, the student knowledge representation,

and human forgetting. While I do not cover the entirety of personalised instructional

sequencing, I cover what I consider the foundational components. I link psychological

theory to model selection and design in each of my systems and present experiments to

illustrate their impact. I show how reinforcement learning can be used for vocabulary

learning. I also present a model that uses neural collaborative filtering to learn student

knowledge representations. Lastly, I present a state-of-the-art model to predict the

probability of vocabulary word recall for students learning English as a second language.

The system’s novelty lies in the use of word complexity to adapt the forgetting curve as

well as its incorporation of psychological theory to select an appropriate model.
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Chapter 1

Introduction

“Let the main object [be]... to seek

and to find a method of instruction,

by which teachers may teach less, but

learners learn more.”

John Amos Comenius

Since the times of Plato and the sophists in ancient Greece, educators have strived

to define ideal teaching practices (Saettler, 2004). They studied the human condition to

uncover the methods of instruction that can enable teachers to impart as much knowledge

as possible, to as many learners as possible, and as efficiently as possible. Many centuries

later, researchers, policy makers, technologists and educators continue to revisit our

understanding of learning and ideal teaching practices.

It is generally accepted within the educational domain, that the best way to improve

learning outcomes of a student is to provide better teaching (Khan, 2020). However, what

constitutes “good teaching” has been constantly changing. For years, critics in government

have cited inadequate teaching practices as a core reason for the failure in their country’s

progress. This usually results in educational reforms, curriculum redesign, and revised

teaching practices that are revisited again a decade or two later. For instance, in 1957,

when the Soviet Union launched the space satellite “Sputnik”, politicians and pundits

criticised the educational curriculum in the United States, citing various reason for why it
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was vastly inferior to the Soviet Union. As a result, various educational reforms regarding

teaching practices and curricula were made (Conant, 1963). A similar story was repeated

in 1983, when a report, A Nation At Risk, was published by the National Commission of

Excellence in Education (NCEE) highlighting the dismal performance of state schools in

the United States compared to other countries. Reforms to teaching practices were made

once again (NCEE, 1983).

Whilst it may not be clear which teaching practices achieve the best learning outcomes

in each circumstance, what is clear is that good teaching involves an accurate understanding

of the student’s current knowledge state. A clear view of the student’s capability enables

teachers to make more informed decisions on how to guide the learner through the domain.

The teacher’s selection of activities that support the learning process is driven by how

they perceive each activity will impact the student’s knowledge state. But maintaining

a reliable representation of the student’s understanding is no simple task. In fact, as

the size of a class grows, the teacher’s estimation of each student’s knowledge and thus

how to determine the optimal sequence of activities suffers (Bloom, 1984). Benjamin

Bloom introduced this problem as The 2 Sigma Problem, which outlines the difference

in performance between students who are tutored one-to-one compared to students in a

group setting. By and large, one-to-one tutoring results in the best performing students1.

However, in reality it is not possible to maintain a one-to-one teacher to pupil ratio,

especially with a growing global population and demand for teachers. Therefore, schools

must rely on traditional group teaching. But one of the downsides of this form of teaching is

that learners on either end of the performance spectrum are under-served (Campbell et al.,

2007). So how can we scale the benefits of one-to-one tutoring to a traditional classroom

or even at home, where students work without teachers? This is the question that has

dominated the discourse for many researchers in the education domain, whether they be

policy experts or technologists. Furthermore, it has led to emergence and proliferation

of personalised learning, an educational approach which many researchers believe is the

key to unlocking the positive effects of one-to-one tutoring in a traditional classroom.

1(VanLehn, 2011) suggests that the findings in Bloom’s study were overstated.
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Furthermore, the notion of personalised learning is considered a sort of holy grail for

education and learning. Personalised learning, sometimes referred to as individualised

learning, is where the teaching practices of the teacher (whether human or machine) are

adapted to each individual learner’s needs.

The history of personalised learning is unclear. Depending on how it is defined it can

date back to Genevan philosopher Jean-Jacques Rousseau or even further back to the

tutor of Alexander the Great, Aristotle (Watters, 2017). However, regardless of which era

it originated, in recent years technology has long played a pivotal role in supporting the

implementation of personalised learning.

In the 20th century, with the advent of personal computers, researchers have looked

towards software and artificial intelligence in order to drive personalised learning. Some of

the earliest research published on the use of computers for personalised learning was done

under the label, intelligent computer assisted instruction (ICAI). First popularised in the

1970s, ICAI originated from computer aided instruction (CAI) which can be viewed as

a traditional way of translating the pedagogical instructions presented by a teacher into

program form. In 1982, Sleeman and Brown renamed ICAI to intelligent tutoring systems

(ITS) (Sleeman and Brown, 1982).

Much of the early work in ITS was based on rule based systems and heuristics to

provide learners with a personalised experience. However, its impact on learning outcomes

did not yield the results once promised by the adoption of personal computers in education

(Rosé et al., 2019). With the recent rise of machine learning, there has been a resurgence

of interest in leveraging newer techniques and methods to achieve better learning outcomes

from ITS. There is a plethora of research that explores the use of machine learning for

education that includes various aspects of a teacher’s role ranging from content creation

(Rehm et al., 2020) to instructional sequencing (Bloom, 1968, Corbett and Anderson, 1994,

Ritter et al., 2007, Rosen et al., 2018).

Defining all the aspects of what a good teacher does in a classroom or tutoring session

is a challenging task. The educational term used to reference a teacher’s ability or expertise

is capacity. And over the years, there has been a constant debate over which teacher
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capacities are most relevant and how they should be weighted. However, despite the

lack of consensus, teacher capacity can be divided into three broad categories that seem

to capture its characterisation over time. These are namely: knowledge, craft skills and

disposition (Cochran-Smith et al., 2008). Knowledge includes, an understanding of the

subject matter, pedagogy, curriculum, and learning theories to name a few. Craft skills

includes, planning, organising instructional material, managing groups, monitoring and

evaluating learning. Finally, disposition includes, values and beliefs. This work can be

situated within the ‘knowledge’ and ‘craft skills’ capacity groups. However, by no means

does the work cover all of either capacity group.

In this thesis, my contributions are focused specifically within one subject area, language

learning, although the background section does provide a more general overview of the

topics covered in this thesis which can be applied to other subject areas as well. A

large proportion of the recent work in educational technology is focused around STEM

subjects and therefore, in order to fill this gap, the focus of the work presented in

this thesis is language learning. Within language learning I deep dive into the task of

personalised instructional sequencing2 and the role of machine learning within this task.

Instructional sequencing is how content is presented to a particular student. The output of

an instructional sequencing task is a curriculum. One can think of personalised instructional

sequencing as a method of constructing a dynamic curriculum that evolves over time

with the performance of the student. It is important to note that while personalised

instructional sequencing may seem like a very narrow and focused task, the implications

of personalised instructional sequencing expand far beyond its immediate function. For

example, in order to develop a method of personalised instructional sequencing one has to

consider human cognitive functions like forgetting and knowledge representation. In fact,

I would argue that instructional sequencing is at the centre of the teaching and learning

experience. It is the central processing unit (CPU) of education that decides what, when

and how information is delivered. Most other educational technology tasks e.g. automated

2Henceforth, I may use personalised instructional sequencing and instructional sequencing interchange-
ably
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assessment, content creation, can be executed without the function of time. Instructional

sequencing introduces not only the complexity of temporality but, in order to be effective,

must consider the impact of time on learning which requires some proxy for measuring

learning; typically done through automated assessment. Furthermore, the personalised

in personalised instructional sequencing requires additional considerations to be made

including how learners forget and how we might codify their knowledge and the work in

this thesis reflects that.

Looking forward, in Chapters 3 to 5, I introduce machine learning methods and

approaches to model personalised instructional sequencing while accounting for the afore-

mentioned considerations. While prior work in personalised instructional sequencing relies

mainly on heuristics or rule based systems supported by a theory of learning to guide

learners through the language curriculum, in this thesis I present methods that not only

provide a quantitative approach to instructional sequencing for language learning, but also

outline a framework to learn about language learning.

The first study in this thesis presents a reinforcement learning framework that is

grounded in theories of language learning to guide a student through a vocabulary learning

task. The task presents an image and requires the student to enter the word associated

with the image. This work leverages ideas from some popular concepts in educational

psychology such as the zone of proximal development (ZPD). ZPD is viewed as the distance

between what a learner can do without help, and what a learner can do with the support

of an expert such as a teacher. The model leverages Common European Framework of

Reference for Languages (CEFR) levels to categorise each vocabulary word. CEFR levels

range from A1 to C2, where C2 is the most difficult level3. The zone where the student

can learn the word without help is the student’s current CEFR level. At each point in

time the learner is at some approximate CEFR level and the teacher must make a decision

on which items to present next. It turns out that reinforcement learning captures the

essence of this scenario quite effectively, whereby the student’s knowledge is the current

CEFR state and the teacher’s range of possible items or vocabulary words to present are

3CEFR levels are as follows: A1, A2, B1, B2, C1 and C2
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the actions. One can consider the process of learning a policy through the reinforcement

learning model as instructional sequencing. The personalised component of instructional

sequencing is derived from unique knowledge states for each student driving the optimal

actions and thus policy. This will be explained in more detail in Chapter 3.

The true value of a policy derived from a reinforcement learning model is highly

dependent on the quality of the state representation (Mnih et al., 2013) or student

knowledge states, in the task of personalised instructional sequencing. As a parallel, the

value of a teacher’s actions for a particular student in the classroom is highly dependent

on how well the teacher understands the student’s strengths and weaknesses. If the

understanding is relatively shallow, the teacher’s actions and decisions are likely to be

suboptimal. In the first study, the reinforcement learning model learns a policy based on

a fairly rudimentary representation of the student’s knowledge state. Therefore, in the

second study I explore methods of improving the quality of these representations.

Motivated by the recent success of deep learning in extracting high-level features,

in Chapter 4, I investigate how the properties of deep learning can facilitate training

improved student state representations for instructional sequencing. In this work, I

leverage collaborative filtering; a technique that is popular in recommendation systems.

It is grounded in the idea that people who are similar will likely enjoy similar products

or movies. I extend that idea to student’s who have similar scores on a common set of

tasks, will likely have similar understanding and misconceptions within the content. Using

this framework, I aim to predict the performance of a student on tasks that he or she

has never attempted before in order to determine whether those tasks are appropriate, or

within the ZPD.

Using this approach, I develop an encoder that takes in the student’s data and constructs

a student representation. The representations is in turn used for the prediction of student

performance across all tasks. Furthermore, as the students are represented as external

state vectors (Wexler, 1970), two students who are similar should be closer to each other

in vector space. In order to train the system, I leverage data from Write&Improve,

an online writing platform that contains prompts and provides instant feedback on the
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student’s writing with a score. In addition to presenting a method of developing student

representations for language learning, I also present an example of how these techniques

can be used to uncover learning patterns in students (learn about learning). Specifically, in

this work, I analyse the distribution of grammatical errors across different levels of student

to identify whether there are certain error types are distinctive of beginner, intermediate,

and advanced language learners.

In addition to knowledge state representation, incorporating the human cognitive

phenomenon of forgetting is a critical part of ‘personal’ in personalised instructional

sequencing. Without accounting for the effect of time in instructional sequencing, we will

fail to converge at an optimal policy or curriculum. Furthermore, without modelling recall

or remembering, the first block in Bloom’s taxonomy (Bloom et al., 1956), we are missing

out on, arguably, the most fundamental process of learning. The reasons for forgetting

is still ill understood, but there are several methods to counter the forgetting. One of

those methods is known as spaced repetition learning. Spaced repetition is the idea that

reviewing items in an increasingly spaced fashion counters the forgetting. In order to

optimise spaced repetition learning, we must have an approximation for when a student is

about to forget. In 1885, Ebbinghaus conducted an experiment on himself and presented

what is known as the forgetting curve. More details about forgetting and spaced repetition

learning are discussed in Chapter 2 and Chapter 5. In the third study, I explore and

evaluate various approaches to modelling the forgetting curve that adapts according to

the content being learned. As my work is in the language learning domain, I incorporate

psycholinguistic features such as word complexity to train my models. The study explores

whether we can more effectively model forgetting using neural networks, which are known

to capture and model latent and hidden features. I also examine the predictability rank

of each psycholinguistic feature in predicting whether a student will accurately recall a

particular word. For this study, I leverage the publicly available Duolingo dataset for

spaced repetition learning in language.

Each of the aforementioned studies look at the benefits of machine learning in per-

sonalised instructional sequencing for language learning but also the limitations. While
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there is a lot of fundamental research in machine learning methods that argues it is not

necessarily important to understand the inner workings of the brain to further research,

this thesis suggests that at least when it comes to educational technology, understanding

how humans learn is critical in developing better machine learning models for teaching.

Furthermore, I also show that machine learning can be used as a tool for ITS but also as a

tool for learning about learning or understanding how human learning works. In the first

study, I show how a reinforcement learning framework can be considered as an effective

method of controlling instructional sequencing. I also show how some of the characteristics

of the framework have parallels with different concepts in theories of language acquisition.

In the second study, I show how deep learning and collaborative filtering might help us

uncover unobserved attributes of learners. Finally, in the third study, I present a state

of the art system for modelling forgetting in a vocabulary learning context. I show that

word complexity plays a pivotal role in determining how likely the student is to forget the

word. Furthermore, I also show that grounding models in certain theories of learning can

greatly improve model performance. These findings also make the case for incorporating

additional innate bias in the way we use machine learning models in education.

The structure of this thesis is as follows: Chapter 2 introduces instructional sequencing

and its origins. It highlights some of the key instructional design theories in education over

the centuries that helped motivate my experimental design decisions but that I hope will

motivate the design decisions of future teachers, computer scientists and researchers in the

educational domain. This chapter also presents a background of knowledge representation

which is a critical component of personalised instructional sequencing. Finally, I present

a brief overview of the human phenomenon of forgetting in the context of learning.

In Chapter 3 I present a new approach to leverage reinforcement learning for visual

vocabulary learning which has been adapted from a published paper at the ViGIL workshop

at NeurIPS (Zaidi et al., 2017). In this chapter, I also discuss the parallels between

the reinforcement learning models and theories of instructional design and learning.

In Chapter 4, I investigate knowledge representation, the student model and its role

in instructional sequencing. Furthermore, Chapter 4 presents a novel neural network
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inspired by collaborative filtering models to develop representations of students language

understanding. These representations can be leveraged as the states of a reinforcement

learning model to converge at an optimal policy or personalised instructional sequence.

This chapter has been adapted from my paper published at the EDM conference (Zaidi

et al., 2019). In Chapter 5, I explore the role of forgetting within instructional sequencing.

The work explores previous methods of modelling forgetting. These models can then be

used to evaluate optimal spacing for a spaced repetition technique. I present a new method

using neural networks to adaptively model the forgetting curve which is conditioned on

the student’s prior performance and the particular word or words they are learning. The

model also highlights the importance of certain psycholinguistic features, specifically word

complexity, in predicting recall. This chapter has been adapted from a conference paper

published at AIED (Zaidi et al., 2020). Chapter 6 discusses the key findings of the thesis

and identifies key future works to be explored.

Since this work is about personalised instructional sequencing, I felt it was necessary

to provide a map and overview of how to navigate the thesis. The topical navigation

section provides a quick way for interested readers to find information relevant to them.

Although there are inter-chapter references, I have tried my best to keep the chapters as

self-encompassing as possible while still retaining an overall narrative for the thesis. The

experimental chapter summary is for readers who what to get a gist for what experiments

I ran, the methods I used, and the main contributions of those chapters for the educational

data mining community.
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1.1 Topical navigation

Use the flow diagrams below in order to navigate the thesis based on topical interests

Ch 2.1 Ch 3 Ch 6

Figure 1.1: Personalised instructional sequencing history and methods

Ch 2.2 Ch 4 Ch 6

Figure 1.2: Student knowledge representation challenges and approaches

Ch 2.3 Ch 5

Figure 1.3: Human forgetting curves and psychologically driven model selection
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1.2 Experimental chapter summary

The table below provides a summary of the experimental chapters of this thesis with

methods used and main contributions.

Ch Topic Method Contribution

3 Personalised
instructional
sequencing
for language
learning

Reinforcement learn-
ing; convolutional neu-
ral networks; word em-
beddings

Illustrated the importance of leveraging
domain structure for model design; de-
signed an educationally motivated re-
ward function; presented a reinforce-
ment learning personalised instructional
sequencing system that requires mini-
mal teacher intervention

4 Student knowl-
edge representa-
tion

Neural collaborative
filtering; word embed-
dings; auxiliary objec-
tive functions

Novel model for developing student
knowledge representation using neural
collaborative filtering approach; pre-
dicting student performance on unseen
tasks by learning from similar students;
leveraging grammar error distributions
to identify what errors students of dif-
ferent proficiencies make

5 Adaptive forget-
ting curves for
language learn-
ing

Neural networks ;
word complexity;
psychologically driven
model selection

State of the art model for predict-
ing probability of recall of vocabulary
words; identifying word complexity as a
predictive signal for recall probability; il-
lustrating how leveraging psychological
theories to drive model selection results
in better performance than naive neural
network;
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Chapter 2

Background

Instructional sequencing has an extensive history that has been influenced by centuries

of thinking, experimentation and more recently, data. Although in this thesis I do my

best to talk about instructional sequencing in isolation, ultimately, it is difficult to talk

about instructional sequencing without talking about knowledge versus information and

discussing the overall objectives of teaching and learning.

2.1 Instructional Sequencing

The origins and evolution of instructional sequencing is an important section as it will

deeply motivate the design decisions I make in the rest of the chapters. It is my hope

that this chapter will become an important contribution to the literature on instructional

sequencing and personalised learning but also enable future researchers to consider the

work that has come before. However, this is by no means a fully exhaustive review of the

history of instructional sequencing but instead an attempt to summarise what I consider

some of the key milestones through the times.

2.1.1 Origins of instructional sequencing

Instructional sequencing is the order by which a set of materials are presented to a learner.

The effect of instructional sequencing is often defined as the performance improvements
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realised when the same set of materials are presented to a learner in a different order

(Ritter et al., 2007). The performance improvements serve as a proxy for knowledge

acquisition but since knowledge cannot be probed directly, it is common practice to rely

on test scores or communicable success in the context of language learning to obtain that

signal.

The history of instructional sequencing can be dated back to the times of the ancient

Greeks. The Sophists (4-5 B.C.), or teachers in ancient Greece, were the first in recorded

history to implement the method of mass instruction. Through this, they were able to

develop and refine a methodology of presenting instruction effectively (Ritter et al., 2007).

The Sophists systematised instruction by starting with the presentation of the rules of

writing and speaking. Thereafter, they showed examples which were copied and emulated

by their pupils. Finally, students were expected to apply the learned rules in a different

context.

However, the teachings of the early Sophists were largely overwritten by the rise of

Plato and his successors. In particular, while the Sophists believed that all men were

capable of intelligent, socially responsible self-rule, Plato believed that you were either

destined for low or high society and that it was ultimately only the high society or the

rich are capable of virtue (Saettler, 2004). Virtue was a critical part of education, as it

still remains today, mostly in the early years of education.

During the times of the ancient Greeks, presenting instruction was seen as a vital art

form that civilised society. It was considered an art form because it was understood that

there is a fundamental difference between simply presenting instruction and presenting

instruction in such a way that translated information into knowledge. Plato and his

successors, being philosophers, understood the nature of knowledge and sought to ensure

that this was reflected in their teaching practices.

Many centuries later, in the early 1600s, Johann Amos Comenius (1592-1670), a Czech

philosopher, proposed in his book, Didactica Magna (The Great Didactic), that the order of

instruction should follow the natural development of a learner. He stated that instruction

should be designed for age, interest and capacity of the learner. Comenius was instrumental
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in shaping modern personalised instructional sequencing (Piaget, 1993). Furthermore,

he called for the use of illustration in instruction as well as stating the importance of

organising content from simple to difficult. For language learning, he promoted the

practice of teaching both writing and reading together and claimed it was irrational to

learn a foreign language before the native language has been learned. Unfortunately, for

many centuries, Comenius’ work in instructional methods was largely unknown and only

rediscovered in the mid-19th century.

In the early 1800s, Joseph Lancaster (1778-1838) introduced the Lancasterian Monitorial

instruction. Lancaster was one of the first to formalise classroom organisation, develop a

graded plan for group instruction and incorporate educational economics. One of the main

limitations of one-to-one tutoring, as mentioned in the introduction, is its cost. In 1819,

Lancaster had several schools in Philadelphia where the pupil to teacher ratio, in some

cases, was 1 to 284. This was done to keep the cost low. In this system, personalisation was

incorporated by the teacher training up to 50 pupils. Each of these pupils would then play

the role of group monitor (modern day teacher assistant) for 10 additional pupils. This

ensured that in the context of a large classroom, there was still a level of personalisation

provided through the monitor.

The content was presented from simple to complex. The monitor would introduce the

rules, show an example on a board and erase it. Thereafter, each pupil was required to

solve the same example. This is the first known example of how instruction presentation

was scaled across large groups of students with some element, albeit at a minimal level,

of personalisation. Unfortunately, after some initial success with this model, Lancaster

received a lot of criticism for his alleged poor standards and harsh discipline and as a

result his teaching methods were discredited soon after.

Johann Henrich Pestalozzi (1746-1827) was one of the first to incorporate psychology

into instructional sequence and methods. Influenced by the teachings of the Genevan

philosopher Jean Jacques Rousseau (1712-1778), Pestalozzi set up experimental schools

where he applied different methods of teaching. While he did not use empirical methods,

he did predict that in the future an emergence of instructional science would occur. In
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his teachings he emphasised that every learner has different abilities and therefore the

teaching must be adapted to the learner. He also promoted that instructional sequence

should follow the natural development process of the learner. For example, he taught

language by starting with sounds then syllables, words and finally sentences. In early 1800s,

Johann Fredrich Herbart (1776-1841) built on the teachings of Pestalozzi and Comenius

to show how instructors can and should link prerequisite knowledge to future teaching

content. He claimed that the main task of instruction is to ensure the proper sequence

and connection of ideas. He proposed that the sequence of instruction should observe the

following structure (Saettler, 2004):

1. Clearness - reduce a concept to its elemental components and teach those concepts

in isolation.

2. Association - connect different concepts together to show how they’re related

3. System - to study the system as a whole in order to understand the role of each

component and its relative importance

4. Method - once a system and its components are understood, apply the system to a

new problem.

2.1.2 Emergence of scientific instructional sequencing

Until now, all of the innovation in instructional methods was developed, refined and

evaluated based on observation. The methods were not backed by an empirical scientific

process. That changed in the early 1900s with the work of Edward Thorndike (1874-1949).

Thorndike, an educational psychologist, had developed the first scientific theory of learning,

connectionism theory. Connectionism theory states that learning is a result of practice

and associations or connections formed between stimuli and responses (reward system).

Thorndike was particularly interested in the application of his findings in education includ-

ing spelling and reading (Thorndike and Lorge, 1944), measuring intelligence (Thorndike

et al., 1926), and adult learning (Thorndike et al., 1928). Based on the early works of

30



Hermann Ebbinghaus (1850-1909), Thorndike developed the decay theory, a theory that

states memory fades with the passage of time (Thorndike, 1913). This theory was highly

criticised by McGeoch with his interference theory (McGeoch, 1932). Interference theory

states that forgetting occurs because memories interfere with one another. The evidence,

according to Berman et al. (2009), supports interference-related decay over temporal decay.

Thorndike’s learning theory played a critical role in the development of operant condi-

tioning within behaviourism. Operant conditioning is the idea of reward and punishments

to promote desired behaviour. Whilst Thordike was credited with discovering operant

conditioning, B.F. Skinner (Skinner, 1938) was credited with coining the term and formal-

ising it. The concept of operant conditioning still plays an important role in personalised

instructional sequencing, specifically when deciding on how and when to provide feedback

before proceeding to the next task.

In the same era, Maria Montessori (1870-1952), a medical doctor by training, also rose

to prominence through her publication Scientific Pedagogy as Applied to Child Education

in Children’s Houses. Although Montessori’s instructional principles were not based on

statistical design and evaluation, she did leverage her clinical observations to devise optimal

strategies for learning (Montessori, 1912). It was these observations that ultimately led to

her discovery of the importance of sensory learning. Sensory learning is the notion that

children should use their senses when they explore and learn.

Montessori developed a methodology that was grounded in instructional adaptivity

and promoted two key tenets: individuality of the student and freedom of direction. Her

methods relied on anticipating what the learner was trying to do and developing a bespoke

and individualised plan to guide the learner through that experience. It also ensured the

teacher was not overly dominant in the teacher-student relationship. Montessori’s success

marked, in many ways, the beginning of the rise of individualisation of instruction.

In 1912, Frederic Burk (1862-1924) developed the first formal system of individualised

instruction. Burk, with the support of his colleagues, reordered the course material to

meet the individual needs of each learner. The materials were ordered in such a way

that ensured teacher intervention was kept to a minimum. Similar work was done by
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Carleton Washburn (1889-1968), when he developed the Winnetka Plan in 1919. This

plan not only allowed learners to proceed at different rates, but also at different rates

for different subjects. In the same year in Dalton, Massachusetts, the Dalton Plan was

developed by Helen Parkhurst (1887-1973). This plan was designed for students with

physical disabilities. In this plan, students were given a certain number of teacher hours for

each assignment. The students were free to use the hours in whichever way they required

to complete the assignment. Similar to the Winnetka Plan, the Dalton Plan promoted

individualised instruction and self-learning. Between 1925-1935, Henry Clinton Morrison

(1871-1945) proposed the highly influential Morrison Plan. In his plan or method, he

identified a five-step process for developing personalised instruction (Morrison, 1926):

1. Pretest

2. Teaching

3. Testing the result of instruction

4. Changing instruction procedure

5. Repeat (teaching and testing again) until mastery is achieved

Morrison distinguished between learning, performance and adaptation. Mastery learn-

ing is when the student has achieved a grasp of the subject matter. The ability to apply

that subject matter or skill is performance. Adaption is the process of applying that

skill in different situations. This is an important distinction in instructional sequencing

especially when we consider what it is we want the students to ultimately be capable of.

From Morrision’s insight, we can can deduce that our instructional objectives should adapt

over time. That is, in the beginning, we should aim for the student to understand the

subject matter. Thereafter, we proceed to supporting the student in applying that subject

matter in a constrained environment. Finally, we enable the transfer of those skills and

capabilities in different environments and situations. This idea was built upon many years

later in the well known Bloom’s Taxonomy (Bloom et al., 1956).
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In the late 1930s, B.F. Skinner (1904-1990), a professor at Harvard University, began

his journey to understand the science of behaviour. Among his many interests, he

was particularly curious about verbal learning, teaching machines, and the influence of

reinforcement on behaviours. Skinner believed that one of the main issues with traditional

learning was the lack of consistent reinforcement for desired behaviour. Furthermore, he

believed the role of the teacher was to architect instruction and teaching in such a way

that maximises reinforcement. This is where his interest in teaching machines came into

play. The role of Skinner and his behaviourist perspective played a critical role in helping

to define personalised instructional sequencing methods. This is especially relevant when

it came to discussing how the order of topics and subsequent reinforcement signal affects

long term retention. Skinner’s theories have shaped many aspects of education. These

influences can be attributed to his work in The Technology of Teaching. The application

of Skinner’s theories can be seen in the Keller Plan (Keller, 1967) and Lindsley’s precision

teaching system (Lindsley, 1991).

2.1.3 Computational instructional sequencing

In the 1950s, the advent of computers led to the rise of Computer Assisted Instruction

(CAI). Much of the early work of CAI was conducted by IBM although other prominent

names in the field included the likes of Gordon Pask (1928-1996) who developed adaptive

machines, and Omar Khayyam Moore (1920-2006), who introduced autotelic responsive

environments to teach children how to read. Most CAI implementations were inspired

by Skinner’s behaviourist approaches. The early works in CAI were based on the drill-

and-practice approach. This is where students were provided with a question and a

possible selection of answers. If the answer was wrong, the screen would flash, “WRONG”.

Alternatively, if the answer was correct, it would proceed to the next question. Furthermore,

the curriculum was controlled by the teachers and allowed very little flexibility on the part

of the student.

In 1967, Richard Atkinson and Patrick Suppes (1922-2014), two highly influential

thinkers in the CAI domain, setup the Computer Curriculum Corporation (CCC). Atkinson

33



in particular, has had a deep interest in language learning including areas like second

language acquisition (Atkinson, 1975), word recognition (Atkinson and Juola, 1973),

mnemonic methods for vocabulary acquisition (Atkinson and Raugh, 1975), In CCC,

Atkinson and Suppes developed CAI drill-and-practice materials for mathematics, pro-

gramming, language and reading. Although it showed great improvements on the Stanford

Achievement Test (SAT) and computational skills, the impact on reading and language

arts did not yield a similar improvement. This is an important observation, especially

given the focus of this thesis. It supports the assumption that the instructional sequence

methodology for language may well differ from the approach to mathematics. By the mid

1970s, despite its initial promise and extensive government funding, it was clear that CAI

had not succeeded in delivering the impact it had desired. The failure of CAI led to a

new research direction towards cognitive psychology, instead of behaviourism, to drive

educational technology.

One of the main critics of Skinner’s behaviourist approach was Seymour Papert (1928-

2016) who propagated the views of his supervisor and mentor, Jean Piaget (1896-1980) and

his constructionist theory of learning. This theory stated that the best way to learn was

by building and exploring in the real world. Under this view, when students learn, they

develop mental models of the world. Therefore when they learn by exploring, students can

apply their existing knowledge and understanding of the world to acquire new knowledge.

The constructionist approach is personalised and learner-centric where the role of the

teacher shifts from a lecturer and provider of information to a coach and guide. In 1967,

Papert developed LOGO, an educational programming language while he was at MIT.

LOGO was designed to be an environment that encourages exploration. Papert went on

to found the Epistemology and Learning Research Group at MIT which was influential in

starting the MIT Media Lab.

In the 1960s several theories and models of instruction emerged. In 1966, Jerome

Bruner (1915-2016), a prominent American psychologist, in his book Towards a Theory

of Instruction (Bruner et al., 1966), proposed a theory of instruction that included the

following four criteria:
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1. Predisposition to learn. The student must be willing to learn. This can be done

by creating a level of uncertainty in the learning process that allows the student to

explore.

2. Structure of knowledge. The curriculum should be structured in such a way that the

body of knowledge should be easily accessible to students.

3. Sequencing. The body of knowledge should be presented in a sequence that makes

concepts easier to grasp, transfer and apply. Bruner suggested the following order:

enactive (hand-on, concrete), iconic (images and visuals), symbolic (logical and

mathematical expressions).

4. Reinforcement. Bruner stated that the nature and pacing of rewards and punishments

should be specified. Rewards should move from extrinsic, such as teacher praise, to

intrinsic, such as the ability to solve a problem.

Although Bruner’s work and theories reside within the cognitive approaches to instructional

design, there are some elements of behaviourism namely the emphasis on reinforcement.

In 1956 Robert Gagné (1916-2002), a former air force pilot trainer, came up with 8

different ways to learn. The ways to learn are organised by increasing complexity (Gagné

et al., 1985).

1. signal learning - this is seen as the simplest form of learning and consists of classical

conditioning as discussed by Pavlov (Pavlov, 1910). An example of this is the

salivation of a dog upon hearing the sound of food being poured into a metal dish.

The signal is the sound of food in the dish and the conditioned response is salivation.

2. stimulus response learning - this form of learning is similar to reinforcement learning

proposed by Skinner. This is where the student is either given an award or punishment

after each response. This type of learning is fairly precise in comparison to signal

learning that is diffuse and emotional.
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3. chaining - This is where the student can connect two or more previously learnt

stimulus-response bonds. An example of this is riding a bike or playing the piano,

which are both examples of activities that require hand-eye coordination.

4. verbal association - links between items that are verbal in nature. This is key for

language development. Verbal association is a type of chaining with an observation is

linked with a verbal response. For example, when a child says ”ball” upon observing

one.

5. discrimination learning - this is the ability to provide different responses to different

stimuli. This results in what is known as interference, which is thought to be one of

the main causes of forgetting. An example of this learning might be in a classroom,

where a teacher attempts to call on each student by his/her correct name.

6. concept learning - this is the ability to form a consistent response to stimuli and

categorise it into a class. This enables students to generalise concepts. An example

of this might be the ability to correctly identify whether an image is of a cat while

presenting the student with different species of cats. Even though the presented

images of cats vary in their physical appearance, they have some shared abstract

features that help the student develop a concept of a cat.

7. rule learning - this is the process by which students understand the relationship

between concepts and are able to apply those concepts in situations they have not

previously encountered. For example a student might observe a kitten making a

“meow” sound to its mother and learn a rule that the “meow” sound from a kitten

usually indicates to the mother cat that the kitten is hungry or cold.

8. problem solving - this is considered the highest level of learning which is the ability

to create a rule, algorithm or solution to solve a particular problem. An example

of might be a question on a physics exam where the student is asked to determine

which vehicle will reach the destination first given varying conditions for the vehicle

speed and the route. This requires the student to chain various rules that he/she
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has learned to calculate the relevant values. The student must then come up with a

new rule that compares these values to reach an answer.

Gagné’s 8 different ways of learning presents a valuable framework to consider when

designing instructional design tools.

Another approach to computational instructional sequencing was introduced by Lev

Landa (1927-1999). He proposed the algo-heuristic theory of instruction (Landa, 1983).

This theory presents a new framework to combine the best of algorithmic instructional

sequencing and heuristic approaches. While algorithms are precise and measurable there

are some tasks which cannot be clearly defined algorithmically because their underlying

principles are ill understood. For those tasks, heuristics are a better option. Once it is

identified whether each concept is better presented algorithmically or heuristically, they can

be organised into a system of instruction that is learner led, combining both approaches.

2.1.4 Artificial intelligence and instructional sequencing

In the 1970s a new term, intelligent computer assisted instruction (ICAI) signalled a new

wave of tutoring systems that aimed to automatically adapt to the learner. It was believed

that ICAI would change the feasibility of personalised instruction, creating the ability to

scale it across the population. Some well known ICAI systems include SOPHIE (Brown

et al., 1975) which was designed as a tutorial dialogue system for question-answering. It

focuses on allowing students to have a reactive learning environment in which to explore

their ideas. The system employed very basic natural language techniques to provide a

response to the student. The first domain used for SOPHIE was electronic troubleshooting.

Another popular system was BUGGY (Brown and Burton, 1978). It was inspired by

the idea of a computer “bug”. In the context of a student, a “bug” was the student’s

misconception about a concept. Previous models relied on models that capture what the

student understood. However in BUGGY, misconceptions are explicitly represented in the

framework. The initial domain of choice for BUGGY was arithmetic skill and it specifically

became well known for place-value subtraction.
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Alongside the popularisation of the perceptron, in 1960 Ronald Howard published a book

by the name of Dynamic Programming and Markov Decision Processes (MDP) (Howard,

1960a) as well as an article called “Machine-Aided Learning” (Howard, 1960b). The book

went on to become a foundational contribution to reinforcement learning. The article, on

the other hand, discussed the potential for computers to provide individualised instructional

sequencing. Richard Smallwood, Howard’s doctoral student built upon Howard’s work in

this dissertation “A Decision Structure for Teaching Machines” (Smallwood, 1962). The

dissertation presented an approach to adaptively ordered instruction using MDPs. This

made instructional sequencing one of the earliest use cases for MDPs.

Building on the work of Howard and Smallwood, in 1972, Richard Atkinson introduced

the four criteria or ingredients that must be satisfied in order to reach the optimal

instructional strategy (Atkinson, 1972a). Atkinson then pointed out the duality between

MDPs and his four ingredients for optional instructional strategy. The four criteria are

summarised as follows:

1. A model of the learning process of the student

2. A range of possible instructional actions

3. Identification of key educational and instructional objectives

4. A method of evaluation that enables “cost” to be assigned to each instructional

action in relation to the instructional objectives.

Atkinson then embeds each of the four points above in the MDP paradigm. Let’s first

review the components of the MDP.

MDPs consist of: states S, actions A, transition probabilities of going from a given

state s to an alternative state s′ due to an action a is represented in the form T (s′|s, a),

reward for taking a particular action a in a given state s represented as R(s|a) and H

which is the number of time steps.

Atkinson presents instructional sequencing in the form of an MDP by mapping states

S to the student’s current knowledge state, the set of actions A are the possible learning
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activities that can affect the state s, and the reward R is the overall learning gains observed

by the student. Atkinson also draws parallels between the transition function T (s′|s, a)

and the learning process. That is, the probability of going from one state to another can

be grounded in theory of learning. Presenting personalised instructional sequencing in

an MDP framework opens up a range of powerful tools and techniques that can be used

to tackle the instructional sequencing task. Some of these techniques are discussed in

Chapter 3.

2.2 Knowledge representation

Knowledge representation is a fundamental part of artificial intelligence. It is the way

information is represented in a computational environment and it is these representations

that are ultimately processed and evaluated by a computer to make decisions (Brachman

and Levesque, 2004). Therefore, the quality of representations directly impact the quality

of decision making.

In an educational setting, knowledge representation can refer to the cognitive state

of the student, the question being presented by the tutor, the answer being provided by

the student. Therefore, the quality of these representations can be considered a critical or

rate-limiting step in the overall quality of intelligent tutoring systems. In a personalised

instructional sequencing system, the representation of the student and curriculum is the

signal that determines what, when and how content is presented. Representations in

these system can take many forms, from simple numeric forms to more complex networks

(Brusilovsky, 1994, Elliott, 1993).

In 1974, John Self published a paper titled “Student models in computer-aided in-

struction”. Self (1974) states that the knowledge related to teaching performance can be

divided into three categories:

(a) knowledge of how to teach (which includes knowledge of students in general)

(b) knowledge of what is being taught
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(c) knowledge of who is being taught (i.e. knowledge of one student in particular)

This section is specifically concerned with (c) which, according to Self (1974), is the most

relevant category for individualised instruction. Capturing what a student understands as

well as his/her misconceptions are critical to designing personalised instruction.

Typically, a teacher will have a mental model of each student’s capabilities and

knowledge. It is this mental model that needs to be explicitly represented in an intelligent

tutoring system. Peplinski (1970) approached this task by counting the number of questions

and correct answers provided by the student. Using the ratio of correct answers to questions,

the system automatically determines whether to increase or decrease the difficulty of the

questions.

Carbonell (1970) represents knowledge as a semantic network and uses temporary tags

to indicate whether a particular node of the network has been asked to the student and

whether it was answered correctly. Each node represents a concept or question. The

collection of nodes and temporary tags then represent the student’s current knowledge

state. This approach was also employed by Wexler (1970) who used is not only to organise

knowledge but also to generate questions to test the knowledge of students. Brown et al.

(1972) uses an external state vector to represent student knowledge. In the vector, each

dimension represents a concept and the value within the dimension acts as a flag that

is modified based on the system’s interaction with the student. That flag can represent

anything from indicating whether the question has been asked to how likely it is that the

student understands this concept.

Whether representing knowledge as a semantic network or an external state vector,

there is still an important consideration to make regarding how you will measure the

student’s knowledge to the target or domain knowledge. More specifically, is student

knowledge representation a subset of the domain knowledge representation or is it its own

unique representation with different nodes and dimensions?

A model where the student knowledge is a subset of the domain model is known

as an overlay model (Carr and Goldstein, 1977). Whilst it provides an elegant yet

simple solution to monitoring students’ knowledge states and comparing it to the domain
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knowledge representation, it has some limitations. For instance, the student might have

certain skills that are not explicitly represented in the domain model which may still provide

some transferability in the domain being studied. Additionally, capturing misconceptions

in an overlay model is challenging as there is no list of predefined misconceptions that

cover all possible reasons why a student has not understood the concept within a particular

domain. Finally, there is a question of how to divide and group the concepts within the

domain which will then serve as nodes or dimensions in network and external state vector

representations, respectively. This is not only a resource intensive task, there is also likely

to be significant difference of division from one curriculum designer to another.

One possible method of addressing the challenge of dividing up the domain into different

concepts is to develop a domain model that is an output of numerous experts’ division of

the domain. Diederich et al. (1961) achieved this by asking a large number of admission

panellists to identify errors on the same set of student writing submissions for college

admission. Those errors were mapped onto an error grid which then provided writing

teachers with a specific profile for each student. Since the division and taxonomy of

language errors is highly varied, constructing an error grid that is an amalgamation of

error notions from several writing teachers is a valuable alternative. It also provides a

standardised yet personalised way for representing each student’s ability.

Another aspect to consider for student representation is bandwidth. Bandwidth is the

amount of information available about the student knowledge representation over time.

That is, how does the student knowledge representation change with exposure to new

instructional material? For example, programming tutor PROUST (Soloway and Johnson,

1984) only captures the final completed code from the students. This might be efficient

from a computational memory perspective, but can create challenges if the educator is

trying to understand the root cause of potential knowledge gaps and misconceptions. In

contrast, step-wise tutoring systems such as Cardiac Tutor (Eliot et al., 1996) stored and

evaluated each step of the student’s action. The Cardiac Tutor provides students with an

environment for which to practise advanced cardiac life support (ACLS). Due to higher

bandwidth, the tutor is able to better diagnose the student’s errors and misconceptions by
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providing a knowledge path that can be debugged.

As mentioned earlier in the chapter, knowledge representations are important because

they are the input that intelligent tutoring systems then use to make decisions. Therefore,

any decision regarding the student’s knowledge but also the difficulty of the question and the

validity of the student response must be derived from the knowledge representations. We

see an example of capturing question difficulty explicitly in the knowledge representations

in AnimalWatch. AnimalWatch was a tutoring system that provided students with

mathematical instruction for addition, subtraction, fractions, decimals, and percentages.

It was targeted at students aged 10 to 12 (Beal and Arroyo, 2002). AnimalWatch was

a generative tutoring system that automatically adapted to the students’ learning style

and only moves on to the next topic if mastery of a topic is achieved. The domain model

was arranged as a network of nodes where each node represented a skill. The difficulty of

the question was determined explicitly by adding the number of skills (nodes) required

to solve the question. The greater the number of skills, the harder the problem. The

student model in AnimalWatch captured how long the student took to give a response,

how the student reacted to different hints, and incorrect responses. The student model

was designed as an overlay of the domain model.

All the models described above are deterministic, where the student either has learned

that particular skill or has not. Pump Algebra Tutor (PAT) provided a more probabilistic

approach to knowledge representation that was grounded in cognitive models. PAT was a

cognitive tutor for algebraic problem solving. This tutoring system, similar to the Cardiac

Tutor (Eliot et al., 1996) modelled the entire path the student took to get to the solution

(Koedinger and Anderson, 1998, Koedinger and Sueker, 1996, Koedinger et al., 1997) or

employed a high bandwidth approach. PAT was based on a theory of human cognition

called ACT-R (Lebiere and Anderson, 1993). ACT-R divides knowledge into two categories,

declarative and procedural. Declarative knowledge consists of units called chunks and are

generally facts or concepts discussed in written form. Procedural knowledge is represented

by procedural rules and consists of if-then statements. According to the ACT-R model,

procedural knowledge cannot be learned by sitting in a lecture and can only be learned
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by “doing” e.g. driving a car, swimming. The PAT model estimates the likelihood that a

procedural rule or declarative chunk is understood by a student. Based on this estimation,

the tutor adapts its instruction and is able to prioritise the order of instruction.

The study of knowledge representations cannot simply be restricted to just its structural

representation. Another aspect to consider is when, how and to what extent the student

representation will be modified by the insertion or addition of new knowledge and material

i.e. how do we adapt the student’s representation as the student acquires new knowledge.

The Knowledge Learning and Instruction (KLI) framework (Koedinger et al., 2010)

addresses this challenge in some respect by presenting a cognitively motivated framework for

understanding the relationship instruction, assessment and learning. The KLI framework

consists of three types of events, instructional events (IE), assessment events (AE), and

learning events (LE). IEs are activities that are presented by a teacher or tutor (human

or machine). AEs include activities such as taking exams. Some AEs are also IEs, for

example teacher-student discussions which can serve as a medium of instruction but also

a form of assessment. IEs are what cause LEs. LEs are unobservable processes which

the authors divide into three different classes: 1) memory and fluency, 2) induction and

refinement, and 3) understanding and sense making. LEs cause unobservable changes

to the knowledge components (KCs). The authors define KCs as “an acquired unit of

cognitive function or structure that can be inferred from performance on a set of related

tasks”. As KCs are unobservable directly, they can only be measured or gauged through

AEs.

The KLI framework also discusses challenges and approaches of defining KCs. The

challenge arises from the fact that different curricula experts have varied perspectives on

how to divide the curriculum into components.

A group of KCs can form a knowledge state for a particular subject. A group of

knowledge states can form a knowledge space. The idea of a knowledge space allows us

to view knowledge beyond the confines of a particular subject/domain. This is beneficial

especially in subjects or specific skills where transferabiliy is inherent. For example, if

an English speaking student is learning French, there might be some complex or higher
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level words that sound very similar to English words and therefore, the student domain

knowledge that would not necessarily correlate with his/her general language level.

Falmagne et al. (1990) explores how knowledge spaces can be designed probabilistically.

The author presents a mathematical framework that enables the discovery of how different

knowledge states relate to each other in a knowledge space. Falmagne et al. (1990)’s

system would be able to predict how likely it is that a student knows who the United

States Vice President is given he/she knows 5 of the 7 United States Supreme Court

Justices. The knowledge spaces are initially designed by an expert in the subject but are

refined by empirical data captured from tutor-student interaction.

So far I have outlined the importance of knowledge representations and some of the

challenges, including:

• Determining the representation structure (e.g. nodes vs external state vector)

• Defining the granularity of knowledge components (vector dimensions vs number of

nodes)

• Determining how much knowledge components are modified with the introduction

of new knowledge

• How knowledge components relate to one another

Finally, since we are investigating personalised instructional sequencing for human

students, we must also consider cognitive phenomena that affect our knowledge representa-

tion. In the next section I will introduce the role of forgetting and its role in personalised

instructional sequencing.

2.3 Memory and forgetting

An important part of instructional sequencing is understanding the effects of time. More

specifically, understanding and accounting for the forgetting that may occur over time.

This is a simple concept with a rather complex and deep research history. This section
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presents a very brief and simple overview of memory and forgetting in the context of

learning. As this research is intended for a computer science audience, I do not delve too

deep into the psychological and cognitive specifics of memory but rather try to provide

an overview that is sufficient to understand the basics of memory and forgetting in the

context of personalised instructional sequencing.

As we learn, there are certain bits of information we retain and some that we forget. An

integral part of personalised instructional sequencing is approximating what information a

student remembers and what information a student needs to revise to prevent forgetting.

The phenomenon of forgetting was first explored by Hermann Ebbinghaus in the late

1800s. Between 1880 and 1885, Ebbingahus ran an experiment on himself to memorise a

series of nonsense syllables (Ebbinghaus, 1885b). Through self-experimentation, Ebbing-

haus uncovered the forgetting curve. The forgetting curve shows the decline of memory

retention overtime. Specifically, it shows how information is lost over time if there is no

attempt to retain it. There are many equations proposed to approximate the forgetting

curve, but the simplest is the exponential curve. Whilst Ebbinghaus studied the nature of

forgetting, his work was not focused on what instructional techniques should be used to

counter the effect of forgetting.

One of the main methods of countering forgetting is spaced repetition learning (Landauer

et al., 1978). Spaced repetition is a method of reviewing information repeatedly with

increasing time intervals in order to minimise the effect of forgetting. There are several

theories behind why this technique is effective. One of those theories is known as contextual

fluctuation.

Context is all the stimulus that is present at the point in time that information is

being reviewed. As time passes, context changes. The greater the time lapse, the greater

the context change. For retrieval, it is believed that we rely on contextual cues. For

example, if you have misplaced your keys, in order to remember where you have left them,

you retrace your steps and try to remember what you were doing earlier. The activities

you did earlier are the contextual cues. The more cues we have related to the particular

piece of information we wish to recall, the easier it is to remember. Therefore, through
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spaced repetition, information is encoded with increasing time intervals and thus varied

contextual cues, making it easier to remember with the passage of time.

The study of forgetting is in fact the study of retention, as what is forgotten cannot

be explicitly measured. Furthermore, what is remembered is only a reflection of what

is remembered at a particular point in time. It possible that at one point in time, the

student cannot remember a definition of a word, but later, under different circumstances,

he/she is able to successfully recall the meaning of the word. Rubin et al. (1995) suggests

that ultimately it is not time that most directly influences forgetting, but it is how that

time is filled. More specifically, interference or competing activity in period between two

testing sessions is what determines retention. However, in an experimental setting, we

must rely on a time as a proxy for interference.

46



Chapter 3

Instructional sequencing for

vocabulary learning

In Chapter 2.1, I provide a historical account of instructional sequencing starting from the

ancient Greeks to the modern era of AI and computers. In this chapter, I demonstrate how

we can leverage ideas introduced in Chapter 2.1 and combine it with relatively modern

methods such as reinforcement learning to develop an instructional sequencing system for

vocabulary learning.

This chapter was adapted from work that was published and presented at Visually

Grounded Interaction and Language workshop in the 31st Annual Conference on Neural

Information Processing Systems (Zaidi et al., 2017).

3.1 Introduction

With the rise of machine learning and tasks such as automated teaching and assessment,

there is an increased interest in understanding how machine learning models can be

grounded in theories of learning. Additionally, with an abundance of learner data in

archive and generation, we now have an avenue through which we can not only evaluate

our theories of learning, but also explore whether these theories can be used to build better

intelligent tutoring systems (ITS).
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In this thesis I am particularly interested in the process of instructional sequencing for

language acquisition and the role of machine learning in scaling its efficiency and reach.

Language acquisition is a multidisciplinary field that overlaps with linguistics, psychology,

neuroscience, philosophy, and more recently computer science. At the intersection of

language acquisition and pedagogy lie theories of educational practices for language

learners, including for example, an optimal curriculum for both L1 and L2 learners. L1 is

a learner’s first language, whereas L2 is the learner’s second language.

A curriculum is a guide that helps teachers decide what content to present and the order

in which it needs to be presented. The aim of a curriculum is to provide a highly structured

series of concepts in order to maximise the rate of learning, develop a deeper understanding

of the material and ensure long term retention. Instructional sequencing on the other

hand, is the action or the act of optimising a curriculum to achieve the aforementioned

objectives. In this thesis, a curriculum is seen to be an output of instructional sequencing.

An optimal curriculum therefore is achieved through an optimal instructional sequencing

methodology.

The idea of using a curriculum in an educational setting dates back centuries to the

ancient Greeks. The first formal graded plan for group instruction, however, more likely

dates back to the Lancasterian Monitorial instruction in the early 1800s (Saettler, 2004).

Thereafter, it has been discussed and explored extensively. For example, Bruner (1960)

introduces the idea of a “spiral curriculum”, a curriculum in which complex information is

first presented in a simplified manner and then revisited at a more difficult level later on.

Vygotsky, from the perspective of language acquisition, introduces the idea of scaffolding

within the curriculum in order to provide contextual support for more complex ideas using

simplified language or visuals (Vygotsky, 1978). As we know from Chapter 2.1, the idea

of teaching vocabulary with visuals was famously used by Comenius in 1658. His book,

Orbis Pictus, was the first widely published children’s textbook with pictures (Comenius,

1887). Although he did not formalise the concept of scaffolding, Comenius did recognise

the importance of using visuals and other mediums to aid the learning process.

Even though it is not the primary focus of this thesis, it is worthwhile to mention
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that theories of learning have also contributed to design decisions in training machine

learning models. Elman (1993) draws parallels between the effectiveness of staged learning

in humans, and in artificial neural models. More specifically, he describes “the importance

of starting small” or going from simple to complex in a neural network paradigm. He coins

the term “curriculum learning” to describe the process of going from simple to complex

during the machine learning training process. This line of work was continued by Bengio

et al. (2009), who illustrated how curriculum learning can facilitate the generalisation as

well as the rate of convergence and training of deep learning networks. Hermann et al.

(2017) also illustrate its benefits in the rate of learning for agents in a 3D simulation.

Elman (1993) is evidence for why understanding how we learn is important for both

education of humans but also for the training of machine learning algorithms.

In the classroom setting, Bruner (1961) argues that the role of the teacher is not to

present information by rote learning but rather facilitate the learning process in order to

teach students to become active learners: put simply, they are “learning to learn”. There

are many factors that teachers need to consider when constructing a curriculum to achieve

this goal, one of those factors is difficulty.

However, as we know from Pestalozzi’s teachings and later on in Bloom (1984), different

learners have different abilities and therefore require a different order of instruction. In

order to enable this, we have to consider a method of developing a personalised instructional

sequencing system that incorporates Bruner (1961)’s proposition of difficulty, but can be

developed over time to deploy, test, and evaluate other theories of learning such as Gagné

et al. (1985)’s learning hierarchy. Presenting information from easy to difficult is a good

choice for an instructional system but how do we know what is easy and what is difficult?

3.1.1 The notion of difficulty

One way of measuring difficulty of content is its position relative to the zone of proximal

development (ZPD), introduced by Vygotsky (1978). ZPD is a representation of what a

learner is capable of achieving without help, with some help, and what concepts are beyond

the learner’s current ability. However, the ZPD is an abstract concept that cannot directly
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Figure 3.1: zone of proximal development (ZPD)
Source: Russell Moore and Ahmed Zaidi ALTA Annual Review 2017

be measured or determined. Therefore we have to find some method of approximating it

either heuristically or algorithmically.

A common method of identifying difficulty of content is by conducting laborious and

resource intensive studies which involve experts carrying out focus groups and analysis

to decide where a particular question or topic sits in the curriculum. Once that question

has been placed into the curriculum, it is tested and revised periodically. Revisions are a

result of a certain percentage of students getting the question right or wrong. For example,

if only 5 to 10 percent of the students answer the question correctly, it is likely to be too

difficult for that target group of students. This method is highly inefficient as it results

in questions being inaccessible and wasted for a large proportion of the students. In a

personal instructional sequencing system, the system should have an efficient method of

measuring difficulty that evolves with the learner’s ability and ensures a difficult question

is only difficult with respect to the ability of that learner. Furthermore, the degree of

difficultly is such that with some support the learner can grasp that concept. This is in

line with Bruner et al. (1966), stating that content should be created in such a way as to

create uncertainty for the student which in turn elicits curiosity within the learner. One

of the ways of creating uncertainty within the learner is ensuring optimal difficulty of
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content.

There are several theories in addition to ZPD that describe how to think about the

difficulty of content with respect to the learner. Another concept introduced by Krashen

(1989) is the input hypothesis or the i+1 theory. This hypothesis states that in order for

students to progress their linguistic ability, they must learn content slightly more advanced

than their current level. Krashen and Terrell (1983) also introduces another hypothesis,

the natural order hypothesis, that states language should be taught in a pre-specified

“natural” order that remains the same between different learners. This sounds somewhat

contradictory to the overall purpose of this chapter and thesis and has also be challenged

by (Murakami and Alexopoulou, 2016). The question that arises from the natural order

hypothesis is as follows: is personalised instructional sequencing about pace and rate of

progression through the content or is it about the overall order of the content as well? It

is worth noting that the natural order hypothesis is specifically for language acquisition.

We will explore this in further detail in the discussion section of this chapter.

3.1.2 Task description and contributions

I have described the motivation for a personalised instructional sequencing system in

Chapter 1. This is largely supported by the findings of Bloom (1984) and the Two Sigma

Problem stating that individualised instruction yields the best learning performance. Creat-

ing a personalised instructional sequencing system requires some notion of content difficulty

which is typically a resource intensive task. Therefore, to address these limitations, I

used a reinforcement learning framework to learn difficulty of content for each student.

This would allow the difficulty of the question to be implicitly measured with respect to

the student’s current knowledge state. The task I use to demonstrate this methodology

is vocabulary learning. As mentioned in Chapter 2.2, knowledge state is composed of

many knowledge components. In this task, I have assumed each knowledge component

is a single vocabulary word. Inspired by Comenius and his book, Orbis Pictus, I also

use images as the method with which to teach vocabulary words. The objective for the

student is to enter the word that correctly corresponds to the image presented. The
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goal of the reinforcement learning framework is to learn the optimal sequence of words

that the student should be presented in order to ensure best learning outcomes. The

framework must infer the correct order of content automatically. In the next section I will in-

troduce reinforcement learning and describe how I define optimal in the context of the task.

The main contributions of the this chapter are as follows:

1. I present a novel Q-Learning framework for the task of instructional sequencing

that models student ability through variable reward. Previous uses of reinforcement

learning for instructional sequencing relied on a dynamic state representation which

is then used to determine the optimal action using an existing policy. In my approach,

I assume static state representations but adapt the reward according to the student

proficiency.

2. I introduce a novel vocabulary learning system where I incorporate the use of language

models and image recognition systems to enable the learning and assessment process.

3.2 Reinforcement learning

The reinforcement learning (RL) framework is the backbone of the personalised instruc-

tional sequencing framework. However, let’s first describe the basics of reinforcement

learning (RL) so that it is clear how it is being applied to personalised instructional

sequencing. RL is a subset of machine learning that aims to train an agent to take the

actions within an environment that maximise its long-term cumulative reward (Sutton

and Barto, 2018). Typically, RL is represented in an Markov decision making framework

which is defined as follows:
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S = state/observations in the environment

A = the set of actions an agent can choose from within the environment

R(s, a) = reward from taking an action in a given state

T (s′|s, a) = transition probability of going from s to s’ given an action

Our objective is to learn an optimal policy π. A policy is a guide or map that provides

the agent with the action it should take given the state it is currently in such that it

maximises the long-term cumulative reward. Broadly speaking, there are three different

approaches to RL: policy search approach, value-function based approach and model-based

approach (see Figure 3.2). Policy search and value-function approaches rely on trial-and-

error to converge on the optimal policy. That is, they use an approach which learns

what reward would be obtained by trying out different actions in a particular state. This

approach is necessarily conducted over several iterations. The algorithm typically acts

greedily or in other words, takes the action with the highest immediate reward. However,

this can quickly result in the agent getting stuck in a local optima if it only knows the

reward associated with one of the possible actions in the given state. This phenomenon is

known as the explore-exploit problem. That is, the model must decide whether to take the

action that has the current maximum reward, or take a new action that it has never seen

before. Usually algorithms behave probabilistically, where they will for example, 80% of

the time take the action with the highest reward and 20% of the time take a new action.

On the other hand, a model based approach relies on having a model of the environment

that mimics the behaviour of the real environment. In the model based approach, the

optimal policy can be determined prior to taking an action given the modelled environment.

Each of these approaches have their strengths and weaknesses. Let’s consider each in term:

3.2.1 Policy search approach

As the objective of an RL algorithm is to find an optimal policy, the most direct way

of reaching that goal is to use the policy search approach. However, it turns out that

trying to search for the optimal policy directly is quite difficult. This is because in certain
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cases, we do not have access to the data that help us determine whether the action we

took was optimal given the state. The original method of using the policy search method

was introduced by Howard (1960a). The method was developed for MDPs. However, in

certain tasks, we cannot directly observe the states of an MDP and therefore must rely on

methods for partially observable Markov decision processes (POMDP) (Astrom, 1965).

The knowledge state of a student would be an example of a state that we cannot directly

observe.

3.2.2 Value-function approach

An alternative approach we can take is the value-function based approach. An important

differentiation to note is between the concepts of reward and value. A reward is what an

agent receives from the environment when an action is taken in a given state. A reward

is immediate. Value, on the other hand, is more long term, and provides a signal of the

overall rewards that may accumulate as a result of being in a particular state. It is only

by knowing the approximate value, not immediate reward, of state-actions pairs that we

can map to an optimal policy π.

3.2.3 Model based approach

The last approach is the model based approach. This is where we have a model that

mimics the behaviours of the environment. For example, given a state and action, the

model can predict the next state and reward. This will allow us to make inferences about

what actions to take in the future without having to actually observe them. In Figure 3.2

T refers to the transition function which predicts the next state given the current state

and action. R is the predicted reward returned from the environment given a state-action

pair. In reality, having an accurate model of the environment a priori is not always

possible. In those scenarios we must rely on model free approaches such as policy search

and value-function based approaches.

In RL, the most important aspect is the algorithm’s efficiency to measure value.
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Therefore, most of the research in RL has been focused on value function based approaches.

It is value, not reward, that should be maximised when selecting the best state (Sutton

and Barto, 2018).

state

action

π

policy search

state

value

U

value-function based

state

state’

T

model based

R

action

reward

Figure 3.2: A figure showing the three different approaches to RL, where π stands for
policy, U stands for utility, T stands for transition function and R stands for reward
function.

Let’s now consider how RL relates to the instructional sequencing task. There are many

features of RL that are shared with instructional sequencing. For example, when learning

a language, we must not only arrange our revision schedule to remember a particular word

tomorrow, we must consider how we can retain the meaning of this word in the long-term.

This is similar to the reward vs value distinction made earlier.

When tutoring a student, the teacher relies on a noisy signal of the student’s cognitive

and knowledge state to make decisions on the next best action. These signals are usually

captured through assessment events (AEs) such as a test, a quiz, or conversations as

described by Koedinger et al. (2010). Similarly, in a POMDP RL environment, since we

cannot directly observe the state, we must rely on noisy observations of the state to make

assumptions of the optimal actions to take.

The use of RL in personalised instructional sequencing is not a recent innovation.

Smallwood (1962) was one of the first to use RL for instructional sequencing. In fact,

according to Doroudi et al. (2019), instructional sequencing was one of the first applications

of RL in general. In Smallwood (1962), the author describes the parallel nature between

MDPs and instructional sequencing. To learn more about this, refer to Chapter 2.1.4.

Other examples of RL in pedagogy include Atkinson (1972b) who demonstrates its
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application in optimising the teaching of German vocabulary. Beck et al. (2000) uses

RL to teach students arithmetic, aiming to minimise the time taken to answer questions.

Iglesias et al. (2009, 2003) teach students database design using Q-learning, a specific

type of RL framework. Both Beck et al. (2000) and Iglesias et al. (2009, 2003) evaluate

results on simulated students. Martin and Arroyo (2004) use RL for teaching maths

while Tetreault and Litman (2006) use it for teaching physics. The approach proposed by

Rafferty et al. (2016) to use POMDPs for faster teaching resembles the approach and task

we are addressing in this chapter. However, in contrast to Rafferty et al. (2016), where the

reward function and values are fixed once the policy converges, in this work, the reward

function is constantly updating in line with student progress. Furthermore, where the

former work learns a student model or state, in my work, I assume discrete student states

that are predetermined.

As far as I know, no previous work has been done in exploring the use of RL for

vocabulary acquisition with images where the student progress is modelled in the reward

function. However, Whitehill and Movellan (2017) present a framework that is tested

on the word-image matching task. Whitehill and Movellan (2017) extend the work of

Rafferty et al. (2016) by using a student model that allows teaching actions that only

partially eliminate the student’s beliefs about the words’ meaning. The authors also

incorporate a deeper search through possible learning trajectories for the student. For a

more comprehensive literature review on RL in instructional sequencing, please refer to

Doroudi et al. (2019).

In order to automate the process of instructional sequencing for visual vocabulary

acquisition, I must first identify the key components of our RL system. The agent in this

task is the automated tutor that must learn what information to present to the student.

The environment is the student with whom the agent is interacting.
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3.3 CEFR and Cambridge Learner’s Dictionary

I assume that the student is a learner of English who has reached a certain level on the

Common European Framework of Reference (CEFR) scale. CEFR is an international

standard for describing language ability, using a six point scale, from A1 for beginners, up

to C2 for those who have mastered language (See Figure 3.3).

A1
A2

B1
B2

C1
C2

Basic Independent Proficient

Figure 3.3: Common European Framework of Reference

In order to obtain the CEFR level for each word, I used the Cambridge Learner’s

Dictionary, which is a dictionary that contains words with their corresponding CEFR

level. I crossed referenced the list of words in the CEFR dictionary with the list of words

included as labels in our image recognition model VGG-16 (discussed further in 3.5). This

resulted in 243 words with their corresponding CEFR levels that are also recognisable

by an image recognition model. To expand on this data set, additional synonyms were

generated automatically for each of the target words by outputting the top 10 nearest

words to the target word in a pre-trained skip-gram word2vec model Mikolov et al. (2013a).

These additional words were crossed referenced in the Cambridge Learner’s Dictionary to

obtain their relevant CEFR levels. This enabled students to enter the target word or a

relevant synonym with presented with an image. One of the limitations of this approach

was accounting for words with multiple senses e.g. bank. “Bank” for money is A1 where

as the river “bank” is B1. In the Cambridge Learner’s Dictionary the word tense with the

lower CEFR appears first and that is the word tense I used. One of the assumptions I

make by utilising the word2vec model to increase possible acceptable answers is that the
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student will only enter relevant words. This is an important assumption as the 10 nearest

words to the target word may include opposite or semantically different words e.g. cat

and dog.

3.4 Curriculum Q-Learning

Thus far we have discussed the various methods and approaches used for instructional

sequencing. I will now describe RL algorithm used to identify optimal order of instruction

for a given student. The RL algorithm used by my proposed system is a modified

Q-Learning algorithm. Q-Learning can be defined as follows:

Qnew(st, at)← Q(st, at) + α[(r + γmax
a
Qπ(st+1, a))−Q(st, at)] (3.1)

where Qnew(st, at) is the new Q-value of state st and action at tuple at time t and

Q(st, at) is the current Q-value of state st and action at tuple. The γmaxaQ
π(st+1, a) is

the maximum expected reward from the future state st+1 and all of its possible actions.

The α is the learning rate and γ is the discount factor. γ models the fact that future

rewards are less valuable than immediate rewards at a given time t.

A policy π maps states s to actions a. The aim of the Q-Learning algorithm is to find

an optimal policy π such that it maximises the long-term cumulative reward. The policy

achieves this by acting greedily and taking the action that presents the maximum Q-value

given the state such that maxaQ
π(st, a).

In action selection, there is a trade-off between exploiting what you have learnt so

far and exploring other state-action tuples. In this task I model that using ε-greedy.

This means the policy will, for the most part, select the actions that provide the highest

estimated future reward given the state. However, with a probability of 1− ε, an action

will be selected randomly and independently from a uniform distribution. Action selection

is drawn from a Q-Table which is a table that stores all state-action Q-values.

In this task, a policy can be viewed as a personalised instructional sequence as it

decides what should be shown and in what order. In order to learn the optimal sequence
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of vocabulary words I leverage the structure provided to us by the CEFR framework.

The optimal sequence can be defined by the sequence of words that result in the shortest

time to learn all the words. This reinforcement learning based instructional sequencing

algorithm behaves similar to the drill-and-practice approach introduced by (Atkinson and

Raugh, 1975).

In this framework I have 6 levels and within each of those 6 levels I have a number of

words. Therefore, I incorporate two models, the CEFR level model and word level model.

Figure 3.4: Common European Framework of Reference Q-Table

Figure 3.5: Word Memory State

In the CEFR model (see Figure 3.4) there are 6 states, where each state is one of

the CEFR levels. The actions are whether the student should progress to the next level

(referenced as Next in Figure 3.4), remain in the current level (referenced as Remain in

Figure 3.4), or go back a level (referenced as Back in Figure 3.4). Since the actions only

enable going forward, remaining or going back a level, it is not possible for a student

in state A1 to jump to state C2. The word level model (see Figure 3.5) has two states:

Active (show the word), Inactive (hide the word). The two actions are, Remain in the
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current state or Toggle state. This architecture ensures that there is also an estimated

long-term reward (Q-value) associated with showing a student a particular word.

Modelling reward is often viewed as a challenging task in RL as it requires careful

consideration on implications the reward will have on agent behaviour. For this application,

a student is rewarded negatively (-1) for getting a question correct and positively (+1)

for getting it incorrect. The motivation behind using these rewards is grounded in the

idea of diminishing returns. The RL model acts greedily and takes the action with the

maximum long-term reward, so if I review a concept I understand, then I am not gaining

knowledge by reviewing it again. Thus, its value should be reduced. Alternatively, if I get

a question wrong, the benefit of reviewing that word is higher, and thus I should increase

the associated Q-value.

3.5 Student response

To evaluate the students’ understanding and learn a policy, I present a word in the form

of an image. The objective for the students is to describe the image, and based on their

response, the Q-Table and thus the policy is updated. A valid response is defined by the

target word associated with the image or a near synonym of that target word. One of the

key requirements for the personalised instructional sequencing system is to ensure that

the system is able to handle the varied response from the students and to make it simple

and efficient to use for the instructor.

The instructor can simply insert relevant images for the target group in a pre-specified

folder. Using a pre-trained image recognition model VGG-16 (Simonyan and Zisserman,

2014) each image is labelled with list of words associated with the image.

3.6 Visual vocabulary instructional system

The personalised instructional sequencing system was built using Python based micro web

framework Flask. Using the framework an API was built that connected to a front-end user
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interface (see Figure 3.6) and a SQL database that saved the progress for each student. In

Figure 3.6, the UI also provides visibility on CEFR level the student is currently performing

at as well as the associated Q-values. There is also a function to probe into the Q-value

statistics associated with a particular word. The motivation behind presenting the Q-table

to the student and teacher was to encourage model transparency and allow the teacher to

understand why a student is at a particular CEFR level and what words in particular are

holding back the student’s progress. Furthermore, even if the student progresses to the

next CEFR level, the systems allows teachers to probe words in the CEFR level below

to identify the knowledge components that the student has historically struggled with

and reset those words Q-table’s. This automatically reintroduced those words into the

personalised instructional sequence.

Figure 3.6: Personalised Instructional Sequencing System User Interface

As mentioned previously, when a student answers the word correctly, the Q-value of

that word drops in value. However, the amount the value drops is incremental. The

decision to make value updates incremental ensures that words are reviewed and practised

several time before they are considered “mastered” and move into an inactive state.
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3.7 Experiments

For the CEFR level model, I use a learning rate α of 0.1, a discount rate γ of 0.9 and an ε

value of 0.95. The word level model uses an α of 0.1, a γ of 0.9 and an ε value of 1. The

learning rate α is what ensures that the Q-value is updated incrementally. The purpose of

the discount rate γ, besides that it provides mathematical convenience for the algorithm,

is to determine how important future rewards are. The higher the value of γ the more

important future rewards are. The ε value determines how often the algorithm should act

greedily versus how often it should act randomly. The higher the ε value the more greedily

the algorithm will behave. The reason why the word level model maintains an ε value of 1

is because it does not make sense for the agent to randomly toggle the word state inactive.

The α and γ values were chosen in accordance with other work in the Q-Learning space

that employed similar values (Littman, 1994, Russell and Zimdars, 2003, Bianchi et al.,

2004, Matignon et al., 2007).

Figure 3.7: Visual Vocabulary Q-Learning Personalised Instructional Sequencing System

Let’s consider an example of how Q-Learning algorithm works in relation to our

vocabulary learning system.
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1. Initialise Q-Table. At initialisation, I place increased value on the “remain” state

in order to ensure that until the student has demonstrated that he/she understands

the vocabulary words at this level, progressing to the next level is unlikely (not

impossible due to the ε greedy value).

2. Choose Action. The action is selected based on which action has the highest Q-

value in the given state: maxaQ
π(st, a) where st is A1. In this particular circumstance,

“remain” action has the highest Q-value of 1. At initialisation, every student starts

at the A1 state.

3. Perform Action. I selected on an epsilon value of 0.95. This means that 95% of

the time the action with the highest Q-value will be chosen. 5% of the time a random

action will be chosen. Assuming the action with the highest Q-value is chosen, an

image corresponding to an A1 level vocabulary word is presented. The student then

submits a response.

4. Measure Reward. If the student’s response is correct, a reward of −1 will be

given.

5. Update Q-Table. In order to update the Q-Table, let’s refer to the Q-Learning

algorithm referenced in Equation 3.1. In order to update the Q-value of the state

action tuple just selected i.e. Qπ(A1, remain), I must first calculate the Q-target

value which is r + γmaxaQ
π(st+1, a). I replace the variables: r = −1, γ = 0.9,

maxaQ
π(st+1, a) or the expected future reward given the new state and all possible

actions of this state = 1. I arrived at the value of expected future reward by knowing

that the next state will be “A1” as the action “remain” has the highest Q-value

(value of 1). Therefore, the Q-target value is −0.1 from which I subtract Q-predicted

or Q(st, at) which is 1 resulting in −1.1. I then multiply this value with the learning

rate (α = 0.1) and reach a final update value of −0.11. Therefore, the new Q-value

for Q(A1, remain) is 1 + (−0.11) = 0.89. Since I got the answer correct, the value

of staying in A1 was reduced. Had the student submitted the wrong answer and
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the system returned a +1 reward, the new Q-value for Q(A1, remain) would be

1 + 0.09 = 1.09.

3.7.1 Simulated Students

Reinforcement learning (RL) systems frequently suffer from the ‘cold start’ problem as it

takes a long time to accumulate enough data to begin optimising a policy in a meaningful

way. The number of episodes needed to initialise the model depends on the problem and

algorithm being used. However, hundreds of thousands of iterations through the data

is fairly typical. Therefore it is impractical to cold-start an RL system that is aimed at

interacting meaningfully with human subjects. With such an approach we might expect

the system to take months to converge on a useful policy using observations returned

at human speed, and in the meantime the human guinea-pigs would be subjected to all

manner of random exploratory behaviour and lose interest.

In this context, we are fortunate to have an existing structure and hierarchy in the data

that enables less exploratory behaviour. Namely, the CEFR levels provide a predetermined

order of instruction. Therefore, the state search space for the model has been reduced

from the size of the total vocabulary to the number of the CEFR levels. Thereafter, the

agent will be required to guide the students through the vocabulary words within the

CEFR level. The agent is required to infer the difficulty of each word within the CEFR

level not between them. This reduces the complexity of the task. Had I decided not to

leverage the CEFR structure, learning an optimal policy would prove quite challenging

and require many more iterations as each word would be considered an equally likely state.

Therefore, one can argue we have taken a hybrid model-free and model-based approach.

The model-based approach referring to the fact that we have leveraged CEFR levels as a

signal for the underlying structure of vocabulary.

However, we still require simulations to observe how different students would interact

with the agent. By pre-training with simulated students we can provide future human

students with an option to self classify (beginner, intermediate, advanced). Based on

their self classification, a pre-trained policy can be used. If that policy turns out to be
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ineffective, I can compare their reward functions to the reward functions of the simulated

students to determine their correct classification.

Figure 3.8: Gompertz Curve which estimates the probability that a student will correctly
answer a question l(q) given the level of the student l(u).

To evaluate the performance of our system, I simulated three classes of students at

varying levels of proficiency: beginner, intermediate and advanced. In this case, I modelled

the student’s probability of getting a question correct as a negated Gompertz (Winsor,

1932) distribution:

P (success | u, q) = 1− exp(−b exp(−c(l(q)− l(u)))) (3.2)

where l(u) denotes the level of user u calibrated to a scale of [0, 6]. Each integer in the

scale represents a corresponding CEFR level from A1 to C2 (e.g. 0 → A1, 1 → A2, etc.).

l(q) represents the level of an item q (i.e. a word corresponding to the image) calibrated to

the same scale. The parameter b determines the probability of success when student and

item level match. This is set to ln(4) to model a ‘typical’ pass rate of 75%. The parameter

c is the growth rate which was set to 1. The calibrated curve is shown in Figure 3.8. The

curve is flatter at the lower end as students may be expected to be comfortable with most

of the material at lower CEFR levels than their own, whereas at higher levels, their ability
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is more uncertain. I ran simulations where I sampled 100 students from each student class

(beginner, intermediate, and advanced). Each of these students had 100 interactions with

the agent tutor. An interaction can be defined as when a student responds to a question.

For the purposes of this simulation, I assumed that a beginner student was at a level

between A1(0) and A2(1), an intermediate student was at level between B1(2) and B2(3)

and an advanced student was at level between C1(4) and C2(5). Figure 3.9 to Figure

3.11 illustrate the behaviour of the Q-Learning policy for students at different levels of

proficiency. This is compared to a baseline policy.

Figure 3.12 shows the average cumulative reward earned by students at varying levels

of proficiency.

3.7.1.1 Baseline Tutoring Policy

In order to evaluate the performance of the Q-learning tutoring policy I compared it to

a baseline policy. The baseline policy is inspired by mastery learning where the student

can only progress to the next level if the student has consecutively answered 10 questions

correctly at the current level.

3.7.2 Results

Student Level Q-Learning Iterations Baseline Iterations

Beginner 31 52
Intermediate 48 82

Advanced 131 94

Table 3.1: Number of iterations taken by Q-Learning Model and Baseline Model to
converge at student level

In Table 3.1 we can see that the Q-learning model converges to the actual level of

the student far fewer iterations than the baseline model, specifically for beginner and

intermediate students. For advanced students, the baseline model outperforms the Q-

learning model. The results in Figures 3.9 to 3.11 show on average how the agent tutor

responds to the three classes of simulated students at various proficiency levels. The
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Figure 3.9: CEFR levels determined by the agent for beginner students over 100 interac-
tions.

beginner students fluctuates between A1 and A2 which is as expected. In comparison the

baseline model remains in A1. The agent tutor presents intermediate students with content

that lies between B1 and B2. The baseline model remains on the other hand does not

push the student beyond B1. For advanced students, the agent tutor presents vocabulary

words that are at the B2/C1 level. In this case, the baseline model pushes the students by

presenting vocabulary words at a C2 level. We can also see that the agent tutor sometimes

behaves randomly due to the ε value but the students eventually converges at their actual

level and ZPD or the edge of the curriculum. Figure 3.12 illustrates how the cumulative

reward of students varies at different proficiency levels. The curve experiences a downward

slope as the students reach their current level of vocabulary; at which point reviewing

material at their level of proficiency results in diminishing returns. If these students were

human students, ideally we would observe a trend similar to that of advanced students in
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Figure 3.10: CEFR levels determined by the agent for intermediate students over 100
interactions.

Figure 3.12. For human intermediate and beginner students we might hope to observe

an increase in their cumulative reward especially as they approach their ZPD. In theory,

these students will reap the most value from reviewing the information they are unfamiliar

with. Instead, in the case of simulated students as seen in Figure 3.12 you notice a decline

in their cumulative reward due to the fact that they already know all the words at their

predefined level. This suggests that while the system is effective at identifying the optimal

level for a particular simulated student, it is important to test this on human students

with whom we will observe learning gains.
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Figure 3.11: CEFR levels determined by the agent for advanced students over 100
interactions.

3.8 Discussion

I have shown through the use of simulations, that we can effectively model the vocabulary

learning task as an RL system. Figures 3.9 to 3.11 and Figure 3.12 show clear indications

of varying agent behaviour for students at different levels of lexical proficiency. When

compared to the baseline approach, the Q-learning model is able to adapt to the needs

of the beginner and intermediate students more effectively. This is demonstrated by the

fact that students are being pushed within the current level. We can also observe that the

Q-learning model for beginner and intermediate students is able to reach the actual level

of the student in less iterations than the baseline approach. Furthermore, the Q-learning

model has the ability to move down a level automatically depending on the performance

of the student.

Beyond that, I have set up a framework that can also be used in the future to extrapolate
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Figure 3.12: Cumulative reward earned by students of varying levels of proficiency from
the agent over 100 interactions.

the difficulty of new material. This system will serve as a test bed that will yield metrics

to determine where the content fits in the curriculum. Although this is foundational work,

it lays the building blocks for future pedagogically inspired RL architectures.

Through this work, I have also shown that there are many similarities between the

principles of RL and theories of language acquisition. Specifically, parallels can be drawn

between the concept of ε-greedy and Krashen’s Input Hypothesis or the i+1. The Input

Hypothesis states that students learn by comprehending language that is slightly above

their current language level. The interactions between the agent and the environment in

RL is analogous to the social interaction approach to language acquisition, specifically

the equal importance of input and output. Furthermore, our use of a model-free RL

approach with limited structure provided by CEFR levels, reflects the nature of learning.

Mainly, it outlines that fact that we are still a long ways away from fully understanding
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how humans learn and thus require a model-free approach. However, over the years, we

have found hints and evidence about certain aspects of learning, e.g. learning should

follow the natural order of development (simple to complex) and therefore, finding ways

to incorporate those insights into the model-free model will improve efficiency and likely

performance. I illustrated this by dividing words by their CEFR level.

However, there is scope for substantial extensions in this space. Deploying the system

on-line in order to collect user data will allow us to validate and improve our existing

models. Incorporating memory and spaced repetition learning (Settles and Meeder, 2016),

a phenomenon initially documented by Ebbinghaus (1885) and discussed in Chapter 2 and

later in Chapter 5, in order to optimise the policy and emulate cognitive processes is also

an important extension that may have a great impact on the learning output. Furthermore,

extending the framework to incorporate other tasks is also important as the use of just

images is quite limited. As the vocabulary becomes more complex, it becomes increasingly

difficult to rely on images as a medium for learning because many words are difficult to

represent visually. Furthermore, the use of image recognition systems also pose potential

limitations due to the way they are trained. Image recognition systems are trained with

a classification objective which means that any vocabulary words the instructor desires

to be included as part of the curriculum must have been part of the training set for the

image recognition system. Although I circumvent this limitation through the use of word

embeddings and semantically similar words, it is still a considerable limitation to the

existing system. Experimenting with other task types would also be beneficial in terms

of evaluating the robustness of the teaching policies learnt using the RL system. Finally

developing improved models of representing student knowledge states will also be critical

in improving the effectiveness of RL and personalised instructional sequencing systems. I

will discuss the development of student representations in Chapter 4

Finally, all of these models can also be applied to machine learning algorithms instead

of students. As discussed previously, Hermann et al. (2017) indicated the need for a

curriculum in order to effectively train an agent in the simulated environment. Guiding

an RL agent with a policy that is inspired by theories of learning may result in improved
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learning rates.
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Chapter 4

Student modelling

In the previous chapter, I presented an example of how Q-learning can be used to develop

a personalised instructional sequencing model for visual vocabulary learning. I proposed

the use of a Gompertz curve to simulate students for the purposes of evaluating our

system. However, the Q-table model as a representation of the student’s knowledge, while

highly interpretable, is also quite limited. In this chapter, I explore alternative methods

of developing improved student representations that will not only provide us with more

information about the student’s ability but also the potential to improve instructional

sequence inference.

This chapter was adapted from work published and presented in the 12th International

Conference on Educational Data Mining (Zaidi et al., 2019).

4.1 Introduction

I define personalised instructional sequencing as a computational procedure for the auto-

matic selection and presentation of teaching materials which are deemed most suitable

for the user at a given point in time. In this framework, the platform user – a student

– is guided through online courseware – a curriculum – in an optimal and personalised

fashion. In order to select items (tasks) for students appropriately it is necessary to relate

accurate machine-readable representations of each individual task to machine-readable
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representations of each student1. Such representations can be used to predict future

performance on parts of the curriculum that a student is yet to reach (as in Minaei-Bidgoli

et al. (2003), Khajah et al. (2014), Zaidi et al. (2017)). These predictions can in turn be

used to select the set of appropriate next items for this individual – those which are not

too easy and not too hard (as in Adomavicius and Tuzhilin (2005), Fudholi and Suominen

(2018)).

In general the personalised instructional sequencing approach has been shown to

lead to improved learning outcomes for student users of educational platforms (Lindsey

et al., 2014a, Najar et al., 2016, Rosen et al., 2018). In Chapter 2.1.4 I provided detailed

overview of both instructional sequencing and knowledge representations from a historical

perspective.

In summary, rich knowledge representations are critical to developing better instruc-

tional sequencing models. As I discussed in Chapter 3, one of the challenges of the RL

framework is what is often referred to as the multi-arm bandit problem or the explore

versus exploit conundrum. What this implies is that unless the student has interacted

with all parts of the domain or curriculum, the model will be unable to determine whether

some content should be presented. Equally, a similar issue exists when discussing the

representations of the tasks. Unless those tasks have been shown to a number of students,

it is difficult to infer their relative difficulty.

In the study presented in Chapter 3, the vocabulary data used is split into CEFR levels.

This provides an initial structure for the instructional content (the image-word pairs) and

reduces the search space of possible optimal tasks for the student. However, not all tasks

in language can easily or efficiently be divided into such a structure. The benefit of CEFR

structure for vocabulary learning is that we know a priori that two words are considered

to be at the same difficulty level. Search becomes a matter of finding the appropriate

CEFR level and then the optimal word within that level. Assuming an equal number of

words in every CEFR level, in the worst case scenario, we have reduced the complexity

from O(V ) to O(V/6) + 5 where V is the number of words in the vocabulary. But can we

1Note the terms ‘student’ and ‘user’ are used synonymously; as are ‘task’ and ‘item’.
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improve on this? Is there a way to create representations of students that take advantage

of the experience of other students? That is the main purpose of this chapter and study.

Previous approaches to constructing student representations include relying on manually

engineering the features of the representations (Montero et al., 2018). These features

are usually tuples of a knowledge component (e.g. differentiation and fractions, in the

case where the domain is mathematics) and student outcome (i.e. whether or not the

student demonstrated understanding for that knowledge component through completing

the task). A task may contain multiple knowledge components. Whilst this approach is

highly interpretable, in the domain of language learning, it is difficult to clearly divide

the tasks into knowledge components. Therefore, it is of interest to explore methods of

automatic construction of knowledge components.

Motivated by the success of representation learning within deep learning research, I

present a methodology of automatically developing high quality representations of students

and tasks in a language learning context. Similar to other popular techniques in deep

learning, I allow the model to determine the necessary knowledge components (features)

within the representation. Having reliable student and task representations in place will

improve the accuracy of RL approaches to instructional sequencing. In addition, reliable

representations can also yield interesting insights into how students learn language.

Representations are derived from a novel neural architecture (described in Section

4.4.2) and real student data collected through Write & Improve2 (W&I), an assessment and

feedback platform for learners of the English language (Yannakoudakis et al., 2018). Our

representations take the form of embeddings – numeric vectors of a certain dimensionality,

densely representing complex datasets.

Such representations enable us to draw upon established methods from representa-

tion learning3 including concatenating embeddings from different sources of information,

learning representations of different targets (in our case, users and tasks) and passing the

resultant vectors to multi-layered neural networks to train prediction models for unseen

2https://writeandimprove.com
3An area of research that focuses on developing representations of data for deep learning tasks.
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data.

To develop our student representations I incorporate information about a student’s

essay submissions to W&I, their essay score history, and the grammatical errors made in

those essays – all together an approximation of the student’s knowledge state for language

learning at any given point. Our task representations, on the other hand, incorporate

the aforementioned information amalgamated for all the students who have attempted

a particular task. The reason for this design choice is motivated by the view that the

difficulty of a task is defined by the way students interact with the task. I further constrain

the task embeddings by training them to predict their respective difficulty level (beginner,

intermediate and advanced).

I evaluate the quality of our student and task representations extrinsically: 1) I use a

combination of student and task representations to predict a student’s overall score on a

given task; 2) I use the student and task representations to predict the grammatical errors

a student will make on a given task. The first task is a conventional one in educational

data mining (Koedinger et al., 2015); the second tests the generalisability of the student

representations by evaluating their aptitude for transfer learning – the application of

machine models trained on one problem onto a different but related problem (Pan and

Yang, 2010).

Our best-performing neural network model incorporates grammatical error distribu-

tions detected by ERRANT (Bryant et al., 2017) as a feature and achieves mean squared

error (MSE) of 1.195 on score prediction, an absolute value of 1.093 on a scoring scale

of 0-13. On the second task of predicting grammatical errors on an unseen task, I

achieve a cosine proximity score of -0.426 (-1 being perfect alignment). These results

support the use of grammatical error distributions as a feature to determine student ability.

Our main contributions are as follows:

• The introduction of a novel neural framework that can be used to automatically learn

student and task representations for language learning without explicitly modelling

knowledge components. As far as I know, this is the first model that uses neural
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collaborative filtering to model student knowledge states.

• The incorporation and evaluation of automatically detected grammatical error

representations as a key feature in our neural network classification model to learn

user and task representations. When tested on an unseen task, our set-up yields

reliable prediction of both user-task score as well as grammar errors made by students

on tasks.

4.2 Related work

Our general objective is modelling the acquisition of procedural knowledge (Corbett and

Anderson, 1994), and we can usefully envisage this as the successful learning of ‘knowledge

components’ (KCs) for any given educational domain (Koedinger et al., 2012). Models

which take knowledge components into account have been shown to trace learning more

successfully than otherwise (Cheng et al., 2016, Guo et al., 2017).

Personalisation in educational technology is of wide interest, since learners are known

to progress at different rates and in different styles (Bloom, 1970, Saettler, 2004, Sampson

and Karagiannidis, 2002, Ba-Omar et al., 2007, Brinton et al., 2015). Without an ontol-

ogy or other knowledge base to guide personalisation (Tarus et al., 2018), we can only

represent users through their interaction with learning items (tasks). Whereas well-known

recommendation systems may have access to user ratings, reviews, click-throughs and

sales figures, our measure of success is user performance – the score assigned to a given

essay submission on the proposed item – and representation quality (predicting score and

grammar errors on a task using the same representations).

Tracking users as they acquire knowledge in a learning system is a type of knowledge

tracing, and previous approaches to knowledge tracing have ranged from item-response

theory (Wilson et al., 2016), to Bayesian knowledge tracing (Corbett and Anderson,

1994), to deep learning (Montero et al., 2018), factorisation (Vie and Kashima, 2019)

and dynamic time warping (Shen and Chi, 2018). I adopt a deep learning approach but,

whereas for Montero et al. (2018) there were defined KCs in the mathematics domain
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(e.g. fractions, differentiation) which could each be assigned binary values representing

whether the student got that KC right for a question, in language learning it is not so clear

how KCs should be defined and delimited. Therefore, I rely on learning representations

through interaction and back-propagation with respect to the score assigned to each essay

as well as the grammatical error distributions of that essay.

Our work also has similarities to recommender systems that use collaborative

filtering – a method of selecting items for an individual based on their history in relation

to others’ histories (hence they are ‘collaborative’) (Breese et al., 1998, Dron et al., 2000,

Sarwar et al., 2001). Recommender systems represent the general task of promoting

items from a pool to an individual in ways which will be familiar to users of Amazon,

Netflix, Twitter and so on (Munro et al., 1999, Lawrence and Urtasun, 2009, Burke, 2002,

Deshpande and Karypis, 2004): For online retailers the item bank is a set of products; for

streaming services it is a library of movies and programmes; and for social networks it is

user-generated content. In our case the item bank is a curated pool of tasks for English

language learners. Our long-term goal is to present a personalised curriculum to each

learner, navigating them through the item bank in an optimal fashion.

Until recently, the standard approach to collaborative filtering was matrix factorisation

(MF) – most commonly with K nearest neighbours or singular value decomposition (SVD)

– on user vectors containing interactions between the user and a set of items (Koren, 2008,

Lawrence and Urtasun, 2009, Hu et al., 2014, He et al., 2016). Since then, novel approaches

have shown that neural networks can improve both feature representation and collaborative

filtering for recommender systems, with for instance, He et al. (2017) reporting 5-point

hit-ratio gains over state-of-the-art MF systems using a multilayer perceptron. Zhang et al.

(2018) observe that deep neural networks are well suited to the recommender task, since

they are (1) end-to-end differentiable and (2) provide suitable inductive biases catered

to the input data type. This also makes neural networks very well suited for the task for

constructing student representations. In the language learning domain, an MF component

was combined with a feed-forward neural network with some success for the 2018 Duolingo

Shared Task on Second Language Acquisition Modelling (Settles et al., 2018, Vie, 2018).
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Lindsey et al. (2014a) were interested in the effects of personalisation on drop-out rates:

they found that a personalised review system for course content yielded a 16.5% boost

in retention rates over standard practice (massed study) and a 10% improvement over a

one-size-fits-all strategy for spaced study.

The recommender system approach has some precedent in educational technology.

Early systems tended to involve heuristics or social networks (Anderson et al., 2003,

Recker et al., 2003) before collaborative filtering techniques were introduced (Tang and

McCalla, 2005, Nadolski et al., 2009, Wang and Yang, 2012). However, at present I do

not attempt to implement a recommender system; instead I firstly inspect the quality

of the user representations. Others have found that MF collaborative filtering alone is

error-prone (Toscher and Jahrer, 2010). Various modifications to the standard model have

been proposed, including question representations through difficulty rankings (Segal et al.,

2014), fuzzy cognitive modelling (Wu et al., 2015), and ensemble models (Pardos and

Heffernan, 2010).

To improve our student and task representations I incorporate automatically detected

grammatical errors made on a task by a given student as a feature in our neural network

model. Grammatical error detection is a well-established research field, with most focus

having been placed so far on learners of English. Error detection techniques range

from feature-based classification to neural machine translation (Rozovskaya et al., 2017,

Yannakoudakis et al., 2017), and widely-used annotated corpora include the First Certificate

in English (FCE) corpus (Yannakoudakis et al., 2011), the National University of Singapore

Corpus of Learner English (Dahlmeier and Ng, 2012), and the JHU FLuency-Extended

GUG corpus (Napoles et al., 2017). These corpora all involve different error typologies

and one advantage of using ERRANT is that it defined a new error typology independent

of but compatible with existing annotated data.
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Figure 4.1: Write & Improve example screenshot

4.3 Write & Improve

On W&I, students are prompted to input a short text of at least 25 words in response to

a given question. Once they have completed the task, the system automatically provides

a grade on the CEFR scale along with feedback on grammatical errors detected in the

text. The W&I automarker assigns each text an integer score between 0 and 13. Table 4.1

outlines how essay scores are mapped to the CEFR scale.

CEFR Score

A1 1-2
A2 3-4
B1 5-6
B2 7-8
C1 9-10
C2 11-13

Table 4.1: Student scores mapped to CEFR levels

For instance, a student may submit a text such as that in (1) below, for which they
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receive a score of 1.5, which equates to a grade of A1 (beginner) and indications that

tommorrow and I like eat are ungrammatical. A screenshot of this example is provided in

Figure 4.1.

1. Hi Rie,

I can come to dinner at your house tommorrow. Very thank you.

I like eat dim sum, beef ho fun and green tea ice cream. Can I bring

anything?

Oh, and what is your address?

Bye, Lee

The student is encouraged to update and resubmit their text for further scoring and error

feedback, and there is, in principle, no upper limit on the number of submissions they can

make for a given task. It is their choice when to deem the task ‘complete’ and move on to

a new question.

It is our long-term aim to develop an adaptive tutoring system (ATS) for language

learners. There are 122 unique question items, or tasks, in the W&I curriculum. Currently

all users of W&I move through the curriculum in an unguided and independent fashion.

An ATS would instead guide students from task to task in order to personalise their

learning experience and improve their level of performance.

In order to provide this type of guidance, we need accurate representations of task

difficulty and student ability as an essential prerequisite. W&I currently has tasks grouped

by three broad difficulty levels: beginner, intermediate, advanced. However, our task

representations need to be more fine-grained than this, so that we can guide students

within and across the broader levels, and identify parts of the broad tripartite curriculum

which have been separated a priori but are in fact of overlapping difficulty levels. Therefore

I attempt to jointly train student and task representations based on past performance of

real W&I users to capture the relative difficultly of tasks such that they can be reliably

used to predict a particular student’s score on a given task.
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4.4 Learning student and task representations

In this section, I will present the methods, approaches and datasets I developed or adapted

for the purposes of this investigation. Our primary goal was to predict student scores

on a given language learning task based on our representations of students and tasks in

Write & Improve . Secondary to that, I check the quality of the student representations by

predicting the grammar error distribution of a given student-task tuple. In what follows I

describe the data, evaluation metrics and models used in this work.

4.4.1 Write & Improve data

Our training and test data come from the W&I language learning platform. W&I users

submit responses that are at least 25 words in length for automated scoring and error

feedback, and may opt to answer any number of prompts tagged with one of three difficulty

levels – beginner, intermediate, advanced. I obtained application logs of user activity from

2017-2019 – a total of 3+ million essay submissions by 300,000+ account holders.

I filtered the data for users who had submitted at least 10 submissions. This resulted in

a dataset of 1.3 million submissions by 100,140 users. I also had a record of the questions

(‘prompts’) users responded to and the scores assigned to their texts by W&I’s auto-marker.

In addition, I obtained counts of grammatical errors in each submitted text using the

ERRANT annotation toolkit Bryant et al. (2017). This gives us a distribution over 55

possible error types (See Appendix A), of which 47 were observed in the data we work

with.

4.4.2 Model architecture

The architecture of our neural system can be seen in Figure 4.2. The neural network takes

as an input a user id u and task id t which are taken as indices in the user embedding

layer U and task embedding layer T respectively. u ∈ Nu where Nu is the set of unique

users in the W&I dataset. t ∈ Nt where Nt is the set of unique tasks in the W&I dataset.

U is an |Nu| × du matrix where du is the size of the user representation ~u. T is a
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|Nt| × dt where dt is the size of the task representation ~t. The description of the score

prediction model can be seen in Equation 4.1:

c = (~u,~t)

h1 = D(σ(c ·W 1))

h2 = D(σ(h1 ·W 2))

s = h2 ·W s

(4.1)

– where c is the concatenated vector of features, h1 and h2 are the first and second hidden

layers, D is the dropout function (Srivastava et al., 2014) and σ is the ReLU activation

(Nair and Hinton, 2010). W 1,W 2,W s are the weight parameters of the model. Finally, s

is the predicted score of user u on task t.

I optimise our system and learn a user embedding matrix U and task embedding matrix

T by minimising the mean squared error (MSE) of our predicted score s and the target

score ŝ:

L =
1

K

∑
k

(s− ŝ)2
(4.2)

– where k is a given submission by the user for a particular task and K is the total number

of submissions.

I introduce an auxiliary objective to predict the difficulty β of each task t, referenced

as tβ. The ground-truth labels for task difficulty (beginner, intermediate, advanced) are

obtained from the meta-data of each task in the dataset:

h3 = D(σ(~t ·W 3))

tβ = softmax(h3 ·W β)

(4.3)
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– where h3 is the hidden layer between the task embedding matrix T and the output and

W 3 and W β are the weight parameters. I optimise the prediction of task difficulty tβ using

a categorical cross-entropy loss function:

L = − 1

Nt

∑
i

∑
β

·1tβ∈β log p(tβ ∈ β) (4.4)

Figure 4.2: Task score prediction system architecture. Dotted lines and boxes are optional
features and network connections.

4.4.3 Feature set

In addition to the score s, the W&I dataset contains prompts and answers in natural

language as well as metrics on whether submission k is the highest scoring submission by

user u. I incorporate these additional features into the architecture of the model in order

to evaluate their impact on the quality of user and task embeddings.
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4.4.3.1 Answer embedding

I obtain a vectorised form of each student response using 300-dimension word2vec embed-

dings4 pre-trained on the Google News corpus (Mikolov et al., 2013b). This means that we

have information about the way words tend to be used by knowing which other words they

are found to co-occur with, learned from a large dataset of news articles. In our case, the

answer embedding for a student’s essay is an additive compositional model where the final

embedding is a sum of every word in the essay. Whilst this model is not state-of-the-art

for distributional semantics, Mitchell and Lapata (2010) show that the additive model

can yield results comparable to significantly more sophisticated models. Additionally,

whilst you might lose a lot of semantic information through such an approach, it remains

practical for real-time usage.

4.4.3.2 Question embedding

Similar to the answer embeddings, I construct a vectorised form of each prompt repre-

sented in natural language, again summing word2vec representations of every word. I

was motivated to incorporate question embeddings because I assumed that the lexical

distribution of words in the prompt is directly correlated to the complexity of the question.

I propose that linguistically complex questions are indicative of difficult tasks.

4.4.3.3 Metric embedding

The motivation behind using the metric embedding is to provide a signal to the model

regarding the relative score of the submission in comparison to the user’s previous sub-

missions. This signal may facilitate the model to down-weight submissions that are not

task-best or user-best, as one could argue that task-best and user-best are a more accurate

reflection of the student’s holistic capabilities.

The metric embedding is a 2-dimensional vector that stores benchmark information

about submission k for user u in comparison to the user’s previous W&I submissions. The

4A word2vec embedding is a 1× x dimensional dense vector that represents a word semantically and
according to its distributional properties. Words that are similar in meaning have vectors that are close
together in vector space.
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first dimension is a binary value for whether the score for the submission was the highest

score on task t for user u. The second dimension is a binary value for whether the score

for the submission was the highest score across all W&I tasks for user u. I have access to

each user’s score history and infer metric embedding values by inspecting this history for

each task and across all tasks.

4.4.3.4 Grammar error embedding

A student’s grammatical proficiency plays a vital role in determining how well they perform

on a particular task. As we do not know of any system that identifies appropriate use of

grammar, I focused on understanding what grammatical structures the student struggles

with. This was done by running ERRANT (Bryant et al., 2017), an automated error

detection and correction system, in order to identify grammatical errors in the student’s

essay. The text below illustrates an example output from ERRANT.

S Everyhtings seem quite meaningless to me .

A 0 1||R:SPELL||Everything||REQUIRED||-NONE-||0

A 1 2||R:VERB:SVA||seems||REQUIRED||-NONE-||0

The words highlighted in red are candidates for grammatical errors as detected by

the system. The second and third lines are correction suggestions where the first two

numerical digits (highlighted in blue) are the token spans for corrections (i.e. where in the

sentence the corrections should apply); and the strings highlighted in green are the error

types (e.g. R:SPELL, a spelling error; R:VERB:SVA, a subject-verb agreement error on the

verb). ERRANT provides error detection and correction outputs on a sentence level. The

last two columns of each line e.g. -NONE-||0 are not relevant for this task.

For each submission k, I constructed a 47-dimensional vector, one dimension for each

of the error types observed in the W&I dataset. Each dimension stored the number of

times that error type appeared in the student’s essay submission.

< gk >=< f 1
k , f

2
k , . . . , f

47
k > (4.5)
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– where gk is the grammar error embedding g for submission k, and fnk is the frequency of

errors for error type n in submission k.

4.4.4 Mean score baseline

The baseline system for predicting an essay score s for user u on task t is to calculate the

mean of observed scores by all users for that task. I refer to this baseline as mean score.

stu =
1

N t
k

∑
k

ŝtk (4.6)

– where stu is the predicted score for user u on task t, N t
k is the number of submissions

for t, and ŝtk is the observed score for submission k on t. Using mean score model, the

predicted score on each task will be the same for all users.

Settles and Meeder (2016) showed that predicting the average is a strong baseline in

modelling language learning – only 2 out of 4 models outperformed the average. Whilst

the authors’ work focuses on predicting successful recall and understanding of words, I

apply the same principal to the predicting student scores on unseen tasks.

4.4.5 Logistic regression baseline

A further baseline was constructed using a logistic regression model. This is motivated

by the popularity of item response theory (IRT) in measuring student ability and task

difficulty. IRT can be viewed as a special case of logistic regression.

The inputs for the logistic regression model were the student ability and task difficulty

values. The output of the model was one of 13 possible discrete classes (0 to 13), representing

the score a student achieved on a particular task.

I defined student ability α in this model as the student’s average score across all
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attempted tasks ni.

αi =

∑T
t=1 s

t
i

ni
(4.7)

where αi is the ability of student i, t is the task, sti is the score student i obtained on

task t and n is the number of tasks attempted by student i.

I defined task difficulty βt as the average score achieved by all students on the given

task t.

βt =

∑I
i=1 s

t
i

mt

(4.8)

where βt is the difficulty of task t, sti is the score student i obtained on task t and m is

the total number of students that attempted task t

I then used a min-max scaler to transform the real values associated with student

ability and task difficulty to a value between 0 and 1. Using a min-max scaler to bound

the student ability and task difficulty enable the model to determine relative ability and

difficulty more effectively.

I then trained a multiclass logistic regression model using cross-entropy loss in order in

order to predict the score of an unseen student-task pair. In other words, given a student

i and a task t, which has previously not been attempted, what would be the predicted

score that student i would obtain on task t.

exW+b∑k
i=1 e

xiWi+bi
(4.9)

where e is the Euler’s mathematical constant, x is a vector of input features, in this

model x contains the values of student ability α and task difficulty β. W is a weight

matrix corresponding to the feature vector x, b is a bias vector, and k is the total number

of classes,ranging from 0 to 13 in this is model.
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4.4.6 Evaluation

I identify two approaches to evaluating our system and the quality of our learned user and

task representations: 1) score prediction; and 2) grammar error prediction.

4.4.6.1 Evaluation of score predictions

To evaluate the performance of score prediction I use mean squared error (MSE) in common

with other works in this field, using global computation where all data points are treated

equally (Pelánek, 2018).

To form the test set, I remove the temporally last score observed by every student

from our dataset. The last observed score, instead of a random observed score, was used

due to the fact that as the student progresses through the learning material, both the

student’s knowledge representation and the task representations evolve. Therefore, in

order to ensure I am modelling the score that is based on the student’s most advanced

knowledge state, I predict the last observed score for a student on a given task.

4.4.6.2 Evaluation of grammar embedding predictions

In order to further evaluate the quality of the learned user and task representations, I also

introduce an additional evaluation task of predicting the distribution of grammar errors

for a user u on a task t.

This was done by building a network that takes as an input the user ~u and task ~t

from the pre-trained embedding U and T and predicts the grammar embedding ~g. Our

dataset for evaluating grammar error prediction was created by using ERRANT on the

last submission k of every user u. This was to ensure that the system is predicting the

distribution of errors for the users at their most recent knowledge state. The grammar
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error embedding prediction model can be defined as follows:

c = (~u,~t)

h1 = D(σ(c ·W 1))

h2 = D(σ(h1 ·W 2))

~g = h2 ·W g

(4.10)

– where c is the concatenated vector of ~u and ~t, h1 and h2 are the first and second hidden

layers, D is the dropout function and σ is the ReLU activation function. W 1,W 2,W g are

the weight parameters of the model. ~g is the predicted grammar error embedding for user

u on task t.

I optimise the system by minimising the cosine proximity of the predicted grammar

vector ~g and the target grammar vector ~̂g, as in (4.11).

L = −
∑

k ~gk · ~̂gk√∑
k(~gk)

2 ·
√∑

k(~̂gk)
2

(4.11)

– where k is a given submission by the user for a particular task. The more negative the

cosine proximity the closer the prediction and target vectors. A value of −1 is a perfect

match.

4.4.7 Implementation

I run the score prediction models for 30 epochs and use the Adam optimiser (Kingma

and Ba, 2014) with a learning rate of 0.001. Both user embedding matrix U and task

embedding matrix T were initialised with zero values. I initialise with zero values as we

assume that we know nothing about the users and tasks at the beginning of the training

session. In order to identify the right combination of features, I experiment with a variety

of feature combinations and identify the ones that provide the greatest reduction in MSE
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Features Nmin
h Nmax

h

Score prediction model

user U 100,140 ( of users) × 3 (du) 100,140 × 32
task T 122 × 3 122 × 32
answer 1 × 300 -
question 1 × 300 -
metric 1 × 2 -
error 1 × 47 -
h1 1 × 8 -
h2 1 × 4 -
h3 1 × 3 -

Grammar error prediction model

h1 1 × 16 -
h2 1 × 16 -

Table 4.2: Feature dimension sizes. Nmin
h is the minimum size of the feature or only size

where there is no value for Nmax
h .

which will be discussed in Section 4.5. When evaluating our model at test time, I pass

in null vectors for the metric, answer, and grammar error features as the student has, in

theory, never attempted the task. Instead, I rely exclusively on the pre-trained user and

task representations to make a reliable prediction of the user’s score s on task t.

For the grammar error prediction model I ran 50 epochs with an Adagrad optimiser

(Duchi et al., 2011) and learning rate of 0.01. I used a dropout rate of 0.2 for both score

prediction and grammar error prediction models.

Table 4.2 outlines the dimensions used for the various layers of the model. The user and

task embedding were tested across a range of dimensions ranging from 3 to 32 dimensions.

The justification behind using n× 3 dimension embeddings was to align the size of the

embedding with the number of task difficulty levels (beginner, intermediate and advanced).

Furthermore, I created a bottleneck5 in our system in order to learn more meaningful

student and task representations (Bengio et al., 2013). Therefore, I ensured that the

upper-bound for the size of our user and task representations was less than 47 – that is,

the number of dimensions in the smallest feature vector, the grammar error embedding6.

5A bottleneck is where the size of the representation layer is less than the size of the input.
6I excluded the metric embedding size as I assumed that an upper bound of 2 would not capture the
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Model MSE Cosine

mean score (baseline) 1.913 -
logistic regression 1.296

error+ques+ans+metric 2.254 -0.385
ques+metric 1.942 -0.402
ans+metric 1.951 -0.414

error+metric 1.350 -0.426
ques 2.028 -0.403
ans 2.014 -0.412

error 1.761 -0.410
metric 1.907 -0.393

Table 4.3: Score prediction (MSE) and grammar embedding prediction (cosine) results for
the top 8 best performing feature combinations (error: grammar error embedding; ques:
question embedding; ans: answer embedding; metric: metric embedding).

4.5 Results

Table 4.3 summarises the results of our system. I compare the effectiveness of various

features in the prediction of a user’s score s on a task t which is evaluated by MSE. I

include the top 8 MSE values on the score prediction system and their corresponding

cosine value from the grammar error prediction model. Our baseline model mean score

achieves an MSE of 1.913. The logistic regression model achieves an MSE of 1.296 which

out performs the more sophisticated deep learning models.

I find that incorporating question and answer embeddings does not provide any

performance improvement in terms of MSE beyond the baseline model. The metric

embedding provides marginally better results than the baseline with an MSE of 1.907.

The grammatical error embedding provides substantial improvements beyond both the

baseline and the metric embedding with an error of 1.761. The best performing system

incorporates both grammatical error embedding and metric embedding, reducing the MSE

to 1.350.

The model that provides the lowest cosine proximity to the target grammatical error

vector (i.e. best system) was error+metric, which is consistent with the lowest MSE for the

score prediction system. I also observe that the system trained on just the answer feature

inherent complexity of language learning.
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Model Nh MSE Cosine

error+metric 3 1.350 -0.426
error+metric 5 1.297 -0.431
error+metric 16 1.245 -0.415
error+metric 32 1.195 -0.433

Table 4.4: Performance across various student and task representations sizes (Nh)

Pearson’s coefficient p-value

0.7883 0.0201

Table 4.5: Correlation between score prediction MSE and grammar embedding prediction
cosine.

resulted in a cosine proximity of −0.412, an improvement over the system trained on just

the grammar error embedding which achieves −0.410. This outcome was unexpected:

the system trained on the grammar error embedding resulted in a lower MSE than the

system trained on the answer embedding, a representation which by definition contains

the grammatical errors but not encoded in the same way. Intuitively the grammar error

embedding is a better representation of student knowledge at a given point, which in turn

gives us better predictions of task scores. Therefore, while the difference in MSE between

answer embedding and grammatical error embedding is significant, their difference in

cosine is not.

An important aspect of learning well-formed representations is identifying the correct

number of dimensions Bengio et al. (2013). Table 4.4 summarises the various student and

task representation sizes I used as part of the system. I set the upper bound at 32 in order

to ensure a sufficient bottleneck. The results show that larger representation size improves

both score prediction (MSE) and grammar error prediction (cosine).

In order to interpret the relevance of cosine proximity I conducted a Pearson’s correlation

test between the MSE values from the score prediction system and the cosine proximity

scores from the grammar error prediction system. Table 4.5 shows the correlation between

the score predictions (MSE) and the grammar error prediction (cosine). The results show
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Figure 4.3: t-distributed stochastic neighbor embedding (t-SNE) of 300 randomly sampled
student representations classified by different levels of proficiency

a 0.7883 Pearson’s correlation with a p-value of 0.0201 which is statistically significant at

α < 0.05.

Figure 4.3 shows a t-SNE (van der Maaten and Hinton, 2008) of 300 randomly sampled

student representations learned by our best performing score prediction system. The

students are classified by their proficiency which has been determined by observing the

most frequent task level attempted in their five most recent submissions. Qualitatively,

the results from the plot are promising as the advanced and intermediate users, whilst

present throughout the plot, are more concentrated towards the top right (higher level of

language proficiency). Beginner students, on the other hand, are more concentrated in

the bottom left. This suggests that the embeddings constructed from our model provide

context on the language abilities of the student.
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4.6 Discussion

The results in Table 4.3 show that incorporating grammar error embeddings provides a

reliable signal to learn well-formed student and task representations. Furthermore, Table

4.4 evaluates several dimensions for student and task representations by training the

system using various configurations and evaluating both the MSE and cosine. Larger

embedding size performed better than the smaller embedding sizes up to our experimental

maximum of 32 dimensions. However, making the embedding size too large would result

in what is known as ‘overcomplete’7 which in turn causes the model to simply memorise

the correct response instead of learning discriminative features (Bengio et al., 2013).

In real terms, an MSE of 1.195 represents a root mean squared error of 1.093 on a scale

of 0 to 13. This means that on average we stay within the bounds of a CEFR level when

predicting student proficiency (since the 0-13 values are mapped to the 6-point CEFR

scale), which seems sufficiently robust for real world application. The MSE might mask

some more severe errors at the edges, and therefore any downstream use of our user and

task representations for ATS would have to be implemented conservatively with reference

to model confidence scores.

Grammar errors highlight the weaknesses of the student as opposed to their strengths.

Therefore, instead of learning the upper-bound of a student’s ability, the model is learning

the features for the lower-bound. The results of the model also suggest that there is a

correlation between the types of errors students make on task t and the score they achieve

on said task. This enables the model to learn latent features within the student and task

representations which in turn can be used to reliably predict the student’s score on a

future unseen task.

The importance and value of the signal provided by grammar errors in determining

student ability and thus creating quality representations can be further highlighted by

Figure 4.4. The bar-chart shows a comparison between beginner and intermediate students,

where the values in x-axis are the various error types in ERRANT and the values for

7When Nh > Nx (input).
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Figure 4.4: A bar-chart showing the frequency of error types for intermediate students,
relative to beginner students. The orange bar indicates notable observations.

the y-axis are the normalised difference of the frequency for each error type between the

two groups of students (positive bars indicate greater frequency of that error type for

intermediate students). I can observe that certain errors such as M:VERB:TENSE (highlighted

in orange) are more frequent with intermediate students. This is not surprising as beginner

students tend not to experiment with verb tenses but rather focus on using verb tenses

that they are comfortable with. Intermediate students are more likely to learn verb

conjugation rules and over-regularise to introduce variation in sentence structure. However,

over-regularisation usually results in increased number of verb tense errors (Rumelhart

and McClelland, 1986, Bardovi-Harlig, 2000). This is then corrected once students reach

an advanced level of proficiency where they can account for the irregular verb tenses. We

can observe this correction in Figure 4.5 where advanced students make less verb tense

errors than intermediate students.

I also show that a score prediction objective function with a task difficulty prediction

auxiliary objective are effective in training well-formed student representations, as evidenced

by Table 4.3, Table 4.4 and Figure 4.3. Whilst the plot in Figure 4.3 generally behaves as

expected, we observe some students that are classified as advanced but reside towards the
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Figure 4.5: A bar-chart showing the frequency of error types for advanced students, relative
to intermediate students. The orange bar indicates notable observations.

bottom-left. On inspection of the data, I believe this is due to students having beginner

profiles but attempting advanced tasks –which they are at liberty to do.

Whilst grammar error features improved the performance of our system, answer

embeddings seemed to reduce the accuracy, counter-intuitive to our understanding of the

response as the fundamental indicator of student proficiency. I believe this reflects the fact

that the answer text requires several levels of abstraction before it can be transformed into

interpretable evidence of language proficiency. I therefore view grammar error embeddings

as answer embeddings which have been passed through various levels of processing (in our

case, by ERRANT (Bryant et al., 2017)). Without processing, answer embeddings provide

only a noisy signal of student ability and negatively impact performance of predictive

systems. The answers are relatively small samples of text, perhaps insufficiently so to

properly trace language knowledge for the given student. Grammatical errors, on the other

hand, appear to be sufficiently robust to short text lengths to provide representative signals

of student knowledge. One additional reason for why the answer embedding does not

provide a discriminative signal due to the fact that at test time a null vector is passed into

the model. This results in a shift of distribution for the answer representations resulting
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in downstream accuracy loss when predicting student score.

Question embeddings are faced with a similar limitation. I expressed the hypothesis

that the wording of questions would directly indicate task difficulty. However, instead

they proved to be the weakest standalone feature (Table 4.3). I interpret these findings

together to mean either that it is how student’s perceive and respond to the question that

determines the difficulty of the task, or that W&I scores are determined more by grammar

errors than answer and question content. It is also possible that due to the presence of

a task ID which the unique ID for every question, results in the question representation

becoming redundant. Additionally, the content of the question itself does not yield any

signal that is discriminative of student ability or task difficulty.

In isolation, the metric embedding also failed to provide a strong signal for student

proficiency. However, combined with the grammar error embedding, I noticed significant

improvements in performance.

The grammatical error distribution prediction system was introduced to further evaluate

the quality of our student and task representations. The purpose of creating that system

was to measure the generalisability of the student embeddings and demonstrate their

ability to be leveraged for understanding the student’s strengths and weaknesses.

Although I do not know of an established gold standard for cosine proximity in

our grammar error prediction task, I was able to interpret it in order to compare the

performance between the different configurations of our user and task representation

learning system. The positive correlation between the score prediction loss and the

grammatical error prediction loss further supports our claim that our model architecture

and the use of grammatical errors as features are reliable for training student and task

representations of language learning. That is, the performance of the model is strong

on two tasks, such that we view the representations of students and tasks as sufficiently

accurate for further use in downstream educational applications.
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4.7 Conclusion

I introduced a novel neural network model to automatically learn student and task

representations for language learning by incorporating various features extracted from

the W&I dataset and evaluating on score and grammar error prediction. I demonstrated

through the results on the score prediction task that the use of grammar error embeddings

and metric embeddings in our framework provide a reliable signal for user proficiency in

language. These findings were further supported by the cosine proximity score achieved

when evaluating the grammar error prediction task.

Learning user and task representations is a central component to enable a truly adaptive

learning system. Future work in incorporating aspects such as memory decay and attention

can play an important role in further improving the quality of user and task representations.

Additionally, this framework may also enable downstream tasks such as curriculum learning

in the language learning domain, item similarity (Pelánek et al., 2018), and task scheduling

through spaced repetition learning (Mozer et al., 2009, Ling and Tan, 2018) .

Alongside the in-principle evaluation metrics I present here, I would like to be able to

obtain real world evaluation of learning gains for trial groups presented with adaptively

selected tasks, compared with control groups who continue to select tasks independently.

I propose that the dense representations of users and tasks presented here could underpin

an ATS which selects tasks at an appropriate difficulty level for each user with a known

submission history on the platform.
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Chapter 5

Human Forgetting Curves

In Chapter 3 and Chapter 4 I presented a method of personalised optimising instructional

sequencing and developing student representations. However, neither of these contributions

consider or implement the phenomenon of human forgetting within the design. More

specifically, how in order to understand the optimal revision schedule, we must model

how students forget content, specifically vocabulary words, over time. In this chapter, I

consider how we can model forgetting specifically in relation to vocabulary acquisition.

This chapter was adapted from work published and presented in the 21st International

Conference on Artificial Intelligence in Education (Zaidi et al., 2020).

5.1 Introduction

Optimal human learning techniques have been extensively studied by researchers in

psychology (Dunlosky et al., 2013) and computer science (Settles and Meeder, 2016, Zaidi

et al., 2017, Moore et al., Zaidi et al., 2019). The impact of learning techniques can be

measured by how they affect the long-term retention of the learning materials. More

specifically, better techniques will result in students retaining knowledge for longer periods

of time.

Measuring retention requires a model of human forgetting, which describes the probabil-

ity of recall over time. The first version of a “forgetting curve” was defined by Ebbinghaus
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(Ebbinghaus, 1885a) but the idea has since been developed further by many researchers who

have incorporated additional psychologically grounded variations to the model (Tabibian

et al., 2019, Reddy et al., 2017, Mozer et al., 2019, Choffin et al., 2019, Rubin and Wenzel,

1996). While Ebbinghaus identified that our probability of recall declines exponentially

with the passage of time, Melton (1970) and Dempster (1989), amongst others, investigated

how to counter this phenomenon. The two key factors for maximising retention that

emerged from these studies were: 1) frequency of review and 2) time lapsed between

reviews. This became known as spaced repetition.

The rise of spaced repetition led to two new research questions: 1) how frequently

to review content; 2) how far apart in time to space content review? This led to a

range of heuristic systems including Pimsleur (1967) and Leitner (1972) systems. More

recently, Metzler-Baddeley and Baddeley (2009) and Lindsey et al. (2014b) built upon

these heuristic approaches by proposing systems that present content based on when

the student is about to ‘forget’ i.e. when the probability to recall falls below a certain

threshold. This threshold is calculated using a model of memory or forgetting curve e.g

(Ebbinghaus, 1885b, Pashler et al., 2009, Settles et al., 2018).

The ideal forgetting curve and spaced repetition algorithm should adapt to learning

materials as well as user meta-features (including current ability). Recently, with the

rise of online learning platforms like Mnemosyne, Synap, and Duolingo we have seen an

increased investment in the ability for technology to enable a more personalised approach

for tasks like spaced repetition learning. However, as Tabibian et al. (2019) mentions,

many of these approaches fall short of this promise. As a matter of fact most of these

systems rely on rule-based heuristics with a few hard-coded parameters. Therefore, in

this this study, I hope to investigate more sophisticated methods of modelling a forgetting

curve. I examine this using the task of vocabulary learning and incorporate a range of

linguistically motivated features, meta-features, and a variety of models in order to predict

the probability a given learner will correctly recall a particular word. Our approach builds

on the work of Settles et al. (2018).
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The main contributions of the this chapter are as follows:

1. I present the state-of-the-art word recall prediction model using a simple neural

network and psycholinguistic features. As far as we know, this is the first neural

network based approach to modelling the forgetting curve.

2. I identify word-complexity as a valuable feature in predicting word recall. As far

as we know, this is the first experiment that leverages e-learning platform data (i.e.

Duolingo) to support the importance of word complexity is a feature in predicting

recall rates.

5.2 Method

5.2.1 Duolingo Spaced Repetition Dataset

I use the Duolingo spaced repetition dataset (Settles, 2017) in order to train and evaluate

our features and variety of models. The full dataset contains 13 million instances of

student learning. When filtered for students learning English we are left with 4.28 million

instances. Each data instance contains the following features, however not all of these

features are used in the final model:

• p recall –proportion of exercises from this lesson/practice where the word/lexeme

was correctly recalled

• timestamp –UNIX timestamp of the current lesson/practice

• delta –time (in seconds) since the last lesson/practice that included this word/lexeme

• user id –student user ID who did the lesson/practice (anonymised)

• learning language –language being learned

• ui language –user interface language (presumably native to the student)

• lexeme id –system ID for the lexeme tag (i.e. word)
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• lexeme string –lexeme tag

• history seen –total times user has seen the word/lexeme prior to this lesson/practice

• history correct –total times user has been correct for the word/lexeme prior to

this lesson/practice

• session seen –times the user saw the word/lexeme during this lesson/practice

• session correct –times the user got the word/lexeme correct during this les-

son/practice

The models are an adaptation of the half-life regression model proposed by Settles

and Meeder (2016) which was used for predicting the probability that a student will

correctly recall a word. Typically the task presented to the student is a translation task

where he/she will be presented with a Spanish word and the correct English word must

be selected (or vice versa). Further details about the model proposed by the authors is

discussed in Section 5.2.2.

I expand on the work of Settles and Meeder (2016) in three key ways: 1) I incorporate

psycholinguistic features to capture more information about the words; 2) I use a simple

neural network instead of an exponential function to compute the half-life ĥΘ value; 3)

I incorporate a novel complexity rating for each word into the objective function for

predicting probability of recall p as I believe that word complexity is directly linked to

memory.

5.2.2 Half-Life Regression (HLR)

The half-life regression model proposed by Settles and Meeder (2016) is defined as follows:

p = 2−∆/h (5.1)

where p is the probability of recall, ∆ is the time since last seen (days) and h is the

half-life or strength of the learner’s memory. I denote the estimated half-life by ĥΘ, and it
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is defined as:

ĥΘ = 2Θ·x (5.2)

where Θ is a vector of weights for the features x.

The only feature used from the Duolingo spaced repetition dataset in the HLR

model is the lexeme string or lexeme tag. The lexeme tag takes the following form:

surface-form/lemma<pos>[<modifiers>...]. For example, the lexeme tag for the word

camera is camera/camera< n >< sg >), where < n > is noun and < sg > is singular.

I assume that the authors’ incorporation of lexeme tags into the model was motivated

by the correlation between parts-of-speech and memory. This has been supported by

Rodgers (1969) who found that when learning words in a foreign language, nouns are the

easiest, adverbs are the most difficult, and verbs and adjectives are somewhere in the middle.

The HLR model is trained using the following loss function:

`(x; Θ) = (p− p̂Θ)2 + (h− ĥΘ)2 + λ||Θ||22 (5.3)

In practice, Settles and Meeder (2016) found that optimising for both p and h in the loss

function improved the model. The true value of h is defined as h = −∆
log(p)

. p and p̂Θ are the

true probability and model estimated probability of recall, respectively. An L2-regularised

squared loss was used which is donated by λ||Θ||22 where λ is the constant used to control

the regularisation term and prevent the model from overfitting.

5.2.3 HLR with Linguistic/Psychological Features (HLR+)

The model presented in Section 5.2.2 is a reimplementation of previous work conducted

by Settles and Meeder (2016). All the approaches and models presented henceforth were

developed or adapted by myself for the purposes of this investigation.

I now expand on the HLR model by adding additional linguistic, psychological and

meta-features to x. I refer to this model as HLR+. The features include:
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• word complexity –values are estimated by a pre-trained model Gooding and

Kochmar (2019). The word complexity ranges from 0 to 1 where higher is more

complex.

• mean concreteness –values are between 0 to 5 where higher is more concrete.

Values were calculated based on human judgements found in Brysbaert et al. (2014).

• percent known –values range from 0 to 1 and are based on human judgements from

Brysbaert et al. (2014)

• SUBTLEX word frequencies –the frequency of words based on a dataset that came

out of the English Lexicon Project. Word frequencies range from 0 to 2.1 million

(Van Heuven et al., 2014).

• user ids –the unique identifier for every student. Ranges from 0 to 43000. This

data was extracted from the Duolingo spaced repetition dataset.

The motivation for including word complexity as a feature is based on the intuition

that the more complex the word, the harder it is to remember. It is worth noting that

word complexity is incorporated in different ways for different models (See Figure 5.2)

Concreteness is included based on previous work showing that concrete words are easier to

remember than abstract words because they activate perceptual memory codes in addition

to verbal codes (Paivio, 2013). SUBTLEX represents the relative frequency of an English

word based on a corpus of 201.3 million words: I hypothesise that more frequent words are

more likely to be encountered and reinforced during the time since last seen ∆. Similarly,

I expect that ‘percent known’ (the proportion of respondents familiar with each word

based on survey data) will correlate with probability of recall. Lastly, I include user id to

capture latent behavioural aspects about the learners.

5.2.4 Complexity-based Half-Life Regression (C-HLR+)

In addition to adding new features, I now describe a new model that modifies the p such

that it directly incorporates word complexity. Word complexity can be defined in various

106



Feature Range Description

Word Complexity 0:1 Higher is more complex
Mean Word Concreteness 0:5 Higher is more concrete
Percent known 0:1 Higher is more known
SUBTLEX 0:2.1M Frequency of word in corpus

Table 5.1: List of features and description in HLR+.

ways, but for the purposes of this work, it is defined as a relative measure of difficulty

associated with learning the meaning of a word. The more difficult the word is to learn,

the more “complex” the word is. In order to measure the difficulty of the word I relied on

the state-of-the-art Complex Word Identification (CWI) system presented by Gooding and

Kochmar (2019). The system outputs a value between 0 and 1. I hypothesise that this

will correlate with probability of recall. As the complexity of the word rises, the forgetting

curve will become steeper. Therefore, the new model is as follows:

pi = 2−∆·Ci/h (5.4)

where pi is the probability of recall for word i and C is the mean complexity for word i. I

define estimated half-life ĥΘ as 2Θ·x where x is a vector composed of all of the features

described in Section 5.2.3.

5.2.5 Neural Half-Life Regression (N-HLR+)

In my opinion, human forgetting is a complex phenomenon which most certainly cannot

be reduced down to a single equation with a finite number of tangible features e.g. lexeme

tag. Therefore, in order address this limitation I explore the use of neural networks. In

recent years, neural networks have become increasingly popular in many complex tasks due

to their ability to capture latent and abstract features. In theory, neural networks have

the ability to capture features that might not be explicitly defined in the dataset through

its multi-layer non-linear architecture. Therefore, in order to improve the estimation of

half-life regression I describe a new model N-HLR+ model which replaces ĥΘ = 2Θ·x with
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a neural network. The network can be described as follows:

ĥΘ = ReLU(x ·w1) ·w2 (5.5)

where the network contains a single hidden layer. x is a vector of input features, w1 is

the weight matrix between the inputs and the hidden layer and w2 is the weight matrix

between the hidden layer and the output. I use the same loss function as HLR which

optimises for both p and h.

5.2.6 Evaluation and Implementation

I use mean absolute error (MAE) of probability of recall for a lexical item as the evaluation

metric which, despite some known problems Pelánek (2015), is in line with previous work

Settles and Meeder (2016). MAE is defined as: 1
D

∑i=1
D |p− p̂Θ|i, where D is the total

data instances.

I divided the Duolingo English data into 90% training and 10% test. I trained all

non-neural models (e.g. HLR, HLR+, C-HLR) using the following parameters which were

tuned on the first 500k data points — learning rate: 0.001, alpha α: 0.01, λ: 0.1. For all

neural models (e.g. N-HLR), I used — learning rate: 0.001, epochs: 200, hidden dimension:

4. I arrived at these parameters through a grid-search where I tested various permutations

of learning rates and hidden dimensions. Due to the ‘overcomplete’ problem as described

by Bengio et al. (2013), I ensured that Nh > Nx, where Nh is the hidden dimension and

Nx is the input dimension. As the input dimension was 5 i.e. the number of features, I

ensured that the hidden dimension was a maximum of 4.

5.3 Results and Discussion

We can see in Table 5.3 that HLR+, the model where I included psycholinguistic features,

did not perform much better than HLR or HLR-lex. HLR-lex, a variation of HLR that

excludes lexeme tags, yields better results than HLR suggesting that the lexeme tags only
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Model Description

HLR (Settles and Meeder, 2016) Half-life regression model with lexeme
tags

HLR-lex (Settles and Meeder, 2016) Half-life regression model without lex-
eme tags

HLR+ Half-life regression model with psy-
cholinguistic features

C-HLR+ Half-life regression model with psy-
cholinguistic features and word complex-
ity as a multiplicative factor

N-HLR+ Neural half-life regression model with
psycholinguistic features

CN-HLR+ Neural half-life regression model with
psycholinguistic features and word com-
plexity as a multiplicative factor

NN End-to-end neural network to predict
probability or recall

Table 5.2: Summary of the various forgetting curve models.

add noise into the model.

By modifying the loss function to include complexity as a parameter as seen in the

C-HLR+ model, I considerably improved the performance of the model. This was in

line with the hypothesis that more complex words are forgotten faster and thus are an

important feature in modelling the forgetting curve. It seems, that the original HLR

model is unable to capture the relative importance of word complexity. This may be

down to the simplicity of the model but also due to the noise contributed by the other,

potentially less relevant, features such a SUBTLEX word frequency. Intuitively, word

frequency might seem like a helpful feature in predicting recall i.e. words that appear

more frequently are more likely to be remembered. However, finding a method of dealing

with the large variance but also the continuous nature of the SUBTLEX feature is tricky

and an area that requires additional investigation. One of the methods to reduce variance

in the SUBTLEX feature was to log the word frequency value. Surprisingly, this did not

yield better results in predicting probability of recall. One explanation is that there is
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a strong correlation between word complexity and SUBTLEX frequency and as a result

SUBTLEX frequency feature becomes redundant. It is possible that a more sophisticated

technique of normalisation may yield better results with the word frequency feature.

The N-HLR+ model provided additional improvements to the C-HLR+ model. This

supports the evidence that neural models are not only better at capturing non-linearities

between the features and the expected output but also at capturing latent signals that are

not explicitly referenced through features.

In the N-HLR+ model, I do not include a word complexity parameter in the objective

function. Instead I only include word complexity in the feature vector when computing ĥΘ.

In order to test the ability of neural networks to capture the latent feature I constructed

an additional neural network (CN-HLR+) where I omit the word complexity from the

feature vector and add it to the loss function (as I did in C-HLR+).

When compared to the N-HLR+ model to the modified CN-HLR+, I found that

including complexity into the loss function in the CN-HLR+ provides no clear improvements

in performance. This is because the neural model learns to place more importance on the

word complexity and does not in anyway benefit from the word complexity parameter in the

loss function as the C-HLR+ model did. I further confirm this by analysing the average

weights in the hidden layer of the model. The model learns to give greater importance

to word complexity, percent known, and concreteness respectively. It does not however,

learn much from the user id and SUBTLEX. This is probably due to the fact that a

single dimension for capturing user behaviour is not sufficient and as previously mentioned,

SUBTLEX may require additional investigation in terms of how it can be incorporated

into the feature vector.

The approach taken in this work was different in that it did not rely on end-to-end

neural networks to address the task. Instead I relied on a hybrid approach, where part

of the model was trained using a neural network and part of the model relied on domain

understanding. I believe that this is why I was able to achieve state-of-the-art results on

this task.

In order further investigate this claim, I trained an end-to-end neural network (denoted
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Model MAE↓

Pimsleur (Pimsleur, 1967) 0.396
Leitner (Leitner, 1972) 0.214
Logistic Regression 0.196
HLR (Settles and Meeder, 2016) 0.195
HLR-lex (Settles and Meeder, 2016) 0.130

Model MAE↓

HLR+ 0.129
C-HLR+ 0.109
N-HLR+ 0.105
CN-HLR+ 0.105
NN 0.192

Table 5.3: Evaluation of forgetting curve models. Pimsleur and Leitner are previous
methods of modelling the forgetting curve.

as the NN model in Table 5.3) that predicted p̂Θ directly from the feature vector. Using

the same configuration as the N-HLR+ model in term of the number of neurons, I found

that the NN model did not match the performance of N-HLR+ or CN-HLR+. In fact, I

found that NN only marginally outperformed the original HLR model and performed worse

than HLR-lex model. This illustrates the importance of incorporating domain-specific

understanding in model selection. However, it is possible that with additional layers and

more neurons an end-to-end neural model may match or outperform the N-HLR+ model.

5.4 Conclusion

I present a new model for adaptively modifying the forgetting curve for language learning

using a modified HLR loss function and a neural network. The core contribution for

this work is identifying the importance of word complexity as a feature in modelling

recall probability. This idea can be extended beyond vocabulary learning by recognising

that word complexity is simply a proxy for difficulty. Spaced repetition policies and

associated memory models can benefit from some measure of difficulty. Furthermore, this

work illustrates the importance of incorporating domain bias in defining the objective

function. Settles and Meeder (2016) leverage their understanding of human forgetting

and its underlying shape (i.e. exponential). This enabled them to design an objective

function that was suited to the task. The results they presented yielded not only better

performance when tested against other popular heuristic models, but also better student

engagement and less drop off on their popular language learning app, Duolingo. Similarly,
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I leveraged understanding of language, specifically that vocabulary should be taught from

simple to complex, an idea that has been promoted throughout the history of personalised

instructional sequencing (Saettler, 2004). Additionally, as we know from interference

theory of memory and contextual ques , we are more likely to remember content which as

been seen in a wide range of contexts (McGeoch, 1932). Therefore, it is not a surprising

result that word complexity, which is correlated with word frequency (Kauchak, 2016),

plays a significant role in defining the steepness of the forgetting curve. Furthermore, I

also show a link between memory and word complexity that is supported by millions of

data points, a contribution in its own right. While I know from Rodgers (1969) that word

complexity and memory are related, to the best of my knowledge, this is the largest study

(in terms of data points) that suggests word complexity is a good predictor of word recall

and thus retention.

While the use of a simple neural network has shown to be a reliable method in predicting

probability of recall for a vocabulary word, the results suggest that incorporating domain-

bias such as a task specific objective function grounded in psychological theory is the key

to that performance boost.

This work lays the foundation for work in neural approaches to understanding language

learning over time. Future work in this area includes incorporating high-dimensional user

embeddings as introduced in Chapter 4 to capture user specific signals that might influence

the forgetting curve, and also different models such as Pareto and power functions which

have been proposed in prior work Averell and Heathcote (2011). Building on contextual

ques and memory, the role of a student’s L1 (first language) is also an area the requires

further investigation. Can we leverage information about the student’s L1 to predict

potential transfer learning and adaptive the forgetting curve? Furthermore, understanding

how to incorporate human forgetting to knowledge representations that ultimately influence

RL-based personalised instructional sequencing policy introduced in Chapter 3 is also an

important next step. Finally, the ultimate test for any machine learning model remains

its ability to perform in a live environment. Therefore, integrating this system with a

vocabulary learning environment to measure and monitor learning outcomes is also high
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on the priority list for future work.
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Chapter 6

Discussion and Conclusion

Personalised instructional sequencing has been at the centre of education since as far back

as the Ancient Greeks. Although the term ‘personalised instructional sequencing’ was not

coined in those days, the methodology of passing instruction from teacher to pupil was

very personalised. Over the years, as education and teaching became more widespread and

democratised, the growth in the number of teachers could no longer match the demand

created by the growing number of students. Thus the one-to-one teaching experience was

replaced with more homogenised forms of teaching and presenting instruction, for example

the Lancastrian Model of Instruction. However, these methods went against the early

and the more contemporary understanding of learning i.e. instruction should be adapted

to the learner’s ability. This disconnect of theory and practice sparked the interest in

scaling personalised instruction which was only accelerated with the advent of computers

and later artificial intelligence. However, the challenge of technology enabled personalised

instructional sequencing remains unsolved.

In this thesis, I tackle three specific components of technology-enabled personalised

instructional sequencing: the mechanism of personalised instructional sequencing, the

representations of the student with enables personalisation, and the human phenomenon

of forgetting. This is not the entire landscape of personalised instructional sequencing but

rather what I consider the foundation.

To emulate the behaviour of a teacher’s instructional sequencing decisions for a given

115



student, I use RL. RL has been used extensively for instructional sequencing but its impact

remains unclear, especially because the comparative baseline used by many implementations

of RL based personalised instructional sequencing experiments is randomised selection

of content (Doroudi et al., 2019). Furthermore, Doroudi et al. (2019) concluded that

the domains for which RL systems converged at a good instructional policy relied on

psychological theory to drive their model selection. I observed this in my own work, where

I used the structure of vocabulary words provided to me by CEFR. I also map different

concepts with RL to personalised instructional sequencing with a novel approach to the

concept of reward. Specifically, I propose that reward in a personalised instructional

sequencing should relate to the long term benefit for the student and thus a reward of -1

should be given to the student for providing the correct answer. Considering the drill-and-

practice systems developed by Atkinson and Raugh (1975), there are many similarities

between my approach to reward presented in Chapter 3 and those systems. Namely, in

drill-and-practice approach, there is no feedback provided for when the student enters

the correct answer but rather only for when the student provides the wrong answer. The

negative feedback can be seen as a method of increasing attention or importance by the

student towards that item. Similarly, providing a student with a +1 reward for entering

the incorrect answer is also increasing its relative importance. There is a lot of future

work to be done in RL based personalised instructional sequencing systems but some of

the areas that seem promising include combining psychological and cognitive theory with

RL methods to improve policy selection and thus learning outcomes. Another possible

extension is using RL models to uncover more about how human learning trajectory.

Without representation of student knowledge, implementing the “personalised” in

personalised instructional sequencing is not possible. The question of how to model

student knowledge for the purposes of inference (e.g. as a state in an RL system) remains

an on-going discussion. One of the challenges of using RL is the explore-exploit problem.

Yet, with enough iterations we have seen success on the use of RL based policies with

video games (Mnih et al., 2013). However, in a video game setting, the state of the video

game is information complete. All the information needed to make a decision is present
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in the pixels of the game. On the other hand, when dealing with students, the state is

their current knowledge state, which remains information incomplete and furthermore, the

information we can obtain is through a noisy signal, usually an assessment event. This

places additional focus on the importance of knowledge representation. Approaches to

develop student knowledge representation vary from building a network of nodes where each

node represents a KC in the domain to external state vectors, where each dimension of the

vector is a KC. The challenges remains to identify the KCs in each domain. Let’s consider

a writing assessment. Typically a teacher will evaluate grammar, spelling, contextual

relevance, and fluency when determining the level of the student. Spelling and grammar

can in theory be broken down into vocabulary words and grammar rules/errors. On the

other hand, breaking down fluency into its components is less straightforward. Additionally,

representing misconceptions and transfer knowledge adds additional layers of complexity

when developing knowledge representations. This creates the case for the use of deep

learning as a method of learning representations instead of manually identifying what

each dimension represents. This method of creating knowledge representation trades in

interpretability for the possibility of richer representations that are able to learn high

levels of abstractions; not an ideal trade-off.

In Chapter 4 I demonstrate how we can leverage approaches such as neural collaborative

filtering to learn student knowledge representations. The motivation behind using such a

method was motivated by the fact that since I am dealing with information incomplete

knowledge states, leveraging information from similar students will allow me to boost strap

the personalised instructional sequencing systems. I found that we can, with some degree

of certainty predict how a student would perform on unseen tasks. This is valuable as it

allows us predict the student’s approximate ZPD and leverage the student representations

as a state for my RL-based instructional sequencing system. The input of the neural

collaborative filtering included the errors the student made in his/her answer. Upon

analysing the errors, I identified that certain grammatical errors were far more common

with intermediate students (e.g. verb tense errors). Intermediate students are more likely

to over-regularise rules in grammar and as a result create more errors when applying rules
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like verb conjugations.

We know that with the passage of time humans forget some information and remember

other information. One of the challenges of personalised instructional sequencing is ensuring

that information is reviewed frequently enough to prevent forgetting. Studies on human

forgetting show that our recall of information decays at an exponential rate (Ebbinghaus,

1885b). In order to counter it there are strategies such as spaced repetition learning. But

not all information is created equal and some items are forgotten quicker than others. In

Chapter 5 I explore the role of word complexity in forgetting and whether we can leverage

some measurement of word complexity to better predict when a student might forget a

vocabulary word and thus optimise review strategy. Using word complexity I was able to

achieve state of the art results in predicting probability of recall of a vocabulary word given

the student. I also showed how using a simple neural network grounded in psychological

theory resulted in better performance than just using a naive neural network. However,

despite the positive result, there remain many additional areas of exploration with memory

and spacing. Some of those include the question of how to integrate the work I presented

in Chapter 5 with the RL-based personalised instructional sequencing model and student

knowledge representations. Additionally, the study presented was conducted on real

students, but on data which was static. Deploying the model in a live environment and

conducting pre and post-test studies to evaluate the RL-based personalised instructional

sequencing model’s impact on learning outcomes is the natural next step. Exploring

other methods of representing student knowledge, e.g. as a graph, is also an important

permutation in evaluating learning outcomes. Finally, like humans, machines also suffer

from catastrophic forgetting when dealing with sequential tasks (McCloskey and Cohen,

1989). There remains a question of whether spaced repetition can help machine learning

algorithms tackle catastrophic forgetting and improve performance.

In this thesis, along with an overview of the history of personalised instructional

sequencing, I present a range of machine learning based systems that build a foundation

for future work in this space. It is my hope that we can continue to push the limits of

these systems and test them in live environments. Furthermore, as a way forward, looking
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at how to integrate these systems with the existing workflow and role of teachers is critical.

Finally, it is my hope that we continue to use theories of learning as a way to inform model

selection and design but also use models to inform, validate and evolve our theories of

learning.
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Appendix A

ERRANT Error Types

A list of error types outputted from ERRANT (Bryant et al., 2017)

Figure A.1: There are 55 total possible error types. This table shows all of them except
UNK, which indicates an uncorrected error. A dash indicates an impossible combination.
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