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Abstract

Efficient analysis and storage of large-scale genomic data
Marcus. D. R. Klarqvist

The impending advent of population-scaled sequencing cohorts involving tens of millions of
individuals with matched phenotypic measurements will produce unprecedented volumes
of genetic data. Storing and analysing such gargantuan datasets places computational
performance at a pivotal position in medical genomics. In this thesis, I explore the
potential for accelerating and parallelizing standard genetics workflows, file formats,
and algorithms using both hardware-accelerated vectorization, parallel and distributed
algorithms, and heterogenous computing.

First, I describe a novel bit-counting operation termed the positional population-count,
which can be used together with succinct representations and standard efficient operations
to accelerate many genetic calculations. In order to enable the use of this new operator
and the canonical population count on any target machine I developed a unified low-level
library using CPU dispatching to select the optimal method contingent on the available
instruction set architecture and the given input size at run-time. As a proof-of-principle
application, I apply the positional population-count operator to computing quality control-
related summary statistics for terabyte-scaled sequencing readsets with >3,800-fold speed
improvements. As another application, I describe a framework for efficiently computing
the cardinality of set intersection using these operators and applied this framework to
efficiently compute genome-wide linkage-disequilibrium in datasets with up to 67 million
samples resulting in up to >60-fold improvements in speed for dense genotypic vectors
and up to >250,000-fold savings in memory and >100,000-fold improvement in speed
for sparse genotypic vectors. I next describe a framework for handling the terabytes
of compressed output data and describe graphical routines for visualizing long-range
linkage-disequilibrium blocks as seen over many human centromeres. Finally, I describe
efficient algorithms for storing and querying very large genetic datasets and specialized
algorithms for the genotype component of such datasets with >10,000-fold savings in
memory compared to the current interchange format.
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Four genotype pairs can have their results collapsed (summed) into a single
cell in a smaller matrix (grey). All jointly heterozygous genotypes can be
jointly computed without disregard for their individual values (yellow).
These insights result in moderate savings in compute. . . . . . . . . . . . 60
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3.7 Algorithm for scalar-bitmap intersections. If either, or both, bitvec-
tors A and B have a small cardinality (generally < m/200) and have
no missing values then it possible to accelerate the computation of the
cardinality of set intersections by storing an additional list of scalars for
each vector and perform scalar-bitmap intersections. This list of scalars
values, LA and LB, maps to the positions with a set bit (alternative allele
bit is set). The cardinality of the set intersection for f11 (dark blue) can
then be computed as |LB ∈ A| or |LA ∈ B| (see Algorithm 2). In this case,
the remaining cell counts (light blue, purple, and grey) are then known.
The resulting 2× 2 matrix is shown for this example. . . . . . . . . . . . 61

3.8 Allele count distribution on the Trans-Omics for Precision Medicine
(TOPMed) Program and The Genome Aggregation Database
(gnomAD) datasets. These large datasets demonstrate that increasing
the number of samples result in an increasingly sparse genetic matrix
because of the limited haplotypic diversity in humans. (Left panel) Whole-
genome sequenced data for 62,784 individuals (data freeze 5) reveal that
80% of variant sites have <7 alternative alleles (alts, dashed grey line) and
90% have <37 alternative (solid grey line) genome-wide. Unsurprisingly,
223 million sites (45%) have an allele count of one. (Right panel) Allele
frequency distribution for 125,748 samples with exome sequencing data
and 15,708 samples with whole-genome sequencing data for chromosome 20. 63
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3.14 Improved performance with increasing number of logical threads.
Computing growths linearly (s = 0.9255t, R2

adj = 0.9993, where s is
speedup for t physical threads) with increasing number of physical threads
(14 cores). After 14 physical threads, additional hyper-threaded logical
threads add around ∼1% per thread. This stark drop-off in additional
performance gain is expected given the hardware-limited performance of
the algorithms. Actual times are listed in Table 3.6. The host architec-
ture used is a 14-core 22 nm Haswell Xeon E5-2697 v3 with the AVX2
ISA and hyper-threading enabled. . . . . . . . . . . . . . . . . . . . . . . 72

3.15 Example square LD plot using plotLD in rtomahawk. Because of
the vast number of data points rendered and the finite amount of pixels
available, we render data points with an opacity gradient scaled according
to its R2 value from [0.1, 1]. This allows for mixing of both colors and
opacities to more clearly represent the distribution of the underlying data
(left column). It is possible to disable this functionality by setting the
optional argument opacity to FALSE (right column). In the following
examples, we render both a large region (5-8 Mb, top row) and a small
region (5.0-5.6 Mb, bottom row) with and without the opacity flag set. . 81

3.16 Example triangular LD plot using plotLDTriangular in rtoma-
hawk. In many cases, there is generally no need to graphically represent
the entire symmetric square (or rectangular) symmetric matrix of associ-
ations. This is especially true when combining multiple graphs together
to create a more comprehensive picture of a particular region or feature.
All of the examples here involves the subroutine plotLDTriangular. As
a design choice, we decided to restrict the rendered y-axis data such that
it is always bounded by the x-axis limits. For this reason, these plots will
always be triangular will partially "missing" (omitted) values even if they
are technically present in the dataset. Because of the smallish haplotype
block size in humans, most of these visible triangular structures will have
a limited span in the y-axis. We can truncate the y-axis to zoom into
the local neighbourhood and more accurately display the local haplotype
structure (bottom row). . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.17 Flipping orientations of triangular plots. It is possible to control
the orientation (rotation) of the output graph by specifying the orientation
parameter. The numerical encodings are: 1) standard; 2) upside down; 3)
left-right flipped; and 4) right-left flipped. . . . . . . . . . . . . . . . . . 83
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3.18 Computing LocusZoom-like plots for GWAS data. In the following
examples we will investigate the association of genotypes at chromosome
6 and diabetes in the imputed UK BioBank cohort. The plotLZ function
will internally compute linkage-disequilibrium for a target SNV and its
surrounding genomic region. Given a target SNP of interest, purple
triangle, we compute the LD with all neighbouring SNPs and fill points
according to its R2 value. The Y-axis is the log10-transformed P-value
for an association with diabetes. The background computation of LD is
stored in a temporary file and then loaded back into memory and returned
as a new twk class instance. Shown is the SNV at 6:20694884 in a 1 Mb
surrounding window (top) or 50 kb (bottom). . . . . . . . . . . . . . . . 84

3.19 Mixing plot types in rtomahawk. If your visualizations require addi-
tional data layers it is possible to combine these into a single plot as
rtomahawk renders plots using base-R. In this example we will combine
two plots: the GWAS P-value and its single-site LD together with the
all-vs-all pairwise LD for the same region in the upside-down orientation. 85

3.20 Mixing plot types in rtomahawk: a more advanced example. It is
possible to add more advanced data layers using external packages. In
this example we will add a gene track using genetic information extracted
from biomaRt and drawn using Sushi, both third-party packages. . . . . 86

3.21 Performance for different number of samples and allele frequen-
cies. Data for n alleles and m sites was generated by drawing positions
from the uniform distribution U(0, n) until the target alternative allele
count ρ is reached. The y-axis corresponds to the number of CPU cycles
/ pair of 64-bit words equivalent in bitmap space in order to compare
the throughput of both sparse and dense algorithms. Legend: blue solid,
unblocked dense vector; blue dashed, blocked dense vector; red solid,
unblocked sparse vector; green solid, blocked sparse vector. . . . . . . . . 90

3.22 Allele count (left) and allele frequency (right) distribution plots for sim-
ulated data in a 1 Mb range for (28, 29, . . . , 220) haplotypes. No data is
available for 220 as allele counts could not be extracted using bcftools. . 95
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3.23 Completion times for computing chromosome-wide LD for 1KGP3
data. Left panel: Completion times grows in O(2N(V − 1)(V )/2)-time
where 2N is 5,008 haplotypes and V is the number of bi-allelic variants
ranging from 1,094,014 for chr22 to 7,026,684 for chr2. Computation for
chr2 finished in 4h27min on 14 cores and chr22 finished in 6m47s. Right
panel: X-axis is (V − 1)(V )/2-transformed to demonstrate a perfect linear
relationship in this space. The host architecture used is a 14-core 22 nm
Haswell Xeon E5-2697 v3 with the AVX2 ISA and hyper-threading enabled
(but unused). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.24 Example pan-centromeric linkage-disequilibrium block. a) Chromosome-
wide linkage-disequilibrium (LD) for 1000 Genomes Phase 3 (1KGP3)
chromosome 11 demonstrating a long-range, pan-centromeric LD block.
b) Zoomed in region of a) reveal a pan-centromeric LD block from around
46 Mb to 57 Mb. The missing information in the middle correspond to
the repetitive centromeric region that is masked out during the mapping
procedure. c) Upper triangular LD block for the South Asian (SAS) super-
population of the 1KGP3 dataset with genomic coordinates shown. d)
Upper triangular blocks for admixed American (AMR), East Asian (EAS),
European (EUR), and African (AFR) super-populations demonstrating
that these long-range pan-centromeric LD blocks are present in all of them.100

3.25 Algorithm for computing set intersections using run-length en-
coding of genotypes. a) Run-length encoding (RLE) genotypes as
(template, length)-tuples enables direct comparison of sparse vectors in
theoretically faster time compared to naive comparisons. Given two vec-
tors of RLE elements, A and B, we compare each element pairwise and
report the joint genotype/haplotype of either (1) the smaller or (2) both
and advance the pointer in either or both, respectively, resulting in the
output matrix shown. b) Worked example of the vectors in a). . . . . . . 102
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4.1 Overview of the storage model. a) Genetic datasets stored in the
widely used Vcf interchange format are stored as per-site records comprising
of a variety of site-descriptive fields, such as position and reference allele,
and optionally per-sample information such as genotype information. b)
In the row-centric (record) memory layout used by Vcf, and the binary
representation Bcf, fields in a record are stored end-to-end. This traditional
memory layout is efficient when querying many, or all, fields in a few records.
Random-access to fields is generally inefficient as unwanted fields needs
to be read from disk, uncompressed, and then discarded. c) In contrast,
the vertical partitioning of a table into a column-centric memory layout
(also called a column store) allows the same field of multiple records to
be stored into a single, contiguous, memory address. Querying columnar
data is generally faster because of better data locality and have better
random-access performance because of the fixed stride sizes for most data
types. d) Additional effort is required to maintain the relationship between
a record and the fields it contains. I address this mapping problem by
first hashing the global identifier of the fields in a record to its block-wise
(subset of dataset in terms of variants), local, identifiers. This list of local
identifiers are in turn hashed to create a local identifier that maps to
a given pattern of identifiers. The pattern itself is stored as a packed
bitvector. Storing the local identifier to a pattern is sufficient information
to retrieve back data from the correct columns. . . . . . . . . . . . . . . 109
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4.2 Worked example of gtOcc(·) over three groupings. a) Given nine
samples labelled S1, S2, . . . , S9 and three groupings labelled G1, G2, and
G3 the gtOcc structure can be described as O|S|+1×|G| matrix initialized
to zero. By definition, O0 is defined to 0. b) In this case, our groupings
are binary (member or not member). If a sample belongs to a target
group then we set that cell to one (1). For example, S7 is a member of
groups G2 and G3. c) Next, the cumulative sum across each grouping
is computed such that the value in any cell correspond to the number
of samples belonging to this group up to that point. d) This matrix is
sufficient to enable summary statistics between any two points. In this
example, the first observed run-length encoded object is a (0|0, 4)-tuple.
By using the gtOcc table it is possible to answer how many individuals
belong to each group in the range [0, 4) and thereby how many copies of 0|0
belong to each group. This process involves simple arithmetic operations:
gtOcc(∑i<j

i=0 Ri + Rj) − gtOcc(∑i<j
i=0 Ri) where Ri is the run-length of

object i. The next step with the tuple (0|1, 2) is depicted in e). . . . . . 115
4.3 Compression performance on real data. a) Data for chromosome 20

for the 2,504 individuals in the 1KGP3 dataset was compressed over dif-
ferent compression levels using htslib with either gzip, in the bcf format,
or uncompressed bcf using gzip as an external compressor, uncompressed
bcf using zstd as an external compressor, or using tachyon. Tachyon offer
considerably better compression performance. b) First permuting geno-
types with the gtPBWT method result in considerable savings in memory
but require additional import time c). d) Same as a) for chromosome
11 for the 32,470 individuals in the HRC dataset. e-f) same as b-d) for
HRC-chr11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
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4.4 Performance on real and simulated data. a) File sizes for Bcf (blue)
and tachyon (green) for 2,504 diploid individuals of various genetic ances-
tries for each chromosome in the 1KGP3 dataset. b) File sizes for Bcf and
tachyon for 32,470 diploid individuals of mostly European ancestry for each
chromosome in the HRC dataset. c) File sizes for uncompressed (ubcf and
uyon) and compressed (bcf and yon) archives for the entire 1KGP3 dataset
demonstrating that the uncompressed yon file format is comparable in size
to compressed bcf. d) File sizes for uncompressed and compressed archives
for the HRC dataset. e) Haplotypes were generated in the range from 1,000
to 1,000,000 and compressed with bcf and yon. f) Uncompressed data for
e) demonstrate that the succinct run-length encoding representation in
tachyon result in dramatic savings in memory for uncompressed genotypes.
g) Response times when querying for meta information only (all fields
excluding all the per-sample FORMAT fields). The columnar representation
of data in tachyon result in query times proportional to the individual
columns. In contrast, the row-centric orientation of Bcf scale in proportion
to all available data. h) Response times for querying for meta information
only (as in g)) for the 1KGP3 dataset with either a single thread or 28
threads. i) Same as h) for the HRC dataset. . . . . . . . . . . . . . . . . 121

5.1 Size distribution for EWAH object for PBWT-permuted and
unpermuted variants. Variants from HRC chromosome 20 for 32,470
diploid individuals were either permuted or not and analysed for its
uncompressed storage cost per variant. Permuting with PBWT result in
a dramatic shift of high storage-cost variant sites into low storage-cost
representations. Vertical dashed lines correspond to the average storage
cost for 90% of the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2 Overview of block-based compression. Blocks of variants are com-
pressed and stored in independent data blocks. This enables partial random
access to PBWT-permuted data blocks without having to checkpoint the
permutation array (current haplotypic sort order). This approach gives
rise to a characteristic wave-like periodic pattern for both PBWT-based
(green) and unpermuted (blue). Storage keeps increasing until the target
number of variants have been stored and a new block is started. Cumula-
tive file size is shown for both approaches. The bottom panel is restricted
to the first five variant blocks. . . . . . . . . . . . . . . . . . . . . . . . . 128
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5.3 Overview of compression genotypes/haplotypes. a) Genetic vari-
ant data is most frequently stored as haplotypes/genotypes in a matrix
Xn×m for n samples (columns: a− f) and m loci (rows: 1− 6) where 0
encodes for the reference allele at that position and 1 for the first alter-
native allele, and 2 for the second and so on. b) Repeated symbols can
be succinctly represented as (run length, template)-tuples in a process
known as run-length encoding. The relatively low haplotypic diversity
in humans cause most rows in X to be sparse and therefore compress
well using run-length encoding. However, many sites will compress into
a larger object because of short runs (frequent template switches). c)
Storing genotypes/haplotypes in a k-bit string (bitmap or bitvector) is an
extremely computationally efficient approach for sites with few alternative
alleles. Bitmaps enables the computation of many set operations such as
intersection, union, and difference using a single CPU instruction. Un-
fortunately, bitmaps have a fixed cost of k-bits per row (record) making
this approach inefficient on larger datasets. d) The extended word-aligned
hybrid (EWAH) compression method combines run-length encoding (b)
and bitmaps (c) such that long runs of a template (clean words) are
run-length encoded and high-entropy regions are stored as bitmaps (dirty
words). In this application, the machine-word size k is 64-bits and 4 bits
are reserved for describing the template, 30 bits for the number of clean
words with the defined template, and 30 bits describing the number of
immediately following dirty words of size 64-bits. . . . . . . . . . . . . . 131
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5.4 Size distribution for the EWAH components (EWAH struct and
bitmap) for PBWT-permuted and unpermuted data. 1,043,341
biallelic sites for 262,144 samples simulated using msprime was either
PBWT-permuted or left unpermuted and the resulting size distribution for
the two components of EWAH-encoding are shown. For unpermuted data
the bitmap component require 10535.76 MB and the EWAH component
3690.2 MB. In contrast, for PBWT-permuted data the corresponding sizes
are 104.1 MB and 80.3 MB, respectively. This correspond to a 45-fold
saving for the EWAH structure component and a 101-fold saving for the
bitmap component. Overall, the uncompressed data is 14226 MB whereas
the PBWT-permuted data is 184.5 MB (77-fold difference). This divide
in compressibility keeps growing with larger cohorts. The right panel
have the y-axis limited to the bounds of the PBWT-permuted data range.
Also note the difference in y-axis scaling on the two panels: GB and MB,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.5 Compression performance of simulated data . . . . . . . . . . . . . 139
5.6 Compression performance for Djinn on 1KGP3 datasets. Se-

quence variant data called from 1000 Genomes Project data for 2,548
diploid individuals whole-genome sequenced to >30-fold coverage. Final
archive size per chromosome is shown for different compression methods:
Vcf, Bcf, msprime, and different Djinn algorithms. Djinn-ctx: context
modelling on EWAH objects; Djinn-EWAH-LZ4: direct compression of
EWAH objects using the general-purpose compressor LZ4; Djinn-EWAH-
ZSTD: direction compression of EWAH objects using the general-purpose
compressor Zstd. A zoomed in figure (right panel) is shown for the different
Djinn models to illustrate the significant file-size differences between the
context model and the general-purpose compressors. . . . . . . . . . . . . 141
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5.7 Compression performance for Djinn on HRC datasets. Sequence
variant data for 32,470 whole-genome sequenced individuals from a variety
of datasets where most individuals have European ancestry. Final archive
size per chromosome is shown for different compression methods: Vcf, Bcf,
and different Djinn algorithms. msprime/tsinfer was excluded from this
analysis as the import procedure for any chromosome failed to complete in
24 hours on 28 CPU cores. Djinn-ctx: context modelling on EWAH objects;
Djinn-EWAH-LZ4: direct compression of EWAH objects using the general-
purpose compressor LZ4; Djinn-EWAH-ZSTD: direction compression of
EWAH objects using the general-purpose compressor Zstd. A zoomed in
figure (right panel) is shown for the different Djinn models to illustrate
the significant file-size differences between the context model and the
general-purpose compressors. . . . . . . . . . . . . . . . . . . . . . . . . . 142
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2.7 Completion time for computing FLAG summary statistics. FLAG
fields were compressed in blocks of 512 kB (8192 16-bit words) using the
general compression libraries LZ4 or Zstd. LZ4 can be used in two different
modes: the standard mode that compress faster but at worse fold compre-
sion (LZ4) and in a mode that compress better at slower speeds (LZ4-HC).
All compression methods were evaluated over their parameter space for
compression: LZ4 (1-9) and Zstd (1-20). Times are listed in milliseconds.
Decompression times are included in either algorithm for computing the
FLAG summary statistic. The SAM-branchless subroutine is described on-
line at https://github.com/mklarqvist/FlagStats/. Abbreviations:
Comp. Method: Compression Method; Decomp: Decompression. . . . . . 39

3.1 Example implementation for conditioning a pair of bitmaps given a 2-
locus haplotype using the AVX2 Instruction Set Architecture (ISA). Most
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bitwise operations on vectors. For example, _mm256_and_si256(A, B)
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in length to the input vectors A and B. The special vector ONE_MASK is a
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3.3 Example implementation for conditioning a pair of bitmaps given a 2-
locus genotype using the AVX2 Instruction Set Architecture (ISA). These
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3.4 Reproduced in part from Intel (https://software.intel.com/en-us/
articles/memory-performance-in-a-nutshell). Abbrevations: L1 (Level
one), L1 (Level two), L1 (Level three), Multi-channel DRAM (MCDRAM),
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nm Haswell Xeon E5-2697 v3 with the AVX2 ISA and hyper-threading
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3.9 Contingency table for genotype-genotype frequencies used to statistically
test for goodness-of-fit between the observed frequencies and the expected
one under our model. Note that this matrix is usually presented as a 3× 3
matrix where heterozygous genotypes have been collapsed. For technical
reasons, we compute frequencies for a 4× 4 matrix and then collapse down
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Chapter 1

Introduction

The technology involved in determining the sequence of a human genome (sequencing)
has observed dramatic progress in the 15 years since first being described in in 2003.
Starting in the year 1990, the international Human Genome Project, a US$2.7 billion
initiative, comprised of 13 years of uninterrupted work and involved hundreds of scientists
to determine the sequence and annotate the first human genome. Today, it is possible to
sequence a human genome for under US$1000 dollars in under 24 hours corresponding to
a 4,745-fold reduction in time and a 2.7 million-fold reduction in price compared to the
Human Genome Project. This continuous drop in cost coupled with an increasing amount
of evidence supporting the use of genome sequencing in clinical care has motivated several
large-scale national initiatives ranging from a few hundreds of thousands up to a hundred
million individuals with planned completion times in the 5-10 year range. Such large-
scale cohorts will involve sequencing, phenotypic, and other data at an unprecedented
scale never before seen in biology. This deluge of data, classified as ’Big Data’ owing
to its gargantuan volume and velocity, has galvanized scientists to begin addressing
performance problems in genetics and genomics at large and have given rise to a wave of
high-performance computing-related efforts in this application space.

In this chapter I will describe the history and technical evolution of nucleic acid
sequencing and the current and future technical problems in storing and querying this
data. I will introduce several technical aspects of high-performance computing and then
provide an introduction to the problems addressed in this thesis.

1.1 Historial overview of nucleic acid sequencing
Starting with the discovery of the structure of the molecule that is the basis for hered-
ity, DNA, in 1953[132] there has been an incessantly growing interest and demand in
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sequencing this molecule. The structure revealed that a double helix, of alternating
phosphate and sugar groups, are connected by different combinations of four bases:
adenine (A) with thymine (T), and guanine (G) with cytosine (C). Despite a strong
academic interest in sequencing DNA, the first easily parallelizable and automatable
method called dideoxy sequencing was proposed in 1977 by Fred Sanger[104] and became
colloquially known as Sanger sequencing. In the same year, the first human gene was
isolated and sequenced[108]. Fred Sanger was almost immediately awarded his second
Nobel Prize in 1980 in recognition of this discovery. His method was based on the concept
of sequencing-by-synthesis where the targeted sequence is randomly interrupted by the
insertion of a modified nucleic acid, the so-called chain-terminating dideoxynucleotide
triphosphates (ddNTPs). In 1986, Hood et al.[117] described an improvement in the
Sanger sequencing method that involved conjugating flourophores to the ddNTPs. The
four modified ddNTPs (ddATP, ddGTP, ddCTP, ddTTP) were attached to different
fluorescent marker that emit light at different wavelengths when excited with a laser.
This modification enabled the resulting sequences to be read by a computer. These two
concepts, random chain-termination and fluorophores with different emission colours,
are sufficient to deduce the exact sequence of a molecule by flowing the mixture of
chain-terminated sequences (of different lengths) through a gel or capillary that separate
the sequences by length. In other words, sequences terminated at different positions will
flow through a given point in the gel/capillary in a time proportional to their lengths
(sizes) and emit color according to its bound fluorophore (ddNTP). The instrument can
then simply read out the sequence of colors that correspond to the correct nucleic acid
sequence.

In April 1984, George Church published a short paper called "Genomic Sequencing"[18]
that outlined a new technology that could enable the sequencing of the human genome.
At the end of 1984, Church was invited to a meeting sponsored by the US Department
of Energy that were interested in studying somatic mutations caused by nuclear fallout
following their now infamous nuclear weapons programme the Manhattan Project. The
following year, in May 1985 Robert Sinsheimer, then chancellor of the University of
California-Santa Cruz (UCSC), invited several scientists to discuss the prospect of
undertaking this endeavour in the UCSC environment [111]. This meeting is considered
the first serious proposal to sequence the human genome and set in motion what would
ultimately become the international US$2.7 billion Human Genome Project (HGP) with
the main intent of sequencing the 3 billion bases in the human genome. Soon after, Sanger
sequencing was automated and parallelized by the private company Applied Biosystems
in 1987 by the development of a high-throughput DNA sequencer using the modifications
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described by Hood et al. Automation and parallelization was a key practical prerequisite
that needed to be addressed prior to attempting to sequence the human genome. The
HGP formally launched in 1990[101, 15] in a collaboration between the US Department
of Energy and the US National Institutes of Health with a 15-year and US$3 billion
budget for completing the genome sequence. This project would span 13 years, involving
multiple institutes in several countries, and culminate in the completion of the human
genome sequence in 2003 with an initial draft published in 2001[51].

In 1997, James L. Weber and Eugene W. Myers proposed a plan for sequencing
the human genome using parallel whole-genome shotgun sequencing[133] (WGSS). The
WGSS paradigm involves sequencing many overlapping DNA fragment in parallel and
then reconstruct the original sequence using computer software in a process known as
assembly. Many small fragments are assembled into contiguous stretches of sequence
(contigs) that are in turn connected together using paired reads[35] in a process known
as scaffolding. Paired end sequences in this context refers to reading either end of a
longer sequence and thereby get long-range information, especially when the insert size
is large (the distance between the ends of the two reads). The final result is a large-scale
map with the correct order, sequence, and orientation for each contig. This was not a
new concept at the time but had already been used by Fred Sanger as early as 1982 to
determine the sequence of the λ-virus[103]. Considering the size of the human genome
compared to this virus, the application of WGSS to sequencing the human genome was
dismissed as being too complicated and without existing software support.

In May 1998, the private company PE Biosystems developed an automated, high-
throughput capillary DNA sequencer that subsequently came to be named the ABI
PRISM 3700 DNA Analyzer. In the same month, the former US National Institute
of Health (NIH) biologist J. Craig Venter announces a new company named Celera
that declares that it will complete the sequence of the human genome within 3 years
for one-tenth the cost (US$300 million) of the public HGP effort. In 2000, Celera and
its academic collaborators Gerald Rubin and the Berkeley Drosophila Genome Project
published the sequence of the model organism Drosophila melanogaster after less than one
year of work[102, 89, 5] thereby demonstrating the viability of this sequencing paradigm
on larger genomes. Using this approach, Celera generated an accurate sequence of the
human genome in less than a year: starting on the 8th of September, 1999 and finishing
on the 17th of June, 2000[128]. Both the public HGP and the private Celera effort
finished sequencing the human genome three years before the expected deadline. Today,
the principles behind WGSS and paired reads remains one of the primary methods for
determining the sequence of new species.
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1.2 Next-generation sequencing
Following the collective effort in sequencing the human genome, there has been an
explosion of technical advancements in the sequencing instruments and their chemistry.
Today, it is possible to sequence a human genome for <US$1000 in 24 hours corresponding
to a 4,745-fold reduction in time and a 2.7 million-fold reduction in price compared to
the Human Genome Project (Figure 1.1). Sanger sequencing (dideoxy chain-termination
sequencing) was the principal workhorse for over 30 years from its first description
in 1977[104] until around 2008. Around 2006, the private Cambridge-based company
called Solexa described technology to massively parallelize sequencing[7] and eventually
released their automated sequencer called the Genome Analyzer and published favorable
results[10]. This ushered in a paradigm shift for sequencing instruments with dramatic
improvements in throughput and concomitant decreases in price. This shift from Sanger
sequencing to massively parallel sequencing methods became colloquially known as next-
generation sequencing (NGS) or high-throughput sequencing (HTS). Solexa eventually
became Illumina and is today the world’s largest sequencing company.
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Figure 1.1 Decrease in sequencing cost of a human genome over time. The
reductions in DNA sequencing cost is exceeding that of Moore’s Law which predicts
the doubling of transistors in compute hardware every two years. Sequencing costs are
frequently compared to this prediction. The precipitous drop in sequencing cost at around
the year 2008 corresponds to the transition from Fred Sanger’s dideoxy chain-termination
sequencing method to the so-called next-generation sequencing technologies. This graph
depicts the total cost of sequencing a genome such that the total includes reagents, labor,
consumables, amortization of the sequencing equipment, analysis cost related to sequence
production, and other associated indirect costs. Reproduced from genome.gov.

There are two primary paradigms in next-generation sequencing technology: short-
read sequencing and long-read sequencing (reviewed in [68, 43]). There are a large
variety of short-read technologies but most offer very good per-base accuracy (>99%)
over 100-500 base pair reads. In contrast, long reads tend to have considerably worse
per-base accuracy (∼85-87% for the PacBio platform[99] and ∼90% Oxford Nanopore
single-molecule platform[97]) but provide considerably longer reads with reports up to a
million base pairs[92, 53]. Although long-read technologies generates much longer reads,
it remains considerably more expensive and generate less total sequence information per
run. Regardless of the platform used, there is an enormous amount of data generated.
For example, the Illumina Hiseq-X platform generates 5.3-6 billion read pairs of 150 base
pairs corresponding to 1.6-1.8 terrabases of information. This data is generated by each
such system, every day.

genome.gov
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1.3 ’Big Data’ in genomics
Throughout most of the life-history of genomic sequencing it has been restricted to the
research space. This dramatic reduction in cost has enabled sequencing to be considered
in routine and advanced clinical settings [4, 114] and there are now several emerging
national initiatives that intend to sequence entire populations with around one million
samples across Europe by 2022[106] (Figure 1.2 and Figure 1.3). There are estimates that
genomic data for >60 million patients will have been generated before 2025[11, 114, 116].
These numbers are dwarfed by the behemothian Chinese national initiative, the China
Precision Medicine Initiative, that aims to sequence 100 million genomes by 2030[21].
The Chinese government is outspending the U.S. Precision Medicine Initiative (PMI)[21]
by 43-fold in terms of dollar-to-dollar spent1. Similarly, another large U.S. initiative,
the Million Veterans Program (MVP)[41], aims to collect blood samples and health
information from a million military veterans.

Currently, there are several emerging diagnostic applications in the clinic include
sequencing the protein-coding part of the genome (the exome) in the course of complex
disease or Mendelian disorders diagnosis with around 30% molecular diagnostic rate[115,
122, 8, 98, 93, 36, 139, 138, 110]. In one study[115], sequencing the exome in the early
stages of clinical diagnosis tripled the diagnostic rate for one-third the cost per diagnosis.
Owing to the continuing decrease in sequencing cost and improvement in the software for
downstream analysis, whole-genome sequencing is beginning to be applied in the clinical
setting. For example, the UK national initiative the 100,000 Genomes Project[127] is
sequencing 100,000 genomes in a variety of clinical settings including rare disease and
cancer.

1Estimated cost for the China Precision Medicine Initiative is US$9.2-billion over 15 years compared
to the US$215-million U.S. Precision Medicine Initiative.
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Figure 1.2 Map of Currently Active Government-Funded National Genomic-
Medicine Initiatives. Reproduced from [114]
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Figure 1.3 Examples of current health care-focused and genomics-based na-
tional initiative projects across ELIXIR members. Reproduced from [106]. Ab-
breviations: ACGT, Analysis of Czech Genome for Theranostics; BBMRI-NL, Biobanking
and Biomolecular Resources Research Infrastructure - The Netherlands; BIOS, Biobank-
based integrative omics study; FarGen, Faroe Genome Project; GoNL, Genome of the
Netherlands; NCER-PD, National Centre of Excellence in Research on Parkinson’s
disease; NCMG, National Center for Medical Genomics; SISu, Sequencing Initiative
Suomi.

These population-scaled sequencing datasets with matching phenotypic measurements
can be classified as members of the ’Big Data’ paradigm. Generally, ’Big Data’ refers to
datasets that are too large or complex to analyse with traditional methods and can be
classified into three principal categories: volume, velocity and variety of data[38]:

• Volume: Large data volume in terms of storage space and/or number of records. As
an example, the Sequence Read Archive (SRA) store >26 petabases from 100,000s
of studies and the TCGA[90] and ICGC[23] have made >2.5 and 1.7 petabytes
publicly available, respectively.

• Variety: Data was generated from a variety of sources and file formats and may con-
tain multidimensional fields (tensors). If we limit our scope to the sequencing space
of genomics, data is frequently generated from different types of instruments using
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different techniques such as whole genome sequencing, whole exome sequencing,
mutational panels, miRNA sequencing, mRNA sequencing, copy number arrays,
low-pass whole genome sequencing, array-based expression, bisulphite sequencing,
and many more. Clinical and phenotypic data is commonly collected in addition to
the instrument data.

• Velocity: Data is generated with large frequency and/or is delivered with great
frequency. Considerable advancements in sequencing instruments have pushed
the total cost of sequencing down to under US$1000 in <24 hours. This can be
compared to the many billions spent over 13 years of continuous work to sequence
the first human genome[51]. As sequencing is beginning to move into routine
healthcare, it will become increasingly important to rapidly analyse and diagnose
patients for faster clinical interventions.

With the advent of population-scaled datasets and routine application of sequencing
in a clinical setting, it is becoming increasingly important to maintain efficient data
access and distribution. Several high-performance computing-based approaches have
been suggested to address the considerable technical challenges imposed by the incessant
deluge of this ’Big Data’. I will first describe how large-scale computational resources are
being used now and in the future (Section 1.4.1). Next, I will describe how to maximize
computing within a single processor (Section 1.4.2) and guarantee it will always be
executable regardless of hardware (Section 1.4.3). Lastly, I will describe how to partition
a large problem into many smaller problems (Section 1.4.4).

1.4 High-performance computing
High-performance computing (HPC) generally refers to massively parallel designs of
interconnected computers with the sole intent of expediting computation of difficult tasks.
Parallel computing generally implies some partitioning of a bigger, computationally
intractable, problem into smaller more easily solved problems.

1.4.1 Cloud and cluster computing

Cluster computing involves linking together a large number of inexpensive commodity
components such as processors (CPUs) or graphical processing units (GPUs) on a shared
network. The primary intent is to improve computational throughput of parallelizable
problems by using the collective compute of a multitude of relatively weak but cheap
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components in lieu of fewer but more powerful but expensive components. Intrinsic
to this modular paradigm is the ability to keep adding components as they become
available. As a consequence of this, the resulting heterogenous cluster may contain
different microarchitectures and instruction-set architectures (ISA) and/or other hardware
incompatibilities.

Recently, there has been a trend for replacing in-house compute resources with cloud
computing where computational resources are rented in a pay-as-you-go fashion (reviewed
in [62]). This computing paradigm enables end-users to rent the exact desired resources
without dealing with owning and maintaining those resources. Hardware resources are
rented out as virtualized slices called instances that can be tailored to the exact resource
requirements of a given task. This elasticity is a major advantage of cloud computing:
from the short single job to tens of thousands of processor-intensive jobs on multiple
nodes. Until recently, cloud computing was primarily a commercial enterprise with three
principal providers: Amazon Web Services (AWS), Google Cloud Platform, and Microsoft
Azure. Recently, several academic efforts have been made including EMBL-EBI Embassy
Cloud and the Open Science Data Cloud. Although academic institutions are beginning
to move into the cloud computing space, commercial cloud providers have several orders
of magnitude more computers in their arsenal with the result of less waiting time for
resource allocation and in turn faster results.

Potentially, the greatest contributions of cloud computing could be the immediate
accessibility to archived data for reanalysis without first forcing end-users to download
the target data to their local system. Securing storage space, allocating resources for
downloading the target data, setting up software for the analysis, and then performing
the analysis are all expensive steps that can be completely or partially circumvented
in the cloud computing paradigm. This is especially empowering for smaller labora-
tories without significant computational resources. Realising this, the Sequence Read
Archive (SRA) a hosting provider that store >26 petabases of data obtained from sev-
eral 100,000s of studies is currently migrating to a cloud environment2. Frequently
used datasets such as the 1000 Genomes Project (1KGP)[123], Genome Aggregation
Database (gnomAD)[55], International Cancer Genome Consortium (ICGC)[23], The
Cancer Genome Atlas (TCGA)[90], Trans-Omics for Precision Medicine (TOPMed)[121]
can be copied to geographically diverse locations to enable efficient access irrespective of
the physical location of the investigator.

2https://www.nlm.nih.gov/news/NLM_Moves_SRA_Cloud.html. Last accessed: 9th September,
2019.

https://www.embassycloud.org/
https://www.embassycloud.org/
https://www.opensciencedatacloud.org/
https://www.nlm.nih.gov/news/NLM_Moves_SRA_Cloud.html
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Despite all the promises of cloud and cluster computing there are several current and
forthcoming challenges. Firstly, heterogeneous compute clouds and clusters with mixed
hardware introduce several important challenges: (1) different nodes/instances may have
incompatible ISAs resulting in binary incompatibility for compiled code; (2) problems
must be parallelizable at least at the single-node level but preferably the multi-node
level; (3) heterogenous components could significantly skew load-balancing and result
in inefficient computing. Secondly, the incessant deluge of genomics data (’Big Data’)
is posing both an immediate and future limitation to efficient analysis and storage of
genomics data. I will discuss these challenges in the next sections.

1.4.2 Instruction level parallelism

Modern commodity processors rely heavily on a variety of parallelism paradigms to
achieve peak performance. This include the well-known task parallelism where tasks are
concurrently performed by having each processor executing a task on a different thread.
Less known is the lower level parallelism referred to as instruction level parallelism where
a large number of data is loaded into wide data registers and reduce the number of instruc-
tions required to complete a task by processing multiple machine words simultaneously
(Figure 1.4). In many cases, it is possible to execute multiple instructions per CPU cycle
(clocktick). This form of parallelism is called SIMD (single instruction, multiple data)
and its instructions are available on most commodity processors. Currently, registers
are 128, 256, or 512 bits wide and use one of the current instruction set architectures
(ISAs) called SSE, SSE2, SSE3, SSE4.1, SSE4.2, AVX, AVX2, and a variety of AVX512
instruction sets (Figure 1.5). Depending on the instruction set, any multiple of 8-bit,
16-bit, 32-bit, 64-bit, 128-bit, or 256-bit that adds to 128, 256, 512 bits is allowed but
not all instructions are available in all size combinations. Although conceptually simple
to understand, SIMD-based acceleration is generally difficult to program in practice.
Throughout this thesis, SIMD-accelerated subroutines play a major role in achieving peak
performance. I briefly describe the historical timeframes and major changes introduced
in the most recent instruction sets starting with SSE2 (ignoring the legacy MMX ISA and
the SSSE3 ISA):



12 Introduction

0511
063

0511
07

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B3 B4 B5 B6 B7 B8

+

A1 +

B1

A2 +

B2

A3 +

B3

A4 +

B4

A5 +

B5

A6 +

B6

A7 +

B7

A8 +

B8

A1 A2

B1 B2

A1 +

B1

A2 +

B2

A8

B8

A8 +

B8

=

+

=

+

=

+

=

+

=

⋮
⋮

⋮

A1 A2

B1 B2

A1 +

B1

A2 +

B2

A63

B63

A63 +

B63

+

=

+

=

+

=

⋮
⋮

⋮

SIMD (AVX512)

SIMD (AVX512)

Scalar

Scalar

a

b

Figure 1.4 Scalar vs SIMD. a) SIMD accelerate computation by applying a single
instruction on many packed machine words simultaneously. In this example, eight 64-bit
words in two registers are added together. b) In this example, sixty-four 8-bit values are
added together. These two operations have identical throughput.



1.4 High-performance computing 13

0127128255

YMM0
XMM0

0127128255

YMM1
XMM1

0127128255

YMM15
XMM15

0127

XMM0

063

K0

063

K1

063

K2

063

K7

0127

XMM1

0127

Bits Bits

Bits

Bits

XMM15

0127128255256511

YMM0
ZMM0

XMM0

0127128255256511

YMM1
ZMM1

XMM1

0127128255256511

YMM15
ZMM15

XMM15

0127128255256511

YMM31
ZMM31

XMM31

⋮ ⋮ ⋮ ⋮

⋮

a b c

Figure 1.5 History of SIMD registers. a) 128-bit XMM registers used up until AVX.
There were 8 registers in x86 mode and 16 registers in x86-64 mode. b) Starting with
AVX, registers were widened to 256-bits and named YMM registers. The YMM registers alias
the previous XMM registers and the VEX coding scheme was introduced to replace the
most commonly used instruction prefix bytes in order to differentiate between YMM- and
XMM-based instructions. c) In AVX512, registers were further widened to 512 bits and an
additional 16 registers were added per core. Starting with AVX512, there are 8 opmask
registers where one (k0) is a hard-coded constant. ZMM registers are encoded using the
EVEX coding scheme.

• The Streaming SIMD Extensions (SSE) instruction set, also called Katmai New
Instructions (KNI) by its Intel project codename, was first released in 1999 and
operates primarily on 32-bit single-precision floating point data. SSE originally had
eight 128-bit registers called XMM0, XMM1, . . . , XMM7 but was later extended with
another eight registers when operating in 64-bit mode (XMM1, . . . , XMM15).

• SSE2 (2000), also called Willamette New Instructions (WNI) by its Intel project
codename, introduced with Pentium 4, provided major enhancements to SSE and
introduced double-precision (64-bit) floating point for all SSE operations, and MMX
integer operations on 128-bit XMM registers.

• SSE3 (2004), also called Prescott New Instructions (PNI) by its Intel project
codename, primarily introduced the capability to work horizontally in a register in
contrast to the more limiting vertical operations of the previous SSE ISAs.
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• SSE4 (generally referred to as SSE4.1; 2006), also called Penryn New Instructions
(PNI) by its Intel project codename, was the first developed ISA without any
explicit multimedia applications in mind. It features a number of instructions that
takes a register and a constant field as arguments and implicitly take XMM0 as a
third operand. Importantly, this ISA is the first to introduce the POPCNT and LZCNT
instructions that compute the number of set bits in a word and the number of
leading bits before the first bit in a machine word, respectively. I describe a software
implementation of the POPCNT instruction using the AVX512BW/AVX512VBMI ISAs
and a novel bitwise operation called the positional population count (POSPOPCNT)
in Chapter 2.

• SSE4.2 (2008) introduced a collection of new instructions called STTNI (String and
Text New Instructions) that perform string and character searches and comparisons
on two operands 128 bits at a time. These string instructions are prefixed PCMP*
and are used in Chapter 3 for accelerating non-string-related problems.

• Advanced Vector Extensions (AVX, described in 2008, first implementation in 2011),
also called Gesher New Instructions (GNI) by its Intel project codename, is an
advanced version of SSE that widened the data path from 128 bits to 256 bits and
introduced fused multiply-accumulate (FMA) operations. Following the widening of
the SIMD registers the XMM0-XMM15 registers were renamed to YMM0-YMM15. These
16 256-bit YMM registers are accompanied by a 32-bit control/status register called
MXCSR that have bits indicating floating-point exceptions, invalid operations, divide-
by-zero, overflow, underflow, and precision. Importantly, the 256-bit YMM registers
alias the legacy 128-bit XMM registers allowing SSE instructions to be utilized
through the VEX coding scheme (opcode) that operate on the lower half (128 bits)
of the 256-bit YMM registers (Figure 1.5).

• Advanced Vector Extensions 2 (AVX2), released in 2011, also called Haswell New
Instructions by its Intel project codename, expanded most vector AVX instructions
from single float and double float to include signed and unsigned byte (B, 8-
bit), word (W, 16-bit), doubleword (DW, 32-bit), quadword (QW, 64-bit), and
doublequadword (DQ, 128-bit) lengths. Importantly, this instruction set include
instructions for logical left and right shifts of vectors (VPSLLV*, VPSRLV*, and
VPSRAVD) that is used extensively throughout this thesis (e.g. Chapter 2 and
Chapter 3).
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• AVX-512 (proposed in 2013, first implementation in 2015) extends the register
width to 512-bit from the 256-bit in the AVX/AVX2 ISA. The YMM registers YMM0-
YMM15 were renamed to ZMM registers and extended by another 16 to a total of 32
(ZMM0-ZMM31). The ZMM registers alias the YMM registers enabling access to previous
registers through the EVEX coding scheme (opcode). The EVEX coding scheme
also enables access to the 16 additional registers XMM16-XMM31 and YMM16-YMM31.
Breaking convention, AVX-512 consists of separate extensions resulting in CPUs
with different level of support: F (Foundation), CD (Conflict Detection Instructions),
ER (Exponential and Reciprocal Instructions), PF (Prefetch Instructions), 4FMAPS
(Fused Multiply Accumulation Packed Single precision), 4VNNIW (Vector Neural
Network Instructions Word variable precision), VPOPCNTDQ (POPCNT instruction for
DW and QW), VL (Vector Length Extensions), DQ (DW and QW Instructions), BW
(Byte and Word Instructions), IFMA (Integer Fused Multiply Add), VBMI (Vector
Byte Manipulation Instructions), VNNI (Vector Neural Network Instructions), VBMI2
(Vector Byte Manipulation Instructions 2), BITALG (Bit Algorithms), VPCLMULQDQ
(carry-less multiplication of QWs), GFNI (Galois Field New Instructions), and VAES
(Vector AES instructions). Many instructions in AVX512 are simply EVEX versions
of previous SSE/AVX instructions. The AVX512 ISA also adds 7 new opmask
registers for masking most AVX-512 instructions (k0-k7 where k0 is a hardcoded
constant). A bit-flag controls the behaviour of the opmasks: unset (zero) mask
bits results in the corresponding word in the register to be zeroed out (unselected).
Reciprocally, set (one) mask bits keeps the corresponding words untouched such that
they can be merged. The opmask registers have their own extension of instructions
that are VEX-encoded. Initially, opmask instructions were all word (16-bit) versions
but was later extended in AVX-512DQ with 8-bit (B) support and AVX-512BW added
32-bit (DW) and 64-bit (QW) support. I will not further describe the opmask
instruction set as it is not used in any great extent in this thesis. The extensions
F, BW, and VMBI are used in Chapter 2 and Chapter 3. There are currently no
consumer-level CPUs that support the AVX512 ISA. Intel are in the process of
shipping their first consumer-level CPU with AVX512 support, the 10nm Ice Lake
microprocessor, and is expected to release a desktop/workstation-based version
during 2020.

It is becoming increasingly uncommon to develop SIMD-accelerated code that target
ISAs prior to SSE4.1 (released in 2006) as most commodity processors available have
access to this ISA that also includes the important hardware instructions POPCNT and
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LZCNT that compute the population count (count number of bits set to 1) and the leading
zero count (number of zeros before the first set bit), respectively.

Another important aspect of maximizing SIMD-acceleration is memory alignment.
Data is said to be memory aligned when the data operated upon is stored on a n-byte
boundary. For example, when loading 128/256/512-bit data into a *MM register from a
data source that is 128/256/512-bit aligned then the data is called aligned. Up until
the AVX ISA, all SSE operations required memory alignment unless explicitly declared
as unaligned. Starting in AVX, many memory alignment requirements were relaxed
but generally operate faster when aligned. Compounding the difficulties in developing
for multiple ISAs is that XMM, YMM, and ZMM registers have different optimal memory
alignment requirements with 16-byte, 32-byte, and 64-byte boundaries, respectively.

Compiling against a target instruction set provides maximum performance but essen-
tially binds the code to a particular subset of hardware. Addressing this shortcoming, it
is possible to develop functions for multiple target architectures and select the supported
function during run-time execution rather than during compilation time. This approach
involves a technique called CPU dispatching and will be discussed next.

1.4.3 CPU dispatching and function multiversioning

Developing software optimized at the instruction level with support for multiple instruc-
tion sets involves the introduction of branching points in the code for sections that involve
instruction sets on different subsets of hardware. For example, one subroutine can have
code optimized for the latest Intel instruction set and another branch for the latest NEON
instruction set. The software should then detect the availability of a given instruction
set on the CPU it is running on during execution time and select the optimal binary
path. This is known as CPU dispatching and is implemented as function multiversioning
(FMV) in the GCC compiler. Throughout this thesis, I use CPU dispatching whenever
possible with the intent of supporting CPUs without modern SIMD ISAs and provide
targets for the SSE4.2, AVX2, and AVX512 ISAs.

1.4.4 Parallelization paradigms

Once instruction level optimizations have been exhausted the next natual step is to
explore different parallelism paradigms where a large computational problem is addressed
concurrently using as much compute resource as possible. The conventional way of
querying and handling very large datasets is by divide-and-conquer-based approaches
where a problem is partitioned into multiple smaller subproblems that can be tackled



1.5 Genetic matrices and storage of sequence variant data 17

in parallel on multiple cores and/or multiple compute nodes. In general, there are
two primary paradigms for partitioning an application into concurrent parts to take
advantage of parallel computing: data parallelism and task parallelism. Data parallelism
involves the repeated and simultaneous execution of a single instruction or operation on
different data. The simplest data parallel model is arguably the scatter-gather pattern
for tasks that can be partitioned into independent subtasks without cross-dependency
(embarrassingly parallel tasks). In this model, a problem is partitioned into subproblems
(scatter) and solved independently on different CPUs or compute nodes followed by a
final merging procedure (gather). In task parallelism, different processes simultaneously
execute different set of instructions. This paradigm generally involves different execution
schedules resulting in the need to have more complex synchronization such as mutex
locks and semaphores.

There are a multitude of language extensions like OpenMP for shared-memory
parallelism and libraries implementing the Message Passing Interface (MPI) for cluster-
level parallelism and more heavy-duty frameworks like Apache Hadoop implementing
MapReduce[29]. Fortunately, almost all target applications in this thesis involve problems
that are embarrassingly parallel (Chapter 2,3,4,5) or involves easily chainable tasks that
can be synchronized using spin-locks or simple mutex locks (Chapter 4,5).

1.5 Genetic matrices and storage of sequence vari-
ant data

An important goal in genetics is to compute pairwise similarities between either individuals
or different locations in the genome given their genetic material. Self-similarity matrices
are used as either input or internally for several popular within-species model-based
clustering approaches (ADMIXTURE[6] and STRUCTURE[94]) and for standard data
reduction approaches such as principal component analysis (PCA). Importantly, the
output of PCA or ADMIXTURE/STRUCTURE are frequently used as input for other
downstream analyses such as a parameter in the generalized linear models used in
genome-wide association studies (GWAS) to correct for relatedness, cryptic relatedness,
and population structure[13, 129, 130, 109, 148, 76, 145, 141, 79]. Although both
general math frameworks (Intel Math Kernel Library, OpenBLAS, Eigen) and genetics-
specific[83, 95, 126, 22, 39] matrix computations have garnered considerable interest
recently, the current approaches are either too generic and do not exploit intrinsic
properties in genetic data, or, have suboptimal scaling properties as genetic datasets
are growing increasingly larger. A notable exception to addressing scalability of genetic

https://software.intel.com/en-us/mkl
https://www.openblas.net/
eigen.tuxfamily.org
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matrices was a recent effort using (the now discontinued) manycore layout of the Intel
Knights Landing architecture using 256 threads[39].

In many cases we are only interested in, or can limit our interest to, biallelic sites. In
this case, each allele can be encoded using either zero (0) or one (1) for the reference or
alternative allele, respectively. Without loss of generality, given a binary matrix X(n×m) ∈
[0, 1]Z for n haplotypes and m variant sites, we want to compute the self-similarity matrix
XXT resulting in a new matrix Y (n×n) that is equivalent to the all-vs-all inner product
of vectors in X. It is worthwhile highlighting that the inner product of vectors of
binary values are equivalent to the cardinality of the set intersection of those binary
vectors if encoded in integer space. For example, the two binary vectors B1 = (0, 1, 0, 1)
and B2 = (1, 1, 0, 1) can be projected into the equivalent integer sets Z1 = {2, 4} and
Z2 = {1, 2, 4}. Hence, the cardinality of the set intersection of |Z1 ∩Z2| = 2 is equivalent
to the inner product of B1 and B2 such that B1B2 = 0× 1 + 1× 1 + 0× 0 + 1× 1 = 2 =
|{2, 4}| = |Z1∩Z2|. It therefore follows that the cardinality of the sets Z1 \Z2 and Z2 \Z1

can be described as |Z1 /∈ (Z1 ∩ Z2)| = |Z1| −B1B2 and |Z2 /∈ (Z1 ∩ Z2)| = |Z2| −B1B2

Lastly, it follows that given a fixed universe of n values that the cardinality of the set of
unobserved values are n− (B1B2 + (|Z1| −B1B2) + (|Z2| −B1B2))

In Chapter 3 I will describe efficient algorithms and a framework for computing this
self-similarity matrix for large cohorts and then apply it to the problem of computing
linkage-disequilibrium. Without loss of generality let A = XXT and B = (1yT )+(1yT )T ,
where X(n×m) ∈ [0, 1]Z is a binary matrix, y(1×m) ∈ [0, n]Z is the alternative allele counts,
1(1×m) is a vector of ones, n is the number of chromosomes (two per individual) and m is
the number of variant sites. The matrix B corresponds to the total alternative allele count
per pair of variant sites and the diagonal is equal to 2y. The 2-locus haplotype counts can
then be computed as f11, f01, f10, and f00 for homozygous alternative, heterozygous either
(reference-alternative and alternative-reference), and homozygous reference, respectively:

1. f11 = A

2. f01 = (B − A)− (1yT )

3. f10 = (B − A)− (1yT )T

4. f00 = 2n− f11 − f01 − f10

This information is sufficient to compute the coefficient of linkage disequilibrium (D):
D = f11/n− f01/nf10/n.

In Chapter 5 I describe efficient algorithms for computing the self-similarity matrix
XT X for individual genomes. The self-similarity matrix is a measure of genetic relatedness
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between the input samples. A simple interpretation of genetic relatedness is the average
genetic distance between pairs of individuals, such as identity-by-state, which compute
the proportion of sites that are shared between two chromosomes[85]. If the input matrix
X corresponds to a genetic matrix of n haplotypes and m biallelic sites then we can
compute its self-similarity matrix as:

f11 + f00

f00 + f01 + f10 + f11
= f11 + f00

2n
(1.1)

Interestingly, removing SNPs in high linkage-disequilibrium prior to inferring popu-
lation structure with PCA result in improved results[3]. This suggest that computing
XXT , or parts of it, can be beneficial when computing XT X and ultimately improve
population structure ascertainment.

These genetic matrices quickly grows in size with increased number of samples and
variant sites. With the advent of whole-genome sequenced population-scaled cohorts we
expect the number of samples to easily exceed a million and the number of sites a billion
to create matrices with ⩾ 1015 cells. There is a pressing need to develop algorithms to
both store and query such matrices in reasonable time.

In many cases, it is preferable to jointly store a more generic genetic matrix X(n×m) ∈
Z+, supporting any number of alternative alleles, together with additional information
such as where the variant maps to in the reference genome and other meta information
such as alternative allele counts. Recognizing this emerging requirement during the early
stages of the 1000 Genomes Project[123], the Variant Call Format (VCF) interchange
format was proposed[26]. The human-readable VCF format uses textual encodings with
simple indexing to enable reasonable data access for very small data files. It was designed
for projects with millions of sites but at most a few thousand samples. Addressing the
inefficient storage and poor random access, a binary representation of VCF was proposed
(BCF) that simply stores information in machine words in a row-centric orientation
followed by compression with the general purpose framework Gzip in blocks of 216 bytes.
Recently, much effort have been dedicated to compressing the genetic component X

stored in VCF files with much success[30, 71, 34, 31, 63, 27]. In Chapter 4 I describe
several algorithms to efficiently compress and query large genetic datasets. In Chapter 5
I further explore the potential of compressing the genetic matrix component X.
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1.6 Dissertation Goals, Challenges, and Contribu-
tions

The goal of this work is to explore the potential for accelerating and parallelizing standard
genetics workflows, format descriptions, and algorithms using both hardware-accelerated
vectorization, parallel and distributed algorithms, and heterogenous computing. Undoubt-
edly, the historically fast-paced and organic co-evolution of the nascent bioinformatics
field and sequencing field have provided a natural hindrance to the development of
efficient algorithms as new technical advancements greatly outpaced the need for stability
and performance. The bioinformatics field has now reached a more stable equilibrium
with respect to technical advancements, while ever larger cohorts of individuals are being
sequenced that require more and more efficient frameworks for downstream analysis and
storage.

There are several nascent and persistent challenges that must be addressed:

• Develop algorithms that take advantage of the most recent ISA available during
run-time execution rather than during compilation-time.

• Develop algorithms that can be parallelizable over multiple processor cores.
• Develop algorithms that can be parallelizable over multiple compute nodes on a

heterogeneous compute farm.
• Support different use-cases such as optimizing for storage or optimizing for query

speeds.
• Support immediate integration into the existing interchange ecosystem with minimal

disruption.
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Figure 1.6 Overview of this work. a) Basic genetic matrix X(n×m) ∈ Z+ for n hap-
lotypes/genotypes and m variant sites. b) XT represent the transpose of the canonical
representation in a). c) Computing XT X together with an auxiliary vector y of heterozy-
gous counts per site is sufficient to compute most standard genetic similarity matrices.
This is discussed in Chapter 5. d) Computing XXT together with an auxilliary vector
y of alternative allele counts per locus is sufficient to compute linkage-disequilibrium.
This is discussed in Chapter 3. e) Concatenating two genetic matrices is a common
performance-bounded problem and is discussed in Chapter 4 and Chapter 5. f) Efficient
column projection is a core query in many applications and is discussed in Chapter 4
and Chapter 5. g) Efficient row-based slicing of genetic matrices is a core component in
many queries and is discussed in Chapter 4 and Chapter 5.

In more detail, each chapter can be summarized as follows (Figure 1.6):

• In Chapter 2 I introduce the novel positional population count operator (pospopcnt)
and develop hardware-limited implementations on most available Instruction Set
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Architectures (ISA) from none to SSE4.2 through AVX512. I describe a potential
application by computing summary statistics for the FLAG field in the incumbent
SAM/BAM/CRAM interchange format with >3,800-fold improvements in speed.

• In Chapter 3 I introduce several algorithms for efficiently compute XXT for a
binary input matrix Xn×m of n haplotypes and m biallelic variant sites using
algorithms developed for the population count (popcnt) and (pospopcnt) library
libalgebra described in Chapter 2. I develop a framework for applying these
algorithms to the problem of computing chromosome-wide linkage-disequilibrium
in large-scale cohorts up to 67 million haplotypes. This framework include a new
hybrid bitmap approach (called Storm bitmaps) for computing the cardinality of set
intersections. I further develop algorithms for storing and querying the hundreds
of gigabytes of output data that is generated. Collectively, I named the software
implementation tomahawk and its native R-bindings called rtomahawk. Tomahawk
can use >300,000-fold less memory compared to the incumbent standard toolchain
while computing identical results up to >10,000-fold faster. As in Chapter 2, all
the presented algorithms can make use of the largest available ISA during run-time.

• In Chapter 4 I describe a bit-exact column-store representation for sequence variant
data with powerful query capabilities called tachyon. I introduce a genotype-
specific compression approach based on the linkage-disequilibrium-based Positional
Burrows-Wheeler Transform (PBWT) and algorithms to query compressed data. I
will demonstrate that the native column-projection capabilities of Tachyon can result
in considerable savings in disk while supporting faster general queries compared to
the incumbent VCF interchange format.

• In Chapter 5 I describe a series of algorithms for storing and querying sequence
variant data for population-scaled cohorts building on ideas from Chapter 4. I
describe algorithmic variations that optimize for different use-cases: (1) optimal
storage, (2) balance between storage and query speed, and (3) optimal query speeds.
I named the software implementation djinn. Djinn can achieve >300,000-fold
compression compared to the incumbent VCF interchange format on large cohorts.
I also describe a framework for querying the encoded data directly in compressed
space in time proportional to the compressed size resulting in the considerable
acceleration of general haplotype/genotype-based queries.



Chapter 2

The positional population count
operation

In this chapter I will introduce several important algorithms for efficiently computing the
number of set bits in a machine word in both the classic per-word orientation (popcnt)
and the novel per-bit orientation over multiple words (pospopcnt). Efficient computation
of the population count of a machine word is so important that most modern commodity
processors have dedicated hardware instructions: POPCNT for x64 processors and CNT for
the 64-bit ARM architecture. These embedded instructions are extremely efficient with
a throughput of a single CPU cycle for a 64-bit word. A recently described family of
algorithms have been shown to achieve a sustained performance of 0.5 CPU cycles /
64-bit word[88] for computing the standard population count. Building on this previous
work I will describe a novel variation of the popcnt operation for computing the bit-wise
populaton count across multiple machine words. These low-level algorithms achieve
hardware limits on modern commodity processors. Methods, algorithms, and ideas
developed in this chapter will be used extensively throughout the remaining chapters.

2.0.1 Collaboration Note and Author Contributions

The algorithms described in this chapter were developed in close collaboration with
Daniel Lemire (D.L.) and Wojciech Muła (W.M.). M.D.R.K conceived the project and
performed experiments. M.D.R.K., W.M., and D.L. co-authored the implementation.
M.D.R.K. wrote this text with contributions from W.M. and D.L.



24 The positional population count operation

2.0.2 Summary

In several fields such as statistics, machine learning, and bioinformatics, categorical
variables are frequently represented as one-hot encoded vectors. For example, given
8 distinct values, we map each value to a distinct bit in a 8-bit word. We are motivated
to quickly compute statistics over such encodings.

Given a stream of k-bit words, we seek to sum the bit values at indexes 0, 1, 2, . . . ,
k− 1 across multiple words by computing k distinct sums. If the k-bit words are one-hot
encoded then the sums corresponds to their frequencies.

This multiple-sum problem is a generalization of the population-count problem where
we count the total number of set bits in independent machine words. We refer to this
new problem as the positional population-count problem.

Using SIMD (Single Instruction, Multiple Data) instructions from recent Intel proces-
sors, we describe algorithms for computing the 16-bit position population count using
about one eighth (0.125) of a CPU cycle per 16-bit word. Our best approach is about
140-fold faster than competitive code using only non-SIMD instructions in terms of CPU
cycles.

As an example application in genomics, we compute a common summary statistic for
>824 million sequencing reads >3,800-fold faster compared to current state-of-the-art
tools.

2.1 Introduction
In many applications such as deep learning [25, 24, 144, 49], indexing [67], chemistry [44],
cryptography [105], and bioinformatics [63, 27, 137, 95], it is desirable to compute the
number of set bits in a computer word. This operation is referred to as the population
count (popcnt), Hamming weight, or the sideways sum of the word. For example,
the machine word 10010010 has a population count of three since there are three set
bits. We have previously described efficient subroutines for computing the population
count [88] of large arrays that takes advantage of SIMD (single instruction, multiple
data) instructions available on most commodity processors. These instructions operate
on wide data registers and reduce the number of instructions required by processing
multiple machine words simultaneously.

It is common to represent categorical variables using one-hot (1-of-k) encoding [75, 87]
where each categorical value maps to a corresponding bit and each word may only have
a single bit set.
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Figure 2.1 Comparing per-word population count (popcnt) with positional
population count (pospopcnt). a) Set bits (ones) are counted for each of the machine
words A, B, and C in a row-wise fashion and reported separately. b) In the positional
popcount operation, set bits are counted in the columnar orientation over many machine
words at a given position and reported as a fixed-width array equal to the length of the
individual machine words. c) The positional popcount operation can be considered the
implicit computation of popcounting the transposed input bit-matrix in b).

There are various generalizations such as zero one hot (up to one bit is set to one),
one cold (a single zero must be present), and so forth. One of the motivations for
such encodings is that many machine-learning algorithms cannot operate directly on
categorical data. They require all variables to be numerical. These encodings also closely
related to the concept of dummy variables in statistics where attributes (such as gender)
are represented as 0s or 1s for computing purposes.

In this context, we would like to count the number of bits set at each position (first,
second, . . . , last). We describe a generalization of this population count operation to
individual bits spanning multiple words in a columnar population count operation referred
to as the positional population count (pospopcnt).

As an illustrative example, consider three given input words A, B, and C (Figure
2.1), the conventional per-word population count computes the number of set bits for
each word independently (Figure 2.1a). In contrast, the positional population count
operation computes the vertical population count over these words for independent bit
positions (Figure 2.1b). Because bits are incremented independently, the positional
population count operation depends on the width of the word. We describe several
efficient subroutines for computing the positional population count of 16-bit words but
can be applied to wider words by fragmenting them into consecutive 16-bit units.
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In bioinformatics, the FLAG field in the incumbent SAM (Sequence Alignment/Map)
interchange format [72] is defined as the bitwise union of twelve 1-of-k encoded states for
a given sequencing read j (kj

0 +kj
1 + . . .+kj

11). In an example application, we demonstrate
that a variation of our proposed positional population count operation can be applied to
computing summary statistics for the FLAG field with >3,800-fold improvement in speed
compared to current standard toolchain.

Code and reproducible results are available online at https://github.com/mklarqvist/
positional-popcount for the positional popcount and at https://github.com/mklarqvist/
libflagstats for the application on computing FLAG summary statistics.

2.2 Algorithms

2.2.1 Overview of the methods

Different input array sizes benefit from different algorithmic designs. In order to maximize
performance given any input size, we describe algorithms for three different sizes of input
streams: 1) For large inputs, the carry-save adder-based algorithms tend to operate
the most efficiently [88]; 2) For medium inputs, we describe a variation of the trees-of-
adders [60, 135] called a forest-of-adders; 3) For small inputs, we describe an algorithm
based on blending the most-significant byte (MSB) and least-significant byte (LSB)
into two new registers and then bits are iteratively peeled off and counted using the
conventional popcount operation.

2.2.2 Scalar approach

The simplest and clearest way of computing the positional population count involves
only four instructions using a simple mask-select-add step (Fig. 2.2):

1. Mask-selecting the target bit (x bitand (1 « p)), where x is the input word and
p ∈ {0, 1, . . . , 15} is the bit index.

2. Shifting the selected bit to the least-significant bit (x » p), where x is the result
from step 1.

3. Incrementing the counter at position p with the value from step 2.

Because of its simplicity, we expect this code to be compiled to efficient assembly and
to have efficient baseline performance. This basic subroutine serve as reference for the
other algorithms we describe.

https://github.com/mklarqvist/positional-popcount
https://github.com/mklarqvist/positional-popcount
https://github.com/mklarqvist/libflagstats
https://github.com/mklarqvist/libflagstats
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void pospopcnt_u16_scalar_basic(uint16_t* data,
uint32_t len, uint32_t* counters)

{
// Every input word.
for (int i = 0; i < len; ++i) {

// Each bit in every input word.
for (int j = 0; j < 16; ++j) {

// Branchless mask-shift-add.
counters[j] += ((data[i] bitand (1 << j)) >> j);

}
}

}

Figure 2.2 Reference algorithm for computing the positional population
count. Given some input data we compute the total number of set bits at each position
by using a branchless mask-shift-add update step.

2.2.3 Carry-save adder-based circuits

Given the performance of the circuit-based Harley-Seal (HS) algorithm [131, 88] described
for the canonical population count problem we investigated possible variations of this
algorithm for the positional population count problem. The original HS-algorithm was
inspired by carry-save adder (CSA) circuits (Fig. 2.3) used to construct digital adders
in microarchitectures and displays extremely good performance metrics on larger input
streams.

Without loss of generality, given three distinct 1-bit input values (a, b, c ∈ {0, 1})
and their 2-bit sum a + b + c ∈ {0, 1, 2, 3} it is possible to extract the least significant
bit from the 2-bit sum using the bitwise expression (a⊕ b)⊕ c and the most significant
bit with (a ∧ b) ∨ ((a⊕ b) ∧ c), where ⊕ is the bitwise exclusive or operator. Note that
no bitwise additions are actually used when computing the most and least significant
bit from packed machine words. Also note that the most and least significant bit of
a + b + c are simultaneously computed for all bits in the input machine words using
bitwise parallelism. We can generalize this workflow to any standard integer such that
three input words produce two output words, h (high) and l (low), corresponding to the
most and least significant bits, respectively (Fig. 2.4).

In our implementation, CSA operators are combined into a 16-input circuit using five
different 5-bit accumulators referred to as ones, twos, fours, eights and sixteens such
that the linear combination 1×ones+ 2×two+ 4×fours+ 8×eights+ 16×sixteens
correspond to the final population count. All our Harley-Seal-based implementations



28 The positional population count operation

B1
(zero)

B0
(zero)

d0
(input)

d1
(input)

CSA

d2
(input)

d3
(input)

CSA

CSA

B2
(output)

B1
(output)

B0
(output)

y
x

Figure 2.3 Schematic overview of the circuit-based carry-save adder (CSA)
network for computing population counts. CSA circuit algorithm aggregating four
inputs (d0, d1, d2, d3), producing three outputs B0, B1, B2 corresponding to the least
significant bit, second most significant bit and most significant bit of the sum.

void CSA(uint64_t* h, uint64_t* l,
uint64_t a, uint64_t b, uint64_t c)

{
uint64_t u = a xor b;
*h = (a bitand b) bitor (u bitand c);
*l = u xor c;

}

Figure 2.4 Generalization of the carry-save adder update step. Given three
input values a, b, and c we compute the most significant bit h and least significant bit l.
These output values are used in the next layer of the circuit.
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operate on blocks of 16 vectors, requiring at least 16r input bits where r is the register
width in bits, and proceeds as follows:

1. Compute the high and low bits (CSA) from a zero-vector, and data words d0 and
d1, and store the most significant bit (MSBb) in twosA and least significant bit
(LSBb) to ones.

2. Repeat step 1 for d2 and d3 and store the MSBb in twosB. At this point we have
two bitvectors of MSBbs from four different input words {d0, d1, d2, d3}.

3. To proceed, we compute the high and low bits using the CSA subroutine with the
arguments twosA and twosB and store the MSBb in foursA.

4. Start over and repeat step 1-3 with new input words {d4, d5, d6, d7}. As in step 3,
we now have a pair of bitvectors that we compute the high and low bits for foursA
and foursB into eightsA.

5. Repeat steps 1-4 with words {d8, d9, . . . , d15} to get eightsB. Again, we can now
compute the high and low bits using eightsA and eightsB to get sixteens.

6. The number of set bits in sixteens corresponds to 1/16 of the number of set bits
in the last 16 input words. We compute the number of set bits using a population
count and increment the partial sum accumulator.

7. Repeat steps 1-6 until no more data is available. The residual counts in the partial
5-bit accumulators ones, twos, fours, eights are multiplied with {1, 2, 4, 8} and
added to the total count.

The CSA subroutine can be further simplified down to two instructions on machines
with the AVX512F instruction set available by using the new three-operand instruction,
VPTERNLOGD (_mm512_ternarylogic_epi32, Fig. 2.5). This new instruction operates on
three input bits x, y, z and a control sequence i and return the bit at index x + 2y + 4z

of i. For example, computing the exclusive set bits (XOR) of the inputs requires the bits
at index {1, 2, 4, 7} of i to be set. Similarly, the most significant bit can be computed
by setting the bits at index {3, 5, 6, 7} of i.

Building on this idea of using circuits for counting bits, we derived a natural extension
of the HS-based algorithm by replacing the population count of sixteens in step 5 with
16 separate shift-add updates of partial sum accumulators corresponding to bit position
{0, 1, . . . , 15}. Care must be taken to ensure that the relatively small 16-bit accumulators
do not overflow. To address this, we block the inner loop into steps of 65,535 iterations
and update the output counters with the partial results following each blocked iteration.

To analyze how the change from a population count to multiple partial accumulators
affects performance between the two HS-based algorithms we focus on their AVX512
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void CSA_AVX512(__m512i* h, __m512i* l,
__m512i b, __m512i c)

{
*h = _mm512_ternarylogic_epi32(c, b, *l, 0b11101000);
*l = _mm512_ternarylogic_epi32(c, b, *l, 0b10010110);

}

Figure 2.5 The carry-save adder update step using AVX512-based instructions. Note
that the parameter a is dropped in this representation as it is invariantly equal to l in
our application.

implementations using the performance of the Cannon Lake architecture as reference.
The avx512_popcount function [88] involves 10 instructions with a latency of 16 cycles
whereas the partial accumulator update step involves 3 instructions with a latency of 3
cycles for a total of 48 instructions and 48 latency. We therefore expect the pospopcnt
HS-algorithm to run slightly slower compared to its popcnt counterpart.

2.2.4 Byte-blending

When the input data is very small (e.g. <1024 input words) we cannot use the HS-
based algorithm as it operates on large blocks of 16 vectors at a time. Addressing
this, we describe an efficient algorithm for small input data with much lower input
limit. Without loss of generality, given two 2-byte input words d0 and d1 we reshuffle
their bytes such that the most signiicant bytes from both words are placed adjacent
to one another and similarly for the least siginficant byte. For example, given four
input bytes b0, b1, b2, b3 corresponding to d0 and d1 we reorder the byte sequence into
b0, b2, b1, b3. This memory layout enables us to use the VPMOVB2M (Packed MOVe Byte
to Mask, _mmNNN_movemask_epi8, where NNN is empty, 256, or 512) instruction to
extract the most-significant bit from each byte of b0 and b1 into a target word. In
other words, the output of this instruction on the four example bytes b0, b2, b1, b3 above
is equal to the four bits (b0 bitand 0b1000000) >> 4 bitor (b2 bitand 0b1000000) >>

5 bitor (b1 bitand 0b1000000) >> 6 bitor (b3 bitand 0b1000000) >> 7 packed into a new
word. The target bit accumulator is then incremented with the population count of this
resulting machine word. Next, we use the add instruction to shift b0 and b1 one bit to the
left (b0 + b0 or b1 + b1) instead of using the actual shift instruction. Although conceptually
identical, the add operator has better throughput (0.33 clocks-per-instruction (CPI))
compared to an actual shift operation (1 CPI) on most modern commodity processors.
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Figure 2.6 Overview of the difference between trees-of-adders and the pro-
posed forest-of-adders. a) In the standard population count it is possible to compute
the number of set bits in log2 w-time by first summing neibhouring bits, then pairs of
those sums, and so on. b) Our proposed forest-of-adders operate in a similar fashion
but is applied on the transpose of multiple input words on a per-bit basis such that for
w-words we compute a forest of w trees.

As an example implementation using 256-bit registers, given sixteen 32-bit words
{w1, w2, . . . w16} from two registers we extract out the MSB from two vectors into a
new register of thirty-two 8-byte words. This is similarly done for the LSB. Next, the
most-significant bit for each byte is extracted using the VPMOVB2M instruction resulting in
a single 32-bit masked word. The destination counters for bit 16 and 8 are updated with
the population count of the masked word for the MSB and LSB components, respectively.
The next bit is shifted in to the most-significant bit position using an add instruction.
This prodecure is repeated seven more times for bits 15→ 9 and 7→ 1.

2.2.5 Tree-of-adders and forest-of-adders

Next we describe an algorithm based on trees-of-adders [60, 135] (Fig. 2.6) that performs
well on moderately sized inputs (e.g. between 512 and 4096 words). The key insight to
using a tree-of-adders for the conventional population count problem is to recognize that
the sum of two n-bit numbers is never wider than 2n bits. By exploiting this property in
an iterative fashion we can compute the total sum in time proportional to the logarithm
of the final sum bit-width. For example, starting with 1-bit numbers, their sum require
two bits of storage, and pairs of 2-bit numbers require four bits of storage, and so on.
This property combined with large computer words (currently 64, 128, 256 or 512 bits in
commodity hardware) allows us to perform several such pairwise additions simultaneously
using bit-level parallelism.

It is possible to describe the same algorithmic approach for the positional population
count problem by maintaining k separate trees-of-adders for bits [0, 1, . . . , k) (Fig. 2.6).
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Table 2.1 Host machines used for testing. Code was compiled using GCC 8 on all hosts.

Processor Microarchitecture Cache (KB)
L1 L2 L3

Intel i3-8121U (10nm) Cannon Lake (x64) 32+32 256 4096
Intel Xeon E5-2697 v3 (22 nm) Haswell (x64) 32+32 256 35840

We call a collection of trees-of-adders an adder forest. So for a forest of 16 trees, we
conceptually process batches of 16 input values b0, b1, . . . , b15 as follows:

1. Add the target bit k of b0 and b1 by shifting it to the most significant bit position
(b0 >> k or b1 >> k, for b0 and b1, respectively) to calculate the 2-bit sum s2

0,1.
2. Repeat step 1 seven times with the words {2, 3, . . . , 15} to get s2

2,3, s2
4,5, s2

6,7, s2
8,9,

s2
10,11, s2

12,13, and s2
14,15.

3. Sum together s2
0,1 with s2

2,3 to get s4
0,3. Repeat three times to get s4

4,7, s4
8,11, and

s4
12,15.

4. Sum together s4
0,3 with s4

4,7 to get s8
0,7. Repeat this to get s8

8,15.
5. Sum together s8

0,7 and s8
8,15 to get the final count for the target bit.

6. Repeat steps 1-5 for the remaining 15 bits in the forest.

In practice we process trees in a memory-friendlier fashion by updating all 16 trees for
the current word pair before proceeding.

2.3 Experiments
Algorithms are implemented in C99 and are available online at https://github.com/
mklarqvist/positional-popcount under the Apache 2.0 license. Code was compiled
with GCC 8.3 using the optimization flags "-O3 -march=native" to restrict optimizations to
the host-machine architecture. All tests were performed using a host machine with a Can-
non Lake microarchitecture (Table 2.1) unless otherwise specified. Performance was mea-
sured using the Linux perf subsystem with the virtualized PERF_COUNT_HW_CPU_CYCLES
counts as processor cycles (clockticks).

2.3.1 Simulated datasets

For all experiments, we generated random data from a uniform distribution, U(0, M), of
input bits with positions generated using the Mersenne Twister pseudorandom number
generator implemented in C++11. However, we find that performance is independent of

https://github.com/mklarqvist/positional-popcount
https://github.com/mklarqvist/positional-popcount
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the generated data and decided to run all benchmarks with M = 65535. To guarantee
reliability, we repeated each test 10,000 times and ascertained that the average cycle
counts are all within a 5% deviation threshold.

2.3.2 Microbenchmarking

We performed microbenchmarks of the different subroutines to assess various performance
metrics. First, we investigated the effect on performance with different input sizes
(Fig. 2.7). For very short input streams an unrolled SSE4-based implementation of the
byte-blend algorithm (sse_blend_popcnt_unroll8, see section 2.2.5) outperforms all
AVX-512-based algorithms. This is unsurprising as the implementations using large
register consume up to 512 values per iteration. At around 256 input values the AVX-
512-methods display superior performance and continue to increase in throughput until
around 65,536 input values. After this point no further gains are observed either between
the SIMD-based methods themselves or compared to the reference scalar approach.
The Harley-Seal-based population count algorithm performs well up until exhausting
low-level instruction and data cache (L1 cache, 32+32 KiB on our Cannon Lake machine)
whereafter performance degrades slightly. We observe another drop in performance when
exhausting L2 cache (256 KiB). Remarkably, at this point the pospopcnt Harley-Seal-
based algorithm has achieved parity in speed with the conventional Harley-Seal population
count (Fig. 2.7) with very similar number of used CPU cycles despite executing 60%
more instructions. We performed the same experiments using Haswell-based architecture
(Table 2.1) with similar results (Fig. 2.7 and Table 2.2).

To quantify the relative speedup, we compared the pospopcnt algorithms to the
reference scalar method (Fig. 2.2) with auto-vectorization disabled resulting in scalar
computation (Table 2.3). Our proposed pospopcnt algorithms runs faster at all input
sizes and achieves almost 140-fold improvement in speed compared to the non-SIMD
version on larger inputs.

Taken together, we have demonstrated a significant acceleration of the novel pospopcnt
operation using SIMD instructions for different sizes of input streams. Furthermore, we
have shown that the considerably more complex pospopcnt operation can achieve parity
in speed with the fastest known implementation of the canonical popcount-operation on
large input streams [88] despite executing more instructions.
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Figure 2.7 Number of CPU cycles / 16-bit word as a function of number of
input values. a) Cannon Lake and b) Haswell. Machines used are listed in Table 2.1.
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Table 2.2 Performance metrics of the pospopcnt operation at 262,144 input values for
Cannon Lake and Haswell host machines (Table 2.1). For reference, the popcount (AVX2
and AVX512) functions compute the conventional population count.

Algorithm Architecture: Cannon Lake
Inst. / cycle Cycles / 16-bit word Inst. / 16-bit word

popcount (AVX512BW) 1.47 0.12 0.17
Byte-blend (AVX2, unrolled-8) 3.99 0.75 2.98
Byte-blend (AVX512BW, unrolled-8) 3.14 0.55 1.71
Adder-forest (AVX512BW) 2.25 0.27 0.61
Harley-Seal (AVX512BW) 2.19 0.12 0.26
Scalar (no SIMD) 3.82 17.52 67.00

Algorithm Architecture: Haswell
Inst. / cycle Cycles / 16-bit word Inst. / 16-bit word

popcount (AVX2) 1.28 0.27 0.41
Byte-blend (SSE4, unrolled-8) 3.85 1.49 5.84
Byte-blend (AVX2, unrolled-8) 3.84 0.75 2.92
Adder-forest (AVX2) 2.94 0.49 1.46
Harley-Seal (AVX2) 1.92 0.36 0.69
Scalar (no SIMD) 3.82 17.52 67.00

Table 2.3 Relative throughput compared to the scalar algorithm (Fig. 2.2) with vector-
ization explicitly disabled. For each count of input values, the best relative throughput
is in bold. No further improvements in relative throughput is observed after 65,536 input
values.

Algorithm Input values
128 256 512 1024 2048 4096 8192 65536

Byte-blend (SSE4, unrolled-8) 8.3 9.8 10.6 11.0 11.6 11.9 12.1 12.3
Byte-blend (AVX512BW, unrolled-8) 7.1 11.2 16.2 2 25.5 27.9 29.7 31.6
Adder-forest (AVX512BW) 3.1 2.8 14.5 23.1 34.4 44.9 52.8 61.7
Harley-Seal (AVX512BW) 2.1 2.3 8.2 15.1 28.2 49.1 76.1 138.7
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2.3.3 Quality control of next-generation sequencing data

Over the last decade, large-scale international collaborative efforts have amassed increas-
ingly large and diverse sequencing datasets that are now culminating in population-scaled
national initiatives such as the UK 100,000 Genomes Project[127], and the US All of Us
Research Program[52] that will encompass up to a million individuals with sequenced
genomes. In these projects, genomic sequencing with the use of massively parallel next-
generation sequencing technologies generates hundreds of millions of genomic fragments
(reads) per sample. Sequencing reads that have been mapped (aligned) to a reference
sequence are frequently stored in the incumbent SAM interchange format [72] or its binary
representations BAM and CRAM. Twelve distinct 1-hot encoded read states (Table 2.4)
are stored as their union (s0 + s1 + . . . + s11 where si is the encoding for category i) in
the FLAG field. These states encode information such as the orientation of the read and
if the read was successfully mapped to the reference. Computing summary statistics for
this field is frequently used as an important quality control step. The current standard
toolchain, SAMtools [72], implements this analysis using heavily branched and scalar
code. We investigated the potential application of the positional popcount operation as
a method for accelerating this scalar code.

Table 2.4 State description for the FLAG field. Read states are classified into 12
distinct states ranging from its pairing information to failing quality control checks such
as being a likely PCR or optical duplicate.

Bit One-hot Description Field name
1 00000000 00000001 Read paired BAM_FPAIRED
2 00000000 00000010 Read mapped in proper pair BAM_FPROPER_PAIR
3 00000000 00000100 Read unmapped BAM_FUNMAP
4 00000000 00001000 Mate unmapped BAM_FMUNMAP
5 00000000 00010000 Read reverse strand BAM_FREVERSE
6 00000000 00100000 Mate reverse strand BAM_FMREVERSE
7 00000000 01000000 First in pair BAM_FREAD1
8 00000000 10000000 Second in pair BAM_FREAD2
9 00000001 00000000 Not primary alignment BAM_FSECONDARY
10 00000010 00000000 Read fails platform/vendor quality checks BAM_FQCFAIL
11 00000100 00000000 Read is PCR or optical duplicate BAM_FDUP
12 00001000 00000000 Supplementary alignment BAM_FSUPPLEMENTARY
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The standard approach for computing summary statistics for the FLAG field involves
several bit-wise dependencies that introduce unavoidable branch conditions (Figure 2.8).
In addition, this statistic is computed jointly for reads that pass quality control and
those that do not. Despite these limitation, the heavily branched and bit-dependent
SAMtools code can be rewritten using a mask-select propagate-carry approach that feeds
into Harley-Seal-based carry-save adder networks using SIMD instructions in four steps
(Figure 2.9):

1. The bit-fields BAM_FUNMAP and BAM_FDUP are always counted.
2. Rule 1: If the read has the bit-field BAM_FSECONDARY set then mask all bits.
3. Rule 2: If the read has the bit-field BAM_FSUPPLEMENTARY set mask all bits.
4. Count the remaining bit-fields (possible masked out by rule 1 or 2).

for c in 1..n # Loop over FLAGs
# Selector for passing QC or failing QC
QC = 1 if (c & BAM_FQCFAIL) else 0
if c & BAM_FSECONDARY: # Secondary read

++out[QC]["secondary"]
elif c & BAM_FSUPPLEMENTARY: # Supplementary read

++out[QC]["supplementary"]
elif c & BAM_FPAIRED: # Read is paired

if (c & BAM_FPROPER_PAIR) && not (c & BAM_FUNMAP):
++out[QC]["n_pair_good"]

if c & BAM_FREAD1: ++out[QC]["n_read1"]
if c & BAM_FREAD2: ++out[QC]["n_read2"]
if (c & BAM_FMUNMAP) && not (c & BAM_FUNMAP):

++out[QC]["n_sgltn"]
if not (c & BAM_FUNMAP) && not (c & BAM_FMUNMAP):

++out[QC]["pair_map"]
if not (c & BAM_FUNMAP): ++out[QC]["mapped"] # Is mapped
if not (c & BAM_FDUP): ++out[QC]["dup"] # Is not duplicated

Figure 2.8 Psuedo-code for algorithm used in SAMtools for computing summary
statistics for FLAG values. Field names are described in Table 2.4. The original macro
subroutine can be found at https://github.com/SAMtools/SAMtools/blob/master/
bam_stat.c#L47 (Last accessed: September 4, 2019)

https://github.com/SAMtools/SAMtools/blob/master/bam_stat.c#L47
https://github.com/SAMtools/SAMtools/blob/master/bam_stat.c#L47
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# Masks (rules)
mask1 = BAM_FSECONDARY + BAM_FSUPPLEMENTARY
mask2 = BAM_FUNMAP + BAM_FSECONDARY + BAM_FDUP + BAM_FSUPPLEMENTARY
mask3 = BAM_FQCFAIL

for c in 1..n # Loop over FLAGs
# Mask operation: the assumption here is that predicate
# evaluations result in either a one-mask (11...1) or a zero
# mask (00...0) as they would for SIMD instructions prior to the
# AVX512 ISA.
dat = c & (((c & mask1) > 0) | mask2)
# Branchless mask-select: if QC is not set then L is kept and LU
# is zeroed out. Otherwise LU is kept and L is zeroed out.
L = dat & ((dat & mask3) == 0)
LU = dat & ((dat & mask3) == mask3)
out[0] = pospopcnt(L) # count positional bits for not BAM_FQCFAIL
out[1] = pospopcnt(LU) # count positional bits for BAM_FQCFAIL

Figure 2.9 Psuedo-code for SIMD-based algorithm for a single update for a FLAG value.

We benchmarked the difference between the positional popcount-based algorithm and the
reference implementation in SAMtools (samtools flagstats) on a deeply sequenced
human dataset with >824 million reads1. In order to simulate a more realistic situation
where column projections are stored in contiguous blocks of memory (as in CRAM) and
require decompression prior to computation, we compressed FLAG fields into contiguous
blocks of 512 kb (8192 16-bit words) using the general purpose compressors Lz4 (https:
//lz4.github.io/lz4/) or Zstd (https://facebook.github.io/zstd/).

On this readset, the pospopcnt-based subroutine is up to 2562-fold faster compared
to the binary representation of SAM when using LZ4 and up to 3802-fold faster when
the input data is uncompressed (Table 2.5). The pospopcnt function was bounded by
both disk I/O and by decompression performance as around 80% of CPU time is spent
retrieving and inflating data from disk. Arguably, this comparison is unfair as the legacy
SAM/BAM format have limited random access and no column projection capabilities
compared to the newer CRAM format [48]. When compared to CRAM, our proposed
pospopcnt-based subroutine is still 402.6-fold faster. Lastly, we investigated the potential
speedup of the original scalar subroutine in SAMtools by using efficient column projection

1Downloaded from https://dnanexus-rnd.s3.amazonaws.com/NA12878-xten/mappings/
NA12878D_HiSeqX_R1.bam. Last accessed: 29 July, 2019.

https://lz4.github.io/lz4/
https://lz4.github.io/lz4/
https://facebook.github.io/zstd/
https://dnanexus-rnd.s3.amazonaws.com/NA12878-xten/mappings/NA12878D_HiSeqX_R1.bam
https://dnanexus-rnd.s3.amazonaws.com/NA12878-xten/mappings/NA12878D_HiSeqX_R1.bam
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and changing the compression method to Lz4 for efficient decompression. This code
refactoring resulted in a massive 390.3-fold improvement in speed but remain 6.6-fold
slower compared to the pospopcnt-based subroutine (Table 2.6-2.7).

Table 2.5 Completion time for SAMtools and pospopcnt. The pospopcnt-based
algorithm is considerable faster compared to SAMtools using either the standard binary
interchange format BAM or the more modern column-projection-capable format CRAM.

Approach Time Speedup
SAMtools – BAM 30m 50.06s 1
SAMtools – CRAM 4m 50.68s 6.36
pospopcnt-LZ4 0.72s 2569.53
pospopcnt-raw 0.48s 3802.90

Table 2.6 Completion time for refactored SAMtools and pospopcnt. After
refactoring SAMtools to support column-projection and using the general compression
engine LZ4, the pospopcnt-based approach is still considerably faster.

Approach Time Speedup
SAMtools-rewrite+LZ4 4.74 s 1
pospopcnt 0.72s 6.58

Table 2.7 Completion time for computing FLAG summary statistics. FLAG
fields were compressed in blocks of 512 kB (8192 16-bit words) using the general com-
pression libraries LZ4 or Zstd. LZ4 can be used in two different modes: the standard
mode that compress faster but at worse fold compresion (LZ4) and in a mode that
compress better at slower speeds (LZ4-HC). All compression methods were evaluated
over their parameter space for compression: LZ4 (1-9) and Zstd (1-20). Times are
listed in milliseconds. Decompression times are included in either algorithm for com-
puting the FLAG summary statistic. The SAM-branchless subroutine is described online
at https://github.com/mklarqvist/FlagStats/. Abbreviations: Comp. Method:
Compression Method; Decomp: Decompression.

Comp. Method Decomp. SAM-branchless SAM pospopcnt
LZ4-HC-c1 988 8924 4991 1107
LZ4-HC-c2 993 8848 5076 1132
LZ4-HC-c3 938 8686 4930 1049
LZ4-HC-c4 846 8803 4876 933
LZ4-HC-c5 824 8525 5117 974

https://github.com/mklarqvist/FlagStats/
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LZ4-HC-c6 770 8536 4774 851
LZ4-HC-c7 680 8404 4748 837
LZ4-HC-c8 644 8453 4662 755
LZ4-HC-c9 580 8434 4740 722
LZ4-c2 814 8658 4886 990
LZ4-c3 837 8576 4840 941
LZ4-c4 889 8627 4861 1026
LZ4-c5 826 8590 4885 1037
LZ4-c6 823 8629 5034 951
LZ4-c7 837 8606 4999 985
LZ4-c8 834 8604 4920 962
LZ4-c9 853 8615 4944 951
Zstd-c1 3435 11438 7798 3630
Zstd-c2 3577 11231 8110 3767
Zstd-c3 3403 11250 7922 3553
Zstd-c4 3562 11223 7949 3649
Zstd-c5 2919 10584 7263 2986
Zstd-c6 2964 10680 7545 3015
Zstd-c7 2681 10591 7067 2715
Zstd-c8 2641 10523 7103 2850
Zstd-c9 2352 10453 6669 2463
Zstd-c10 2309 10094 6756 2509
Zstd-c11 2344 10018 6430 2467
Zstd-c12 2116 9916 6242 2252
Zstd-c13 2107 9844 6183 2236
Zstd-c14 1955 9616 5969 2044
Zstd-c15 1716 9562 5807 1808
Zstd-c16 1286 9208 5592 1448
Zstd-c17 1278 8996 5592 1396
Zstd-c18 1192 8907 5294 1306
Zstd-c19 1181 8931 5362 1293
Zstd-c20 1175 8982 5369 1303

This example application demonstrates the efficiency and inherent flexibility of the
pospopcnt-based algorithms. Using the pospopcnt operation as a replacement for heavily
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branched code resulted in over >3,800-fold improvement in speed. We expect these
subroutines to enhance existing methods and tools for the exploration of large genomics
datasets in a variety of ways.

2.4 Conclusion
We can update sixteen counters approximately every 0.12 CPU cycles / 16-bit word when
large registers are available. Notably, the positional population count operation display
remarkable throughput: the pospopcnt operation can achieve parity in speed with the
traditional population count while performing 16 separate updates and executing 60%
more instructions (Table 2.2). The Harley-Seal-based algorithm is almost 140-fold faster
compared to the non-vectorized approach (Fig. 2.2). Next, we demonstrated that the
positional population count can be used as for computing summary statistics from unions
of 1-hot-encoded vectors in bioinformatics with >3,800-fold improvement in speed.

Given the considerable efficiency and ease-of-use of the pospopcnt-operator, we
envision it will be useful in a wide-range of applications involving 1-of-k-encoded vectors
and their bitwise union. Future work should generalize our results from 16-bit words
to wider machine words. We expect that our techniques could be ported to other
architectures such as ARM or POWER.

2.5 Other approaches
In the course of this work we and members of the open-source community described
several sub-optimal algorithms compared to the proposed algorithms above but are
worthwile presenting as they contain interesting concepts.

2.5.1 Shift-pack popcount accumulator

In this approach, data from sixteen words of bits (0, 1, . . . , 15) are first reshuffled into words
of bits from each different bit-position {(00, 01, . . . , 015), (11, 11, . . . , 115), . . . (150, 151, . . . , 1515)
by shifting in 16 one-hot values into new 16-bit primitives. The target bit counter is
incremented with the popcount of the machine word. Psuedo-code for the conceptual
model (Figure 2.10):

# Prepare machine words.
for c in 1..n, c+=16 # 1->n with stride 16

for i in 1..16 # FLAG 1->16 in range
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for j in 1..16 # Each 1-hot vector state
y[j] |= (((x[c+i] & (1 << j)) >> j) << i)

# Count bits in words.
for i in 1..16 # 1->16 packed element

out[i] += popcnt(y[i]) # popcount
y[j] = 0 # Reset

Figure 2.10 In this model, sixteen 16-bit words have bits from each position shuffled
into a sixteen new machine words where each word is the target bit k from each word.

2.5.2 Register accumulator and aggregator

In a varition of the shift-pack popcount accumulator approach (Section 2.5.1) we accumu-
late up to 16×216 partial sums of a 1-hot in a single register followed by a horizontal sum
update. By using 16-bit partial sum accumulators we must perform a secondary accumu-
lation step every 216 iterations to prevent overflowing the 16-bit primitives. Psuedo-code
for the conceptual model (Figure 2.11):

for i in 1..n, i+=65536 # 1->n with stride 65536
for c in 1..65536 # Section of 65536 iterations to prevent overflow

# In practice this is a horizontal register sum (VPADDW or PADDW)
# for 16x 16-bit integers instead of a loop
for j in 1..16 # Each 1-hot vector state

y[j] |= ((x[c+i] & (1 << j)) >> j)

for j in 1..16 # 1->16 packed element
out[j] += y[j] # Accumulate
y[j] = 0 # Reset

Figure 2.11 In this model, registers of 16 packed 16-bit values are horizontally added to
a register of 16 packed 16-bit aggregators. Every 216 iterations we reset the aggregators
and accumulate into the final counters.

This algorithm can be written to make use of the AVX-512 ISA by computing 16×232

partial sums. The AVX512 instruction set do not provide native instructions to perform
16-bit-wise sums of registers. By being restricted to 32-bit accumulators while consuming
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16-bit primitives we must performed a second 16-bit shift-add operation to mimic 32-bit
behavior. Unlike the AVX2 algortihm, the 32-bit accumulators in this version do not
require blocking under the expectation that the total count in either slot do not exceed
232.

2.5.3 Interlaced register accumulator and aggregator

Instead of having 16 registers of 16 values of partial sums for each 1-hot state we have
a single register with 16 partial sums for the different 1-hot states. We achieve this by
broadcasting a single integer to all slots in a register and performing a 16-way comparison.
The target value v is broadcasted to all the slots in a target register r = [v, v, . . . , v].

Psuedo-code for the conceptual model:

for i in 1..n, i+=4096 # 1->n with stride 4096
for c in 1..4096 # Block of 4096 iterations to prevent overflow

f = {x[c], x[c], x[c], x[c], ..., x[c]} # 16 copies of x[c]
for j in 1..16 # Each 1-hot vector state

y[j] += (((f[j] & (1 << j)) == (1 << j)) & 1)

for j in 1..16 # 1->16 packed element
out[j] += y[j] # accumulate
y[j] = 0 # reset

Figure 2.12 A value is broadcast to a register and use in a 16-way comparison.

2.5.4 Interlaced register accumulator and aggregator

The AVX512VL/AVC512BW instruction set comes with the new VPCMPW/VPCMPUW
(_mm512_cmpeq_epu16_mask) instruction that performs a SIMD compare of the packed
16-bit words between two operands and returns the equality predicate as a packed 32-bit
integer mask (__mask32). The result of each word comparison is packed into a single
mask bit such that zero encode for a comparison evaluating to false or one when a
comparison evaluated to true. This algorithm combines bit-packed mask with a 32-bit
POPCNT operation. In a second approach, we pack two 32-bit masks into a 64-bit primitive
before performing a 64-bit POPCNT operation on the packed mask.
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Chapter 3

Efficient computation of
genome-wide linkage-disequilibrium

In this chapter I will introduce several algorithms for efficiently for computing XXT for
binary matrices and will apply this to computing various common linkage-disequilibrium
statistics from two vectors of haplotypes/genotypes. Several of these algorithms utilize or
directly extend the population count-based algorithms introduced in Chapter 2. Many of
these low-level algorithms presented here achieve hardware limits on modern commodity
processors. In Chapter 5 I will demonstrate how to compute the self-similarity matrix
XT X using no additional overhead using the methods presented here. I will describe a
generalized hybrid bitmap compression approach that can be used in indexing approaches
for high-performance application in ’big data’ and serves as the foundational idea for
later chapters in compression and analysis of population-scaled sequence variant data.

In addition to the generalizable algorithms, I describe several file formats and as-
sociated algorithms capable of handling the huge data files produced for computing
chromosome-wide linkage-disequilibrium. Lastly, I describe a R-package with native
C++-bindings with a special focus on data visualization. Collectively, these methods and
algorithms are packaged into the software project tomahawk and associated R-binding
called rtomahawk. A standalone library using functional multiversioning (FMV) sup-
porting all modern instruction-set architectures (ISAs) was released separately as Storm
bitmaps that depends on the header-only library libalgebra that was developed for
Chapter 2. Software is available online at:

• https://github.com/mklarqvist/tomahawk
• https://github.com/mklarqvist/rtomahawk
• https://github.com/mklarqvist/StormBitmaps

https://github.com/mklarqvist/tomahawk
https://github.com/mklarqvist/rtomahawk
https://github.com/mklarqvist/StormBitmaps
https://github.com/mklarqvist/StormBitmaps
https://github.com/mklarqvist/libalgebra
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• https://github.com/mklarqvist/libalgebra

3.1 Introduction
Linkage disequilibrium (LD), the non-random pairwise association between variants at
distinct genomic loci, is a key descriptor of genetic structure in a population and is
essential for many analyses investigating human genome variation. When two genomic
regions are in spatial proximity and the rate of ancestral recombination between them
is low, then the pair of alleles from the two loci are frequently coinherited in a unit
(Figure 3.1). If this allelic coinheritance occurs at a rate that significantly deviates from
random expectation then this phenomenon is referred to as gametic association or linkage
disequilibrium. Historically, the first rigorous approach to mathematically modelling this
random assortment of alleles was performed in 1944 by Hilda Geiringer[42]. Two decades
later, the term linkage disequilibrium was coined in 1960 by Lewontin and Kojima[70].

Figure 3.1 Overview of the origin of linkage-disequilibrium. a) Within a family,
genetic linkage occurs between two genetic markers on the same chromosome by remaining
unbroken by recombination. b) Starting with a founder chromosome (single color),
recombination will break and fuse the genetic material of both parents each generation at
some position. Following many generations, a target chromosome represent a mosaic of
the partial chromosomes of all its ancestors (different colors). If two genetic markers map
to a haplotype block (single color) then they are said to be in linkage disequilibrium as
they will be coinherited in the population at a frequency deviation from random chance.
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Several measurements of LD summary statistics have been proposed[45], including
Pearson’s (product moment) correlation coefficient R[47] and D[69] but all depend on
the difference between the observed joint frequency of alleles co-occurring on the same
haplotype compared to what is expected by random chance (Figure 3.2). For example,
the squared Pearson’s correlation coefficient (R2) is defined in the range [0, 1] such that
R2 = 0 when two alleles do not co-occur more frequently then expected by random
sampling and R2 = 1 when the two alleles are always co-ocurring. This correlation
coefficient is directly related to statistical power[32]. Another frequently used measure of
LD is the standardized difference D′ that can be estimated by the Pearson correlation
between the counts of the minor alleles for two SNPs.
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Figure 3.2 Overview calculating linkage-disequilibrium. a) Most methods used to
calculate linkage-disequilibrium requires a pair of distinct diallelic sites (SNP1 and SNP2)
b) The phased haplotype, the two-locus in-order sequence, counts can be accumulated
into a 2-by-2 contingency table summing up to 2N if there are no missing values. c) In the
most naive way possible, the two-locus haplotype counts are computed by looking at pairs
of alleles and incrementing that corresponding cell. Phased genotypes are represented as
allele 1 | allele 2. d) Unphased haplotypes have unknown order with respect to the two
chromosomes of an individual and require additional consideration. All 2-locus haplotypes
can be unambiguously inferred with the exception of the haplotype that is heterozygous
at both loci. This phase uncertainty problem has to be statistically inferred given the
observed data. This inference is most frequently performed with iterative expectation-
maximization algorithms until converging on a solution[46, 113]. A fundamental problem
with iterative methods is that they are not guaranteed to converge on the global optimum
solution in presence of local maximums. To accommodate this uncertainty, unphased
haplotype frequencies have to be formulated as a 3-by-3 contingency table. The central
cell in this matrix corresponds to haplotypes with unknown phase. In a naive algorithm,
the cell counts can are incremented while iterating over pairs of genotypic vectors (as in
c). Unphased genotypes are represented as allele 1 / allele2.

Computing LD summary statistics between pairs of loci is not computationally
challenging but grows rapidly with increasing dataset size. For example, computing
pairwise LD across all pairs of the 1.7 million variants on chromosome 20 for the 2,504
samples in the 1000 Genomes Project (1000GP)[123] panel involves 1.5 × 1012 variant
and 7.2 × 1015 allelic comparisons. With the advent of national cohorts extending
towards a million samples, such as the UK 100,000 Genomes Project[14], Million Veteran
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Program, and the All of Us Research Program[52], there is an urgent need for highly
performant and scalable methods capable of computing LD-based statistics when working
with large-scale datasets.

3.1.1 Applications in fine-mapping

Quantitative assessment of LD is an important procedure to conduct fine-mapping
of casual variants identified by genome-wide association studies (reviewed in [107]).
Genome-wide association studies have been widely used in the last decade to identify
the chromosomal locations that harbour genetic risk loci of disease for a large number of
diseases and traits, including insomnia[54], height and body mass index[140], educational
attainment[64], anorexia nervosa[33], cancers[86, 118], type-2 diabetes mellitus[146],
coronary artery disease[124, 146], schizophrenia[73], inflammatory bowel disease[28], and
major depressive disorder[50] among others. GWAS studies involve the interrogation of
hundreds of thousands of variants across a genome in large cohorts of individuals for
potential associations for variants to the trait of interest by investigating discrepancies
in the haplotype structure of two populations using various statistical tests. Reflecting
its success, there are 143,963 reported associations of single-nucleotide polymorphisms
(SNPs)1 in the US National Human Genome Research Institute (NHGRI)–European
Bioinformatics Institute (EBI) GWAS Catalog[81] with a P-value < 1× 10−5.

Since the first GWAS for age-related macular degeneration was published in 2005
encompassing 96 cases and 50 controls[59] there are now beginning to emerge studies
in excess of a million samples[64, 77, 54]. For-profit companies, such as 23andMe and
Ancestry, have amassed tens of millions of genotyped samples that may be used in both
commercial and private efforts in studying health and disease in the near future.

Undoubtedly, the immensely successful rise of GWAS studies was primarily driven by
the cost-effectiveness of genotype microarrays. The cost of these microarrays increases
with the number of typed SNPs and in extension the total cost of a study. Therefore,
target loci, called tag-SNPs, are selected for typing because they have large amount of
linkage disequilibrium with neighbouring variants in the same haplotype segment and
thereby enable accurate inference of unobserved (untyped) variants. These surrogate
markers are used as proxies for unmeasured SNPs in relatively large genomic regions. As
a consequence of interrogating only tag-SNPs, the measured variant is rarely directly
associated with the target trait[80].

1gwas_catalog_v1.0-associations_e96_r2019-07-12.tsv downloaded from https://www.ebi.
ac.uk/gwas/docs/file-downloads. Last accessed: 18 July, 2019

https://www.23andme.com/
https://www.ancestry.com/
https://www.ebi.ac.uk/gwas/docs/file-downloads
https://www.ebi.ac.uk/gwas/docs/file-downloads
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Fine-mapping of SNP-trait associations refers to the additional statistical approaches
used to identify the causal variants responsible for the observed GWAS signals. Regions
of interest for fine-mapping is determined following the identification of statistically
significant SNPs. These regions are typically partitioned into non-overlapping subsets
according to local linkage disequilibrium in order to reduce the computational burden of
fine-mapping. The statistical models used in fine-mapping is reviewed in [107].

Using linkage disequilibrium in fine-mapping is based on the observation that ancestral
meiotic recombinations results in a decreasing frequency of coinheritance of alleles over
genetic distance. This can suggest that the causal variant is the one with the strongest
association with the trait of interest.

3.2 Methods

3.2.1 Overview of the strategies

To summarize, I describe two bitmap-based approaches for computing the cardinality
of the set intersection between pairs of genotypic vectors (Figure 3.3). In the general
case, I describe a time-efficient approach that use both uncompressed bitmaps and
scalars. For datasets with a large number of individuals, I describe a variation that
directly operates on compressed bitmaps for considerable savings in both compute time
and memory cost. These algorithms exploit the large memory registers on modern
processors and horizontally compares pairs of bit vectors using vectorized instructions.
In the case of sparse-dense or spare-sparse comparisons, I describe efficient algorithms
that provide additional acceleration. All the performance critical algorithms have been
optimized across most of the currently available SIMD instructions sets (SSE4.2, AVX2,
and AVX512BW) using libalgebra (https://github.com/mklarqvist/libalgebra).
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Figure 3.3 Overview of the encodings in Tomahawk. a) Genetic variant data is
most frequently stored as haplotypes/genotypes in a matrix Xn×m for n samples (columns:
a− f) and m loci (rows: 1− 6) where 0 encodes for the reference allele at that position
and 1 for the alternative allele. b) This binary representation of reference/alternative
allele for a given position is encoded in a binary string (bitvector) of width pn where p is
the ploidy. By default, p is fixed to 2 in Tomahawk. c) As the number of samples are
increasing, most rows (sites) in a binary genetic matrix Xn×m will be sparse because of
the limited haplotypic diversity in humans. It is possible to further exploit this sparsity
in this case by partitioning the universe of samples [0, 1, . . . , ] into non-overlapping, but
contiguous, subsection (slice) of this universe: [[0 × 216, 1× 216), [1× 216, 2 × 216), . . .].
Data is stored only for non-empty slices as either (1) a bitvector, or (2) a list of scalars,
depending on the density of the slice. This approach reduces the fixed storage cost from
pn bits in the dense case to the variable range [216, pn) at a small performance cost.

3.2.2 General considerations

Computing LD summary statistics such as R2 and D′ depend on the difference in the
observed joint allele frequency compared to that expected by random sampling. To
calculate the expected joint frequencies, the studied population is assumed to be random
mating and to be in Hardy-Weinberg equilibrium at each locus. Assuming diploid
genomes and biallelic sites: At locus LA there are two alleles A and a with frequencies p

and 1− p and at locus LB there are two alleles B and b with frequencies q and 1− q. The
2-locus haplotype frequencies AB, Ab, aB, and ab are f11, f12, f21 and f22, respectively.

Tomahawk is designed for diploid species (specifically humans) and as such filters
out all non-diploid variants and sites with mixed ploidy. By default, variant sites that
are either invariantly the reference allele (encoded as the zero vector (00 . . . 0)) or the
alternative allele (encoded as the one-vector (11 . . . 1)) with respect to non-missing data
or have >20% missing values are filtered out and not included for further analysis.

3.2.3 Calculating linkage-disequilibrium for phased samples

Let ai and Ai be the alleles for some variant i and aj and Aj the alleles for some
variant j where i ̸= j. Let f(ai) be the allele frequency of ai and let h(aiaj) be the
frequency of the 2-variant haplotype. The alleles ai and aj are said to be in LD if
D = h(aiaj)− f(ai)f(aj) > 0. The LD measures are calculated as R2 = D2/(f(ai)(1−
f(ai))f(aj)(1 − f(aj))) and D′ = D/Dmax, where Dmax = min(f(ai)f(aj), f(Ai)f(Aj))
if D < 0 and Dmax = min(f(ai)f(Aj), f(Ai)f(aj)) if D ≥ 0. Let D′(f(ai), f(aj)) and

R2(f(ai), f(aj)) be the pairwise LD between two variants vi and vj.
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3.2.4 Inferring haplotype frequencies for unphased samples

In the case of unphased data, computing LD is more difficult because of the phase-
uncertainty problem where quantifying jointly heterozygous alleles is ambiguous because
of two possible haplotype combinations (Figure 3.2). In a 3 × 3 matrix for a pair of
biallelic markers, all possible phases can be unambiguously determined with the exception
of individuals heterozygous at both loci (the central cell). This is frequently addressed
by employing statistical inference techniques such as expectation-maximization[46, 113].
In this process, an initial estimate of haplotype frequencies is substituted in the equation
resulting in a new estimate. This is then fed back into the equation and this procedure
continues until convergence. Unfortunately, these methods are comparatively slow because
multiple iterations are required to converge to a solution. I address this by using an
iteration-free closed form solution[91, 40] where the estimated frequency f̂11 of haplotype
AB can be described as a cubic function[40] adapted from (equation 4 in [46]):

af̂ 3
11 + bf̂ 2

11 + cf̂11 + d = 0 (3.1)

I briefly describe the parameters and equations[143] here for clarity.

g = 2n11 + n12 + n21

m = 2n

a = 4n = 2m

b = m(1− 2p− 2q)− 2g − n22

c = mpq − g − n22(1− p− q)
d = −gpq

where n is the number of subjects, p common allele frequency for locus 1, q common
allele frequency for locus 2, and the number of subjects homozygous at both loci n11,
homozygous at locus 1 and heterozygous at locus 2 n12, heterozygous at locus 1 and
homozygous at locus 2 n21, and heterozygous at both loci n22. Finally, the essential cubic
parameters are calculated using the constants a-d:
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xN = −b

3a

δ2 = b2 − 3ac

9a2

h2 = 4a2δ6

yN = ax3
N + bx2

N + cxN + d

where xN and yN are the x and y coordinates on a polynomial curve f(x) of degree n.
The geometric discriminant of the cubic ∆3 = yT1yT2 = y2

N − h2 can now be used to find
the outcome in real roots with three potential solutions: (1) If y2

N > h2 there is only one
possible root (α) defined as:

α = xN + 3

√
1
2a

(−yN +
√

y2
N − h2) + 3

√
1
2a

(−yN −
√

y2
N − h2)

(2) If y2
N = h2 there are three possible roots (α, β, γ) defined for µ = 3

√
yN

2a
:

α = xN + µ = β

γ = xN − 2µ

In the special case when yN = h = 0 meaning that µ = 0 there are three equal roots
α = β = γ = xN . (3) In the last case when y2

N < h2 there are three possible roots
(α, β, γ):

θ =
arccos(−yN )

h

3
α = xN + 2δcosθ
β = xN + 2δcos(θ + 2π/3)
γ = xN + 2δcos(θ + 4π/3)

As previously suggested[40], roots are only considered biologically possible when f̂ ∈
[0− ϵ, 1+ ϵ], where ϵ is the allowed floating point error, and when f̂11 + f̂12 + f̂21 + f̂22 = 1.
After estimating ĥ11 the inference of ĥ12, ĥ21, and ĥ22 is straightforward:
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ĥ12 = p− ĥ11

ĥ21 = q − ĥ11

ĥ22 = 1− (ĥ11 + ĥ12 + ĥ21)
(3.2)

The most likely root is then heuristically selected using the smallest χ2 critical value
compared to the expected model.

3.2.5 Technical problem statement

Following the mathematical description of the coefficient of linkage disequilibrium, D, from
Section 3.2.3 it is possible to generalize this formulation using set logic. Given two integer
sets L0 and L1 such that L ∈ [0, M) we want to compute the set intersection L01 = L0∩L1

and the cardinalities |L0| and |L1|. In this form, the 2-variant haplotype count can be
expressed as f22 = |L01|/M and the heterozygous counts as f12 = |L0|/M − f22 and
f21 = |L1|/M − f22 and the homozygous alternative count as f11 = 1− f12 − f21 − f22.
This information is sufficient to compute linkage disequilibrium (Equation 3.3):

DAB = f22 − f12f21 = M−1|L01| −M−2(|L0| − |L01|)(|L1| − |L01|) (3.3)

when the data is complete. Missing values can be considered members of the separate
integers sets P0 and P1 that mask out the positions such that P01 = P0 ∪ P1 (Equation
3.4):

DAB = M−1
m |L01 \P01|−M−2

m (|L0 \P01|− |L01 \P01|)(|L1 \M0∪M1|− |L01 \P01|) (3.4)

where Mm = M − |P01| is the number of jointly non-missing values.
Given a list of integers sets (L0, L1, . . . , LN) we want to compute DAB for all upper-

triangular pairs of integer sets as efficiently as possible. In almost all situations, the
number of distinct loci N far exceeds that of the number of haplotypes M . Thus, the
computational complexity is O(M

(
N
2

)
).

3.2.6 Representing genotypes using bitmaps

Biallelic variants in the incumbent Vcf interchange format are stored as dictionary-
encoded values such that zero (0) maps to reference allele and one (1) to the alternative
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allele at that site. This simple representation allows us to interpret this encoding as a
bitmap index mapping the alternative allele to haplotypes. A bitmap is a data structure
that pack multiple distinct values into a single machine word. For example, the vector
(0, 0, 1, 0, 1) can be encoded into the machine word [00010100] (reading in the right to left
orientation)(see Algorithm 1). Given an input table of n individuals and m biallelic sites
each bitmap is n bits wide, or ⌈n/w⌉ machine words, where w ∈ {32, 64} on modern
commodity processors.

Bitmaps often have superior performance compared to scalar approaches when the
cardinality of a set S is large compared to the universe size n. In our application, this
occurs when |S| > n/64 and when n < 218, where n is the number of haplotypes and S

is the number of alternative alleles.
In addition to improve storage compared to scalars, the bitvector encoding facilitates

several efficient operations by using optimized bitwise logical operations available on
modern commodity processors. For example, computing the intersection or union between
two equal-length bitmaps can be performed with a single bitwise AND operation or a
single OR operation, respectively. Similarly, computing the resulting set cardinality
can be performed by counting the number of set bits. This operation, also called
the population count, is generally available as a CPU-intrinsic instruction such as
POPCNT on Intel processors or as a highly optimized software implementation (e.g. GNU
__builtin_popcount) (also see Chapter 2).

Algorithm 1 Packing symbols into a bitmap
1: function PackBitmap(I, n, σ, W )
2: Let n be the length of input I

3: Let M = ⌈log 2(σ)⌉ be the bit-width of a symbol
4: Let Σ =

⌊
W
M

⌋
be the number of symbols per machine word

5: Let O[0 . . . n] be the output vector
6: for i = 1 to n do
7: O[i/Σ] = I[i] << M ∗ (i mod Σ)
8: end for
9: return O

10: end function

3.2.7 Computing LD using bitmaps

Encouraged by the ability to compute set operations efficiently using bitmaps, I de-
scribe efficient algorithms for applying this logic to the problem of computing linkage-
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disequilibrium. We can derive bitwise operations such that a bit is set when a given
2-locus haplotype condition is satisfied and zero when not. The sum of the population
bit-count of these bitmaps is equivalent to the inner product of the target 2-locus haplo-
type. Notably, bitmap-based algorithms have a guaranteed fixed cost proportional to
the ratio between the number of samples and the register width, independent of allele
frequency. For phased data, we want to compute the set intersection h00, h01, h10 and
h11 using two genotypic vectors Gj and Gk from two distinct biallelic sites j and k such
that j ̸= k. The set intersection h can be described in terms of conditioned positional
index vectors for a given 2-locus haplotype (Equation 3.5):

h00(Gj, Gk) = {i|Gji = 0, Gki = 0}
h01(Gj, Gk) = {i|Gji = 0, Gki = 1}
h10(Gj, Gk) = {i|Gji = 1, Gki = 0}
h11(Gj, Gk) = {i|Gji = 1, Gki = 1}

(3.5)

For vectors without missing data, we note that h00(Gj, Gk)∪h01(Gj, Gk)∪h10(Gj, Gk)∪
h11(Gj, Gk) = {1, 2, . . . , 2N}. This definition also demonstrates that there is mutual
exclusivity between the sets. We denote the cardinality of the set intersections |h00|, |h01|,
|h10|, and |h11| as f00, f01, f10, and f11, respectively. Similarly, we denote the genotype
vector Gj and Gk in bitmap encoding as Bj and Bk, respectively. In the phased case
for diploid samples, we can compute f11 as POPCNT(Bj AND Bk). Naturally, the inverse
property must be true such that f00 equals POPCNT(∼ Bj AND ∼ Bk), where ∼ is the
bitwise NOT operator. Heterozygous counts, f01 and f10, must evaluate to true when
there is bitwise exclusivity at position i between two vectors: Bi

j ̸= Bi
k. This inequality

criteria is trivially computed as POPCNT(Bj AND ∼ Bk) and POPCNT(∼ Bj AND Bk) for
f01 and f10, respectively. All of these functions combined use no more then five bitwise
instructions (example implementation using the AVX2 instruction set: Figure 3.4a,
Figure 3.5a, Table 3.1, and Table 3.2).
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Figure 3.4 Relationship between the conditioned bitvectors. a) Given two target
vectors A and B at some position j ∈ [0, k), where k ∈ [0, ⌈pm/w⌉) for ploidy p = 2 and
number of samples n and machine-word width in its w, we want to compute f00, f01,
f10, and f11, color-coded as grey, light blue, purple, and dark blue. Using simple bitwise
operations, we can update the counts in a 2× 2 contingency table (Punnett square) of
alleles for two sites, SNP1 and SNP2. Various linkage-disequilibrium-related statistics
are then computed directly from this matrix. Observe that |f00 ∪ f01 ∪ f10 ∪ f11| = pn
when no data is missing. b) In the unphased case, the four haplotype conditions f(·) are
first computed as in a) and then used as input to compute a 4 × 4 contingency table
of genotypes for two sites, SNP1 and SNP2. Frequently, this 4 × 4 contingency table
is represented as the simpler 3× 3 matrix where all heterozygous genotypes (0/1 and
1/0) are collapsed to 1/0. Collapsing all genotypes into this representation will result in
incorrect results in datasets with mixed phasing as phased-phased computations will be
incorrect.
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Figure 3.5 Worked example for bitwise operations conditioning for a 2-locus
haplotype or 2-locus joint genotype. a) For the phased case, given two bitvectors
(machine words), A = [0, 0, 1, 1] and B = [0, 1, 0, 1], we can compute all possible 2-locus
haplotype combination using one of the four conditioning functions f00, f01, f10, and
f11 with the result that a bit is set (1) if the target 2-locus haplotype is observed. The
haplotype case of joint alternative alleles (f11) is the simplest as this condition correspond
to the default encoding. b) In the unphased case, additional inference is generally
required because of the phased uncertainty problem caused by jointly heterozygous
genotypes. As in a), the goal is to have a bit set (1) when a pair of conditions are true.
In this case, the target condition are pairs of conditioned outputs from f(·). If A ̸= B
then we can guarantee that |A∧B| = 0 resulting in the reduced universe of pairwise 2-bit
combinations: {[00, 00], [00, 01], [01, 00], [01, 10], [10, 01], [10, 00], [00, 10], [11, 00], [00, 11]}.
The function g(·) takes as input two pairs of 2-bit combinations as computed with f(·)
from a). The series of bitwise operation always require 6 operations (not counting the
final POPCNT operation) regardless of the input parameters f1(·) and f2(·). Abbreviations:
AND, bitwise AND; XOR, bitwise exclusive OR; ∼, bitwise NOT; &, bitwise AND; <<,
bitwise left shift.

Table 3.1 Example implementation for conditioning a pair of bitmaps given a 2-locus
haplotype using the AVX2 Instruction Set Architecture (ISA). Most modern compilers
will generate identical assembly for implicit and explicit bitwise operations on vectors. For
example, _mm256_and_si256(A, B) and A & B, will both result in a VPAND instruction
being used. For sake of clarity, I describe these conditioning functions using explicit
functions using the AVX2 ISA as an example. All listed functions have two arguments, A
and B, that each takes as input a vector of bitmaps. If data is missing, another pair of
masks are merged M = MA bitor MB, where M is equal in length to the input vectors
A and B. The special vector ONE_MASK is a vector with all bits set (1111. . .1).

Function Operations
ALT_ALT(A, B) _mm256_and_si256(A, B)

REF_REF(A, B)
_mm256_and_si256(_mm256_xor_si256(A, ONE_MASK),
_mm256_xor_si256(B, ONE_MASK))

ALT_REF(A, B) _mm256_and_si256(_mm256_xor_si256(A, B), B)

REF_ALT(A, B) _mm256_and_si256(_mm256_xor_si256(A, B), A)

ALT_ALT_MISS(A, B, M) _mm256_and_si256(ALTALT(A, B), M)

REF_REF_MISS(A, B, M) _mm256_and_si256(REFREF(A, B), M)

ALTREF_MISS(A, B, M) _mm256_and_si256(ALTREF(A, B), M)

REFALT_MISS(A, B, M) _mm256_and_si256(REFALT(A, B), M)
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Table 3.2 Latency and throughput for the different instructions used to condition two
bitmaps given 2-locus haplotype state (Table 3.1). Data is presented for two different
Intel processor microarchitectures: Skylake and Broadwell. Skylake have the AVX-512
ISA and Broadwell have the AVX2 ISA. Data from https://software.intel.com/
sites/landingpage/IntrinsicsGuide/ Lat: Latency; Tput: Throughput (CPI), CPI:
Cycles per instruction.

Function Instruction
Skylake Broadwell
Lat. Tput. Lat. Tput.

_mm256_and_si256 VPAND 1 0.33 1 0.33
_mm256_xor_si256 VPXOR 1 0.33 1 0.33
_mm256_or_si256 VPOR 1 0.33 1 0.33
_mm256_slli_si256 VPSLLQ 1 1 1 1
_mm256_srli_si256 VPSRLDQ 1 1 1 1

For unphased data, it is possible to describe set intersections given the extended 2-symbol
alphabet σ2 ∈ {h00, h01, h10, h11}. In this situation, (hA, hB)-tuples can be described in
terms of conditional positional index vectors for genotypes (Equation 3.6):


g(f00(·), f00(·)) g(f01(·), f00(·)) g(f10(·), f00(·)) g(f11(·), f00(·))
g(f00(·), f01(·)) g(f01(·), f01(·)) g(f10(·), f01(·)) g(f11(·), f01(·))
g(f00(·), f10(·)) g(f01(·), f10(·)) g(f10(·), f10(·)) g(f11(·), f10(·))
g(f00(·), f11(·)) g(f01(·), f11(·)) g(f10(·), f11(·)) g(f11(·), f11(·))

 (3.6)

These counts are sufficient to compute f̂11 using the analytic solution described above
(Figure 3.4b and Figure 3.5b). Since these tuples are limited to the universe of f , the
universe of possible 2-tuple states are limited to the search space |σ2|2. This state space
can be refactored by noting that all jointly heterozygous (central cells) and all symmetric
genotypes can be collapsed (Equation 3.7 and Figure 3.6):

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
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g(f00(·), f00(·))
g(f01(·), f00(·)) + g(f10(·), f00(·))
g(f11(·), f00(·))
g(f00(·), f01(·)) + g(f00(·), f10(·))
g(f01(·), f01(·)) + g(f10(·), f01(·)) + g(f01(·), f10(·)) + g(f10(·), f10(·))
g(f11(·), f01(·)) + g(f11(·), f10(·))
g(f00(·), f11(·))
g(f01(·), f11(·)) + g(f10(·), f11(·))
g(f11(·), f11(·))

(3.7)

This reduced representation (9 instead of 16 states) is cheaper, and therefore faster, to
calculate as we do not need to distinguish between certain pairs of genotypes when the
input data is unphased (Table 3.3).
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Figure 3.6 State space reduction for unphased genotypes. Tomahawk must
represent a 2-locus genotype matrix as a 4× 4 matrix because heterozygous genotypes
are not collapsed from 0/1 and 1/0 into 1/0 in order to support datasets with mixed
phasing. Although this larger matrix require an additional 7 pairwise states (9→ 16)
compared to the frequently used 3× 3 matrix, it is possible to reduce computation by
noting that all possible genotype pairs that involve a heterozygous genotype can be
collapsed. Four genotype pairs can have their results collapsed (summed) into a single cell
in a smaller matrix (grey). All jointly heterozygous genotypes can be jointly computed
without disregard for their individual values (yellow). These insights result in moderate
savings in compute.

In certain edge cases, we note that there are several states that cannot exist and
would require unnecessary compute. For example, the state space can be reduced
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to f01(Gj, Gk) ∪ f11(Gj, Gk) or f10(Gj, Gk) ∪ f11(Gj, Gk) when Gj = 0 or Gk = 0,
respectively. Similarily, when both genotypic vectors Gj and Gk are 0 or 1 then the
state space is exclusively either f00(Gj, Gk) or f11(Gj, Gk).

Table 3.3 Example implementation for conditioning a pair of bitmaps given a 2-locus
genotype using the AVX2 Instruction Set Architecture (ISA). These functions takes as
input the output from the functions Table 3.1. All the listed functions have two or
more arguments, (A, B, . . .), that each takes as input a conditioned output vector of
bitmaps. The special vectors ML and MU encode for the two-bit sequence (0101. . .01) and
(1010. . .10), respectively.

Function Operations

UNPHASED

_mm256_and_si256(_mm256_slli_epi64(
_mm256_slli_epi64(
_mm256_and_si256(_mm256_or_si256(_mm256_and_si256(A, MH),
_mm256_and_si256(B, ML)), ML),
1), A)

UNPHASED_PAIR _mm256_or_si256(_mm256_srli_epi64(UNPHASED(A, B), 1), UNPHASED(C, D))
UNPHASED_SPECIAL _mm256_and_si256(_mm256_and_si256(_mm256_srli_epi64(A, 1), A), ML)

3.2.8 Scalar-bitmap intersections

In case of sites with small allele count (sparse vectors), it is possible to further acceler-
ate the computation of the cardinality of set intersections by additionally storing the
alternative allele positions in an array of scalars. Using these scalars, we count the set
bits in the bitmap with the largest allele count given the allele positions in the other
(Algorithm 2 and Figure 3.7). This approach runs in O(min(|Gi|, |Gj|)-time and can
result in considerable speedups (Table 3.16 and Table 3.17)

00000000

00000011

00100100

00010101

11,14

7,8,12,14,16

= |A ∩ B|

= 5

= 2

= 2N

A

B
--

-

-

-

ALT positions bitvector

00

10 11

010: Ref allele

1: Alt allele

S
N
P
2

SNP1

10 1

4 1

1

0

0

1



62 Efficient computation of genome-wide linkage-disequilibrium

Figure 3.7 Algorithm for scalar-bitmap intersections. If either, or both, bitvectors
A and B have a small cardinality (generally < m/200) and have no missing values then it
possible to accelerate the computation of the cardinality of set intersections by storing an
additional list of scalars for each vector and perform scalar-bitmap intersections. This list
of scalars values, LA and LB, maps to the positions with a set bit (alternative allele bit
is set). The cardinality of the set intersection for f11 (dark blue) can then be computed
as |LB ∈ A| or |LA ∈ B| (see Algorithm 2). In this case, the remaining cell counts (light
blue, purple, and grey) are then known. The resulting 2 × 2 matrix is shown for this
example.

Algorithm 2 Scalar-bitmap intersection
1: function InterectCountBitmapScalar(A, B, SA, SB, nA, nB)
2: Let A and B be the uncompressed 64-bit bitmaps
3: Let SA and SB be vector of scalars and nA and nB their lengths
4: if nA < nB then
5: for i = 0 . . . nA do
6: c += (B[SA[i]/64] bitand (1 << (SA[i] mod 64))) ̸= 0
7: end for
8: else
9: for i = 0 . . . nB do

10: c += (A[SB[i]/64] bitand (1 << (SB[i] mod 64))) ̸= 0
11: end for
12: end if
13: return c

14: end function

3.2.9 Sparse vector compression

To address the inefficient memory usage of sparse bitmaps when the number of samples
>218, I implement a hybrid bitmap compression scheme (Figure 3.3)). Instead of storing
uncompressed bitmaps, we partition the universe [0, n) into non-overlapping chunks of
size 216 (8 kb) that store dense and sparse chunks separately. This approach was first
described in the Roaring bitmap compression scheme[67, 66]. Our approach follows this
approach very closely with a few key differences. Dense chunks are defined as having
>4096 set bits and are stored as standard uncompressed bitmaps. Sparse chunks store
32-bit integers by first storing their shared 16-bit prefix as a scalar and their 16-bit lowest
significant bits in an array. This is sufficient information to restore their original 32-bit
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values while saving 2 bytes of storage per scalar and also enables vectorized algorithms
to operate on a larger number of values per register. The sparse-to-dense transition
threshold of 4096 values was selected because [0, 4096) 16-bit values require ≤ 216 bits
while bitmaps invariantly require 216 bits independent of density. Because of the limited
haplotypic diversity in humans[123] (Figure 3.8), I expect this compression scheme to
work well on future large human datasets.
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Figure 3.8 Allele count distribution on the Trans-Omics for Precision
Medicine (TOPMed) Program and The Genome Aggregation Database (gno-
mAD) datasets. These large datasets demonstrate that increasing the number of
samples result in an increasingly sparse genetic matrix because of the limited haplotypic
diversity in humans. (Left panel) Whole-genome sequenced data for 62,784 individuals
(data freeze 5) reveal that 80% of variant sites have <7 alternative alleles (alts, dashed
grey line) and 90% have <37 alternative (solid grey line) genome-wide. Unsurprisingly,
223 million sites (45%) have an allele count of one. (Right panel) Allele frequency
distribution for 125,748 samples with exome sequencing data and 15,708 samples with
whole-genome sequencing data for chromosome 20.

To query for the presence of a 32-bit integer x using the hybrid approach we first search
for the target container having the prefix x/216 using a vectorized binary search in
O(n1 + n2)-time[67], where n1 and n2 are the respective length of prefixes in either
container. If the target container exist and is a bitmap container, then we evaluate the
predicate (b[x/64] bitand 1 << (x mod 64)) ̸= 0 in O(1)-time. If the target container is
an array container then we perform a binary search by querying x against the array of
16-bit suffixes.
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We implement the set intersection count operation using a two-stage approach
(Algorithm 3): (1) we compute the set intersection between the 16-bit prefix values from
two containers to identify chunks with potential overlaps; (2) if no container prefixes
overlap then the resulting set intersection is empty. Otherwise, we compare integers in
each container using either bitmap-bitmap, bitmap-scalar, or scalar-scalar algorithms.
Bitmap-bitmap and bitmap-scalar intersections are performed as described for contiguous-
memory bitmaps. Scalar-scalar intersections use a modified vectorized binary search such
that it returns a count instead of the actual resulting set.

Algorithm 3 Computing set intersection using hybrid compression
1: function IntersectContainers(CA, CB) ▷ C - hybrid containers A and B
2: Let Ap and Bp be arrays of 16-bit prefixes for two containes
3: Let P be a vector of (j,k)-tuples indexing where Ap = Bp

4: if |P | = 0 then return 0
5: else
6: for i ∈ [0, 1, . . . , |P |) do
7: Let |A[P [i]1]| and |B[P [i]2]| be the cardinality in a container
8: if |A[P [i]1]| > 4096 and |B[P [i]2]| > 4096 then
9: Let Ca and Cb be an indexed array of 1024 64-bit integers

10: for p ∈ [0, 1, . . . , 1024) do
11: c← c + popcnt(Cap AND Cbp)
12: end for
13: return c

14: else if |A[P [i]1]| > 4096 and |B[P [i]2]| < 4096 then
15: return IntersectBitmapScalar(·)
16: else if |A[P [i]1]| < 4096 and |B[P [i]2]| > 4096 then
17: return IntersectBitmapScalar(·)
18: else
19: return IntersectScalarScalar(·)
20: end if
21: end for
22: end if
23: end function

This hybrid compression approach is not without downsides as illustrated by the
case when the input data is extremely sparse. For example, the input dataset (1 ×
216, 2×216, . . . , k×216) will store a single scalar per container in addition to the container
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overhead cost. Under these circumstances the meta information in the chunk container
require more space than the stored integers themselves. Although we recognize this
inefficiency in terms of compression for extremely sparse set in terms of compression we
do not address this shortcoming in this work.

Both these sparse-vector intersection algorithms and the standard SIMD-accelerated
bitmap-bitmap intersection algortihms were released as the standalone library Storm
bitmaps using functional multiversioning (FMV) that supports all modern instruction-set
architectures (ISAs). Storm bitmaps are available online at Storm bitmaps. For the
remainder of this chapter I refer to the sparse bitmap representation as Storm and the
standard contiguous memory implementation as Storm-contig.

3.2.10 Heuristic decision tree

Our proposed algorithms display optimal performance at different allele frequencies and
cohort sizes. In order to maximize performance, we apply a heuristic-based decision tree
that automatically selects the best method given the properties of the input pairs of
genotype vectors.

3.2.11 Memory-aware load balancing

It is generally not possible to load all the required data into memory when handling
hundreds of thousands to many millions of samples. In this situation we would have to
load only the current data blocks into memory from disk and then release the memory
in order to load the next block when finished. This approach impose considerable
overhead costs and disk-based latency resulting in slower overall compute. To illustrate
this problem, consider the situation with a set of three blocks {1, 2, 3} that should
be compared pairwise. Each block can be compared pairwise using a simple iterative
algorithm:

1. Load blocks 1 and 2 into memory and compare {1, 2}
2. Release block 2 from memory
3. Load block 3 and compare {1, 3}
4. Release block 1 from memory
5. Load block 2 from memory and compare {2, 3}

Block 2 have now been loaded and released twice. This undesired memory- and I/O-
overhead grows square to the number of blocks, O((B − 1)2), where B is the number of
blocks. For example, using standard import parameters, chromosome 20 for the 1000

https://github.com/mklarqvist/StormBitmaps
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Genomes Project data has 1,696 blocks. Without addressing this problem, there would
be 2,873,025 overhead loads.

If there are B number of blocks in a file and N number of variants, then let Ni be
the number of variants in block i. All possible block combinations has to be computed
and this is equivalent to the upper triangular of a N2 square matrix for a total of

(
N
2

)
pairwise comparisons. We can factorize out the number of comparisons in these blocks
that either border the diagonal (first term) and those that do not (second term):

(
N

2

)
=

i≤B∑
i=1

(
Ni

2

)
+

i≤B∑
i=1

j≤B∑
j=i+1

NiNj

If we naively balance the workload into linear slices of B we will use unnecessary amounts
of memory. Instead, we partition the subproblems such that blocks iteratively choose their
available k-nearest neighbours. Because of the blockwise memory layout of Tomahawk,
this approach is trivially approximated by slicing the B2 matrix into

(
P
2

)
+ P sections.

This partitioning scheme is always guaranteed to use smaller amounts of memory when
P > 1 and B > 1. Next, the workload within each subproblem is partitioned according
to ⌈t/NP ⌉, where t is the desired number of threads and NP the number of variants in
sub-problem P . Sub-problems bordering the diagonal Pd will always perform less work
(
(

Pd

2

)
comparisons, see equation 3.8) compared to non-diagonal Po sub-problems (P a

o P b
o

comparisons, see equation 3.9).
The index of block members of the diagonal set are images of the function:

d(i) = 0 +
j<i∑
j=0

P − j (3.8)

Similarly, indices for blocks not anchored to the diagonal are members of the function:

s(i) =
i<P∑
i=0

j<P∑
j=i+1

j (3.9)

This partitioning of workload assumes that the comparison throughput is constant in
each sub-problem.

3.2.12 Cache-blocking, out-of-order execution, and parallel com-
puting

By performing m(m− 1)/2 pairwise operations between vectors of bitmaps we recognize
that if n is small then several such vectors will fit into low-level cache such as L1 through
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L3 (Table 3.4). The primary goal of the cache system is to ensure that the processor
have the next required data in memory by the time it is needed (a cache hit). Memory
access times in these cache regions are faster by over an order of magnitude compared
to main memory (DRAM). It is therefore desirable to keep computing on data in these
low-level cache levels as long as possible.

Table 3.4 Reproduced in part from Intel (https://software.intel.com/en-us/
articles/memory-performance-in-a-nutshell). Abbrevations: L1 (Level one), L1
(Level two), L1 (Level three), Multi-channel DRAM (MCDRAM), dual inline-memory
modules (DIMMs), double data rate (DDR). *MCDRAM is a 3D-stacked DRAM that
was used in Intel Xeon Phi processors (Knights Landing).

Memory Size Latency Bandwidth
L1 cache 32 KB 1 nanosecond 1 TB/second
L2 cache 256 KB 4 nanoseconds 1 TB/second
L3 cache 8 MB or more 10x slower than L2 ≥400 GB/second
MCDRAM* 2x slower than L3 400 GB/second
Main memory on DDR DIMMs 4 GB-1 TB 2x slower than L3 100 GB/second

An important algorithmic change involves reorganizing data memory access such that
cache is loaded with a small subset of the data. By reusing cached memory we can reduce
the need to retrieve new data from memory and thereby reduce memory bandwidth
pressure.

Transforming the unblocked version for diagnonal components d(i) (Equation 3.8 and
square components s(i) (Equation 3.9) from naive loops (Fig. 3.9 and Fig. 3.10) into
blocked versions (Fig. 3.11 and Fig. 3.12) result in considerable perormance gains
(data not shown).

for (uint32_t i = 0; i < n_data; ++i) {
for (uint32_t j = i + 1; j < n_data; ++j) {

count += intersect(data[i], data[j], length);
}

}

Figure 3.9 No blocking for a diagonal component.

for (uint32_t i = 0; i < n_data; ++i) {
for (uint32_t j = 0; j < n_data; ++j) {

count += intersect(data1[i], data2[j], length);

https://software.intel.com/en-us/articles/memory-performance-in-a-nutshell
https://software.intel.com/en-us/articles/memory-performance-in-a-nutshell
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}
}

Figure 3.10 No blocking for a square component

for (/**/ ; i + bsize <= n_data; i += bsize) {
// Diagonal component
for (uint32_t j = 0; j < bsize; ++j) {

for (uint32_t jj = j + 1; jj < bsize; ++jj) {
count += intersect(data[i+j], data[i+jj], length);

}
}

// Square component
uint32_t curi = i;
uint32_t j = curi + bsize;
for (/**/ ; j + bsize <= n_data; j += bsize) {

for (uint32_t ii = 0; ii < bsize; ++ii) {
for (uint32_t jj = 0; jj < bsize; ++jj) {

count += intersect(data[curi+ii], data[j+jj], length);
}

}
}

// Residual
for (/**/ ; j < n_data; ++j) {

for (uint32_t jj = 0; jj < bsize; ++jj) {
count += intersect(data[curi+jj], data[j], length);

}
}

}
// Residual tail
for (/**/ ; i < n_data; ++i) {

for (uint32_t j = i + 1; j < n_data; ++j) {
count += intersect(data[i], data[j], length);

}
}
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Figure 3.11 Cache-blocked version of Figure 3.9 using a step size of bsize in a diagonal
component.

for (/**/ ; i + bsize <= n_data1; i += bsize) { // block1
j = 0;
for (/**/ ; j + bsize <= n_data2; j += bsize) { // block2

for (uint32_t ii = 0; ii < bsize; ++ii) {
for (uint32_t jj = 0; jj < bsize; ++jj) {

count += intersect(data1[i+ii], data2[j+jj], length);
}

}
}
// Residual
for (/**/ ; j < n_data2; ++j) { // block2

for (uint32_t jj = 0; jj < bsize; ++jj) {
count += intersect(data1[i+jj], data2[j], length);

}
}

}

// Residual tail
for (/**/ ; i < n_data1; ++i) {

for (j = 0; j < n_data2; ++j) {
count += intersect(data1[i], data2[j], length);

}
}

Figure 3.12 Cache-blocked version of Figure 3.10 using a step size of bsize in a square
component.

Using these functions we can trivially implement the load balancing approach from
Section 3.2.11 (Figure 3.13). Although this pairwise comparison of blocks of variants
enables embarrassingly parallel computing, there is a moderate overhead associated with
storing memory in non-contiguous locations. As an illustrative example, computing the
cardinality of set intersection of incremental slices (0, [10, 200]× 103) of variants from
chromosome 6 from the 1000 Genomes Project dataset demonstrates as ∼50% loss of
performance (Table 3.5). This decrease in performance is attributed to the additional
>2-fold branch misses and >7-fold more memory accesses for the variant-blocked pattern
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(although >95% are cache hits) compared to a contiguous memory access model (data
not shown). Using this approach, compute decrease linearly with increased number of
physical threads (Figure 3.14).

for (int i = 0; i < n_blocks; ++i) {
total += intersect_block_diagonal(block[i]);
for (int j = i + 1; j < n_blocks; ++j) {

total += intersect_block_square(block[i], block[j]);
}

}

Figure 3.13 Computing XXT can then be computed using the subroutines detailed in
Figure 3.11 and Figure 3.12.

Table 3.5 Loss of performance due to memory access and branch misprediction overhead
when using a variant-blocked model compared to a pure contiguous memory model.
Using data from 1000 Genomes Project chromosome 6[123] slices from (0, [10, 200]× 103)
in steps of 103 variants we compared a contiguous model (all variants in aligned and
contiguous memory) or a variant-blocked approach with block size set to 50× 103. Both
models used internal memory blocking using 400 variants. Chit.: Cache hits; Cmiss.:
Cache misses; CCW: CPU cycles / 64-bit word

Variants Method Chit. (%) Cmiss. (%) Time (s) Fold diff CCW MB/s

10,000
Cont. 1.00 0.00 0.4

1.72
0.17 163,323

Blocked 0.96 0.04 0.6 0.27 94,907

20,000
Cont. 0.94 0.06 1.8

1.53
0.19 134,906

Blocked 0.93 0.07 2.7 0.30 88,016

30,000
Cont. 0.95 0.05 3.2

1.48
0.16 170,095

Blocked 0.98 0.02 4.7 0.25 115,190

40,000
Cont. 0.95 0.05 6.1

1.71
0.17 158,061

Blocked 0.94 0.06 10.4 0.29 92,680

50,000
Cont. 0.95 0.05 8.7

1.51
0.17 173,952

Blocked 0.98 0.02 13.1 0.25 115,435

60,000
Cont. 0.95 0.05 12.6

1.53
0.16 172,203

Blocked 0.97 0.03 19.3 0.25 112,196

70,000
Cont. 0.94 0.06 17.1

1.47
0.16 172,697

Blocked 0.98 0.02 25.2 0.25 117,395

80,000
Cont. 0.95 0.05 21.9

1.51
0.16 176,313

Blocked 0.98 0.02 33.0 0.25 116,908

90,000
Cont. 0.96 0.04 28.3

1.46
0.17 172,332

Blocked 0.98 0.02 41.3 0.24 118,248
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100,000
Cont. 0.96 0.04 34.3

1.49
0.17 175,637

Blocked 0.99 0.01 51.2 0.25 117,670

110,000
Cont. 0.95 0.05 41.9

1.46
0.16 174,154

Blocked 0.98 0.02 61.3 0.24 118,974

120,000
Cont. 0.95 0.05 49.5

1.49
0.16 175,201

Blocked 0.98 0.02 73.6 0.25 117,955

130,000
Cont. 0.96 0.04 58.7

1.47
0.17 173,481

Blocked 0.98 0.02 86.4 0.25 117,831

140,000
Cont. 0.96 0.04 67.7

1.49
0.17 174,435

Blocked 0.99 0.01 101.2 0.25 116,694

150,000
Cont. 0.95 0.05 78.8

1.46
0.17 172,000

Blocked 0.99 0.01 115.1 0.25 117,823

160,000
Cont. 0.94 0.06 88.8

1.47
0.17 173,849

Blocked 0.99 0.01 130.6 0.25 118,155

170,000
Cont. 0.95 0.05 100.2

1.51
0.17 173,883

Blocked 0.98 0.02 150.9 0.25 115,394

180,000
Cont. 0.96 0.04 113.1

1.49
0.17 172,606

Blocked 0.98 0.02 168.7 0.25 115,756

190,000
Cont. 0.96 0.04 126.6

1.49
0.17 171,918

Blocked 0.98 0.02 188.6 0.25 115,387

200,000
Cont. 0.96 0.04 138.8

1.8
0.17 173,704

Blocked 0.95 0.05 250.1 0.28 96,387
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Figure 3.14 Improved performance with increasing number of logical threads.
Computing growths linearly (s = 0.9255t, R2

adj = 0.9993, where s is speedup for t physical
threads) with increasing number of physical threads (14 cores). After 14 physical threads,
additional hyper-threaded logical threads add around ∼1% per thread. This stark drop-
off in additional performance gain is expected given the hardware-limited performance
of the algorithms. Actual times are listed in Table 3.6. The host architecture used
is a 14-core 22 nm Haswell Xeon E5-2697 v3 with the AVX2 ISA and hyper-threading
enabled.

Table 3.6 Completion time for computing chromosome-wide linkage-
disequilibrium as a function of threads. Performance increase linearly over all
14 physical threads when computing LD for chromosome 22 from the 1000 Genomes
Phase 3 dataset (n = 5,008, Figure 3.14). After this point no further performance
improvements are observed and all additionally expended energy is wasted. Also shown
is the number of 2-locus haplotype comparisons per second as this measurement is
directly comparable across different cohort sizes. The host architecture used is a 14-core
22 nm Haswell Xeon E5-2697 v3 with the AVX2 ISA and hyper-threading enabled.
Abbreviations: 2L-cmps/s, 2-locus comparisons/second.

Threads Time 2L-cmps/s (1012)
28 06m10,510s 8.14
27 06m11,867s 8.11
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26 06m14,487s 8.05
25 06m16,566s 8.01
24 06m19,300s 7.95
23 06m21,808s 7.90
22 06m24,941s 7.83
21 06m27,235s 7.78
20 06m29,991s 7.73
19 06m32,397s 7.68
18 06m35,437s 7.62
17 06m37,837s 7.58
16 06m40,486s 7.53
15 06m43,620s 7.47
14 06m46,239s 7.42
13 07m17,141s 6.90
12 07m52,876s 6.37
11 08m35,479s 5.85
10 09m26,253s 5.32
9 10m28,853s 4.79
8 11m46,832s 4.26
7 13m27,627s 3.73
6 15m38,974s 3.21
5 18m42,992s 2.68
4 23m08,504s 2.17
3 30m41,014s 1.64
2 44m36,01s 1.13
1 88m25,01s 0.57

3.2.13 Sorting output data

Tomahawk can produce hundreds of gigabytes of compressed output data for genome-wide
linkage-disequilibrium queries. As a design consequence, Tomahawk computes pairwise
correlations between two sites using a block-wise out-of-order execution pattern that
results in unsorted output. This volume of data can generally not be sorted in memory
as the uncompressed file-sizes exceeds the available memory of most workstations by
several orders of magnitude. In order to overcome this restriction, we implemented
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algorithms belonging to the external sort family. This class of algorithms espouse the
divide-and-conquer paradigm to reduce the computational challenge of sorting extremely
large datasets using bounded resource requirements. Without losing generality, external
sort algorithms comprises of three principal steps: (1) partitioning a input dataset D
into non-overlapping blocks, called pages; (2) sorting each page in main memory and
writing out partially sorted sub-files called runs; and (3) performing a k-way merge of
the runs d ∈ D. The page size, k, is chosen such that uncompressed (raw) data can fit
in main memory. The algorithm implemented in Tomahawk utilize a min-priority queue
in the merge step to reduce complexity to O(n log n). For the sake of illustration, we
assume that the cardinality of D (denoted as |D|) is divisible by the number of runs, k

(Algorithm 4).
Although efficient in memory and time complexity, this algorithm can be slow in

practice on datasets involving hundreds of billions of records. This source of inefficiency
comes from the single-threaded merging operation using the priority queue. In the naive
implementation, every record has to be compared to the smallest entry in the priority
queue before being either immediately written to a output buffer or possibly inserted
into the queue. Fortunately, as a consequence of our dynamic execution order of blocks
and cache-blocking of records, we can model a simple stochastic pattern of partial order
given the distance from any given block. First we make some simplifying assumptions:
(1) assume that the distributed workload is balanced; (2) every sub-problem (pairwise
comparison of blocks) is finished equally fast; and (3) every processed block pair produce
equal number of output records. Under these idealized conditions, we expect output
records to be locally sorted, allowing us to skip many portions of the k-way merge
procedure.
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Algorithm 4 Outline of external sort of Tomahawk output (TWO) data
1: function SortTWO(D, k, T , O)▷ Where D - input TWO file, k - number of runs,

T - temporary output file, O - output file
2: Let m = |D|/k be the number of records per page d
3: for i = 1 to k do
4: d = D[im, (i + 1)m) ▷ Slice of dataset into page k

5: Sort(d) ▷ Sort data in each page
6: Write(d) ▷ Write runs to T

7: end for

8: Let Q[1..k] be a vector of cyclic queues of r

9: Let r be a TWO record
10: Let F [1..k] be a vector of file handles to runs
11: Let M be a min-priority queue of (k, r)-tuples, where k is the run offset
12: for i = 1 to k do
13: F [i].open(T ).seek(im) ▷ Open temporary file and seek to the virtual offset

for run i

14: for j = 1 to n do ▷ Load n records into queue
15: Q[i].push(F [i].read())
16: end for
17: M.push(k, Q[i][0]) ▷ Push the first record into the min-queue
18: end for

19: while M.empty() == FALSE do ▷ k-way merge of k runs
20: x = M.top().k ▷ The run this record came from
21: Write(M.top().r)
22: M.pop() ▷ Remove this record from the min-queue
23: Q[x].push(F [x].read()) ▷ Read a new record from stream if possible
24: if Q[x].empty() == FALSE then
25: M.push(Q[x])
26: end if
27: end while
28: end function
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3.2.14 Comparing performance

I compared performance for computing all-vs-all linkage-disequilibrium against PLINK[95]
v1.90p 64-bit (17 Jun 2019). PLINK is most likely the most common program used to
compute LD because of its simplicity and good overall performance owing to its heavy use
of SIMD-accelerated bitmap operations. PLINK was run using the following command:

plink --r2 inter -chr --ld -window -r2 1 --bfile ${ plink_in }

where we limit the output associations to R2 = 1 to restrict the performance impact that
disk input/output operations have on the benchmark.

As another reference point, I compared against the recently described Emerald[96]
program that makes use of both bitmap-bitmap intersections and scalar-bitmap intersec-
tions together with informed subsampling. I used the following command when using
informed subsampling:

emeraLD -i ${ emerald_in }. vcf.gz
-o STDOUT --threshold 1
--phased --nmax 1000
--window 1000000000 > /dev/null

otherwise additionally add the parameter –nmax ${samples}.

3.2.15 Experimental data sets

Individual chromosome BCF files were retrieved for each cohort and combined into a
single dataset using the bcftools concat command.

• 1000 Genomes phase 3 (hg19)[123]: This dataset comprises variants and small
insertions/deletions (indels) for 2,504 individuals of various ancestry.

• Haplotype Reference Consortium (hg19)[125]: This dataset comprises of a mixed
cohort of 32,488 whole-genome sequenced individuals. There are >39 million SNPs
with an allele count ≥ 5 and all indels have been removed. All samples from the
1000 genomes phase 3 project are included in this dataset.

3.2.16 Simulated data sets

Genotypes from idealized datasets were simulated using msprime version 0.5d[56] with
the mutation rate and recombination rate per site per 4N generations set to 0.001 and
effective population size to 10,000. Region and number of samples varies according to
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the experiments detailed above. Because msprime simulates individual haplotypes, we
simulated 2N haplotypes for each case and greedily combined adjacent haplotypes into a
single diploid genome.

3.2.17 Computing environment

Code was compiled with GCC 8.3 using the optimization flags "-O3 -march=native"
to restrict optimizations to the host-machine architecture. All tests were performed
using a host machine with a Intel i3-8121U (10nm) Cannon Lake (x64) microarchitecture
and a pair of NVMe solid-state hard drives operating in RAID-0 unless otherwise
specified. Performance was measured using the Linux perf subsystem with the virtualized
PERF_COUNT_HW_CPU_CYCLES counts as processor cycles (clockticks). Memory usage was
measured using Linux time subroutines.

Computing chromosome-wide linkage-disequilibrium was evaluated using the hetero-
geneous compute cluster available at the Wellcome Sanger Institute by splitting each job
into 45 parts onto different compute nodes. Each node was allowed to use 8 CPU cores
(hyper-threading disabled).

3.2.18 Format descriptions

We outline several simple data formats used in the tomahawk ecosystem that enables
efficient storage and analysis of output data:

1. twk: We store pre-compressed haplotype/genotype data a simple structure (twk1_t)
in the array-of-structure orientation. For each variant site, we store: (1) the
number of alternative alleles, (2) allele count, (3) allele number, (4) number
of heterozygous alleles, (5) number of homozygous alleles, (6) Hardy-Weinberg
equilibrium probability, (7) a set of bitpacked binary states including phasing
and if any missing values are present, (8) the chromosome identifier and position,
and (8) compressed haplotype/genotype data in array form. We partition the
space [0, m) into non-overlapping chunks such that a block never contain > 1
chromosomes, where m is the number of variant sites. Blocks are indexed using
segmental statistics (storing (min(pi), max(pi))-tuples), where pi are the list of
positions in block i. Block are compressed using the general purpose compressor
Zstd (https://facebook.github.io/zstd/).

2. two: Output associations are stored in a similar fashion using the simple data
structure twk1_two_t instead of twk1_t in the twk format. We store (1) the start

https://facebook.github.io/zstd/
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and stop chromosome identifier, (2) start and stop position, (3) phasing information
and missing information for both start and stop positions, (4) R and R2, (5) D

and D′, (6) Fisher’s exact P value (Table 3.8), (7) χ2 critical value for the 3× 3
or 2× 2 contingency tables (Table 3.9), and (8) the 2-locus haplotype counts f00,
f01, f10, and f11. Lastly, we store the union of 12 different 1-of-k encoded flags
describing various states (Table 3.7). Block are compressed using the general
purpose compressor Zstd (https://facebook.github.io/zstd/).

3. ld: Uncompressed and human-readable two data is stored in the ld format (Table
3.10). This format is immutable and cannot be directly queried.

Table 3.7 Description of 1-of-k encodings in the two format. A series of Boolean
states (yes/no) are 1-of-k-encoded in a single 16-bit machine word for a record. All
fourteen encoded states are stored as their union k0 + k1 + . . . + k13.

Bit Num. One-hot Description
1 1 0000000000000001 Used phased math.
2 2 0000000000000010 Acceptor and donor variants are on the same contig.
3 4 0000000000000100 Acceptor and donor variants are far apart on the same contig.
4 8 0000000000001000 There are ≥ 1 empty cell (referred to as complete).
5 16 0000000000010000 Output correlation coefficient is perfect (1.0).
6 32 0000000000100000 There are ≥ 1 possible solutions.
7 64 0000000001000000 Output data was generated in ’fast mode’.
8 128 0000000010000000 Output data is estimated from a subsampling of the total pool of genotypes.
9 256 0000000100000000 Donor vector has missing value(s).
10 512 0000001000000000 Acceptor vector has missing value(s).
11 1024 0000010000000000 Donor vector has low allele count (<5).
12 2048 0000100000000000 Acceptor vector has low allele count (<5).
13 4096 0001000000000000 Acceptor vector has a HWE-P value <1e-4.
14 8192 0010000000000000 Donor vector has a HWE-P value <1e-4.

Table 3.8 Contingency table for 2-locus haplotype frequencies used to test for non-
random associations between two binary variables. We statistically determine this using
a Fisher’s exact test.

REF-A REF-B
REF-B f00 f01

ALT-B f10 f11

https://facebook.github.io/zstd/
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Table 3.9 Contingency table for genotype-genotype frequencies used to statistically test
for goodness-of-fit between the observed frequencies and the expected one under our
model. Note that this matrix is usually presented as a 3× 3 matrix where heterozygous
genotypes have been collapsed. For technical reasons, we compute frequencies for a 4× 4
matrix and then collapse down to a 3× 3 matrix.

0/0 0/1 1/1
0/0 f00,00 f01,00 f11,00

0/1 f00,01 f01,01 f11,01

1/1 f00,11 f01,11 f11,11

Table 3.10 Column description for the human-readable LD format.

Column Description
FLAG Bit-packed boolean flags (see below)
CHROM_A Chromosome for marker A
POS_A Position for marker A
CHROM_B Chromosome for marker B
POS_B Position for marker B
REF_REF Count of (0,0) haplotypes (h00)
REF_ALT Count of (0,1) haplotypes (h01)
ALT_REF Count of (1,0) haplotypes (h10)
ALT_ALT Count of (1,1) haplotypes (h11)
D Coefficient of linkage disequilibrium
D’ Normalized coefficient of linkage disequilibrium (scaled to [−1, 1])
R Pearson correlation coefficient
R2 Squared pearson correlation coefficient
P Fisher’s exact test P-value of the 2x2 haplotype contingency table
ChiSqModel χ2 critical value of the 3x3 unphased table of the selected cubic root
ChiSqTable χ2 critical value of table (useful comparator when P = 0)

3.2.19 Visualization functions

Tomahawk can generate hundreds of gigabytes of compressed data. This scale of data
would prevent the application of existing packages and solutions for graphically visualising
and operating on this data. There are not only hardware limitations such as loading
all the data into memory, or directly rendering billions of data points, but also more
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practical considerations such as displaying such a vast number of data points in a finite
number of pixels would result in an uninformative image.

Addressing these challenges, I developed a compressed data aggregation format and a
package with native R-bindings for interfacing with Tomahawk libraries and provides
additional graphical functionality called rtomahawk. This means exposing most of the
features and flexibility of the C++ API while not sacrificing the usability that R provides.
rtomahawk can be accessed at https://github.com/mklarqvist/rtomahawk.

Example visualization functions include: (1) plotting LD for a region (Figure 3.15);
(2) upper- or lower-triangular plots of a LD matrix (Figure 3.16); (3) orienting plots
to enable intergration with other graphical units (Figure 3.17); (4) calculating and
plotting LocusZoom-like plots in close-to-real-time (Figure 3.18); (5) adding LD plots
as a track to LocusZoom-like plots (Figure 3.19); (6) adding LD plots and gene tracks
to LocusZoom-like plots (Figure 3.20).

https://github.com/mklarqvist/rtomahawk
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Figure 3.15 Example square LD plot using plotLD in rtomahawk. Because
of the vast number of data points rendered and the finite amount of pixels available,
we render data points with an opacity gradient scaled according to its R2 value from
[0.1, 1]. This allows for mixing of both colors and opacities to more clearly represent
the distribution of the underlying data (left column). It is possible to disable this
functionality by setting the optional argument opacity to FALSE (right column). In the
following examples, we render both a large region (5-8 Mb, top row) and a small region
(5.0-5.6 Mb, bottom row) with and without the opacity flag set.
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Figure 3.16 Example triangular LD plot using plotLDTriangular in rtoma-
hawk. In many cases, there is generally no need to graphically represent the entire
symmetric square (or rectangular) symmetric matrix of associations. This is especially
true when combining multiple graphs together to create a more comprehensive picture
of a particular region or feature. All of the examples here involves the subroutine
plotLDTriangular. As a design choice, we decided to restrict the rendered y-axis data
such that it is always bounded by the x-axis limits. For this reason, these plots will
always be triangular will partially "missing" (omitted) values even if they are technically
present in the dataset. Because of the smallish haplotype block size in humans, most of
these visible triangular structures will have a limited span in the y-axis. We can truncate
the y-axis to zoom into the local neighbourhood and more accurately display the local
haplotype structure (bottom row).
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Figure 3.17 Flipping orientations of triangular plots. It is possible to control
the orientation (rotation) of the output graph by specifying the orientation parameter.
The numerical encodings are: 1) standard; 2) upside down; 3) left-right flipped; and 4)
right-left flipped.
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LD  R2

0.8−1.0:4
0.6−0.8:22
0.4−0.6:84
0.2−0.4:150
0.0−0.2:161292
NA:0

20694884
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Figure 3.18 Computing LocusZoom-like plots for GWAS data. In the following
examples we will investigate the association of genotypes at chromosome 6 and diabetes
in the imputed UK BioBank cohort. The plotLZ function will internally compute linkage-
disequilibrium for a target SNV and its surrounding genomic region. Given a target
SNP of interest, purple triangle, we compute the LD with all neighbouring SNPs and
fill points according to its R2 value. The Y-axis is the log10-transformed P-value for an
association with diabetes. The background computation of LD is stored in a temporary
file and then loaded back into memory and returned as a new twk class instance. Shown
is the SNV at 6:20694884 in a 1 Mb surrounding window (top) or 50 kb (bottom).
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Figure 3.19 Mixing plot types in rtomahawk. If your visualizations require additional
data layers it is possible to combine these into a single plot as rtomahawk renders plots
using base-R. In this example we will combine two plots: the GWAS P-value and its single-
site LD together with the all-vs-all pairwise LD for the same region in the upside-down
orientation.
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Figure 3.20 Mixing plot types in rtomahawk: a more advanced example. It is
possible to add more advanced data layers using external packages. In this example we
will add a gene track using genetic information extracted from biomaRt and drawn using
Sushi, both third-party packages.

3.2.20 Aggregating and reducing data

In order to describe the scale that image generation for this volume of data would involve,
take for example the small chromosome 20 with data from the 1000 Genomes Project
Phase 3[123] that comprises of 1,733,484 diploid SNVs. Assuming we can plot LD data
for a pair of SNVs in a single pixel, a monitor would have to be 400× 400 meters wide to
display this data if we assume a standard monitor with 1920× 1080 pixel resolution and

https://bioconductor.org/packages/release/bioc/html/biomaRt.html
https://bioconductor.org/packages/release/bioc/html/Sushi.html
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20 inches of physical size. Equally cumbersome, the memory requirement for rendering
this image would be ∼400 GB. Here we describe methods to overcome these restrictions.

Aggregation is the process of reducing larger datasets to smaller ones for the purposes
of displaying more data than can fit on the screen while maintaining the primary features
of the original dataset. Tomahawk performs aggregation into regular grids (2D partitions)
and then applies summary statistics functions in these bins (Table 3.11).

Table 3.11 Currently available aggregation functions in Tomahawk. These aggregators
are applied after partitioning a matrix Mm×m into non-overlapping bins of size b. This
can be considered a k-nearest-neighbour summary statistics for m/b blocks.

Function Action
Summation Sum total of the desired property
Summation squared Sum total of squares of the desired property
Mean Mean of the desired property
Standard deviation Standard deviation of the desired property
Minimum Smallest value observed of the desired property
Maximum Largest value oserved of the desired property
Count Number of times a non-zero value is observed of the desired property

Here I give a worked example. Imagine we start out with a 4× 4 matrix of observations
and we want to plot 4 pixels (2× 2):

Table 3.12 As an illustrative example we have the following assymetric square matrix
with C rows and R rows.

C1 C2 C3 C4
R1 1 2 3 4
R2 5 6 7 8
R3 9 10 11 12
R4 13 14 15 16

For example, aggregation by summation would result in the following matrix (Table
3.13):
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Table 3.13 Aggregating by summation the matrix in Table 3.12 to a smaller 2 × 2
destination matrix. First we compute total sum for the four values in the top-left 2× 2
sub-matrix in Table 3.12: 1 + 2 + 5 + 6 = 14. Next for the 2 × 2 top-right matrix
3 + 4 + 7 + 8 = 22. Finally, the last two sub-matrices are computed.

C1-2 C3-4
R1-2 14 22
R3-4 46 54

Aggregation by means would yield the following matrix (Table 3.14):

Table 3.14 Aggregating by mean. In an identical approach as in Table 3.13 but with a
different operator we compute the mean of the top-left 2×2 sub-matrix (1+2+5+6)/4 =
3.5. This procedure is repeated for the remaining sub-matrices.

C1-2 C3-4
R1-2 3.5 5.5
R3-4 11.5 13.5

3.3 Results
We address the computational scaling requirements by representing genotypes using
uncompressed bitmaps, which permits us to efficiently compare alleles by taking advantage
of SIMD (single instruction, multiple data) instructions available on standard processors.
These machine instructions operate on wide data registers and accelerate computation
by processing multiple machine words simultaneously. To take advantage of these
instructions, we perform bitwise transformations such that a two-locus haplotype is set
to one (1) when true or zero (0) otherwise (see Methods). Set bits are simultaneously
transformed and counted using a modified carry-save adder network[88] (also see Chapter
2). Using this approach and by leveraging multiple cores and SIMD-instructions we achieve
a sustained and hardware-limited peak performance of 456 billion allelic comparisons per
second (∼0.2 CPU cycles/64-bit word) on a single core and >11.5 trillion comparisons per
second on 28 cores (Figure 3.21 and Table 3.15). Because this approach is independent
of allele frequency (data density) it displays good performance across most sample sizes.
We can further accelerate analysis for sparse vectors by supplementing the bitmaps with
scalar lists storing the positions of set bits in the bitmaps (Algorithm 2 and Table
3.16,3.17). This additional information reduces the search space by limiting the number
of comparisons to the set positions in the vector with the lowest allele frequency by
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performing scalar-bitmap comparisons. In order to maximize performance, we apply a
heuristic-based decision tree that automatically selects the best method given the allele
frequencies of the input pairs of genotype vectors.
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Figure 3.21 Performance for different number of samples and allele frequen-
cies. Data for n alleles and m sites was generated by drawing positions from the uniform
distribution U(0, n) until the target alternative allele count ρ is reached. The y-axis
corresponds to the number of CPU cycles / pair of 64-bit words equivalent in bitmap
space in order to compare the throughput of both sparse and dense algorithms. Legend:
blue solid, unblocked dense vector; blue dashed, blocked dense vector; red solid, unblocked
sparse vector; green solid, blocked sparse vector.

Table 3.15 Performance for computing the cardinality of the set intersection between a
pair vectors of bitmaps using the AVX512BW Instruction Set Architecture (ISA) with
number of samples from 28 to 226 with a fixed 10,000 rows (sites). After 262,144 samples
(marked with *) we switch algorithm from uncompressed bitmaps to a hybrid-compressed
approach that dramatically saves memory at the cost of performance.

Haplotypes CPU cycles / 64-bit word MB/s
256 1.754 13,870
512 1.127 21,565
1,024 0.785 30,900
2,048 0.535 45,290
4,096 0.47 51,610
8,192 0.324 74,882
16,384 0.238 101,556
32,768 0.207 116,453
65,536 0.215 111,968
131,072 0.248 95,535
262,144* 0.427 51,337
524,288 0.483 45,359
1,048,576 0.527 41,524
2,097,152 0.645 32,810
4,194,304 0.732 24,915
8,388,608 0.855 20,423
16,777,216 0.875 17,252
33,554,432 0.933 16,572
67,108,864 0.987 13,883
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Table 3.16 Performance difference between using bitmap-bitmap (SIMD) or bitmap-
scalar intersections as a function of allele count for a varying number of haplotypes from
210 to 217 over 10,000 rows (variant sites). Varying number of allele counts are set in
random positions for each row (Alts column). This approach makes use of the largest
ISA available at execution time as a function of the largest input array size. The chosen
algorithm is shown in the Instruction set column. The cut-off between scalar-bitmap and
bitmap-bitmap is set at N/200 where N is the number of haplotypes.

Haps. Instruction set Alts SIMD (MB/s) Scalar-bitmap (MB/s equivalent) Speedup

1,024 SSE4.2
1 24,229 86,133 3.6
10 24,231 29,610 1.2
100 24,233 29,593 1.2

2,048 SSE4.2
1 34,970 172,071 4.9
10 35,026 40,784 1.2
100 35,064 44,157 1.3

4,096 AVX2
1 51,202 342,790 6.7
10 51,085 82,772 1.6
100 51,231 50,963 1

8,192 SSE512BW
1 76,483 678,720 8.9
10 75,875 164,812 2.2
100 74,482 73,528 1

16,384 SSE512BW
1 102,963 1,343,250 13
10 103,198 328,654 3.2
100 100,970 100,155 1

32,768 SSE512BW
1 117,859 2,550,386 21.6
10 118,683 643,469 5.4
100 117,047 117,681 1

65,536 SSE512BW
1 114,474 4,608,914 40.3
10 115,290 1,270,198 11
100 115,217 122,229 1.1

131,072 SSE512BW
1 100,047 8,137,207 81.3
10 99,272 2,396,232 24.1
100 98,745 289,108 2.9
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Table 3.17 Time and memory savings for using scalar-bitmap intersections. This table
demonstrates the extreme case where there are 10,000 variant sites with a single alt set
for different number of haplotypes spaced in base-2 steps from 28 to 226. In the worst case
for the hybrid bitmaps approach and an allele count of one, we will use 8kb of memory
per site regardless of the universe size of haplotypes. Storm-contig use uncompressed
bitmaps in aligned and contiguous memory whereas Storm use a hybrid approach to save
memory. Memory in Storm is always aligned but not guaranteed to be contiguous. Note
that memory requirements for Storm-contig are estimated for ≥262,144 haplotypes but
measured for Storm.

Haps.
Storm-contig. Storm

Speedup Mem. saving (fold)
Time (ms) Mem. (MB) Time (ms) Mem. (MB)

256 322 0.3 220 0.3 1.5 1
512 403 0.6 142 0.6 2.8 1
1,024 503 1.2 141 1.2 3.6 1
2,048 705 2.4 142 2.4 5 1
4,096 956 4.9 143 4.9 6.7 1
8,192 1,302 9.8 145 9.8 9 1
16,384 1,931 19.5 152 19.5 12.7 1
32,768 3,350 39.1 165 39.1 20.3 1
65,536 6,770 78.1 182 78.1 37.2 1
131,072 15,654 156.3 210 156.3 74.5 1
262,144 N/A 312.5 1,082 0.3 N/A 1,042
524,288 N/A 625 889 0.3 N/A 2,083
1,048,576 N/A 1,250 764 0.3 N/A 4,167
2,097,152 N/A 2,500 687 0.3 N/A 8,333
4,194,304 N/A 5,000 669 0.3 N/A 16,667
8,388,608 N/A 10,000 650 0.3 N/A 33,333
16,777,216 N/A 20,000 643 0.3 N/A 66,667
33,554,432 N/A 40,000 640 0.3 N/A 133,333
67,108,864 N/A 80,000 635 0.3 N/A 266,667

Lastly, we can sustain high performance in the unphased case by leveraging an exact
analytic solution[91, 40] in place of the more standard iterative procedure[112] (see
Methods).

To analyse computational performance, we benchmarked Tomahawk against existing
tools[95, 96]. First, we compared run times and memory usage by simulating a fixed 1
Mb region with increasing number of samples from 256 to 16 million (Figure 3.22, and
Table 3.19). In this situation, Tomahawk is substantially faster compared to PLINK and
emeraLD at all tested numbers of samples (Table 3.18). Notably, our highly optimized
algorithms display >13-fold faster single-thread performance compared to PLINK while
operating on the same data structure when using the AVX512 ISA (data not shown).
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Table 3.18 Performance for simulated 1 Mb with samples from 28 to 224.
Because of the very small region simulated, a unrealistically proportion of sites will have
large allele frequency (common variants) resulting in Tomahawk using dense matrix
computations. Despite of this, Tomahawk is generally an order of magnitude faster then
PLINK.

Haplotypes Variants
Time

Speedup
Tomahawk PLINK

512 5623 00.196s 0.30s 1.5
1,024 5859 00.251s 0.36s 1.4
2,048 6596 00.384s 0.63s 1.6
4,096 7250 00.544s 1.0s 1.8
8,192 7812 00.827s 1.93s 2.3
16,384 8210 00.597s 4.07s 6.8
32,768 8895 00.549s 9.32s 17.0
65,536 9272 00.598s 20.29s 33.9
131,072 9909 01.261s 45.62s 36.2
262,144 10703 05.582s 1m46.98s 19.2
524,288 10743 12.974s 3m36.30s 16.7
1,048,576 11789 32.830s 8m41.71s 15.9
2,097,152 11778 59.055s 15m59.82s 16.3
4,194,304 12495 02m05.673s 33m49.37s 19.2
8,388,608 12920 04m02.044s 01h35m51s 23.8
16,777,216 13708 09m26.16s 04h16m22s 27.2

Table 3.19 Statistics for simulated 1 Mb regions with (28, 29, . . . , 220) haplotypes. File
sizes for the BCF, BED, and VCF.gz formats are included for reference. The bcftools
plugin +fill-tags was used to compute allele counts and failed to run (memory seg-
mentation fault) after 524,288 samples. AC: allele count.

Haplotypes Sites BCF BED VCF.gz AC = 1 AC <5 AC <10 AC <100
256 4,884 0.1 0.1 0.1 718 1,638 2,260 4,158
512 5,623 0.2 0.3 0.3 848 1,656 2,253 4,172
1,024 5,859 0.4 0.7 0.5 843 1,706 2,319 4,014
2,048 6,596 0.8 1.6 1 789 1,601 2,255 4,163
4,096 7,250 1.8 3.5 2.1 784 1,674 2,307 4,254
8,192 7,770 3.4 7.6 4 801 1,652 2,322 4,230
16,384 8,210 7 16 8.3 810 1,654 2,225 4,029
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32,768 8,895 13.6 34.7 15.7 802 1,657 2,332 4,163
65,536 9,272 25.5 72.4 29.6 834 1,735 2,322 4,153
131,072 9,909 48.8 154.8 57.2 817 1,714 2,331 4,228
262,144 10,703 106.4 334.5 125.6 816 1,694 2,260 4,133
524,288 10,743 180 671.4 213.9 793 1,657 2,235 4,279
1,048,576 11,789 418.6 1473.6 497.4 ERROR ERROR ERROR ERROR
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Figure 3.22 Allele count (left) and allele frequency (right) distribution plots for simulated
data in a 1 Mb range for (28, 29, . . . , 220) haplotypes. No data is available for 220 as allele
counts could not be extracted using bcftools.

Because uncompressed bitmaps are less useful for large numbers of individuals because
of their memory requirements we implemented a simplified variation of well-established
hybrid bitmaps [67, 66, 16] that both reduce the memory footprint and improve perfor-
mance for large datasets (see Methods). This approach partitions the data interval into
non-overlapping chunks and stores information only in chunks with data available as ei-
ther bitmaps or scalars. Using this approach, Tomahawk can achieve up to >100,000-fold
speedups compared to PLINK depending on allele frequency (Table. 3.20).
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Table 3.20 Time and memory usage for computing all-vs-all LD for PLINK
and Tomahawk on large datasets with low allele count. We simulated number
of haplotypes from 1 million to 16 million for 10,000 variant sites. Each site have an
allele count of 1. No larger cohorts were tested as PLINK require too much memory to
run. Memory listed in MB and time in seconds.

Haplotypes
PLINK Tomahawk

Speedup Memory saving
Time Memory Time Memory

1,048,576 2167.4 5438.5 0.764 0.3 2,837 18,128
2,097,152 6428.9 7805 0.687 0.3 9,358 26,017
4,194,304 12672.7 7926 0.669 0.3 18,943 26,420
8,388,608 30356.1 7954.2 0.650 0.3 46,702 26,514
16,777,216 66783.4 7954.2 0.643 0.3 103,862 26,514

Lastly, we investigated performance on real-world data by computing LD for the
1000GP dataset (n = 2,504, Table. 3.21). All tested methods grow linearly with
increasing number of pairs of sites. Using chromosome 22 from the 1000GP cohort as an
example, Tomahawk is >61-fold faster (t = 6.8 min) compared to PLINK (t = 248.5 min).
Similarly for the HRC dataset, Tomahawk is 18.37-fold faster (t = 6.04 min) compared
to PLINK (t = 111.02 min) and 133.84-fold faster compared to emeraLD (t = 808.89
min). On the basis of these simulated datasets, we expect that Tomahawk will continue
to improve over other methods as sample sizes increase.

Table 3.21 Run-time for 2,504 samples in the 1000 Genomes Phase 3 dataset
for Tomahawk. The host architecture used is a 14-core 22 nm Haswell Xeon E5-2697
v3 with the AVX2 ISA and hyper-threading enabled (but unused). Times are reported
as elapsed wall time using 14 cores.

Chromosome Variants Time
1 6,419,532 03h46m05s
2 7,026,684 04h27m05s
3 5,787,493 03h03m30s
4 5,685,496 03h01m35s
5 5,224,039 02h29m30s
6 4,983,194 02h21m05s
7 4,680,137 02h02m02s
8 4,560,663 01h53m22s
9 3,533,035 01h08m36s
10 3,961,685 01h27m38s
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11 4,014,414 01h28m10s
12 3,837,554 01h21m23s
13 2,835,142 44m57s
14 2,634,138 38m15s
15 2,405,829 31m45s
16 2,675,201 38m17s
17 2,311,055 28m55s
18 2,249,409 28m09s
19 1,817,889 18m36s
20 1,798,559 17m41s
21 1,096,282 06m50s
22 1,094,014 06m47s

Next, we computed chromosome-wide LD for the 1000GP pan-population panel[123]
for a total of 181.6 × 1012 pairwise variant comparisons (Figure 3.23). This analysis
finished in <33 hours on a single 14-core machine and resulted in >47.4 billion output
associations with an R2-correlation over 0.1 involving variants with total non-reference two-
locus haplotype count >5 compressed into 663 gigabytes (∼7.3 terabytes of uncompressed
binary data, See Methods). We similarly computed chromosome-wide LD for the
Haplotype Reference Consortium[125] (HRC, n = 32,470) panel and Table. 3.22). This
analysis finished in <98 hours. I limited additional analyses to the 1000GP dataset.

Table 3.22 Run-time for 32,470 samples in the HRC dataset. The host archi-
tecture used is a 14-core 22 nm Haswell Xeon E5-2697 v3 with the AVX2 ISA and
hyper-threading enabled (but unused). Times are reported as elapsed wall time using 14
cores.

Chromosome Variants Time
1 3,069,931 10h47m35s
2 3,990,910 13h44m4s
3 2,821,894 9h06m55s
4 2,787,581 9h04m31s
5 2,588,168 7h35m56s
6 2,460,111 7h02m44s
7 2,289,305 6h01m42s
8 2,242,705 5h44m54s
9 1,686,471 3h19m34s
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10 1,937,230 4h23m25s
11 1,936,990 4h25m11s
12 1,848,117 4h03m28s
13 1,385,433 2h19m04s
14 1,270,436 1h56m37s
15 1,139,215 1h33m34s
16 1,281,297 1h56m08s
17 1,090,072 1h24m05s
18 1,104,755 1h28m35s
19 868,554 54m57s
20 884,983 56m40s
21 531,276 21m38s
22 524,544 21m11s

In order to handle this volume of data, I developed a comprehensive framework that
enables efficient storage, queries and visualizations called rtomahawk. Exploring data
using these visualizations, we observe large LD blocks spanning the centromere that
frequently encompass several megabases (Figure 3.24 and Figure 1-21), corresponding
to the recently described cenhaps[61]. Chromosomes 2-8, 10-12, and 16-20 display a strong
pan-centromeric pattern while chromosomes 1,9,13,14,15,21 show little to no signal. These
centromere-spanning LD blocks are present in all super-populations and populations,
consistent with the centromeric regions being recombination-quiescent[9, 120] and that
the observed haplotype structure preceded the separation of continental populations.



3.3 Results 99

1 2 3 4 5 6 7

0

5000

10000

15000

1KGP3 chr1−22

Variants (millions)

T
im

e 
(s

ec
)

●●

●●

●●
●

●●
●

●

●
●●

●

●

●

●

●●

●

●

0 5 10 15 20 25

0

5000

10000

15000

1KGP3 chr1−22

Variants comparisons (10^12)

T
im

e 
(s

ec
)

●●

●●

●●
●

●●
●

●

●
●●

●

●

●

●

● ●

●

●

Figure 3.23 Completion times for computing chromosome-wide LD for
1KGP3 data. Left panel: Completion times grows in O(2N(V − 1)(V )/2)-time where
2N is 5,008 haplotypes and V is the number of bi-allelic variants ranging from 1,094,014
for chr22 to 7,026,684 for chr2. Computation for chr2 finished in 4h27min on 14 cores and
chr22 finished in 6m47s. Right panel: X-axis is (V −1)(V )/2-transformed to demonstrate
a perfect linear relationship in this space. The host architecture used is a 14-core 22 nm
Haswell Xeon E5-2697 v3 with the AVX2 ISA and hyper-threading enabled (but unused).
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Figure 3.24 Example pan-centromeric linkage-disequilibrium block. a)
Chromosome-wide linkage-disequilibrium (LD) for 1000 Genomes Phase 3 (1KGP3)
chromosome 11 demonstrating a long-range, pan-centromeric LD block. b) Zoomed in
region of a) reveal a pan-centromeric LD block from around 46 Mb to 57 Mb. The
missing information in the middle correspond to the repetitive centromeric region that is
masked out during the mapping procedure. c) Upper triangular LD block for the South
Asian (SAS) super-population of the 1KGP3 dataset with genomic coordinates shown.
d) Upper triangular blocks for admixed American (AMR), East Asian (EAS), Euro-
pean (EUR), and African (AFR) super-populations demonstrating that these long-range
pan-centromeric LD blocks are present in all of them.

3.4 Discussion
Together, these algorithms ensure completeness and correctness while reducing computa-
tional cost and time. I applied them to the general problem of computing genome-wide
linkage-disequilibrium statistics for both real and simulated population-scaled datasets
ranging from 1,000 samples to 67 million samples. Given the efficiency and flexibility of
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these algorithms owing to their generalizability, I expect that they will enhance both
existing and novel methods exploring population-scaled datasets.

3.5 Additional approaches
In the following subsections I describe functionality and algorithms that used to be
part of Tomahawk but were eventually removed when better performing approaches
were discovered. Although not optimal in this application space, these subroutines and
algorithms have interesting properties making them worthwhile to mention.

3.5.1 Representing genotypes using run-length encoding

As the haplotypic diversity is low in humans[123], most bitmaps will be predominantly
empty (mostly zeros). For example, >80% of variants in the 1000 genomes project
(1000GP)[123] have an allele count <5. As cohort size increases, rare alleles are beginning
to dominate and heavily polarize the variant dataset to extreme sparsity: Topmed2 (n =
62,784)[121] and gnomAD3 (n = 125,748 exomes and n = 15,708 genomes)[55].

Run-length encoding is a well-established encoding algorithm that represents repetitive
symbols as a (symbol, copies)-tuple. For example, the sequence 0000000000 is stored as
(0,10). As mentioned, most variable sites have low allele frequency and will compress into
few RLE objects (data not shown). The following algorithms exploit this property of
sparsity by first run-length encoding (RLE) variants (Algorithm 5) at a locus and then
directly compare pair of RLE objects from two different loci (Figure 3.25, Algorithm 6
and 7). Although these algorithms are no longer part of tomahawk, a variation of them
is used in Chapter 5.

2Freeze5 (GRCh38), MD5 checksum 773e9e97759a4a5b4555c5d7e1e14313. Last accessed: 22 July,
2019

3version 2.1.1, WGS file: gnomad.genomes.r2.1.1.sites.vcf.bgz, MD5 checksum
e6eadf5ac7b2821b40f350da6e1279a2. WES file: gnomad.exomes.r2.1.1.sites.vcf.bgz, MD5
checksum f034173bf6e57fbb5e8ce680e95134f2. Last accessed: 22 July, 2019
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Figure 3.25 Algorithm for computing set intersections using run-length en-
coding of genotypes. a) Run-length encoding (RLE) genotypes as (template, length)-
tuples enables direct comparison of sparse vectors in theoretically faster time compared
to naive comparisons. Given two vectors of RLE elements, A and B, we compare each
element pairwise and report the joint genotype/haplotype of either (1) the smaller or
(2) both and advance the pointer in either or both, respectively, resulting in the output
matrix shown. b) Worked example of the vectors in a).

Algorithm 5 Run-length encode biallelic diploid variants
1: function RLEGenotypes(G, n) ▷ Where G - vector of biallelic genotypes, n -

number of samples
2: Let L = 1 be the current run length
3: Let E = (allele A, allele B, phase) 7→ ({0, 1, 2}, {0, 1, 2}, {0, 1}) be a 3-tuple

genotype
4: RLE = (E, run length)
5: R = {} be an empty vector of RLE
6: Eref = (GA

0 , GB
0 , GP

0 )
7: for i = 1 to n do
8: Ecomp = (GA

i , GB
i , GP

i )
9: if Ecomp ̸= Eref then

10: Push RLE(Eref, L) into R
11: Eref = Ecomp

12: L = 0
13: end if
14: L += 1
15: end for
16: return R

17: end function

By exploiting the run-length representation of genotypes instead of their explicit values
we can reduce the number of operations required to compute the inner product of two
vectors in the average case. We do this by noting that the number of comparisons
required to compare two random multi-sets RA and RB of RLE objects can be computed
in worst-time proportional to the total set sizes of the two sets: O(|RA| + |RB| + 1).
Algorithm 6 and 7 are functionally identical but operate on two different template sizes:
two bits for phased data and four bits for unphased data.
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Algorithm 6 Constructing implicit 3-by-3 contingency table for unphased genotypes
directly from run-length compressed data

1: function BuildUnphasedTableAlg1(RA, RB)▷ R - run-length encoded vector A
and B

2: Let O[0 . . . 256) be an empty array
3: Let RE[i] be the 4-bit encoded genotype at position i

4: Let RL[i] be the run-length at i

5: Let pack(RE
a [i], RE

b [j]) be the joint 8-bit genotype combination
6: Let i = 0, j = 0 such that i ∈ [0 . . . |RA|), j ∈ [0 . . . |RB|)
7: Let cA = RL

A[0] and cB = RL
B[0]

8: while TRUE do
9: X = pack(RE

A[i], RE
B[j])

10: if cA < cB then ▷ Current length of A < current length of B
11: cA −= cB

12: O[X] += cB

13: j += 1
14: cB = RL

B[j]
15: else if cA > cB then ▷ Current length of A > current length of B
16: cB −= cA

17: O[X] += cA

18: i += 1
19: cA = RL

A[i]
20: else ▷ Current length of A is equal to the current length of B
21: O[X] += cA

22: i += 1, j += 1
23: cA = RL

A[i], cB = RL
B[j]

24: end if
25: if i == |RA| or j == |RB| then
26: break
27: end if
28: end while
29: return CalculateLDUnphased(O)
30: end function
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Algorithm 7 Constructing implicit 2-by-2 contingency table for phased genotypes
directly from run-length compressed data

1: function BuildPhasedTableAlg1(RA, RB) ▷ R - run-length encoded vector A
and B

2: Let O[0 . . . 16) be an empty array
3: Let RE[i] be the 2-bit encoded genotype at some array position i

4: Let RL[i] be the run-length at i

5: Let pack(RE
a [i], RE

b [j]) be the joint 4-bit genotype combination
6: Let i = 0, j = 0 such that i ∈ [0 . . . |RA|), j ∈ [0 . . . |RB|)
7: Let cA = RL

A[0] and cB = RL
B[0]

8: while TRUE do
9: X = pack(RE

A[i], RE
B[j])

10: if cA < cB then
11: cA −= cB

12: O[X] += cB

13: j += 1
14: cB = RL

B[j]
15: else if cA > cB then
16: cB −= cA

17: O[X] += cA

18: i += 1
19: cA = RL

A[i]
20: else
21: O[X] += cA

22: i += 1, j += 1
23: cA = RL

A[i], cB = RL
B[j]

24: end if
25: if i == |RA| or j == |RB| then
26: break
27: end if
28: end while
29: return CalculateLDPhased(O)
30: end function

Both of these algorithms can be rewritten into branchless form to avoid costly prediction
errors.
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Chapter 4

Analysing population-scaled
sequence variant data

In this chapter I will introduce several algorithms for efficiently storing and querying
large-scale genetic datasets that can interchange to htslib-compliant file formats in
a bit-exact fashion. I will demonstrate how it is possible to reduce the file size while
simultaneously accelerating query speeds by using a column-centric storage model (column
store) compared to the row-centric model used in most incumbent genomics file formats.
I will introduce a novel supportive data structure that allows for summary statistics
queries to be performed directly from the compressed representation. Collectively, these
methods and algorithms are packaged into the software project tachyon. Software is
available online at: https://github.com/mklarqvist/tachyon.

4.1 Introduction
Over the last decade, large-scale international and national collaborative efforts have
created increasingly larger genetic variation datasets. Recent population-scaled national
initiatives such as the UK Biobank[14], the UK 100,000 Genomes Project[127], and the
US All of Us Research Program[52], will encompass up to a million people. These datasets
will contain trillions of data points for genotypes and, if stored using the incumbent
Vcf interchange format[26], would require prohibitive amounts of storage and would be
inexpedient to query.

The concept of compressive genomics [78] involves leveraging inherent redundancies
in data to achieve sublinear storage and analyses and has been widely successful in the
storage of sequencing data [17, 12, 142] and genetic variant data [34, 71, 30]. Large
genetic datasets of humans have a highly redundant structure primarily because of low

https://github.com/mklarqvist/tachyon
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haplotypic diversity [123]. Notably, data from between 250 and 1,000 individuals are
required to double the genetic information content compared to a single genome as
humans differ by around 0.1-0.4% [123]. As additional samples of similar ancestry are
added, the majority of newly observed variants will be either of very low frequency or be
de novo mutations [121, 55, 123]. This limited ancestral diversity and highly structured
data can be exploited to improve compression and accelerate analyses by employing
encoding schemes that do not require decompression. Genetic archives compressed in this
fashion can be queried in time proportional to its compressed size resulting in considerable
performance gains.

4.2 Methods

4.2.1 Column-centric representation

Traditional databases store information in a per-record (row-centric) orientation such
that three records r1 = (A1, B1, C1), r2 = (A2, B2, C2), and r3 = (A3, B3, C3) are stored
end-to-end in a table (r1, r2, r3). In contrast, column-centric (column store) systems
vertically partition records into collections of individual columns for each data field. Using
the same example data, three columns cA, cB, and cC store all data for the three data
fields A, B and C such that cA = (A1, A2, A3), cB = (B1, B2, B3), and cC = (C1, C2, C3).
These columns can then be compressed and stored separately on disk.

Database performance is directly related to the efficiency of moving target data into
CPU registers for processing. By storing each column separately on disk, column stores
can perform queries involving only the target field of interest without first loading entire
records into memory and then discarding unwanted information. Individually stored
columns contain data of a shared primitive type resulting in improved compression and
faster loading time from disk[1, 150]. Operating directly on compressed data, when
possible, heavily improves utilization of memory bandwidth by reducing the amount of
data in CPU registers[2].

Maintaining the relationship (map) between fields and record requires additional effort
in a column store for genetic variant data. Data in the Vcf interchange format require
storage in a hierarchical (nested) model where only the root level has a defined schema.
The root level has the defined schema chromosome, position, name, reference allele,
alternative alleles, quality, flags, and additional per-site information (INFO, Figure 4.1a).
In contrast, the INFO-field is a tensor of fields with the only requirement that its primitive
type is predefined in the archive header. This hybrid schemaless representation of fields
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below the root level requires a function that maps a list of target field identifiers back
to a given configuration (Figure 4.1d). Using a simple hash function H(x), f : Z→ Z
that deterministically maps any input bit-string into a fixed-width integer, I first hash
the global identifiers (dictionary-compressed identifiers mapping to a field) of a field into
local identifiers and thereby guarantee they map to the range [0, ·)Z. This list of local
identifiers corresponds to a pattern, representing the local schema for a given record,
that can in turn be hashed to create a pattern identifier. In order to reduce space and
improve computational efficiency, the list of identifiers in a pattern is stored in a bitmap.
Storing the pattern identifiers together with the list of local identifiers it contains is
sufficient to index the observed schemas in a nested field. Collectively, this approach
enables Tachyon to interchange between htslib-compliant file formats and the yon file
format in a bit-exact fashion.
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Figure 4.1 Overview of the storage model. a) Genetic datasets stored in the widely
used Vcf interchange format are stored as per-site records comprising of a variety of
site-descriptive fields, such as position and reference allele, and optionally per-sample
information such as genotype information. b) In the row-centric (record) memory layout
used by Vcf, and the binary representation Bcf, fields in a record are stored end-to-end.
This traditional memory layout is efficient when querying many, or all, fields in a few
records. Random-access to fields is generally inefficient as unwanted fields needs to be
read from disk, uncompressed, and then discarded. c) In contrast, the vertical partitioning
of a table into a column-centric memory layout (also called a column store) allows the
same field of multiple records to be stored into a single, contiguous, memory address.
Querying columnar data is generally faster because of better data locality and have
better random-access performance because of the fixed stride sizes for most data types.
d) Additional effort is required to maintain the relationship between a record and the
fields it contains. I address this mapping problem by first hashing the global identifier
of the fields in a record to its block-wise (subset of dataset in terms of variants), local,
identifiers. This list of local identifiers are in turn hashed to create a local identifier that
maps to a given pattern of identifiers. The pattern itself is stored as a packed bitvector.
Storing the local identifier to a pattern is sufficient information to retrieve back data
from the correct columns.
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4.2.2 Trade-offs in the choice of storage model

The choice of data storage model, either row-centric or column-centric, depends on the
target downstream application. Accessing a single record, or multiple fields in a single
record, is generally faster in the row-centric orientation as only a single disk seek is
required to retrieve the target data. In this case, a column store would have to perform
multiple seeks, decompress multiple columns, slice out a single value from each, and
then reconstitute the output record. In contrast, if the target queries are required to
access multiple records then the seek costs of a column store is amortized by the reduced
transfer time, lower memory bandwidth, and more efficient vectorized computations. For
these reasons, column stores are generally most useful where performance critical queries
involve few fields from many records. This is generally the case in common genetics
workflows where only a single, or a handful, of fields are required to compute the statistics
or metrics of interest.

4.2.3 Compressing genotypes using run-length encoding

In the incumbent interchange format, Vcf/Bcf[26], genotypes are stored in a implicit
Xn×m-matrix with 0 encoding the reference allele and 1, 2, . . . , k encoding the first,
second, up to k alternative alleles (Figure 4.1a). Most of this information is highly
repetitive (sparse) because of low haplotype diversity in humans[123]. This property
can be exploited using well-established and light-weight compression paradigms such
as run-length encoding where long repetitions (runs) of a symbol (template) are stored
as (template, length)-tuples. In most applications for compressing genetic data[34, 71],
run-length encoding is applied on the single symbol level as (allele, length)-tuples using
either variable-length integers[34] or fixed-width words. In Tachyon, run-length encoding
is applied on the genotype level resulting in (genotype, length)-tuples. Tuples are
partitioned into different data streams according to the longest observed run-length at
a site such that [0, 28−σ), [28−σ, 216−σ), [216−σ, 232−σ), and [232−σ, 264−σ) correspond to
the four possible target bins where σ is the number of bits used to store the template.
Furthermore, we expect that most sites in human datasets will be biallelic and thereby
require at most log2(2) = 1 bit of storage for the template component. In contrast,
the much less frequent multiallelic sites, require a variable ⌈log2(σ)⌉ bits of storage
for the template and have greater data entropy and in consequence worse compression
performance. Because of this, biallelic and multiallelic genotypes are stored separately.
Bialleic sites are compressed using Algorithm 5 and n-allelic sites are compressed using
Algorithm 8.
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Algorithm 8 Run-length encode n-allelic diploid variants
1: function EncodeGenotypesSimple(G, n) ▷ Where G - vector of n-allelic

genotypes, n - number of samples
2: Let m be the number of unique alleles
3: Let E = (allele A, allele B, phase) 7→ (Z+,Z+, {0, 1}) be a 3-tuple genotype
4: Let ceil((2× ceil(log2(m)) + 1)/8) ∈ {1, 2} be the word-size of E

5: R = {} be an empty vector of E

6: for i = 0 to n do
7: Push (GA

i , GB
i , Gp

i ) into R

8: end for
9: return R

10: end function

4.2.4 Permutation-based preprocessing of genotypes

Directly compressing (run, template)-tuples results in moderate memory savings while
maintaining the ability to be queried directly. It is possible to further reduce the
storage cost of genotypes by exploiting the limited haplotypic diversity by conditionally
sorting the collection of genotypes up to, but not including, the current position l

resulting in a prefix-sort in the range [0, l). This preprocessing paradigm was popularized
in the genomics community with the description of the Positional Burrows-Wheeler
Transform (PBWT)[34] and its successive implementation in BGT[71]. Unlike previous
implementations, Tachyon permutes genotypes, of any ploidy, rather than individual
haplotypes. This representation enables genotype-based summary statistics to be queried
directly from compressed representation in contrast to the otherwise more practically
limiting haplotype-based queries.

Permuting genotypes using the PBWT has the consequence that each site has a pseudo-
random permutation order in respect to the original sample order. This unpredictable
pattern inherently disallows random-access lookups of samples with the consequence that
random-access first requires the iterative unpermuting of stretches of sites in the genetic
matrix from the last checkpoint to the current position. I address this using a hybrid
approach where a given input genetic matrix is first partitioned into non-overlapping
blocks, by either number of variants or number of bases covered, followed by computing
the final PBWT-based permutation order for each given block. Instead of permuting each
genotypic vector at a site given the suffix-sorted position up to that point I permute all
records in a block using the same permutation order. In this approach, random access can
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be maintained to any record in a block without positional dependency between records.
The block-wise permutation order is stored in order to map back to the original sample
order. Because of these difference to the original PBWT method, I call this approach
the gtPBWT.

Storing the block-wise permutation order can be prohibitive compared to the genotypes
themselves for large datasets. Fortunately, this permutation of 0, 1, . . . , s − 1 for s

samples using w-bit machine words can be compressed by exploiting the skewed per-bit
distribution. Without loss of generality, s words of w bits represented as {(0, 1, . . . , w −
1), (0, 1, . . . , w − 1), . . . , (0, 1, . . . , w − 1)} can be reversibly transformed into the form
{(0, 0, . . . , 0), (1, 1, . . . , 1), . . . , (n− 1, n− 1, . . . , n− 1)} with the result of reduced data
entropy and better compression. The relative storage cost of the permutation array
compared to the genotypic data can be balanced by modifying the block size. Large
block sizes will compress the genotypic component worse because linkage-disequilibrium
is generally short in humans. Small block sizes compress genotypes better but the savings
is generally outweighed by the storage cost of the permutation array.

The conditional PBWT permutation can be implemented in linear time as a partial
radix sort (Algorithm 9) by maintaining an index mapping the permuted order, the
positional prefix array (PPA), back to the original order. The PBWT can then be
constructed (Algorithm 10) and similarly reversed in linear time, with or without the
permutation array, in either the forward or reverse orientation (Algorithm 11 and
Algorithm 13).

Algorithm 9 Updating the Positional Prefix Array
1: function UpdatePrefixArray(I, P )▷ I - input vector, P - the current positional

prefix array
2: Let Q0 and Q1 be queues
3: for i = 1 to n do ▷ Radix sort on binary alphabet
4: if I[P [i]] == 0 then
5: Q0.enqueue(P [i])
6: else
7: Q1.enqueue(P [i])
8: end if
9: end for

10: P = {Q0, Q1} ▷ P is now in sorted order
11: end function



4.2 Methods 113

Algorithm 10 Constructing PBWT
1: function BuildPBWT(I) ▷ Where I - input vector
2: Let O[1 . . . n, 1 . . . m] be the output matrix
3: Let P be the prefix array initialized to 1 . . . n

4: for k = 1 to m do
5: for i = 1 to n do ▷ Output I[k] permuted by P

6: O[k, i] = I[k, P [i]]
7: end for
8: UpdatePrefixArray(I[k], P ) ▷ Update P

9: end for
10: return O ▷ Optional storage of P for right-left decoding
11: end function

Algorithm 11 Reversing the PBWT in Left-Right Orientation
1: function ReversePBWTForwards(I)
2: Let O[1 . . . n, 1 . . . m] be the output matrix
3: Let P be the prefix array initialized to 1 . . . n

4: for k = 1 to m do
5: for i = 1 to n do ▷ Input I[k] is permuted by P : inverse permutation
6: O[k, P [i]] = I[k, i]
7: end for
8: UpdatePrefixArray(O[k], P ) ▷ Update P

9: end for
10: return O

11: end function
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Algorithm 12 Reversing Position Prefix Array in Right-Left Orientation
1: function ReversePrefixArrayBackwards(I, P )
2: ▷ Where I - input haplotype array at position i, P - positional prefix array at

position i + 1
3: Let Q0 and Q1 be queues
4: Let R[1 . . . n] be an empty array
5: for i = 1 to n do ▷ Loop over permuted order
6: if I[P [i]] == 0 then
7: Q0+ = P [i]
8: else
9: Q1+ = P [i]

10: end if
11: end for
12: for i = 1 to n do ▷ Loop over linear order
13: if I[i] == 0 then
14: R[i] = Q0.dequeue()
15: else
16: R[i] = Q1.dequeue()
17: end if
18: end for
19: P = R ▷ Update P

20: end function

Algorithm 13 Reversing PBWT Right-Left
1: function ReversePBWTBackwards(I, P )
2: Let O[1 . . . n, 1 . . . m] be the output matrix
3: for k = m to 1 do
4: ReversePrefixArrayBackwards(I[k], P )
5: for i = 1 to n do ▷ Input I[k] is permuted by P : inverse permutation
6: O[k, P [i]] = I[k, i]
7: end for
8: end for
9: return O

10: end function
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4.2.5 Efficient summary statistics from compressed genotypes

Encoded, and possibly permuted, genotypes packed into succinct (template, length)-
tuples result in considerable memory savings but is less useful in the context of efficient
genotype-based queries as the decompression overhead would outweigh the benefits of the
memory savings. Addressing this, I describe a supportive data structure called gtOcc
that enables the summarization of genotypes between any two points in the cumulative
mass function for a collection of individuals (a grouping) in compressed representation
(Figure 4.2). In other words, a grouping G is a subset of individuals G ⊆ I of the total
set of available individuals, I. The proposed gtOcc data structure is similar to the Occ
matrix used in FM-mapping[37] but has to my knowledge not been used in this context
previously.

Formally, the function gtOcc(c, k) is the number of occurrences from S[1 . . . k] for
samples belonging to group c ∈ C. This function makes it possible to count the
occurrences between any two points i and j in O(1)-time through the relationship
gtOcc(c, j) − gtOcc(c, i) where gtOcc(·, 0) is defined to 0. We exploit this property
in terms of run-length encoding as gtOcc(c, p + RL[i]) − gtOcc(c, p) where p is the
cumulative positional offset in [0, n] observed in S[1 . . . p]. Constructing gtOcc(·) is
described in Algorithm 14 and the application of gtOcc(·) in the context of run-length
encoded data is described in Algorithm 15. gtOcc(c, k) returns the total count for all
groupings c in a linear pass of the data in worst case O(n|C|)-time. It is worthwhile to
mention that two or more groups may contain the same sample and there is no restriction
such that all samples must be included.
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Figure 4.2 Worked example of gtOcc(·) over three groupings. a) Given nine
samples labelled S1, S2, . . . , S9 and three groupings labelled G1, G2, and G3 the gtOcc
structure can be described as O|S|+1×|G| matrix initialized to zero. By definition, O0 is
defined to 0. b) In this case, our groupings are binary (member or not member). If a
sample belongs to a target group then we set that cell to one (1). For example, S7 is
a member of groups G2 and G3. c) Next, the cumulative sum across each grouping is
computed such that the value in any cell correspond to the number of samples belonging
to this group up to that point. d) This matrix is sufficient to enable summary statistics
between any two points. In this example, the first observed run-length encoded object is
a (0|0, 4)-tuple. By using the gtOcc table it is possible to answer how many individuals
belong to each group in the range [0, 4) and thereby how many copies of 0|0 belong to
each group. This process involves simple arithmetic operations: gtOcc(∑i<j

i=0 Ri + Rj)−
gtOcc(∑i<j

i=0 Ri) where Ri is the run-length of object i. The next step with the tuple
(0|1, 2) is depicted in e).

Algorithm 14 Construct sample-group lookup matrix
1: function ConstructgtOcc(S, G, n) ▷ Where S - sample vector, G - grouping

vector, n - number of samples
2: Let g be the unique members of G

3: Let X be a map from G to g ∈ [0, |g|)Z ▷ Implemented as a hash table
4: Let A[0 . . . n, 0 . . . |g|] be the output matrix
5: A[0] = {0, 0, 0, . . . |g|}
6: for k = 1 to n do ▷ Complexity O(ng) ≤ 2n, g ≤ n

7: for i = 0 to g − 1 do ▷ Initialise A[k] equal to A[k − 1]
8: A[i, k] = A[i, k − 1]
9: end for

10: A[X[G[i]], k] += 1
11: end for
12: return A

13: end function
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Algorithm 15 Summarise group-wise genotype frequencies from RLE data
1: function UpdateGroupRLE(R, A)▷ Where R - run-length compressed vector, A

- lookup matrix
2: Let g be the number of groups
3: Let X[0 . . . g − 1, 0 . . . 15] be the output matrix
4: Let P = A[0]
5: Let p = 0 be the cumulative position
6: for i = 0 to |R| − 1 do ▷ Complexity O(|R|g) ≤ O(n2), g ≤ n

7: p += RL[i]
8: for j = 0 to g − 1 do
9: X[j, RE[i]] += A[p + 1, j]− P [j]

10: end for
11: P = A[p + 1]
12: end for
13: return X

14: end function

4.2.6 Population genetic statistics

Many common statistical measures in genetics can be accelerated by directly operating on
compressed run-length encoded data by using the gtOcc table. This strategy well suited
to expedite many common statistical and population genetics measures by reducing
run-time to O(|R|)-time, where |R| ≪ n on average. To demonstrate the efficiency of
this approach, I describe how to compute a series of population genetics statistics using
this representation.

The fixation index (FST )[19, 20, 134] is a common statistics that attempt to quantify
the population differentiation because of drift or selection. FST is calculated on a per-
site basis and requires the genotype frequencies per population of interest. Genotype
frequencies can be efficiently computed over many populations (groups) using the gtOcc
function (Algorithm 15).

In contrast to statistics that involve partitioning the input data into groups, several
measurements can be computed directly from the genotypic vector itself. For example,
measures of nucleotide diversity such as θS (Equation 4.1) and π (Equation 4.2) can be
computed from the genotype frequencies at a site:

θS = Sn∑n−1
i=1 i−1 (4.1)
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π = n

n− 1

Sn∑
i=1

2piqi (4.2)

where n is the number of chromosomes, Sn is the number of polymorphic sites, pi is
the derived (nonancestral) allele frequency of the i-th site, and qi is the ancestral allele
frequency of the i-th site. Accumulating genotype counts from a run-length compressed
genotypic vector can be done in O(|R|)-time. These measurements can in turn be used
to quantitatively evaluate departures from the expected patterns of neutral variation.
Tajima’s D[119] (Equation 4.3) is a well-established and frequently used measurement
for investigating this:

D = π − θS√
V ar(π − θs)

(4.3)

4.2.7 Comparing performance

Compressing genotypes/haplotype stored in the incumbent Vcf/Bcf interchange format
was converted to a valid Tachyon archive using the base command:

tachyon import -i ${ input_bcf } -o ${ output_yon }

Interconvertion between Vcf, Vcf.gz, uBcf, and Bcf was performed using bcftools.

bcftools -i ${ input_file } -O ${ file_type } -o ${ file_name }

4.2.8 Simulated data sets

Genotypes from idealized datasets were simulated using msprime version 0.5d[56] with
the mutation rate and recombination rate per site per 4N generations set to 0.001 and
effective population size to 10,000. Genomic region was set 100 megabases and the
number of samples varied according to the experiments. Because msprime simulates
individual haplotypes, we simulated 2N haplotypes for each case and greedily combined
adjacent haplotypes into a single diploid genome.

4.2.9 Experimental data sets

Individual chromosome Bcf files were retrieved for each cohort and combined into a single
dataset using the Bcftools concat command.

• 1000 Genomes phase 3 (hg19)[123]: This dataset comprises variants and small
insertions/deletions (indels) for 2,504 individuals of various ancestry.
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• Haplotype Reference Consortium (hg19)[125]: This dataset comprises of a mixed
cohort of 32,488 whole-genome sequenced individuals. There are >39 million SNPs
with an allele count ≥ 5 and no indels. All samples from the 1000 Genomes phase
3 project are included in this dataset.

4.2.10 Computing environment

Code was compiled with GCC 8.3 using the optimization flags "-O3 -march=native" to
restrict optimizations to the host-machine architecture. All tests were performed using
a host machine with a 14-core 22 nm Haswell (x64) Xeon E5-2697 v3 with the AVX2
microarchitecture and a pair of NVMe solid-state hard drives operating in RAID-0 unless
otherwise specified. Memory usage and execution times were measured using Linux time
subroutines.

4.3 Results
With the advent of population-scaled datasets, methods for efficiently storing and
analyzing large genetic variant datasets have been of considerable interest recently[74,
147, 27, 31, 34, 71, 30, 63]. Unlike many of these studies that limit their focus to
compressing genotypes[27, 31, 34, 71, 30, 63], we address the storage and analysis of
entire genetic variant datasets.

In a similar fashion to CRAM[48] for sequencing data, row-centric genetic variant
records (Figure 4.1a) are vertically transposed and stored in separate data streams
according to the target field (Figure 4.1b). This memory layout allows for field-specific
compression algorithms to be used resulting in greater compression. The relationship
mapping the set of columns to the set of records is maintained using a simple hash-based
approach (Figure 4.1d and see Methods). In Tachyon, genotypes from a consecutive
series of variant sites are partially sorted according to their prefix[34] and then greedily
compressed using variable-length run-length encoding.

To explore the performance gains of representing genetic variant datasets this way,
I compared Tachyon to a series of frequently used compression engines across their
respective parameter spaces (Figure 4.3). Using data for chromosome 20 of the 2,504
individuals in the 1000 Genomes project[123](1KGP3), Tachyon is 9-fold smaller com-
pared to the frequently used BGZF-compressed Vcf archives (vcf.gz) and 5-fold smaller
compared to Bcf (Figure 4.3a). In addition, uncompressed Bcf (uBcf) was externally
compressed using Zstd in order to demonstrate that any file size savings are not exclu-
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sively caused by using a better compression engine compared to BGZF used in htslib.
Despite using Zstd, Tachyon remains 1.2-3-fold time smaller while maintaining random-
access to data compared to the complete loss of random-access when using an external
compressor. Additional gains in compression can be seen by preprocessing genotypes
using a permutation-based approach (Figure 4.3b) at the cost of additional compute
(Figure 4.3c). Similar numbers are seen when using data for chromosome 11 for the
32,470 whole-genome sequenced individuals in the Haplotype Reference Consortium
(HRC) project (Figure 4.3d-f).
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Figure 4.3 Compression performance on real data. a) Data for chromosome 20
for the 2,504 individuals in the 1KGP3 dataset was compressed over different compression
levels using htslib with either gzip, in the bcf format, or uncompressed bcf using gzip
as an external compressor, uncompressed bcf using zstd as an external compressor, or
using tachyon. Tachyon offer considerably better compression performance. b) First
permuting genotypes with the gtPBWT method result in considerable savings in memory
but require additional import time c). d) Same as a) for chromosome 11 for the 32,470
individuals in the HRC dataset. e-f) same as b-d) for HRC-chr11.
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Next, we compared compression performance over the entire 1KGP3 dataset (Figure
4.4a,c) and HRC dataset (Figure 4.4b,d) demonstrating that Tachyon has better
growth properties compared to Bcf. As a consequence of the succinct representations of
genotypes, and some columnar data, uncompressed (succinctly compressed) Tachyon data
approximately the same size as compressed Bcf for the 1KGP3 dataset (Figure 4.4c)
and ∼60% smaller for the HRC dataset (Figure 4.4d). Next, I examined if this property
continues to scale with future datasets encompassing hundreds of thousands of samples
by simulating haplotypes from 10,000 to 1 million diploid chromosomes. Unsurprisingly,
compression in Tachyon scales considerably better with increased number of samples
(Figure 4.4e) and the succinct representation of genotypes result in dramatic savings in
space (Figure 4.4f).

Storing column projections of a table in separate byte streams enables the selective
retrieval of the target fields of interest in time proportional to its compressed size.
To demonstrate the efficiency of column stores compared to row-centric formats, I
benchmarked the completion time of retrieving only the chromosome and position from
these large datasets. At 1 million samples Tachyon demonstrate a >233-fold speed
improvements compared to Bcftools (Figure 4.4g). As another example, vertical
partitioning of the gnomad chromosome 1[55] data result in a 4-fold reducing in size
(36 Gb to 8.6 Gb, see Table 1) while also enabling the efficint retrieval of individual
columns >17-fold faster (47 min for bcftools vs 2.6 min).
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Figure 4.4 Performance on real and simulated data. a) File sizes for Bcf (blue)
and tachyon (green) for 2,504 diploid individuals of various genetic ancestries for each
chromosome in the 1KGP3 dataset. b) File sizes for Bcf and tachyon for 32,470 diploid
individuals of mostly European ancestry for each chromosome in the HRC dataset. c) File
sizes for uncompressed (ubcf and uyon) and compressed (bcf and yon) archives for the
entire 1KGP3 dataset demonstrating that the uncompressed yon file format is comparable
in size to compressed bcf. d) File sizes for uncompressed and compressed archives for the
HRC dataset. e) Haplotypes were generated in the range from 1,000 to 1,000,000 and
compressed with bcf and yon. f) Uncompressed data for e) demonstrate that the succinct
run-length encoding representation in tachyon result in dramatic savings in memory for
uncompressed genotypes. g) Response times when querying for meta information only
(all fields excluding all the per-sample FORMAT fields). The columnar representation of
data in tachyon result in query times proportional to the individual columns. In contrast,
the row-centric orientation of Bcf scale in proportion to all available data. h) Response
times for querying for meta information only (as in g)) for the 1KGP3 dataset with either
a single thread or 28 threads. i) Same as h) for the HRC dataset.

Once genotypes are in a compressed representation it is highly desirable to perform
queries in compressed space to avoid costly decompression back into literal space. This
additional decompression overhead could outweigh the benefits of the memory savings.
To address this, I developed a supportive data structure that enables genotype-specific
queries in the run-length encoded space using simple arithmetic (see Methods). In
order to demonstrate potential applications, I computed a large number of common
summary statistics and population genetics statistics (Table 4.1) for several distinct
subsets of samples (groups) using the 1KGP3 chromosome 20 dataset (Table 4.2).
Notably, this approach is very flexible, allowing an individual to be a member of zero
or more groups. Computing multiple statistics grows sublinear with increasing number
of groupings. Calculating >554 million statistics for 36 overlapping groups using the
1KGP3 chromosome 20 completes in under 10 minutes on a single CPU core.

Table 4.1 Example of implemented statistics and population genetic statistics.
Lengths correspond to the number of possible values in the output vector where "A"
corresponds to an array of length [0, ).

Field Length Type Description
FS_A A Float PHRED-scaled Fisher’s exact test P-value for allelic strand bias
AN 1 Integer Total number of alleles in called genotypes
NM 1 Integer Total number of missing alleles in called genotypes
NPM 1 Integer Total number of samples with non-reference (compared to largest) ploidy
AC A Integer Total number of alleles
AC_P A Integer Total number of alleles each strand
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AF A Float Allele frequency of allele
HWE_P 1 Float Hardy-Weinberg equilibrium P-value
VT A String Variant classification (SNP, MNP, INDEL, CLUMPED, SV, UNKNOWN)
MULTI_ALLELIC 0 Flag Indicates if a site is multi-allelic (number of alternative alleles >1)
F_PIC 1 Float Population inbreeding coefficient (F-statistic)

Table 4.2 Annotation time for 2,504 individuals using 1KGP3 chromosome
20. Given an annotation file mapping sample names to some group(s), including across
all samples, Tachyon can compute the properties listed in Table 4.1 for each group and
variant site. Query used: tachyon view -i <file.yon> -GHX -b <groupings>. All
refers to a single grouping encompassing all samples. Abbreviations: super-pop, 1000
Genomes super-populations (AFR, AMR, EAS, EUR, and SAS); pop, 1000 Genomes
populations.

Query Time Groups Values
Output only 15.21s 0 0
Annotate all 51.65s 1 9
Annotate super-pop 2m32.74s 6 54
Annotate pop 07m28.69s 27 243
Annotate super-pop + pop 08m43.75s 32 288
Annotate super-pop + pop + gender 09m42.00s 34 306

4.4 Discussion
Recognizing current and impending scaling challenges posed by large-scale sequence
variant datasets, my motivation was to explore the application of column-centric storage
solutions to improve compression and decrease downstream analysis time. I have shown
that storing large genetic variant datasets in this proposed format results in considerable
savings in both the compressed and uncompressed space. In order to simultaneously offer
efficient compression and query performance I described a distinct variation of the PBWT
while still maintaining random-access. Additional query performance can be achieved
by operating directly on the succinct representation of genotypes. To support summary
statistics-based queries on compressed genotypes I developed the gtOcc data structure. I
demonstrated how it is possible to expedite a range of statistics and population genetic
statistics by using this data structure.
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Together this file format and associated algorithms can reproduce a target input file
with bit-exact correctness while reducing computational cost and time. I expect that
they will enhance both existing and novel methods exploring population-scaled datasets.

After this work was completed, I recognized that there are other compression methods
that provide superior performance on phased haplotypes[27, 31, 34, 71, 30]. This will be
explored in Chapter 5.
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Chapter 5

Efficient compression and analysis of
population-scaled genetic variation
datasets

In this chapter I will introduce several algorithms for efficiently storing and querying
large-scale genetic matrices (X(n×m) ∈ Z+) of haplotypes/genotypes that builds on ideas
from Chapters 2, 3, 4. I will also extend the computation of XXT for binary matrices
(X(n×m) ∈ [0, 1]Z) to the problem of computing genetic similarity matrices (XT X).
Collectively, these methods and algorithms are packaged into the software project djinn
and can be accessed at https://github.com/mklarqvist/djinn.

5.1 Introduction
In the Chapter 4 I discussed efficient algorithms for storing and querying population-
scaled sequence variant datasets including all non-genetic fields such as per-site and
per-sample information and other meta information. In many situations, the genetic
variants stored in sequence variant datasets are of principal interest. Recognizing the need
for both efficient compression methods and efficient algorithms for querying genotypes
for downstream analysis, I explore different computationally efficient representations of
genotype datasets.

https://github.com/mklarqvist/djinn
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5.2 Methods

5.2.1 Overview of the strategies

There are two basic kinds of memory layout approaches to storing sequence variant
data. (1) In a variant-centric record layout, each row is a vector of genotypes across all
samples at a site. This kind of layout is best suited for queries involving all samples
in few records. (2) In a sample-centric layout, each row is a vector of genotypes for a
single individual. Storing genotypes this way enables efficient queries involving a small
number of individuals in an archive. For example, individual-centric layouts are efficient
in computing pairwise differences between pairs of individuals.

Genotypic vectors, in either orientation, are encoded using a mixture of run-length
encoding (RLE) and bitvectors. Representing genotypes using either of these encodings
permit queries without first inflating data back to the literal genotype vector. Operating
directly on encoded data generally results in considerable speed improvements. For
storage on disk, encoded genotypes are ultimately compressed using either general-
purpose compressors or a series of tailored statistical models.

In order to support multi-allelic genotypes and missing data without compromising
on compression we decided to partition input data into three non-overlapping categories:
(1) bi-allelic sites, (2) bi-allelic sites with missingness and/or with mixed ploidy, and (3)
all other cases. Data is encoded and compressed separately and their order relationship
is maintained with a simple map. This approach requires an additional processing step
but result in considerable gains in compression.

5.2.2 Permuting sample order to reduce data entropy

The positional Burrows-Wheeler transform (PBWT)[34] is a reversible preprocessing
routine that takes a set of aligned haplotype sequences as input. It sorts a set of equal
length strings at each character position in the lexicographic order of the reverse prefixes
up to that position. Sorting strings in this fashion results in considerably reduced
data entropy and improved downstream compression (Figure 5.1) in most cases as
similar symbols are placed closed together because of linkage disequilibrium (haplotype
structure). Originally, the PBWT was described for binary alphabets[34] but it can be
extended to support arbitrary alphabet sizes[82] with minimal effort.
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Figure 5.1 Size distribution for EWAH object for PBWT-permuted and un-
permuted variants. Variants from HRC chromosome 20 for 32,470 diploid individuals
were either permuted or not and analysed for its uncompressed storage cost per variant.
Permuting with PBWT result in a dramatic shift of high storage-cost variant sites into
low storage-cost representations. Vertical dashed lines correspond to the average storage
cost for 90% of the data.

During the PBWT procedure, we maintain a positional array of the previous permu-
tation order. Storing this positional array is not required as it is possible to reverse the
PBWT in the front-to-back orientation (e.g. position 1, position 2, position 3) without it.
However, if the array is stored, it is possible to reverse the PBWT in the back-to-front
orientation (e.g. position 3, position 2, position 1).

Unlike BGT[71], we do not intermittently store (checkpoint) the permutation array
but instead reset the permutation order for each successive block of variants. Not storing
the permutation array results in smaller file sizes but is expected to reduce random
access speed times by a factor of two as reverse searching (back-to-front) is not available.
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Restarting the permutation order works well in practice when the block size is not small
(Figure 5.2).
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Figure 5.2 Overview of block-based compression. Blocks of variants are com-
pressed and stored in independent data blocks. This enables partial random access
to PBWT-permuted data blocks without having to checkpoint the permutation array
(current haplotypic sort order). This approach gives rise to a characteristic wave-like
periodic pattern for both PBWT-based (green) and unpermuted (blue). Storage keeps
increasing until the target number of variants have been stored and a new block is started.
Cumulative file size is shown for both approaches. The bottom panel is restricted to the
first five variant blocks.

5.2.3 Representing alleles with bitmaps and run-lengths

In the incumbent Vcf format[26], alleles at a locus are dictionary encoded such that "0"
maps to the reference allele, and "1" to the first alternative allele, and "2" maps to the
second alternative allele, and so on. Missing values are encoded with the special symbol
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".". An uncompressed bitmap index (bitmap) is an efficient encoding strategy that stores
values using bits in a bit array. For example, biallelic alleles can be packed into machine
words using a single bit each. Similarly, in multi-allelic sites and/or sites with missingness,
each log2(number of alleles) bits correspond to the allele at that position. For example,
the vector {(2,0),(1,1),(1,0),(1,1)}, would be encoded as the bitmap 0000101 (ordered in
reverse order, 8→ 1). Storing haplotypes using a bitmap has a fixed cost independent of
allele frequency or haplotype diversity. Because of this, storing alleles in bitmaps result
in at most 8-fold compression (1 bit per allele in a 8-bit machine word) for biallelic data
and progressively worsen with increased number of alternative alleles. In order to achieve
higher compression, we must employ additional methods.

The overall sparsity of non-reference alleles and the shared haplotype structure
in humans[123] makes variant data highly amenable to run-length encoding (RLE).
Repeated stretches of identical symbols (called runs) are packed in a (number of copies,
symbol)-tuple: For example, the run 00000000 is stored as the tuple (8,0). Regions of
high entropy, usually occurring in medium-to-high allele frequency variants, can result in
an undesirably large number of consecutive short runs. For example, run-length encoding
the example vector above would require more memory than storing the reference values
in a vector of literal symbols (0, 0, 1, 0, 1). In the worst case, RLE result in an increase in
file size and poorer performance.

5.2.4 Extended word-aligned hybrid (EWAH) encoding of alle-
les

By mixing RLE with bitmaps in high entropy regions we can achieve better compression
and frequently observe a concomitant gain in decompression performance. This hybrid
encoding scheme was initially described as word-aligned hybrid (WAH)[136] encoding.
More formally, WAH partitions a bitmap of n bits into ⌈ n

w−1⌉ words of w− 1 bits, where
w is a convenient machine word width in bits. Partitions are stored as either "fill" words
comprising of only ones (111 . . . 1) or zeros (000 . . . 0) or partitions comprising of mixtures
of ones and zeros called "literals". Runs of fill words are stored in a single machine word
with the most significant bit set to one (1) to signal that this is a run-length encoding
of fill words. The second most significant bit is set to the fill value (either 1 or 0) and
the remaining w − 2 bits encode the run-length itself. Literal words have their most
significant bit set to 0 to indicate that it should not be interpreted as a run-length
encoding of fills. Because one bit in every word is reserved for distinguishing between
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literals and fills, this encoding occupies 1/w (e.g. 3% for a 32-bit word) additional space
compared to uncompressed bitmaps.

This problem was addressed with a modified approach called the extended WAH
(EWAH)[65](Figure 5.3). Starting with a 32-bit marker word, the most significant bit
indicates what type of fill words (0 or 1) will follow. The next 16 bits represent the
run-length of the fill words, and the remaining 15 bits give the run-length of the literal
words directly following the fill words. Data is repeatedly processed into (marker, literal)-
tuples until no more data is available. In contrast to WAH, the extended WAH will very
rarely construct compressed bitmaps that are larger than the uncompressed original. We
build on EWAH encoding to support arbitrary alphabet sizes used to encode multi-allelic
sites and missingness by allocating additional bits for the fill word type. Similarly, by
extending the alphabet from binary (0 and 1) to an arbitrary σ alphabet size we use
log2(σ) bits for each allele in the bitmaps.
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Figure 5.3 Overview of compression genotypes/haplotypes. a) Genetic variant
data is most frequently stored as haplotypes/genotypes in a matrix Xn×m for n samples
(columns: a− f) and m loci (rows: 1− 6) where 0 encodes for the reference allele at that
position and 1 for the first alternative allele, and 2 for the second and so on. b) Repeated
symbols can be succinctly represented as (run length, template)-tuples in a process known
as run-length encoding. The relatively low haplotypic diversity in humans cause most
rows in X to be sparse and therefore compress well using run-length encoding. However,
many sites will compress into a larger object because of short runs (frequent template
switches). c) Storing genotypes/haplotypes in a k-bit string (bitmap or bitvector) is
an extremely computationally efficient approach for sites with few alternative alleles.
Bitmaps enables the computation of many set operations such as intersection, union,
and difference using a single CPU instruction. Unfortunately, bitmaps have a fixed
cost of k-bits per row (record) making this approach inefficient on larger datasets. d)
The extended word-aligned hybrid (EWAH) compression method combines run-length
encoding (b) and bitmaps (c) such that long runs of a template (clean words) are run-
length encoded and high-entropy regions are stored as bitmaps (dirty words). In this
application, the machine-word size k is 64-bits and 4 bits are reserved for describing the
template, 30 bits for the number of clean words with the defined template, and 30 bits
describing the number of immediately following dirty words of size 64-bits.

After EWAH-encoding genotypic data, we support a range of final compressors
with different intended use-cases. Encoded genotypic data is then compressed using
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a general-purpose compressor such as Zstd (http://www.zstd.net/) or Lz4 (http:
//www.lz4.org/) The best choice of compressor depends on the downstream use-case:
(1) Zstd produce smaller archives at the expense of decompression speed, or (2) LZ4
produce larger archives with faster decompression for query performance. Both of these
compress and decompress faster into smaller archives compared to the prevalent gzip
(http://www.gzip.org/) compressor. We generally suggest using Lz4 over Zstd as
the former has considerably faster decompression speeds with only marginally worse
compression performance. For better compression at the expense of query speeds I next
describe a statistical compression method.

5.2.5 Arithmetic encoding and context modelling

Arithmetic encoding[100] and range encoding[84] are entropy encoding schemes for lossless
data compression that generally offers superior compression levels at the expense of
additional computation time. Given a string of symbols, entropy encoding assigns bits
according to a symbol frequency distribution such that symbols that can be accurately
predicted (high frequency) is stored using fewer bits. Conceptually, compression is
achieved by coding the string of symbols into a single floating-point number in the range
[0, 1] enabling the storage of information in fractions of a bit. Formally, arithmetic
encoding predicts the conditional probability P (xi = t|ci−n, ci−n+1, . . . , c0) of a new
symbol xi given its so-called context c of size n. As the name implies, the context refers
to the previous symbolic context that symbol was observed in. In many cases, the context
is the preceding n symbols forming an order-n context model. In order to encode a
symbol, the current interval is updated based on the predicted probability of that symbol.

First, the input haplotype string is permuted according to the sorted reverse prefix
up to this position. Next, the permuted haplotype string is encoded using EWAH with
the run-length and bitmap components modelled separately as follows:

1. Encode a symbol ∈ {0, 1} describing that the next word is an implicit (0) EWAH
marker word or (1) a bitmap.

2. If the current word is a bitmap then it is partitioned into individual bytes that are
encoded individually using a shared order-0 model. Go to step 1).

3. If the current word is a (run length, reference symbol)-tuple then it is partitioned
into its components and modelled separately:

4. The run-length template reference is stored in a simple order-10 context model.
5. We compute and store log2(run length), where the run length is in the target

machine word units.

http://www.zstd.net/
http://www.lz4.org/
http://www.lz4.org/
http://www.gzip.org/
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6. Using the log2(run length) we store either 1, 2, 4, or 8 bytes in the most significant
byte order in separate order-10 context models.

7. Go to step 1).

Predicted probabilities from these context models are compressed using a shared range
coder.

5.2.6 Efficient computations using compressed data

Compressing genotypes with EWAH encoding has benefits beyond reducing memory usage
and storage space. Both run-length encoded and bitmap encoded data can be directly
interrogated without first inflating the compressed EWAH representation. Bitmap-
encoding facilitates efficient comparisons by using optimized bitwise logical operations
on modern CPUs. As an example for biallelic sites, counting the number of set bits
in a bitmap corresponds to the allele count at that site. Enumerating the set bits
in a machine word (fixed-size unit of bits used by the CPU) is also referred to as its
population count (popcount). This operation is available as a CPU instruction on most
recent commodity processors and require approximately one CPU cycle / 64-bit word[88].
For biallelic data in bitmap form, it is therefore possible to count 64 alleles / CPU cycle.
For non-biallelic sites, we must additionally preprocess bitmaps using a few basic bitwise
operations before invoking the popcount instruction on the resulting word (see Chapter
2). Similarly, bitmaps expedite set membership, intersect, union, and difference queries
through bitwise parallelism (see Chapter 3). Intersecting two bitmaps, B1 and B2, can
be answered with a single bitwise AND operation (B1 ∧ B2). Similarly, B1 ∨ B2 and
B1 −B2 is equivalent to B1 OR B2 and B1 NOR B2, respectively. All of these bitwise
operations require a single instruction and ≤1 CPU cycle on most commodity processors
(https://software.intel.com/sites/landingpage/IntrinsicsGuide/).

Similar to bitmaps, when processing RLE-compressed objects, it is possible to perform
a variety of useful operations without decoding. For example, counting the number of
alternative alleles in a vector of RLE object R takes O(|R|)-time in a linear pass over
the data. Given that run lengths are generally very long, this could be equivalent to
counting many thousands of alleles per CPU cycle. Comparing a pair of RLE-encoded
vectors, R1 and R2, can be performed in O(|R1|+ |R2|)-time. Although RLE-compressed
bitmaps permit several efficient operations it is considerably more difficult to compute
in-place set operations compared to either RLE or bitmaps alone. For example, assessing
set membership could in the worst case require a complete scan of a RLE-bitmap in
O(|R|)-time. These scans can be hundreds to thousands of times slower compared to

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
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using uncompressed bitmaps which provide random access in O(1)-time. Because of
this considerable implication on performance, we make exclusive use of uncompressed
bitmaps when performance is critical.

5.2.7 Comparison of file formats

Using the incumbent Vcf interchange format as the reference, this format stores several
required meta-information fields that are not of interest in this work. These include
variant name, filtering flags, and other per-site and per-individual information such as
allele count and genotype quality scores. To make comparisons fair, all fields except the
genotype (FORMAT:GT) field was stripped out and the essential contig and position fields
were set to 1 and {1, 2, . . .}, respectively. The overhead compared to storing only the
genotypes is negligible even for large datasets. Trimmed Vcf files were converted into Bcf
or uBcf files using Bcftools [26].

Vcf files are frequently externally compressed with gzip that use the DEFLATE1

algorithm that combines Huffman and LZ77 encoding [149]. Similarly, the internal
compression of Bcf files use a block-wise implementation of DEFLATE called BGZF
that operates on blocks of 65,535 bytes (216). BGZF essentially concatenates multiple
blocks back-to-back to allow random access to different sections of the archive. Partial
random access at the variant-level is maintained by storing virtual offsets to the end of
the current record.

In EWAH mode, Djinn stores haplotypes for N consecutive variants in three different
streams according to their classification: (1) bi-allelic, no missing, and no special end-
of-value symbols (mixed ploidy), (2) bi-allelic, (3) all other cases. Additional meta-
information that is required to decode data is stored for each block together with a 1-of-k
encoded machine word describing its content and what compressor was used. Optionally,
virtual offsets to the start of each variant and to each EWAH word are stored together
with the meta-information. In context modelling mode, Djinn stores data as in EWAH
mode but cannot store any virtual offsets as the range coder disallows this.

5.2.8 Efficient summary statistics from compressed haplotypes

PBWT-permuted and EWAH-encoded result in considerable memory savings but is less
useful in the context of efficient queries as the decompression overhead would outweigh the
benefits of the memory savings. Addressing this, I describe a variation of the supportive
data structure called gtOcc (see Chapter 4) that enables the summarization of haplotypes

1https://www.rfc-editor.org/info/rfc1951. Last accessed 30th July, 2019

https://www.rfc-editor.org/info/rfc1951
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between any two points in compressed representation for predefined groups of individuals
using simple arithmetic operations.

Formally, the function gtOcc(c, k) is the number of occurrences from S[1 . . . k] for
samples belonging to group c ∈ C. This function makes it possible to count the
occurrences between any two points i and j in O(1)-time through the relationship
gtOcc(c, j) − gtOcc(c, i) where gtOcc(·, 0) is defined to 0. Two versions of gtOcc
must be used in order to be used in conjunction with EWAH-encoded data: (1) a scalar
matrix version for use with run-length encoded data and (2) a bitmap version for efficient
intersection with bitmap encoded data.

5.2.9 Estimating kinship coefficients in a homogeneous popula-
tion

Computing all pairwise kinship coefficients is an example of a sample-centric query that
is performance critical. This query involves

(
N
2

)
M genotype comparisons for N samples

and M variant sites. For example, 5 × 1016 genotype comparisons is required for a million
individuals over 100,000 variant sites. Fortunately, computing NAA,aa and NAa,Aa for a
pair of individuals can be calculated as the cardinality of the set-intersection between
a pair of conditioned uncompressed bitmaps where NAA,aa, NAa,Aa, N i

Aa, and N j
Aa are

the total number of variants where both individuals are homozygous different, both
heterozygous, and individually heterozygous for individual i or j, respectively. In order
to maximize these computations we extended the vectorized carry-save add algorithm[88]
for computing the popcount to jointly condition the genotype bitmaps. Several variations
of this algorithm was developed to support most modern CPU-intrinsic instruction sets:
SSE4.1, AVX2, and AVX-512 (see Chapters 2,3).

To estimate the kinship coefficient ϕij between two individuals i and j using genotypes
we use the genetic relationship estimator KING-homo[83]. We briefly outline the method
here for completeness:

ϕ̂ij = NAa,Aa − 2NAA,aa

2Ĥij

+ 1
2 −

N i
Aa + N j

Aa

4Ĥij

(5.1)

A variant site is rejected if there is missingness in either individual. The normalization
scalar Ĥij is defined as:

Ĥij =
∑
m

2p̂m(1− p̂m) (5.2)
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where m indexes SNPs excluding those with missing genotypes in either individual of the
pair, and allele frequency p̂m at the m-th SNP is estimated from the genotype frequencies
in the entire sample as

p̂m = #AA + #Aa/2
#AA + #Aa + #aa

(5.3)

5.2.10 Comparing performance

All file size comparisons use uncompressed Vcf (uVcf) as a baseline reference. To make
comparisons fair across tools, Vcf files were stripped to contain the absolute minimum
amount of meta information while being legal (see 5.2.7). Interconvertion between Vcf,
Vcf.gz, uBcf, and Bcf was performed using bcftools (version 1.9-209-gf9984ee, using
htslib 1.9-271-g6738132):

bcftools -i ${ input_file } -O ${ file_type } -o ${ file_name }

PLINK (v1.90p) stores the genetic component in its own binary format (BED) and the
sample information in a separate BIM file.

plink --bcf ${file.bcf} --out ${file}

Stripped Vcf files were imported into the succinct tree representation[58, 57] (.trees)
using tskit (version 0.2.0a4) using a modifed version of the provided convert_1kg.py
helper script. Vcf/Bcf was converted into valid Djinn format using the base command:

djinn -ci ${ input_bcf } -o ${ output_djn }

The flag "-z", "-l" and "-m" are used to indicate if Zstd, LZ4, or a custom range coder-
based approach is used for compression. For linkage disequilibrium-based preprocessing
(PBWT), the flags "-p" and "-P" are used to indicate if preprocessing should be performed
or not, respectively. Compression level for Zstd and Lz4 can be modified using the "-#"
flag.

5.2.11 Experimental data sets

Individual chromosome Bcf files were retrieved for each cohort and combined into a single
dataset using the Bcftools concat command.

• 1000 Genomes phase 3 (hg19)[123]: This dataset comprises variants and small
insertions/deletions (indels) for 2,504 individuals of various ancestry.
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• Haplotype Reference Consortium (hg19)[125]: This dataset comprises of a mixed
cohort of 32,488 whole-genome sequenced individuals. There are >39 million SNPs
with an allele count ≥ 5 and no indels. All samples from the 1000 Genomes phase
3 project are included in this dataset.

5.2.12 Simulated data sets

Haplotypes were simulated using msprime[56] version 0.7.0 with both mutation rate and
recombination rate per site per 4N generations set to 2× 10−8 and effective population
size (Ne) to 10,000. Region size was fixed at 100 megabases and number of simulated
haplotypes ranging from 10 and 10,000,000. Since msprime simulates haplotypes, we
concatenated random pairs of haplotypes into diploid genomes. It is computationally
prohibitive to store the actual Vcf files for these datasets so we piped the output Vcf
from msprime into Djinn and computed the file sizes for Vcf and uBcf internally during
run-time.

5.3 Results
Storing and analyzing genetic variant data has garnered considerable interest with
proposals in both the variant-centric [27, 31, 34, 71, 30], sample-centric [63] orientations.
Unlike previous efforts that mostly focused on developing monolithic applications or
novel file formats, we restrict our attention to developing plug-and-play algorithms
for integration into the existing ecosystem with minimal disruption. Here we present
three algorithms that balance the trade-off between achieving optimal data compression
and query speed: (1) maximizing query speed with limited compression potential; (2)
balancing query speeds and compressibility; and (3) optimizing compressibility for
transmission or long-term archival storage with poor query performance.

Our proposed variant-centric methods are based on an efficient encoding scheme
involving the Extended Word-Aligned Hybrid (EWAH)[65] that combines run-length
encoding with bit-packed vectors (bitmaps, Figure 5.3). This hybrid encoding performs
well as most low allele frequency variants encodes into long runs of identical symbols
(genotypes) and higher allele frequency variants encodes efficiently into bit-packed vectors
(bitmaps) (Figure 5.4). On simulated datasets (see Methods), this codec alone achieves
moderate gains in compression over Vcf and Bcf while maintaining the ability to be
efficiently queried without first decompressing.
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Figure 5.4 Size distribution for the EWAH components (EWAH struct and
bitmap) for PBWT-permuted and unpermuted data. 1,043,341 biallelic sites for
262,144 samples simulated using msprime was either PBWT-permuted or left unpermuted
and the resulting size distribution for the two components of EWAH-encoding are shown.
For unpermuted data the bitmap component require 10535.76 MB and the EWAH
component 3690.2 MB. In contrast, for PBWT-permuted data the corresponding sizes
are 104.1 MB and 80.3 MB, respectively. This correspond to a 45-fold saving for the
EWAH structure component and a 101-fold saving for the bitmap component. Overall,
the uncompressed data is 14226 MB whereas the PBWT-permuted data is 184.5 MB
(77-fold difference). This divide in compressibility keeps growing with larger cohorts. The
right panel have the y-axis limited to the bounds of the PBWT-permuted data range.
Also note the difference in y-axis scaling on the two panels: GB and MB, respectively.

Additional gains in compressibility can be achieved by applying the linkage-disequilibrium-
based PBWT [34] pre-processor at the expense of additional computation. This reversible
transformation improves compression by permuting the sample order at a given position
to its reverse suffix order. First, in order to generate large datasets, we simulated
haplotypes for 10 to 10 million haplotypes over a 100 Mb region, a length equivalent
to that of human chromosome 15, and evaluated compression performance. Next, we
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pre-processed genotypes with PBWT followed by applying a final statistical context model
and compared to similar tools [34, 71, 57] (Figure 5.5 and see Methods). Motivating
this work, both Vcf and Bcf grow rapidly with an increasing number of haplotypes with
Vcf exceeding a terabyte of disk storage for a million haplotypes. The compressibility
of our proposed context-based method exceeds that of the recently proposed succinct
tree structures[57] by up to an order of magnitude even if additionally packed using an
efficient external compression engine.
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Figure 5.5 Compression performance of simulated data

Simulating haplotypes from an idealized population is a useful way of generating data
to investigate the relativistic growth properties of large datasets. Unfortunately, these
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datasets have unrealistic haplotype distributions and are misleading when estimating the
projected cost of future large-scale datasets. Investigating this, we evaluated compression
performance on real data from the 1000 Genomes Project (1KGP3, Figure 5.6) and
the Haplotype Reference Cosortium (HRC, Figure 5.7) datasets. All our proposed
compression methods (EWAH-encoding followed by either context modelling, LZ4, or
Zstd) display a considerably lower memory footprint compared to Vcf, Bcf, and msprime
(tskit) on the 1KGP3 dataset. There is generally an additional 2-fold gain in compression
when exchanging the general-purpose compressors with a statistical, and context-specific,
compression model. This additional gain in compression comes with a larger overhead
in retrieving and decompressing data. As expected from the simulated data (Figure
5.5), msprime provides approximately equal compression as Bcf. Notably, the converting
procedure into the succinct representation used in msprime is extremely slow even for
these small chromosomal datasets. For example, importing chromosome 22 into msprime
takes around 44 hours compared to under 2 minutes for djinn representing a 1,320-fold
difference. Proportional performance metrics are seen for the considerably larger HRC
dataset (Figure 5.7). msprime was not included in this analysis as this dataset could
not be imported in <48 hours.
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Figure 5.6 Compression performance for Djinn on 1KGP3 datasets. Sequence
variant data called from 1000 Genomes Project data for 2,548 diploid individuals whole-
genome sequenced to >30-fold coverage. Final archive size per chromosome is shown
for different compression methods: Vcf, Bcf, msprime, and different Djinn algorithms.
Djinn-ctx: context modelling on EWAH objects; Djinn-EWAH-LZ4: direct compression of
EWAH objects using the general-purpose compressor LZ4; Djinn-EWAH-ZSTD: direction
compression of EWAH objects using the general-purpose compressor Zstd. A zoomed in
figure (right panel) is shown for the different Djinn models to illustrate the significant
file-size differences between the context model and the general-purpose compressors.
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Figure 5.7 Compression performance for Djinn on HRC datasets. Sequence
variant data for 32,470 whole-genome sequenced individuals from a variety of datasets
where most individuals have European ancestry. Final archive size per chromosome
is shown for different compression methods: Vcf, Bcf, and different Djinn algorithms.
msprime/tsinfer was excluded from this analysis as the import procedure for any
chromosome failed to complete in 24 hours on 28 CPU cores. Djinn-ctx: context
modelling on EWAH objects; Djinn-EWAH-LZ4: direct compression of EWAH objects
using the general-purpose compressor LZ4; Djinn-EWAH-ZSTD: direction compression
of EWAH objects using the general-purpose compressor Zstd. A zoomed in figure
(right panel) is shown for the different Djinn models to illustrate the significant file-size
differences between the context model and the general-purpose compressors.

5.4 Discussion
With the advent of population-scaled datasets[11, 114, 116, 21, 41, 127] and emerging
diagnostic applications in the clinical setting there is a pressing need to efficiently store and
query the genetic component of a sequence variant dataset. Computational performance
will be of critical importance in the clinical setting with rapid-reporting approaches
in for example the intensive care setting, early diagnosis of complex disease, or for
influencing medical decision making in cancer care. Recognizing this impending scaling
challenge, my motivation was to explore algorithms for simultaneously reducing storage
cost and improving analysis time while balancing the different trade-offs associated
with a particular approach. I proposed a unified compression approach of genotypes
using a variation of the succinct extended word-aligned hybrid (EWAH)[65] encoding
approach that combines run-length encoding with uncompressed bitmaps. I showed that



5.5 Acknowledgements 143

additional reductions in the memory footprint can be achieved by applying the reversible
pre-processing function PBWT[34]. Further extensions to the PBWT-based approach
such as allowing an arbitrary large alphabet and a heuristic to avoid storing the sample
permutation order enabled additional savings. Notably, all our proposed approaches for
storing genetic matrices are embarrassingly parallelizable such that most queries can be
executed in parallel on a machine and/or across multiple compute nodes in a compute
cluster or cloud.

Querying EWAH-encoded genotypes directly can be achieved with an extension of
the gtOcc approach described in Chapter 4. Additionally, I demonstrate that it is
possible to compute genetic similarity matrices (XT X) using the algortihms described in
Chapter 2 and Chapter 3. Together, these algorithms ensure correctness while reducing
computational cost and time. Owing to their efficiency, I expect that these algorithms
will enhance both existing and novel methods exploring population-scaled datasets.
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Chapter 6

Conclusions

The future of genomics will undoubtedly involve considerable volumes of data and the
transitioning of genome sequencing into a routine clinical tool will demand considerable
improvements in performance over current standard methods. This transformative
bench-to-bedside transition will usher in a new era of high-performance computing and
algorithms. In this work I addressed these impending scaling requirements in a variety of
settings. Next-generation algorithms in this space will require highly performant basic
operations including counting the number of set bits in a large number of machine words.
Addressing this, I developed a variation of the classic population count operation called
the positional population count by building on previous work involving carry save-adder
networks. To enable its application on any target machine, I developed a single header
library including these operators that selects the optimal method during run-time. Using
these basic operators, I described a variety of applications including computing linkage-
disequilibrium, genetic similarity matrices, slicing out populations from large genetic
datasets, and to efficiently computing summary statistics from compressed genotypes.
Given that the performance of these functions operates at close to hardware limits, I
envision that these functions, or variations thereof, will continue to be useful in this
space for the foreseeable future. Upcoming hardware architectures will provide hardware
instructions (e.g. VPOPCNT) that will provide similar performance to the AVX512-based
population count used in this work (personal communication). Irrespective of this
impending performance boost, the library used in this work could be useful for a long
period of time considering the general latency period between releasing a new hardware
architecture and seeing large community adoption. For example, many bioinformatics
tools are still principally developed to target the SSE2 or SSE4 instruction set architectures
despite being released in 2000 and 2007, respectively.
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In two chapters, I described how it is possible to use both, or either, row-centric
and column-centric data storage approaches to efficiently store and query large sequence
variant datasets with different trade-offs. Recently, column stores have enjoyed renewed
interest in big data domains because of its superior capabilities of querying large number
of rows efficiently. The future application of either memory layout in genomics will be
application-specific but will most likely be primarily column-centric with the exception
of genotypes/haplotypes that will remain as succinctly represented row-centric records.
It is more natural to operate on all samples at a given locus (site-centric) and discard
target samples that are not of interest. This orientation is also superior in compression
performance and in extension its query performance. General storage of non-genotypic
sequence variant data will benefit greatly from being completely pivoted into a column
store as field with different primitive types will be packed together for greater compression.
In addition, many queries involve a few, or even a single, target column out of a dozen
or more resulting in faster querying times.

Future sequence and sequence variant formats must include high-performance tech-
niques in column stores that are already used in the broader scientific community such
as vectorized processing, late materialization, column-specific compression, efficient join
implementations, operating directly on compressed data, and exploiting predicate push-
down tricks including segmental statistics, dictionaries, and Bloom filters. Column-stores
have additional innate benefits in this space compared to row-centric storage systems. By
storing columnar data in non-overlapping partitions of some size it is always possible to
efficiently seek and retrieve target data in an embarrassingly parallel fashion. Depending
on the query, this can enable the application of trivial data level parallelism paradigms
to scale to any number of cores and compute nodes.

In most chapters of this work, I described simple, yet efficient, succinct representations
of data and developed methods to directly query compressed representation in time
proportional to its compressed size. Given the considerable sparsity of genetic variant
datasets, I envision that approaches like this will eventually represent a general paradigm
for the efficient computation of genetic data. Lastly, future formats will require efficient
indexing methods to support the considerable volumes of data that will be generated.
Fortunately, efficient data indexing is a mature topic in the computer science community
but has enjoyed limited attention in the bioinformatics space.

I envision a paradigm shift in the near future in how genomics data is being processed
and handled and hope that my work will contribute towards this effort in some part.
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Figure 1 Centromeric LD block for chromosome 1.

chr2

Color key
0.142
0.149
0.155
0.162
0.171
0.183
0.198
0.219
0.251
0.316

85Mb 87Mb 89Mb 91Mb 93Mb 95Mb 97Mb 99Mb

Position (from)

85Mb

86Mb

87Mb

88Mb

89Mb

90Mb

91Mb

92Mb

93Mb

94Mb

95Mb

96Mb

97Mb

98Mb

99Mb

P
os

iti
on

 (
to

)

Aggregated linkage−disequilibriumPoints in view: 16700510

Figure 2 Centromeric LD block for chromosome 2.
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Figure 3 Centromeric LD block for chromosome 3.
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Figure 4 Centromeric LD block for chromosome 4.
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Figure 5 Centromeric LD block for chromosome 5.
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Figure 6 Centromeric LD block for chromosome 6.
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Figure 7 Centromeric LD block for chromosome 7.
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Figure 8 Centromeric LD block for chromosome 8.
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Figure 9 Centromeric LD block for chromosome 9.
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Figure 10 Centromeric LD block for chromosome 10.
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Figure 11 Centromeric LD block for chromosome 11.



.1 Figures 171

chr12

Color key
0.16
0.18
0.2
0.21
0.23
0.25
0.28
0.32
0.4
0.49

32Mb 33Mb 34Mb 35Mb 36Mb 37Mb 38Mb 39Mb 40Mb 41Mb

Position (from)

32Mb

33Mb

34Mb

35Mb

36Mb

37Mb

38Mb

39Mb

40Mb

41Mb

P
os

iti
on

 (
to

)

Aggregated linkage−disequilibriumPoints in view: 93583628

Figure 12 Centromeric LD block for chromosome 12.
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Figure 13 Centromeric LD block for chromosome 13.
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Figure 14 Centromeric LD block for chromosome 14.
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Figure 15 Centromeric LD block for chromosome 15.
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Figure 16 Centromeric LD block for chromosome 16.
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Figure 17 Centromeric LD block for chromosome 17.
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Figure 18 Centromeric LD block for chromosome 18.
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Figure 19 Centromeric LD block for chromosome 19.
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Figure 20 Centromeric LD block for chromosome 20.
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Figure 21 Centromeric LD block for chromosome 21.

.2 Workflow
In this section I describe reproducible code for computing the statistics for 1000 Genomes
populations and super-populations as described in Chapter 3 on a *nix machine with the
programming language R available.
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.2.1 Slicing populations

Download the panel description table from ftp://ftp.1000genomes.ebi.ac.uk/vol1/
ftp/release/20130502/integrated_call_samples_v3.20130502.ALL.panel and the
chromosome datasets ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
ALL.chr*.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.gz*.
Partitioning the panels (super-populations and populations) table into sub-tables can be
done using R:
panel <- read.delim(" integrated _call_ samples _v3 .20130502. ALL.panel")
pops <- levels (panel$pop)
for(i in 1: length (pops )){

write.table(panel[panel$pop == pops[i],1, drop=FALSE],
file = paste0 ("1kgp3_pop__", pops[i], ".txt"),
quote = F,row.names = F,col.names = F)

}

super_pops <- levels (panel$super_pop)
for(i in 1: length (super_pops )){

write.table(panel[panel$super_pop == super_pops[i],1, drop=FALSE ],
file = paste0 ("1kgp3_super_pop__", super_pops[i], ".txt"),
quote = F,row.names = F,col.names = F)

}

Slice the target bcf files using the sample names described in the super population
and population files
for j in {1..22}; do \
chr=$j;
for i in {ACB ,ASW ,BEB ,CDX ,CEU ,CHB ,CHS ,CLM ,ESN ,FIN ,GBR ,GIH ,GWD ,IBS ,ITU ,JPT ,KHV , \

LWK ,MSL ,MXL ,PEL ,PJL ,PUR ,STU ,TSI ,YRI }; \
do bcftools view ALL.chr${chr }. phase3 *. bcf \

-S 1 kgp3_pop__$i .txt -O b -o 1 kgp3_chr$ {chr }\ __pop_$i .bcf; \
done; \
done

for j in {1..22}; do \
chr=$j;
for i in {AFR ,AMR ,EAS ,EUR ,SAS }; \
do bcftools view ALL.chr${chr }. phase3 *. bcf \

-S 1 kgp3_super_pop__$i .txt -O b -o 1 kgp3_chr$ {chr }\ __super_pop_$i .bcf; \
done; \
done

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/integrated_call_samples_v3.20130502.ALL.panel
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/integrated_call_samples_v3.20130502.ALL.panel
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chr*.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.gz*
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chr*.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.gz*
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Table 1 Field statistics for gnomad 2.1.1 whole-genome sequence variants. Tar-
get dataset was downloaded from https://storage.googleapis.com/gnomad-public/
release/2.1.1/vcf/genomes/gnomad.genomes.r2.1.1.sites.1.vcf.bgz. Abbrevia-
tions: I, Integer; F, Float; S: String; NA, Not Applicable; Comp., Compressed size in MB;
Ucomp., Uncompressed size in MB; Scomp., Compressed size of strides in MB; Sucomp.,
Uncompressed size of strides in MB; uBcf, uncompressed Bcf.

Field Type Comp. Ucomp. Scomp. Ucomp. Fold uBcf
PPA NA 0.00 0.00 0.00 0.00 0.0 0.00
CONTIG NA 0.08 0.08 0.00 0.00 1.0 0.00
POSITION NA 22.94 162.97 0.00 0.00 7.1 0.00
REFALT NA 0.00 0.00 0.00 0.00 0.0 0.00
CONTROLLER NA 3.49 40.74 0.00 0.00 11.7 0.00
QUALITY NA 66.57 81.48 0.00 0.00 1.2 0.00
NAMES NA 95.05 223.27 5.57 20.37 2.3 0.00
ALLELES NA 24.87 136.88 0.00 0.00 5.5 0.00
ID_INFO NA 12.13 20.56 0.00 0.00 1.7 0.00
ID_FORMAT NA 0.08 0.08 0.00 0.00 1.0 0.00
ID_FILTER NA 3.14 20.37 0.00 0.00 6.5 0.00
GT_INT8 NA 0.00 0.00 0.00 0.00 0.0 0.00
GT_INT16 NA 0.00 0.00 0.00 0.00 0.0 0.00
GT_INT32 NA 0.00 0.00 0.00 0.00 0.0 0.00
GT_INT64 NA 0.00 0.00 0.00 0.00 0.0 0.00
GT_S_INT8 NA 0.00 0.00 0.00 0.00 0.0 0.00
GT_S_INT16 NA 0.00 0.00 0.00 0.00 0.0 0.00
GT_S_INT32 NA 0.00 0.00 0.00 0.00 0.0 0.00
GT_S_INT64 NA 0.00 0.00 0.00 0.00 0.0 0.00
GT_N_INT8 NA 0.00 0.00 0.00 0.00 0.0 0.00
GT_N_INT16 NA 0.00 0.00 0.00 0.00 0.0 0.00

https://storage.googleapis.com/gnomad-public/release/2.1.1/vcf/genomes/gnomad.genomes.r2.1.1.sites.1.vcf.bgz
https://storage.googleapis.com/gnomad-public/release/2.1.1/vcf/genomes/gnomad.genomes.r2.1.1.sites.1.vcf.bgz
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GT_N_INT32 NA 0.00 0.00 0.00 0.00 0.0 0.00
GT_N_INT64 NA 0.00 0.00 0.00 0.00 0.0 0.00
GT_SUPPORT NA 0.00 0.00 0.00 0.00 0.0 0.00
GT_PLOIDY NA 0.08 0.08 0.00 0.00 1.0 0.00
INFO:AC Integer 16.44 40.74 0.00 0.00 2.5 22.16
INFO:AN Integer 25.06 40.74 0.00 0.00 1.6 40.72
INFO:AF Float 55.11 81.46 0.00 0.00 1.5 81.46
INFO:rf_tp_probability Float 65.90 81.48 0.00 0.00 1.2 81.48
INFO:FS Float 54.01 81.48 0.00 0.00 1.5 81.48
INFO:InbreedingCoeff Float 40.86 81.48 0.00 0.00 2.0 81.48
INFO:MQ Float 11.90 81.48 0.00 0.00 6.9 81.48
INFO:MQRankSum Float 62.46 81.33 0.00 0.00 1.3 81.33
INFO:QD Float 53.72 81.48 0.00 0.00 1.5 81.48
INFO:ReadPosRankSum Float 62.05 81.32 0.00 0.00 1.3 81.32
INFO:SOR Float 56.88 81.48 0.00 0.00 1.4 81.48
INFO:VQSR_POSITIVE_TRAIN_SITE Flag 0.00 0.00 0.00 0.00 0.0 0.00
INFO:VQSR_NEGATIVE_TRAIN_SITE Flag 0.00 0.00 0.00 0.00 0.0 0.00
INFO:BaseQRankSum Float 65.07 81.33 0.00 0.00 1.2 81.33
INFO:ClippingRankSum Float 61.56 81.33 0.00 0.00 1.3 81.33
INFO:DP Integer 56.89 81.48 0.00 0.00 1.4 81.44
INFO:VQSLOD Float 56.13 81.32 0.00 0.00 1.4 81.32
INFO:VQSR_culprit String 4.98 45.20 2.59 20.30 9.1 45.20
INFO:segdup Flag 0.00 0.00 0.00 0.00 0.0 0.00
INFO:lcr Flag 0.00 0.00 0.00 0.00 0.0 0.00
INFO:decoy Flag 0.00 0.00 0.00 0.00 0.0 0.00
INFO:nonpar Flag 0.00 0.00 0.00 0.00 0.0 0.00
INFO:rf_positive_label Flag 0.00 0.00 0.00 0.00 0.0 0.00
INFO:rf_negative_label Flag 0.00 0.00 0.00 0.00 0.0 0.00
INFO:rf_label String 0.93 6.48 0.00 0.00 7.0 6.48
INFO:rf_train Flag 0.00 0.00 0.00 0.00 0.0 0.00
INFO:transmitted_singleton Flag 0.00 0.00 0.00 0.00 0.0 0.00
INFO:variant_type String 5.69 78.14 3.79 20.37 13.7 78.14
INFO:allele_type String 4.42 61.11 0.00 0.01 13.8 61.11
INFO:n_alt_alleles Integer 3.03 20.37 0.00 0.00 6.7 20.37
INFO:was_mixed Flag 0.00 0.00 0.00 0.00 0.0 0.00
INFO:has_star Flag 0.00 0.00 0.00 0.00 0.0 0.00
INFO:pab_max Float 32.40 81.31 0.00 0.00 2.5 81.31
INFO:gq_hist_alt_bin_freq String 75.27 820.22 5.58 20.37 10.9 820.22
INFO:gq_hist_all_bin_freq String 618.38 1,497.74 10.18 20.37 2.4 1,497.74
INFO:dp_hist_alt_bin_freq String 100.83 823.51 5.43 20.37 8.2 823.51
INFO:dp_hist_alt_n_larger Integer 1.44 20.80 0.00 0.00 14.5 20.40
INFO:dp_hist_all_bin_freq String 405.23 1,248.63 6.70 20.37 3.1 1,248.63
INFO:dp_hist_all_n_larger Integer 1.90 21.00 0.00 0.00 11.1 20.64
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INFO:ab_hist_alt_bin_freq String 111.88 825.32 5.38 20.37 7.4 825.32
INFO:AC_nfe_seu Integer 3.17 20.37 0.00 0.00 6.4 20.37
INFO:AN_nfe_seu Integer 3.57 20.37 0.00 0.00 5.7 20.37
INFO:AF_nfe_seu Float 5.88 80.43 0.00 0.00 13.7 80.43
INFO:nhomalt_nfe_seu Integer 1.70 20.25 0.00 0.00 11.9 20.37
INFO:controls_AC_afr_male Integer 9.22 40.71 0.00 0.00 4.4 21.03
INFO:controls_AN_afr_male Integer 13.74 40.74 0.00 0.00 3.0 40.62
INFO:controls_AF_afr_male Float 19.64 81.42 0.00 0.00 4.1 81.42
INFO:controls_nhomalt_afr_male Integer 3.51 39.11 0.00 0.00 11.2 20.57
INFO:non_topmed_AC_amr Integer 6.47 40.08 0.00 0.00 6.2 20.81
INFO:non_topmed_AN_amr Integer 10.82 40.74 0.00 0.00 3.8 40.51
INFO:non_topmed_AF_amr Float 13.08 81.41 0.00 0.00 6.2 81.41
INFO:non_topmed_nhomalt_amr Integer 2.52 34.03 0.00 0.00 13.5 20.51
INFO:AC_raw Integer 17.11 40.74 0.00 0.00 2.4 22.39
INFO:AN_raw Integer 5.02 40.74 0.00 0.00 8.1 40.74
INFO:AF_raw Float 32.03 81.48 0.00 0.00 2.5 81.48
INFO:nhomalt_raw Integer 6.15 40.73 0.00 0.00 6.6 21.05
INFO:AC_fin_female Integer 5.83 40.59 0.00 0.00 7.0 20.95
INFO:AN_fin_female Integer 14.14 40.74 0.00 0.00 2.9 40.49
INFO:AF_fin_female Float 11.59 81.37 0.00 0.00 7.0 81.37
INFO:nhomalt_fin_female Integer 2.72 38.08 0.00 0.00 14.0 20.60
INFO:non_neuro_AC_asj_female Integer 2.86 20.37 0.00 0.00 7.1 20.37
INFO:non_neuro_AN_asj_female Integer 3.11 20.37 0.00 0.00 6.6 20.37
INFO:non_neuro_AF_asj_female Float 5.12 81.21 0.00 0.00 15.9 81.21
INFO:non_neuro_nhomalt_asj_female Integer 1.62 20.25 0.00 0.00 12.5 20.37
INFO:non_neuro_AC_afr_male Integer 9.53 40.72 0.00 0.00 4.3 21.08
INFO:non_neuro_AN_afr_male Integer 14.06 40.74 0.00 0.00 2.9 40.63
INFO:non_neuro_AF_afr_male Float 20.42 81.42 0.00 0.00 4.0 81.42
INFO:non_neuro_nhomalt_afr_male Integer 3.60 39.42 0.00 0.00 11.0 20.59
INFO:AC_afr_male Integer 12.63 40.74 0.00 0.00 3.2 21.53
INFO:AN_afr_male Integer 18.16 40.74 0.00 0.00 2.2 40.69
INFO:AF_afr_male Float 29.83 81.44 0.00 0.00 2.7 81.44
INFO:nhomalt_afr_male Integer 4.34 40.48 0.00 0.00 9.3 20.74
INFO:AC_afr Integer 14.28 40.74 0.00 0.00 2.9 21.78
INFO:AN_afr Integer 20.84 40.74 0.00 0.00 2.0 40.70
INFO:AF_afr Float 35.95 81.45 0.00 0.00 2.3 81.45
INFO:nhomalt_afr Integer 4.73 40.61 0.00 0.00 8.6 20.82
INFO:non_neuro_AC_afr_female Integer 9.76 40.73 0.00 0.00 4.2 21.12
INFO:non_neuro_AN_afr_female Integer 14.03 40.74 0.00 0.00 2.9 40.64
INFO:non_neuro_AF_afr_female Float 20.90 81.42 0.00 0.00 3.9 81.42
INFO:non_neuro_nhomalt_afr_female Integer 3.65 39.62 0.00 0.00 10.8 20.60
INFO:non_topmed_AC_amr_female Integer 5.16 36.57 0.00 0.00 7.1 20.65
INFO:non_topmed_AN_amr_female Integer 8.84 40.74 0.00 0.00 4.6 40.28
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INFO:non_topmed_AF_amr_female Float 10.18 81.38 0.00 0.00 8.0 81.38
INFO:non_topmed_nhomalt_amr_female Integer 2.14 20.35 0.00 0.00 9.5 20.43
INFO:non_topmed_AC_oth_female Integer 5.77 38.93 0.00 0.00 6.7 20.72
INFO:non_topmed_AN_oth_female Integer 10.99 40.74 0.00 0.00 3.7 40.43
INFO:non_topmed_AF_oth_female Float 11.80 81.39 0.00 0.00 6.9 81.39
INFO:non_topmed_nhomalt_oth_female Integer 2.39 28.81 0.00 0.00 12.1 20.47
INFO:AC_eas_female Integer 4.82 39.14 0.00 0.00 8.1 20.74
INFO:AN_eas_female Integer 8.70 40.74 0.00 0.00 4.7 40.46
INFO:AF_eas_female Float 9.00 81.33 0.00 0.00 9.0 81.33
INFO:nhomalt_eas_female Integer 2.25 31.27 0.00 0.00 13.9 20.49
INFO:AC_afr_female Integer 11.71 40.74 0.00 0.00 3.5 21.40
INFO:AN_afr_female Integer 17.07 40.74 0.00 0.00 2.4 40.67
INFO:AF_afr_female Float 26.78 81.43 0.00 0.00 3.0 81.43
INFO:nhomalt_afr_female Integer 4.12 40.36 0.00 0.00 9.8 20.69
INFO:non_neuro_AC_female Integer 13.71 40.74 0.00 0.00 3.0 21.45
INFO:non_neuro_AN_female Integer 21.26 40.74 0.00 0.00 1.9 40.70
INFO:non_neuro_AF_female Float 36.59 81.45 0.00 0.00 2.2 81.45
INFO:non_neuro_nhomalt_female Integer 4.53 40.57 0.00 0.00 9.0 20.82
INFO:controls_AC_afr Integer 10.74 40.74 0.00 0.00 3.8 21.25
INFO:controls_AN_afr Integer 15.95 40.74 0.00 0.00 2.6 40.66
INFO:controls_AF_afr Float 23.92 81.43 0.00 0.00 3.4 81.43
INFO:controls_nhomalt_afr Integer 3.89 40.11 0.00 0.00 10.3 20.65
INFO:AC_nfe_onf Integer 7.67 40.66 0.00 0.00 5.3 21.00
INFO:AN_nfe_onf Integer 13.29 40.74 0.00 0.00 3.1 40.65
INFO:AF_nfe_onf Float 16.22 81.42 0.00 0.00 5.0 81.42
INFO:nhomalt_nfe_onf Integer 2.87 38.61 0.00 0.00 13.4 20.63
INFO:controls_AC_fin_male Integer 4.59 39.17 0.00 0.00 8.5 20.73
INFO:controls_AN_fin_male Integer 9.83 40.74 0.00 0.00 4.1 40.16
INFO:controls_AF_fin_male Float 8.72 81.25 0.00 0.00 9.3 81.25
INFO:controls_nhomalt_fin_male Integer 2.26 30.74 0.00 0.00 13.6 20.48
INFO:non_neuro_AC_nfe_nwe Integer 10.51 40.74 0.00 0.00 3.9 21.24
INFO:non_neuro_AN_nfe_nwe Integer 17.89 40.74 0.00 0.00 2.3 40.69
INFO:non_neuro_AF_nfe_nwe Float 24.80 81.44 0.00 0.00 3.3 81.44
INFO:non_neuro_nhomalt_nfe_nwe Integer 3.35 40.23 0.00 0.00 12.0 20.77
INFO:AC_fin_male Integer 5.69 40.55 0.00 0.00 7.1 20.92
INFO:AN_fin_male Integer 14.05 40.74 0.00 0.00 2.9 40.48
INFO:AF_fin_male Float 11.31 81.37 0.00 0.00 7.2 81.37
INFO:nhomalt_fin_male Integer 2.68 37.64 0.00 0.00 14.1 20.59
INFO:AC_nfe_female Integer 10.13 40.74 0.00 0.00 4.0 21.21
INFO:AN_nfe_female Integer 19.72 40.74 0.00 0.00 2.1 40.68
INFO:AF_nfe_female Float 24.57 81.43 0.00 0.00 3.3 81.43
INFO:nhomalt_nfe_female Integer 3.34 40.14 0.00 0.00 12.0 20.76
INFO:AC_amr Integer 6.58 40.15 0.00 0.00 6.1 20.82
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INFO:AN_amr Integer 10.91 40.74 0.00 0.00 3.7 40.52
INFO:AF_amr Float 13.37 81.41 0.00 0.00 6.1 81.41
INFO:nhomalt_amr Integer 2.54 34.41 0.00 0.00 13.5 20.52
INFO:non_topmed_AC_nfe_male Integer 9.47 40.74 0.00 0.00 4.3 21.17
INFO:non_topmed_AN_nfe_male Integer 19.05 40.74 0.00 0.00 2.1 40.68
INFO:non_topmed_AF_nfe_male Float 22.33 81.43 0.00 0.00 3.6 81.43
INFO:non_topmed_nhomalt_nfe_male Integer 3.25 39.97 0.00 0.00 12.3 20.73
INFO:AC_eas Integer 6.51 40.58 0.00 0.00 6.2 20.93
INFO:AN_eas Integer 12.34 40.74 0.00 0.00 3.3 40.60
INFO:AF_eas Float 13.03 81.37 0.00 0.00 6.2 81.37
INFO:nhomalt_eas Integer 2.65 38.13 0.00 0.00 14.4 20.61
INFO:nhomalt Integer 5.68 40.71 0.00 0.00 7.2 21.00
INFO:non_neuro_AC_nfe_female Integer 9.76 40.74 0.00 0.00 4.2 21.19
INFO:non_neuro_AN_nfe_female Integer 19.56 40.74 0.00 0.00 2.1 40.68
INFO:non_neuro_AF_nfe_female Float 23.48 81.43 0.00 0.00 3.5 81.43
INFO:non_neuro_nhomalt_nfe_female Integer 3.28 40.06 0.00 0.00 12.2 20.74
INFO:non_neuro_AC_afr Integer 11.49 40.74 0.00 0.00 3.5 21.37
INFO:non_neuro_AN_afr Integer 16.80 40.74 0.00 0.00 2.4 40.67
INFO:non_neuro_AF_afr Float 26.05 81.43 0.00 0.00 3.1 81.43
INFO:non_neuro_nhomalt_afr Integer 4.08 40.33 0.00 0.00 9.9 20.68
INFO:controls_AC_raw Integer 14.98 40.74 0.00 0.00 2.7 21.70
INFO:controls_AN_raw Integer 4.33 40.73 0.00 0.00 9.4 40.74
INFO:controls_AF_raw Float 26.80 81.48 0.00 0.00 3.0 81.48
INFO:controls_nhomalt_raw Integer 5.09 40.67 0.00 0.00 8.0 20.88
INFO:controls_AC_male Integer 12.39 40.74 0.00 0.00 3.3 21.31
INFO:controls_AN_male Integer 19.82 40.74 0.00 0.00 2.1 40.69
INFO:controls_AF_male Float 30.81 81.44 0.00 0.00 2.6 81.44
INFO:controls_nhomalt_male Integer 4.27 40.40 0.00 0.00 9.5 20.77
INFO:non_topmed_AC_male Integer 15.37 40.74 0.00 0.00 2.7 21.78
INFO:non_topmed_AN_male Integer 22.46 40.74 0.00 0.00 1.8 40.71
INFO:non_topmed_AF_male Float 43.21 81.45 0.00 0.00 1.9 81.45
INFO:non_topmed_nhomalt_male Integer 5.07 40.66 0.00 0.00 8.0 20.89
INFO:controls_AC_nfe_female Integer 7.27 40.68 0.00 0.00 5.6 21.02
INFO:controls_AN_nfe_female Integer 17.93 40.74 0.00 0.00 2.3 40.63
INFO:controls_AF_nfe_female Float 15.95 81.41 0.00 0.00 5.1 81.41
INFO:controls_nhomalt_nfe_female Integer 2.93 38.95 0.00 0.00 13.3 20.65
INFO:non_neuro_AC_amr Integer 5.83 39.10 0.00 0.00 6.7 20.73
INFO:non_neuro_AN_amr Integer 9.58 40.74 0.00 0.00 4.3 40.45
INFO:non_neuro_AF_amr Float 11.53 81.39 0.00 0.00 7.1 81.39
INFO:non_neuro_nhomalt_amr Integer 2.37 29.55 0.00 0.00 12.5 20.47
INFO:non_neuro_AC_eas_female Integer 4.82 39.14 0.00 0.00 8.1 20.74
INFO:non_neuro_AN_eas_female Integer 8.70 40.74 0.00 0.00 4.7 40.46
INFO:non_neuro_AF_eas_female Float 9.00 81.33 0.00 0.00 9.0 81.33
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INFO:non_neuro_nhomalt_eas_female Integer 2.25 31.27 0.00 0.00 13.9 20.49
INFO:AC_asj_male Integer 3.58 20.37 0.00 0.00 5.7 20.50
INFO:AN_asj_male Integer 4.63 20.37 0.00 0.00 4.4 40.05
INFO:AF_asj_male Float 7.08 81.33 0.00 0.00 11.5 81.33
INFO:nhomalt_asj_male Integer 1.94 20.34 0.00 0.00 10.5 20.37
INFO:controls_AC_nfe_male Integer 7.60 40.70 0.00 0.00 5.4 21.05
INFO:controls_AN_nfe_male Integer 17.91 40.74 0.00 0.00 2.3 40.65
INFO:controls_AF_nfe_male Float 16.80 81.41 0.00 0.00 4.8 81.41
INFO:controls_nhomalt_nfe_male Integer 2.98 39.19 0.00 0.00 13.1 20.66
INFO:non_neuro_AC_fin Integer 5.26 40.37 0.00 0.00 7.7 20.86
INFO:non_neuro_AN_fin Integer 11.66 40.74 0.00 0.00 3.5 40.36
INFO:non_neuro_AF_fin Float 10.19 81.32 0.00 0.00 8.0 81.32
INFO:non_neuro_nhomalt_fin Integer 2.53 36.18 0.00 0.00 14.3 20.55
INFO:AC_oth_female Integer 5.82 39.04 0.00 0.00 6.7 20.73
INFO:AN_oth_female Integer 11.07 40.74 0.00 0.00 3.7 40.44
INFO:AF_oth_female Float 11.88 81.39 0.00 0.00 6.9 81.39
INFO:nhomalt_oth_female Integer 2.41 29.45 0.00 0.00 12.2 20.47
INFO:controls_AC_nfe Integer 8.99 40.74 0.00 0.00 4.5 21.17
INFO:controls_AN_nfe Integer 20.60 40.74 0.00 0.00 2.0 40.67
INFO:controls_AF_nfe Float 21.05 81.42 0.00 0.00 3.9 81.42
INFO:controls_nhomalt_nfe Integer 3.24 39.95 0.00 0.00 12.3 20.73
INFO:controls_AC_oth_female Integer 3.69 20.37 0.00 0.00 5.5 20.51
INFO:controls_AN_oth_female Integer 7.46 20.37 0.00 0.00 2.7 39.70
INFO:controls_AF_oth_female Float 7.69 81.31 0.00 0.00 10.6 81.31
INFO:controls_nhomalt_oth_female Integer 1.95 20.34 0.00 0.00 10.4 20.37
INFO:controls_AC_asj Integer 2.59 20.37 0.00 0.00 7.9 20.37
INFO:controls_AN_asj Integer 2.91 20.37 0.00 0.00 7.0 20.37
INFO:controls_AF_asj Float 4.38 80.75 0.00 0.00 18.4 80.75
INFO:controls_nhomalt_asj Integer 1.45 20.05 0.00 0.00 13.8 20.37
INFO:non_neuro_AC_amr_male Integer 4.21 20.37 0.00 0.00 4.8 20.53
INFO:non_neuro_AN_amr_male Integer 5.62 20.37 0.00 0.00 3.6 39.95
INFO:non_neuro_AF_amr_male Float 8.77 81.36 0.00 0.00 9.3 81.36
INFO:non_neuro_nhomalt_amr_male Integer 2.03 20.35 0.00 0.00 10.0 20.37
INFO:controls_AC_nfe_nwe Integer 5.80 40.13 0.00 0.00 6.9 20.82
INFO:controls_AN_nfe_nwe Integer 11.18 40.74 0.00 0.00 3.6 40.45
INFO:controls_AF_nfe_nwe Float 11.63 81.38 0.00 0.00 7.0 81.38
INFO:controls_nhomalt_nfe_nwe Integer 2.46 34.65 0.00 0.00 14.1 20.53
INFO:AC_nfe_nwe Integer 10.84 40.74 0.00 0.00 3.8 21.26
INFO:AN_nfe_nwe Integer 18.04 40.74 0.00 0.00 2.3 40.69
INFO:AF_nfe_nwe Float 26.04 81.44 0.00 0.00 3.1 81.44
INFO:nhomalt_nfe_nwe Integer 3.40 40.28 0.00 0.00 11.8 20.78
INFO:controls_AC_nfe_seu Integer 2.81 20.36 0.00 0.00 7.2 20.37
INFO:controls_AN_nfe_seu Integer 2.96 20.37 0.00 0.00 6.9 20.37



189

INFO:controls_AF_nfe_seu Float 4.86 80.22 0.00 0.00 16.5 80.22
INFO:controls_nhomalt_nfe_seu Integer 1.53 20.16 0.00 0.00 13.1 20.37
INFO:non_neuro_AC_amr_female Integer 4.76 33.30 0.00 0.00 7.0 20.59
INFO:non_neuro_AN_amr_female Integer 8.23 40.73 0.00 0.00 4.9 40.22
INFO:non_neuro_AF_amr_female Float 9.39 81.36 0.00 0.00 8.7 81.36
INFO:non_neuro_nhomalt_amr_female Integer 2.09 20.35 0.00 0.00 9.7 20.41
INFO:non_neuro_AC_nfe_onf Integer 7.20 40.61 0.00 0.00 5.6 20.96
INFO:non_neuro_AN_nfe_onf Integer 12.29 40.74 0.00 0.00 3.3 40.64
INFO:non_neuro_AF_nfe_onf Float 14.85 81.41 0.00 0.00 5.5 81.41
INFO:non_neuro_nhomalt_nfe_onf Integer 2.79 38.00 0.00 0.00 13.6 20.61
INFO:non_topmed_AC_eas_male Integer 5.74 40.33 0.00 0.00 7.0 20.86
INFO:non_topmed_AN_eas_male Integer 10.65 40.74 0.00 0.00 3.8 40.56
INFO:non_topmed_AF_eas_male Float 11.09 81.36 0.00 0.00 7.3 81.36
INFO:non_topmed_nhomalt_eas_male Integer 2.49 36.44 0.00 0.00 14.7 20.56
INFO:controls_AC_amr_female Integer 3.41 20.37 0.00 0.00 6.0 20.37
INFO:controls_AN_amr_female Integer 4.70 20.37 0.00 0.00 4.3 20.37
INFO:controls_AF_amr_female Float 6.58 80.92 0.00 0.00 12.3 80.92
INFO:controls_nhomalt_amr_female Integer 1.76 20.28 0.00 0.00 11.6 20.37
INFO:non_neuro_AC_fin_male Integer 4.59 39.17 0.00 0.00 8.5 20.73
INFO:non_neuro_AN_fin_male Integer 9.83 40.74 0.00 0.00 4.1 40.16
INFO:non_neuro_AF_fin_male Float 8.72 81.25 0.00 0.00 9.3 81.25
INFO:non_neuro_nhomalt_fin_male Integer 2.26 30.74 0.00 0.00 13.6 20.48
INFO:AC_female Integer 15.00 40.74 0.00 0.00 2.7 21.70
INFO:AN_female Integer 22.58 40.74 0.00 0.00 1.8 40.71
INFO:AF_female Float 41.98 81.45 0.00 0.00 1.9 81.45
INFO:nhomalt_female Integer 4.94 40.65 0.00 0.00 8.2 20.88
INFO:non_neuro_AC_oth_male Integer 5.07 35.79 0.00 0.00 7.1 20.63
INFO:non_neuro_AN_oth_male Integer 8.97 40.74 0.00 0.00 4.5 40.34
INFO:non_neuro_AF_oth_male Float 10.06 81.38 0.00 0.00 8.1 81.38
INFO:non_neuro_nhomalt_oth_male Integer 2.18 20.36 0.00 0.00 9.4 20.43
INFO:non_topmed_AC_nfe_est Integer 7.80 40.73 0.00 0.00 5.2 21.13
INFO:non_topmed_AN_nfe_est Integer 19.58 40.74 0.00 0.00 2.1 40.66
INFO:non_topmed_AF_nfe_est Float 17.06 81.41 0.00 0.00 4.8 81.41
INFO:non_topmed_nhomalt_nfe_est Integer 3.14 39.82 0.00 0.00 12.7 20.71
INFO:non_topmed_AC_nfe_nwe Integer 9.27 40.73 0.00 0.00 4.4 21.15
INFO:non_topmed_AN_nfe_nwe Integer 16.79 40.74 0.00 0.00 2.4 40.68
INFO:non_topmed_AF_nfe_nwe Float 20.91 81.43 0.00 0.00 3.9 81.43
INFO:non_topmed_nhomalt_nfe_nwe Integer 3.18 39.90 0.00 0.00 12.6 20.72
INFO:non_topmed_AC_amr_male Integer 5.25 37.13 0.00 0.00 7.1 20.66
INFO:non_topmed_AN_amr_male Integer 8.37 40.74 0.00 0.00 4.9 40.22
INFO:non_topmed_AF_amr_male Float 10.21 81.38 0.00 0.00 8.0 81.38
INFO:non_topmed_nhomalt_amr_male Integer 2.14 20.35 0.00 0.00 9.5 20.44
INFO:non_topmed_AC_nfe_onf Integer 6.91 40.54 0.00 0.00 5.9 20.93
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INFO:non_topmed_AN_nfe_onf Integer 12.51 40.74 0.00 0.00 3.3 40.62
INFO:non_topmed_AF_nfe_onf Float 14.22 81.41 0.00 0.00 5.7 81.41
INFO:non_topmed_nhomalt_nfe_onf Integer 2.73 37.43 0.00 0.00 13.7 20.59
INFO:controls_AC_eas_male Integer 4.92 39.36 0.00 0.00 8.0 20.75
INFO:controls_AN_eas_male Integer 8.79 40.74 0.00 0.00 4.6 40.47
INFO:controls_AF_eas_male Float 9.23 81.33 0.00 0.00 8.8 81.33
INFO:controls_nhomalt_eas_male Integer 2.27 32.19 0.00 0.00 14.2 20.50
INFO:controls_AC_oth_male Integer 3.79 20.37 0.00 0.00 5.4 20.48
INFO:controls_AN_oth_male Integer 6.54 20.37 0.00 0.00 3.1 39.49
INFO:controls_AF_oth_male Float 7.90 81.32 0.00 0.00 10.3 81.32
INFO:controls_nhomalt_oth_male Integer 1.95 20.34 0.00 0.00 10.4 20.37
INFO:non_topmed_AC Integer 16.71 40.74 0.00 0.00 2.4 22.11
INFO:non_topmed_AN Integer 24.87 40.74 0.00 0.00 1.6 40.72
INFO:non_topmed_AF Float 53.23 81.46 0.00 0.00 1.5 81.46
INFO:non_topmed_nhomalt Integer 5.59 40.70 0.00 0.00 7.3 20.98
INFO:controls_AC_fin Integer 5.25 40.37 0.00 0.00 7.7 20.86
INFO:controls_AN_fin Integer 11.66 40.74 0.00 0.00 3.5 40.36
INFO:controls_AF_fin Float 10.18 81.31 0.00 0.00 8.0 81.31
INFO:controls_nhomalt_fin Integer 2.52 36.17 0.00 0.00 14.3 20.55
INFO:non_neuro_AC_nfe Integer 12.19 40.74 0.00 0.00 3.3 21.36
INFO:non_neuro_AN_nfe Integer 22.14 40.74 0.00 0.00 1.8 40.70
INFO:non_neuro_AF_nfe Float 33.02 81.44 0.00 0.00 2.5 81.44
INFO:non_neuro_nhomalt_nfe Integer 3.64 40.46 0.00 0.00 11.1 20.83
INFO:non_neuro_AC_fin_female Integer 4.50 38.81 0.00 0.00 8.6 20.71
INFO:non_neuro_AN_fin_female Integer 9.61 40.74 0.00 0.00 4.2 40.11
INFO:non_neuro_AF_fin_female Float 8.50 81.27 0.00 0.00 9.6 81.27
INFO:non_neuro_nhomalt_fin_female Integer 2.22 29.56 0.00 0.00 13.3 20.47
INFO:non_topmed_AC_nfe_seu Integer 3.17 20.37 0.00 0.00 6.4 20.37
INFO:non_topmed_AN_nfe_seu Integer 3.57 20.37 0.00 0.00 5.7 20.37
INFO:non_topmed_AF_nfe_seu Float 5.88 80.43 0.00 0.00 13.7 80.43
INFO:non_topmed_nhomalt_nfe_seu Integer 1.70 20.25 0.00 0.00 11.9 20.37
INFO:controls_AC_eas_female Integer 4.20 35.88 0.00 0.00 8.5 20.64
INFO:controls_AN_eas_female Integer 7.17 40.73 0.00 0.00 5.7 40.32
INFO:controls_AF_eas_female Float 7.72 81.30 0.00 0.00 10.5 81.30
INFO:controls_nhomalt_eas_female Integer 2.01 20.35 0.00 0.00 10.1 20.44
INFO:non_topmed_AC_asj Integer 3.32 20.37 0.00 0.00 6.1 20.41
INFO:non_topmed_AN_asj Integer 4.50 20.37 0.00 0.00 4.5 38.41
INFO:non_topmed_AF_asj Float 6.45 81.26 0.00 0.00 12.6 81.26
INFO:non_topmed_nhomalt_asj Integer 1.81 20.32 0.00 0.00 11.2 20.37
INFO:controls_AC_nfe_onf Integer 4.83 37.20 0.00 0.00 7.7 20.66
INFO:controls_AN_nfe_onf Integer 9.22 40.74 0.00 0.00 4.4 40.22
INFO:controls_AF_nfe_onf Float 9.39 81.34 0.00 0.00 8.7 81.34
INFO:controls_nhomalt_nfe_onf Integer 2.09 20.35 0.00 0.00 9.8 20.44



191

INFO:non_neuro_AC Integer 15.87 40.74 0.00 0.00 2.6 21.78
INFO:non_neuro_AN Integer 24.51 40.74 0.00 0.00 1.7 40.71
INFO:non_neuro_AF Float 48.37 81.45 0.00 0.00 1.7 81.45
INFO:non_neuro_nhomalt Integer 5.13 40.67 0.00 0.00 7.9 20.93
INFO:non_topmed_AC_nfe Integer 11.47 40.74 0.00 0.00 3.6 21.32
INFO:non_topmed_AN_nfe Integer 22.00 40.74 0.00 0.00 1.9 40.69
INFO:non_topmed_AF_nfe Float 30.11 81.44 0.00 0.00 2.7 81.44
INFO:non_topmed_nhomalt_nfe Integer 3.56 40.39 0.00 0.00 11.4 20.81
INFO:non_topmed_AC_raw Integer 17.45 40.74 0.00 0.00 2.3 22.33
INFO:non_topmed_AN_raw Integer 4.95 40.74 0.00 0.00 8.2 40.74
INFO:non_topmed_AF_raw Float 32.39 81.48 0.00 0.00 2.5 81.48
INFO:non_topmed_nhomalt_raw Integer 6.06 40.73 0.00 0.00 6.7 21.03
INFO:non_neuro_AC_nfe_est Integer 7.61 40.73 0.00 0.00 5.4 21.11
INFO:non_neuro_AN_nfe_est Integer 19.71 40.74 0.00 0.00 2.1 40.65
INFO:non_neuro_AF_nfe_est Float 16.61 81.40 0.00 0.00 4.9 81.40
INFO:non_neuro_nhomalt_nfe_est Integer 3.10 39.72 0.00 0.00 12.8 20.70
INFO:non_topmed_AC_oth_male Integer 5.56 37.90 0.00 0.00 6.8 20.68
INFO:non_topmed_AN_oth_male Integer 9.72 40.74 0.00 0.00 4.2 40.38
INFO:non_topmed_AF_oth_male Float 11.15 81.38 0.00 0.00 7.3 81.38
INFO:non_topmed_nhomalt_oth_male Integer 2.25 20.36 0.00 0.00 9.1 20.45
INFO:AC_nfe_est Integer 7.81 40.73 0.00 0.00 5.2 21.13
INFO:AN_nfe_est Integer 19.55 40.74 0.00 0.00 2.1 40.66
INFO:AF_nfe_est Float 17.09 81.41 0.00 0.00 4.8 81.41
INFO:nhomalt_nfe_est Integer 3.14 39.82 0.00 0.00 12.7 20.71
INFO:non_topmed_AC_afr_male Integer 12.57 40.74 0.00 0.00 3.2 21.53
INFO:non_topmed_AN_afr_male Integer 18.26 40.74 0.00 0.00 2.2 40.68
INFO:non_topmed_AF_afr_male Float 29.68 81.44 0.00 0.00 2.7 81.44
INFO:non_topmed_nhomalt_afr_male Integer 4.33 40.48 0.00 0.00 9.4 20.73
INFO:AC_eas_male Integer 5.78 40.34 0.00 0.00 7.0 20.86
INFO:AN_eas_male Integer 10.68 40.74 0.00 0.00 3.8 40.56
INFO:AF_eas_male Float 11.23 81.36 0.00 0.00 7.2 81.36
INFO:nhomalt_eas_male Integer 2.49 36.51 0.00 0.00 14.6 20.56
INFO:controls_AC_eas Integer 5.57 40.23 0.00 0.00 7.2 20.85
INFO:controls_AN_eas Integer 10.15 40.74 0.00 0.00 4.0 40.55
INFO:controls_AF_eas Float 10.73 81.35 0.00 0.00 7.6 81.35
INFO:controls_nhomalt_eas Integer 2.45 35.99 0.00 0.00 14.7 20.55
INFO:non_neuro_AC_eas_male Integer 5.78 40.34 0.00 0.00 7.0 20.86
INFO:non_neuro_AN_eas_male Integer 10.68 40.74 0.00 0.00 3.8 40.56
INFO:non_neuro_AF_eas_male Float 11.23 81.36 0.00 0.00 7.2 81.36
INFO:non_neuro_nhomalt_eas_male Integer 2.49 36.51 0.00 0.00 14.6 20.56
INFO:non_neuro_AC_asj_male Integer 3.47 20.37 0.00 0.00 5.9 20.47
INFO:non_neuro_AN_asj_male Integer 4.10 20.37 0.00 0.00 5.0 39.96
INFO:non_neuro_AF_asj_male Float 6.77 81.32 0.00 0.00 12.0 81.32
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INFO:non_neuro_nhomalt_asj_male Integer 1.91 20.34 0.00 0.00 10.6 20.37
INFO:controls_AC_oth Integer 4.88 37.05 0.00 0.00 7.6 20.66
INFO:controls_AN_oth Integer 10.81 40.74 0.00 0.00 3.8 40.26
INFO:controls_AF_oth Float 9.77 81.36 0.00 0.00 8.3 81.36
INFO:controls_nhomalt_oth Integer 2.14 20.36 0.00 0.00 9.5 20.44
INFO:AC_nfe Integer 12.60 40.74 0.00 0.00 3.2 21.39
INFO:AN_nfe Integer 22.30 40.74 0.00 0.00 1.8 40.70
INFO:AF_nfe Float 34.87 81.44 0.00 0.00 2.3 81.44
INFO:nhomalt_nfe Integer 3.70 40.50 0.00 0.00 10.9 20.84
INFO:non_topmed_AC_female Integer 14.76 40.74 0.00 0.00 2.8 21.67
INFO:non_topmed_AN_female Integer 22.45 40.74 0.00 0.00 1.8 40.71
INFO:non_topmed_AF_female Float 40.61 81.45 0.00 0.00 2.0 81.45
INFO:non_topmed_nhomalt_female Integer 4.89 40.64 0.00 0.00 8.3 20.87
INFO:non_neuro_AC_asj Integer 3.69 20.37 0.00 0.00 5.5 20.54
INFO:non_neuro_AN_asj Integer 4.66 20.37 0.00 0.00 4.4 40.20
INFO:non_neuro_AF_asj Float 7.34 81.34 0.00 0.00 11.1 81.34
INFO:non_neuro_nhomalt_asj Integer 1.99 20.35 0.00 0.00 10.2 20.37
INFO:non_topmed_AC_eas_female Integer 4.78 38.98 0.00 0.00 8.2 20.73
INFO:non_topmed_AN_eas_female Integer 8.61 40.74 0.00 0.00 4.7 40.45
INFO:non_topmed_AF_eas_female Float 8.91 81.33 0.00 0.00 9.1 81.33
INFO:non_topmed_nhomalt_eas_female Integer 2.23 30.38 0.00 0.00 13.6 20.49
INFO:non_neuro_AC_raw Integer 16.61 40.74 0.00 0.00 2.5 21.96
INFO:non_neuro_AN_raw Integer 4.65 40.73 0.00 0.00 8.8 40.74
INFO:non_neuro_AF_raw Float 29.48 81.48 0.00 0.00 2.8 81.48
INFO:non_neuro_nhomalt_raw Integer 5.54 40.71 0.00 0.00 7.4 20.96
INFO:non_topmed_AC_eas Integer 6.46 40.57 0.00 0.00 6.3 20.93
INFO:non_topmed_AN_eas Integer 12.13 40.74 0.00 0.00 3.4 40.60
INFO:non_topmed_AF_eas Float 12.90 81.37 0.00 0.00 6.3 81.37
INFO:non_topmed_nhomalt_eas Integer 2.64 38.06 0.00 0.00 14.4 20.61
INFO:non_topmed_AC_fin_male Integer 5.69 40.55 0.00 0.00 7.1 20.92
INFO:non_topmed_AN_fin_male Integer 14.05 40.74 0.00 0.00 2.9 40.48
INFO:non_topmed_AF_fin_male Float 11.31 81.37 0.00 0.00 7.2 81.37
INFO:non_topmed_nhomalt_fin_male Integer 2.68 37.64 0.00 0.00 14.1 20.59
INFO:AC_fin Integer 6.68 40.72 0.00 0.00 6.1 21.06
INFO:AN_fin Integer 16.56 40.74 0.00 0.00 2.5 40.58
INFO:AF_fin Float 13.70 81.40 0.00 0.00 5.9 81.40
INFO:nhomalt_fin Integer 2.97 39.43 0.00 0.00 13.3 20.67
INFO:AC_nfe_male Integer 10.88 40.74 0.00 0.00 3.7 21.26
INFO:AN_nfe_male Integer 19.59 40.74 0.00 0.00 2.1 40.69
INFO:AF_nfe_male Float 27.19 81.44 0.00 0.00 3.0 81.44
INFO:nhomalt_nfe_male Integer 3.44 40.29 0.00 0.00 11.7 20.78
INFO:controls_AC_amr_male Integer 3.51 20.37 0.00 0.00 5.8 20.37
INFO:controls_AN_amr_male Integer 4.63 20.37 0.00 0.00 4.4 20.37
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INFO:controls_AF_amr_male Float 6.85 80.86 0.00 0.00 11.8 80.86
INFO:controls_nhomalt_amr_male Integer 1.78 20.31 0.00 0.00 11.4 20.37
INFO:controls_AC_afr_female Integer 8.76 40.68 0.00 0.00 4.6 20.96
INFO:controls_AN_afr_female Integer 13.05 40.74 0.00 0.00 3.1 40.60
INFO:controls_AF_afr_female Float 18.37 81.41 0.00 0.00 4.4 81.41
INFO:controls_nhomalt_afr_female Integer 3.37 38.41 0.00 0.00 11.4 20.55
INFO:controls_AC_amr Integer 4.09 20.37 0.00 0.00 5.0 20.53
INFO:controls_AN_amr Integer 5.93 20.37 0.00 0.00 3.4 39.63
INFO:controls_AF_amr Float 8.48 81.03 0.00 0.00 9.6 81.03
INFO:controls_nhomalt_amr Integer 1.94 20.34 0.00 0.00 10.5 20.37
INFO:AC_asj_female Integer 3.01 20.37 0.00 0.00 6.8 20.37
INFO:AN_asj_female Integer 3.50 20.37 0.00 0.00 5.8 20.37
INFO:AF_asj_female Float 5.45 81.23 0.00 0.00 14.9 81.23
INFO:nhomalt_asj_female Integer 1.68 20.29 0.00 0.00 12.0 20.37
INFO:non_neuro_AC_eas Integer 6.51 40.58 0.00 0.00 6.2 20.93
INFO:non_neuro_AN_eas Integer 12.34 40.74 0.00 0.00 3.3 40.60
INFO:non_neuro_AF_eas Float 13.03 81.37 0.00 0.00 6.2 81.37
INFO:non_neuro_nhomalt_eas Integer 2.65 38.13 0.00 0.00 14.4 20.61
INFO:non_neuro_AC_male Integer 14.21 40.74 0.00 0.00 2.9 21.48
INFO:non_neuro_AN_male Integer 21.11 40.74 0.00 0.00 1.9 40.70
INFO:non_neuro_AF_male Float 38.58 81.45 0.00 0.00 2.1 81.45
INFO:non_neuro_nhomalt_male Integer 4.61 40.60 0.00 0.00 8.8 20.85
INFO:AC_asj Integer 4.09 31.90 0.00 0.00 7.8 20.57
INFO:AN_asj Integer 6.44 40.70 0.00 0.00 6.3 40.27
INFO:AF_asj Float 7.71 81.34 0.00 0.00 10.5 81.34
INFO:nhomalt_asj Integer 2.02 20.35 0.00 0.00 10.1 20.40
INFO:controls_AC_nfe_est Integer 7.57 40.72 0.00 0.00 5.4 21.11
INFO:controls_AN_nfe_est Integer 19.93 40.74 0.00 0.00 2.0 40.65
INFO:controls_AF_nfe_est Float 16.50 81.40 0.00 0.00 4.9 81.40
INFO:controls_nhomalt_nfe_est Integer 3.10 39.71 0.00 0.00 12.8 20.70
INFO:non_topmed_AC_asj_female Integer 2.87 20.37 0.00 0.00 7.1 20.37
INFO:non_topmed_AN_asj_female Integer 3.31 20.37 0.00 0.00 6.2 20.37
INFO:non_topmed_AF_asj_female Float 5.18 81.15 0.00 0.00 15.7 81.15
INFO:non_topmed_nhomalt_asj_female Integer 1.60 20.24 0.00 0.00 12.6 20.37
INFO:non_topmed_AC_oth Integer 6.98 40.30 0.00 0.00 5.8 20.85
INFO:non_topmed_AN_oth Integer 12.74 40.74 0.00 0.00 3.2 40.56
INFO:non_topmed_AF_oth Float 14.72 81.41 0.00 0.00 5.5 81.41
INFO:non_topmed_nhomalt_oth Integer 2.72 35.53 0.00 0.00 13.1 20.54
INFO:non_topmed_AC_fin_female Integer 5.83 40.59 0.00 0.00 7.0 20.95
INFO:non_topmed_AN_fin_female Integer 14.14 40.74 0.00 0.00 2.9 40.49
INFO:non_topmed_AF_fin_female Float 11.59 81.37 0.00 0.00 7.0 81.37
INFO:non_topmed_nhomalt_fin_female Integer 2.72 38.08 0.00 0.00 14.0 20.60
INFO:AC_oth Integer 7.12 40.39 0.00 0.00 5.7 20.87
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INFO:AN_oth Integer 13.07 40.74 0.00 0.00 3.1 40.58
INFO:AF_oth Float 14.97 81.41 0.00 0.00 5.4 81.41
INFO:nhomalt_oth Integer 2.75 36.00 0.00 0.00 13.1 20.55
INFO:non_neuro_AC_nfe_male Integer 10.50 40.74 0.00 0.00 3.9 21.24
INFO:non_neuro_AN_nfe_male Integer 19.18 40.74 0.00 0.00 2.1 40.69
INFO:non_neuro_AF_nfe_male Float 25.63 81.44 0.00 0.00 3.2 81.44
INFO:non_neuro_nhomalt_nfe_male Integer 3.39 40.23 0.00 0.00 11.9 20.77
INFO:controls_AC_female Integer 11.75 40.74 0.00 0.00 3.5 21.25
INFO:controls_AN_female Integer 19.81 40.74 0.00 0.00 2.1 40.68
INFO:controls_AF_female Float 28.79 81.44 0.00 0.00 2.8 81.44
INFO:controls_nhomalt_female Integer 4.12 40.28 0.00 0.00 9.8 20.74
INFO:non_topmed_AC_fin Integer 6.68 40.72 0.00 0.00 6.1 21.06
INFO:non_topmed_AN_fin Integer 16.56 40.74 0.00 0.00 2.5 40.58
INFO:non_topmed_AF_fin Float 13.70 81.40 0.00 0.00 5.9 81.40
INFO:non_topmed_nhomalt_fin Integer 2.97 39.43 0.00 0.00 13.3 20.67
INFO:non_topmed_AC_nfe_female Integer 9.52 40.74 0.00 0.00 4.3 21.17
INFO:non_topmed_AN_nfe_female Integer 19.28 40.74 0.00 0.00 2.1 40.67
INFO:non_topmed_AF_nfe_female Float 22.68 81.43 0.00 0.00 3.6 81.43
INFO:non_topmed_nhomalt_nfe_female Integer 3.27 40.01 0.00 0.00 12.2 20.74
INFO:controls_AC_asj_male Integer 2.11 20.37 0.00 0.00 9.7 20.37
INFO:controls_AN_asj_male Integer 2.22 20.36 0.00 0.00 9.2 20.37
INFO:controls_AF_asj_male Float 3.20 80.19 0.00 0.00 25.1 80.19
INFO:controls_nhomalt_asj_male Integer 1.19 19.50 0.00 0.00 16.4 20.37
INFO:non_topmed_AC_asj_male Integer 2.98 20.37 0.00 0.00 6.8 20.37
INFO:non_topmed_AN_asj_male Integer 3.72 20.37 0.00 0.00 5.5 20.37
INFO:non_topmed_AF_asj_male Float 5.50 81.21 0.00 0.00 14.8 81.21
INFO:non_topmed_nhomalt_asj_male Integer 1.66 20.25 0.00 0.00 12.2 20.37
INFO:non_neuro_AC_oth Integer 6.27 39.87 0.00 0.00 6.4 20.79
INFO:non_neuro_AN_oth Integer 11.73 40.74 0.00 0.00 3.5 40.52
INFO:non_neuro_AF_oth Float 12.96 81.40 0.00 0.00 6.3 81.40
INFO:non_neuro_nhomalt_oth Integer 2.55 32.98 0.00 0.00 12.9 20.50
INFO:AC_male Integer 15.79 40.74 0.00 0.00 2.6 21.84
INFO:AN_male Integer 22.74 40.74 0.00 0.00 1.8 40.71
INFO:AF_male Float 45.82 81.45 0.00 0.00 1.8 81.45
INFO:nhomalt_male Integer 5.18 40.67 0.00 0.00 7.9 20.92
INFO:controls_AC_fin_female Integer 4.49 38.79 0.00 0.00 8.6 20.71
INFO:controls_AN_fin_female Integer 9.61 40.74 0.00 0.00 4.2 40.11
INFO:controls_AF_fin_female Float 8.48 81.25 0.00 0.00 9.6 81.25
INFO:controls_nhomalt_fin_female Integer 2.21 29.48 0.00 0.00 13.3 20.47
INFO:controls_AC_asj_female Integer 2.36 20.37 0.00 0.00 8.6 20.37
INFO:controls_AN_asj_female Integer 2.50 20.37 0.00 0.00 8.2 20.37
INFO:controls_AF_asj_female Float 3.68 80.47 0.00 0.00 21.9 80.47
INFO:controls_nhomalt_asj_female Integer 1.32 19.88 0.00 0.00 15.0 20.37
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INFO:AC_amr_male Integer 5.34 37.46 0.00 0.00 7.0 20.67
INFO:AN_amr_male Integer 8.41 40.74 0.00 0.00 4.8 40.26
INFO:AF_amr_male Float 10.46 81.39 0.00 0.00 7.8 81.39
INFO:nhomalt_amr_male Integer 2.16 20.35 0.00 0.00 9.4 20.44
INFO:AC_amr_female Integer 5.25 37.06 0.00 0.00 7.1 20.66
INFO:AN_amr_female Integer 8.97 40.74 0.00 0.00 4.5 40.32
INFO:AF_amr_female Float 10.36 81.38 0.00 0.00 7.9 81.38
INFO:nhomalt_amr_female Integer 2.16 20.35 0.00 0.00 9.4 20.44
INFO:AC_oth_male Integer 5.74 38.70 0.00 0.00 6.7 20.71
INFO:AN_oth_male Integer 10.03 40.74 0.00 0.00 4.1 40.44
INFO:AF_oth_male Float 11.55 81.39 0.00 0.00 7.0 81.39
INFO:nhomalt_oth_male Integer 2.37 27.65 0.00 0.00 11.6 20.46
INFO:non_neuro_AC_nfe_seu Integer 2.79 20.36 0.00 0.00 7.3 20.37
INFO:non_neuro_AN_nfe_seu Integer 2.92 20.37 0.00 0.00 7.0 20.37
INFO:non_neuro_AF_nfe_seu Float 4.86 80.21 0.00 0.00 16.5 80.21
INFO:non_neuro_nhomalt_nfe_seu Integer 1.52 20.15 0.00 0.00 13.2 20.37
INFO:non_topmed_AC_afr_female Integer 11.66 40.74 0.00 0.00 3.5 21.39
INFO:non_topmed_AN_afr_female Integer 17.04 40.74 0.00 0.00 2.4 40.67
INFO:non_topmed_AF_afr_female Float 26.61 81.43 0.00 0.00 3.1 81.43
INFO:non_topmed_nhomalt_afr_female Integer 4.11 40.36 0.00 0.00 9.8 20.69
INFO:non_topmed_AC_afr Integer 14.23 40.74 0.00 0.00 2.9 21.77
INFO:non_topmed_AN_afr Integer 20.34 40.74 0.00 0.00 2.0 40.70
INFO:non_topmed_AF_afr Float 35.67 81.45 0.00 0.00 2.3 81.45
INFO:non_topmed_nhomalt_afr Integer 4.71 40.61 0.00 0.00 8.6 20.82
INFO:controls_AC Integer 14.18 40.74 0.00 0.00 2.9 21.55
INFO:controls_AN Integer 22.59 40.74 0.00 0.00 1.8 40.70
INFO:controls_AF Float 38.24 81.45 0.00 0.00 2.1 81.45
INFO:controls_nhomalt Integer 4.72 40.61 0.00 0.00 8.6 20.85
INFO:non_neuro_AC_oth_female Integer 5.01 35.57 0.00 0.00 7.1 20.63
INFO:non_neuro_AN_oth_female Integer 9.85 40.74 0.00 0.00 4.1 40.30
INFO:non_neuro_AF_oth_female Float 10.09 81.37 0.00 0.00 8.1 81.37
INFO:non_neuro_nhomalt_oth_female Integer 2.15 20.36 0.00 0.00 9.5 20.43
INFO:non_topmed_faf95_amr Float 12.52 81.48 0.00 0.00 6.5 81.48
INFO:non_topmed_faf99_amr Float 12.52 81.48 0.00 0.00 6.5 81.48
INFO:faf95_afr Float 26.28 81.48 0.00 0.00 3.1 81.48
INFO:faf99_afr Float 25.57 81.48 0.00 0.00 3.2 81.48
INFO:controls_faf95_afr Float 21.69 81.48 0.00 0.00 3.8 81.48
INFO:controls_faf99_afr Float 21.70 81.48 0.00 0.00 3.8 81.48
INFO:faf95_amr Float 9.78 81.48 0.00 0.00 8.3 81.48
INFO:faf99_amr Float 9.78 81.48 0.00 0.00 8.3 81.48
INFO:faf95_eas Float 9.38 81.48 0.00 0.00 8.7 81.48
INFO:faf99_eas Float 9.37 81.48 0.00 0.00 8.7 81.48
INFO:faf95 Float 36.17 81.48 0.00 0.00 2.3 81.48
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INFO:faf99 Float 34.87 81.48 0.00 0.00 2.3 81.48
INFO:non_neuro_faf95_afr Float 22.92 81.48 0.00 0.00 3.6 81.48
INFO:non_neuro_faf99_afr Float 22.86 81.48 0.00 0.00 3.6 81.48
INFO:non_neuro_faf95_amr Float 11.33 81.48 0.00 0.00 7.2 81.48
INFO:non_neuro_faf99_amr Float 11.31 81.48 0.00 0.00 7.2 81.48
INFO:controls_faf95_nfe Float 17.60 81.48 0.00 0.00 4.6 81.48
INFO:controls_faf99_nfe Float 17.53 81.48 0.00 0.00 4.6 81.48
INFO:non_topmed_faf95 Float 37.40 81.48 0.00 0.00 2.2 81.48
INFO:non_topmed_faf99 Float 36.04 81.48 0.00 0.00 2.3 81.48
INFO:non_neuro_faf95_nfe Float 24.38 81.48 0.00 0.00 3.3 81.48
INFO:non_neuro_faf99_nfe Float 23.51 81.48 0.00 0.00 3.5 81.48
INFO:non_neuro_faf95 Float 34.63 81.48 0.00 0.00 2.4 81.48
INFO:non_neuro_faf99 Float 33.42 81.48 0.00 0.00 2.4 81.48
INFO:non_topmed_faf95_nfe Float 22.68 81.48 0.00 0.00 3.6 81.48
INFO:non_topmed_faf99_nfe Float 22.08 81.48 0.00 0.00 3.7 81.48
INFO:controls_faf95_eas Float 10.45 81.48 0.00 0.00 7.8 81.48
INFO:controls_faf99_eas Float 10.45 81.48 0.00 0.00 7.8 81.48
INFO:faf95_nfe Float 21.05 81.48 0.00 0.00 3.9 81.48
INFO:faf99_nfe Float 20.30 81.48 0.00 0.00 4.0 81.48
INFO:non_topmed_faf95_eas Float 11.97 81.48 0.00 0.00 6.8 81.48
INFO:non_topmed_faf99_eas Float 11.98 81.48 0.00 0.00 6.8 81.48
INFO:controls_faf95_amr Float 8.60 81.48 0.00 0.00 9.5 81.48
INFO:controls_faf99_amr Float 8.59 81.48 0.00 0.00 9.5 81.48
INFO:non_neuro_faf95_eas Float 12.18 81.48 0.00 0.00 6.7 81.48
INFO:non_neuro_faf99_eas Float 12.16 81.48 0.00 0.00 6.7 81.48
INFO:non_topmed_faf95_afr Float 30.32 81.48 0.00 0.00 2.7 81.48
INFO:non_topmed_faf99_afr Float 29.70 81.48 0.00 0.00 2.7 81.48
INFO:controls_faf95 Float 30.37 81.48 0.00 0.00 2.7 81.48
INFO:controls_faf99 Float 29.61 81.48 0.00 0.00 2.8 81.48
INFO:controls_popmax String 5.77 30.71 0.00 0.00 5.3 30.71
INFO:controls_AC_popmax Integer 9.21 20.47 0.00 0.00 2.2 11.19
INFO:controls_AN_popmax Integer 13.29 20.47 0.00 0.00 1.5 20.32
INFO:controls_AF_popmax Float 29.13 40.94 0.00 0.00 1.4 40.94
INFO:controls_nhomalt_popmax Integer 3.92 20.18 0.00 0.00 5.1 10.57
INFO:popmax String 8.90 56.20 0.00 0.00 6.3 56.20
INFO:AC_popmax Integer 14.18 37.47 0.00 0.00 2.6 20.29
INFO:AN_popmax Integer 25.24 37.47 0.00 0.00 1.5 37.43
INFO:AF_popmax Float 50.81 74.94 0.00 0.00 1.5 74.94
INFO:nhomalt_popmax Integer 5.14 37.37 0.00 0.00 7.3 19.22
INFO:age_hist_het_bin_freq String 59.17 404.73 3.67 20.37 6.8 404.73
INFO:age_hist_het_n_smaller Integer 12.28 40.74 0.00 0.00 3.3 21.41
INFO:age_hist_het_n_larger Integer 3.76 20.37 0.00 0.00 5.4 20.37
INFO:age_hist_hom_bin_freq String 16.83 395.01 2.07 20.35 23.5 395.01
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INFO:age_hist_hom_n_smaller Integer 4.36 40.47 0.00 0.00 9.3 20.75
INFO:age_hist_hom_n_larger Integer 2.08 20.35 0.00 0.00 9.8 20.37
INFO:non_neuro_popmax String 7.71 45.93 0.00 0.00 6.0 45.93
INFO:non_neuro_AC_popmax Integer 11.84 30.62 0.00 0.00 2.6 16.51
INFO:non_neuro_AN_popmax Integer 19.61 30.62 0.00 0.00 1.6 30.57
INFO:non_neuro_AF_popmax Float 41.23 61.24 0.00 0.00 1.5 61.24
INFO:non_neuro_nhomalt_popmax Integer 4.54 30.46 0.00 0.00 6.7 15.73
INFO:non_topmed_popmax String 8.38 50.98 0.00 0.00 6.1 50.98
INFO:non_topmed_AC_popmax Integer 13.38 33.99 0.00 0.00 2.5 18.50
INFO:non_topmed_AN_popmax Integer 22.74 33.99 0.00 0.00 1.5 33.94
INFO:non_topmed_AF_popmax Float 46.70 67.97 0.00 0.00 1.5 67.97
INFO:non_topmed_nhomalt_popmax Integer 5.01 33.88 0.00 0.00 6.8 17.47
INFO:vep String 541.64 17,580.78 15.89 38.92 32.5 17,580.78
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