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Abstract: Network analytic methods that are ubiquitous in other areas, such as systems neuroscience,
have recently been used to test network theories in psychology, including intelligence research.
The network or mutualism theory of intelligence proposes that the statistical associations among
cognitive abilities (e.g., specific abilities such as vocabulary or memory) stem from causal relations
among them throughout development. In this study, we used network models (specifically LASSO)
of cognitive abilities and brain structural covariance (grey and white matter) to simultaneously model
brain–behavior relationships essential for general intelligence in a large (behavioral, N = 805; cortical
volume, N = 246; fractional anisotropy, N = 165) developmental (ages 5–18) cohort of struggling
learners (CALM). We found that mostly positive, small partial correlations pervade our cognitive,
neural, and multilayer networks. Moreover, using community detection (Walktrap algorithm) and
calculating node centrality (absolute strength and bridge strength), we found convergent evidence
that subsets of both cognitive and neural nodes play an intermediary role ‘between’ brain and
behavior. We discuss implications and possible avenues for future studies.

Keywords: general intelligence; cortical volume; fractional anisotropy; brain structural covariance;
cognitive network neuroscience; multilayer network analysis

1. Introduction

General intelligence, or g (Spearman 1904), captures cognitive ability across a variety
of domains and predicts a wide range of important life outcomes, such as educational and
occupational achievement (Hegelund et al. 2018), and mortality (Calvin et al. 2011). In
recent years, methods from network analysis have shed new light on both the cognitive
abilities that make up general intelligence (van der Maas et al. 2017), as well as the brain
systems purported to support these abilities (Girn et al. 2019; Seidlitz et al. 2018). For
instance, the mutualism model (van der Maas et al. 2006), inspired by ecosystem models
of prey–predator relations, states that the positive manifold (Spearman 1904), rather than
existing in final form since birth, emerges gradually from the positive interactions among
different cognitive abilities (e.g., reasoning and vocabulary) over time (see Kievit et al.
2017; Kievit et al. 2019). Hence, the positive manifold (and, thus, general intelligence)
can arise even from originally weakly correlated cognitive faculties. Therefore, according
to the mutualism model (also see van der Maas et al. 2017), general intelligence can be
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conceptualized as a complex dynamical system. This paradigm allows us to evaluate
general intelligence using the statistical tools of network science (Barabási 2016) to esti-
mate the relationships among elements of the system(s) under investigation (Fried 2020;
Fried and Robinaugh 2020).

For example, new innovations in network psychometrics (Epskamp et al. 2018) have
led to a rapid increase in popularity of behavioral network analysis, especially in psy-
chopathology (Borsboom 2017; Robinaugh et al. 2019). In this framework, psychological
constructs (e.g., mental disorders such as depression) are theorized as complex systems,
whereby relationships (edges) between nodes (e.g., item responses on a questionnaire)
are estimated using weighted partial correlation networks. The use of partial correlations
enables the determination of conditional dependencies among variables, after controlling
for the associations among every other node in the network (Epskamp et al. 2018).

This approach has also recently been used to analyze cross-sectional data on general
intelligence. For instance, both Kan et al. (2019) (N = 1800; age range: 16–89 years) as
well as Schmank et al. (2019) (N = 1112; age range: 12–90 years) used a network model
approach to analyze data from the WAIS-IV cognitive battery (Wechsler 2008). Model fit
to the pattern of intelligence scores was more consistent with the network model than
a latent variable approach (g factor). Furthermore, Mareva and Holmes (2020), in two
separate samples, one the same group of struggling learners as studied here (CALM) but
with fewer participants (N = 350), no neuroimaging data, and including tasks not analyzed
in this study (e.g., motor speed and tower achievement), observed links between cognitive
abilities and learning, especially between mathematics skills and more “domain-general”
faculties such as backward digit span and matrix reasoning. Although mutualism is an
inherently dynamical theory, therefore requiring longitudinal data to adequately assess,
these results are compatible with a cross-sectional interpretation of mutualism’s assumption
of (mostly) positive associations among cognitive abilities. Moreover, it must be noted
that latent variable (Kline 2015) and network models should not solely be compared using
goodness-of-fit indices, but should instead be judged based on “theory compatibility” (see
Schmank et al. 2021) and the proposed “data-generating mechanism” (van Bork et al. 2019).

In addition to psychology, network analysis methods have been widely used in neu-
roscience to describe the relations among brain regions, ushering in the field of network
neuroscience (Bassett and Sporns 2017; Fornito et al. 2016). Rather than focusing on individ-
ual brain regions in isolation, the brain is conceived (similarly to network psychometrics
and mutualism) as a complex system of interconnected networks that facilitate behavioral
functions, ranging from sensorimotor control to learning. In this light, several influential
studies have revealed pervasive properties of brain networks, such as small-world topology
(Bassett and Bullmore 2006, 2017), modularity (Meunier et al. 2010; Sporns and Betzel
2016), and hubs (Sporns et al. 2007; van den Heuvel and Sporns 2013), which are nodes
(e.g., individual brain regions) that share many connections with other nodes within the
brain. Together, these organizational properties of brains enable an economical trade-off
between minimizing wiring cost and maximizing efficiency (e.g., information transfer) that
enable adaptive behavior (Bullmore and Sporns 2012).

Although network approaches have provided unique insights within cognitive neuro-
science as well as psychology (e.g., psychopathology and intelligence), few studies have
integrated them into a so-called multilayer network paradigm (Bianconi 2018), which mod-
els the relationships among variables simultaneously across time (e.g., days, weeks, months,
and years) and/or levels of organization (e.g., behavior and brain variables). Two studies
have recently pushed this boundary. Hilland et al. (2020) examined the relations between
brain structure (cortical thickness and volume) and depression symptoms. They found
(via a partial correlation network model) that certain clusters of brain regions (cingulate,
fusiform gyrus, hippocampus, and insula) were conditionally dependent, with a subset
of depression symptoms (crying, irritability, and sadness). Secondly, in 172 male autistic
participants (ages 10–21 years), Bathelt, Geurts, and Borsboom 2020 used “network-based
regression” to estimate the relationship between the unique variance of both the autism
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symptom network and functional brain connectivity (resting-state fMRI). Moreover, they
applied Bayesian network analysis to create a directed acyclic graph between autism symp-
toms’ sub-scores and their neural correlates. They found that communication and social
behavior were predicted by their respective resting-state MRI neural correlates (termed
“Comm Brain” and “Social Brain”, respectively).

This study builds on these findings and the recent studies mentioned above, by
combining a network psychometrics approach to understand individual differences in
cognitive ability (general intelligence) with brain structural covariance networks derived
from grey matter cortical volume and white matter fractional anisotropy. In doing so,
we created a network of networks, which differs from multiplex (same nodes, different
edge types across layers) and multi-slice (same nodes and edge types over time such as
in fMRI time-series data) networks (see Bianconi 2018, p. 81, Fig. 4.1). The advantages of
applying this approach are three-fold and complementary. First, it places the brain and
behavior, which often do not map onto each other in a simple and reductionistic one-to-one
fashion, into the same analytical paradigm (network analysis using partial correlations).
This allows for simultaneous estimations and easier visualizations of potential causal
links between cognition and structural brain properties, which to our knowledge, has
only been performed in a similar way in two other studies, one involving depression
(Hilland et al. 2020), the other in autism (Bathelt et al. 2020). Second, it enables the use of
centrality estimates (i.e., strength) and community detection algorithms (i.e., Walktrap)
to tease apart major clusters of cognitive abilities and brain regions, which could help to
pinpoint potential intervention targets (e.g., using cognitive training and/or transcranial
magnetic stimulation). Lastly, it aids in establishing a coherent framework for theory
building, which has been lacking in both the neuroscience (Levenstein et al. 2020) and
psychological (Fried 2020) literature. This is accomplished by treating both the brain
(algorithmic) and behavior (computational) as equally important levels of analysis to study
(Marr and Poggio 1976), and attempting to more directly translate findings from one level
to the other. Ultimately, the hope is that relations between brain–behavior nodes can help
identify candidate targets (e.g., nodes that ‘bridge’ the brain and cognition) for future
interventions in developmental samples of struggling learners, in particular individuals
considered ‘low-performing’ on cognitive ability tasks (e.g., students struggling to learn
in school).

2. Materials and Methods
2.1. Participants

The present cross-sectional sample (behavioral, N = 805; cortical volume, N = 246;
fractional anisotropy, N = 165; age range: 5 to 18 years) was obtained from the Centre for
Attention, Learning and Memory (CALM) located in Cambridge, UK (Holmes et al. 2019).
This developmental cohort consists of children and adolescents recruited by referrals
for perceived difficulties in attention, memory, language, reading, and/or mathematics
problems. A formal diagnosis was neither required nor an exclusion criterion. Exclusion
criteria included any known significant and uncorrected problems in vision or hearing,
and/or being a non-native English speaker.

Cognitive data were obtained on a one-to-one basis by an examiner in a designated
child-friendly testing room. The tasks analyzed in this study comprised a comprehensive
array of standardized assessments of cognitive ability, including crystallized intelligence
(peabody picture vocabulary test, spelling, single-word reading, and numerical operations),
fluid intelligence (matrix reasoning), and working memory (forward and backward digit
recall, Mr. X, dot matrix, and following instructions). See Table 1 for task descriptions,
relevant citations, and summary statistics (Note: from raw cognitive task scores).
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Table 1. List, descriptions, and summary statistics (mean, standard deviation, range, and percentage of missing data) of
cognitive assessments used in this study from the CALM sample. Note, task descriptions (except following instructions) are
taken directly or paraphrased from Simpson-Kent et al. (2020).

Cognitive Domain Task Descriptions Mean (SD)
[Range]

Missing
Data Reference

Crystallized Ability (gc)

Numerical Operations (NO): Participants
answered written mathematical problems that

increased in difficulty.

16.1 (8.4)
[0, 64] 9.94%

Wechsler (2005)

Single-Word Reading (Read): Participants read
aloud first a list of letters and then words that

gradually increased in complexity. Correct
responses required correctness and fluency.

83.2 (24.8)
[1, 130] 2.48%

Spelling (Spell): Participants spelled words with
increasing difficulty one at a time that were

spoken by an examiner.

22 (9.2)
[0, 49] 3.35%

Peabody Picture Vocabulary Test (Pea):
Participants were asked to choose the picture (out

of four multiple-choice options) showing the
meaning of a word spoken by an examiner.

136.8 (31.6)
[8, 215] 1.12% Dunn and Dunn (2007)

Fluid Ability (gf)
Matrix Reasoning (MR): Participants saw

sequences of partial matrices and selected the
response option that best completed each matrix.

11.2 (5.6)
[0, 28] 0.12% Wechsler (2011)

Working Memory (WM)

Digit Recall (DR): Participants recalled sequences
of single-digit numbers given in audio format.

24.6 (5.4)
[7, 47] 0.5%

Alloway (2007)

Backward Digit Recall (BDR): Same as regular
digit recall but in reversed order.

9.7 (4.4)
[0, 25] 3.11%

Dot Matrix (Dot): Participants were shown the
location of a red dot in a sequence of 4 × 4

matrices and had to recollect the location and
order of these sequences.

18 (5.7)
[2, 43] 0.75%

Mr. X (MrX): Participants remembered spatial
sequences of locations of a ball held by a cartoon

man rotated in one of seven positions.

9.3 (5.1)
[0, 32] 1.24%

Following Instructions (FI): Participants carried
out various sequences of actions (touch and/or

pick up) based on props (a box, an eraser, a folder,
a pencil, or a ruler) presented in front of them. By

having participants undertake actions
sequentially (do X “then” do Y), increasingly

longer sequences were made which increased the
difficulty. Scores denote total number of

correct responses.

11.2 (4)
[1, 33] 6.83% Gathercole et al. (2008)

Participants were allotted regular breaks throughout each session. When necessary,
testing was split into two separate sessions for participants who did not complete the
assessments in a single sitting. A subset of participants also underwent MRI scanning
(see below for details). It should be noted that, when compared to age-matched controls,
CALM sample participants tend to score lower than their peers. For example, a recent
study (Simpson-Kent et al. 2020) compared the CALM cohort with the NKI-Rockland
Sample (see Nooner et al. 2012) to assess how cognition and its white matter correlates
(fractional anisotropy) differed from childhood to adolescence. In terms of cognitive
performance, CALM reliably scored lower than the NKI-Rockland Sample, a ‘typically’
developing cohort, on tasks of crystallized and fluid intelligence (see Level I of Figure 2
from Simpson-Kent et al. 2020). For more information about CALM and its procedures, see
http://calm.mrc-cbu.cam.ac.uk/ (accessed on 8 June 2021).

2.2. Structural Neuroimaging: Cortical Volume (CV) and Fractional Anisotropy (FA)

CALM neuroimaging data were obtained at the MRC Cognition and Brain Sciences
Unit, Cambridge, UK. Scans were acquired on the Siemens 3 T Tim Trio system (Siemens

http://calm.mrc-cbu.cam.ac.uk/
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Healthcare, Erlangen, Germany) via a 32-channel quadrature head coil. T1-weighted
volume scans were acquired using a whole brain coverage 3D magnetization-prepared
rapid acquisition gradient echo (MPRAGE) sequence, with 1 mm isotropic image resolution.
The following parameters were used: Repetition time (TR) = 2250 ms; Echo time (TE) = 3.02
ms; Inversion time (TI) = 900 ms; Flip angle = 9 degrees; Voxel dimensions = 1 mm isotropic;
GRAPPA acceleration factor = 2. Diffusion-Weighted Images (DWI) were acquired using
a Diffusion Tensor Imaging (DTI) sequence with 64 diffusion gradient directions, with a
b-value of 1000 s/mm2, plus one image acquired with a b-value of 0. Relevant parameters
include: TR = 8500 ms, TE = 90 ms, and voxel dimensions = 2 mm isotropic.

We undertook several procedures to ensure adequate MRI data quality and minimize
potential biases due to subject movement. For all participants in CALM, children were
trained to lie still inside a realistic mock scanner prior to their scan. All T1-weighted
images and FA maps were examined by an expert to remove low-quality scans. Moreover,
only data with a maximum between-volume displacement below 3 mm were included in
the analyses.

As our grey matter metric, we use region-based cortical volume (CV in mm3, N = 246,
averaged across contralateral homologues), based on the Desikan–Killiany atlas
(Desikan et al. 2006) and defined as the distance between the outer edge of cortical grey
matter and subcortical white matter (Fischl and Dale 2000). Tissue classification and
anatomical labelling were performed on the basis of the T1-weighted scan using FreeSurfer
v5.3.0 software, which is documented and freely available for download online (http:
//surfer.nmr.mgh.harvard.edu/, accessed on 8 June 2021). The technical details of these
procedures are described in prior publications (Dale et al. 1999; Fischl et al. 1999, 2002).
FreeSurfer morphology output statistics were computed for each ROI, and also included
cortical thickness and surface area (see Supplementary Materials Figures S5 and S6 for
analyses involving these two metrics). Based on a recent meta-analysis on functional and
structural correlates of intelligence (Basten et al. 2015), as well as a previous longitudinal
analysis of the UK Biobank sample (see Kievit et al. 2018), we included a subset of 10
cortical volume regions in this study: caudal anterior cingulate (CAC), caudal middle
frontal gyrus (CMF), frontal pole (FP), medial orbitofrontal cortex (MOF), rostral anterior
cingulate gyrus (RAC), rostral middle frontal gyrus (RMF), superior frontal gyrus (SFG),
superior temporal gyrus (STG), supramarginal gyrus (SMG), and transverse temporal
gyrus (TTG).

From a subset of our neuroimaging data (see Simpson-Kent et al. 2020), we also calcu-
lated fractional anisotropy (FA, N = 165), a proxy for white matter integrity (Wandell 2016).
We included 10 regions using the Johns Hopkins University DTI-based white matter trac-
tography atlas (see Hua et al. 2008): anterior thalamic radiations (ATR), corticospinal tract
(CST), cingulate gyrus (CING), cingulum (hippocampus) (CINGh), forceps major (FMaj),
forceps minor (FMin), inferior fronto-occipital fasciculus (IFOF), inferior longitudinal
fasciculus (ILF), superior longitudinal fasciculus (SLF), and uncinate fasciculus (UNC).

All steps to compute regional CV estimation and FA maps were implemented using
NiPyPe v0.13.0 (see https://nipype.readthedocs.io/en/latest/, accessed on 8 June 2021).
To create a brain mask based on the b0-weighted image (FSL BET; Smith 2002) and correct
for movement and eddy current-induced distortions (eddy; Graham et al. 2016), diffusion-
weighted images were pre-processed. The diffusion tensor model was then fitted, and
fractional anisotropy (FA) maps were calculated using dtifit. Images with a between-image
displacement > 3 mm were then excluded from subsequent analysis steps. This was
completed using FSL v5.0.9. To extract FA values for major white matter tracts, FA images
were registered to the FMRIB58 FA template in MNI space using a sequence of rigid, affine,
and symmetric diffeomorphic image registration (SyN). This was implemented in ANTS
v1.9 (Avants et al. 2008). For all participants, visual inspection indicated good image
registration. Binary masks from a probabilistic white matter atlas (thresholded at > 50%
probability) in the same space were applied to extract FA values.

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
https://nipype.readthedocs.io/en/latest/
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We used these region-based measures to study brain structural covariance (Alexander-
Bloch et al. 2013), which have been used in cross-sectional and longitudinal designs of
cognitive ability in childhood and adolescence (e.g., Solé-Casals et al. 2019; see Kievit
and Simpson-Kent 2021 for a recent review of longitudinal studies). Emerging theoretical
proposals emphasize the role of networks of brain areas in producing intelligent behavior
(e.g., Parieto-Frontal Integration Theory (P-FIT), Jung and Haier (2007) and The Network
Neuroscience Theory of Human Intelligence, Barbey 2018) rather than individual regions-
of-interest (ROIs) in isolation (e.g., primarily the prefrontal cortex). As stated above, we
selected 10 grey matter and 10 white matter ROIs based upon combined evidence from a
recent meta-analysis (Basten et al. 2015) on associations between functional and structural
ROIs and cognitive ability, that further extended the P-FIT theory, but also more recent work
performed in two large cohorts, one in longitudinal analysis of the UK Biobank sample
(grey matter, Kievit et al. 2018) and another in the same (cross-sectional) developmental
cohort, although with a smaller behavioral sample size (cognitive data, N = 551; white
matter, N = 165, same fractional anisotropy data as the present study; no grey matter data
used), as that studied here (see, Simpson-Kent et al. 2020). See Figure 1 for illustrations of
ROIs analyzed in this study.
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Figure 1. (A) Grey matter ROIs based on the Desikan–Killiany atlas (cortical volume, N = 246) in the left and right
hemisphere. White matter ROIs based on the John’s Hopkin’s University atlas (fractional anisotropy, N = 165) in (B)
transverse plane (superior), (C) coronal plane, and (D) transverse plane (inferior). Note that the frontal pole is not visible in
these planes.

2.3. Network Estimation Methods

All statistical analyses and plots were completed using R (R Core Team 2020) version
3.6.3 (“Holding the Windsock”). Network estimation was performed using the packages
bootnet (version 1.4.3, Epskamp and Fried 2020), igraph (version 1.2.6, Amestoy et al. 2020),
qgraph (version 1.6.5, Epskamp et al. 2020), and networktools (version 1.2.3, Jones 2020).
We used these tools to estimate weighted partial correlation networks, which allowed
determination of conditional dependencies among our cognitive and neural variables. For
example, in a multilayer network, any partial correlation between node A (e.g., matrix
reasoning) and node B (e.g., the caudal anterior cingulate) is one that remains after control-
ling for the associations among A and B with every other node in the network (e.g., other
cognitive abilities and cortical volume ROIs). To estimate these networks, we applied Gaus-
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sian Graphical Models (Pearson correlations) using regularization (graphical lasso, see
Friedman et al. 2008) with a threshold tuning parameter of 0.5 and pairwise deletion to ac-
count for missingness. These methods have been widely used to generate sparser networks
by penalizing for more complex models, thus decreasing the risk of potentially spurious
(e.g., false positive) connections and enabling simpler visualization and interpretation of
conditional dependencies between nodes (Epskamp and Fried 2018). We hypothesized
that our results would show positive partial correlations (in line with mutualism theory)
both within cognitive (e.g., as observed in Mareva and Holmes 2020; Schmank et al. 2019)
and within neural measures (single-layer networks), as well as between brain–behavior
variables in the multilayer networks.

Note that age was included as a node in the estimation procedures (i.e., edge weights,
centrality, network stability, and community detection) of all partial correlation networks
but was not included in the visualizations of our networks and centrality plots, or in
network descriptive statistics (i.e., mean, median, and range of edge weights). For a
comparison of the use of age (i.e., included in estimation, regressed out beforehand, or
removed from the dataset prior to network estimation), see the Supplementary Material
Tables S2 and S3.

2.4. Node Strength Centrality (Single-Layer Networks)

To assess the statistical interconnectedness or connectivity of cognitive and neural
nodes relative to their neighbors within our single-layer networks, we estimated node
strength, a weighted degree centrality measure calculated by summing the absolute partial
correlation coefficients (edge weights) between a node and all other nodes it connects
to within the network. Note that our brain structural covariance networks involve ROIs
that are not necessarily anatomically connected, preventing certain inferences such as
information flow. Nodes were classified as central if the magnitude of their strength z-score
was positive and equal to or greater than one standard deviation above the mean. We do
not discuss or interpret negative centrality values for our single-layer networks.

2.5. Community Detection and Bridge Strength Centrality (Multilayer Networks)

In our multilayer networks, we applied the Walktrap community detection algorithm
(Pons and Latapy 2005) to determine in a data-driven manner whether clustering, or group-
ing, of nodes (e.g., cognitive and/or neural) occurred. The Walktrap algorithm assesses how
strongly related nodes are to each other (that can be due to similarity, e.g., because nodes A
and B are similar, or it can be because nodes A and B are different, but node A has a strong
impact on node B; see “Topological overlap and missing nodes” of Fried and Cramer 2017).
The Walktrap algorithm works by taking recursive random walks between node pairs
and classifies communities according to how densely connected these parts are within the
network (wherever the random walks become ‘trapped’). Walktrap is widely used in the
network psychometrics literature and, in a Monte Carlo simulation study, was shown to
outperform other algorithms (e.g., InfoMap) for sparse count networks (e.g., those used
in diffusion tensor imaging), although it must be noted that this result was for networks
made up of 500 nodes or higher (Gates et al. 2016). We also calculated the maximum
modularity index value (Q), which estimates the robustness of the community partition
(Newman 2006). We interpreted values of 0.5 or above as evidence for reliable grouping.

Instead of traditional absolute strength, we calculated bridge strength, a novel weighted
degree centrality measure originality developed to study comorbidity between mental
disorders (see Jones et al. 2019 for overview). Bridge strength centrality sums the absolute
value of every edge that connects one node (e.g., matrix reasoning) in one pre-assigned
community (e.g., cognition) to another node (e.g., caudal anterior cingulate) in another pre-
assigned community (e.g., brain). Recent simulation work has shown that the method can
reliably recover true structures of bridge nodes in both directed and undirected networks
(Jones et al. 2019). Rather than relying on straightforward ‘brain’ or ‘behavior’ assignments
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to classify nodes, we pre-assigned communities for bridge strength calculation based on
results from the Walktrap algorithm.

The presence of bridges between communities (e.g., if nodes from topological distinct
clusters such as cognition vs. brain feature relations) might suggest the existence of inter-
mediate endophenotypes (Fornito and Bullmore 2012; Kievit et al. 2016), and potentially
identify potential nodes (both cognitive and neural) that might one day guide intervention
studies. Nodes were classified as central if the magnitude of their strength z-score was
positive and equal to or greater than one standard deviation above the mean. We do not
discuss or interpret negative centrality z-score values for our multilayer networks.

2.6. Node Centrality Stability (Single and Multilayer Networks)

Lastly, we quantified the reliability of our centrality estimates for all single-layer (abso-
lute strength of cognitive and brain structural covariance nodes) and multilayer networks
(bridge strength). We estimated the correlation stability (CS) coefficient, calculated as
the maximum proportion (out of 2000 bootstraps) of the sample that can be dropped out
and, with 95% probability, still retain a correlation of 0.7 (correlation between rank order
of centrality in network estimated on full sample with order of subsampled network in
smaller N), with a CS value of 0.5 considered to be stable (Epskamp et al. 2018). Lastly,
also using bootstrapping, we determined the stability of the edge-weight coefficients, but
present these results in the Supplementary Material Figures S2–S4.

3. Results
3.1. Single-Layer Network Models (Cognitive, Cortical Volume, and Fractional Anisotropy)

The regularized partial correlation (PC) network for the CALM cognitive data is
shown in Figure 2 (top left). This network shows that all partial correlations are positive,
and most have small magnitude (mean PC = 0.08, median PC = 0.07, PC range = 0–0.63).
One edge (between reading and spelling) was an outlier (PC = 0.63, all others are between
0 and 0.27), likely due to close content overlap (verbal ability). Regarding centrality, three
nodes emerged as strong (positive z-score at or greater than one standard deviation above
the mean): (in descending order of centrality strength) reading, numerical operations, and
peabody picture vocabulary test (Figure 2, top right). Overall, centrality estimates were
stable, indicated by a high correlation stability (CS) coefficient of 0.75, revealing that at
least 75% of the sample could be dropped while maintaining a correlation of 0.7 with the
original sample at 95% probability.

Next, we estimated the partial correlation network among 10 grey matter regions, as
shown in Figure 1 (top) above. All edges weights (mean PC = 0.09, median PC = 0, PC
range = −0.15–0.52) of the cortical volume network (Figure 2, middle left) were positive,
apart from one negative path (caudal middle frontal gyrus and frontal pole PC = −0.15).
Note that the negative path between the caudal middle frontal gyrus and frontal pole might
be due to the frontal pole correlating surprisingly weakly with other grey matter nodes and
displaying a steeper decrease pattern across age (see Figure 3 below and Supplementary
Figure S1). Two ROIs emerged as central (in descending order of centrality strength):
superior temporal gyrus and rostral middle frontal gyrus (Figure 2, middle right). Similar
to the cognitive network, cortical volume centrality was stable (CS coefficient = 0.52),
indicating that about 52% of the sample could be subtracted to maintain a correlation of
centrality estimates above 0.7 compared to the full sample. This finding is despite the
lower sample size compared to the behavioral data (N = 805 for behavior vs. N = 246 for
cortical volume).
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Figure 3. (Top) Correlation plot for cognitive raw scores and bilateral cortical volume ROIs. (Middle)
Correlation plot for cognitive raw scores and bilateral fractional anisotropy ROIs. (Bottom) Correla-
tion plot for bilateral cortical volume and bilateral fractional anisotropy ROIs. All coefficients shown
are Pearson correlations. Blue represents positive correlations while red signifies negative correlations
among variables. Size of circles indicates the magnitude of the association (e.g., larger circle = higher
correlation). Correlations calculated using pairwise complete observations. Abbreviations: matrix
reasoning (MR), peabody picture vocabulary test (Pea), spelling (Spell), single word reading (Read),
numerical operations (NO), digit recall (DR), backward digit recall (BDR), Mr. X (MrX), dot matrix
(Dot), following instructions (Ins), caudal anterior cingulate (CAC), caudal middle frontal gyrus
(CMF), medial orbital frontal cortex (MOF), rostral anterior cingulate gyrus (RAC), rostral middle
frontal gyrus (RMF), superior frontal gyrus (SFG), superior temporal gyrus (STG), supramarginal
gyrus (SMG), frontal pole (FP), transverse temporal gyrus (TTG), anterior thalamic radiations (ATR),
corticospinal tract (CST), cingulate gyrus (CING), cingulum (hippocampus) (CINGh), inferior fronto-
occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus
(SLF), uncinate fasciculus (UNC), forceps major (FMaj), and forceps minor (FMin).

Finally, similar to the cognitive and the grey matter covariance network, the fractional
anisotropy network (Figure 2, bottom left) has positive partial correlations, with all edge
weights varying between small and moderate values: mean PC = 0.08, median PC = 0, and
PC range = 0–0.44. Two white matter ROIs displayed centrality (Figure 2, bottom right).
These included (in descending order) the forceps minor and inferior longitudinal fascicu-
lus. Finally, fractional anisotropy centrality was moderately stable (CS coefficient = 0.44),
indicating that about 44% of the sample could be removed while maintaining a 0.7 associa-
tion with 95% probability. This is possibly due to the much lower sample size (N = 165)
compared to the cognitive (N = 805) and grey matter (N = 246) networks.

3.2. Bridging the Gap: Multilayer Networks

For a correlation plot of cognitive tasks and neuroimaging measures, see Figure 3. The
regularized partial correlation network analyses for the CALM multilayer networks data
are shown in Figure 4. Consistent with the pattern found in the single-layer networks, the
cognitive and grey matter multilayer network (top left of Figure 4) edges are mostly positive
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and small to moderate weights (mean PC = 0.04, median PC = 0, PC range = −0.12–0.64).
Comparably, the cognitive and white matter multilayer network (Figure 4, top right) had
similar edge weight estimates (mean PC = 0.04, median = 0, range = −0.2–0.65). Finally,
combining all measures together (tri-layer network consisting of cognition, grey and white
matter, bottom center of Figure 4) produced a network with similar characteristics to
the bi-layer networks (mean PC = 0.02, median PC = 0, PC range = −0.2–0.66). For the
bi-layer networks, the Walktrap algorithm produced either three (cognition-white matter)
or four (cognition-grey matter) clusters that consisted entirely of cognitive or neural nodes,
except for following instructions (Ins), which was either kicked out (cognition-grey matter
network, Q = 0.56, indicating strong modularity) or grouped with a neural node (forceps
minor of the cognition-white matter network, Q = 0.39, indicating moderate modularity).
The result for the tri-layer network (Q = 0.25, indicating weak modularity) was more
complex, with a total of 15 communities (Figure 4, bottom center; note, age was found to
be in a community by itself but is not shown in the figure).
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Figure 4. Network visualizations (spring layout) of partial correlation multilayer networks for
CALM data. Colors indicate groups determined by the Walktrap algorithm (see above). (Top) Bi-
layer networks consisting of cognition and grey matter (top left), and cognition and white matter (top
right). (Bottom) Tri-layer network consisting of cognition, grey matter, and white matter (center).

Regarding centrality, we report bridge strength (Figure 5). In the cognitive-grey
matter network, three bridge nodes surfaced (in descending order: superior temporal
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gyrus, superior frontal gyrus, and rostral middle frontal gyrus, Figure 5, top left). In
terms of stability, the CS coefficient was 0.20, indicating that the bridge strength estimates
were unstable under bootstrapping conditions. In the cognitive-white matter bi-layer
network, three nodes (in descending order: uncinate fasciculus, inferior frontal-occipital
fasciculus, and hippocampal cingulum) emerged as possible bridge nodes (Figure 5, top
right). Moreover, the centrality estimates had a CS coefficient of 0.13, once again suggesting
that the bridge strength estimates were unstable. Lastly, for the tri-layer network, five
nodes displayed positive bridge strength equal to or greater than one standard deviation
above the mean (Figure 5, bottom center). These included (in descending order): reading,
peabody picture vocabulary test, superior frontal gyrus, spelling, and numerical operations.
Much better than the bi-layer networks, the tri-layer network bridge strength estimates
were moderately stable (CS coefficient = 0.44).
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4. Discussion
4.1. Summary of Main Findings

In this study, we used network analysis (partial correlations) to examine the neurocog-
nitive structure of general intelligence in a childhood and adolescent cohort of struggling
learners (CALM). For our single-layer networks (Figure 2), we found that cognitive, grey
matter, and white matter networks contained mostly (if not all) positive partial correlations.
Moreover, in all single-layer networks, at least two nodes emerged as more central than
others (as indexed by node strength equal to or greater than one standard deviation above
the mean), which varied in stability from moderately to highly reliable. In the cognitive net-
work, this included verbal ability (specifically reading and peabody picture vocabulary test)
and crystallized intelligence (i.e., numerical operations). In the structural brain networks
(grey matter cortical volume and white matter fractional anisotropy), two nodes passed the
centrality threshold, for both the grey matter network (superior temporal gyrus and rostral
middle frontal gyrus) and white matter network (forceps minor and inferior longitudinal
fasciculus). Furthermore, we extended previous approaches by integrating networks of
structural brain data with a cognitive network, forming bi- and tri-layer networks (Figure 4).
In doing so, we observed multiple (both positive and negative) partial correlations between
brain and behavior variables. Using bridge strength as a metric, we found that, in our
bi-layer networks, only neural nodes harbored significant connections across communities
(defined by the Walktrap algorithm) and levels of organization (Figure 5, top). In contrast,
in the tri-layer network, we found support that mostly cognitive nodes connected across
different communities (Figure 5, bottom). Overall, our results suggest which behavioral
and neural variables have greater (possible) influence among or might be more influenced
by other nodes and potentially serve as bridges between the brain and cognition within
general intelligence. However, the literature on drawing inferences from networks to the
most likely consequences of intervening on the network is complex and rapidly changing,
(e.g., Dablander and Hinne 2019; Henry et al. 2020; Levine and Leucht 2016).

4.2. Interpretation of Network Models and Community Detection Analyses

For the cognitive network, each node corresponded to a single cognitive task (e.g., ma-
trix reasoning), while partial correlations (weighted edges) between nodes were interpreted
as compatible with (possible) causal consequences of interactions among cognitive abilities
during development. The existence of only positive edges in our cognitive network would
be expected under a mutualistic perspective (i.e., interactions among cognitive variables),
although longitudinal analyses are needed to further substantiate this claim. Mutualism,
which at its essence is a network theory of general intelligence (van der Maas et al. 2006),
hypothesizes that the positive manifold and general intelligence (Spearman 1904) emerge
from causal interactions among abilities rather than a general latent factor (Fried 2020;
Kan et al. 2019). Hence, cognition is viewed as a complex system derived from the dynamic
relations of specific abilities that become more intertwined over development. Initially, it
was surprising that two of the three most central nodes (i.e., reading and peabody picture
vocabulary test) relate to verbal ability rather than abilities such as fluid intelligence and
working memory (matrix reasoning and (forward and backward) digit recall), which are
traditionally viewed as causal influences on cognitive development (Cattell 1971). How-
ever, an emerging body of literature suggests that verbal ability plays a crucial role in
cognitive development (e.g., between reading and working memory before 4th grade,
Peng et al. 2018 and Zhang and Joshi 2020), as well as driving the emergence of reasoning
(Kievit et al. 2019; also see Gathercole et al. 1999).

As for our neural networks (here, grey matter cortical volume and white matter
fractional anisotropy), individual nodes were comprised of a single ROI. Importantly, we
did not interpret weighted edges as an index of direct connectivity. Instead, the presence
of strong associations between these ROIs would be compatible with the hypothesis
of coordinated development (see Alexander-Bloch et al. 2013), whereby certain brain
regions show preferential correlations to each other than more peripheral regions over
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time (e.g., childhood to late adolescence), as well as the notion of “rich” (van den Heuvel
and Sporns 2011) and “diverse” (Bertolero et al. 2017) clubs that enable local and global
integration. The most central grey matter node, the superior temporal gyrus, has been
implicated in verbal reasoning (e.g., Khundrakpam et al. 2017). Regarding white matter,
the two strongest nodes (forceps minor and inferior longitudinal fasciculus), while not
anatomically close, instead represent long-range connections (see de Mooij et al. 2018) and
have been linked to mathematical ability (Navas-Sánchez et al. 2014) and visuospatial
working memory (Krogsrud et al. 2018).

Finally, we integrated both domains (cognitive abilities and brain metrics) into com-
bined multilayer networks (cognition-grey matter, cognition-white matter, and cognition-
grey and white matter). Doing so allowed us to attempt comparison and integration
simultaneously across explanatory levels within the same analytical paradigm (network
analysis) and statistical metrics (partial correlations, centrality, and community detection).
From this analysis, three observations immediately stood out. First, there were multiple
partial correlations between cognitive and neural nodes (especially in the cognitive-white
matter and cognitive-grey matter and white matter networks). Second, compared to the
single-layer networks, the multilayer networks have more negative partial correlations.
Together, these two findings further suggest that associations between the brain and cog-
nition are complex as they defy straightforward (e.g., only positive and/or one-to-one)
relationships and interpretations. However, it should be noted that causality (e.g., condi-
tioning on colliders, see Rohrer (2018) for overview of interpretations of correlations in
graphical causal models in observational data) becomes even more difficult to determine
with networks incorporating multiple levels of organization (e.g., cognition and structural
brain covariance). Finally, we found a peculiar role of the cognitive task following in-
structions (Ins) within all multilayer networks. For example, in the cognitive-grey matter
network, Ins had no partial correlations with any other nodes within the network, while in
both the cognitive-white matter and tri-layer network (cognition, grey and white matter)
Ins only correlated with the forceps minor (FMin), a neural node, and not any of the
cognitive variables. This might suggest that following instructions, traditionally a working
memory task and often analyzed using structural equation modeling, may have distinct
psychometric properties (e.g., one-to-one mapping) when compared to other cognitive
tasks when modeled through network science approaches, and/or when adjusted for all
shared correlations.

Further inspection of bridge strength centrality showed an interesting pattern: (dis-
counting the one standard deviation cutoff) the neural nodes are stronger than the cognitive
variables within the multilayer networks, despite there being an equal number of cognitive
nodes for each brain metric. This is possibly due to the large number of edges between
them (grey and white matter regions) and both cognitive and other neural nodes. In other
words, since the neural nodes contain a larger number of connections (partial correla-
tions) across explanatory levels, they display greater bridge strength (bridge strength sums
inter-network correlations).

In other ways, the multilayer networks differed. First, in the tri-layer network, four of
the five central nodes were cognitive variables, while, in the bi-layer networks, the central
nodes were neural ROIs. Three of these central cognitive nodes in the tri-layer network
(reading, peabody picture vocabulary test, and numerical operations) were also found to
be central in the single-layer cognitive network. This further suggests the importance of
mathematical and verbal ability in understanding the cognitive neuroscience of general
intelligence. Secondly, the fact that cognitive nodes were found to be central only in the
tri-layer network suggests that grey and white matter, while related, possibly reveal unique
information about cognition when combined and analyzed together simultaneously.

4.3. Limitations of the Current Study

This study contains several limitations that require caution when interpreting the
results. First and foremost, these findings are based on cross-sectional data. While adequate
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to help tease apart individual differences in cognition between people, cross-sectional data
cannot be used to elucidate differences in changes within individuals over time, such as
during development. Therefore, longitudinal analyses are needed before attempting to
make strong inferences about the dynamics of these networks. Reiterating this point, a
recent study using intelligence data (Schmiedek et al. 2020) found that a cross-sectional
analysis of the g factor of cognitive ability was unable to capture within-person changes
in cognitive abilities over time. This finding further stresses the necessity to integrate
cross-sectional (between-person) differences and longitudinal (within-person) changes
when studying cognition.

Moreover, the CALM sample represents an atypical sample (Holmes et al. 2019),
with participants who consistently score lower on measures of attention, learning, and/or
memory than age-matched controls (see Figure 2 (Level I) of Simpson-Kent et al. 2020 for
comparison to a typically developing sample). As a result, these analyses would need
to be replicated in additional (ideally larger) samples with different cognitive profiles
before our results can be generalized. This shortcoming of the present study is echoed
by the low stability estimates found for the centrality values in the bi-layer networks,
which might be due to the differences between the sample sizes of the neural data (grey
matter, N = 246; white matter, N = 165) compared to cognition (N = 805). While these
discrepancies could affect the statistical power of our results, the amount of neural data
used in the present study is considerably larger than the sample sizes commonly used in
standard neuroimaging studies (Poldrack et al. 2017). However, given that the tri-layer
network showed moderate bridge strength stability but also displayed weak modularity,
and the Walktrap algorithm produced 15 communities in the network, which contained
only 31 nodes (including age), we strongly suggest that our results should be interpreted
with caution and advise that future studies should aim to analyze neuroimaging data from
larger cohorts (e.g., ABCD study, Casey et al. 2018).

Lastly, we re-ran our analyses to test the sensitivity of our main findings (e.g., positive
partial correlations and central nodes) to potential outliers (defined as ±4 standard devi-
ations). Doing so did not severely alter the partial correlation weights between nodes in
our networks (see Supplementary Material Table S1 for detailed comparisons). It must be
restated that our data come from an atypical sample, which might influence brain metrics
even with rigorous quality control procedures. Therefore, despite this discrepancy, our
data supports brain–behavior ‘bridges’ in general intelligence.

4.4. Future Directions toward Theory Building in Cognitive Neuroscience

Our results that suggest verbal abilities rather than fluid intelligence or working
memory might play a more pivotal role in the development of cognitive ability fits with the
gradual progression in schooling. For example, before children can successfully be taught
more advanced subjects (e.g., history, reading comprehension, etc.), they must first become
competent in basic language faculties. In other words, it may be that verbal skills (e.g., read-
ing and spelling) facilitate performance on abstract tests, even in the absence of direct
knowledge-based task demands. Recent evidence has been found supporting this notion
and suggest that verbal ability, particularly reading and vocabulary in relation to work-
ing memory and reasoning, might drive early cognitive development (Kievit et al. 2019;
Peng et al. 2018; Zhang and Joshi 2020). Therefore, future studies could further exam-
ine whether greater verbal ability in early development facilitates greater acquisition of
higher-level cognitive skills by lowering computational demands in working memory.

Moreover, in this context, the fact that the numerical operations task was also found to
be central (tri-layer network only) should be expected since mathematics (e.g., arithmetic)
also involves symbol manipulation. In terms of mutualism (van der Maas et al. 2006),
future models (ideally in longitudinal samples) could test whether language and other
symbolic abilities show progressively higher reciprocal associations during early develop-
ment compared to other abilities until more complex cognition (i.e., fluid reasoning and
working memory) develops in later childhood (also see Kievit et al. 2019; Peng et al. 2018).
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We argue that future studies should aim to incorporate data from different scales,
not only temporal (e.g., development) but also levels of organization (e.g., brain and
behavior). Furthermore, results from different levels can more easily be interpreted if
these datasets are analyzed and interpreted using a unified quantitative and conceptual
framework, such as network science. Last, and perhaps most important, cognitive neurosci-
entists must formulate mechanistic (e.g., Bertolero et al. 2018) and generative models (for
instance, Akarca et al. 2020) to gain further insights from the past and help guide future
controlled experiments.

One proposal attempting to explain general intelligence using network neuroscience is
The Network Neuroscience Theory of Human Intelligence (NNTHI, Barbey 2018). Barbey
argues that general intelligence arises from the dynamic small-world typology of the brain,
which permits transitions between “regular” or “easy-to-reach” network states (needed to
access prior knowledge for specific abilities) and “random” or “difficult-to-reach” (required
to integrate information for broad abilities) network states (i.e., as in network control theory,
see Gu et al. 2015). Together, this constrained flexibility allows the brain to adapt to novel
cognitive domains (e.g., in abstract reasoning) while still preserving access to previously
learned skills (e.g., from schooling).

Evidence supporting the NNTHI has been inconclusive so far (Girn et al. 2019).
However, two recent studies, although not directly testing the NNTHI, have shed light
on the network neuroscience of cognition. Bertolero et al. (2018) found that a mechanistic
model assuming that “connector hubs” (diverse club nodes, see Bertolero et al. 2017),
which regulate the activity of their neighboring communities to be more modular but
maintain the capability of “task-appropriate information integration across communities”,
significantly predicted higher cognitive performance on various tasks, including language
and working memory. Furthermore, in the same sample studied here, Akarca et al. (2020)
applied a generative network modeling approach to simulate the growth of brain network
connectomes, finding that it is possible to simulate structural networks with statistical
properties mirroring the spatial embedding of those observed. The parameters of these
generative models were shown to correlate with neuroimaging measures not used to train
the models (including grey matter measures), cognitive performance (including vocabulary
and mathematics), and relate to gene expression in the cortex.

Together, these studies point the field toward a better mechanistic understanding of
the development of human brain structure, function, and their relationship with cognitive
ability. Researchers must not shy away from but rather embrace the complexity of the brain
and cognition (see Fried and Robinaugh 2020 for a similar argument for mental health
research). Intelligence is a complex system—to understand it, we must treat it as such.
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