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Abstract
The features in some machine learning datasets can naturally be divided into groups. This 
is the case with genomic data, where features can be grouped by chromosome. In many 
applications it is common for these groupings to be ignored, as interactions may exist 
between features belonging to different groups. However, including a group that does not 
influence a response introduces noise when fitting a model, leading to suboptimal predic-
tive accuracy. Here we present two general frameworks for the generation and combination 
of meta-features when feature groupings are present. Furthermore, we make comparisons 
to multi-target learning, given that one is typically interested in predicting multiple phe-
notypes. We evaluated the frameworks and multi-target learning approaches on a genomic 
rice dataset where the regression task is to predict plant phenotype. Our results demon-
strate that there are use cases for both the meta and multi-target approaches, given that 
overall, they significantly outperform the base case.

Keywords  Rice · Bioinformatics · Machine learning · Meta-learning · Multi-target learning

1  Introduction

Machine learning algorithms are increasingly being adapted for the prediction of plant 
phenotypes (Grinberg et al. 2016, 2019). This task is most commonly regression based 
as most agronomic phenotypes are quantitative. This observation is true of rice (Spin-
del et  al. 2015), the most agronomically important crop in the world, as a significant 
proportion of the global population relies on it for their dietary needs (Maclean et  al. 
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2013). With a growing global population, estimates suggest that we need to double rice 
yields over the next few decades (Ray et al. 2013; UN 2015). Therefore, it is crucial that 
we develop high yielding varieties that are resilient to an increase in biotic and abiotic 
stresses caused by climate change (Tai et  al. 2014). The predictive phenotype models 
built for such plant populations are most commonly used in genomic selection (GS). In 
GS, these predictive models are used to estimate the likelihood that an individual in a 
population will express a trait of interest. This likelihood is expressed as a genomic esti-
mated breeding value (GEBV) and is used by plant breeders to select individuals that 
will serve as parents for the next generation of progeny. Therefore, it is desirable that 
the models used to estimate GEBVs are as accurate as possible.

GS has only been recently adopted in rice (Grenier et al. 2015), and a model which is 
based on a single learning algorithm is often used for phenotype prediction, most com-
monly a variant of the best linear unbiased predictor (Grenier et al. 2015; Onogi et al. 
2015). In this context, we propose the use of meta-learning, which seeks to improve 
overall predictive accuracy by leveraging the predictive power of multiple learning 
algorithms, and has been shown in other domains to outperform a single learning algo-
rithm if the goal is to optimize predictive accuracy (Jahrer et al. 2010). The process can 
be broadly split into two main steps, a meta-feature generation step and a meta-feature 
integration step. In the former, a set of base models are built using a collection of learn-
ing algorithms. Each base model is then used to predict meta-features, which are predic-
tions of a phenotype of interest. In the latter, the meta-features generated in the previous 
step are combined using another learning algorithm to form the final prediction.

A vital consideration we make is that of the nature of the attributes or features pre-
sent in the input data used in building phenotype prediction models. The input data 
is often genomic, with features that are representative of the genetic diversity present 
in a population and are at different loci across an organism’s genome (Spindel et  al. 
2015). These features are themselves representative of genes which control phenotypes 
and are located in different chromosomes. Therefore, the features in such genomic data 
can naturally be grouped by chromosome. In typical predictive experiments, the feature 
groupings by chromosome in the genomic data are ignored when models are built. The 
advantage of this approach is that potential interactions between features belonging to 
different chromosomes are captured. However, this may lead to suboptimal predictive 
accuracy if the features are in a chromosome with genes that are not associated with 
a phenotype, which introduces noise in a built model. Therefore, it might be the case 
that systematically diminishing the effects of features in irrelevant chromosomes might 
lead to higher accuracy. To address this problem, we propose two meta-learning frame-
works which seek to improve phenotype prediction accuracy. The first ignores the fea-
ture groupings present in the input genomic data, and the other does not (Orhobor et al. 
2018).

Given that one is typically interested in predicting multiple phenotypes, we considered 
the viability of multi-target regression for phenotype prediction, where the interest lies in 
building models that simultaneously predict multiple outputs (Aho et  al. 2012; Appice 
and Džeroski 2007; Kocev et al. 2009; Spyromitros-Xioufis et al. 2012; Tsoumakas et al. 
2014). The key insight of this approach is that by jointly learning models for different out-
puts, one is able to leverage the relationships between the outputs, which may be corre-
lated, in building better models. This approach has been applied in various fields, and like 
meta-learning, has been shown to outperform a single base model (Han et al. 2012; Kocev 
et al. 2009; Tuia et al. 2011).
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The remainder of this paper is organized as follows. In Sect. 2 we present the differ-
ent considerations in meta-feature generation and integration, and in Sect. 3, we describe 
the proposed frameworks. In Sect. 4, our experimental setup is given, detailing the learn-
ers used in our evaluation. In Sect. 5 we discuss the outcome of evaluating the proposed 
frameworks, where our results show that there are use cases for both. Lastly, we conclude 
in Sect. 6.

2 � Background

Rather than using a single learning algorithm, meta-learning seeks to improve the predic-
tive accuracy of models used to predict phenotype by combining the predictive power of a 
set of base learners utilizing a combining/meta-level learner. For example, assume a rice 
population with input genomic data (learning set) where one is interested in predicting 
grain width. Furthermore, assume that the goal is to improve predictive accuracy by com-
bining the predictive power of random forests (Breiman 2001) (RF) and support vector 
regression (Cortes and Vapnik 1995) (SVR) using simple linear regression (LR). There-
fore, RF and SVR are the base learners while LR is the combining learner.

To amalgamate the predictive power of RF and SVR, they are both independently used 
to build a model to predict grain width, and the predictions made by these models are 
considered as grain width meta-features. Meta-features are typically generated by resam-
pling the learning set using v-fold cross-validation (Breiman 1996; Parmanto et al. 1996), 
where each fold serves as a validation set and the remainder as a training set. We adopt 
this approach in the proposed frameworks. The first advantage that v-fold cross-validation 
offers is in computational expense with regards to time. Given the advances in genotyping 
and sequencing technologies, the genomic data used in phenotype prediction experiments 
typically have input features in the order of a million features (Alexandrov et  al. 2015). 
Therefore, building a single model takes a substantial amount of time, so other resampling 
methods like the Monte-Carlo cross-validation (Xu et al. 2007) may be infeasible. The sec-
ond advantage is in the reduction of overfitting. As stated earlier, genomic data can have on 
the order of a million input features; therefore there is potential for overfitting as it is often 
the case that the number of features far outnumber the number of samples ( p ≫ n ). Using 
our example, assume 3-fold cross-validation in the meta-feature generation step. In this 
case, both RF and SVR are used to build three models each on the different training sets 
and used to predict three meta-feature vectors on the validation sets. This means that we 
end up with three independent meta-feature matrices with columns corresponding to the 
number of base learners. Therefore, three sets of combining weights can be learned using 
LR and applied to the predictions made on unseen data. By doing this, we get combining 
weights that do not closely fit to one set of examples. A similar approach has been applied 
to positive effect in super learners (Van der Laan et al. 2007).

The diversity of the set of base models used in generating the set of meta-features is 
vital, as it is desirable for the base models to be incorrect in different ways (Caruana et al. 
2004). That is, it is better for their predictions on some test set to be wrong on different 
samples, so that the amalgamation of their predictions yield improved results. There are 
two main ways of achieving this. The first is to use a set of different base learners, which 
has been alluded to in our example, as they would make different assumptions about the 
nature of the relationships between the features in the input data (Džeroski and Ženko 
2004). For example, RF might make predictions based on nonlinear interactions amongst 
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the features, whereas nearest neighbour techniques (Altman 1992) which consider the 
level of relatedness between samples might yield a unique perspective. The second way of 
achieving model diversity is by varying the input data. That is, the input data can be split 
into multiple datasets which have different subsets of the features from the original. A base 
learner can then be used to build models on each of these new datasets, which are then 
used in the generation of meta-features. This approach is used in the stacked interval partial 
least squares framework (Ni et al. 2009), where meta-features are combined from various 
intervals in spectral data using partial least squares. We have adopted the first approach to 
be used with both of the proposed frameworks. The second is used only in the framework 
for which feature groupings are considered. The main difference between what we propose 
and the work using partial least squares (Ni et al. 2009) is that we use an ensemble of base 
learners for each input data subset.

Having generated a set of meta-features the next step is to integrate them, creating the 
final prediction. Using our example, this entails integrating the meta-feature predictions by 
RF and SVR. Several integration methods have been proposed. However, most are better 
suited to classification rather than regression problems (Džeroski and Ženko 2002; Ting 
and Witten 1999). In a regression setting, meta-feature integration is done using weights. 
These weights are coefficients which determine how much each base learner’s meta-feature 
will influence the final prediction. A constant or dynamic weighting approach can be used 
(Merz 1998). Constant weighting in its simplest form involves averaging the meta-feature 
values for each sample. If the meta-features generated by the base models are incorrect on 
different samples but are all mostly accurate, averaging the meta-features improves over-
all accuracy by adjusting the incorrectly predicted samples. A more sophisticated constant 
weighting approach is to learn the weights using a combining learner, which is LR in our 
example. Note that on a test set, the learned weights are uniformly applied to every sam-
ple. We utilize both of these constant weighting approaches in the proposed procedures. 
In contrast to constant weighting, dynamic weighting assigns individual weights to each 
sample in a test set. This is done by learning individual weights for each sample in the test 
set using only the most closely related samples in the learning set (Rooney et al. 2004). 
This approach is computationally expensive in terms of time, and we do not use it in the 
proposed procedures. However, we conjecture that it may yield interesting results, and will 
be a subject of future study.

The natural feature groupings present in the genomic data used for phenotype predic-
tion can also be thought of as views in multi-view learning. This assertion is based on the 
fact that the groups in this context are chromosomes which have genes that may influence a 
phenotype of interest. Therefore, each group of features represents a different perspective/
view in terms of gene-phenotype associations. Several approaches have been proposed in 
multi-view learning (Xu et  al. 2013), and multiple kernel learning (MKL) (Sonnenburg 
et al. 2006) is the most closely related to the current discourse. In typical multi-view learn-
ing problems, the views are often distinct, with different underlying structures and distribu-
tions of the input features. In MKL, learning algorithms that are best suited to each distinct 
view are used, and their predictions are then combined (Cortes et al. 2009; Lanckriet et al. 
2004). This approach is similar to what we propose, in that a combining learner is used to 
integrate the meta-features of different learners. However, our proposal differs in that mul-
tiple learners are used within each group or view to form a consensus on their influence on 
a trait.

As stated in the introduction, multi-target learning involves simultaneously learn-
ing models for different outputs to leverage output relatedness. Multi-target learning 
approaches have been classified into problem transformation methods and algorithm 
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adaptation methods (Borchani et al. 2015). In problem transformation methods, the model 
building process is modified to accomodate several outputs, which usually involves aug-
menting the predictive features with the outputs before building the model. Examples of 
such methods are multi-target regressor stacking, ensemble of regressor chains, and ensem-
ble of regressor chains corrected (Spyromitros-Xioufis et  al. 2012). We considered all 
three of these methods in our evaluation as they are most closely related to the proposed 
frameworks in that they can be used independent of a particular learning algorithm. For 
algorithm adaptation methods, known algorithms such as SVR, which are typically used in 
single target problems, are adapted for a multi-target setting. Several of such methods have 
been proposed (Abraham et al. 2013; Appice and Džeroski 2007; Ikonomovska et al. 2011; 
Sánchez-Fernández et al. 2004), however, we do not consider them in our evaluation and 
this could be a subject of future study in the phenotype prediction domain.

3 � Proposed frameworks

In this section, we describe two proposed meta-learning frameworks, frameworks A and B 
respectively. Framework A is for a situation in which the feature groupings present in an 
input dataset are ignored, and Framework B is for a situation in which feature groupings 
are considered.

3.1 � Framework A

The motivation for this framework is the overall improvement of phenotype prediction 
accuracy by leveraging the predictive power of multiple learning algorithms. In this case, 
we assume that although the features in an input dataset can be grouped by chromosome, 
these groupings are ignored when building a predictive model. Regarding the description 
of the procedure, we first give a description using an example, followed by a more formal 
one.

Assume a scenario where there is a learning and test genomic dataset with the goal of 
predicting grain width. The test set contains samples for which we want to predict their 
phenotype, and it is not used to build models. The two base learners are RF and SVR, 
and the combining learner is LR. We also assume v folds. For the meta-feature generation 
step, first split the learning data into v folds. Using each fold as a validation set and the 
remainder as a training set, build an RF and SVR model for grain width on the training 
set then predict learning meta-features using the validation set and also predict the test 
meta-features using the test set. At the end of this, v sets of learning and test meta-feature 
matrices are generated, all with two columns which correspond to predictions made by RF 
and SVR.

For the integration step, form a single test meta-feature matrix, �avg , by averaging the v 
predictions made by each base model (RF and SVR). Using LR, learn combining weights 
with each of the v learning meta-feature matrices. This produces v sets of weights. Apply 
each of these weights to �avg , producing v predictions. Finally, average these v predictions 
to form the final prediction for grain width. More formally:

Assume a learning set, a test set with samples for which we want to predict their pheno-
type, a set of base learners, a combining learner, and v cross-validation folds.
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Step 1

1.	 Split the learning set into v folds, aiming for approximately equal number of samples in 
each fold.

2.	 For each v fold: 

(a)	 validation set = current fold.
(b)	 training set = the combination of the other folds.
(c)	 build b base models using base learners on the training set.
(d)	 predict the validation response using base models, generating a meta-feature 

matrix �v ∈ IR
m×b , where m is the number of samples in the vth fold and b is 

number of base models.
(e)	 predict the test response using base models, generating a meta-feature matrix �v ∈ IR

n×b , 
where n is the number of samples in the test set and b is number of base models.

3.	 Output: 

(a)	 a set of validation meta-features V = ( �1,… ,�v).
(b)	 a set of test meta-features T = ( �1,… ,�v).

Step 2 Using V and T  from step 1 and a combining learner � : 

1.	 For each base model �  , with �1,…�v predictions in (�1,… ,�v) ∈ T  , 
�avg = 1∕v

∑v

i=1
�i . Therefore the average predictions for all base models in T  can be 

represented as �avg ∈ IR
n×b , where n is the number of samples and b is number of base 

models.
2.	 Learn combining weights on each validation meta-feature set in V using the combining 

learner � . This produces v weight sets which are applied to �avg , producing �1,…�v 
predictions. The final prediction is given by �avg = 1∕v

∑v

i=1
�i.

3.	 Output �avg.

3.2 � Framework B

Like framework A, the motivation for this framework is also to improve overall phenotype 
predictive accuracy by leveraging the predictive power of multiple learning algorithms. 
However, in contrast to framework A, feature groupings present in the input genomic data 
are considered. The rationale for this is that for phenotype prediction, including features 
which are in regions that have genes that are not associated with a trait might only serve 
to introduce noise in a built model, leading to suboptimal predictive accuracy. Therefore, 
systematically diminishing the influence of such features might be better.

For a general genomic dataset, it is assumed that the group to which each feature 
belongs is known, and all features in the dataset have been separated into their respective 
groups, c. That is, for a general dataset � ∈ IR

m×f  , where m is the number of samples and 
f is number of features, � has been separated into c subsets, D = �

1,… ,�c , such that the 
intersection between the features in any pair of subsets must be empty and the union of the 
features in all subsets must be equal to the features in �.

The procedure for this framework can be described using the example in Sect. 3.1. How-
ever, we assume that both the learning and test datasets have been split into their c subsets 
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by chromosome. For the meta-feature generation step, first split the learning set into v folds 
across all c data subsets, ensuring that across each c subset the same samples are in each v 
split. Using each fold as a validation set and the remainder as a training set in all c subsets, 
build an RF and SVR model for grain width on each c training set and then predict the learn-
ing meta-features using the corresponding c validation set and also predict the test meta-fea-
tures using the corresponding c test set. At the end of this, v sets of learning and test meta-
feature matrices are generated for the c subsets, all with two columns, p, which correspond 
to predictions made by RF and SVR. Therefore, there are v × c meta-feature matrices for the 
learning and test sets. For the learning meta-feature matrices, merge all c subsets for each v 
fold. This produces v learning meta-feature sets, where each set has c pairs of RF and SVR 
meta-features, or c × p meta-features. For the test meta-feature matrices, first form a single 
test meta-feature matrix for each c subset, �c

avg
 , by averaging the v predictions made by each 

base model (RF and SVR) within each c subset. These c averaged test meta-feature matrices 
are then merged in the same order the learning meta-feature matrices were, forming �merged.

Using LR, learn combining weights with each of the v merged learning meta-feature 
matrices. This produces v sets of weights. Apply each of these weights to �merged , produc-
ing v predictions. Finally, average these v predictions to form the final prediction for grain 
width. More formally:

Assume a learning and a test set that have been split into their c subsets using the chromosome 
to which features belong, a set of base learners, a combining learner, and v cross-validation folds.

Step 1

1.	 Split all c learning set subsets into v folds, aiming for approximately equal number of sam-
ples in each fold, and ensuring that the same samples are in each v-fold across all subsets.

2.	 For each v fold and in each c subset: 

(a)	 validation set = current fold.
(b)	 training set = the combination of the other folds.
(c)	 build b base models using base learners on the training set.
(d)	 predict the validation response using all trained models, generating a meta-feature 

matrix �c
v
∈ IR

m×b , where m is the number of samples in the vth fold and b is the 
number of base models.

(e)	 predict the test response using all trained models, generating a meta-feature matrix 
�
c
v
∈ IR

n×b , where n is the number of samples in the test set and b is the number 
of base models.

3.	 Generating: 

(a)	 a set of validation meta-features for each c subset, V1
,… ,V

c , where Vc = 
( �c

1
,… ,�c

v
).

(b)	 a set of test meta-features for each c subset, T1,… , T
c , where Tc = ( �c

1
,… ,�c

v
).

4.	 Merge V1
,… ,V

c in order for all v validation meta-feature sets, creating v merged valida-
tion meta-feature sets Vmerged = ( �1,… ,�v) ∈ IR

m×p , where p is b × c.
5.	 For each test meta-feature set subset T1,… , T

c , average the v predictions of each base 
learner in �c

1
,… ,�c

v
 . This produces the average prediction matrices of all base models 
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for all c subsets, �1

avg
,… ,�c

avg
 . Merge all c average prediction matrices in order to form 

�merged ∈ IR
n×p , where p is b × c.

6.	 Output: 

(a)	 the set of v merged validation meta-feature matrices Vmerged.
(b)	 the merged test meta-feature matrix �merged.

Step 2 Using Vmerged and �merged from step 1 and a combining learner � : 

1.	 Learn combining weights on each validation meta-feature set in Vmerged using the com-
bining learner � . This produces v weight sets which are applied to �merged , producing 
�1,…�v predictions. The final prediction is given by �avg = 1∕v

∑v

i=1
�i.

2.	 Output �avg.

4 � Experimental setup

In this section, we discuss the dataset and methods used in our evaluation.

4.1 � Dataset

We evaluated the proposed procedures using data from the 3000 rice genomes project 
(Alexandrov et  al. 2015), downloaded from http://SNP-Seek.irri.org/_downl​oad.zul. For 
the genotype data, we used version 0.4 of the core single nucleotide polymorphism (SNP) 
subset of 3000 rice genomes, which consists of 3023 samples and 996,009 markers. It is a 
filtered SNP set with a fraction of missing data at <20%. Using linkage disequilibrium in 
Plink (Purcell et al. 2007), we pruned this dataset using a window of 50 SNPs, a step size 
of 5, and with an r2 value of 0.001, where r2 is the allowed correlation coefficient between 
the SNPs. This generated a smaller dataset with 12,286 features which represent the twelve 
rice chromosomes. The total proportion of missing values in this dataset is approximately 
7%. We converted each SNP call for all varieties to numeric values; class 1 homozygotes 
are represented with 1, class 2 homozygotes as -1, and heterozygotes with 0. Missing val-
ues were imputed using column means, as it has been shown that mean imputation is suf-
ficient in cases where less than 20% of the data for each marker is missing (Rutkoski et al. 
2013).

Twelve quantitative traits were considered: culm diameter, culm length, culm number, 
grain length, grain width, grain weight, days to heading, ligule length, leaf length, leaf 
width, panicle length, and seedling height. Only 2266 samples in the genotype data are 
represented in the trait data. Of this 2266 samples in the trait data, some of them have 
missing values for some traits. We created two datasets. In the first, we excluded samples 
with unavailable or missing trait data for each trait experiment. We used this in the initial 
evaluation of the proposed frameworks. Therefore, a variable number of samples was used 
in each trait experiment. In the second, we removed all samples with missing data for any 
trait. This dataset consists of 1865 samples, and we used it in the evaluation of the pro-
posed frameworks and the multi-target regression approaches. We refer to these datasets as 
I and II respectively. The raw and processed forms of the data used in our experiments are 
available in the Mendeley Data Repository at http://dx.doi.org/10.17632​/86ygm​s76pb​.1.

http://SNP-Seek.irri.org/_download.zul
http://dx.doi.org/10.17632/86ygms76pb.1
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4.2 � Setup

In our evaluation of the proposed approaches we used v = 5 folds and split the dataset 
into learning (75%), and testing (25%) sets with random sampling. For multi-target regres-
sor stacking (MTRS), we generated the training output meta-features using 5-fold internal 
cross-validation and the test set meta-features using the models built for the base case. For 
the ensemble of regressor chains (ERC) and the ensemble of regressor chains corrected 
(ERCC), we used 10 chains, and for ERCC we used 5-fold internal cross-validation to gen-
erate the training output meta-features. Predictive accuracy was calculated as the coeffi-
cient of determination ( R2 ). All experiments were performed in R (Ihaka and Gentleman 
1996). The code for the initial evaluation of the proposed framework is available at https​://
githu​b.com/oghen​ejokp​eme/DS201​8. The code for the multi-target evaluation is available 
at https​://githu​b.com/oghen​ejokp​eme/DSMLS​E.

For the learners that require parameter tuning, we performed parameter selection using 
a grid search and cross-validation on the training data. We opted for grid search over ran-
dom search (Bergstra and Bengio 2012) as the parameters which require tuning and the 
range of values we explored for these parameters were modest. This can be seen in the pro-
vided source code. We considered three sets of learners. Learners that take feature group-
ings into account, a set of base learners which do not take groupings into account and a set 
of combining learners.

4.3 � Group learners

In our evaluation, we considered learners which take feature groupings into account. These 
learners are the group least absolute selection and shrinkage operator (Friedman et  al. 
2010) (GLASSO), group bridge-penalized regression (Huang et al. 2009) (GBRGE), and 
group minimax concave penalty (Breheny and Huang 2009) (GMCP). The optimal value 
for lambda along the regularization path was chosen using five-fold internal cross-valida-
tion for GLASSO. For GBRIDGE and GMCP, the Akaike Information Criteria was used as 
it has been shown to produce slightly better accuracies (Ogutu and Piepho 2014).

4.4 � Base learners

The base learners used are the ridge regression best linear unbiased predictor (Endelman 
2011) (RBLUP), random forests (RF), gradient boosted machines (Friedman 2001) (GBM), 
support vector regression (Cortes and Vapnik 1995) (SVR), k nearest neighbors (Altman 
1992) (KNN), and eXtreme gradient boosting (Chen and He 2015) (XGB). RBLUP is spe-
cially designed for genomic predictions and has no parameters that require tuning. For RF 
the default of 1/3 the total number of variables is considered at each split, five observations 
are used for each terminal node, and 1000 trees were grown for each forest. For GBM we 
used a shrinkage parameter of 0.1, interaction depth of 6, 15 minimum number of obser-
vations in each node, and 1500 trees were grown. For SVR we used a radial basis kernel, 
and the hyperparameters were tuned using a grid search. XGB were also tuned with a grid 
search. Lastly, the optimal number of neighbors, n, used in the KNN models were chosen 
using cross-validation, where 1 ≤ n ≤ 30.

https://github.com/oghenejokpeme/DS2018
https://github.com/oghenejokpeme/DS2018
https://github.com/oghenejokpeme/DSMLSE
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4.5 � Combining learners

The combining learners used are linear regression (LR), gradient descent (Kivinen and 
Warmuth 1997) (GD), kernel regularized least squares (Hainmueller and Hazlett  2014) 
(KRLS), ridge regression (Tibshirani 1996) (RR), and principal component regression 
(Jolliffe 1982) (PCR). The regularization parameter for RR was selected using internal 
cross-validation. A radial basis kernel was used with KRLS, and the bandwidth and regu-
larization parameters were chosen using a grid search. For PCR the number of components 
used was chosen using internal cross-validation.

5 � Results

In this section we discuss the results from the evaulation of the proposed frameworks and 
the multi-target regression approaches.

5.1 � Evaluation of frameworks

The results discussed in this section are from the evaluation of the proposed approaches 
using dataset I (see Sect. 4.1).

5.1.1 � Group and base learner performance

The group and base learner performances serve as a baseline for the performance of the 
combining learners on the proposed frameworks. For the twelve rice traits considered, 
a base learner which does not take feature groupings into account outperforms all other 
learners on ten of the twelve traits (Table  1). In general SVM and XGB outperform all 
other learners, even outperforming RBLUP, a learner designed for genomic predictions. 

Table 1   Predictive accuracy ( R2 ) of the group and base learners

The best performing learner is in boldface. ‘–’ are cases were the model building failed, which to the best of 
our knowledge was due to multicollinearity

Trait GLASSO GBRGE GMCP RBLUP RF GBM SVR KNN XGB

Culm diameter 0.164 – – 0.163 0.155 0.100 0.179 0.097 0.171
Culm length 0.549 0.512 0.318 0.544 0.533 0.516 0.559 0.529 0.552
Culm number 0.213 – – 0.216 0.218 0.191 0.217 0.217 0.219
Grain length 0.379 0.387 0.380 0.370 0.337 0.306 0.383 0.249 0.387
Grain width 0.462 0.458 0.455 0.483 0.446 0.439 0.480 0.379 0.489
Grain weight 0.363 0.325 0.318 0.370 0.353 0.299 0.379 0.281 0.379
Heading date 0.657 0.615 0.591 0.674 0.660 0.654 0.680 0.691 0.693
Ligule length 0.368 0.282 0.236 0.374 0.355 0.327 0.380 0.310 0.370
Leaf length 0.390 0.291 0.081 0.400 0.398 0.365 0.419 0.375 0.397
Leaf width 0.404 0.344 0.334 0.399 0.403 0.395 0.413 0.364 0.423
Panicle length 0.411 0.349 0.302 0.412 0.405 0.383 0.437 0.342 0.428
Seedling height 0.225 – – 0.221 0.188 0.173 0.207 0.168 0.199
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We argue that this is the case for two reasons, (1) the traits considered are controlled by 
features with strong nonlinear interactions which RBLUP does not detect, and (2) SVM 
and XGB are better able to deal with a large number of irrelevant features. This is sig-
nificant as recent advances in genotyping and sequencing technologies mean that genomic 
data is now being generated on the order of a million features, most of which are irrelevant 
in a built model. Therefore, rather than using traditional methods like RBLUP for pheno-
type prediction, more sophisticated methods like XGB should also be considered if one 
wants to use a single learning algorithm. The best performing group learner was GLASSO, 
which excludes features belonging to groups with low signal by assigning a zero coefficient 
to all features in such groups. It outperforms all other learners on one trait, seedling height, 
suggesting that it is indeed the case that some traits might benefit from excluding features 
from certain chromosomes. We assumed a null hypothesis that there is no difference in 
performance between GLASSO, the best performing group based method, and SVR and 
XGB, the best base learners. A sign test showed that with a significance level of 0.05, the 
null hypothesis can be rejected in both cases, as both comparisons (GLASSO-SVR and 
GLASSO-XGB) produced a p-value of 0.006.

5.1.2 � Combining learner performance

In our evaluation of the proposed frameworks, the six base learners outlined in Sect. 4.4 
were used to generate meta-features for twelve rice traits. To evaluate the frameworks five 
learning algorithms were then used as combining learners to integrate the generated meta-
features. We found that in a meta-learning setting, some traits benefit when the feature 
groupings are ignored in the meta-feature generation and integration steps, while others 
benefit from having the feature groupings considered. We argue that the latter case occurs 
for two reasons. Firstly, each group has its own unique set of meta-features, generated by its 
own set of models. Therefore, noise is not introduced in these models from groups that may 
not be strongly associated with a phenotype. Secondly, the meta-features for a group rep-
resent the degree of association that a group has with a phenotype. Therefore, generating 
meta-features for each feature group in isolation before learning combining weights aids a 
combining learner in estimating the amount of influence each group has on a phenotype.

Comparing frameworks A and B based on the performance of the combining learners 
showed that for LR, framework A outperforms B on eleven of the twelve traits. For GD, 
framework A outperforms B in nine of the twelve traits. For KRLS, framework A outper-
forms B on eight of the twelve traits. For RR, framework A outperforms B on ten traits, 
they perform equally well on one trait, and framework B outperforms A on one trait. For 
PCR, framework A outperforms B on nine of the twelve traits, they perform equally well 
on two traits, and framework B outperforms A on one trait. See Table 2 for the results. 
These results suggest that on a per learner basis, framework A, in which feature groupings 
are ignored, is generally the better meta-learning approach. For each combining learner, we 
assumed a null hypothesis that there is no difference in performance between frameworks 
A and B. A sign test showed that with a significance level of 0.05, the null hypothesis can-
not be rejected for GD, KRLS and PCR, with p-values of 0.146, 0.774, and 0.146 respec-
tively. Whereas, the null hypothesis can be rejected for LR and RR, with p-values of 0.006 
and 0.039 respectively. This suggests that the extent to which a given framework outper-
forms the other on a particular learner is learner dependent.

Evaluating the performance of the frameworks on a per trait basis irrespective of the com-
bining learner tells a different story. In this case, framework A and B perform better on six 
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traits each. The results show that no particular learner performs better on any trait-framework 
pair. This suggests that if the proposed approaches are to be used, combining learners should 
be chosen based on the framework of choice and the trait one is interested in predicting. One 
way of making this decision might be to modify the well-known model selection procedure 
used to select a single model from a set of competing models. However, we acknowledge 
that this will be computationally expensive given the number of models that are built in both 
frameworks. It is also worth noting that GLASSO, a single model approach, outperforms both 
frameworks (Table 2). Therefore, one should also consider single learner approaches.

For each trait, we compared the best performing combining learner on both frameworks to 
the best performing base learner. For framework A, we found that the best performing com-
bining learner performs just as well or outperforms the best performing base learner on ten 
of twelve traits. For framework B, we found that the best performing combining learner per-
forms just as well or outperforms the best performing base learner on eight of twelve traits. 
See Table 3. These results show that it is not always the case that one of the meta-learning 
approaches outperforms a single base model. However, the best performing combining learner 
on at least one of the proposed meta-learning approaches outperforms the best performing 
single base learner on ten of the twelve traits. We assumed a null hypothesis that there is no 
difference in performance between the best performing learner on framework A and the base 
case, the best performing learner on framework B and the base case, and the best performing 
learner on both frameworks and the base case. A sign test showed that with a significance 
level of 0.05, the null hypothesis can be rejected for the first and third cases but not for the 
second case, with p-values of 0.039, 0.039 and 0.388 respectively. Therefore, we conclude 
that the proposed frameworks generally increase the accuracy by which plant phenotype can 
be predicted by leveraging the predictive power of multiple learning algorithms in scenarios 
where the feature groupings present in genomic data are considered and ignored.

Table 2   Predictive accuracy ( R2 ) of the combining learners on frameworks A and B

The best performing framework for each learner is in boldface. The overall best performing learner-frame-
work pair is in italics. ‘–’ are cases where the model building failed, which to the best of our knowledge was 
due to multicollinearity

LR GD KRLS RR PCR

Trait A B A B A B A B A B

Culm diameter 0.175 0.119 0.178 0.170 0.178 0.170 0.177 0.172 0.177 0.168
Culm length 0.561 0.552 0.561 – 0.566 0.569 0.564 0.563 0.566 0.566
Culm number 0.236 0.214 0.232 0.242 0.235 0.239 0.233 0.231 0.236 0.236
Grain length 0.391 0.378 0.378 0.348 0.397 0.388 0.398 0.388 0.402 0.383
Grain width 0.497 0.472 0.477 0.425 0.499 0.490 0.497 0.488 0.498 0.488
Grain weight 0.379 0.333 0.371 0.338 0.376 0.362 0.382 0.365 0.380 0.356
Heading date 0.692 0.703 0.692 – 0.698 0.710 0.699 0.708 0.699 0.705
Ligule length 0.380 0.374 0.381 0.383 0.381 0.382 0.381 0.375 0.380 0.372
Leaf length 0.411 0.385 0.412 0.398 0.420 0.411 0.416 0.411 0.415 0.409
Leaf width 0.419 0.389 0.416 0.401 0.419 0.420 0.419 0.416 0.419 0.409
Panicle length 0.439 0.394 0.429 0.443 0.431 0.429 0.437 0.437 0.439 0.438
Seedling height 0.219 0.168 0.218 0.193 0.218 0.214 0.215 0.210 0.217 0.210
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5.2 � Comparison to multi‑target learning

In this section, we discuss the results from evaluating the proposed frameworks and prob-
lem transformation multi-target approaches using dataset II (see Sect. 4.1). We used only 
SVR and XGB as the learners of choice for the experiments with the proposed frameworks 
and with the multi-target approaches as they were the two best performing learners in our 
initial evaluation (see Table 1). We used LR as the combining learner for the meta-features 
generated by both frameworks.

In the base case, we found that XGB performs just as well or outperforms SVR on nine 
of the twelve traits, which is consistent with the results in Table 1. However, one of either 
MTRS, ERC or ERCC outperforms the base case for both SVR and XGB for all traits (see 
Tables 4, 5), suggesting that even in a high dimensional setting such as this, where approx-
imately 12,000 features are present in the genome data, the signal from the augmented 

Table 3   Predictive accuracy ( R2 ) 
of the best performing combining 
learners on frameworks A and 
B in comparison to the best 
performing base learner

The best performing meta-learning or single model approach is in 
boldface

Trait A B Base

Culm diameter 0.178 0.172 0.171
Culm length 0.566 0.569 0.559
Culm number 0.236 0.242 0.219
Grain length 0.402 0.388 0.387
Grain width 0.499 0.490 0.489
Grain weight 0.382 0.365 0.379
Heading date 0.699 0.710 0.693
Ligule length 0.381 0.383 0.380
Leaf length 0.420 0.411 0.419
Leaf width 0.419 0.420 0.423
Panicle length 0.439 0.443 0.437
Seedling height 0.219 0.214 0.221

Table 4   Predictive accuracy 
( R2 ) of support vector regression 
(SVR) on the base case for single 
traits, multi-target regressor 
stacking (MTRS), ensemble 
of regressor chains (ERC) and 
ensemble of regressor chains 
corrected (ERCC)

The best performing approach is in boldface

Trait Base MTRS ERC ERCC​

Culm diameter 0.126 0.137 0.138 0.134
Culm length 0.555 0.563 0.561 0.564
Culm number 0.199 0.206 0.195 0.200
Grain length 0.448 0.443 0.452 0.446
Grain width 0.457 0.458 0.460 0.458
Grain weight 0.294 0.295 0.274 0.295
Heading date 0.660 0.665 0.664 0.660
Ligule length 0.355 0.375 0.359 0.369
Leaf length 0.375 0.400 0.399 0.397
Leaf width 0.406 0.403 0.407 0.404
Panicle length 0.410 0.418 0.418 0.415
Seedling height 0.222 0.226 0.230 0.225
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features can be identified amidst the noise. For both SVR and XGB we assumed a null 
hypothesis that there is no difference in performance in three cases: the base case and 
MTRS, the base case and ERC, and the base case and ERCC. For SVR, a sign test showed 
that the null hypothesis can be rejected for first and second cases but not for the third, with 
p-values of 0.039, 0.039 and 0.146 respectively. For XGB, a sign test showed that the null 
hypothesis cannot be rejected for the first and second cases with p-values of 0.388 and 
0.774 respectively, but can be rejected for the third case with a p-value of 0.039. We also 
assumed a null hypothesis that there is no difference in performance between the base case 
and the best performing multi-target approaches. A sign test showed that the null hypoth-
esis can be rejected for both SVR and XGB with a p-value of 0.0004 at a significance level 
of 0.05. These results demonstrate that in a multi-phenotype prediction setting, multi-target 
approaches should be used if one wants to optimize predictive accuracy.

In comparison to the proposed frameworks, one of either frameworks A or B out-
performs base SVR on nine of the twelve traits and base XGB on eight of the twelve 
traits, which is also consistent with the results in the initial evaluation (see Table 3). But 
more interestingly, we compared the performance of frameworks A and B to that of the 
unweighted average predictions of SVR and XGB for MTRS, ERC and ERCC. We found 
that at least one of the multi-target approaches outperformed the frameworks on nine of 
the twelve traits (Table  6). We assumed a null hypothesis that there is no difference in 
performance between the proposed frameworks and the unweighted average predictions of 
SVR and XGB for MTRS, ERC and ERCC. With a signficance level of 0.05, a sign test 
showed that for framework A the null hypothesis cannot be rejected for MTRS, ERC, and 
ERCC, with p-values of 0.146, 0.388, and 0.146 respectively. For framework B, a sign test 
showed that the null hypothesis can be rejected for MTRS, ERC, and ERCC, with p-values 
of 0.006, 0.0004, and 0.0004 respectively. We argue that these results further demonstrate 
the utility of the multi-target approaches and highlights the need to consider weighted 
approaches for averaging predictions in a multi-target setting.  

Table 5   Predictive accuracy 
( R2 ) of eXtreme gradient 
boosting (XGB) on the base 
case for single traits, multi-target 
regressor stacking (MTRS), 
ensemble of regressor chains 
(ERC) and ensemble of regressor 
chains corrected (ERCC)

The best performing approach is in boldface

Trait Base MTRS ERC ERCC​

Culm diameter 0.164 0.165 0.145 0.168
Culm length 0.566 0.559 0.558 0.570
Culm number 0.201 0.216 0.208 0.219
Grain length 0.463 0.477 0.461 0.462
Grain width 0.511 0.506 0.511 0.519
Grain weight 0.304 0.314 0.297 0.301
Heading date 0.655 0.661 0.661 0.661
Ligule length 0.368 0.376 0.376 0.373
Leaf length 0.404 0.411 0.408 0.414
Leaf width 0.417 0.402 0.418 0.420
Panicle length 0.383 0.411 0.397 0.412
Seedling height 0.192 0.177 0.201 0.196
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6 � Conclusion

In this paper, we investigated the prediction of rice phenotypes. We argued that because 
rice is the most agronomically important crop in the world, the models used by plant 
breeders for the selection of the parents that will produce progeny with desirable traits 
should be as accurate as possible. We proposed that meta-learning, which leverages the 
predictive power of multiple learning algorithms, could improve the accuracy by which 
rice and plant phenotypes, in general, can be predicted. We noted that the genomic data-
sets often used in predicting phenotype consists of features that can naturally be sepa-
rated into groups by chromosome and argued that including features from chromosomes 
which may not influence a trait might lead to suboptimal predictive accuracy, as it intro-
duces noise in a built model. With this in mind, we proposed two meta-learning frame-
works, one which does not consider feature groupings (framework A) and another which 
does (framework B). Our results show that framework A generally outperforms frame-
work B on a per learner level of analysis, but that they perform equally well on a per 
trait level of analysis. But more importantly, the results show that the best performing 
meta-learner on at least one of the proposed meta-learning approaches outperforms the 
best performing single base learner on ten of the twelve traits. Furthermore, we evalu-
ated three problem transformation multi-target learning approaches: multi-target regres-
sor stacking, ensemble of regressor chains, and ensemble of regressor chains corrected. 
We demonstrated that in cases where a single learner is used or the predictions made by 
multiple learners are combined, the multi-target learning approaches performed best.

In future work, we intend to apply the proposed procedures to other agronomically 
relevant crops like wheat and barley, and possibly on human population data. Further-
more, we intend to extend the proposed procedures by introducing meta-feature prun-
ing, which aids in the selection of the meta-features that will eventually be integrated 
(Mendes-Moreira et al. 2012). There are several methods (Caruana et al. 2004) that can 
be used to perform meta-feature pruning, and we conjecture that the different techniques 

Table 6   Predictive accuracy 
( R2 ) of frameworks A and B 
using SVR and XGB as the 
base learners and LR as the 
combining learners

MTRSavg , ERCavg , ERCCavg correspond to the performance of the 
unweighted averaging of the predictions made by SVR and XGB in 
Tables 4 and 5. The overall best approach is in boldface

Trait A B MTRSavg ERCavg ERCCavg

Culm diameter 0.167 0.143 0.162 0.152 0.160
Culm length 0.566 0.559 0.568 0.568 0.573
Culm number 0.224 0.206 0.220 0.208 0.217
Grain length 0.467 0.448 0.481 0.476 0.473
Grain width 0.495 0.463 0.497 0.499 0.501
Grain weight 0.292 0.292 0.314 0.293 0.305
Heading date 0.664 0.646 0.670 0.669 0.666
Ligule length 0.375 0.364 0.382 0.374 0.376
Leaf length 0.396 0.374 0.412 0.410 0.409
Leaf width 0.419 0.416 0.410 0.417 0.418
Panicle length 0.400 0.396 0.421 0.413 0.419
Seedling height 0.210 0.210 0.212 0.222 0.218
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will perform differently on the proposed frameworks. As stated in the discussion of con-
siderations we made in developing the proposed frameworks (Sect. 2), we also intend to 
extend the proposed frameworks by introducing dynamic weighting for the integration 
of meta-features. It would also be interesting to apply these extentions to problem trans-
formation multi-target approaches given a multiple learner scenario.
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