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Probing the protein homeostasis mechanisms in long-lived naked mole-rats 

Zhen Du 
 

The naked mole-rat (NMR) is a fascinating animal which has unique biological features 

including eusociality, strict subterranean inhabitation and poikilothermy. It is the longest-living 

rodent, showing negligible senescence over the majority of its lifespan and high resistance to 

diseases such as cancer and neurodegeneration. This animal is therefore a compelling system 

for understanding ageing and age-related diseases. Recent evidence suggests that protein 

homeostasis (proteostasis) mechanisms may play a vital role in mediating the resistance to 

multiple forms of stress and diseases and, subsequently, contribute to the exceptional longevity 

of the NMR. However, this view has been predominately based on protein-level and/or cell 

viability analyses, and our knowledge is still limited about the modulation of proteotoxic stress 

responses at the transcriptional level due to a lack of reliable and validated molecular tools.  

 

This thesis sets out to develop, optimise and apply new methods to investigate two important 

and complex proteostatic mechanisms, namely the unfolded protein response (UPR) in the 

endoplasmic reticulum (ER) and macroautophagy (autophagy), in the NMR. Using these 

methodologies, the effects of pharmacologically induced in vitro stress and the effects of 

disease-related neurotoxic protein species on the UPR and autophagy in NMR fibroblasts were 

investigated. In Chapter 3, RNA-based methods, including an Xbp1 splicing assay and 

quantitative PCR (RT-qPCR) assays were successfully established to probe the activation and 

outputs of the UPR in a NMR kidney fibroblast cell line in response to tunicamycin (TU) and 

thapsigargin (TG)-induced ER stress. In Chapter 4, differences between the UPR of NMR 

kidney fibroblasts and mouse homologues were identified, where a notably higher threshold of 

pharmacologically induced UPR activation was observed in the NMR under conditions of mild 

ER stress. In Chapter 5, LC3B turnover and transcriptional changes of autophagy markers 

under rapamycin (RA) and chloroquine (CQ)-treated conditions were monitored in an NMR 

skin fibroblast cell line, where the sensitivity of the NMR skin fibroblasts to CQ, when 

compared to NMR kidney fibroblasts and mouse NIH3T3 embryonic cells, seemed to be partly 

attributed to the downregulation of TFEB, a master transcription factor of autophagy. In 

Chapter 6, the effects of amyloid-beta (Aβ) and α-synuclein oligomers, which are believed to 

be the major pathogenic species of Alzheimer’s and Parkinson’s diseases, respectively, on the 

UPR and/or autophagy were investigated in NMR and mouse cells using a combination of 



 

molecular and cellular tools. Although no significant changes of UPR markers were observed 

under Aβ oligomer-treated conditions, the chronic toxicity of wild-type α-synuclein oligomers 

seemed to be associated with downregulation of genes encoding ER chaperones and autophagy 

proteins. In Chapter 7, we demonstrate the utility of rational design to create a protein-specific 

binding probe for the NMR LC3B protein by introducing a peptide derived from a LC3-

interacting region (LIR) motif into the inter-repeat loop of a consensus-designed 

tetratricopeptide repeat protein (CTPR). The results provide proof-of-concept validation of 

using CTPR-based probes to detect proteins in emerging animal models.   

 

Having established a set of reliable methods to investigate the molecular details of the UPR 

and autophagy in the NMR, we have demonstrated unique features of the NMR, at the 

transcriptional level, when different forms of in vitro stress are employed. Exploiting these 

assays to measure the UPR and autophagy, as well as other proteostastic mechanisms, in the 

NMR under more disease-relevant conditions, may ultimately shed light on therapeutic 

developments to combat age-related neurodegenerative diseases.  
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1. Introduction 
 
1.1. The exceptional longevity of naked mole-rats (NMRs) 
 

Naked mole-rats (NMRs) (Heterocephalus glaber), native to East Africa and within the genus 

Heterocephaslus of the African mole-rats (family Bathyergidae), are the longest-living rodents 

known1 (Figure 1.1). The NMR was first characterised as a species in 1842 by Edward Rüpell 

and was first studied in captivity in 19572. The most striking feature of the NMR is their 

exceptional longevity, with a maximum lifespan of over 30 years, about five-fold greater than 

predicted allometrically for a rodent weighing 40 grams and eight times longer than the lifespan 

of the similar-sized mouse3. They demonstrate negligible senescence, as indicated by only 

slight age-related metabolic and vascular changes, sustained fertility and neurogenesis for over 

two decades, and remarkable resistance to cancer and neurodegeneration4. These findings have 

established the NMR as a prime model organism in ageing and longevity research.  

 

 

 
Figure 1. 1. The naked mole-rat. Photo credit to Juliette Martineau. 
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Several mechanisms have been proposed to contribute to the longevity of NMRs, most of 

which align to the established hallmarks of ageing5, including the behavioural and 

physiological traits adapted to their living environment, oxidative stress resistance, telomere 

maintenance, cancer resistance, and well-maintained protein homeostasis (i.e., the state of a 

balanced and healthy proteome).  

 

The strictly subterranean habitation shields NMRs from external predators and hazards, and 

the eusocial, cooperative lifestyle further increases the chance of survival for NMRs. The NMR 

is one of  only two eusocial mammals which live in large colonies of up to 300 individuals6. In 

each colony, only one breeding queen mates with one to three males, whereas the remaining 

mole-rats assist in the rearing and foraging of pups and colony maintenance and defense6. 

Notably, female mole-rats display no menopause and can maintain high fertility beyond the 

age of >30, with the older breeders producing larger pups, although with lower survival, than 

the less established breeders7. NMRs  reside in an extensive maze of burrows 0.5-2.5 meters 

below ground with limited heat and gas exchange, resulting in hypoxic and hypercapnic 

conditions8. They have evolved a set of traits that are well adapted to their natural habitat. 

NMRs are considered the only poikilothermic mammal, with a lower body temperature at 

~32°C, same as the ambient temperature of sealed burrows, and have a higher rate of thermal 

conductance9. They are highly resistance to hypoxia, even at 3% oxygen, which is associated 

with a substantially decreased metabolic rate10. The downregulation of basal metabolism in 

NMRs may also be associated with the low levels of growth hormones, thyroid hormones, 

insulin, insulin-like growth factor 1 (IGF-1), which has been linked to prolonged longevity7,11. 

In addition, NMRs have pronounced resistance to a wide range of stressors in vivo and in vitro 

such as heavy metals and glucose deprivation, which may well represent the harsh milieu in 

which NMRs live. 

 

The oxidative stress theory of ageing postulates that the cellular dysfunction observed during 

ageing can be attributed to the deleterious effects of reactive oxygen species (ROS)12. The 

NMR is an exception to the rule. Comparative studies between young, physiologically age-

matched NMRs and mice showed that the NMRs, whose hypoxic habitation facilitate H2O2 

production, accumulate higher levels of ROS in arteries13 and more oxidative damages to 

macromolecules including DNAs, lipids and proteins in urine and various tissues with 

significantly lower levels of antioxidants such as glutathione peroxidase14–17. However, these 

levels of oxidative damages remain stable throughout the NMR lifespan, and the arteries of 
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NMRs appear to be highly resistant to proapoptotic effects of ROS15,16,18. Several endogenous 

protective mechanisms have been identified that may prevent the exacerbation of accumulated 

oxidative damage in the NMR, including the enhanced ability of mitochondria to eliminate 

ROS19 and increased activity of erythroid 2-related factor (Nrf2) signalling, which induces the 

expression of cytoprotective components in redox homeostasis such as peroxiredoxin 1 and 

thioredoxin reductase 120,21. Taken together, these findings suggest that the strong tolerance of 

high-level oxidative stress, but not the absolute magnitude of the cellular oxidative stress, may 

contribute to the longevity of NMRs. It is noteworthy that the constitutive upregulation of Nrf2 

pathways also enhances proteasome activity and the expression of molecular chaperones in 

NMR fibroblasts, which may play a critical role in counteracting the higher levels of oxidative 

stress20,21. 

 

Telomere length progressively decreases with advancing age and is considered a biomarker of 

ageing22. In NMRs, genes including Terf1, Tep1 and BRCA1 that regulate telomere length have 

undergone positive selection23,24. A higher copy number of TINF2, a protector of telomere 

integrity, and CEBPG, a regulator of DNA repair, was also found in the NMR, thus suggesting 

the increased stability of its telomere and genome25. Telomerase RNA genes in NMR stem 

cells have shown unique polymorphisms and promoter structures that may also contribute to 

an increased telomerase activity26. However, studies directly evaluating the telomere length 

and telomerase activity in NMRs have obtained equivocal and contradictory results27. Seluanov 

et al. found higher telomerase activity but shorter telomeres in NMR somatic cells than mice 

counterparts28. Gomes et al. reported that the telomeres of NMRs were only one-third to half 

of those of laboratory mice and rats, approximately as long as human telomeres, with decreased 

telomerase activity in NMR dermal fibroblasts, which was one-third of that in mouse cells29. 

A recent study showed no age-associated attrition but mild elongation in the telomeres from 

NMR leukocytes, whereas the telomeres in mice and rats declined with age30. These data 

suggest that telomere length and telomerase activity may be highly dependent on the types of 

tissues and cells, as well as the ages of animals examined. Given the complicated role played 

by telomeres in ageing and cancer22, the relationship between telomere maintenance and the 

longevity of the NMR needs careful further investigation.  

 

Cancer incidence in the NMR is very rare. Experiments on NMR skin fibroblasts transduced 

with SV40 large T antigen  (SV40LT) and RasG12V showed that they entered crisis and were 

unable to generate tumours following the transplantation into immunodeficient mice, whereas 
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similarly transduced mouse and rat cells formed tumours31. Increased levels of tumour 

suppressor protein p16 have been suggested to contribute to the ‘early contact inhibition’ 

observed in NMR primary dermal fibroblasts and may mediate cancer resistance32. Further 

analysis revealed that the INK4 locus in the NMR encoded a novel hybrid p15/p16 isoform of 

tumour suppressor protein33. NMR-induced pluripotent stem cells also do not display teratoma-

forming tumorigenicity, which is likely due to the activation of a tumour-suppressor alternative 

reading frame and a disruption mutation of the oncogene ES cell-expressed Ras34.  Tian et al. 

reported that the cancer resistance of NMRs was mediated by high-molecular-mass hyaluronan 

produced by NMR cells and showed that wild-type NMR cells, but not cells with disrupted 

hyaluronan expression, were resistant to the transformation by SV40LT and oncogenic 

hRasG12V35. However, the Khaled and St John Smith labs successfully transformed NMR cells 

from multiple tissues and animals by SV40LT and HRASG12V, although using a different 

lentiviral system, and showed that the cancer resistance of NMRs might be related to a unique 

microenvironment and/or immune system36. Single-cell RNA-sequencing also showed that the 

NMR immune system was characterised by a high myeloid-to-lymphoid cell ratio, which might 

constitute its novel myeloid-based system of innate immunosurveillance for cancer37. More 

studies need to be carried out to identify and validate the decisive factors for the NMR’s cancer 

resistance.  

 

Recently, accumulating evidence has indicated that the maintenance of protein homeostasis (or 

proteostasis) may be a determinant for the healthy longevity of the NMRs, which has also been 

observed in long-lived bivalve molluscs including Arctica islandica (maximum lifespan >500 

years)38 and pigeons (maximum lifespan up to 35 years)39, suggesting a universal role of 

proteostasis in longevity across the animal kingdom. 

 

1.2. Protein homeostasis 
 

Proteins are fundamental structural and functional building blocks in every cell and play a vital 

role in almost all biological processes. In order to carry out biological activities, proteins must 

fold into their correct three-dimensional structures that bring key functional groups into close 

proximity to develop selectivity to interact with their natural partners and long-term stability 

in biological environments40. During folding, each protein navigates a unique energy landscape 

encoded by its amino acid sequence and forms a thermodynamically stable, native structure 

that represents an energy minimum in the landscape under physiological conditions40. Since 
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the folding process is a stochastic search of the many conformations accessible to a polypeptide 

chain, a protein may also adopt a kinetically stable (trapped) non-native structure that is prone 

to intermolecular interactions, thus leading to the formation of aggregated species that can be 

more thermodynamically favourable than the native structure and potentially toxic (Figure 

1.2)40,41. In cells, newly synthesised polypeptide chains can start folding co-translationally on 

the ribosome or in the cytosol after dissociation from the ribosome, whereas others fold in 

specific cellular compartments such as endoplasmic reticulum (ER) and mitochondria40,42. 

These nascent chains and partially folded intermediates inevitably expose to the solvent some 

regions that are normally buried in their native structures and are prone to aggregation in the 

highly crowded cellular environment40,42. The stability of folded proteins may also be 

compromised by environmental challenges such as increased temperature, harsh pH, ROS and 

heavy metals. Therefore, cells have evolved a sophisticated quality control network to assist in 

correct protein folding and prevent the accumulation of misfolded species, both during de novo 

protein folding and under stressed conditions, and maintain proteostasis41. The proteostasis 

network encompasses machineries and systems that are essential for protein biogenesis and 

degradation, including molecular chaperones and proteolytic degradation pathways including 

the ubiquitin-proteasome system (UPS), autophagy, and the ER-associated degradation (ERAD) 

(Figure 1.3). Under stressed conditions, the protein-folding and protein-degradation capacity 

can be monitored and enhanced by multiple pathways including the heat shock response (HSR) 

in the cytosol and the unfolded protein response (UPR) in the ER and mitochondria to 

counteract proteotoxicity43.  

 

The proteostasis network is, however, impaired with ageing, which leads to the accumulation 

of damaged or misfolded proteins and contributes to cellular dysfunction and pathologies5,44–

46. The pathologic process of protein aggregation is associated with a number of age-associated 

diseases, and in particular, neurodegenerative disorders such as Alzheimer’s disease (AD) and 

Parkinson’s disease (PD) that are characterised by insoluble deposits and inclusions composed 

of highly ordered, cross-β-sheet-enriched amyloid fibrils47. AD is characterised by deposition 

of amyloid beta (Aβ) plaques and neurofibrillary tangles (hyperphosphorylated tau protein 

aggregates). In PD, aggregates of the 14 kDa protein α-synuclein are the major components of 

Lewy bodies and neutrites, which emerge as the pathological hallmark of the disease, together 

with loss of dopamine neurons in the substantia nigra pars compacta. It is now widely accepted 

that it is the soluble oligomeric species, rather than amyloid deposits or inclusions, that are the 

most toxic and pathogenic species48–53.   
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Figure 1. 2. Protein folding and misfolding. (a) The protein homeostasis network tightly 

regulates the functional levels of proteins in their native states and minimises the formation of 

aberrant, off-pathway products. The human proteostasis network comprises ~2000 proteins and 

is clustered into three major functional arms: protein synthesis and folding (green), 

conformational maintenance (blue) and degradation (purple). (b) Each protein navigates a 

complicated energy landscape during folding, gradually forming native intramolecular 

interactions towards the thermodynamically stable, native state. Intermolecular contacts 

between non-native states may result in the formation of aggregated species such as oligomers, 

amorphous aggregates and amyloid fibrils which may present a global minimum in the energy 

landscape. Various external stresses and cellular defects may lead to protein misfolding and 

aggregation, which can be prevented or rescued by molecular chaperones. Oligomeric species 

are the most neurotoxic species and have been increasingly implicated in the pathogenesis of a 

number of neurodegenerative diseases. Figure reprinted from the reference with permission41.  
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Figure 1. 3. The proteostasis network. The proteostasis network comprises molecular 

chaperones and proteolytic degradation mechanisms including UPS, autophagy and ERAD. 

Stress-induced responses including HSR, UPR in the ER and mitochondria, also play an 

important role in modulating protein homeostasis within the cell. Figure reprinted from the 

reference with permission43.  
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Cells and tissues from aged short-lived organisms display decreased levels of basal and stress-

induced expression of heat shock protein 70 (Hsp70)54–56, reduced expression and activity of 

ER chaperones and protein disulphide isomerases (PDIs)57–59, altered proteosome structure, 

expression and activity of proteasome60,61 and reduced macroautophagic proteolysis62, 

although some of these changes are not universal and can be tissue-specific. Studies have also 

shown that when challenged with a toxic insult such as heat shock or the ER stress inducer 

tunicamycin, the induction levels of HSR- and UPR-related genes in C. elegans were markedly 

reduced throughout the soma at an early stage of adulthood63,64. This age-dependent collapse 

of proteostasis, however, could be restored by genetically enhancing the expression of stress 

responsive factors HSF1 or DAF-16 (in the case of heat shock), and XBP1s (in the case of ER 

stress)63,64. In addition, overexpression of proteostasis components, including chaperones65,66, 

UPR-67 and autophagy-related68,69 proteins, have contributed to a decrease in disease-relevant 

protein aggregation and toxicity in various disease models.  

 

In contrast to short-lived species, long-lived NMRs seem to have robust abilities to maintain 

proteostasis, which does not change over time. NMR liver tissue homogenates showed marked 

resistance to in vitro unfolding stress (urea) when compared to mice tissues16. Triosephosphate 

isomerase and cytosolic peroxiredoxin, although heavily carbonylated in NMR kidneys, 

remained functional70. These findings suggest that NMRs may have evolved inherent 

protective mechanisms against protein damage. NMRs may regulate damaged protein via 

increased translational fidelity, which is linked to its unique fragmented 28S ribosomal RNA 

structure and thus decreases chances of aberrant protein folding during translation71. Enhanced 

UPS and autophagy mechanisms have also been revealed in the NMR, which ensure efficient 

degradation of damaged proteins from the cell. NMR liver lysates showed an increased 

proteasome activity when compared with mouse liver lysates, which was accompanied by a 

lower level of ubiquitination, an unaltered level of cysteine oxidation during ageing16 and 

higher levels of molecular chaperones including HSP70, HSP40, HSP25 and heat-shock factor 

1 (HSF-1)72. The NMR proteasome is protected from inhibition by a transferable chaperone-

containing cytosolic factor that interacts with the proteasome and enhances its activity73. NMR 

skin fibroblasts also showed higher levels of HSP70 and HSP40 and 20S proteasome activity 

compared to mouse homologous both under normal and stressed induced conditions74. Nrf2, 

which regulates the proteasome system and expression of molecular chaperones, is also highly 

expressed in NMR fibroblasts20,21. In multiple tissues from NMRs, higher basal-level 

autophagy was observed compared with those from young mice, as suggested by a higher level 
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of LC3 (light chain 3) proteins, despite a lower level of Beclin-175. NMR skin fibroblasts also 

displayed increased autophagic degradation under normal and stress-induced conditions74. 

Taken together, these findings suggest that the robust ability of NMRs to maintain protein 

homeostasis is closely associated with and may be the most critical determinant for, the NMR’s 

exceptional longevity. Intriguingly, although resistant to a number of different stressors, NMR 

skin fibroblasts are sensitive to two endoplasmic reticulum (ER) stressors, tunicamycin (TU) 

and thapsigargin (TG), which can activate the unfolded protein response (UPR), a critical 

proteostasis mechanism that has not been investigated previously in the NMR76. Outstanding 

questions are: Why do NMR fibroblasts seem to be particularly resistant to ER stressors? Does 

the UPR in the NMR possess any unique features that differ from the UPR in other short-lived 

counterparts? Appropriate and highly reliable methods to probe the UPR in the NMR need to 

be established to answer these questions, which will be presented in Chapter 3. Molecular 

insights into the UPR activation in response to ER stressors in the NMR fibroblasts will be 

further explored in Chapter 4.  

 

NMRs exhibit vitamin D deficiency77 and high levels of oxidative stress17, which are the two 

risk factors of neurodegeneration. Furthermore, compared with a transgenic mouse model of 

AD, NMRs express comparable levels of Aβ and phosphorylated tau proteins78,79. However, 

neither plaque formation nor an age-related increase in Aβ has been observed in NMRs at 

various ages from 2 to >20 years old36. Levels of neurotoxicity in mouse hippocampal neurons 

after the exogenous addition of human or NMR Aβ1-42 peptide were almost identical despite 

little variations in the Aβ1-42 peptide sequences and their propensity to aggregate36. In contrast 

to the somatodendritic accumulation of mislocalised, hyperphosphorylated tau proteins in the 

AD mouse hippocampal neurons, NMRs do not develop the neurofibrillary tangle pathology 

in brains and maintain tau expression within the axonal compartments79. Therefore, it appears 

that novel mechanisms must be involved in NMRs that enable them to tolerate sustained high 

levels of Aβ and phosphorylated tau proteins and protect the brain from harmful effects. It has 

been shown that NMR brains can maintain high levels of autophagy throughout the majority 

of their lifespan80, suggesting that autophagy, and potentially other proteostasis mechanisms in 

the NMR, may enhance its capability to process and degrade those disease-relevant, 

aggregation-prone protein species.  A recent study has demonstrated that NMR skin fibroblasts 

are resistant to the toxicity of polyglutamine (polyQ), a well-established model of protein 

aggregation, through the formation of aggresomes, and that autophagy seems to have the 

greatest effect on lowering the proteotoxic effects compared to the proteasome and molecular 
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chaperones81. How do the proteostasis mechanisms in NMR cells, including autophagy and the 

UPR, respond to the stresses induced by other disease-relevant proteins, such as Aβ (in AD) 

and α-synuclein (in PD), and specifically, in the most toxic oligomeric forms? This question 

will be explored in Chapter 6, following the establishment of assays to probe the autophagy, 

particularly the transcriptional regulation that has not been explored yet, in the NMR cells in 

Chapter 5.   

 

1.3. Unfolded protein response (UPR) 
 

The ER is an organelle essential for protein synthesis and transport in the secretory pathway. 

Nearly one-third of the human proteome is trafficked from the ER to other compartments in 

the endomembrane system, for secretion or display on the cell surface40. In eukaryotic cells, 

secretory proteins are synthesised by ER-bound ribosomes and folded and assembled in the ER 

lumen, which constitutes an oxidative environment rich in calcium, foldases (peptidyl prolyl 

isomerases and protein disulphide isomerases) and molecular chaperones. The protein-folding 

process in the ER can be challenged by various physiological disturbances and pathological 

conditions, a cellular state called ER stress that results in the accumulation of unfolded and 

misfolded proteins in the lumen. Sensing an insufficiency in the ER’s capacity to handle the 

load of unfolded proteins, a collection of intracellular pathways is activated, termed the 

unfolded protein response (UPR), which either re-establishes homeostasis by adaptive 

responses or triggers cell death by apoptotic mechanisms82 (Figure 1.4).  

 

Under mild-level ER stress, UPR activation mediates the expansion of the ER membrane and 

operates through transcriptional regulation as a feedback loop that attenuates protein influx into 

the ER and enhances the protein folding, quality control and degradation machineries. 

Incorrectly folded proteins are retro-translocated back into the cytosol and degraded by the 

UPS, a pathway referred to as ER-associated degradation (ERAD)83. Severely misfolded 

proteins and protein aggregates can be degraded, along with the damaged ER, by autophagy84. 

Many of the components in ERAD and autophagy have been identified as UPR targets and are 

important for cell survival. Prolonged activity of the UPR, however, induces apoptosis under 

unmitigated ER stress, to eliminate rogue cells detrimental to the organism.  

 

The mammalian UPR is mediated by three principal arms working in parallel, each defined by 

a class of stress sensors located at the ER membrane, including inositol-requiring enzyme 1 
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(IRE1), activating transcription factor 6 (ATF6) and protein kinase RNA-like ER kinase 

(PERK)82. In each branch, the respective membrane protein senses the status of protein folding 

in the ER lumen and transmits the signal across the membrane to cytoplasmic transcription 

factors that reprogramme gene expression and therefore remodel cellular physiology in 

response to ER stress (Figure 1.4). 

 

The most conserved and the only UPR branch present in lower eukaryotes is initiated by IRE1. 

IRE1 is an ER-resident type I transmembrane protein which is composed of cytoplasmic 

protein kinase and endoribonuclease (RNase) domains, with a stress-sensing domain situated 

in the ER lumen82. In response to ER stress, inactive, monomeric IRE1 dimerises and stacks 

into higher-order oligomers85,86, which juxtaposes the kinase domains for autophosphorylation, 

leading to a conformation change that activates the RNase domain87. Activated IRE1 cleaves 

the mRNA encoding the basic leucine zipper-type (bZIP) transcription factor, X-box binding 

protein 1 (XBP1), precisely at two positions, which excises a 26-nucleotide intron and shifts 

the coding frame of the mRNA88. The spliced 5’ and 3’ exons are ligated by the tRNA ligase 

complex89,90, leading to the expression of a more active and stable form of the transcription 

factor, known as XBP1s (spliced XBP1). XBP1s is translocated to the nucleus and activates a 

subset of the UPR target genes involved in protein folding, ERAD and lipid biosynthesis91,92. 

The efficient splicing of XBP1 mRNA is mediated by XBP1u protein (unspliced XBP1), which 

pauses translation and drags the mRNA-ribosome-nascent-peptide complex to the ER 

membrane93. XBP1u is constantly expressed, and as recovery from ER stress occurs, it 

accumulates and dimerises with XBP1s to induce the degradation of the XBP1u/s complex by 

the UPS in the cytosol94. This negative feedback loop can attenuate the IRE1-XBP1 response 

in a timely manner94. 
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Figure 1. 4. Unfolded protein response in the ER. The UPR in the ER consists of three 

branches defined by three transmembrane proteins, IRE1, ATF6 and PERK. Accumulation of 

unfolded or misfolded proteins, or the ER stress, activates the UPR, which enhance protein-

folding capacity and degradation to counteract the proteotoxic stresses (a). However, 

prolonged activation of UPR may lead to detrimental effects and thus apoptosis (b). Figure 

modified from the reference95.  
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In mammalian cells, IRE1 can also function independently of XBP1 mRNA splicing. Activated 

IRE1 RNase can selectively degrade ER-localised mRNAs through the regulated IRE1-

dependent decay (RIDD), which reduces the translational load early in the UPR96–98. However, 

IRE1 RNase can also cleave microRNAs that repress the translation of pro-apoptotic caspase-

298, and the continued decay of mRNAs encoding ER-resident secretory cargo and chaperones 

under unmitigated ER stress may lead to cell death96. In addition, activated IRE1 can interact 

with TRAF2 (tumour necrosis factor receptor-associated factor-2)99 to upregulate ASK1 

(apoptosis single-regulating kinase-1) and its downstream target JNK (c-JUN N-terminal 

kinases)100, as well as the caspase-12 that mediate the ER-stress-induced apoptosis99 (Figure 

1.4 b).  

 

ATF6 is a novel signal transducer in the mammalian UPR. It is constitutively expressed in cells 

as an inactive precursor, which is an ER-resident type II transmembrane glycoprotein bearing 

a bZIP motif facing the cytoplasm and a stress-sensing ER-luminal domain82. Under ER stress, 

ATF6 is delivered from the ER to the Golgi apparatus, where it is processed by S1P (site-1 

protease) and S2P (site-2 protease), which cleaves the luminal domain and the transmembrane 

anchor sequentially, releasing the cytoplasmic DNA-binding fragment (ATF6f)101. ATF6f 

moves to the nucleus and induces the transcription of major ER chaperones including 

GRP78/BiP (binding immunoglobulin protein) and GRP94 (glucose-regulated protein 94) as 

well as PDIs. ATF6f is also required for IRE1 signalling; the two pathways may merge through 

the regulation of XBP1 and the formation of an ATF6/XBP1 heterodimer to further upregulate 

the transcription of ERAD components102.  

 

The third ER stress transducer, PERK, like IRE1, is an ER-resident transmembrane protein 

which has a luminal stress-sensing domain and a cytoplasmic Ser/Thr protein kinase domain82. 

Activation of PERK involves oligomerisation and autophosphorylation; activated PERK in 

ER-stressed cells further phosphorylates eIF2α (the α subunit of eukaryotic translation 

initiation factor-2) at Ser-5182. This phosphorylation inhibits the guanine nucleotide exchange 

factor, eIF2B, from recycling eIF2 into its active GTP-bound form, thereby preventing the 

formation of the eIF2•GTP•Met-tRNAMet ternary complex and inhibiting translation initiation, 

which subsequently reduces the load of protein destined to enter the stressed ER82. Whereas 

the PERK-mediated phosphorylation of eIF2α decreases global protein synthesis, it can induce 

the translation of certain mRNAs, including ATF4103, an important transcription factor that 

regulates the levels of genes involved in redox balance, amino acid metabolism and transport, 
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protein folding, apoptosis and autophagy104. In stressed cells, reduced levels of the active eIF2-

GTP allow ribosomes to scan through an upstream open reading frame (uORF), which blocks 

ATF4 expression under non-stressed conditions, so that the translation of ATF4 ORF can be 

reinitiated103.  

 

PERK/eIF2α signalling is cytoprotective at modest levels of signalling, but sustained eIF2α 

phosphorylation can induce cell death through the upregulation of CHOP (transcription factor 

C/EBP homologous protein)105 and GADD34 (growth arrest and DNA damage-inducible 

34)106. CHOP is a non-ER localised bZIP transcription factor that belongs to the C/EBP family 

and is highly induced during ER stress. It is a transcription factor regulating many 

physiological processes including cell differentiation, proliferation and apoptosis107. In ER-

stressed cells, the expression of CHOP is induced predominantly through ATF4 binding to the 

promoter of Ddit3 (which encodes CHOP) but may also be mediated by XBP1 and ATF6108,109. 

Deregulated Ddit3 expression compromises cell survival, whereas Ddit3 deletion protects cells 

from the lethal consequences of ER stress, indicating that CHOP mediates cell death under 

irreversible ER stress. It has been shown that CHOP suppresses the pro-survival protein Bcl-2 

(B cell lymphoma-2) under ER stress conditions while upregulating proteins in the pro-

apoptotic BH3-only family that induce BAX (BCL-2-associated X protein) and/or BAK (BCL-

2 antagonist or killer)-dependent mitochondrial apoptosis107. A recent study noted that CHOP 

may also activate the expression of DR5 (death receptor 5) to trigger caspase-8-mediated 

apoptosis. GADD34 mediates another mechanism of CHOP-dependent cell death110. Under ER 

stress, GADD34 can be upregulated by CHOP and participate in a negative-feedback loop that 

limits the impact of PERK signalling106. GADD34 associates with the catalytic subunit of 

protein phosphatase 1 to promote the dephosphorylation of eIF2α in vitro, which restores 

protein synthesis106. The increased load of proteins into the stressed ER results in ATP 

depletion, oxidative stress and cell death. On the other hand, a GADD34-mediated regulatory 

loop can induce the expression of stress-induced UPR proteins for long-term adaption and may 

promote cell survival by limiting the activity of pro-apoptotic effectors such as CHOP111. 

Interestingly, it has also been shown that CHOP and ATF4 can cooperate to enhance protein 

synthesis in a manner that is independent of GADD34, presumably through transcriptional 

activation, indicating that other genes may also contribute to the translational recovery leading 

to the cell death112 (Figure 1.4 b). 
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Altered ER function is common in neurodegenerative diseases, although most of the protein 

aggregates accumulate in the cytosol or are deposited extracellularly rather in the ER lumen 

(Figure 1.5). A number of studies of human autopsy brain samples and neuronal cells derived 

from patient-specific induced pluripotent stem cells (iPSCs) have demonstrated activation of 

the UPR, thus suggesting a critical role played by the ER stress in the pathogenic neuronal 

response. Increased levels of BiP expression and PERK signalling were reported in AD 

hippocampus113 and temporal cortex114. Phosphorylated PERK and eIF2α were also seen in the 

substantia nigra pars compacta of PD cases but not in healthy controls115. Analysis of cortical 

neurons generated from iPSCs from PD patients harbouring α-synuclein mutations revealed 

strong and early ER stress which was accompanied by nitrosative stress and impaired ERAD116. 

Over the last decade, genetic and pharmacological manipulation of the UPR have also been 

used to understand the causal link between ER stress and neurodegeneration, wherein distinct 

UPR branches have specific, and sometimes opposite, effects on the disease pathophysiology 

depending on the disease type, the neurons affected and the stage of the disease. The role of 

IRE1 signalling has been extensively investigated in the context of the downstream XBP1s 

function, and most studies indicate a neuroprotective function of XBP1s in AD and PD. 

Overexpression of XBP1s suppresses Aβ toxicity in flies expressing two copies of human Aβ1-

42 and rat PC12 cells treated with Aβ1-42 oligomers117. Downregulation of XBP1 in glial cells 

of an Aβ1-42 transgenic Drosophila model enhances neurotoxicity and accumulation of Aβ1-42 

and polyubiquitinated proteins, suggesting a neuroprotective role of XBP1s, while 

overexpression of XBP1s reduces Aβ1-42 levels and improved geotaxis in aged flies118. 

However, recent studies have proposed a pathological role of IRE1-XBP1 in AD. Chronic 

overexpression of XBP1s in a transgenic Drosophila model of AD expressing Aβ1-42 

specifically in the ER of neurons reduces the Aβ1-42 levels but also causes age-dependent 

behavioural defects67. Conditional knockout of the RNase domain of IRE1 in the nervous 

system of the 5xFAD mouse model of AD reduces Aβ deposition and levels of Aβ1-42 oligomers, 

improves cognitive and synaptic function, and attenuates astrogliosis119. In addition, levels of 

IRE1 phosphorylation directly correlate with the severity of AD neuropathology119. PERK 

signalling is the most studied therapeutic target within the UPR, and the successful use of 

several PERK and eIF2α phosphatase inhibitors has suggested its pathological role. 

Furthermore, local overexpression of ATF4 in the axons of AD mouse models mediated 

transmission of neurodegenerative signals through cell-nonautonomous mechanisms120, and 

Ddit3 deficiency proved to be protective in experimental PD121. The involvement of ATF6 has 

been poorly studied, although some studies have shown that in mouse models of PD, with 
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overexpressed ATF6α became hypersensitive to neurotoxins122 and ATF6α knockout mice had 

decreased basal expression of BiP and accelerated degeneration of dopaminergic neurons123, 

suggesting a neuroprotective role of ATF6. Further studies need to be conducted in order to 

establish the relationship between the UPR and the pathogenesis of neurodegenerative diseases.  

 

 

 

 

 
 

 

Figure 1. 5. UPR in neurodegenerative diseases. Increased levels of UPR markers have been 

detected in a number of neurodegenerative diseases, which share accumulation of protein 

aggregations and inclusions that contain specific proteins in distinct brain regions. Figure 

reprinted from the reference with permission124. 
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1.4. Autophagy 
 

Autophagy, derived from the Greek for ‘self-eating’, was coined by Christian de Duve over 50 

years ago based on the observation of cytoplasmic materials including mitochondria and ER 

being engulfed within double-membrane vesicles and degraded by lysosome125. Substantial 

progress in the molecular understanding of autophagy has revealed its essential role in survival, 

development and homeostasis. Autophagy is an adaptive process induced by various conditions 

of stress, including starvation, infection, hypoxia, oxidative stress, protein aggregation, and ER 

stress126. Autophagy can be either nonselective (bulk degradation) or selective in the removal 

of unwanted and potentially toxic cytosolic materials such as superfluous or damaged 

organelles, intracellular protein aggregates, and invading microorganisms. Three types of 

autophagy have been identified so far, including macroautophagy, microautophagy, and 

chaperone-mediated autophagy, all of which result in degradation of cytosolic components by 

the lysosome127. In this thesis, we focus solely on macroautophagy (hereafter referred to as 

autophagy) (Figure 1.6). 

 

Genetic studies have identified at least 30 autophagy-related genes encoding autophagy-related 

protein (ATGs) in yeast, of which almost half are conserved in mammals. These ATG proteins 

are essential for autophagosome formation and are grouped by their functional and physical 

interactions into five core machinery components126: 

 

1) Unc-51-like kinase 1 (ULK1) complex: ULK1, FIP200 (focal adhesion kinase family 

interacting protein of 200 kD), ATG3, ATG101 

2) Class III phosphatidylinositol 3-kinase complex (PI3KC3): Beclin 1 (ATG6 in yeast), 

VSP34 (vesicular protein sorting 34), p115 (general vesicular transport factor), ATG14 

in PI3KC3 complex I, UVRAG in PI3KC3 complex II (UV radiation resistance-

associated gene protein) 

3) ATG9 trafficking system: ATG9 

4) WIPI (WD repeat domain phosphoinositide-interacting): WIPI, ATG2  

5) Two ubiquitin-like conjugation systems: the ATG12-ATG5·ATG16L1 complex; the 

ATG8 family-phosphatidylethanolamine (PE), ATG8 including light chain 3 (LC3) and 

γ-aminobutyric acid receptor-associated protein (GABARAP) subfamilies 
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The most well-characterised trigger of autophagy is amino acid deprivation, which results in 

the inhibition of the serine/threonine kinase mTOR (mammalian target of rapamycin), a master 

cell growth regulator that nucleates two distinct multi-protein complexes known as mTORC1 

and mTORC2. mTORC1 consists of mTOR, Raptor (regulatory associated protein of mTOR), 

and mLST8 (mammalian lethal with Sec13 protein 8) and plays a central role in negatively 

regulating autophagy128. In high-nutrient conditions, mTOR phosphorylates ULK1 and ATG13 

in the ULK1 complex and inhibits autophagy, while upon starvation, dissociation of mTORC1 

from the ULK1 complex activates ULK1129,130. The activated ULK1 directly phosphorylates 

Beclin-1 in the PI3KC3 complex and activates VPS34, the only PI3K found in mammals, to 

phosphorylate phosphatidylinositol and produce phosphatidylinositol-3-phosphate (PI3P) for 

the assembly and nucleation of the phagophore131,132. The phagophore assembly site in 

mammalian cell remains to be fully determined, but it has been suggested that phagophores are 

nucleated at PI3P-enriched membrane compartments that are dynamically connected to the ER 

(termed ‘omegasome’), which are marked by PI(3)P binding protein DFCP1 (double FYVE 

domain-containing protein 1)133, as well as at the ER-mitochondria and ER-plasma membrane 

contact sites134,135.  

 

Expansion of the phagophore requires the involvement of two ubiquitin-like conjugation 

systems, ATG12-ATG5·ATG16L1 and ATG8-PE. Nascent proATG8 proteins are processed 

by ATG4 at C-termini, exposing a glycine residue that is essential for their conjugation to 

PE136,137. The processed ATG8s are then activated by the E1-like enzyme ATG7 and covalently 

attached to membrane-associated PE by E2-like ATG3, converting it from the cytosolic form 

(LC3-I) to the membrane-anchored, lipidated form (LC3-II), which is the signature of 

autophagosome formation136,138. This ATG3-mediated ATG8-PE conjugation needs to be 

enhanced in vivo by the E3-like activity carried out by the ATG12-ATG5·ATG16L1 complex. 

ATG12 is activated by E1-like ATG7 and conjugated to ATG15 by E2-like ATG10, which 

together bind ATG16L1 and are localised to the phagophore assembly site through the 

interaction of ATG16L1 with WIPI2139–143. While the autophagosome is forming, substrates 

can be incorporated into the phagophore in either a nonselective or selective manner. Selective 

autophagy in mammalian cells occurs through the action of autophagy receptors which are able 

to interact both with LC3-II via the LC3-interacting region (LIR)144 and with the specifically 

labelled cargo destined for degradation, thus allowing for targeted delivery of cargo to the 

autophagosome. The best characterised mammalian autophagy receptor is p62, a multi-
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functional adaptor molecule that promotes the degradation of poly-ubiquitinated protein 

aggregates through autophagy144. 

 

 

 
 

Figure 1. 6. Autophagy in a mammalian cell. Induction of autophagy leads to the recruitment 

of ATG proteins to the omegasome connected to the ER to initiate the phagophore nucleation. 

The isolation membrane eventually seals into a double-layered autophagosome, trapping the 

engulfed cytosolic materials. After the clearance of ATGs and delivery along microtubules to 

the lysosome, the outer membrane of the autophagosome fuses with the lysosomal membrane 

to form an autolysosome, which degrades the autophagic body together with its cargo by the 

autolysosomal hydrolytic milieu. Figure reprinted from the reference with permission126. 

  



Chapter 1: Introduction 

 23 

Sealing of the phagophore membrane eventually gives rise to a double-layered autophagosome. 

The outer membrane of the autophagosome fuses with the lysosome to form an autolysosome 

after maturation, which involves the clearance of ATG proteins from the outer membrane of 

the nascent autophagosome and the recruitment of the machineries required for lysosomal 

delivery and fusion126. LC3s drive the maturation process through interactions with adaptor 

proteins such as FYCO1 (FYVE and coiled-coil domain-containing protein 1)145 to promote 

trafficking. The membrane fusion is mediated by the SNARE (soluble N-ethylmaleimide-

sensitive factor attachment protein receptor) proteins, including STX17 (Syntaxin 17) and 

SNAP29 (synaptosomal-associated protein 29) on the autophagosome and VAMP8 (vesicle-

associated membrane protein 8) on the lysosome/endosome, which assemble into SNARE 

complexes to promote fusion of the two compartments146. This process is enhanced by 

homotypic fusion and protein sorting (HOPS)-tethering complex147 and ATG14148 through 

direct interactions with STX17. The fusion results in the release of a single-layered autophagic 

body into the lysosomal lumen, which is followed by the degradation of engulfed materials 

together with its cargo by acidic hydrolases in the autolysosome.  

 

Dysregulation of autophagy has been implicated in several neurodegenerative diseases. Here 

we take the example of PD. Both pathological and genetic analyses have revealed that 

autophagy malfunction might contribute to the pathogenesis of PD, as shown by altered levels 

of LC3s and GABARAPs in PD brains149 and PD risk genes involved in autophagy150. 

Ultrastructural examination of autophagosomes in the PD brain has suggested abnormal 

mitophagy151, which is known to be associated with the function of several autosomal recessive 

PD-related genes. For example, mutations in PRKN (encoding Parkin, a cytosolic E3-like 

ligase) in PINK1 (encoding PTEN-induced kinase 1), which are the most common cause the 

early-onset PD, abolish or hamper mitophagy in the substantia nigra of post-mortem PD brains. 

Different approaches have been applied to enhance basal-level autophagy in PD models with 

promising outcomes. Overexpression of Beclin1 in the brain of a PD mouse model ameliorated 

the synaptic and dendritic pathology and reduced the accumulation of α-synuclein in the limbic 

system without any significant deleterious effects68. Overexpression of ATG5 in a PD zebrafish 

model induced by neurotoxins alleviated or reversed pathological features69. Overexpression 

of TFEB (transcription factor EB), a master transcription factor of autophagy and lysosomal 

biogenesis, rescued dopamine neurons via autophagic clearance of α-synuclein oligomers152. 

These findings suggest an important role of autophagy in the pathogenesis of PD and provide 

novel targets involved in autophagy that can be modulated in PD therapeutics.  
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1.5. Project aims 
 

This study sets out to understand proteostatic mechanisms related to ageing and age-associated 

diseases in long-lived NMRs. The first aim is to develop reliable tools for studying proteostasis 

within NMRs, including transcription-based assays of key proteins involved in stress-response 

pathways such as the UPR and autophagy. The second aim is to use these assays to investigate 

how NMRs respond differently from short-lived mice when challenged with the same stressed 

conditions, which may reveal unique molecular features of the UPR and autophagy in NMRs. 

The third aim is to identify important proteostatic mechanisms which may protect NMRs from 

disease-relevant misfolded protein species such as the Aβ and α-synuclein oligomers which are 

believed to be the primary pathogenic conformers in Alzheimer’s and Parkinson’s diseases, 

respectively153,154. Lastly, the study involves designing novel binding proteins for the detection 

of NMR autophagy-related protein markers based on repeat protein scaffolds, followed by their 

purification and characterisation using a variety of biochemical and biophysical techniques. 

This idea was driven by our previous findings that CTPR (consensus-designed tetratricopeptide 

repeat protein) scaffolds are extremely stable and amenable of protein engineering155 and by 

the fact that no commercial antibodies are available for the NMR. Once validated, our home-

designed probes can be used in combination with transcription-based assays to study autophagy 

and other mechanisms within the NMR. The results from this study may ultimately be applied 

towards therapeutic developments to combat neurodegenerative diseases.
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2. Materials and Methods 
 

All chemical and biological consumables and equipment were purchased from Thermo Fisher 

Scientific (Loughborough, UK) unless otherwise stated.  

 

2.1. Preparation and characterisation of Aβ1-42 and α-synuclein 
 

Recombinant α-synuclein was prepared by Ewa Klimont and Swapan Preet (University of 

Cambridge). α-synuclein oligomers were prepared with the help of Catherine Xu (University 

of Cambridge); α-synuclein fibrils were prepared by Catherine Xu and Marta Castellana-Cruz 

(University of Cambridge). TEM analysis was performed with the help of Dr. Janet Kumita.  

 

2.1.1. Preparation of Aβ1-42 oligomers and fibrils 
 

Unlabelled Aβ1-42 (Millipore, Billerica, MA, USA) was dissolved in trifluoroacetic acid (TFA) 

(1 mL per mg of peptide) and sonicated (30 sec, 4 ˚C) on a Soniprep 150 MSE sonicator and 

lyophilised overnight on a Heto Lyolab 3000 lyophiliser (Heto-Holten A/S, Denmark) fitted 

with a Savant VLP120 vacuum pump. Hexafluoro-iso-propanol (HFIP) was added (1 mL per 

mg of peptide) and the solution was divided into working volumes of 5, 10, 20 and 50 μL. 

Amino acid analysis was used to determine the concentration of this solution and the aliquots 

were dried on a Savant SPD131DDA SpeedVac concentrator. Peptide films were stored at -20 

˚C. Lyophilised Aβ1-42 peptide was dissolved in DMSO to a concentration of 5 mM. For small 

oligomer formation, the 5 mM peptide in DMSO was diluted with the low-salt phosphate buffer 

(10 mM Na2HPO4·2H2O, 10 mM NaCl, pH 7.4) (final concentration 100 µM) and incubated 

at 4 ˚C for 24 hr. For mature fibril formation, the 5 mM peptide in DMSO was diluted in 

phosphate buffered saline (PBS) (final concentration 100 µM) and incubated with agitation at 

37 ˚C (48 h, 200 rpm).  

 

HiLyte Fluor 488-labelled fluorescent Aβ1-42 was purchased from Anaspec (Freemont, CA, 

USA) and was dissolved in 1% NH4OH (final concentration of 2 mg/mL) and then diluted to 

0.5 mg/mL in low-salt phosphate buffer. The peptide solutions were aliquoted into working 

volumes of 5 and 10 μL, flash frozen in liquid nitrogen and stored at -20 ˚C until further use. 

Lyophilised peptides were diluted in low-salt phosphate buffer (final concentration 100 µM) 
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and formation of oligomers and fibrils were performed using the same protocol as the 

unlabelled peptide. 

 

2.1.2. Transmission electron microscopy (TEM) 
 

TEM grids were prepared for analysis by applying Aβ1-42 samples (5 µL of 10 µM solutions) 

onto formvar/carbon-coated 400- mesh stainless steel grids (Agar Scientific, Stansted, UK). 

Excess liquid was blotted using Whatman (Sigma-Aldrich, Gillingham, UK) gel blot filter 

paper and the grids were washed twice with ddH2O. The samples were negatively stained with 

a 2% uranyl acetate solution (w/v in ddH2O) (3 min). The sample was left to air dry. TEM 

analysis was conducted using a Philips Technai 20 transmission electron microscope (FEITM, 

Hillsboro, Oregon, USA).  

 

2.1.3. 8-anilinonaphthalene-1-sulphonic acid (ANS) binding assay 
 

8-Anilino-1-sulfonic acid (ANS) was added to Aβ1-42 samples to a final concentration of 360 

μM. Fluorescence emission spectra were recorded between 400-600 nm with an excitation 

wavelength of 350 nm, using a Cary Eclipse Fluorescence spectrophotometer (Agilent, Santa 

Clara, CA). 

 

2.1.4. Purification of recombinant α-synuclein 
 

α-synuclein was overexpressed in Escherichia coli (E. coli) using the pT7-7 plasmid encoding 

the protein. 1 μL plasmid and 25 μL BL21 Gold (DE3) cells were added to a 1.5 mL Eppendorf 

tube and incubated on ice for 30 min. The sample was heat shocked at 42°C for 20 sec and put 

back on ice for 2 min. 200 μL LB medium was added directly to the sample, followed by 1 hr 

shaking at 37°C. 100 μL of the sample was transferred onto a LB-ampicillin agar plate and 

incubated overnight at 37°C. Following transformation, BL21 cells were grown at 37°C in LB 

or 2xYT media in the presence of ampicillin (100 μg/ml) and induced with 1 mM isopropyl β-

D-1-thiogalactopyranoside (IPTG) when the optical density at 600 nm reached 0.6. After 

overnight incubation at 28°C, 220 rpm, cells were harvested by centrifugation with a JLA-

8.1000 rotor at 6238 x g at 4°C (45 min) (Beckman Coulter, High Wycombe, UK). The cell 

pellet was resuspended in PBS, centrifuged at 4000 rpm at 4°C for 1 hr, and resuspended in 10 

mM Tris-HCl (pH 7.7), 1 mM EDTA supplemented with complete protease inhibitor cocktail 
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(1 tablet per 40 mL; Roche, West Sussex, UK), and lysed by sonication. The cell suspension 

was centrifuged at 13,000 rpm with a JA-25.5 rotor (Beckman Coulter) for 30 min at 4°C. The 

supernatant was collected and boiled at 80-90°C for 20-25 min. This was to precipitate heat-

sensitive proteins, while intrinsically disordered α-synuclein remained soluble. The 

supernatant was collected after centrifugation at 13,500 rpm with a JA-25.5 rotor for 30 min at 

4°C. Streptomycin sulphate was added to the supernatant (to 10 mg/mL) to precipitate DNA at 

4°C for 15 min with stirring. The supernatant was collected by centrifugation at 13,500 rpm 

for 30 min at 4°C. Ammonium sulphate was added to the supernatant to 361 mg/mL to 

precipitate α-synuclein at 4°C for 30 min with stirring. The protein sample was pelleted by 30 

min centrifugation at 135,000 rpm at 4°C, resuspended in 25 mM Tris-HCl, pH 7.7, and loaded 

onto HiLoad 26/10 Q Sepharose High Performance column (Cytiva, Little Chalfont, UK) 

connected to an ÄKTA Prime System (Cytiva) and eluted at room temperature with ~350 mM 

NaCl with a salt gradient from 0 M to 1.5 M NaCl in 25 mM Tris-HCl (pH 7.7). The combined 

eluants were concentrated and loaded onto a HiLoad Superdex 75 26/600 column (Cytiva) and 

eluted in PBS at room temperature. Protein concentration was determined by absorbance at 

275 nm, using an extinction coefficient of 5600 M-1 cm-1. 

 

2.1.5. Preparation of α-synuclein oligomers and fibrils 
 

α-synuclein oligomers and fibrils were prepared using the established protocols154. Purified α-

synuclein was dialysed against dH2O (4 L) (overnight, 4°C). 6 mg aliquots were lyophilised 

for 48 hr at room temperature using a Heto Lyolab 3000 freeze dryer unit attached to an 

Edwards nXDS-10i vacuum pump (Edwards Limited, UK). The lyophilised samples were 

resuspended in PBS (pH 7.4) to a final concentration of 840 µM (12 mg/mL) and passed 

through a 0.22 µM filter prior to incubation at 37°C for 20-24 hr. The samples were 

ultracentrifuged at 90,000 rpm (1 hr, 20°C) in a TLA-120.2 rotor using an Optima TLX 

Ultracentrifuge (Beckman Coulter, High Wycombe, UK) to remove fibrillar species. The 

remaining α-synuclein monomers and small oligomers were removed by filtration (9300 rcf, 2 

min each, 4X) using the 100 kDa cut-off membrane (Millipore). The flow-through containing 

predominantly monomer from the first three passes was kept and reused up to five times. The 

oligomer concentration was estimated from the absorbance at 275 nm measured in a Cary UV 

spectrometer (Agilent Technologies UK, Stockport, UK) using a molar extinction coefficient 

of 7000 M-1⋅cm-1.  
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F0 and F1 fibrils (0th and 1st generation of fibrils) were used in this study. F0 fibrils were 

prepared by incubating α-synuclein monomers at 70 μM (1 mg/ml) in PBS, 0.02% NaN3 (pH 

7.4) at 37 °C under constant agitation (200 rpm) for 3-4 days.  The F0 fibrils were collected by 

centrifuging at 25°C (15 min at 13200 rpm) and washed twice with PBS before being 

resuspended into PBS. F1 fibrils (1st generation of fibrils) were prepared by incubating 10 μM 

F0 fibrils with 100 μM α-synuclein monomers in PBS, 0.02% NaN3 (pH 7.4) at 37 °C overnight 

without shaking. The final concentration of fibrils, that was typically ~100 μM in each sample, 

was estimated by measuring the absorbance at 275 nm using a molar extinction coefficient of 

5600 M-1cm-1 after disaggregating an aliquot by the addition of guanidinium chloride to a final 

concentration of 4 M; this concentration therefore represents the total monomeric concentration 

present in the fibrillar sample. 

 

2.2. Cell culture 
 

Mouse primary sensory neurons were isolated by Dr. Gerard Callejo and Dr. Sampurna 

Chakrabarti (University of Cambridge). Calcium uptake assay was performed by Dr. Sampurna 

Chakrabarti (University of Cambridge). 

 

2.2.1. Cell line culture 
 

Two lines of NMR kidney immortalised fibroblasts (NMR-KF-1156 used in Chapter 3 and 

NMR-KF2236 used in Chapter 5 and 6), one line of NMR skin immortalised fibroblast (NMR-

SF36 used in Chapter 5) and NIH 3T3 mouse fibroblasts (3T3) were kind gifts from Dr. Ewan 

St. John Smith and Dr. Fazal Hadi (University of Cambridge). NMR-KF-1 was cultured in 

DMEM/F-12 (without L-glutamine) supplemented with 15% fetal bovine serum (FBS, Sigma-

Aldrich), 800 μg/ml G418 (Santa Cruz Biotechnology, Dallas, USA), 2 mM L-glutamine and 

100 U/ml penicillin and 100 μg/ml streptomycin (Sigma-Aldrich). NMR-KF-2 and NMR-SF 

cells were cultured in DMEM high glucose supplemented with 15% FBS, 1X MEM non-

essential amino acids, 1 mM sodium pyruvate, 100 U/ml penicillin and 100 μg/ml streptomycin. 

3T3 cells were cultured in DMEM high glucose supplemented with 10% FBS, 100 U/ml 

penicillin and 100 μg/ml streptomycin. Cell lines were grown in a humidified 37°C incubator 

with 5% CO2 and used within 9-20 passages.  

 



Chapter 2: Materials and Methods 

 29 

2.2.2. Animals 
 

All experiments were conducted in accordance with the United Kingdom Animal (Scientific 

Procedures) Act 1986 Amendment Regulations 2012 under Project Licenses (70/7705 and 

P7EBFC1B1) granted to E. St. J. S. by the Home Office; the University of Cambridge Animal 

Welfare Ethical Review Body also approved procedures. Young adult NMRs (two females and 

eight males, 0.5–2 years old) and C57BL/6J mice (males, 10–14 weeks old) were sacrificed in 

this study. Mice were conventionally housed with nesting material and a red plastic shelter in 

temperature-controlled rooms (21 °C) with a 12-hr light/dark cycle and access to food and 

water ad libitum. NMRs were bred in-house and maintained in an inter-connected network of 

cages in a humidified (~55 %) temperature-controlled room (28 °C) with red lighting (08:00-

16:00) and had access to food ad libitum. In addition, a heat cable provided extra warmth under 

2-3 cages/colony. Mice were humanely killed by cervical dislocation of the neck and cessation 

of circulation, whereas naked mole-rats were killed by CO2 exposure followed by decapitation. 

 

2.2.3. NMR and mouse primary fibroblast isolation 
 

Both kidneys were harvested and incubated in 5 mL isolation medium containing 500 µL of 

enzymatic solution (10 mg/mL collagenase (Roche, West Sussex, UK) and 1000 U/mL 

hyaluronidase (Sigma-Aldrich), in DMEM high glucose at 37°C for 30-60 min with gentle 

vortexing every 30 min. Dissociated tissues were collected by centrifugation at 500 g for 5 min. 

Cell pellets were resuspended in DMEM high glucose supplemented with 15% FBS, 1X MEM 

non-essential amino acids, 1 mM sodium pyruvate, 100 U/ml penicillin, 100 μg/ml 

streptomycin, and 100 μg/mL primocin (InvivoGen). Cell suspensions were passed through a 

70 μM cell strainer (Corning) and were seeded in a T25 culture flask. NMR fibroblasts were 

cultured in a humidified 32°C incubator with 5% CO2 and 3% O2; mouse fibroblasts were 

cultured in a humidified 37°C incubator with 5% CO2. Fibroblasts started to form colonies after 

one week and were subcultured to a T75 flask once 80% confluency was reached. Primary 

fibroblasts were analysed within 2-5 passages and kept in liquid nitrogen for long-term storage.  

 

2.2.4. Mouse primary sensory neuron isolation 
 

Sensory neurons from dorsal root ganglia and trigeminal ganglia were isolated following the 

protocol described in the reference157. Neurons from a single pup were plated at ~10,000 per 
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well in a 12-well culture plate pre-coated with poly-D-lysine (Sigma-Aldrich, UK) and laminin. 

Neurons were cultured at 37°C in a 5% CO2 incubator in air in Leibovitz's L-15 medium with 

GlutaMAX supplemented with 10% FBS, 24 mM NaHCO3, 38 mM glucose and 2% penicillin 

and streptomycin.  

 

2.3. Cellular and biochemical assays probing UPR and autophagy 
 
2.3.1. Drug formulation and cell treatment 
 

Tunicamycin (TU), thapsigargin (TG) and rapamycin (RA) were purchased from Cell 

Signalling Technology (Danvers, USA) and reconstituted in DMSO to make master stocks (TU: 

5 mg/mL, TG: 1.25 mM, RA: 100 µM) following the manufacturer’s instructions. Chloroquine 

was purchased from Sigma-Aldrich (Gillingham, UK), reconstituted in dH2O to make a 100 

mM stock and filter sterilised. All stocks were aliquoted (10 µL) and stored in -20°C.  

 

For the UPR study, TU and TG were first prepared with a series of dilutions in DMSO. Then 

an equal volume of each diluted sample (TU: 5 µL, TG: 1 µL) was added to 5 mL fresh medium 

and mixed thoroughly before applying to cells (2 mL per well in a 6-well plate, 1 mL per well 

in a 12-well plate, or 100 µL per well in a 96-well plate). For the autophagy study, 5 µL of RA 

and/or CQ stocks was added to 5 mL fresh medium and mixed thoroughly before applying to 

cells.  

 

2.3.2. RT-qPCR assay 
 

Cell treatment and RNA isolation 

Fibroblasts were plated in a 6-well plate, 150,000 cells per well, for treatment with drugs or 

HBSS and in a 12-well plate, 100,000 cells per well, for treatment with Aβ1-42 and α-synuclein 

species. Cells were washed once by ice-cold PBS after the treatment and lysed directly by the 

Buffer RLT supplied in the RNeasy Plus Mini and Micro Kit (Qiagen, Hilden, Germany). Total 

RNA was extracted following the manufacturer’s instructions. An additional wash step with 

500 µL Buffer RPE was performed to remove chaotropic salts. Carrier RNA was included in 

the extraction of neuronal RNA. RNA concentration and purity were evaluated by UV 

absorbance measurements on a NanoDrop 2000 spectrophotometer. Samples was immediately 

analysed or otherwise stored at -80°C. 
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RNA integrity 

RNA sample was mixed with RNA gel loading dye (2X) and heated at 75°C for 5 min. ~500 

ng of RNA was analysed on a 1% agarose gel running at 110 V for 30-40 min then stained with 

GelRedTM (Biotium, Fremont, USA) or SYBRTM Safe and visualised under UV light. RNA 

samples showing smearing bands were degraded and excluded from downstream analyses.  

 

Reverse transcription (RT) 

Reverse transcription (RT) was performed in an ABI 2720 thermal cycler (Applied Biosystems, 

Waltham, USA) or a Techne TC-512 thermal cycler (Cole-Parmer, Saint Neots, UK). First-

strand cDNA was synthesised in a 20 µL reaction using the ImProm-II Reverse Transcription 

System (Promega, Southampton, UK) or LunaScrip RT SuperMix Kit (New England BioLabs, 

Hitchin, UK). For fibroblasts, RNA input was 1 µg for each sample per reaction. For neurons, 

RNA input was 500 ng or less for each sample per reaction due to the limited yield.  

 

In the ImProm-II Reverse Transcription System, RNA template was mixed with random 

hexamers (Qiagen, Hilden, Germany) and dNTPs incubating at 65°C for 5 min. The mixture 

was chilled to 4°C for 5 min, mixed with 1X ImProm-II 5X reaction buffer, 0.01 M 

dithiothreitol (DTT), 3 mM MgCl2 and 1 µL ImProm-II Reverse Transcriptase, and incubated 

at 25°C for 5 min for primer annealing, followed by extension (42°C, 45 min) and transcriptase 

inactivation (72°C, 15 min). In LunaScript RT SuperMix, RNA was mixed with 4 µL 5X 

LunaScript RT SuperMix and nuclease-free water to a total volume of 20 µL. The mixture was 

incubated at 25°C for 2 min for primer annealing, 55°C for 10 min for cDNA synthesis and 

95°C for 1 min for heat inactivation. Negative controls (no-RNA-template and no-reverse-

transcriptase) were set up along with each batch of RT. All cDNA products were analysed 

immediately by qPCR or otherwise frozen at -20°C.  

 

Real-time quantitative PCR (qPCR) 

SYBR-Green-based quantitative PCR (qPCR) was performed using the StepOnePlus Real-

Time PCR System (Thermo Fisher Scientific). Experiments were set up on MicroAmp fast 

optical 96-well reaction plates following the sample maximisation method158. Each 20 µL 

reaction contained 5 ng cDNA, 0.2 µM primers, 1X Fast or PowerUP SYBR Green Master Mix. 

Two replicates of each reaction were performed.  
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Fast SYBR reactions were performed under a standard-cycling mode: 95°C for 10 min for the 

initial denaturation and activation of AmpliTaq Fast DNA polymerase UP, followed by 42 

cycles of denaturation (95°C, 15 sec), annealing and extension (60°C, 1 min). PowerUP SYBR 

reactions started with the activation of uracil-DNA glycosylate (UDG) at 50°C for 2 min and 

the activation of Dual-Lock DNA polymerase at 95°C for 2 min, followed by 42 cycles of 

denaturation (95°C, 15 sec) and annealing and extension (60°C, 1 min). The threshold cycle 

(Ct or Cq) of each qPCR reaction was calculated from the amplification plot by StepOnePlus 

Software v2.3. Relative expression levels of target genes were determined by comparative Ct 

(or ddCt) method159. A dissociation step was performed after the qPCR run to generate a 

melting curve (60 to 95°C) of each qPCR reaction. The product of each run was validated by 

running the post-reaction mixture on a 2% agarose gel.  

 

Primer design and validation  

Mouse qSTAR qPCR primer pairs were designed and purchased from OriGene (Rockville, 

MD, USA). For NMR genes, primers were either self-designed using Primer-BLAST and the 

mRNA templates from the NCBI Reference Sequence (RefSeq) collection160,161 or taken from 

published literature75,162.  

 

The efficiency of qPCR assays was determined by a standard curve method159. Briefly, a qPCR 

reaction was performed using the selected primers and a series of 2- or 5-fold dilutions of the 

cDNA template. A linear-fit standard curve was constructed by plotting Cq values versus log-

transformed cDNA concentration using Prism GraphPad 8 (GraphPad Software Inc, La Jolla, 

USA). qPCR efficiency (E) was calculated from the slope of the standard curve using equation 

(2.1): 

E = $1 + 10!
!

"#$%&( × 100%			                                         (2.1) 

 

For primers with efficiencies of <90% or >110%, different annealing temperatures (55-60°C) 

were tested, and if this still failed to reach ideal efficiency, new primers were designed until 

the criterion was met.  

 

A complete list of the qPCR primers used to probe genes in NMRs was shown in Table 2.1 

(reference and UPR genes) and Table 2.2 (autophagy genes).
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Reference gene selection 

Reference genes were experimentally determined by geNORM163. qPCR was performed to 

obtain Cq values of each housekeeping gene under experimental conditions. The average 

expression stability value (M) of each candidate gene was determined from Cq values using 

the geNORM algorithm in the Microsoft Excel software158,163. The candidate genes were 

ranked by M values where the two genes with the lowest M values were chosen to be the 

reference genes for data normalisation under tested conditions163. The mean coefficient of 

variance (CV) was determined to validate the choice of reference genes in different types of 

samples: < 25% in homogenous samples and < 50% in heterogenous samples158.  

 

Relative mRNA expression level determination  

qPCR results were analysed using the comparative Ct (or ddCt) method159. The expression of 

target genes in both experimental samples and untreated controls were first normalised against 

the expression of reference genes in the same sample163. The normalised expression of a target 

gene in an experimental sample (dCt, experimental) was then compared with the normalised 

expression of that target gene in the control sample (i.e. dCt, control), and the fold change of 

mRNA of a target gene was determined by 2-ddCt 159.  

 

Equations involved in each step of the calculation are provided below: 

µC!,#$%$#$&'$ = $	µC!,#$%$#$&'$	)$&$	* × 	µC!,#$%$#$&'$	)$&$	+
! 			               (2.2) 

where the reference genes were determined by geNORM and the arithmetic mean (µ) of the 

reference genes Ct from replicates were calculated by StepOnePlus Software v2.3. 

dC!,$,-$#./$&!01 = (µC!,!0#)$! − µC!,#$%$#$&'$*$,-$#./$&!01
			                 (2.3) 

dC!,'2&!#21 = (µC!,!0#)$! − µC!,#$%$#$&'$*'2&!#21
                              (2.4) 

where the arithmetic mean (µ) of the target and reference genes Ct from replicates were 

calculated by StepOnePlus Software v2.3. 

ddC! = µ(dC!,$,-$#./$&!01) − µ(dC!,'2&!#21)			                            (2.5) 

Fold	change	of	mRNA = 234456			                                  (2.6) 
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2.3.3. Xbp1 splicing assay 
 

A PCR reaction was performed to amplify Xbp1s and Xbp1u using cDNA and mouse Xbp1 

primers: 5’-acacgcttgggaatggacac-3’ (forward) and 5’-ccatgggaagatgttctggg-3’(reverse)164 or 

NMR Xbp1 primers: 5’-gaaccaggaattaaggatgcg-3’ (forward) and 5’-atccatggggagatgttctg-

3’(reverse). 25 µL PCR reaction mixture contained 0.5 µM primers, 1X DreamTaq buffer, 0.25 

mM dNTPs, 3% DMSO, 50 ng cDNA and 2.5 U DreamTaq DNA polymerase. The reaction 

included initial denaturation at 95°C for 10 min, 30 cycles of denaturation (95°C, 30 s), 

annealing (55°C, 30 s), extension (72°C, 30 s), followed by a final cycle of extension (72°C, 

10 min). The PCR products were analysed by DNA electrophoresis on a 6% Novex TBE gel 

at 200 V for 35-40min and visualised under UV light. The intensity of Xbp1u and Xbp1 bands 

were quantified by ImageJ165.  

 

2.3.4. Western blot 
 

Fibroblasts were plated at 15,000 cells per well in a 6-well culture plate and two wells of cells 

were collected per treatment. Cells were washed twice by PBS and lysed by 100 µL of NP40 

cell lysis buffer (Invitrogen, UK) supplemented with SIGMAFAST Protease Inhibitor Cocktail 

Tablets (Sigma-Aldrich). Cell suspension was incubated for 30 min on ice with vortexing at 10 

min intervals and spun (14,000 rpm, 10 min, 4°C) to collect clear supernatant for total protein 

quantification and downstream analysis.  

 

Total protein concentration was determined by the Pierce BCA Protein Assay Kit using the 

microplate procedure following the manufacturer’s instructions. Protein standards (20-2000 

µg/mL) were prepared by diluting the Pierce bovine serum albumin (BSA) standard in the cell 

lysis buffer. Samples were diluted and analysed in triplicate. Absorbance was measured at 562 

nm on a CLARIOstar plate reader (BMG Labtech, Ortenberg, Germany). A linear-fit standard 

curve was generated by plotting the absorbance of each standard versus its concentration using 

the Microsoft Excel software. The protein concentration of each sample was determined from 

the standard curve.   

 

15% 1mm polyacrylamide gels were casted using the Mini-PROTEAN Tetra handcast system 

(Bio-Rad Laboratories, Hercules, USA). The resolving gel was made by mixing 5 mL ProtoGel, 

2.5 mL 4X resolving buffer, 100 µL ammonium persulfate (APS), 10 µL TEMED and 2.4 mL 
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dH2O. The stacking gel was made by mixing 0.33 mL ProtoGel, 0.63 mL 4X stacking buffer, 

25 µL APS, 2.5 µL TEMED and 1.5 mL dH2O. 10-20 µg of each protein sample was mixed 

with NuPAGE LDS Sample Buffer (4X) and heated at 70°C for 10 min. Samples were loaded 

to the gel, along with the Spectra Multicolour Broad Range protein ladder, which was run in 

the fresh running buffer (0.25 M Tris, 1.92 M glycine, 1% w/v SDS) at 150 V. The proteins 

were transferred onto a Immobilon-P polyvinylidene difluoride (PVDF, Millipore) using a 

Pierce Power Blot Cassette (25V, 1.3 A, 7 min). The membrane was then blocked for 1 hr in 

3% w/v BSA in Tris-buffered saline, 0.1% v/v Tween 20 (TBS-T). The membrane was 

incubated (overnight at 4°C) with an anti-LC3B antibody (Cell Signalling Technology, #2775; 

1:100) or an anti-KDEL antibody (Abcam, ab12223; 1:100) or an anti-GAPDH antibody 

(Proteintech, 10494-1-AP; 1:100) in blocking buffer. The membrane was washed three times 

with TBS-T, 5 min each, and then incubated with a goat anti-mouse IgG/ HRP secondary 

antibody (P0447; Dako Denmark, Glostrup, Denmark; 1:3000) or a swine anti-rabbit IgG/HRP 

secondary antibody (P0399; Dako Denmark; 1:3000) in blocking buffer (room temperature, 1 

hr). The membrane was washed three times with TBS-T, 5 min each and was detected using 

Clarity Western ECL Blotting Substrate (Bio-Rad Laboratories). The image was acquired by 

Odyssey Fc imaging system (LI-COR Biosciences, Lincoln, USA) with an exposure time of 

30 sec and analysed by ImageJ165.  

  

2.3.5. Immunostaining and confocal microscopy 
 

The No.1 square coverslips were rinsed with 70% ethanol, coated with 10 µg/mL fibronectin 

(room temperature, 30 min) and washed three times with PBS. Each pre-treated coverslip was 

placed in the well of 6-well culture plates, and mouse 3T3 and NMR kidney fibroblasts were 

plated at 1×105 cells per well (about 200 cells per mm2 on the coverslip). Mouse neurons were 

plated onto the Corning BioCoat 12mm No.1 German Glass Coverslips in a 24-well plate at 

~10,000 per well.  

 

HiLyte Fluor 488-labelled Aβ1-42 oligomers (200 µM) were added with the serum-free medium. 

After incubation at 37°C for 5 hr, the cells were washed three times with DPBS and fixed in 

4% (w/v) paraformaldehyde for 20 min. The cells were rinsed three times with HBSS after the 

fixation. The cells were incubated with the Alexa Fluor 647-labelled WGA (5 µg/mL) in HBSS 

for 10 min and washed two times with PBS-T (PBS with 0.05% v/v Tween 20), 5 min each. 

The cells were stained with DAPI (Sigma-Aldrich) (room temperature, 5 min) and washed 
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three times with PBS-T, 5 min each. The cells were mounted with ProLong Gold Antifade 

Mountant and dried (room temperature, overnight). The coverslips were sealed with nail polish 

and stored in the fridge before imaging using a Leica SP5 Confocal Microscope (Leica, Wetzlar, 

Germany).  

 

2.3.6. Cell viability assay 
 

Fibroblasts were plated at a density of 5,000 cells per well in a 96-well opaque-white-walled, 

clear-bottomed plate. After the treatment, the amount of ATP in culture was determined by 

CellTiter-Glo luminescent cell viability assay (Promega) following the manufacturer's 

instructions. Luminescent signals were measured and recorded by a CLARIOstar plate reader 

(gain at 3600, no filter). Triplicates of each treated sample or control were analysed and the 

mean luminescence readings were taken to calculate the cell viability using the equation 2.7:  

 

Viable Cell % = 
789:;<=><;><(#$%&'(%)')3789:;<=><;><(+,&)-,/01%,,)

789:;<=><;><(/%2&'34%10)'$0,,5%637()3789:;<=><;><(+,&)-,/01%,,)
× 100%		 (2.7) 

 

2.3.7. Caspase assay 
 

NMR primary kidney fibroblasts were plated at a density of 5,000 cells per well in a 96-well 

opaque-white-walled, clear-bottomed plate. After the treatment, the caspase-3/7 activity was 

determined by Caspase-Glo 3/7 assay (Promega) following the manufacturer’s instructions. 

Luminescent signals were measured by a CLARIOstar plate reader (gain at 3600, no filter). 

Triplicates of each treated sample or control were analysed and the mean luminescence 

readings were taken to calculate the percentage of apoptosis in culture following the equation 

2.8: 

 

Apoptosis % = 
789:;<=><;><(#$%&'(%)')3789:;<=><;><(+,&)-,/0	1%,,)

789:;<=><;><(90:3'34%	10)'$0,,;'&7$0:<0$3)%)3789:;<=><;><(+,&)-,/0	1%,,)
× 100		(2.8) 

 

2.3.8. Calcium (Ca2+) uptake assay 
 

Cells plated in 20 mm dishes were incubated in 10 μM Fluo-4 AM (Invitrogen) for 30 min at 

room temperature (~21 °C). These dishes were then washed with extracellular solution (ECS), 

pH 7.4, containing 140 mM NaCl, 4 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 4 mM glucose and 
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10 mM HEPES and imaged under an inverted Nikon Eclipse Ti microscope. Fluo-4 

fluorescence was measured using an excitation wavelength of 470 nm LED (Cairn Research) 

and captured with a Zyla cSMOS camera (Andor) at 1 Hz with a 250 ms exposure time using 

Micro-Manager software (v1.4; NIH). A gravity-driven 12-barrel perfusion system was used 

to perfuse solutions in this system. During imaging, ECS was perfused for 10 s to establish the 

baseline, then thapsigargin (5, 50, 250 nM serially diluted in ECS) was perfused for 30 s. Each 

thapsigargin concentration was tested in separate culture dishes; 4 min after which ionomycin 

(10 µM, Cayman Chemicals) was applied for 10 s as a positive control in each dish. For 

quantifying increases in intracellular Ca2+, mean gray values of cells were extracted from 

manually drawn regions of interest (ROIs) in the ImageJ software. These values were then fed 

into a custom-made R-toolbox (https://github.com/amapruns/Calcium-Imaging-Analysis-

with-R.git) to compute the proportion of cells responding to each concentration of thapsigargin 

and their corresponding magnitude. Specifically, after subtraction of background intensities 

from the ROIs, the toolbox calculated the difference between 5 s of pre-compound application 

baseline and 2 s of peak drug response. Cells that had a peak drug response greater than baseline 

mean ± 5 standard deviation (threshold) were counted as “responders” which were then 

normalised to their peak ionomycin response. Cells not crossing threshold for positive controls 

were excluded from the analysis. Finally, cells that had a normalised peak less than 0.001, did 

not reach peak 30 s after termination of drug application and had a fluorescent decay of more 

than 10 % from baseline were excluded after manual evaluation. 

 

2.4. Preparation and characterisation of CTPR-LIR constructs 
 

Some CTPR4-LIR proteins used in this study were purified by Andrew Countryman 

(University of Cambridge). Chemical denaturation assay was performed with Andrew 

Countryman (University of Cambridge). Pull-down assay was performed by Dr. Janet Kumita.  

 

2.4.1. Plasmids and DNA constructs 
 

The pRSET B expression vector containing a multiple cloning site, a T7 promoter and 

ampicillin resistance was used in this study. The vector was previously altered in house to 

present a thrombin-cleavage site between sequences of the N-terminal 6*His tag and the 

protein of interest (pRSET-Thr). The pRSET-Thr vector was further modified by Dr. Pamela 
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J.E. Rowling with an addition of a 3’-end HiBiT sequence (pRSET_HiBIT) for subcloning and 

making HiBiT-containing constructs.  

 

DNA constructs encoding NMR LC3B and CTPR4-LIR were designed to have a BamHI 

sequence at the 5’ end and a HindIII sequence at the 3’ end. CTPR4-RS (randomly scrambled) 

was designed to have a BamHI at the 5’ end and an ECoRI sequence at the 3’ end. All sequences 

were optimised for protein expression in E. coli using the GeneArt GeneOptimizer (Thermo 

Fisher Scientific) and purchased from Integrated DNA Technologies (Leuven, Belgium) as 

gBlock DNA fragments listed in Table 2.3.  

 

Table 2. 3. gBlock DNA inserts used in this study.  

Name of inserts Sequence 

CTPR4-LIR 

GGGGGGGGATCCGCAGAAGCATGGTATAATCTGGGTAATGCATATTACAAACAGGGCGATTA 
TCAGAAAGCCATCGAGTATTATCAAAAGGCACTGGAACTGGACCCGAATAATGCCGAGGCCT 
GGTATAACTTAGGTAACGCCTACTATAAACAGGGTGATTACCAAAAGGCGATCGAATATTAC 
CAGAAAGCGCTGGAATTAGATCCGAACAACGATTATGAATCCGATGATGATAGCTATGAAGT 
TCTGGATCTGACCGAATATGATCCGAATAACGCGGAAGCGTGGTACAACCTGGGCAACGCGT 
ATTATAAGCAAGGTGATTATCAGAAGGCAATTGAATACTATCAGAAAGCGTTAGAGCTGGAC 
CCGAACAACGCTGAGGCATGGTACAATTTAGGCAATGCGTACTACAAACAAGGGGACTACCA 
AAAAGCGATTGAGTACTACCAAAAGGCCTTAGAACTTGACCCCAACAACTAATAAAAGCTTG 
GGGGG 

CTPR4-RS 

GGGGGGGATCCGCAGAAGCATGGTATAATCTGGGTAATGCATATTACAAACAGGGCGATTAT 
CAGAAAGCCATCGAGTATTATCAAAAGGCACTGGAACTGGACCCGAATAATGCCGAGGCCTG 
GTATAACTTAGGTAACGCCTACTATAAACAGGGTGATTACCAAAAGGCGATCGAATATTACC 
AGAAAGCGCTGGAATTAGATCCGAATAACGATGTGGAATATGAGTATACCTATGATAGCTCC 
GATGAACTGGATCTGGATGATCCGAACAATGCGGAAGCGTGGTACAACCTGGGCAACGCGTA 
TTATAAGCAAGGTGATTATCAGAAGGCAATTGAATACTATCAGAAAGCGTTAGAGCTGGACC 
CGAACAACGCTGAGGCATGGTACAATTTAGGCAATGCGTACTACAAACAAGGGGACTACCA 
AAAAGCGATTGAGTACTACCAAAAGGCCTTAGAACTTGACCCTAACAACGAATTCGGGGGG 

NMR LC3B 

GGGGGGGATCCATGCCGAGCGAAAAAACCTTTAAACAGCGTCGTACATTTGAACAGCGTGTT 
GAAGATGTTCGTCTGATTCGTGAACAGCATCCGACCAAAATTCCGGTTATTATCGAACGCTAT 
AAAGGCGAAAAACAGCTGCCGGTTCTGGATAAAACCAAATTTCTGGTTCCGGATCATGTGAA 
TATGAGCGAACTGATTAAAATCATTCGTCGTCGTCTGCAGCTGAATGCAAATCAGGCATTTTT 
TCTGCTGGTTAATGGTCATAGCATGGTTAGCGTTAGCACCCCGATTAGCGAAGTTTATGAAAG 
CGAAAAAGATGGTGATGGCTTCCTGTATATGGTTTATGCAAGCCAAGAAACCTTTGGTCGTGG 
TCTGAGCGTTTGTGATTAATAAAAGCTTGGGGGG 

+Note: Restriction sites are highlighted including BamHI: yellow, HindIII: cyan, ECoRI: green. 

 

2.4.2. Cloning of NMR LC3B and CTPR4-LIR 
 

The gBlock constructs of the NMR LC3B and CTPR4-LIR were cloned into the pRSET_Thr 

vector for protein expression in E. coli. Lyophilised 500 ng DNA constructs were resuspended 
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in 10 µL nuclease-free water to a final concentration of 50 ng/µL. Each resuspended construct 

or insert (3 µL) was incubated at 37°C for 30 min in a 50 µL digestion mixture containing 1 

µL BamHI-HF (New England BioLabs), 1 µL HindIII-HF (New England BioLabs), 5 µL 10X 

CutSmart Buffer (New England BioLabs) and nuclease-free water. The digested constructs 

were purified by Monarch PCR & DNA Cleanup Kit (New England BioLabs) following the 

manufacturer’s protocol.  

 

The pRSET_Thr vector (1 µg) was incubated at 37°C for 1 hr in a 30 µL digestion mixture 

containing 1 µL FastAP Thermosensitive Alkaline Phosphatase, 1 µL FastDigest BamHI, 1 µL 

FastDigest HindIII, 3 µL 10X FastDigest Green Buffer and nuclease-free water, followed by 

5-min heat inactivation at 75°C. The digestion products were analysed on a 1% agarose gel 

stained with SYBR Safe from which the correct DNA band (~3 kb) was cut and purified using 

the Monarch DNA Gel Extraction Kit (New England BioLabs) following the manufacturer’s 

instructions. The purified cut pRSET_Thr vector and inserts were quantified by NanoDrop 

2000. Ligation was carried out at room temperature for 15 min in a 4 µL mixture containing 

vector (~100 ng) and the insert at a 1:6 molar ratio and 1 µL Anza T4 DNA Ligase Master Mix. 

A negative control was performed by replacing the insert with water in the above mixture.  

 

Transformation was performed by adding 1-2 µL of the ligation products to 50 µL α-select 

bronze efficiency competent E. coli cells (BioLine). The component cells were incubated on 

ice for 30 min, heat shocked at 42°C for 45 sec, and placed back on ice for 2 min. 200 µL SOC 

Outgrowth Medium (New England BioLabs) was added to the mixture, followed by 1-hr 

incubation at 37°C with shaking (600 rpm). 100 µL of the mixture was plated onto a LB-

Ampicillin agar plate and incubated overnight at 37°C. Individual colonies were picked and 

inoculated to 5 mL sterile 2xYT media supplemented with ampicillin (50 μg/mL). 5-mL liquid 

cultures were incubated at 37°C with shaking (220 rpm) for 18 hr, and the DNA plasmids were 

extracted by GeneJET Miniprep Kit or Monarch Plasmid Miniprep Kit (New England BioLabs). 

DNA concentrations were determined by NanoDrop 2000, and the sequencing was conducted 

by Eurofins Genomics using the T7 promoter sequencing primers.  

 

2.4.3. Cloning of CTPR4-LIR-HiBiT and CTPR4-RS-HiBiT 
 

A PCR was performed to amplify the protein-coding region on the CTPR4-LIR plasmid using 

a T7 promoter forward primer (5’-taatacgactcactataggg-3’) and a reverse primer (5’- 
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gggggaattcgttgttggggtcaagttcta-3’) designed to insert a 3’-end EcoRI restriction site for 

subcloning into the pRSET_HiBiT vector. The reaction contained the template CTPR4-LIR 

plasmid (500 ng), 10 µL 5X Phusion HF polymerase buffer, 1.5 µL of each 100 µM primer, 2 

µL 5 mM dNTP, 1 µL Phusion polymerase and nuclease-free water to make a final volume of 

50 µL and was performed with initial denaturation (98°C, 60 s), 25 cycles of amplifications 

(96°C for 30 s, 55°C for 30 s, 72°C for 1 min) and final extension (72°C, 10 min). The PCR 

products (10 µL) were digested with FastDigest BamHI and ECoRI ezymes (1 µL each) in 1X 

FastDigest Green Buffer diluted in nuclease-free water to a total reaction volume of 20 µL. 

After incubation at 37°C for 1 hr, the digestion mixture was analysed on a 1% agarose gel. The 

appropriate DNA band was cut and extracted using the Monarch Gel Kit (New England 

BioLabs), and the DNA concentration was measured on a NanoDrop 2000. The pRSET_HiBiT 

vector was also double digested with BamHI and EcoRI enzymes and gel purified. Ligation 

was performed using the purified cut pRSET_HiBiT vector and the DNA insert, followed by 

transformation, plasmid extraction and sequencing, using the same protocol described in the 

section 2.4.2. The gBlock construct of the CTPR4-RS was cloned directly into the 

pRSET_HiBiT vector to make the CTPR4-RS-HiBiT plasmid using the same protocol 

described in the section 2.4.2. 

 

2.4.4. Protein purification 
 

Buffers used in protein purification included: 

Lysis buffer: 50 mM sodium phosphate pH 7.5, 150 mM NaCl, and 1 tablet of SIGMAFAST 

Protease Inhibitor Cocktail Tablets per 100 mL buffer 

Wash buffer: 50 mM sodium phosphate pH 7.5, 150 mM NaCl, 30 mM imidazole 

Elution buffer A: 50 mM sodium phosphate pH 7.5, 150 mM NaCl, 300 mM imidazole 

Elution buffer B: 25 mM sodium phosphate pH 7.0, 100 mM NaCl 

In addition, 1 mM DTT was added to all buffers used for LC3B purification.  

 

Plasmids were transformed into E. coli C41 competent cells (New England BioLabs) by heat 

shock and plated on LB-Ampicillin plates as described in the section 2.4.2. After overnight 

incubation at 37°C, colonies grown on the LB-Ampicillin plates were transferred to sterile LB 

media containing 50 μg/mL ampicillin (666 mL culture per protein construct). Cultures were 

incubated at 37°C, 220 rpm and induced at O.D. (600 nm) of 0.6 with 0.2 mM IPTG at 25°C 

for 16-20 hr with shaking. Cells were harvested by centrifugation at 5,000 x g for 12 min, 
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resuspended in ice-cold lysis buffer (5 mL buffer per 1 mL cell pellet) and lysed on an 

Emulsiflex C5 homogeniser (Avestin, Mannheim, Germany) at 10000 psi. Cell debris was 

pelleted by centrifugation at 15,000 x g at 4°C for 45 min. The supernatant was loaded onto a 

HisTrap HP column (Cytiva) which was connected to an ÄKTA Pure System (Cytiva) and pre-

equilibrated with the wash buffer. Target proteins were eluted with elution buffer A, and the 

combined eluants were loaded onto a HiPrep 26/10 desalting column (Cytiva) to remove 

imidazole. The proteins were eluted with elution buffer B, incubated overnight at 4°C with 

thrombin (Sigma-Aldrich) at 50 Units per litre of culture to cleave the 6*His tag, and loaded 

onto the HisTrap HP column. The His-tag-cleaved proteins were collected in the flow through, 

concentrated to a volume of <15 mL, loaded onto the desalting column, and eluted in elution 

buffer B. Protein samples collected from various steps were analysed by SDS-PAGE on precast 

NuPAGE 4 to 12% gels in NuPAGE MES SDS Running Buffer. The combined eluants were 

concentrated, snap-frozen on dry ice and stored at -80°C. Protein concentrations were 

determined by measuring absorbance at 280 nm on a NanoDrop 2000. Protein moleular weight 

and purity were confirmed by mass spectrometry.  

 

2.4.5. Circular dichroism (CD) spectroscopy 
 

Secondary structure of the CTPR4 constructs was evaluated by circular dichroism (CD) 

spectroscopy using a Chirascan CD spectrometer (Applied Photophysics, Leatherhead, UK) in 

a 1-mm-pathlength Precision Cell (110-QS; Hellma Analytics, Müllheim, Germany) at 25°C, 

80°C and 95°C. Protein samples (20 μM) were prepared in 50 mM sodium phosphate buffer 

(pH 6.8), 150 mM NaCl, and the far-UV CD spectra were measured between 200 and 250 nm 

using a 1-nm bandwidth. Measurements were taken at 1-nm intervals and were collected every 

0.5 s; each reading was repeated five times and the mean values were used for data analysis. 

 

2.4.6. Chemical denaturation monitored by fluorescence 
 

Chemical denaturation experiments were performed as described previously166. Briefly, stocks 

of PBS buffer (pH 7.0), guanidinium chloride (GdmHCl) solution (6.5 M in PBS), and protein 

samples (10 µM) were prepared. 150 μl aliquots of protein at different concentrations of 

GdmHCl were dispensed into black, 96-well, flat-bottom, polystyrene plates with a Microlab 

ML510B dispenser (Hamilton, Reno, USA) in concentration steps of 0.1 M GdmHCl. Plates 

were covered with 96-well Microplate Aluminum Sealing Tape (Corning) to prevent 
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evaporation and incubated at 25°C for 1 hr. Intrinsic fluorescence of protein samples was 

measured on a CLARIOstar Plate Reader with a tryptophan-detection setting consisting of 

three filters, an excitation of 295 nm, a dichroic PL325 nm, and an emission at 360 nm at 25°C. 

Measurements were taken with three technical replicates on the same plate and repeated on 

three plates.  

 

Denaturation data were analysed in GraphPad Prism 8 using the two-state model where a native 

[N] and a denatured [D] are the only populated states167,168: 

 

?	 = 	
(@/AB/[D])A(@=AB=[D])<GHI

(=>/?[=]>B=CD%FG
H# J

*A<GHI
(=>/?[=]>B=CD%FG

H# J
                              (2.9) 

 

where F is the fluorescence intensity, @D3K is the m-value, and ALM% is the concentration of 

denaturation at which 50% of the proteins are unfolded (the midpoint of unfolding). R is the 

gas constant, and T is the temperature (K). The native and denatured fluorescence show a linear 

dependence on denaturant concentration. BK is the native signal at the lowest concentration of 

denaturant and CK  is the slope of the native baseline. BD  is the native signal at the highest 

concentration of denaturant and CD is the slope of the denatured baseline. The free energy of 

unfolding in water is calculated using equation 2.10. 

 

∆ED3K
O+P = @D3K × [ALM%]			                                      (2.10) 

 

where ∆ED3K
O+P 	is the free energy of unfolding in water, @D3K is the m-value, and ALM% is the 

midpoint of unfolding. 

 

2.4.7. Isothermal titration calorimetry (ITC) 
 

ITC experiments were performed on a MicroCal iTC200 (GE Healthcare) at 193K (10°C), 

293K (20°C) or 298K (25°C). NMR LC3B, CTPR4-LIR and CTPR4-random proteins were 

diluted to appropriate concentrations and dialysed overnight at 4°C or at room temperature for 

3 hr into the dialysis buffer (25 mM sodium phosphate, 100 mM NaCl, 1 mM TCEP, pH 7.0). 

The protein concentrations were measured on a NanoDrop 2000. All samples were degassed 

at 25°C for 10 min before loading to the instrument. The initial injection was performed at 5 
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µL followed by 29 injections of 10 µL with a spacing of 120 s. Control experiments were 

performed using the same setting as above, except that the iTC200 cell was filled with dialysis 

buffer. Data were fitted with non-linear regression using a one-site binding model from Origin 

7.0 (MicroCal, Inc)169.  

 

2.4.8. Dot blot assay 
 

NMR LC3B proteins were prepared with a series of dilutions (0 to 1 µg/µL) in PBS (pH 7.0), 

and 5 µL of each diluted sample (0 to 5 µg NMR LC3B) was spotted onto the nitrocellulose 

membrane. Once the membrane was completely dried, it was incubated in the blocking buffer 

(3% BSA in TBS) for 1 hr at room temperature with gentle rocking. The membrane was 

incubated overnight at 4°C with 25 µg/mL CTPR4-LIR-HiBiT probe in PBS or anti-LC3B 

antibody (Cell Signalling Technology, #2775; 1:100) in TBS-T, and washed three times with 

TBS-T, 5 min each.  

 

For the membrane incubated with the CTPR4-LIR-HiBiT probe, signals were developed using 

the Nano-Glo HiBiT Blotting System (Promega) following the manufacturer’s protocol. 

Briefly, the membrane was incubated with the LgBiT (Large BiT)/buffer solution for 1 hr at 

room temperature with gentle rocking. The LgBiT protein complements the HiBiT tag on the 

protein of interest to form the luminescent NanoBiT enzyme in the presence of furimazine 

substrate. The Nano-Glo Luciferase Assay Substrate was diluted 500-fold into the 

LgBiT/buffer solution, and after 5-min incubation at room temperature, the blot was imaged 

on an Odyssey Fc imaging system (LI-COR Biosciences, Lincoln, USA) with 10-min exposure. 

For the membrane incubated with the anti-LC3B antibody, anti-IgG/HRP secondary antibody 

staining, and signals development were performed as described in Section 2.3.3. 

 

2.4.9.  Pull-down assay 
 

NMR skin immortalised fibroblasts were cultured as previously described. SIGMAFAST 

Protease Inhibitor (12 mg of a crushed tablet) and 10 μL of TCEP (0.5M) were added to NP40 

buffer (1 mL). The NMR fibroblasts (~ 10 million cells) were resuspended in NP40 buffer (100 

μL) and incubated on ice (30 min), vortexing briefly every 10 min. The suspension was 

centrifuged (14,000 rpm, 10 min, 4°C), and the supernatant was removed and saved. 
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40 μL PureProteome Nickel Magnetic beads (Merck Millipore UK Ltd.) were washed with 50 

mM NaPO4 (pH 8.0), 150 mM NaCl (3X, 100 μL). The magnetic beads were incubated with 

100 μL of either 50 μM His-tagged CTPR4-LIR or His-tagged CTPR-RS (30 min, RT, tube 

roller). The conjugated beads were washed with 50 mM NaPO4 (pH 8.0), 150 mM NaCl (3X, 

100 μL). The conjugated beads were incubated with NMR cell lysate (50 μL, 10 min, RT). The 

beads were washed with 50 mM NaPO4 (pH 8.0), 150 mM NaCl (3X, 100 μL). The proteins 

were eluted by incubating the beads with 0.5M Imidazole in 50 mM NaPO4 (pH 8.0), 150 mM 

NaCl (20 μL). 

 

The eluted samples, along with purified LC3B (5 μL, 0.2 μM) were run on a 15% SDS-PAGE 

acrylamide gel. WB Master Protein standard (GenScript, Oxford, UK) were used as molecular 

markers. Western blot transfer onto PVDF was performed using a Pierce Power Blot Cassette 

(25V, 1.3 A, 7 min) and the membrane was blocked in 5% skimmed milk (in TBS-T) for 1 hr. 

The membrane was incubated (overnight, 4°C) with an LC3B antibody (GeneTex. GTX127375; 

1:1000 in 5% skimmed milk/TBS-T). The membrane was washed three times (5 min each) 

with TBS-T and then incubated with the anti-IgG/HRP secondary antibody (1:5000 in 5% 

skimmed milk/TBS-T; RT, 1 hr). The membrane was washed three times (5 min each) with 

TBS-T and samples were detected using Amersham ECL reagent extreme (Cytiva Life 

Sciences Ltd) following the manufacturer’s instructions. The western blot was imaged by the 

Odyssey Fc imaging system with an exposure time of 30 sec. 

 

2.5. Statistical analysis  
 

All data were expressed as mean ± standard deviation (S.D.) from at least three biological 

repeats unless otherwise indicated. For a particular cell line, results from Xbp1 splicing, RT-

qPCR, cell viability and caspase assays under treated conditions were compared with those 

from untreated controls using unpaired t-tests. For inter-species comparison (NMR versus 

mouse fibroblasts) in response to the same treatments, differences in the Xbp1s-to-

Xbp1u ratio, gene expression levels, cell viability and Ca2+ uptake were tested by two-way 

ANOVA tests and Sidak’s multiple comparisons tests. All statistical analyses were carried 

out using Prism GraphPad 8 (GraphPad Software Inc, La Jolla, USA) unless otherwise 

indicated. p<0.05 was considered statistically significant. *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001.  
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3. Building a robust toolkit for probing transcriptional changes 

of the UPR in the NMR 
 

3.1. Introduction 
 

Valid and reliable methods have been established to monitor the UPR outputs in mammalian 

systems such as mice and humans170. Two sets of analytical methods, including RNA-based 

analysis of UPR-induced transcripts and western blot-based analysis of UPR-induced proteins 

or protein modifications, have been widely used to allow assessment of the activation of 

different signalling pathways within the UPR. Probing UPR outputs of the NMR is of great 

interest but can be challenging as much of its genome has not been annotated extensively, and 

molecular tools including NMR-specific commercial antibodies are limited23. In this chapter, 

we develop and optimise RNA-based methods to probe the UPR outputs in NMR cells at the 

transcript level, which consist of the isolation and reverse transcription (RT) of RNA to cDNA, 

followed by subsequent analysis by either conventional PCR (Xbp1 splicing assay) or 

quantitative PCR (qPCR). Using this robust toolkit, we examined the activation of all three 

branches of the UPR in an immortalised NMR kidney fibroblast line (NMR-KF1) in response 

to in vitro ER stress induced by two common agents, tunicamycin (TU) or thapsigargin (TG). 

 

3.1.1. Activation of UPR by tunicamycin (TU) and thapsigargin (TG) 
 

Tunicamycin (TU) and thapsigargin (TG) are two widely used ER stress-inducing compounds 

and can induce ER stress by different mechanisms of action. TU is a glucosamine-containing 

antibiotic produced by Streptomycin lysosuperificus which blocks N-linked glycosylation of 

glycoproteins in mammalian cells, thereby causing extensive protein misfolding in the ER that 

results in the activation of the UPR171,172 (Figure 3.1 A). TG is a plant-derived tumour-

promoting sesquiterpene lactone that specifically inhibits all known isoforms within the 

sarcoplasmic or endoplasmic reticulum Ca2+-ATPase family (SERCA), this depletes Ca2+ 

storage in the ER which decreases the activity of Ca2+-dependent chaperones, leading to an 

increase in unfolded proteins and the induction of UPR signalling173–175 (Figure 3.1 B).  
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A 

 
 
 

B 

 

 

Figure 3. 1. Structures and actions of TU and TG. TU inhibits N-glycosylation in the ER 

lumen (A) while TG disrupts Ca2+ homeostasis in the ER through inhibition of SERCA (B) to 

induce ER stress and activate the UPR. TU structure was obtained from the manufacturer’s 

website (Cell Signalling Technology). Figures modified from the references176,177.  
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3.1.2. Xbp1 splicing assay 
 

The signalling output of the IRE1 branch of the UPR is XBP1, a basic-region leucine zipper 

(bZIP) transcription factor in metazoans178,179. During ER stress, Xbp1 mRNA undergoes a 

two-step noncanonical splicing to generate a mature transcript (Xbp1s) which encodes an active 

transcription factor XBP1s. In the first step, dimerization-dependent autophosphorylation of 

the IRE1α cytosolic domain causes a conformational change, leading to the activation of the 

RNase domain, which cleaves a 26-nucleotide intron from the unspliced Xbp1 (Xbp1u) 

mRNA85,88,179–181. Subsequently, the 5’ and 3’ fragments of IRE1-cleaved exons are ligated by 

the tRNA ligase RTCB in mammalian cells 89,90. This unconventional splicing shifts the open 

reading frame of the Xbp1 mRNA and promotes the translation of XBP1s which acts to elicit 

a robust transcriptional programme that restores ER homeostasis by enhancing protein folding 

capacity and inducing ER-associated degradation (ERAD) 91,182–184.  

 

The abundance of Xbp1u and Xbp1s transcripts can be measured by conventional PCR on 2% 

agarose or 6% TBE gels using a pair of primers flanking the intron that is removed by IRE1α. 

Xbp1s amplicons migrate faster on a gel as compared with Xbp1u amplicons. The Xbp1 splicing 

directly reflects IRE1 activity and therefore, the ratio of Xbp1s-to-Xbp1u mRNA serves as a 

proximal reporter of the level of ER stress105,179.  

 

3.1.3. qPCR analysis of UPR markers 
 

Three transcription factors are known to respond to ER stress in mammals, including XBP1s, 

ATF6f (the liberated cytosolic fragment), and ATF4. For example, induction of Syvn1, which 

encodes HRD1, an E3 ubiquitin ligase involved in ERAD, is regulated by XBP1s, which binds 

to the unfolded protein response element (UPRE) II (CCGCGT) found in the mammalian Syvn1 

promoter185,186. Transcriptional induction of mammalian ER chaperones, including BiP and 

GRP94, are mediated by the cis-acting ER stress response element (ERSE, consensus sequence 

CCAAT-N9-CCACG) present in their promoter regions187. The cytoplasmic ATF6 fragment 

binds directly to the CCACG part of the ERSE with assistance from the general transcription 

factor, NF-Y, which is bound to the CCAAT region101,188. Induction of Ddit3 is highly PERK-

dependent due to the presence of a C/EBP-ATF composite site to which ATF4, together with 

C/EBP-β, binds108,109. In addition, ATF6 and/or IRE-XBP1 pathways also regulate the optimal 

induction of Ddit3 during ER stress through an ERSE site identified in its promoter189. These 
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transcriptional programmes of the UPR are tightly controlled and can be monitored by qPCR 

assays, which are developed following the Minimum Information for Publication of 

Quantitative Real-Time PCR Experiments (MIQE) guidelines to obtain accurate and reliable 

results in this study190. 

 

3.2. NMR’s unique splicing of 28S ribosomal RNA (rRNA)  
 

According to the MIQE guidelines, it is essential to document the quality assessment of RNA 

templates, including purity (A260/A280 ratio) and integrity190. In this study, when NMR-KF1 

cells were plated at a density of 150,000 cells per well in a 6-well plate, all extracted RNA 

samples showed good yields (2 - 3µg per sample) and good A260/A280 (2.0) and A260/A230 ratios 

(2.0-2.2). The RNA integrity was evaluated on an agarose gel stained with ethidium bromide, 

which produced sharp and clear rRNA bands, suggesting the absence of RNA degradation 

(Figure 3.2). 

 

 

Figure 3. 2. RNA integrity of the NMR-KF1 (left) and mouse 3T3 cells (right) analysed 

on a 1% agarose gel. Intact NMR total RNA has three rRNA bands including two fragmented 

28S rRNA species and one 18S rRNA band, while mouse total RNA has two bands (one 28S 

and one 18S).  

 

Denaturation of intact total RNA of most mammalian cells, including the mouse 3T3, generates 

two rRNA bands, 28S (∼5 kb) and 18S rRNA (∼2 kb). Interestingly, the NMR-KF1 cells, as 
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reported previously, showed a unique rRNA migrating pattern on the agarose gel with three 

rRNA fragments, including a 18S rRNA and two processed 28S rRNA segments71. This 

‘hidden break’ or ‘gap deletion’ phenomenon is common in protostomes and is thought to be 

convergently evolved in some of non-metazoan eukaryotes and vertebrates191,192. The NMR 

and rodents of the genus Ctenomys (or tuco-tuco) are the only vertebrates found to possess this 

hidden break193. Alignment with the mouse 28S rRNA sequence identified a 263-nt fragment 

excised from the NMR 28S rRNA divergence region 6 (D6), which contained a 118-nt unique 

insertion that was non-homologous to other known sequences and was nearly 300 bp upstream 

of the conserved proteosome hidden break site71,192. It was proposed that an AU-rich (and thus 

less stable) region in 28S rRNAs could induce the cleavage, but no such region was found near 

or within the breakage site of the NMR 28S rRNA71,192,194. The excised fragment is flanked by 

two 5-nt direct repeats (5’-CGGAC-3’), suggesting that the insert may originate from a 

transposable element71. However, experiments showed that in vitro transcribed NMR 28S 

rRNA could not be processed by a self-cleaving ribozyme encoded by the D6 region as reported 

previously in the R2 transposon system71,195. Further investigations are needed to understand 

the mechanisms for the NMR 28S rRNA cleavage.  

 

It was postulated that the 28S rRNA cleavage and the resulting structural alteration might 

change the folding or dynamics of the large ribosomal subunit, thus affecting the fidelity of 

protein synthesis in the NMR, which may contribute to less protein misfolding or aggregation 

and reduced proteotoxic stress71. It was shown that NMR fibroblasts had higher protein 

translational fidelity than mouse cells, and particularly at 32°C, NMR cells displayed 10-fold 

lower amino acid misincorporation frequency; no significant differences were seen between 

the translation rates of NMR and mouse cells71. Remarkably, the tuco-tuco also showed a high 

fidelity of protein synthesis, although the maximum lifespan was not established for this 

species196. In addition, a strong correlation between the frequency of mistranslating the first 

and second codon positions and the maximum lifespan was reported in 16 rodent species 

(including the NMR), suggesting that the translational fidelity could be a determining factor in 

the evolution of longevity196. Structural studies such as cryo-EM of NMR ribosomes may also 

shed light on the ribosomal organisation and mechanisms by which this unique 28S rRNA 

cleavage may lead to improved fidelity of protein synthesis.  
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3.3. Establishing an Xbp1 splicing assay in the NMR-KF1 cell line 
 

We first determined the appropriate doses of TU or TG that would cause mild-to-moderate 

levels of ER stress but not result in massive cell death in NMR-KF1 cells. Results from an 

ATP-based luminescent assay showed that over 90% of the cells remained viable after 6-hr 

treatment with < 5 μg/mL TU or 4-hr treatments with < 300 nM TG (Figure 3.3) and therefore 

could be analysed within these dose ranges.  

 

 

 

Figure 3. 3. Viability of NMR-KF1 cells after exposure to 4-hr TU (A) or 6-hr TG (B). 

Percentage of viable cells was measured by the CellTiter-Glo luminescent assay and compared 

to the untreated controls. 0.1% Triton was used as a positive control. Results were presented 

as mean ± S.D. of the percentage survival (%) of treated cells compared with untreated controls 

(n=3).  

 

Primers used to amplify the NMR Xbp1 transcripts were originally designed based on the NCBI 

sequence KM_486796.1. The annotation was updated several times within the past four years 

but did not affect the primer regions. The melting temperatures of the forward primer (5’-

gaaccaggaattaaggatgcg-3’) and the reverse primer (5’-atccatggggagatgttctg-3’) were 55.5°C 

and 54.2°C respectively, as calculated by the nearest neighbour method197. Gradient PCR 

reactions were performed at various annealing temperatures between 50°C to 60°C, and the 

optimal annealing temperature was determined to be 55°C with the minimal presence of non-

specific bands on a 6% TBE gel.  
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RT-PCR reactions were performed using the optimised conditions. Products of the Xbp1 

splicing (Xbp1u ~171bp, Xbp1s ~145bp) were observed on the 6% TBE gel, suggesting the 

activation of the IRE1-XBP1 pathway in NMR-KF1 cells after exposure to TU or TG. A 

concentration dependent titration of TU and TG established that the Xbp1 splicing was induced 

in NMR-KF1 cells at 1 μg/mL TU (6 hr) (n=3; *p=0.0257) and 5 nM TG (4 hr) (n=3; 

**p=0.0022) (Figure 3.4). The Xbp1s-to-Xbp1u ratio increased when higher doses of TU or 

TG were applied to the NMR-KF1 cells.  

 

 

Figure 3. 4. Xbp1 splicing in the NMR-KF1 cell line upon exposure to TU or TG. (A) 

Representative images of the RT-PCR products of Xbp1s and Xbp1u on 6% TBE gels. The 

graphs in (B) show the mean ± S.D. of Xbp1s-to-Xbp1u ratios in response to TU (left) and TG 

(right). Results were tested for statistical significance in reference to the untreated controls by 

unpaired t-tests (n=3, *p<0.05, **p<0.01, ***p<0.001). 
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Figure 3. 5. Sequence alignment of the NMR and mouse Xbp1u transcripts. NMR and 

mouse Xbp1u transcripts were aligned using BLAST and shown in pairs with dots for identities. 

NMR Xbp1 primers (underlined) were designed to flank the putative intron (boxed) within the 

NMR Xbp1u transcript.  

 

A pairwise alignment of the initial NCBI reference of the NMR Xbp1u (KM_486796.1) with 

the mouse Xbp1u (NCBI: NM_013842.3) using BLAST suggested a putative 26-nucleotide 

intron to be excised from the NMR Xbp1u198. This 26-bp intron is highly conserved with only 

one nucleotide difference between the NMR and mouse transcripts. The resulting NMR XBP1s 

protein consists of 383 amino acid and shares over 81% identity with the mouse XBP1s protein 

(NCBI: NP_001258659.1). The presence of an N-terminal bZIP DNA-binding domain was 

confirmed by InterPro analysis of the NMR XBP1s, suggesting its role as a transcription factor 

regulating downstream UPR targets was also conserved199. However, the latest NCBI entry 

(NCBI: XM_013071981.2) has revealed a different annotation of the NMR Xbp1u, with two 

nucleotides (‘cc’) missing from the 26-nt intron (Figure 3.5), thus shifting the open reading 

frame of the NMR Xbp1u and altering the C-terminal XBP1u sequence which plays a critical 

role in regulating the XBP1u turnover and the efficiency of Xbp1 splicing93,200. In addition, 

XBP1u is thought to be a negative feedback regulator of XBP1s to prevent prolonged activation 

of the UPR during recovery of ER stress94. In this study, expression of XBP1s target genes 

including those involved in ERAD were further analysed in NMR-KF1 cells to examine the 

net effect of Xbp1 splicing. Sequence and structural analyses are outside the scope of this study 

but can be conducted in order to fully understand the sophisticated interplay between XBP1u 

and XBP1s in NMR-KF1 cells during ER stress.  
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3.4. Developing reliable qPCR assays for the NMR UPR markers 
 

3.4.1. Primer design and validation of qPCR efficiency 
 

All NMR primers were either taken from literature or self-designed using Primer-

BLAST75,160,162. The primers were designed to have similar melting temperatures (Tm) (optimal 

Tm at 60°C, maximal Tm difference between forward and reverse primers of 2°C), balanced GC 

contents of 40-60%, and minimised self-complementary and hairpin structures. The primers 

targeted all relevant isoforms or splice variants of the gene of interest according to the latest 

NCBI annotation, and the size of PCR products were within 70-200 nucleotides. When the 

exon/intron structure of a gene was available, one of the primers was designed to span an 

exon/exon junction to be better guided to mRNA. Based on the requirements stated above, 

Primer-BLAST generated a list of primer pairs from which the most specific pair (i.e., the one 

that produced the least number of nonspecific PCR products) was selected. The important 

parameters of primers (Tm, GC% and structure) were also verified by OligoCalc201. The 

efficiency of all qPCR assays was confirmed to be 90-110% with R2 values greater than 99%, 

which met the requirements needed to apply the ddCt method159 (Table 2.1). 

 

3.4.2. Selection of appropriate UPR reference genes by geNORM 
 

Normalisation with proper reference genes is a critical step in obtaining accurate qPCR results 

where at least two reference genes are recommended163,190. In this study, we used the geNORM 

algorithm, one of the most commonly used methods, to select the appropriate reference gene 

pair in NMR-KF1 cells that showed the most stable expression under TU and TG-treated 

conditions158,163. We first selected six housekeeping genes that had been used as reference 

genes in previous NMR studies (Gapdh, Hprt1, ACTB, B2m) or in other mammalian systems 

for decades (Rpl13a, 18r RNA)34,75,162,163. 18s rRNA was first eliminated because the 

corresponding Cq values (the threshold cycle at which fluorescence from amplification exceeds 

the background fluorescence in a qPCR reaction) were too low (<10 cycles, suggesting a very 

high expression level of 18r RNA) and out of the reliable Cq range, whereas other genes showed 

valid Cq values of 20-30 cycles when cDNA was analysed at an ideal input (5 ng)202. ACTB 

(actin beta) was also excluded as double peaks were observed during the melting curve analysis 

using the published primer pair34 suggesting the formation of by-products. This was confirmed 
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on the 2% agarose gel, which showed two clear DNA bands, one corresponding to the targeted 

ACTB product at 178bp and the other of an unknown product at ~50bp (Figure 3.6).  

 

 

 

Figure 3. 6. qPCR products analysis on a 2% agarose gel. ACTB primers used in an earlier 

study produced two qPCR products suggesting the formation of by-products (either dimers or 

non-specific amplification products), while the specific Syvn1 primers designed in house 

resulted in the formation of one distinct band corresponding to the correct product (at 114bp). 

 

Stability of expression levels of the remaining four housekeeping genes (B2m, Gapdh, Hprt1 

and Rpl13a) were ranked based on the average expression stability value (M) calculated using 

the geNORM algorithm in which a lower M value suggests a more stable mRNA expression 

level throughout all conditions tested (Table 3.1)163. The best reference gene pair was selected 

after stepwise exclusion of the gene which had the highest M value (or the least stable 

expression level), and the average M value of the remaining reference genes kept decreasing 

after each round of exclusion (Figure 3.7 A). In the NMR-KF1 cell line, the best reference 

gene pairs were Hprt1/Rpl13a under TU-treated conditions and B2m/Gapdh under TG-treated 

conditions. Both pairs showed a mean coefficient of variance (CV) < 25% and a mean M value 

< 0.5, which was required for good reference genes in homogenous samples including cell 

lines163. We calculated the pairwise variation (Vn/n+1) (Figure 3.7 B) and showed that the V2/3 
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values in both TU- and TG-treated conditions were below the cut-off value of 0.15, indicating 

that two reference genes were sufficient for the data normalisation in this study163.  

 
Table 3. 1. Evaluation of reference genes in the NMR-KF1 cells in response to TU or 
TG. 

Tunicamycin (TU) Thapsigargin (TG) 

Genes M Mean CV (%) Mean M Genes M Mean CV (%) Mean M 

Rpl13a 0.198 
13.5% 0.222 

Gapdh 0.115 
11.4% 0.123 

Hprt1 0.245 B2m 0.131 

B2m 0.267 Excluded in the 2nd round Rpl13a 0.141 Excluded in the 2nd round 

Gapdh 0.810 Excluded in the 1st round Hprt1 0.188 Excluded in the 1st round 

 

 

 

Figure 3. 7. Average stability (M) and pairwise variation (V) of reference genes in the 

NMR-KF1 cells. (A) Average expression stability (M) of remaining control genes during 

stepwise exclusion of the least stable control gene. (B) Determination of the optimal number 

of control gene for normalisation by pairwise variation (Vn/n+1, n represents the number of 

genes used for normalisation) analysis in the NMR-KF1 cells. 

 

3.4.3. qPCR results of UPR markers in the NMR-KF1 cells 
 

We determined select UPR markers by qPCR assays after the qPCR efficiency was validated 

and the proper reference genes were selected. Results revealed that induction of Hspa5 and 

Ddit3 transcripts were observed when cells were exposed to 1 μg/mL TU (6 hr) or 50 nM TG 

(4 hr) (Figure 3.8). Induction of Syvn1 was only observed at 5 μg/mL TU (6 hr) or 250 nM TG 
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(4 hr), and the level of induction was lower than that of Hspa5 or Ddit3, likely because of a 

time-dependent transition in the mammalian UPR where an ATF6-regulated transcriptional 

programme including the Hspa5 and Ddit3 induction was followed by an XBP1s-regulated 

programme including the Syvn1 induction92. The expression of all three UPR markers were 

elevated with increasing doses of the drugs, similar to the pattern of Xbp1 splicing, suggesting 

the dose-dependent UPR activation in the NMR-KF1 cells.  

 

 

 

Figure 3. 8. Induction of UPR markers in NMR-KF1 cells in response to TU or TG 

treatments measured by RT-qPCR assays. Data were normalised to the mRNA levels of 

reference genes and presented as mean ± S.D. of log-transformed mRNA fold change compared 

with the basal-level expression in untreated controls. Results (i.e., dCq values) were tested for 

statistical significance in reference to the untreated controls by unpaired t-tests (n=3, *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001). 

 

3.5. Conclusions 
 

This chapter establishes the first set of analytical tools to monitor the transcriptional outputs of 

UPR activation in the NMR, including the Xbp1 splicing assay and RT-qPCR assays. These 

assays have been validated in an immortalised NMR kidney fibroblast line and are able to 

generate highly sensitive and reliable results. This robust toolkit has laid a solid foundation for 

this study and is further expanded to investigate transcriptional changes in genes of interest 

within NMR cells that are treated with UPR inducers (in Chapter 4), autophagy inducers (in 

Chapter 5) and disease-related species including Aβ and α-synuclein (in Chapter 6).   
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4. Comparing transcriptional changes in the UPR of NMR and 

mouse fibroblasts in response to pharmacologically induced ER 

stress 
 

Data from this chapter are published in “Du, Z., Chakrabarti, S., Kulaberoglu, Y., Smith, E. S. 

J., Dobson, C. M., Itzhaki, L. S., & Kumita, J. R. Probing the unfolded protein response in 

long-lived naked mole-rats. Biochemical and biophysical research communications 529, 1151-

1157 (2020)”. 

 

4.1. Selection of suitable reference genes for RT-qPCR assays for NMR and 

mouse primary kidney fibroblasts 

 
Using the Xbp1 splicing and RT-qPCR assays established in Chapter 3, we compared the 

outputs of the UPR activation in NMR primary kidney fibroblasts with those in mouse primary 

kidney fibroblasts (C57BL/6J) when both species were exposed to TU or TG. Appropriate 

reference genes for RT-qPCR assays under TU or TG-treated conditions were selected by 

geNORM and should have a mean CV (%) value of < 50%  and a mean M value of < 1 in 

heterogenous samples including primary cells158 (Table 4.1).  

 

Table 4. 1. Reference genes selected by geNORM in NMR and mouse primary kidney 

fibroblasts in response to TU or TG. 

 Tunicamycin (TU) Thapsigargin (TG) 

Species Genes M Mean CV  Mean M Genes M Mean CV  Mean M 

NMR 
Gapdh 0.157 

19.7% 0.178 
Gapdh 0.233 

31.9% 0.268 
Rpl13a 0.198 Rpl13a 0.302 

Mouse 

C57BL/6J 

Hprt1 0.155 
29.6% 0.161 

Rpl13a 0.295 
37.8 0.305 

Rpl13a 0.167 Gapdh 0.315 
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4.2. A higher threshold of UPR activation in NMR kidney fibroblasts in 

response to mild ER stress 
 

We first evaluated IRE1 activation in the NMR and mouse primary kidney fibroblasts by 

probing the levels of Xbp1 splicing and regulated IRE1-dependent decay (RIDD). In 

mammalian cells, activated IRE1 may degrade ER-localised mRNAs and select microRNAs 

via RIDD during ER stress in an XBP1-independent manner96–98. 

 

When cells were treated with low doses of TU for 6 hr or TG for 4 hr, Xbp1 splicing was readily 

measurable in the mouse primary kidney fibroblasts at 0.2 μg/mL TU (n=5; **p=0.0022) and 

5 nM TG (n=5; ****p<0.0001) when compared with untreated controls (Figure 4.1 A, B). In 

the NMR primary kidney fibroblasts, no significant levels of Xbp1 splicing were detected when 

compared with untreated controls until 1 μg/mL TU (n=5; *p=0.0240) or 50 nM TG (n=5; 

**p=0.0034) was applied (Figure 4.1 A, B). No basal-level Xbp1 splicing was present in either 

species, suggesting these cells were healthy and not pre-stressed before TU or TG treatments. 

At all TU or TG concentrations, the Xbp1s-to-Xbp1u ratios were considerably lower in the 

NMR primary kidney fibroblasts.  

 

We also examined IRE1-mediated RIDD in the NMR and mouse primary kidney fibroblasts, 

which degraded select UPR genes and could be monitored by qPCR as well. We chose to probe 

the levels of Bloc1s1, which was the only RIDD target consistently identified in all published 

microarray data203. Results showed that the degradation of Bloc1s1 mRNA was observed in 

the mouse primary kidney fibroblasts at 0.2 μg/mL TU (6 hr) and 5 nM TG (4 hr) (Figure 4.1 

C). Levels of NMR Bloc1s1 transcripts, however, did not change after the NMR fibroblasts 

were treated with TU (6 hr) or TG (4 hr) at any dose tested in this study, even when over half 

of the Xbp1u substrate had been spliced at > 1 μg/mL TU or 250 nM TG (Figure 4.1 C).  

 

Combined results from Xbp1 splicing and Bloc1s1 degradation indicate that the NMR primary 

kidney fibroblasts showed a lower level of IRE1 activation, suggesting a lower level of ER 

stress than the mouse homologues when both species were exposed to the same concentration 

of TU or TG.   
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Figure 4. 1. Xbp1 splicing and RIDD degradation in the NMR and mouse primary kidney 

fibroblasts in response to TU (6 hr) and TG (4 hr). (A) Representative images of the RT-

PCR products of Xbp1s and Xbp1u on 6% TBE gels. The graphs in (B) show the mean ± S.D. 

of Xbp1s-to-Xbp1u ratios in the NMR and mouse fibroblasts as a response to increasing 

concentrations of TU (B, left) or TG (B, right). n=5 pairs; *p<0.05; ****p<0.0001; two-way 

ANOVA tests, Sidak's multiple comparisons tests. (C) Bloc1s1 degradation measured by RT-

qPCR. Results were normalised to the mRNA levels of reference genes and were presented as 

mean ± S.D. of log-transformed mRNA fold change compared with the basal-level expression 

in untreated controls. n=5 pairs; *p<0.05, ***p<0.001, ****p<0.0001; two-way ANOVA tests, 

Sidak's multiple comparisons tests. 
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We next examined the activation of the ATF6 and PERK pathways in the NMR and mouse 

primary kidney fibroblasts by probing levels of target genes. Pdia4 encodes ERP72, a member 

of the protein disulphide isomerase family, which is upregulated by ATF6 under TU and TG-

treated conditions204,205. Hspa5 and Pdia4 expression were markedly induced in the mouse 

primary kidney fibroblasts by approximately a four-fold increase of Hspa5 and a two-fold 

increase of Pdia4 compared with untreated controls even when the lowest doses of TU (0.2 

μg/mL for 6 hr) or TG (5 nM for 4 hr) were applied (Figure 4.2 A, B). Induction of Hspa5 and 

Pdia4 was not significant in the NMR primary kidney fibroblasts compared with untreated 

controls until 1 μg/mL TU (6 hr) or 250 nM TG (4 hr) were added (Figure 4.2 A, B). The 

induction of Ddit3 in the mouse fibroblasts was seven-fold or seventeen-fold when the cells 

were treated with 0.2 μg/mL TU (6 hr) or with 5 nM TG (4 hr), respectively (Figure 4.2 C). In 

the NMR primary kidney fibroblasts, a mild level of Ddit3 induction was first observed at 1 

μg/mL TU (6 hr) or 50 nM TG (4 hr) but not at 0.2 μg/mL TU (n=5; ns, p=0.0564) or 5 nM 

TG (n=5; ns, p=0.2387) when compared with untreated controls (Figure 4.2 C).  

 

These results collectively indicate that the NMR kidney fibroblasts appear to have a higher 

threshold for UPR activation. Changes in the UPR markers of all three branches suggest slower 

progression of ER stress in the NMR kidney fibroblasts compared with the mouse fibroblasts 

when both species were treated with relatively low doses of TU and TG. Ca2+ imaging assays 

confirmed that TG increased cytosolic Ca2+ concentrations similarly within the NMR and 

mouse primary kidney fibroblasts at each given dose, suggesting that the attenuated ER stress 

response in the NMR primary kidney fibroblasts was unlikely due to differences in drug uptake 

between the species (Figure 4.3). Growth curve analyses also determined that the NMR kidney 

fibroblasts had a mean ± S.D. doubling time of 28.1 ± 1.9 hr, similar to the doubling time of 

the mouse kidney fibroblasts (27.8 ± 1.1 hr). Interestingly, although a higher dose of TU and 

TG was required to induce Ddit3 expression in the NMR primary kidney fibroblasts, levels of 

Ddit3 upregulation within the two species did not seem to differ significantly after exposure to 

higher doses of drugs including 1 μg/mL TU for 6 hr (n=5 pairs; p=0.1073) or 50 nM TG for 

4 hr (n=5 pairs; p=0.3430) (Figure 4.2 C). This prompted us to further trace the development 

of ER stress and examine the effects of severe ER stress in the NMR and mouse primary kidney 

fibroblasts. 
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Figure 4. 2. Induction of BiP/Hspa5 (A), PDIA4/Pdia4 (B) and CHOP/Ddit3 (C) in the 

NMR and mouse primary kidney fibroblasts in response to TU (6 hr) and TG (4 hr). Data 

were normalised to the mRNA levels of reference genes. Results were presented as mean ± 

S.D. of log-transformed mRNA fold change compared with the basal-level expression in 

untreated cells. n=5 pairs; ns, p>0.5, **p<0.01, ***p<0.001, ****p<0.0001; two-way ANOVA 

tests, Sidak's multiple comparisons tests. 
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Figure 4. 3. The efficacy of TG on the NMR and mouse primary kidney fibroblasts was 

measured by Ca2+ imaging. Data were obtained from 5 mice and 5 NMRs, and >350 cells 

were imaged in each condition. TG increased [Ca2+] in mouse and NMR primary kidney 

fibroblasts in a similar dose-dependent manner (A, n=5; *p<0.05, ***p<0.001; paired t-tests). 

Similar proportions of mouse and NMR primary kidney fibroblasts responded to TG at all 

doses (B, n=5 pairs; ns, p>0.5; two-way ANOVA tests; Sidak's multiple comparisons tests). 

Ionomycin was used as a positive control for data normalisation. These data were collected and 

analysed by Dr. Sampurna Chakrabarti. 

 

4.3. A similar level of UPR activation in NMR and mouse primary kidney 

fibroblasts under TG-induced severe ER stress 
 

We treated the NMR and mouse kidney fibroblasts with a higher dose of TG (500 nM) for 

longer times to induce severe ER stress and inspected changes in the UPR markers at different 

time points. We first evaluated changes for select UPR markers including Bloc1s1, Hspa5 and 

Ddit3. Reduction of Bloc1s1 was observed in the NMR primary kidney fibroblasts after a 12-

hr treatment with 500 nM TG (n=5; **p=0.0038). This reduction continued and reached a 

constant level (i.e., a three-fold decrease) that was comparable to the level of Bloc1s1 

degradation in the mouse primary kidney fibroblasts after both were subjected to a 24-hr 

treatment with 500 nM TG (Figure 4.4 A). Induction of Hspa5 was significantly higher in the 

mouse primary kidney fibroblasts after 6-hr and 12-hr treatments with 500 nM TG compared 

to the NMR fibroblasts (n=5 pairs; ****p<0.001), but such differences diminished after 24-hr 
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treatment (n=5 pairs; p=0.0560) (Figure 4.4 A). Induction of Ddit3 seemed to reach a plateau 

in both species after a 6-hr treatment with 500 nM TG, and no further upregulation was 

observed after a 12-hr treatment with 500 nM TG (Figure 4.4 A). These findings imply that 

despite having a lower level of UPR activation under conditions representing rather mild-level 

ER stress, the NMR kidney fibroblasts show no differences on the transcriptional UPR outputs 

to the mouse kidney fibroblasts when harsher TG-treated conditions were introduced, 

suggesting similar levels of ER stress in both species under severe-stress induction. 

 

 

Figure 4. 4. Changes of the UPR and ERAD markers in response to long-term treatment 

with 500 nM TG in the NMR and mouse primary kidney fibroblasts. Levels of Bloc1s1, 

Hspa5 and Ddit3 (A) and Syvn1 and Herpud1 (B) were measured by RT-qPCR assays. All 

results were normalised to the mRNA levels of reference genes and were presented as mean ± 

S.D. of log-transformed mRNA fold change compared with the basal-level expression in 

untreated cells. n=5 pairs; ns, p>0.5, **p<0.01, ***p<0.001, ****p<0.0001; two-way ANOVA 

tests, Sidak's multiple comparisons tests. 
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In addition, we examined the effects of high-dose TG on ERAD using two markers Syvn1 and 

Herpud1. Herpud1 is also amongst the most highly inducible genes by the UPR during ER 

stress, and it encodes HERP, an ER-localised protein which interacts with HRD1 and other 

ERAD components and shows cytoprotective functions, though its role remains to be fully 

understood206–210. The Herpud1 promoter contains a C/EBP-ATF composite site, an ERSE and 

an ERSE-II (ATTGG-N-CCACG) and therefore is believed to be regulated by all three UPR 

branches 206,211,212. Induction of Syvn1and Herpud1 was observed in the NMR and mouse 

kidney fibroblasts after a 6-hr treatment with 500 nM TG, although the induction of Syvn1 in 

the NMR fibroblasts was not statistically significant compared with untreated controls due to 

large variance among animals (n=5; ns, p=0.0864) (Figure 4.4 B). Induction of Herpud1 was 

more dramatic, as indicated by a ten-fold increase from the basal-level expression in both 

species after a 6-hr treatment with 500 nM TG (Figure 4.4 B). The NMR and mouse fibroblasts 

showed similar levels of Syvn1and Herpud1 upregulation after exposure to 500 nM TG for 24 

hr, suggesting that severe ER stress and the resulting UPR activation did not result in 

differences of ERAD induction between the NMR and mouse kidney fibroblasts. 

 

4.4. Similar resistance of NMR and mouse kidney fibroblasts to ER stress 
 

Salmon and colleagues previously reported unexpected sensitivity of NMR skin fibroblasts to 

TU and TG compared to mouse skin fibroblasts, but no molecular details were investigated76. 

Therefore, to determine whether NMR kidney fibroblasts demonstrate similar sensitivity to TU 

and TG and to further understand the transcriptional outputs of the UPR, we measured the cell 

viability of the NMR kidney fibroblasts after overnight exposure to TU and TG at different 

concentrations and compared the results with their mouse counterparts. Both NMR and mouse 

primary kidney fibroblasts showed 10% cell death when treated with >1 μg/mL TU and 20-30% 

cell death when treated with >50 nM TG (Figure 4.5 A) in comparison to vehicle controls. No 

differences were observed in the percentage survival between the two species, suggesting that 

the NMR and mouse kidney fibroblasts had similar levels of resistance to TU (up to 10 μg/mL) 

and TG (up to 500 nM) at any given dose tested in this study (Figure 4.5 A). We verified the 

viability results by measuring cellular caspase 3/7 activities, an indicator of levels of apoptosis 

in the cell population. The results show that apoptosis was observed at >10 μg/mL TU and >50 

nM TG after overnight exposure in the NMR kidney fibroblasts, which ensured that our data 
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reflected a true percentage survival or death of the NMR fibroblasts and thereby their resistance 

to TU and TG (Figure 4.5 B).  

 

 

 

Figure 4. 5. (A) Percentage of the viable NMR and mouse primary kidney fibroblasts after 

exposure to TU or TG. Results were presented as mean ± S.D. of the percentage survival (%) 

of treated samples compared with vehicle-treated controls (n=5; **p<0.01, ***p<0.001, 
****p<0.0001; unpaired t-tests). No significant difference was observed in the NMR and mouse 

primary kidney fibroblasts under these conditions (n=5 pairs; ns, p>0.5; two-way ANOVA 

tests; Sidak's multiple comparisons tests). (B) Percentage of apoptotic NMR fibroblasts in 

response to TU and TG at various doses. Results were presented as mean ± S.D. of the 

percentage apoptosis (%) of treated samples compared with staurosporine-treated positive 

controls (n=5; **p<0.01, ***p<0.001, ****p<0.0001; unpaired t-tests).  

 

4.5. Discussion 
 

In this chapter, we used the established methods to compare the NMR and mouse UPR under 

pharmacologically induced ER stress. We first determined the appropriate reference genes for 

qPCR analysis in NMR and mouse kidney fibroblasts under TU and TG-treated conditions. 

We noticed that selection of reference genes was not consistent across the immortalised NMR-

KF1 line (Table 3.1), primary NMR fibroblasts and primary mouse fibroblasts. We concluded 

that such differences were due to variances in animal species, experimental conditions 

including types of drugs and given doses, and heterogeneity of samples. Using the same 

geNORM algorithm, Schuhmacher and co-workers examined twelve housekeeping genes in 

the NMR nervous system and identified that the best reference gene pair was ACTB/EIF4A2213. 
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In this study, we tested four widely used housekeeping genes and found that expression of these 

genes was more stable in the primary kidney fibroblasts than in the nervous system, as indicated 

by mean CV and M values, strongly suggesting that the choice of reference genes was also 

dependent on tissue type and should be assessed stringently on a case-by-case basis.  

 

We identified that under low-dose TU or TG-induced ER stress, NMR kidney fibroblasts had 

a higher threshold of UPR activation. Xbp1s splicing was consistently maintained at low levels 

in the NMR fibroblasts, a similar phenotype that had been reported in a long-lived daf-2(-) 

mutant strain of C. elegans with reduced insulin/insulin-like growth factor 1 signalling (IIS)214. 

This mutant also showed strong resistance to ER stress, which was attributed to the induction 

of a set of genes involved in ER proteostasis modulated by an interaction between XBP1 and 

DAF-16, a major target of IIS214. A broader analysis of the transcriptional profile can therefore 

be conducted to investigate the relationship between the ISS and UPR in the NMR. Skin 

fibroblasts from the snell dwarf mouse also showed diminishing Xbp1 splicing but surprising 

sensitivity to TG-induced ER stress because of heightened pro-apoptotic signalling including 

CHOP215, which was not observed in our NMR kidney fibroblasts. Lower induction of ER 

chaperones and PDI in NMR fibroblasts suggest less compensation for the protein-folding 

capacity, as NMR fibroblasts may have higher basal levels of these chaperones. Several 

comparative studies have shown that the NMR and other longer-lived animals possess higher 

constitutive levels of heat shock proteins and chaperones which enhance protein folding and 

refolding under both basal and stressed conditions72,74,216. To fully understand this, studies at 

the protein-level would be required; however, NMR-specific antibodies are not widely 

available.  

 

Under high-dose TG-induced ER stress, we found that NMR and mouse kidney fibroblasts 

demonstrate similar levels of UPR activation and resistance to a broad dose range of TU and 

TG. These conflicting results when compared with the previous study of NMR skin fibroblasts 

might result from differences in the experimental settings where we minimised the introduction 

of additional stresses by keeping the NMR cells in a 32 °C hypoxic environment of 3% O2 

(instead of 37°C with 20% O2), which has been shown to enable their optimum growth, and by 

eliminating the serum-starvation step prior to TU or TG treatment suggested by Salmon and 

co-workers76. Discrepancies between the two studies may also simply reflect differences 

between cells derived from different organs. Further studies can be performed to investigate 
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tissue/organ-specific or cell-type-specific UPR in the NMR, for example, the UPR in 

pancreatic β cells that are constantly challenged by ER stress.  

 

4.6. Conclusions 
 

This chapter constitutes the first investigation of the UPR in the NMR at the transcript level. 

The assays established in the NMR fibroblasts have been validated and show insights into the 

differences between the UPR mechanisms in NMR and mouse kidney fibroblasts. The 

attenuated development of ER stress in the NMR fibroblasts suggests that NMR fibroblasts are 

able to withstand pharmacologically induced in vitro ER stress and may largely increase the 

chances of survival under these conditions. Fully understanding the complex roles of the UPR 

and its interplay with other proteotoxic stress responses is daunting, particularly in emerging 

species where molecular tools and knowledge are limited. Our assays, however, can be easily 

modified to explore expression of a wide range of genes involved in cellular and molecular 

mechanisms under different scenarios in the NMR. With discoveries of drugs that modulate 

individual UPR branches, more studies can be conducted to elucidate the mechanisms behind 

each UPR arm and their contributions to the stress resistance of the NMR, thereby promoting 

a better understanding of the relationship between proteostasis and ageing. 
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5.  Probing autophagy in NMR fibroblasts 
 

5.1. Introduction 
 

In this chapter, we develop methods to probe the autophagy pathway in the NMR, including a 

LC3B-II turnover assay and RT-qPCR analysis. The LC3B-II turnover assay was established 

following the Guidelines for the Use and Interpretation of Assays for Monitoring Autophagy 

(3rd edition)217. RT-qPCR assays were built upon the methodology described in Chapter 3. 

Combining these tools, we examined the effects of two FDA-approved compounds, rapamycin 

(RA) and chloroquine (CQ), on the NMR cells, and highlighted the differences among the 

NMR skin fibroblasts (NMR-SK cell line36), kidney fibroblasts (NMR-KF2 cell line36) and 

mouse NIH3T3 embryonic fibroblasts at the transcriptional and posttranslational levels in 

response to these drug treatments.  

 

5.1.1. LC3-II turnover 
 

The hallmark of autophagy is the formation of the autophagosome, and central to this process 

is the ATG8 lipid conjugation system which was first identified in yeast218 (Figure 5.1). In 

mammals, two subfamilies of ATG8 orthologues have been identified based on their sequence 

homology, including LC3 (MAP1LC3A, B, B2 and C isoforms) and GABARAP (GABARAP, 

GABARAPL1 and GABARAPL2 isoforms), which have shown different tissue distributions 

and post-translational modifications219–221. Both the LC3 and GABARAP subfamilies are 

found to be localised to autophagosome membranes and possess a ubiquitin-like core and two 

additional, characteristic N-terminal α-helices, which vary substantially among different 

mammalian ATG8 orthologues and have been shown to mediate membrane tethering and 

fusion required for autophagosome biogenesis136,141,222–224. Previous studies have suggested 

that these two subfamilies play crucial but distinct roles in autophagosome biogenesis 

(including phagophore formation, elongation and closure) and fusion with the lysosome, but 

the precise function of each isoform remains to be defined225–227. In this study, we probe the 

autophagic activity in the NMR using the most extensively studied isoform LC3B, which is 

known to decorate autophagosomes and recruit specific autophagy receptors such as p62228. 
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Mammalian LC3 is initially synthesised as proLC3. The C-terminus of this precursor protein 

is rapidly processed by the cysteine protease ATG4B, which is the functionally dominant 

ATG4 isoform in mammalian autophagy and has broad specificity for LC3 paralogues, to 

expose a glycine residue and produce the primed LC3 known as LC3-I136,137. Upon activation 

of autophagy, the carboxyl base of the glycine in LC3-I is covalently conjugated to 

phospholipids such as phosphatidylethanolamine (PE) on the autophagosome membrane via 

an amine bond through sequential ubiquitination-like reactions mediated by ATG7 (E1-like 

activating enzyme), ATG3 (E2-like conjugation enzyme) and ATG12-ATG5·ATG16L1 

complex (E3-like ligase) to produce the PE-conjugated LC3-II136,138–142. During 

autophagosome maturation, the LC3-II on the outer autophagosome membrane can be removed 

by ATG4B-mediated deconjugation for recycling229, while the LC3-II on the inner membrane 

remains associated with the completed autophagosome and will be degraded in the acidic 

autolysosome after the autophagosome-lysosome fusion.  

 

 
 

Figure 5. 1. ATG8 (LC3) conversion is the hallmark of autophagosome formation. This 

process is mediated by two ubiquitination-like reactions carried out by a number of ATG 

proteins. Figure reprinted from the reference with permission230.  
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LC3-II has been the most widely exploited protein marker in the detection of autophagy so far. 

Autophagic activity is often inferred on the basis of LC3-II turnover, reflected by the difference 

in the amount of LC3-II normalised to a loading control (housekeeping protein) in the presence 

and absence of lysosomal degradation, which can be monitored by western blotting217,231. 

Increased levels of LC3-II in the presence of lysosome degradation are indicative of an active 

autophagic flux (to the stage of autophagosome reaching the lysosome). Lysosomal 

degradation can be inhibited through the use of chloroquine (CQ) (Figure 5.2), bafilomycin 

A1, and protease inhibitor cocktails including pepstatinA, E-64d and leupeptin217. CQ is an 

FDA-approved drug that has been shown to impair the fusion of autophagosomes with 

lysosomes and raise or neutralise lysosomal pH, but discrepancies in the literature suggest that 

the precise mechanisms of how CQ blocks autophagy remains to be determined232,233. This rule 

also applies when assessing whether a particular treatment alters autophagy flux, where the 

levels of LC3-II obtained with the treatment plus a lysosomal inhibitor must be compared to 

those obtained with the treatment alone as well as the inhibitor alone. For example, autophagy 

inducers, such as rapamycin (RA) and starvation, should result in an additive effect on LC3-II 

levels, thereby suggesting an enhanced autophagic flux217.  RA is an FDA-approved macrolide 

compound and an inhibitor of mTOR (Figure 5.2), which suppresses autophagy through 

modulation of ATG13, ULK1 and ULK2 and prevention of the nuclear transport of 

TFEB129,234,235. Upon entering cells, RA forms a gain-of-function complex with the 12-kDa 

FK506-binding protein (FKBP12) (Figure 5.3), which interacts with the FKBP12-rapamycin 

binding domain (FRB) of the mTORC1, thus inhibiting mTORC1 function and inducing 

autophagy236. 
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Figure 5. 2. Interventions that target autophagy. Rapamycin (RA) inhibits the activity of 

mTOR1 complex (which prevents autophagy under normal conditions through binding to 

ULK1/2 complex) and thus is a potent autophagy inducer. Conversely, chloroquine (CQ) is an 

autophagy inhibitor which can inhibit lysosomal degradation and/or autophagosome-lysosome 

fusion, although the mechanisms remain to be defined. Figure modified from the reference237.  
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Figure 5. 3. Structure and actions of rapamycin. In a cell, rapamycin (A) first binds to 

FKBP12 and the FKBP12–rapamycin complex binds to the FRB (FKBP and rapamycin 

binding) domain of mTOR, rendering mTORC1 enzymatically inactive (B). Figures reprinted 

from the references with permission238. 

 

5.1.2. Transcriptional regulation of autophagy 
 

The early years of autophagy research focused on the cytosolic processes including dynamic 

membrane rearrangements and post-translational modifications of ATG proteins, neglecting a 

potential nuclear regulation, although induction of Atg8 by nitrogen starvation was observed 

in yeast back in 1999239. In the past decade, over 20 transcription factors have been shown to 

be associated with autophagy, including TFEB and ZKSCAN3, the FOXO family, p53, E2F1 

and NF-κB, the PPARα-FXR-CREB axis, C/EBPβ, GATA1, and Jun240 (Figure 5.4).  

 

TFEB is a member of the microphthalmia-TFE (MiT) subfamily of basic helix-loop-helix-

leucine zipper (bHLH-Zip) transcription factors that regulates a multitude of autophagy and 

lysosomal genes241–243. TEFB binds to the coordinated lysosomal expression and regulation 

(CLEAR) element, a 10-base E-box-like palindromic motif (GTCACGTGAC) present in the 

promoters of target genes, and enhances the expression of a wide range of genes important for 

autophagy initiation (Becn1, Wipi1, Atg9b, Nrbf2), autophagosome formation (Gabarap, 

Map1lc3b, Atg5), substrate capture (Sqstm1), autophagosome trafficking and fusion with 

lysosomes (Uvrag, Vps11, Vps18), and lysosomal biogenesis (Lamp1, Clcn7, Ctsf, Ctsb)243,244. 

The subcellular localisation and activity of TFEB are tightly controlled by phosphorylation of 
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conserved serine residues, including mTOR1-mediated phosphorylation of Ser122 and Ser211, 

ERK2 (extracellular signal-regulated kinase)-mediated phosphorylation of Ser142, and 

mTOR-independent phosphorylation of Ser138 and Ser134234,242,245,246. Under nutrient-

repleted conditions, phosphorylated TFEB is kept inactive in the cytosol, whereas conditions 

including starvation, oxidative stress and lysosomal disorder cause dephosphorylation of TFEB, 

leading to its rapid translocation to the nucleus to induce the expression of target genes234,242,243. 

Nutrient depletion also induces the release of lysosomal Ca2+ through mucolipin 1 (MCOLN1), 

which activates the phosphatase calcineurin, leading to TFEB activation and autophagy 

induction247. In addition, many factors that regulate TFEB activity are, in turn, transcriptionally 

regulated by TFEB, and TFEB activation also promotes its own transcription248. Regulation of 

autophagy by TFEB-mediated transcriptional activity also plays an important role in various 

pathological conditions. For example, TFEB overexpression alleviates toxicity of α-synuclein 

and protects dopaminergic neurons in a rat model of Parkinson’s disease152.  The zinc-finger 

protein with KRAB and SCAN domain 3 (ZKSCAN3) is a master transcriptional counterpart 

of TFEB, which represses the transcription of a number of autophagy-related genes including 

ULK1 and Map1lc3b249.  

 

The FOXO family of transcription factors (FOXOs), particularly FOXO3 and FOXO1, was 

one of the first transcriptional regulators to be associated with autophagy, similar to TFEB, 

which is also regulated by phosphorylation and translocated to the nucleus to induce the 

expression of a number of target genes (Atg4, Atg12, Becn1, Bnip3, Map1lc3b, Ulk1/2, 

Vps34)250–252. The most extensively characterised tumour suppressor, p53, regulates autophagy 

depending on its cellular localisation. Nuclear p53 promotes autophagy by inducing the 

expression of the autophagy modulators DRAM (damaged-regulated autophagy modulator) 

and Sestrin and by directly binding to autophagy genes (Atg4, Atg7, Atg10, Ulk1/2, Lkb1)253–

255. In contrast, cytoplasmic p53 acts as an autophagy repressor with a yet elusive mechanism; 

downregulation of Map1lc3b at a posttranscriptional level may be partly responsible256,257. The 

phosphorylated version of the N-terminally truncated p63 isoform (p-ΔNp63α), a member of 

the p53 tumour suppressor family, induces autophagy via binding to the promoters of target 

genes (Ulk1, Atg5, Atg7) as well as miRNA modulation258. One of the partners of p53 in life-

or-death decisions made by the cells, E2F1 (E2F transcription factor 1), induces autophagy by 

upregulating genes such as Map1lc3b, Ulk1, Atg5 and Dram1259. E2F1 also induces Bnip3, a 

hypoxia-induced death factor which activates autophagy by disrupting the inhibitory binding 

of B-cell lymphoma 2 (BCL-2) to Beclin 1, while NF-kB (nuclear factor kappa-light-chain-
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enhancer of activated B cells) transactivates Bnip3 under basal nonapoptotic conditions260,261. 

NF-κB has also been shown to induce autophagy genes including Becn1 and Sqstm1262,263. The 

PPARα (peroxisome proliferator-activated receptor-α)-FXR (farnesoid X receptor)-CREB 

(cAMP response element-binding protein) axis regulates hepatic autophagy during feeding and 

fasting cycles. During nutrient-deprived fasting, CREB and its coactivator CRTC2 activate 

transcription of autophagy genes including Atg7, Ulk1 and Tfeb, while bile-acid-activated FXR 

disrupts the CREB-CRT2 complex by interacting with CREB and forming a repressive 

transcriptional complex which inhibits autophagy genes during feeding264. PPARα is also 

activated by feeding and competes with FXR for the same DNA-binding sites (DR1 elements) 

in the promoters of autophagy genes, thus inducing activation of these genes265. 

CCAAT/enhancer binding protein beta (C/EBPβ) is a transcription factor that activates several 

Atg genes including Map1lc3a, Map1lc3b and Gabarapl1 in response to the circadian cycle in 

the liver266. In addition, the master regulator of haematopoiesis GATA-binding factor 1 

(GATA1) activates transcription of Map1lc3b and its homologous, which has been suggested 

to rely on transcriptional induction of Foxo3 by GATA-1267. The c-Jun NH2-terminal kinase 

(JNK) pathway, which can be activated by various cellular stresses, mediates transcriptional 

induction of Becn1 and Map1lc3b in autophagy-dependent cell death in vascular smooth 

muscle cells isolated from atherosclerotic plaques and ceramide-treated cancer cells268–270. 
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Figure 5. 4. Representative mechanisms of transcriptional regulation of autophagy. A few 

transcription factors have been recently identified that control autophagy under nutrient-

abundant (light coloured) and -depleted (dark coloured) conditions through nuclear binding to 

DNA, including TFEB and its counterpart ZKSCAN3 (A), the FOXO family such as FOXO3 

(B), the E2F1/NF-kB axis (C), CREB-FXR and PPARα-FXR Circuits (D), and epigenetic 

regulation of autophagy (E). Figure reprinted from the reference with permission271.  

 

An increasing number of transcription factors involved in all steps of the process have been 

linked to the transcriptional regulation of autophagy. Changes in autophagy protein levels, 

although generally considered better to follow with regards to the initiation and completion of 

autophagy, sometimes are not sufficient evidence of autophagy induction and hence must be 

accompanied by additional assays such as RT-qPCR to monitor changes at the mRNA level of 

Atg genes and/or autophagy regulators217. Development of these assays may be particularly 

useful in emerging model systems, such as the NMR, where commercial antibodies are limited.   
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5.2. LC3B proteins in the NMR 
 

Based on the latest NCBI annotation, seven ATG8 orthologous have been identified in the 

NMR, including three LC3 members (LC3Av1 [XP_004867972.1], LC3Av2 

[XP_012922183.1] and LC3B [XP_004842818.1]) and four GABARAP members 

(GABARAP [XP_004857437.1], GABARAPL1v1 [XP_021114839.1], GABARAPL1v2 

[XP_004845947.1] and GABARAPL2 [XP_004842886.2]). In this study, we chose to use the 

best-characterised autophagic marker, LC3B, to monitor the autophagic activity in the NMR. 

Alignment of the NMR proLC3B protein with the human (NP_073729.1) and mouse proLC3B 

(NP_080436.1) shows the sequences are highly conserved among the three species, particularly 

at the N-terminus (Figure 5.5). Assuming that the mechanisms of LC3 processing and 

conjugation to PE are also conserved in the NMR, we have identified the Gly120 to be exposed 

for lipidation after cleavage by ATG4B and, therefore, we have obtained the sequences of 

LC3B-I and LC3B-II in the NMR. The NMR LC3B-I and LC3B-II proteins essentially differ 

from the human and mouse orthologues by one and three amino acids, respectively, suggesting 

that the functions mediated by their structures should also be preserved (Figure 5.6).  

 

 

Figure 5. 5. Sequence alignment of the NMR proLC3B protein (bottom) with the human 

(middle) and mouse proLC3B (top) proteins. The analysis was performed using the 

MUSCLE software272.  
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Figure 5. 6. Sequences of the NMR proLC3B, LC3B-I and LC3B-II proteins.  

 

5.3. Induction of autophagy by rapamycin in the NMR skin fibroblasts at 

both posttranslational and transcriptional levels 
 

We first monitored the levels of LC3B proteins in an NMR skin fibroblast cell line (NMR-SF) 

using the anti-LC3B antibody (#2775, Cell Signalling Technology) produced by immunising 

animals with a synthetic peptide corresponding to the N-terminal human LC3B, that should be 

able to target and detect NMR LC3B proteins based on sequence homology. The LC3B-II, 

despite being larger in mass, migrates faster on gels than the LC3B-I protein as a consequence 

of increased hydrophobicity217 (Figure 5.7 A). The two proteins could be well separated from 

each other on 15% homemade SDS-PAGE gels for quantification but not on 12% Bolt or 4-

12% gradient NuPAGE precast gels.  

 

The NMR skin fibroblasts treated for 24-hr with 100 μM CQ demonstrated a four-fold increase 

in the normalised LC3B-II level (to GAPDH) compared to the DMSO-treated control, 

reflecting the accumulation of basal-level autophagosome formation as well as the induction 

of autophagy by the long-term CQ treatment through mTOR inhibition, similar to what was 

reported by Zhao et al (Figure 5.7 A Lane 1&3, B, C)273. When the NMR-SF cells were treated 

with 100 nM RA alone for 24 hr, the normalised LC3B-II protein level showed a nearly two-

fold increase compared to that of the DMSO-treated control (Figure 5.7 A Lane 1&2, B, C). 

When the cells were treated with 100 nM RA and 100 μM CQ (abbreviated as RCQ hereafter) 

for 24 hr, the LC3B-II protein level also showed a nearly two-fold increase compared to that 

of the CQ-treated control (Figure 5.7 A Lane 3&4, B, C). These findings suggested that RA 
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increased the formation of LC3B-II and is an inducer of autophagosome synthesis in the NMR-

SF. No differences were observed in the cells treated with medium and with the 0.05% DMSO 

control.  

 

LC3B can also undergo substantial transcriptional regulation274. We applied an RT-qPCR assay 

to measure the changes of LC3B/Map1lc3b mRNA levels to discriminate between changes that 

were strictly reflected in altered amounts of protein versus those that were due to changes in 

transcription. The qPCR assay was established following the methods described in Chapter 3. 

The NMR Map1lc3b primers were validated to have a 106.4% reaction efficiency (Table 2.2), 

and Gapdh and B2m were selected as the reference genes based on lower M values under RA, 

CQ and RCQ-treated conditions (Table 5.1). Results revealed a slight transcriptional induction 

of Map1lc3b mRNA when the NMR-SF cells were treated with RA or with RCQ for 24 hr, 

suggesting that the increased LC3B-II amounts observed in the western blot were a result of 

both the upregulation of Map1lc3b at the transcriptional level and the increased LC3B 

lipidation per se (Figure 5.7 D, left). No changes of Map1lc3b mRNA levels were found in 

the NMR-SF cells treated with CQ alone (Figure 5.7 D, left). These results suggested that RA 

induced autophagy of the NMR-SF at both transcriptional and posttranslational levels. 
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Figure 5. 7. Probing the autophagy in the NMR skin fibroblast cell line (NMR-SF) and 

the mouse NIH3T3 cells (3T3). Cells were treated with or without 100 nM RA for 24 hr in 

the presence or absence of 100 μM CQ. Total protein (20 µg) collected per sample was 

separated by SDS-PAGE, and the amounts of LC3B-II were determined by immunoblotting. 

Representative western blots are shown in (A). The graph in (B) shows the mean ± S.D. of 

LC3B-II protein levels normalised to the levels of the loading control (GAPDH) in the NMR-

SF and 3T3 as a response to the treatments (n=3). (C) The fold change of LC3B-II protein 
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levels in RA-treated cells was compared to the LC3B-II levels in the vehicle (DMSO)-treated 

controls, while the fold change of LC3B-II protein levels in the RCQ-treated samples was 

compared to the LC3B-II levels in the CQ-treated controls. (D) Changes of Map1lc3b mRNA 

levels in the NMR-SF and 3T3 cells were determined by RT-qPCR. Results were normalised 

to the mRNA levels of reference genes and were presented as mean ± S.D. of mRNA fold 

change compared with the basal-level expression in negative controls. Results were tested for 

statistical significance in reference to the vehicle-treated controls by unpaired t-tests (n=3; ns, 

p>0.5, *p<0.05, **p<0.01; unpaired t-test). Interspecies comparison of mRNA fold changes of 

Map1lc3b in response to RA, CQ and RCQ (compared to the CQ-treated controls) treatments 

was conducted using two-way ANOVA tests, Sidak's multiple comparisons tests as shown in 

(E) (n=3 pairs; ns, p>0.5, **p<0.01).  

 
Table 5. 1. Selection of reference genes in the NMR-SF, NMR-KF2 and mouse NIH3T3 
for RT-qPCR analysis of autophagy markers. 

NMR skin fibroblast (NMR-SF) NMR kidney fibroblast (NMR-KF2) Mouse NIH3T3 fibroblast 

Genes M 
Mean 

CV 

Mean 

M 
Genes M 

Mean 

CV 

Mean 

M 
Genes M 

Mean 

CV 

Mean 

M 

Gapdh 0.099 

22.2% 0.131 

Gapdh 0.209 

22.4% 0.216 

Hprt1 0.262 

24.1% 0.296 

B2m 0.110 Rpl13a 0.223 Rpl13a 0.330 

Hprt1 0.180 
Excluded in the 

2nd round 
B2m 0.245 

Excluded in the 

2nd round 
Gapdh 0.428 

Excluded in the 

2nd round 

Rpl13a 0.407 
Excluded in the 

1st round 
Hprt1 0.528 

Excluded in the 

1st round 
B2m 0.679 

Excluded in the 1st 

round 
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5.4. Comparable levels of autophagic flux but different transcriptional 

regulation in the NMR skin fibroblasts and mouse NIH3T3 embryonic 

fibroblasts in response to RA and CQ treatment 
 

Using the established methods above, we compared the changes of autophagic flux and levels 

of Map1lc3b in the NMR-SF cell line to those in the mouse NIH3T3 embryonic fibroblast cell 

line (abbreviated as 3T3 hereafter) in response to RA and CQ.  

 

Western blotting results showed that in the absence of RA and CQ, a higher level of LC3B-II 

was observed in the NMR-SF cells than in the 3T3 cells, suggesting the presence of more 

autophagosomes in the NMR-SF cells (Figure 5.7 A Lane 1&5, C). When CQ was added, the 

LC3B-II protein level in the 3T3 cells increased significantly to the amount that was equivalent 

to (or even higher than, although not statistically significant) the LC3B-II protein level in the 

NMR-SF cells (Figure 5.7 A Lane 3&8, B). The much more robust increase of the LC3B-II 

protein level in the 3T3 cells than that in the NMR-SF cells might be a result of (1) a higher 

level of induction of Map1lc3b in the 3T3 cells, (2) a higher basal level of autophagic flux in 

the 3T3 cells, and/or (3) differences of other regulatory mechanisms, such as TFEB-mediated 

induction of autophagy, between the two cell lines in response to CQ.  

 

RT-qPCR determined a two-fold increase of Map1lc3b induced by CQ in the 3T3 cells when 

normalised to Hprt1 and Rpl13a (Table 5.1, Figure 5.7 D, right), which contributed to the 

increased total level of LC3B-II protein in the 3T3 cells (Figure 5.7 C, E), whereas in the 

NMR-SF cells, no induction of Map1lc3b was observed (Figure 5.7 D, left).  

 

The effects of RA were similar on the levels of LC3-II and Map1lc3b upregulation in the NMR-

SF and 3T3 cells either in the absence or presence of CQ (Figure 5.7 A, C, E). To further 

explore the effects of RA and CQ on the transcriptional regulation of the NMR and mouse cells, 

we expanded our RT-qPCR analysis and examined changes of more autophagy markers under 

RA or CQ-treated conditions.  
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5.5. Different transcriptional regulation by RA and CQ in the NMR skin 

fibroblasts, the NMR kidney fibroblasts and the mouse NIH3T3 

fibroblasts 
 

We selected five more proteins (in addition to LC3B) that are involved in several steps of 

autophagy and have been reported to be regulated at the transcriptional level (Table 5.3). ATG5 

contains a ubiquitin fold that is an essential component of the ATG12-ATG5·ATG16L1 

complex, which mediates LC3-PE conjugation in phagophore expansion and autophagosome 

formation. Beclin 1 encoded by Becn1 is a yeast VPS30/ATG6 orthologue which forms the 

PIK3C3 complex for autophagy activation. P62 is encoded by Sqstm1 and is a mammalian 

autophagy receptor which recognises and links ubiquitinated proteins to LC3 via a LIR (LC3-

interacting region) motif. TFEB is a master transcription factor that regulates autophagy and 

lysosomal biogenesis. LAMP1 (lysosomal-associated membrane protein 1) resides primarily 

across lysosomal membranes and is routinely used as a marker for lysosomes.  

 

Table 2. 4. A panel of autophagy proteins selected for the analysis of the transcriptional 

regulation by RA and CQ240. 

Gene Role in 
autophagy Transcription factor linked to autophagy 

Atg5 Autophagosome 
formation 

DDIT3, CREB, E2F1, FOXO1, ΔNp63α, FXR, GATA-1 

Becn1 Autophagy 
initiation 

Jun, FOXO1, FOXO3A, NF-κB, PPARα, TFEB, XBP1, ΔNp63α, FXR, 
STAT-1 

Map1lc3b Autophagosome 
formation 

ATF4, C/EBPβ, Jun, CREB, E2F1, FOXO1, FOXO3A, GATA-1, 
MITF and TFE3, PPARα, SREBP-2, TFEB, FOXK1, FXR, ZKSCAN3 

Sqstm1 Autophagy 
receptor/substrate C/EBPβ, KLF4, MITF and TFE3, NF-κB, TFEB, β-catenin and/or TCF 

Tfeb Transcription 
factor 

TFEB, CREB, FXR 

Lamp1 Lysosomal 
formation TFEB 

 



Chapter 5: Probing autophagy in NMR fibroblasts 
 

 87 

Following the methodology established in Chapter 3, we self-designed all primers for these 

selected autophagy-related genes, validated qPCR efficiency to be between 90 and 110% 

(Table 2.2), and determined the appropriate reference genes using the geNORM algorithm 

under RA and CQ-treated conditions for the three cell lines (Table 5.1).  

 

We first determined changes of expression of these autophagy-related genes in the NMR-SF 

cell lines under RA and CQ-treatment conditions. Our qPCR results showed that 24-hr 

treatment with 100 nM RA increased transcript levels of all these markers, suggesting that RA 

induced autophagy by modulating several steps of the process (Figure 5.8). In contrast, 24-hr 

treatment with 100 μM CQ significantly downregulated expression of Tfeb in the NMR-SF but 

did not affect other markers, except a mild level of Atg5 induction (Figure 5.8).  

 

 

 

Figure 5. 8. Changes of autophagy-related mRNA levels in response to the treatment of 

100 nM RA or 100 μM CQ were measured by RT-qPCR in the NMR-SF cells. Results 

were normalised to the mRNA levels of reference genes and presented as mean ± S.D. of log-

transformed mRNA fold change compared with the basal-level expression in untreated cells. 

Results (i.e., dCq values) were tested for statistical significance in reference to the untreated 

controls by unpaired t-tests (n=3, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). 
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The NMR-KF2 cells showed a similar induction pattern of the autophagy genes when treated 

with RA, except for lower induction of Atg5, suggesting that effects of RA on the NMR 

fibroblasts derived from different tissues seemed to be largely the same (Figure 5.9 A). When 

the NMR-KF2 cells were treated for 24-hr with 100 μM CQ, Tfeb expression was again found 

to be downregulated but to a much lower extent compared to the level of reduction observed 

in the NMR-SF cells (Figure 5.9 B). Levels of other autophagy markers did not appear to 

change at the transcriptional level when the NMR-KF2 were treated with CQ, similar to the 

trend seen in the NMR-SF (Figure 5.9 B).  

 

We also determined levels of these autophagy markers in the mouse NIH3T3 cells. Results 

showed a notably higher level of Sqstm1 induction in the 3T3 compared to the NMR-SF and 

NMR-KF2 cells but slight reduction of Becn1 under RA-treated conditions, while no 

significant differences were identified in other autophagy markers among the three cell lines 

(Figure 5.9 A). Similar to what was observed in the NMR-SF and NMR-KF2 cell lines, the 

24-hr CQ treatment also repressed Tfeb expression in the 3T3 cells, suggesting that the effect 

of CQ on the Tfeb transcript was likely to be universal and not species-specific (Figure 5.9 B). 

The level of Tfeb downregulation in the 3T3 cells was comparable to that in the NMR-KF2 

cells and was much lower than that in the NMR-SF cells (Figure 5.9 B). In addition, the 24-hr 

CQ treatment induced Map1lc3b expression in the 3T3 cells but not in the NMR-SF and NMR-

KF2 cells, which contributed to the increased LC3B-II protein level in the 3T3 cells, as shown 

in the previous section (Figure 5.9 B).  

 

We further explored whether different profiles of gene expression would impact sensitivity of 

three cell lines to RA and CQ. Results showed that RA did not affect cell viabilty in the three 

cell lines (Figure 5.9 C). The 24-hr treatment with CQ, however, led to 20% cell death in the 

NMR-KF2 cells and 3T3 cells, and less than half of the NMR-SF cells survived. The higher 

sensitivity of the NMR-SF cells to CQ correlated with a higher level of Tfeb downregulation 

observed in the NMR-SF cells compared with the NMR-KF2 and 3T3 cells, suggesting the 

potential role of Tfeb in promoting cell survival under CQ-treated conditions (Figure 5.9 C).  
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Figure 5. 9. Probing the effects of autophagy modulators on the NMR-SF, NMR-KF2 and 

mouse NIH3T3 cell lines. (A) Changes of autophagy-related mRNA levels in response to 100 

nM RA were measured by RT-qPCR in the three cell lines. Results were normalised to the 

mRNA levels of reference genes and presented as mean ± S.D. of log-transformed mRNA fold 

change compared with the basal-level expression in controls. n=3 pairs; *p<0.05, 

****p<0.0001; two-way ANOVA tests, Sidak's multiple comparisons tests. (B) Changes of 
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autophagy-related mRNA levels in response to 100 μM CQ were measured by RT-qPCR in the 

three cell lines. Results were normalised to the mRNA levels of reference genes and presented 

as mean ± S.D. of log-transformed mRNA fold change compared with the basal-level 

expression in controls. n=3 pairs; **p<0.01, ***p<0.001, ****p<0.0001; two-way ANOVA 

tests, Sidak's multiple comparisons tests. (C) Percentage of the viable cells after each treatment 

was measured by the CellTiter-Glo assay. Results were presented as mean ± S.D. of the 

percentage survival of treated samples compared with controls. n=3 pairs; **p<0.001; two-

way ANOVA tests, Sidak's multiple comparisons tests. (D) Autophagy markers were evaluated 

at the transcriptional level in response to 100 nM RA or starvation (HBSS) in the NMR-KF2 

cells. Results were normalised to the mRNA levels of reference genes and presented as mean 

± S.D. of log-transformed mRNA fold change compared with the basal-level expression in 

untreated controls. n=3 pairs; ns, p>0.5; two-way ANOVA tests, Sidak's multiple comparisons 

tests. 

 

Using the same methodology, we also determined the effects of starvation, the most extensively 

studied condition that induces autophagy, on the panel of selected autophagy markers in the 

NMR. By culturing the NMR-KF2 cells in HBSS, all autophagy genes showed similar levels 

of transcriptional modulation as those found in RA-treated conditions, including the induction 

of Map1lc3b, Sqstm1 and Lamp1 (Figure 5.9 D). 

 

5.6. Discussion and future work 
 

In this chapter, we developed tools to investigate the transcriptional and posttranslational 

modulation of autophagy in the NMR, including the LC3B-II turnover assay and RT-qPCR 

assays. Using these assays, we first confirmed the role of RA as a potent inducer of autophagy 

in the NMR fibroblasts. Previously Zhao and colleagues showed an increased level of LC3-II 

proteins in the NMR hepatic cells treated with RA compared to the negative controls, but they 

did not assess the LC3-II protein levels in the presence of any autophagy inhibitors, and no 

transcriptional changes of Map1lc3b were probed75. Here we reported a more comprehensive 

analysis which proved that RA modulated LC3B/Map1lc3b at both transcriptional and 

posttranslational levels to induce autophagy in the NMR-SF. However, our protocol of the 

LC3B-II turnover assay could be improved, as the LC3B-II band on the PVDF membrane was 
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smearing which resulted in the large variance between replicates, and ideally, the LC3B-I and 

LC3B-II proteins should provide two distinct bands for accurate quantification. 

 

Previously Zhao et al. reported higher levels of endogenous LC3B-II protiens without the 

presence of any autophagy inhibitors in the tissue lysates from multiple organs in one-day-old 

NMRs compared to those in one-day-old C57BL/6 mice, and they reached a conclusion that 

NMRs displayed higher basal levels of autophagy75. This interpretation could be problematic, 

as the higher LC3B-II levels might represent the accumulation of non-degraded cargos 

resulting from the inhibition of autophagosome-lysosome fusion and/or lower levels or rates 

of lysosomal degradation in NMRs, suggesting a reduced basal level of autophagosome 

turnover and/or the inefficient turnover to keep pace with increased autophagosome formation 

in the NMRs instead of higher basal levels of autophagosome formation per se. Pride et al. 

showed a higher ratio of (macro)atuophagy to chaperone-mediated auotphagy (CMA) in the 

NMR skin fibroblasts compared to that of the mouse counterparts, but the percentage of total 

proteolysis by (macro)autophagy in the NMR cells did not seem to differ from that in the 

mouse74. In addition, Beclin 1, which is an essential component in the PIK3C3 interactome that 

signals the onset of autophagy and another widely used marker for autophagy induction, has 

been found to be expressed at lower levels in the various tissues of young and adult NMRs 

compared to the mouse counterparts, suggesting that the Beclin-1-dependent pathways of 

autophagy induction in the NMR might be less active than those in the mouse75.  

 

Our results suggested that the mouse 3T3 cells seemed to have a more robust machinery of 

autophagosome synthesis than the NMR-SF cells, which was partly attributed to the induction 

of Map1lc3b under CQ-induced stress. However, some modifications will need to be made to 

the current protocol in order to properly determine the levels of the basal autophagic flux in 

the 3T3 and NMR-SF cells. An appropriate concentration of CQ should first be established by 

dose- and time-dependent curves at which the autophagic flux is inhibited completely without 

cell death. Then, a series of measurements of the LC3B-II protein levels can be conducted by 

immunoblotting as described in this study at every 60 min post-inhibition using the established 

CQ concentration. Other inhibitors of autophagosome-lysosome fusion or lysosomal 

degradation such as bafilomycin A1 and protease inhibitor cocktails can also be employed to 

validate the results obtained under the CQ-treated conditions. In addition, primary cells or 

tissues should be used for direct comparisons between species (i.e., NMR versus other short-

lived species) to explore the potential relationship between enhanced autophagy and longevity.  
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We also found that compared to the NMR-KF2 and mouse 3T3 cells, the NMR-SF cells were 

more sensitive to CQ-induced lysosomal stress, which might be associated with the significant 

suppression of TFEB, a master transcription factor of the autophagy-lysosomal pathway. 

Previous studies showed that CQ-induced apoptosis in the NMR skin fibroblasts, as suggested 

by the increased ratio of BAX/BCL-2 ratio, was linked to the inhibition of the pro-survival 

PI3K/Akt signalling pathway273. Here, we reported, from the transcriptional point of view, that 

levels of downregulation of Tfeb seemed to be associated with the CQ-dependent cell death. 

Map1lc3b and Sqstm1 were among the most significantly upregulated genes affected by TFEB 

overexpression as they carry at least one TFEB binding site in their promoters242. Under 

lysosomal stress, more severe Tfeb downregulation in the NMR-SF cells might result in the 

production of fewer TFEB proteins, leading to lower levels of Map1lc3b induction than that in 

the 3T3 cells. TFEB-regulated Sqstm1 was also slightly more upregulated in the 3T3 and NMR-

KF2 cells compared to the NMR-SF cells, although not statistically significant. Similar to our 

results, it has also been reported that expression of TFEB target genes including Map1lc3b and 

Sqstm1 were upregulated in hepatocytes from control mice after treatment with CQ, but the 

upregulation was hampered in hepatocytes from Tfeb knockout mice275. Since a wide range of 

genes involved in autophagy and lysosomal function have been shown to be regulated by TFEB, 

it is likely that Tfeb downregulation could impair the induction of autophagy, thereby leading 

to cell death under lysosomal stress. In HeLa cells, CQ-induced nuclear translocation was also 

accompanied by a decrease in the overall levels of TFEB after 15-hr exposure as shown in a 

western blot assay276. As TFEB activity is primarily regulated by its phosphorylation state and 

subcellular localisation, it is important to examine the direct impact of Tfeb downregulation on 

its nuclear translocation in the NMR, which can be monitored by immunofluorescence. The 

NMR TFEB protein (XP_004846657.1) is predicted to contain 463 amino acids and shares 88% 

identity with the human TFEB (NP_001258873.1; 476 amino acids), with all critical serine 

residues (Ser122, 134, 138, 142 and 211) conserved in the sequence. A TFEB nuclear assay 

using a cell line stably transfected with a TFEB-GFP probe can be used instead when the 

expression level of endogenous TFEB is too low to be detected (as suggested by high Cq values 

in qPCR assays) by antibodies. mTOR activity may also be monitored since CQ-induced TFEB 

translocation is mediated by mTORC1 inhibition as shown in other mammalian systems. TFEB 

overexpression, which is believed to improve overall autophagy and lysosomal function and 

promote cellular clearance, has been applied as a therapeutic strategy in several age-associated 

disease models including lysosomal storage disorders and neurodegenerative disease277. 
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Investigation of TFEB activity in the long-lived NMR will provide insights into the regulation 

of autophagy and offer new tools to promote cellular clearance in heath and disease.  

 

Finally, we provide some preliminary results of the transcriptional modulation in NMR kidney 

fibroblasts under starvation. Although both RA and starvation can activate autophagy through 

mTOR inhibition, starvation but not RA induces TFEB nuclear translocation, probably because 

RA is a partial inhibitor of mTOR and some mTOR substrates could still be efficiently 

phosphorylated278. It was also reported that RA and amino acid starvation had opposite effects 

on the expression of genes involved in the synthesis, transport and use of amino acids279.  In 

addition, a couple of studies showed a higher level of autophagy in the NMR than that in the 

mouse under serum-starved conditions based on a higher LC3-I-to-LC3-II ratio, suggesting a 

superior mechanism in the NMR to ensure protein quality may be associated with longevity14,74. 

However, it has been shown that the comparison of the LC3-II amount among samples is more 

accurate than the LC3-I-to-LC3-II ratio as the LC3B-II has higher sensitivity than LC3B-I in 

immunoblotting, particularly when probed by antibodies generated against the N-terminal 

peptide of LC3217,280. It has also been recently reported that GABARAP subfamily, instead of 

LC3 members, is a primary driver of starvation-induced autophagy, which may be a better 

readout of the level of autophagy under starvation227. Thus, more autophagy markers can be 

investigated to better characterise the transcriptional and posttranslational modulations of 

autophagy induced by starvation in the NMR and establish the role of autophagy in long-lived 

species versus that in short-lived counterparts.  
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6. Investigating the effects of disease-relevant amyloid-β and α-

synuclein oligomers on the UPR and autophagy in the NMR 
 

6.1. Introduction 
 

The involvement of UPR and autophagy has been implicated in neurodegenerative diseases, 

but their exact roles remain to be defined. NMRs have higher levels of soluble amyloid-β (Aβ), 

but do not display any amyloid plaques, which is a hallmark of Alzheimer’s disease78,79, in 

their brains. Therefore, it has been hypothesised that the long-lived NMRs must possess certain 

mechanisms that protect them from developing age-associated neurodegenerative diseases. In 

this Chapter, we set out to investigate the effects of Aβ and α-synuclein oligomers, which are 

believed to be the major pathogenic species in Alzheimer’s disease (AD) and Parkinson’s 

disease (PD), respectively, on the UPR and autophagy pathways of the NMR as a simplified 

disease model. For this, we used a cell culture system wherein NMR and mouse cells were 

exposed to exogeneous Aβ and α-synuclein oligomers prepared by established protocols with 

proven neurotoxicity153,154. Using the quantitative methods established in the previous chapters, 

we determined changes in expression of sentinel UPR and autophagy-related genes in NMR 

kidney fibroblasts, mouse NIH3T3 fibroblasts and primary cultures of sensory neurons 

following the exposure to different exogeneous protein species. In particular, we identified 

different transcriptional changes of the UPR markers in fibroblasts and sensory neurons in 

response to the same level of exogeneous Aβ oligomers, which were associated with distinct 

patterns of membrane binding and cellular uptake of these oligomers. In addition, by 

comparing acute and chronic responses of the UPR and autophagy in NMR kidney fibroblasts, 

we correlated increased toxicity of α-synuclein oligomers with the levels of transcriptional 

suppression of XBP1 and ATF6 signalling as well as autophagy-related proteins, thus 

providing insights into the pathogenic effects of α-synuclein oligomers and evidence of 

molecular targets for therapeutic intervention.  

 

6.1.1. Stable Aβ1-42 oligomers 
 

While extracellular amyloid deposits or structurally equivalent intracellular inclusions are the 

hallmarks of neurodegenerative disorders, it is widely accepted that soluble, diffusible protein 
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oligomers, which are populated during the process of amyloid formation or released by mature 

fibrils, are the most pathogenic species linked to synaptic loss and the level of dementia48–53. 

Extensive investigations have been conducted to characterise disease-relevant oligomers such 

as Aβ and α-synuclein. However, the transient nature of oligomeric intermediates results in the 

extremely low abundance of these species during aggregation. The conformational 

heterogeneity of any given oligomeric population and the different polymorphs obtained from 

multiple parallel pathways further complicate the process of determining their structural and 

biological properties associated with pathogenicity. 

 

A variety of oligomers have been isolated and characterised for the widely studied Aβ peptides, 

and preparation of stable Aβ oligomers have provided a useful tool to elucidate the role of these 

soluble species in AD. In this study, we use an established low-salt, low-temperature protocol 

to generate small, stable Aβ1-42 oligomers in vitro that are often referred to as amyloid-derived 

diffusible ligands (ADDLs)153,281,282. Chemically synthesised Aβ1-42 peptides are pre-treated 

with TFA/HFIP to remove pre-aggregated materials. Oligomers are formed by resuspending 

these monomerised peptides in DMSO and incubating overnight at 4 °C in the low-salt 

phosphate buffer. Antibodies raised against ADDLs can detect elevated levels of soluble 

oligomers in the AD brain, suggesting that ADDLs provide an appropriate model system 

resembling naturally occurred species283,284. These oligomers range in size from trimers to 

higher order oligomers up to 24-mers and are neurotoxic at nanomolar concentrations153,285. 

Atomic force microscopy analysis has shown that they are spherical, up to 5 nm in height, and 

can be further categorised into two subgroups, ranging from 1.5-2.5 nm and 3-4 nm in 

height281,285. Circular dichroism spectroscopy measurements have also revealed that Aβ1-42 

oligomers prepared using this method display a considerably lower β-sheet content than Aβ1-

42 fibrils, indicative of a less ordered molecular arrangement in the former282.  

 

6.1.2. Kinetically trapped α-synuclein oligomers 
 

A variety of oligomeric species have also been described for α-synuclein. Of particular interest 

are the results of single molecule fluorescence resonance energy transfer (smFRET) studies in 

which two distinct types of oligomers, denoted type A and type B, have been identified286. The 

initially formed and readily degradable type A α-synuclein oligomers are converted to compact 

and highly structured type B oligomers through a remarkably slow process during the fibril 

formation286. These latter oligomers also induce a substantially higher level of ROS production 
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in neuronal cells as compared with their precursor oligomers, monomeric and fibrillar α-

synuclein, thus suggesting that they are more damaging to cells154,286. Different approaches 

have been applied to produce kinetically trapped α-synuclein oligomers for detailed 

biophysical characterisation, including lyophilisation or the use of stabilising agents such as 

small molecules154,287. FRET efficiencies and cellular toxicities of oligomers prepared by 

lyophilisation are almost identical to those of the type B oligomers and thus have been named 

type B*154,288. In contrast, oligomers prepared by the addition of epigallocatechin gallate 

(EGCG) do not affect membrane integrity of neurons and have been named type A* for their 

structural and biological similarity to the benign type A oligomers287,288.  

 

In this study, we follow an established, lyophilisation-based approach to prepare the type B* 

oligomers, although the exact mechanisms by which lyophilisation induces oligomer formation 

is unclear154. Purified α-synuclein protein is lyophilised, resuspended and incubated at high 

concentrations, followed by removal of monomeric and fibrillar species by ultracentrifugation. 

The resulting oligomers are fairly homogenous, highly stable and resistant to dissociation154,289. 

Purified type B* oligomers demonstrate spherical morphologies, with heights ranging between 

3-16 nm, and consist of two major subpopulations (10S and 15S) that have been identified by 

analytical ultracentrifugation and cryo-EM154. The 15S oligomers containing 19-39 monomers 

with an average mass of 420 kDa exhibit higher levels of antiparallel β-sheet contents (~40%) 

and surface hydrophobicity, suggesting a strong correlation between the size of the oligomers 

and both the β-sheet content and the degree of exposed hydrophobicity154. These kinetically 

trapped species have been used to understand how oligomers induce toxicity through 

membrane permeabilisation. Solid-state nuclear magnetic resonance spectroscopy has revealed 

that, although both type A* and type B* oligomers interact with membranes that mimicking 

the composition of synaptic vesicles, only type B* oligomers have been found to readily 

permeabilise lipid membranes. This is facilitated by the presence of helical structure in the N-

terminus which acts as the membrane anchor and a rudimentary β-sheet core structure that can 

insert into the membrane to disrupt its integrity288.   

 

6.2. Effects of Aβ1-42 oligomers on the UPR 
 

The involvement of ER stress has been increasingly implicated in Aβ-mediated neurotoxicity. 

In particular, in vitro studies have shown that extracellularly applied Aβ1-42 oligomers can 
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trigger ER stress in neuronal systems, as indicated by ER Ca2+ depletion290, increased Xbp1 

mRNA splicing117,291 and elevated expression of XBP1, BiP and CHOP proteins292,293, 

although detailed mechanisms by which oligomers induce UPR activation remains unclear.  

Since the NMR exhibits high levels of soluble Aβ levels but does not develop signs of 

neurodegeneration78, it is of great interest to investigate whether UPR signalling in the long-

lived NMR may display unique properties which protect the animal from Aβ toxicity in 

comparison with short-lived mice. One of the earlier studies has reported that Aβ1-42 peptides 

can be internalised by cultured human skin fibroblasts via endocytosis and accumulated as 

higher-molecular-weight aggregates intracellularly294, indicating that fibroblasts may be a 

suitable system for investigations when the neuronal materials are scarce. Therefore, we started 

by investigating the activation of UPR in response to Aβ1-42 oligomers in NMR kidney 

fibroblasts and mouse NIH3T3 fibroblasts and later examined these responses in mouse 

sensory neurons.  

 

6.2.1. Lack of activation of UPR in NMR kidney fibroblasts and mouse 

NIH3T3 fibroblasts in response to Aβ1-42 oligomers 
 

It was reported that Aβ1-42 oligomers induced Xbp1 splicing in the rat pheochromocytoma PC12 

and human neuroblastoma SH-SY5Y cells117,291. The Xbp1 splicing was observed in PC12 cells 

treated with Aβ1-42 oligomers for 6 hr, starting from 0.5 µM Aβ1-42 with the maximal levels of 

Xbp1s and total Xbp1 transcripts found following the treatment with 2 µM Aβ1-42117. Increasing 

the concentration of Aβ1-42 oligomers to 4 µM not only reduced levels of Xbp1s and total Xbp1 

but also comprised cell viability117.  

 

To establish whether exogenous Aβ1-42 oligomers could induce Xbp1 splicing, an indicator of 

UPR activation, in the NMR, we treated the NMR kidney fibroblast cell line (NMR-KF2) using 

Aβ1-42 oligomers and probed levels of Xbp1 transcripts using the assay established in Chapter 

3. We initially tried to build a dose-dependent curve of Xbp1 splicing following an 8-hr short-

term treatment of oligomers but failed to detect any increase in the levels of Xbp1s as reported 

in the PC12 and SH-SY5Y5 cells (Figure 6.1)117,291. We then extended the time of exposure 

to Aβ1-42 oligomers to 24 hr, but still no Xbp1 splicing was observed, suggesting that the IRE1-

XBP1 branch was not activated in response to these Aβ1-42 treatments. Similarly, we treated 
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mouse NIH3T3 fibroblasts with Aβ1-42 oligomers under the same conditions but did not find 

any Xbp1 splicing or changes of Xbp1s levels (Figure 6.1).  

 

 

 

Figure 6. 1. Xbp1 splicing in the NMR-KF2 and mouse NIH3T3 fibroblasts upon the 

exposure to Aβ1-42 oligomers. PBS (negative control) and tunicamycin (TU) (positive control) 

were used as controls. (A) Representative images of the RT-PCR products of Xbp1s and Xbp1u 

on 6% TBE gels in the NMR-KF2 (top) and 3T3 cells (bottom). The graphs in (B) show the 

mean ± S.D. of Xbp1s-to-Xbp1u ratios in response to Aβ1-42 and controls in the NMR-KF2 

(yellow) and 3T3 (grey). n=3 pairs; ****p<0.0001; unpaired t-tests. 

 

We also monitored changes in expression of the UPR sentinel genes using RT-qPCR assays, 

including Atf4 (encoding ATF4, a transcription factor in the PERK pathway), Ddit3 (encoding 

CHOP, the major pro-apoptotic UPR protein) and Hspa5 (encoding BiP, a master chaperone 

in the ER), in the NMR-KF2 treated with 2 μM Aβ1-42 oligomers for 8 and 24 hr. None of these 

conditions induced significant changes of Atf4, Ddit3 and Hspa5 expression in the NMR-KF2 

(Figure 6.2). Similar UPR outputs were observed in the mouse 3T3 fibroblasts under the same 

conditions (Figure 6.2). Taken together, these results from Xbp1s splicing and RT-qPCR 

assays suggested that Aβ1-42 oligomers did not induce UPR activation in the NMR-KF2 and 

mouse 3T3 embryonic fibroblasts.  
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Figure 6. 2. Changes in expression of UPR markers in NMR-KF2 and mouse 3T3 cells in 

response to Aβ1-42 oligomers. The NMR-KF2 (yellow) and mouse 3T3 fibroblasts (grey) were 

treated with 2 μM Aβ1-42 oligomers for 8 hr and 24 hr. Expression of Atf4, Ddit3 and Hspa5 

was measured by RT-qPCR. Results were normalised to the mRNA levels of reference genes 

and were presented on a log scale as mean ± S.D. of mRNA fold change relative to the basal-

level expression in the PBS-treated controls (n=3); unpaired t-tests.  

 

6.2.2. Lack of activation of UPR in NMR kidney fibroblasts and mouse 

NIH3T3 fibroblasts in response to Aβ1-42 monomers and fibrils 
 

Some studies have reported UPR activation in cells treated with Aβ1-42 monomers and fibrils, 

although this is still controversial295–297. Therefore, we also examined expression of these UPR 

markers in response to Aβ1-42 peptide and fibrils that were prepared using established protocols 

(Hook SH, PhD thesis). Before the treatment, we characterised different assemblies of Aβ1-42 

prepared in this study by transmission electron microscopy (TEM) (Figure 6.3). The 

preparation of Aβ1-42 oligomer or ADDLs resulted in small aggregates that were spherical (<15 

nm) or rod-shaped (20-100 nm) with different sizes. These rod-shaped aggregates resembled 

protofibril oligomers281, albeit, the majority of the sample appeared to be the small ADDL-like 

aggregates. In contrast, the Aβ1-42 fibrillar sample showed a more elongated and ribbon-like 

morphology, and a mature fibril could span over 2 μm in length. These size and morphological 

distributions were comparable to those reported earlier using the same preparation method 

(Hook SH, PhD thesis) and were similar to those prepared by Casas-Tinto et al. that induced 
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Xbp1 splicing117. Surface hydrophobicity of Aβ1-42 species was also probed by the use of 1-

anilinonaphthalene 8-sulfonate (ANS), a dye whose fluorescence emission increases upon 

interacting with exposed hydrophobic regions in native or partially unfolded proteins298. 

Compared to monomers, Aβ1-42 oligomers displayed a remarkable increase in the ANS 

fluorescence intensity, indicating an increased level of exposed hydrophobic patches, which 

have been linked to increased toxicity (Figure 6.4)299. The fibrillar sample contained a small 

population of prefibrillar structures, as observed under TEM, alongside the highly ordered 

fibrils, thus corresponding to the middle-level ANS fluorescence between Aβ1-42 monomers 

and oligomers. Some fluorescence signal was observed in the monomer sample indicating that 

hydrophobic surfaces were present, either in the monomeric protein or due to the presence of 

some pre-existing oligomers.  
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Figure 6. 3. Representative TEM images of Aβ1-42 monomers, oligomers and fibrils. 

Oligomers and fibrils prepared in this study showed distinct size and morphological 

distributions. Scale bar = 100 nm in monomers and oligomers; scale bar = 500 nm in fibrils.  
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Figure 6. 4. Representative ANS fluorescence spectra upon binding Aβ1-42 monomers 

(red), oligomers (green) and fibrils (blue). PBS buffer (black) was used as a control. (n=3) 

 

In both NMR-KF2 and 3T3 fibroblasts which had shown UPR activation under TU-treated 

conditions (Figure 6.1 B), neither Xbp1 splicing nor changes in expression of the selected UPR 

markers were observed under monomer- or fibril-treated conditions (Figure 6.5), suggesting 

that Aβ1-42, regardless of size, structure and type of assemblies, seemed not to induce ER stress 

in the NMR-KF2 and mouse 3T3 fibroblasts following the 24-hr treatment. However, data from 

more biological replicates can be collected as the changes of these UPR markers in response 

to Aβ1-42 might be too minute to be observed from the three replicates, and more conditions 

such as extended time of exposure and increased Aβ1-42 concentrations may also be tested.  
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Figure 6. 5. Changes in expression of UPR markers in the NMR-KF2 and mouse 3T3 cells 

treated with different Aβ1-42 species. The NMR-KF2 and mouse 3T3 fibroblasts were treated 

with 2 μM Aβ1-42 monomers, oligomers and fibrils for 24 hr. Expression of Atf4, Ddit3 and 

Hspa5 was measured by RT-qPCR. Results were normalised to the mRNA levels of reference 

genes and were presented on a log scale as mean ± S.D. of mRNA fold change relative to the 

basal-level expression in the PBS-treated controls (n=3); unpaired t-tests. 

 

6.2.3. Downregulation of UPR markers in mouse sensory neurons in 

response to Aβ1-42 oligomers 
 

Since most previous studies of Aβ1-42-mediated ER stress were performed in neuronal systems, 

we next investigated the effects of Aβ1-42 oligomers on the UPR of sensory neurons, starting 

by optimising the protocol in mouse before sacrificing NMRs. Sensory neurons were pooled 

from mouse dorsal root ganglia (DRG) and trigeminal ganglia and were probed for changes in 

expression of the UPR markers in response to the 24-hr treatment with 2 μM Aβ1-42 oligomers. 

Due to the small amounts of sensory neurons collected per animal (5000 cells per treatment), 

carrier RNA (supplied in the Qiagen RNeasy Kit) was used to improve the RNA yield to ~50 

ng per sample and ensure the quality for downstream RT-qPCR application. The carrier RNA 

is a poly-A RNA that prevents the small amount of target RNA in the sample from being 

irretrievably bound and does not interfere with subsequent RT-qPCR according to the 

manufacturer (Qiagen).  

 

No Xbp1 splicing was observed in the sensory neurons treated with Aβ1-42 oligomers (Figure 

6.6 A), but the levels of Ddit3 and Hspa5 were reduced compared to the PBS-treated controls 
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(Figure 6.6 B). Expression of Hspa5 was reduced to half of the basal expression in the PBS-

treated sample. The amount of Atf4 transcripts diminished slightly but this was not statistically 

significant. Whereas the UPR in 3T3 fibroblasts was not affected by treatment with Aβ1-42 

oligomers, the sensory neurons displayed an overall suppression of the UPR when the same 

amounts of Aβ1-42 oligomers were applied. 

 

 

 

 

Figure 6. 6. Changes in the expression of UPR markers in primary cultures of mouse 

sensory neurons. Sensory neurons were isolated from mouse dorsal root ganglia (DRG) and 

trigeminal ganglia and treated with 2 μM Aβ1-42 oligomers for 24 hr. (A) Representative images 

of the RT-PCR products of Xbp1s and Xbp1u in sensory neurons treated with and PBS for 24 

hr. (B) Expression of Atf4, Ddit3 and Hspa5 was measured by RT-qPCR. Results were 

normalised to the mRNA levels of reference genes and were presented on a log scale as mean 

± S.D. of mRNA fold change relative to the basal-level expression in the PBS-treated controls. 

n=3 animals; *p<0.05, **p<0.01; unpaired t-tests.  

 

6.2.4. Distinct patterns of membrane binding and cellular uptake of Aβ1-42 

oligomers by sensory neurons and fibroblasts 
 

In our experimental setup, cells were treated with exogenous Aβ1-42 oligomers that had no 

direct access to the ER. Thus, the ability of the oligomers to enter the cell or interact with 

cellular membrane and/or surface receptors was the main determinant of UPR modulation. 

Therefore, we sought to investigate interactions between Aβ1-42 oligomers and 

fibroblasts/sensory neurons by confocal microscopy. Fluorescent Aβ1-42 oligomers were 
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prepared from HiLyte Fluor 488-labelled Aβ1-42 peptide and applied to the cells for 5 hr. These 

fluorescent Aβ1-42 oligomers have been characterised to display similar morphological and size 

distributions when compared to unlabelled Aβ1-42 oligomers, thus suggesting that the addition 

of the dye did not perturb the system to any significant degree (Hook SH, PhD thesis). We 

observed distinct patterns of membrane binding and internalisation of Aβ1-42 oligomers in the 

different cell types after the 5-hr treatment. In NMR-KF2 and 3T3 fibroblasts, Aβ1-42 oligomers 

were found to bind to only a couple of cells within the population. The majority of fibroblasts 

did not interact with Aβ1-42 oligomers (Figure 6.7), and extremely few intracellular puncta of 

oligomers were observed (< 5 cells out of the entire sample slide) (Figure 6.8). In contrast, 

Aβ1-42 oligomers co-localised well with the cell membrane of over half of the population of 

mouse DRG neurons. Fluorescent puncta were also found intracellularly in approximately 30% 

of the DRG neurons, suggesting the internalisation of these oligomers, which was validated by 

Z-stack analysis (Figure 6.9).  
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Figure 6. 7. The majority of mouse NIH3T3 fibroblasts and NMR-KF2 cells did not 

interact with Aβ1-42 oligomers after the 5-hr treatment. Blue: DAPI for nucleus, purple: 

Alexa Fluor 647-labelled wheat germ agglutinin (WGA), green: oligomers prepared from 

HiLyte Fluor 488-labelled Aβ1-42 peptides. Scale bar = 25 μm. 
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Figure 6. 8. Representative confocal images of the interaction of Aβ1-42 oligomers with 

mouse NIH3T3 fibroblasts and NMR-KF2 cells after the 5-hr treatment. Blue: DAPI for 

nucleus, purple: Alexa Fluor 647-labelled wheat germ agglutinin (WGA), green: oligomers 

prepared from HiLyte Fluor 488-labelled Aβ1-42 peptides. Scale bar = 10 μm. 
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Figure 6. 9. Representative confocal images of the interaction of Aβ1-42 oligomers with 

mouse DRGs after the 5-hr treatment. Oligomers were associated with the membrane of 

most neurons, and a small portion of cells internalised Aβ1-42 oligomers. Blue: DAPI for 

nucleus, red: tubulin, green: oligomers prepared from HiLyte Fluor 488-labelled Aβ1-42 peptide. 

Z-stack analysis was performed to confirm the internalisation of oligomers into the cells. Scale 

bar = 25 μm (top); scale bar = 5 μm (bottom). 
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6.2.5. Discussion 
 

Taken together, these results suggest that the lack of activation of the UPR in the NMR-KF2 

and 3T3 fibroblasts was probably due to a lack of interaction between exogenous Aβ1-42 

oligomers and the cell membrane. In contrast, the highly efficient binding of Aβ1-42 oligomers 

to the cell membrane of sensory neurons may mediate oligomer internalisation and/or activate 

specific membrane receptors that are constitutively expressed on the neuronal cells to initiate 

signalling cascades leading to ER stress and other neurotoxic effects. For example, Aβ1-42 

oligomers has been shown to activate the N‐methyl‐D‐aspartate receptor (NMDAR), a 

glutamate receptor and ion channel protein found in nerve cells, through the interaction with 

the GluN2B subunit and to trigger ER stress, thus leading to apoptosis293. Oligomeric Aβ1-42 

has also been demonstrated to activate phospholipase C and disrupt ER Ca2+ homeostasis 

through channels associated with ryanodine receptors, which display different isoform 

distribution and expression levels in brain and other tissues290. In addition, the increased 

susceptibility of neurons to Aβ1-42 oligomers has been linked to higher contents of lipid rafts 

enriched in ganglioside GM1 and cholesterol where soluble ADDLs accumulate300,301. This 

was supported by the fact that oligomers from salmon calcitonin, another neurotoxic amyloid 

protein, increased intracellular Ca2+ levels and induced apoptosis in mouse mature 

hippocampal neurons, but not in NIH3T3 fibroblasts which had significantly lower contents of 

lipid rafts300. Interestingly, a recent study has reported that NMR brain lipids have higher 

cholesterol and lower sphingomyelin levels compared to mouse brain lipids, resulting in a 

higher degree of phase separation and sensitivity to Aβ1-42-induced damage, further suggesting 

that the NMR may have evolved neuroprotective mechanisms that are not based on mechanical 

resistance to support a healthy brain within an Aβ-rich environment302. 

 

We showed an overall suppression of the UPR in mouse sensory neurons following the 24-hr 

treatment of Aβ1-42 oligomer, which is different from the findings of previous studies where 

potent UPR activation was observed. Decreased expression in almost all UPR genes analysed 

in this study may be a result of pronounced apoptosis induced by Aβ1-42 oligomers, which can 

be determined by assessment of cell viability based on microscopy or flow cytometry given 

the limited number of neurons. Previously reported Xbp1 splicing and elevated BiP expression 

within hours of treatment with Aβ1-42 oligomers in neuronal cultures suggested that UPR might 

have been activated as an early, acute response before detrimental effects were 
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observed117,291,292. Therefore, time-dependent responses should be monitored to trace the 

progress and shift of UPR signalling and to help elucidate the role played by UPR in the course 

of exposure to exogenous Aβ1-42 oligomers. Moreover, although our current approach provides 

a powerful tool to measure an average level of mRNA expression, it may miss the changes in 

a subset of the cells as they are diluted out. In fact, it was reported that Aβ1-42 oligomers induced 

only mild ER stress that could hardly be detected in a pool of cells303. Given the heterogeneity 

of membrane binding and cellular uptake of Aβ1-42 oligomers that we observed, single-cell RT-

qPCR may provide a better means of determining gene expression in individual cells with and 

without the Aβ1-42 binding/uptake and reveal more insights. 

 

6.3. Effects of α-synuclein oligomers on UPR and autophagy in the NMR 
 

It has long been thought that α-synuclein exerts its toxic effects intracellularly. This concept 

was challenged when α-synuclein, in particular pathogenic oligomeric species, was detected in 

the plasma and cerebrospinal fluid from PD patients304. Furthermore, it has been shown that 

neuronal cells overexpressing α-synuclein can produce oligomeric species that are secreted by 

exocytosis or in exosomes and can be taken up by neighbouring cells to induce significant 

toxicity, providing strong evidence for prion-like cell-to-cell propagation of α-synuclein305–307. 

Extracellular α-synuclein oligomers can be taken up by cells via several different mechanisms, 

including endocytosis308 and permeabilisation of lipid membranes by direct penetration288 or 

the formation of pore-like ion channels309,310. Using a similar approach described in the 

previous section, we examined the effects of exogenously applied stable α-synuclein oligomers 

on the UPR and autophagy in the NMR. 

 

6.3.1. Reduced Xbp1 splicing following the chronic treatment of α-synuclein 

oligomers 
 

Primary kidney fibroblasts were isolated from NMRs, followed by treatment of exogenous α-

synuclein oligomers for 8 hr. We titrated with 0.1, 0.5 and 1 μM α-synuclein oligomers, doses 

that have been used in various cell models for α-synuclein transfer, but we did not observe any 

Xbp1 splicing in the NMR fibroblasts as reported previously in the SH-SY5Y cells291. We then 

extended our treatments to 24 hr and 6 days. For 6-day treatments, we replenished the 

oligomers with the same concentration every 48 hr, as they have been shown to be stable only 
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up to 48 hr. No Xbp1s splicing was found in the cells treated for 24 hr. However, levels of Xbp1 

splicing, indicated by both the Xbp1s-to-Xbp1u ratios and normalised Xbp1s amounts relative 

to the basal-level expression in controls, decreased significantly in the NMR fibroblasts that 

had been treated with α-synuclein oligomers for 6 days (Figure 6.10).  The chronic treatment 

of α-synuclein oligomers reduced the normalised Xbp1s amount by half and the Xbp1s-to-

Xbp1u ratio by two thirds, suggesting suppression of IRE-1XBP1 signalling in the NMR 

fibroblasts. Total levels of Xbp1 transcripts including Xbp1s and Xbp1u did not change 

compared to the PBS-treated controls.  

 

 

 
Figure 6. 10.  Xbp1 splicing in NMR primary kidney fibroblasts after the treatment of 0.5 

μM α-synuclein oligomers for 24 hr and 6 days. For 6-day treatments, α-synuclein oligomers 

were replaced every 48 hr. (A) Representative images of the RT-PCR products of Xbp1s and 

Xbp1u on 6% TBE gels. The graph in (B) shows the mean ± S.D. of Xbp1s-to-Xbp1u ratios. 

n=4 animals; ***p<0.001, unpaired t-tests. 

 

6.3.2. Suppression of ER chaperones in NMR kidney fibroblasts following 

the chronic treatment of α-synuclein oligomers  
 

Using RT-qPCR, we also probed UPR genes in the NMR kidney fibroblasts that were treated 

with α-synuclein oligomers for 24 hr and 6 days. The level of Bloc1s1 mRNA, which is a 

proximate reporter of XBP1-independent RIDD mediated by IRE1, did not change following 

the 6-day α-synuclein oligomer treatment (Figure 6.11). The expression of Atf4 and pro-
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apoptotic Ddit3 also showed no changes under treated conditions compared to that in the PBS-

treated controls (Figure 6.11), suggesting that PERK-mediated signalling was not induced in 

response to α-synuclein oligomers. Levels of Hspa5/BiP, however, showed slight decreases 

after the 24-hr treatment, and continued to diminish, remaining suppressed remarkably after 

the 6-day treatment with α-synuclein oligomers (Figure 6.11). We also surveyed other major 

ER-resident chaperones including GRP94 (encoded by Hsp90b1) and PDIA4 (encoded by 

Pdia4), as well as a BiP cofactor DNAJB11 (encoded by Dnajb11), all of which are 

transcriptionally regulated by ATF6 signalling. Primers for probing genes encoding NMR ER 

chaperones and cofactors were designed and validated for qPCR efficiency as described in 

Chapter 3 (Table 2.1). We found that this subset of UPR genes displayed similar 

downregulation to Hspa5 (Figure 6.11). We also assessed the expression of ER chaperones by 

immunoblotting using an antibody that targets specifically the KDEL ER-retention motif on 

the ER chaperones. The results showed that BiP, GRP94 and PDIA3 expression were 

suppressed following 6-day treatments with α-synuclein oligomers, in good agreement with 

the RT-qPCR results (Figure 6.12). These results indicated that the chronic treatment of α-

synuclein oligomers suppressed ATF6-mediated induction of ER chaperones and cofactors 

below the basal-level expression, which may result in the impairment of the protein quality-

control machinery in the NMR fibroblasts. The E3 ubiquitin ligase HRD1 (encoded by Syvn1) 

involved in the ERAD pathway, which is mainly regulated by XBP1s and co-regulated by 

ATF6, was also downregulated. The expression of Herpud1, which encodes HERP involved 

in ERAD and is regulated by all of the UPR branches, showed no change in response to the 6-

day treatment with α-synuclein oligomers. 
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Figure 6. 11. NMR primary kidney fibroblasts were treated with 0.5 μM α-synuclein 

oligomers for 24 hr (A) and 6 days (B). For 6-day treatments, α-synuclein species were 

replaced every 48 hr. Expression of UPR markers was measured by RT-qPCR. Results were 
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normalised to the mRNA levels of reference genes and were presented on a log scale as mean 

± S.D. of mRNA fold change relative to the basal-level expression in the PBS-treated controls. 

Genes were categorised into four groups: 1) Atf4 and Ddit3 regulated by PERK-eIF2α pathway 

(blue), 2) Hsp90b1, Pdia4, Dnajb11 and Hspa5 encoding ER chaperones and cofactors (purple), 

3) Bloc1s1 targeted by RIDD (red), and 4) Syvn1 and Herpud1 encoding ERAD proteins 

(orange). (C) Changes of UPR markers after the 24-hr treatment were compared with those 

after the 6-day treatment. n=4 animals; ns, p>0.05, *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001; unpaired t-tests.  

 

 

 

 

Figure 6. 12. NMR primary kidney fibroblasts were treated with 0.5 μM α-synuclein 

oligomers for 6 days. Expression of ER chaperones (GRP94/Hsp90b1, BiP/Hspa5 and 

PDIA3/Pdia3) in cell lysates was measured by immunoblotting. A representative western-blot 

image is shown in (A) on which the ER chaperones were probed using an anti-KDEL antibody. 

The intensity of protein bands on the blots was determined by Image J. Results were presented 

in (B) as the mean ± S.D. of protein fold change in α-synuclein-treated NMR fibroblasts 

relative to the basal-level protein expression in fibroblasts treated with PBS (controls). n=3 

animals, *p<0.05, **p<0.01; unpaired t-tests. 
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6.3.3. Induction followed by suppression of autophagy genes following the 

chronic treatment of α-synuclein oligomers  

 
We further examined the expression of selected autophagy markers in NMR kidney fibroblasts. 

We observed the induction of Tfeb, which encodes a master transcription factor of autophagy 

and lysosomal functions, after the 24-hr treatment of 0.5 μM α-synuclein oligomers (Figure 

6.13). Genes that are regulated by TFEB in several steps of the autophagy-lysosomal pathway 

were also upregulated, including Atg5 and Maplc3b, that encode critical autophagy 

components ATG5 and LC3B in the elongation of phagophore and autophagosome formation, 

and Lamp1 which encodes the lysosomal membrane protein, suggesting the improved overall 

autophagy after the 24-hr exposure to 0.5 μM α-synuclein oligomers (Figure 6.13).  

 

We also investigated the effects of chronic treatment of α-synuclein oligomers on the 

autophagy in NMR kidney fibroblasts by qPCR and observed significant changes in the 

expression of autophagy-related genes following the 6-day treatment compared to those after 

the 24-hr treatment. The levels of Tfeb, Sqstm1 and Lamp1 mRNAs, which were found to be 

induced previously in response to the 24-hr treatment, as well as Becn1 (encoding Beclin1), 

were downregulated below the basal-level expression. The suppression of these key autophagy 

genes suggested a decreased level of autophagy, including reduced autophagy initiation 

(Beclin1), cargo/substrate recruitment (p62) and lysosomal membrane biogenesis (LAMP1) in 

the NMR kidney fibroblasts. Intriguingly, we observed a two-fold increase in the expression 

of Map1lc3b, which was further upregulated as compared to the 24-hr treatment, despite the 

downregulation of the master transcription factor TFEB, and was the only autophagy gene that 

remained induced in acute and chronic conditions (Figure 6.13). These results indicated that 

acute and chronic treatments of α-synuclein oligomers seemed to lead to distinct transcriptional 

profiles of autophagy in the NMR kidney fibroblasts. Protein-level assays including the LC3B 

analysis are required to confirm whether these transcriptional changes correlate well with the 

autophagosome turnover at the protein level.  
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Figure 6. 13. NMR primary kidney fibroblasts were treated with 0.5 μM α-synuclein 

oligomers for 24 hr (A) and 6 days (B). For 6-day treatments, α-synuclein species were 

replaced every 48 hr. Expression of selected autophagy-related markers was measured by RT-
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qPCR. Results were normalised to the mRNA levels of reference genes and were presented on 

a log scale as mean ± S.D. of mRNA fold change relative to the basal expression in the PBS-

treated controls. (C) Changes of autophagy-related genes after the 24-hr α-synuclein treatment 

were compared with those after the 6-day treatment. n=4 animals; ns, p>0.05, *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001; unpaired t-tests.  

 

6.3.4. Toxicity induced by chronic but not acute treatments of α-synuclein 

oligomers  
 

We next investigated the toxicity of α-synuclein oligomers on NMR kidney fibroblasts. Cells 

were treated with 0.5 μM α-synuclein oligomers for 24 hr, and the cell viability was measured 

using the CellTiter-Glo luminescent assay. The NMR kidney fibroblasts showed no sign of cell 

death and maintained an average post-treatment cell viability of 102.7% (S.D. = 5.7%), 

indicating their resistance to αS oligomers (Figure 6.14). The percentage of viable populations 

in the human neuroblastoma SH-SY5Y cells, which served as a positive control, reduced to 

83.8% (S.D. = 8.4%) and was in good agreement with previous studies311, suggesting the 

significantly higher toxicity of α-synuclein oligomers to the SH-SY5Y cells than to the NMR 

fibroblasts (Figure 6.14). However, when the NMR fibroblasts were exposed to α-synuclein 

oligomers for 6 days, the cell viability decreased significantly to 80.7% (S.D. = 4.6%), 

indicating the chronic toxic effects exerted by α-synuclein oligomers (Figure 6.14). All of the 

results were normalised to the viability data obtained from PBS-treated controls (2.5% v/v), 

which showed no differences in the resulting cell viability when compared to the untreated 

controls. 
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Figure 6. 14. The human neuroblastoma SH-SY5Y and NMR kidney fibroblasts were 

treated with 0.5 μM α-synuclein oligomers for 24 hr or 6 days. Percentage of viable cells 

after the treatment was measured by CellTiter-Glo assay. Results were presented as mean ± 

S.D. of the percentage survival (%) of treated samples in comparison to the PBS-treated 

controls. NMR-PKF = NMR primary kidney fibroblasts. n=3; *p<0.05, **p<0.01; unpaired t-

tests.  

 

6.3.5. Different transcriptional profiles induced by chronic treatments of α-

synuclein monomers, oligomers and fibrils 
 

We also examined the effects of different conformers of α-synuclein on the UPR and autophagy 

in NMR primary kidney fibroblasts. Fibrils were prepared from wild-type α-synuclein using 

the established protocol (CK Xu, PhD thesis). We applied 0.5 μM monomers and fibrils to the 

NMR primary kidney fibroblasts and measured the expression of those UPR and autophagy 

genes using Xbp1 splicing assay and RT-qPCR.  

 

In all of the four NMRs examined, α-synuclein oligomers and fibrils induced opposite effects 

on Xbp1s splicing. While the normalised Xbp1s levels and Xbp1s-to-Xbp1u ratios in oligomer-

treated fibroblasts were reduced compared to the basal expression of Xbp1s in the PBS-treated 

controls, the fibroblasts treated with fibrils showed increased levels of Xbp1s mRNA (Figure 
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6.15). The normalised amounts of Xbp1s in fibril-treated NMR fibroblasts were slightly 

elevated compared to the controls and were twice as high as that in oligomer-treated cells, 

suggesting mild activation of IRE1-XBP1 signalling by α-synuclein fibrils. No change in 

Xbp1s splicing was observed in monomer-treated fibroblasts. Levels of total Xbp1 transcripts 

were not altered under any of these conditions (Figure 6.15).  

 

 

 

 

Figure 6. 15. Xbp1 splicing in NMR primary kidney fibroblasts after the treatment of 0.5 

μM α-synuclein monomers, oligomers and fibrils for 6 days. (A) Representative images of 

the RT-PCR products of Xbp1s and Xbp1u on 6% TBE gels. The graph in (B) shows the mean 

± S.D. of Xbp1s-to-Xbp1u ratios. n=4 animals; *p<0.05, **p<0.01, ***p<0.001, unpaired t-

tests. 

 

RT-qPCR results showed that neither α-synuclein monomers nor fibrils induced any Bloc1s1 

degradation (Figure 6.16). No significant changes were observed in the expression of Atf4 and 

Ddit3 mRNAs in the NMR fibroblasts treated with monomers and fibrils compared to the basal 

expression in the PBS-treated controls (Figure 6.16). These data indicate that both RIDD and 

PERK pathways in the UPR remained inactive in response to α-synuclein monomers and fibrils, 

similar to the results collected under oligomer-treated conditions.  

 

However, significant differences were found in the expression of selected genes encoding ER 

chaperones and autophagy proteins among the samples treated with monomers, oligomers and 

fibrils. While expression of the ER chaperones and cofactors examined in the fibroblasts treated 
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with α-synuclein oligomers, including Hsp90b1, Hspa5, Pdia3 and Dnajb11, were found to be 

highly suppressed following the chronic treatment, levels of these transcripts were not altered 

when the NMR kidney fibroblasts were treated with α-synuclein monomers and fibrils, with 

the only exception of Hsp90b1 downregulation found in monomer-treated samples. Reduction 

in gene expression of the three ER chaperones, Hsp90b1, Pdia4 and Hspa5, were more 

significant in oligomer-treated NMR fibroblasts compared to monomer- and fibril-treated 

samples. Levels of Dnajb11 downregulation were not statistically significant among different 

conditions due to the large variation among biological replicates.  

 

With regards to autophagy, NMR kidney fibroblasts treated with α-synuclein monomers and 

fibrils displayed no significant changes at the transcriptional level compared to the PBS-treated 

controls. Levels of Map1lc3b were much more heightened in the oligomer-treated fibroblasts 

compared to monomer- and fibril-treated samples, whereas expression of Sqstm1 and Lamp1 

was more suppressed under oligomer-treated conditions in comparison to monomer- and fibril-

treated conditions (Figure 6.16). No differences were observed in expression of Tfeb, Becn1 

and Atg5 among samples treated with different forms of α-synuclein.  

 

Cell viability results showed that only oligomers exhibited significant toxicity following the 6-

day treatment at 0.5 μM (Figure 6.17). α-synuclein monomers seemed slightly toxic to the 

NMR fibroblasts, reducing the percentage of survival to 85.9% (S.D. =7.6%), though not 

statistically significant compared to the PBS-treated controls. Fibrils were benign to these 

NMR fibroblasts and did not affect the cell viability after the treatment with an average viability 

of 104.2 % (S.D. =2.7%). 
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Figure 6. 16. NMR primary kidney fibroblasts were treated with 0.5 μM α-synuclein 

monomers, oligomers and fibrils for 6 days. Expression of UPR and autophagy markers was 

determined by RT-qPCR and was given in (A) and (B), respectively. Results were normalised 

to the mRNA levels of reference genes and were presented on a log scale as mean ± S.D. of 

mRNA fold change relative to the basal-level expression in the PBS-treated controls. n=4 

animals; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001; unpaired t-tests. 
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Figure 6. 17. Percentage of the viable NMR primary kidney fibroblasts after the 6-day 

treatment of 0.5 μM α-synuclein monomers, oligomers and fibrils. Cell viability was 

measured by CellTiter-Glo assay. Results were shown as mean ± S.D. of the percentage 

survival (%) of treated samples relative to the PBS-treated controls, n=4 animals; **p<0.01, 

***p<0.001; unpaired t-tests. 

 

6.3.6. Discussion 
 
Taken together, these results indicate a strong correlation between the toxicity of α-synuclein 

oligomers and the level of suppression of pro-survival XBP1 and ATF6 pathways in the UPR 

signalling. The increased toxicity of oligomers might also be associated with their incremental 

local concentration accumulated on the cell membrane, as a result of the regular replacement 

of oligomers. Many studies have suggested a neuroprotective role played by XBP1s and ATF6 

signalling in PD which can serve as potential therapeutic targets. For instance, local injections 

of adenoviruses or adeno-associated viruses expressing XBP1s into the substantia nigra pars 

compacta (SNc) of adult mice enhances survival of dopaminergic neurons (DNs) against 6-

hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-

induced neurotoxicity312,313. ATF6 also prevents degeneration of DNs in the MPTP-induced 

PD model through induction of chaperones and ERAD and has been shown to protect cells 
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from chronic ER stress122,314. Overexpression of BiP reduces apoptosis and promotes the 

survival of DNs in a rat PD model with elevated levels of human α-synuclein in the SNc315. 

Disruption of XBP1 and ATF6 signalling would result in a decay of the UPR transcriptional 

programmes, including genes encoding ER chaperones and ERAD components which may be 

particularly important in protecting cells from chronic ER stress, exacerbating the cytotoxic 

consequences of α-synuclein oligomers. A previous study showed that chronic ER stress in the 

mouse liver induced by repeated injections of a low dose of tunicamycin suppressed Hspa5 

and Hsp90b1 mRNAs, which was due to the silencing of ATF6 pathway and enhancement of 

RIDD316. In this study, we did not observe signs of increased RIDD, as indicated by unaltered 

Bloc1s1 levels, suggesting that the suppression of ER chaperones was mainly attributed to 

decreased activity of ATF6 and possibly XBP1s. It was shown that α-synuclein inhibited ATF6 

activity directly through physical interactions and indirectly through the disruption of COPII 

ER-Golgi transport, a pathway necessary for the processing and activation of ATF6, thus 

leading to the downregulation of ERAD, although levels of BiP expression were paradoxically 

upregulated317. Detailed mechanisms by which these oligomers modulate XBP1 and ATF6 

activity need to be established in the future. Interestingly, previously reported increased 

expression of PERK downstream targets including ATF4 and CHOP in PD tissue and models 

was not observed in our study, suggesting that α-synuclein-oligomer-mediated toxicity in the 

NMR fibroblasts was independent of the pro-apoptotic PERK-ATF4-CHOP activation.  

 

The toxicity of α-synuclein oligomers also appeared to be associated with the level of 

autophagy in the NMR fibroblasts. Our results suggest a model in which autophagy is initially 

induced upon the uptake of α-synuclein oligomers to enhance their clearance; subsequently, 

this autophagic machinery is chronically suppressed by the increasing amounts of oligomers 

accumulated in the cell, leading to the impairment of autophagy which may contribute to the 

cell death. These results obtained from the transcriptional level, however, need to be validated 

by the standard means of assaying autophagy such as the LC3-II analysis to test whether 

autophagic flux is truly compromised by the α-synuclein challenge. A recent study of α-

synuclein transmission showed that the accumulation of deficient lysosomes was induced by 

internalised α-synuclein oligomers in recipient neuronal cells, linking autophagic dysfunction 

to α-synucleinopathies318. In pathological conditions, decreased α-synuclein clearance due to 

autophagy impairment may also induce exosomal secretion of α-synuclein amounts and 

mediate cell-to-cell propagation of the toxic protein237.  
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In addition, we demonstrated that the effects of exogenous α-synuclein species depended on 

their aggregation states. Only oligomeric species showed potent toxicity following the 6-day 

treatment in the NMR fibroblasts. The transcriptional signature in oligomer-treated fibroblasts 

was distinctive from those in monomeric and fibrillar α-synuclein-treated fibroblasts, further 

suggesting that the modulation of UPR and autophagy played a critical role in determining the 

ability of cells to tolerate stress induced by different α-synuclein species.  

 

6.4. Conclusions and future work 
 

This chapter constitutes the first investigation of the relationship between UPR/autophagy and 

pathogenesis linked to Aβ/α-synuclein oligomers using NMR cells. We find that membrane 

binding and cellular uptake of exogenous Aβ oligomers plays an important role in modulating 

intracellular UPR signalling. Inefficient binding of Aβ oligomers to the membrane of NMR 

and mouse fibroblasts leads to a silent UPR response, whereas pronounced Aβ binding and 

internalisation by mouse sensory neurons seem to induce cell death. Further optimisation of 

current experimental systems is required to determine the effects of Aβ oligomers on the UPR 

in the NMR under appropriate conditions. We also demonstrate that exogenous α-synuclein 

oligomers induce transcriptional modulation of the UPR and autophagy in the NMR kidney 

fibroblasts. Chronic toxicity of exogenously applied α-synuclein oligomers is associated with 

the transcriptional suppression of the pro-survival UPR mechanisms, including IRE1-XBP1 

and ATF6 branches, and the autophagy-lysosomal pathway. This transcriptional signature is 

induced only by oligomeric α-synuclein but not by monomeric and fibrillar species, suggesting 

a unique mechanism by which α-synuclein oligomers exert detrimental effects during cell-to-

cell propagation. In light of our preliminary findings of the effects of chronic exposure of NMR 

fibroblasts to α-synuclein oligomers, future experiments to investigate the effects of these types 

of exposures on mouse homologues will help to confirm whether the impairment of autophagy 

observed here is unique to the NMR. In these future experiments, it would be ideal to use 

neuronal cells from both animals, given our findings that fibroblasts cells are less amenable to 

binding and cellular uptake of Aβ oligomers. It would also be useful to examine the interactions 

of the α-synuclein oligomers with the cells using confocal microscopy in combination with the 

comparison of UPR and autophagy responses.  
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7. Development of a specific NMR anti-LC3B probe using a CTPR 

scaffold 
 

7.1. Introduction 
 

Probing the molecular details of emerging animal models, such as the NMR, can be challenging 

due to the lack of available molecular tools, including antibodies that are routinely used for 

protein-level analysis. In this chapter, we develop a probe for the detection of the NMR LC3B 

protein by grafting a LC3-interacting-region (LIR) onto a consensus-designed tetratricopeptide 

repeat protein (CTPR) scaffold as a proof-of-concept study. We characterise the key features 

of this probe and prove its binding to the target LC3B protein, thus demonstrating the ability 

to rationally design CTPR-based probes as a useful alternative to commercial antibodies, which 

can be further optimised and expanded for wider applications.  

 

7.1.1. Repeat proteins and CTPR scaffolds 
 

Repeat proteins are widely distributed across nature and are involved in a myriad of cellular 

processes.  The high frequency of these non-globular tandem-repeat arrays is likely the result 

of DNA replication slippage and recombination events319. Repeat proteins are arranged in 

tandem arrays of small basic motifs of 20-40 amino acids that stack in a linear fashion, creating 

elongated and superhelical architectures320. Unlike globular proteins that are stabilised by 

sequence-distant contacts; repeat proteins have simple topologies comprised exclusively of 

interactions between residues within a repeat or between adjacent repeats and can fold in a 

cooperative manner155,320. The repeat protein family can be categorised based on their 

secondary structure content, and tetratricopeptide repeats (TPRs) are one of the most common 

forms of α-helical repeat proteins. The TPR consists of a 34-residue motif that adopts an 

antiparallel helix-turn-helix arrangement321,322, with between 2 to 20 repeats arranged in 

tandem linked by a short loop usually  four residues in length323. The first crystal structure of 

a TPR motif (Figure 7.1), the three-TPR domain of protein phosphatase 5, revealed that the 

repeats are packed together in a parallel array to produce a right-handed superhelical structure 

with a continuous helical groove, which is commonly the site for recognition of target 

proteins324. TPRs have been found in over 300 proteins and generally function as scaffolds in 
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mediating protein-protein interactions and the assembly of multiprotein complexes325. TPR-

containing proteins include Hsp70-Hsp90 organising protein (HOP) (Figure 7.1), three 

essential subunits of the anaphase promoting complex/cyclosome (APC/C) (Cdc16, Cdc23 and 

Cdc27)322, the NADPH oxidase subunit p67phox326 and many others324. 

 

 

 

Figure 7. 1. TPR domains in HOP (PDB: 1elw) and protein phosphatase 5 (PDB: 2bug). 

(A) Crystal structure of the TPR1 domain of HOP in complex with an HSC70 derived peptide 

(GPTIEEVD)326. (B) Solution structure of the TPR domain of protein phosphatase 5 in 

complex with an Hsp90-derived peptide (MEEVD)327. Peptides are displayed as ball-and-stick 

structures. Figures were prepared using PYMOL. 

 

By applying the concept of consensus design328, - i.e. engineering a protein to have the most 

common residue at each position determined by multiple sequence alignments - many groups 

have designed artificial proteins that have greatly enhanced stabilities in comparison to their 

natural counterparts320. The first consensus TPR (CTPR) constructs were made by the Regan 

group325. The consensus sequence consists of the residues with the highest global propensity 

from sequence alignment at each position of the TPR motif, with a replacement of cysteine by 

alanine (C10A) to prevent disulphide bond formation and the additional incorporation of an N-

capping, helix-stabilising sequence (Gly-Asn-Ser) and a ‘solvating helix’325. Two mutations 

(D18Q and E19K) were introduced later to increase the stability of individual repeat units 

through the promotion of charge-charge interactions329,330. Chemical and thermal denaturation 

studies have shown that CTPRs  are highly stable325,330, and the stabilising interactions are 
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predominantly due to the large hydrophobic residues that force the α-helices apart into the 

characteristic elongated structure320.  

 

The exceptionally high thermostability, simple topology and modular nature make CTPR 

scaffolds extremely amenable for rational engineering to introduce novel functionalities. TPR 

proteins can utilise varied modes of bindings to their partners, ranging from short linear peptide 

motifs to large globular protein domains323. The most common interaction involves the concave 

groove formed by two to three TPR repeats binding to a short negative charged peptide of 

around five amino acids, first identified in the C-terminal domain of Hsp90 bound to HOP323,331. 

Exploiting this binding mode, Cortajarena et al. created a functional TPR-based module 

interacting with the C-terminus of Hsp90 with improved specificity and affinity by grafting the 

residues from the natural TPR domains in HOP onto the α-helices of the concave face of a 

three-repeat CTPR (CTPR3)332. Rational design and library screening approaches were 

subsequently used to optimise these TPR-based modules with potential applications in protein-

based detection and inhibition of cellular protein-protein interactions, although the affinities 

were fairly weak (low- to mid-micromolar), presumably due to the small area of the interfaces 

involved333,334. Our group has recently shown that CTPRs can tolerate extensions of an inter-

repeat loop up to 25 residues, which does not disrupt the overall protein structure and allows 

binding sequences for target proteins to be constrained in bioactive conformations155. Taking 

advantage of this malleability, we have developed a new approach for engineering high-affinity 

binding properties into CTPR proteins by grafting functional peptides into the loop between 

adjacent repeats335. We used a short peptide derived from the nuclear factor erythroid-2-related 

factor (Nrf2) and created artificial CTPR proteins that bound the Kelch-like ECH-associated 

protein 1 (Keap1) with nanomolar affinities, and this engineered protein could be expressed in 

E. coli with extremely high yields (1-2 mg from 90 mL of culture) and showed high 

thermostability (>65°C)335. Using this ‘cut-and-paste’ grafting strategy, here we explore the 

application of rationally engineered CTPR proteins for detecting target proteins in the NMR as 

potential antibody replacement. As a proof of concept, we choose to develop a probe that 

targets specifically the NMR LC3B protein, which is a standard marker for assaying autophagy, 

by grafting a known LC3-interacting region (LIR) onto a CTPR4 scaffold. Additionally, 

although here we use the LC3B protein, which has very similar sequence between NMR and 

human, so the human antibody could be used as a positive control and be directly compared to 

our designed probe, this approach could be used in future to designed NMR probes where the 

'antigen' epitope is too different from those in other organisms for those antibodies to be used. 
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7.1.2. LC3-interacting region (LIR) in LC3B-binding proteins 
 

ATG8/LC3/GABARAP proteins are conjugated to autophagosomes and interact with two 

broad classes of partners: autophagy receptors and adaptors. The interaction depends on a LC3-

interacting region (LIR) comprising of 15 to 20 amino acids, which binds to the LIR docking 

site (LDS) of ATG8 proteins144. Autophagy receptors bind directly to lipidated ATG8 anchored 

on the inner autophagosomal membrane and mediate the docking of autophagosome to cargo 

(Figure 7.2), for example, organelles, intracellular pathogens, protein aggregates and 

ribosomes, which can be specifically targeted by autophagy receptors for subsequent 

sequestration and delivery for degradation144,336. Another class of proteins,  autophagy adaptors 

- interact with lipidated ATG8 proteins via LIR on the convex autophagosome membrane and 

can regulate autophagosome formation, transport, crosstalk with the endocytic network and 

autophagosome formation but are themselves not degraded by autophagy337. The LIR motif 

was originally mapped to a 22-residue sequence in an intrinsically disordered region of p62, 

the first identified mammalian autophagy receptor (Figure 7.2), which contained an 

evolutionarily conserved motif228. Structural data on LC3-p62 and ATG8-ATG19 (in yeast) 

identified a four-amino-acid motif, W-X1-X2-L (X represents any amino acid) in p62 and 

ATG19 where the side chains of tryptophan (W) and leucine (L) interact with two different 

hydrophobic pockets (HP1 and HP2) in the core ubiquitin-like (Ubl) domain of 

LC3B/ATG8338,339. Mutation analyses and binding assays, together with a compilation of 

structural information of verified LIR-ATG8 (LC3 and GABARAP) complexes, revealed the 

canonical LIR motif that consists of Θ-X1-X2-Γ motif, where Θ represents an aromatic residue 

(W/F/Y) and Γ an aliphatic residue (L/V/I)336 (Figure 7.3). Most LIR motifs have W or F at 

the Θ position, and the Y732W mutation in the NBR1 LIR can significantly enhance binding 

affinity by a 7.5-fold increase340. The X1 and X2 positions are often populated by acidic or 

hydrophobic residues, with the X2 being the most promiscuous, sometimes harbouring basic 

residues144. The core motif is flanked by N- and C-terminal sequences that often contain acidic 

residues and contribute to binding affinity and specificity144. It has been shown that the N-

terminal acid residues engage in electrostatic interactions with basic residues in the LDS of 

LC3/GABARAP proteins341,342, while the C-terminal extended LIRs in autophagy adaptors 

such as ALFY (autophagy-linked FYVE protein) and FYCO1 (FYVE and coiled-coil domain 

containing 1) confer specificity and stabilise the LIR-LDS interaction145,343–345.  
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Figure 7. 2. Model of phagophore expansion along a p62-coated ubiquitinated cargo. At 

the rim of the phagophore, lipidated GABARAP proteins act as scaffolds for the assembly of 

core autophagy components including ULK complex346, PI3KC3 Complex 1347 and ATG5-

ATG12-ATG16348 via LIR motifs. The major components of p62 include an N-terminal PB1 

domain, a LIR motif and a C-terminal ubiquitin binding UBA domain144. The phagophore-to-

cargo docking is mediated by oligomerisation of p62 via its PB1 domain349, enabling multiple 

interactions between the LIR motif and lipidated LC3B. This strong binding outcompetes other 

interactions of p62 with core autophagy proteins such as FIP200, thus preventing the 

degradation of these core autophagy proteins by autophagy350. Figure modified from the 

reference with permission144. 



Chapter 7: Development of a specific NMR anti-LC3B probe using a CTPR scaffold 

 130 

 
 
 
Figure 7. 3. LIR sequences. (a) Sequence logos based on 100 LIR motifs, with 48 LIRs with 

F, 42 with W and 10 with Y in position X0 shown as information content in bits (upper panel) 

and residue probabilities (lower panel). (b) LIRs in the core autophagy components. Figure 

reprinted from the reference with permission144. 

 

To date, over 40 LIR-containing proteins have been identified as interacting with ATG8 family 

proteins344. In this study, a 17-amino-acid LIR peptide derived from FUN14 domain containing 

1 (FUNDC1)351, which is an essential mitochondrial outer-membrane protein acting as a 
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specific receptor for hypoxia-induced mitophagy in mammalian cells352, was chosen for 

grafting into a CTPR4 scaffold. The peptide sequence corresponds to the residues 10-26 of 

human FUNDC1 and contains a canonical LIR motif (Y18-E19-V20-L21)351. The sequence 

located immediately to the N-terminus of the LIR motif (S13-D14-D15-D16-S17) includes 

acidic residues (D) engaging in electrostatic interactions and serine (S) that can be 

phosphorylated351. Under normal conditions, S13 and Y18 are phosphorylated by CSNK2/CK2 

kinase and SRC kinase, respectively, which inhibits the interaction of FUNDC1 and LC3, 

whereas hypoxia induces dephosphorylation of FUNDC1 enhances its binding to LC3-II and 

subsequently activates  mitophagy352,353. The solution structure of the LC3B-FUNDC1-LIR 

peptide complex revealed a nonconventional binding conformation in which V20 was also 

inserted into the HP1 of LC3B, together with the highly conserved Y18 and L21 residues351 

(Figure 7.4). This FUNDC1-LIR peptide thereby adopts a loop conformation when binding 

LC3B and abolishes an intermolecular β-sheet that is seen in other LC3-LIR complexes such 

as LC3B-p62339,351. Isothermal titration calorimetry (ITC) showed that the dissociation 

constant (KD) for the interaction of this FUNDC1-LIR peptide with LC3B was 0.40 μM351, 

which is stronger than most of the LIR peptides derived from other binding partners of LC3B. 

FYCO1, an autophagy adaptor protein which mediates microtubule plus end-directed 

autophagosome transport354, demonstrates a superior binding affinity (0.19 μM) because of a 

unique LIR conformation upon binding which comprises a β-strand flanked by a C-terminal α-

helix and negatively charged residues at the N-terminus344. However, in our first design 

attempts, we reasoned that these secondary structure elements and associated binding 

functionality in FYCO1 might not be preserved after grafting directly into the inter-repeat loop 

of our CTPR scaffold, resulting in sub-optimal interactions with the LC3B protein. In addition, 

Rogov and colleagues have determined that, out of the 30 LIRs investigated, only FUNDC1-

LIR shows a preferential interaction with LC3B over LC3C and GABARAP proteins337. In 

summary, the FUNDC1-LIR peptide was selected as an appropriate candidate for grafting 

because of its reasonably high affinity, its relatively short sequence which adopts a loop-like 

structure that should be amenable to grafting into the CTPR loop, and its selectivity towards 

LC3B over other LC3/GABARAP paralogues. As a starting point, we used the human 

FUNDC1-LIR because it has been well characterised, and it differs from the predicted NMR 

FUNDC1-LIR sequence (NCBI: XP_004871590.1) by only one amino acid at residue 10 

(Figure 7.5). The D-to-E substitution would not be expected to have a large impact on the 

structure or binding affinity as both residues are negatively charged. The sequence homology 

between the NMR and human LC3B is 97% with all critical amino acids forming the HP1 
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(Asp19, Ile23, Lys51, and Leu53) and HP2 (Phe52, Val54, Leu63, Ile66 and Ile67) are 

conserved351 (Figure 5.6), making the human FUNDC1-LIR and NMR LC3B an ideal pairing 

to investigate.   

 

 
 

Figure 7. 4. Solution structure of LC3 in complex with a synthetic FUNDC1 peptide 

containing the LIR resolved by nuclear magnetic resonance spectroscopy. (A) 

Superimposition of the backbones of the ensemble of 20 structures of the LC3-FUNDC1 

complex. Red: α helices, blue: β sheets, yellow: LIR-containing peptide. (B) Ribbon 

representation of the LC3-FUNDC1 mean structure. Grey: LC3, yellow: LIR-containing 

peptide. Side chains of LC3 residues that form the HP1 and HP2 are labelled in black, and the 

three critical residues inserted into the HP1 are labelled in red. (C) Electrostatic potential 

surface of LC3. Blue:  positively charged residues, red: negatively charged residues, grey: 

neutral residues. (D) Superimposed ribbon structures of the LC3-FUNDC1 peptide (blue) and 

LC3-p62 peptide (pink) complexes. The LIR residues in both complexes are labelled. Figure 

reprinted with permission351.   
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Figure 7. 5. Sequence alignment of human and NMR FUNDC1-LIR peptides. Key amino 

acid residues are in bold. There is only one amino acid difference (E to D, highlighted in red) 

between the two peptides. The core LIR domain (residues 18-21, underlined, is identical in the 

two peptides. Ser13, which plays a critical role in modulating phosphorylation and binding of 

FUNDC1 to LC3, is also conserved.   

 

7.2. Design of the CTPR4-LIR probe 
 

We chose the CTPR sequence used by Grove et al. due to its high stability and solubility329,335. 

The inter-repeat loop of the CTPR scaffold comprises four amino acids (DPNN). Using the 

similar design described in our previous study, the FUNDC1-LIR peptide sequence was 

inserted into the loop of CTPR4 and flanked by a DPNN sequence on both sides so as to 

preserve the chemical environment of the residues adjacent to the loop335. An N-terminal 6*His 

tag was incorporated into the protein construct to allow a one-step purification by affinity 

chromatography, along with a thrombin cleavage site for the His tag removal. Additionally, a 

HiBiT tag, with a proceeding GS linker (EFSGGGGS), was used as a luminescent reporter355. 

The small size (11 amino acids) of HiBiT means that it can be fused to the C-terminus of the 

CTPR4-LIR probe without disrupting the overall protein structure. Due to its exceptionally 

high affinity (KD = 700 pM) to LgBiT, the HiBiT-tagged probe can produce a potent 

luminescent signal after a short period of incubation with LgBiT, which is significantly more 

sensitive than fluorophore-based techniques such as GFP355. The design and predicted structure 

of the CTPR4-LIR probe is shown in Figure 7.6. A randomly scrambled FUNDC1-LIR 

sequence was also designed and grafted onto the CTPR4 scaffold as a negative control 

(CTPR4-RS), that should not bind to LC3B.  
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Figure 7. 6. Design (top) and structure (bottom) of the CTPR4-LIR probe targeting the 

NMR LC3B protein. The structure of the designed probe without the HiBiT tag was predicted 

using SWISS-MODEL356 on the basis of the crystal structure of CTPR reported by the Regan 

Group (PDB: 2fo7)357 and was made using PYMOL. 

 

7.3. Protein expression and purification 
 

The complete list of protein constructs made in this study is summarised in Table 7.1. All 

CTPR4-LIR constructs were expressed extremely well in E. coli C41 (DE3) cells (~10 mg per 
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100 mL of culture). SDS-PAGE showed that the 5-mL HisTrap column was overloaded with 

the CTPR4-LIR proteins, which were collected in the flow through and wash fractions in 

addition to the elution fractions (Figure 7.7). A similar yield was achieved for the CTPR4-RS 

protein expression. Overnight incubation at 4°C with higher amounts of thrombin was 

sufficient to cleave ~50% of the CTPR4-LIR or CTPR4-RS constructs. 

 

The recombinant NMR LC3B protein was also well expressed (~5 mg per 100 mL of E. coli 

culture) and was purified using the same approach. 1 mM DTT was added in the elution buffer 

during the purification to prevent cystine oxidation, but we still obtained dimers during the 

SDS-PAGE analysis which were quite resistant to the addition of β-mercaptoethanol in the 

loading buffer, combined heating. When fresh DTT was added to the sample in combination 

with extended heating, the dimers disappeared (Figure 7.8). 1 mM DTT or TCEP was added 

to the buffers in subsequent downstream analysis.    

 

All purified protein samples were analysed by mass spectroscopy and were confirmed to have 

the expected molecular weights as predicted by Expasy358 with high purity (Table 7.1, Figure 

7.7, 7.8).  
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Figure 7. 7.  Purification of CTPR4-LIR. (Top) a representative image of SDS-PAGE 

analysis of fractions collected during the CTPR4-LIR purification. MW = protein molecular 

weight predicted by Expasy358. (Bottom) a representative mass spectrum of the purified 

CTPR4-LIR after thrombin cleavage. The MW determined by mass spectroscopy is in 

agreement with the predicted MW (18765.1 Da).  
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Figure 7. 8. Purification of NMR LC3B. (Top) representative images of SDS-PAGE analysis 

of fractions collected during the NMR LC3B purification. MW = protein molecular weight 

predicted by Expasy358. (Bottom) a representative mass spectrum of the purified NMR LC3B 

after thrombin cleavage. The MW determined by mass spectroscopy is in agreement with the 

predicted MW (14932.2 Da).  
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7.4. Biophysical characterisation of the CTPR4-LIR probe  
 

Circular dichroism (CD) spectroscopy is defined as the unequal absorption of left-handed and 

right-handed circularly polarised light and is an excellent tool for determining the secondary 

structure elements within proteins, such as α-helix, β-sheet and random coils, that have 

characteristic CD spectra359. Proteins having high α-helical content typically display double 

negative peaks at 222 nm and 208 nm and a positive band at 193 nm360. Far-UV CD spectra 

revealed that the CTPR4-LIR probe contained a high degree of α-helicity and remained 

properly folded without significant changes in secondary structure even when the temperature 

was increased to 95°C, indicating its remarkable thermostability (Figure 7.9). In contrast, CD 

spectra of the His-tagged CTPR4-LIR showed attenuated signals at 80°C and 95°C, suggesting 

that the attachment of an N-terminal 6*His tag compromised thermostability of the CTPR4-

LIR protein. The thermostability of CTPR4-LIR constructs is much higher than that of the 

multi-domain immunoglobulin G (IgG), which displays two unfolding transitions  wherein the 

more heat-sensitive Fab fragment denatures at ~61°C and the Fc fragment at ~71°C361.   

 

 

 

Figure 7. 9. Far-UV CD spectra (205 nm to 250 nm) of the CTPR4-LIR protein (20 μM). 

(A) and his-tagged CTPR-LIR protein (20 μM) (B) in a 50 mM sodium phosphate buffer, pH 

6.8. The data were shown for different temperature values, 25°C (blue), 80°C (green, only for 

his-tagged CTPR4-LIR), and 95°C (red) and representative of three independent experiments. 

 

Next, we analysed the chemical denaturation of CTPR4-LIR using an established assay that 

monitors changes in the intrinsic fluorescence of tryptophan residues within the CTPR4-LIR 
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as it unfolds with increasing concentrations of  guanidinium chloride (GdmHCl)166 (Figure 

7.10). The denaturation curve was then fitted to a two-state model to determine !!"%  (the 

concentration of GdmHCl at which 50% of the proteins are unfolded), m-value (the dependence 

of the free energy of unfolding on concentration of denaturant), and ∆#$%&'()  (the free energy of 

unfolding in water)166,362. The m-value is a measure of  the change in solvent-accessible surface 

area (ΔSASA) upon unfolding and is therefore an indicator of the folding/unfolding 

cooperativity of the protein 362,363. Larger proteins and more cooperatively folded proteins (i.e. 

proteins that unfold in a two-state manner without population of any partly folded states) have 

larger ΔSASA and thus higher m-values363. The results for CTPR4-LIR are shown in Table 

7.2 and compared to the previous data obtained from the CTPR4 scaffold166. 

 

Table 7. 2. Thermodynamic parameters of CTPR4-LIR compared to CTPR4. Data is an 

average of three experiments. 

Protein !!"% (M) 
m-value (kcal 

mol−1 M−1) 
∆#$%&'()  (kcal mol−1) 

CTPR4-LIR 3.81 ± 0.02 2.86 ± 0.18 -10.9 ± 0.7 

CTPR4166 4.81 ± 0.01 4.0 ± 0.3 -19.2 ± 0.9 

 

The D50% and m-value obtained for  CTPR4-LIR were lower than those of the parent CPTR4 

scaffold166, indicating that the insertion of 17-residue LIR peptide lowers the overall stability 

and folding cooperativity of the CTPR4 array, consistent with the findings from our previous 

study of CTPR proteins with various loop insertions166. When compared to IgG which showed 

a !!"%  value between 2-3 M364, the CTPR4-LIR displayed a higher !!"%  close to 4 M, 

suggesting that the CTPR4-LIR maintains a higher stability than antibodies.  
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Figure 7. 10. A representative chemical denaturation profile of CTPR4-LIR. The 

denaturation curve was fitted to a two-state model. Measurements were performed at 25°C in 

50 mM sodium phosphate buffer, pH 6.8, 150 mM NaCl from three independent experiments. 

 

7.5. Binding of CTPR4-LIR to LC3B 
 

Dot blot assays were performed to test whether the CTPR4-LIR-HiBiT probe could recognise 

and quantify LC3B. We successfully observed the luminescent signals indicating the binding 

of CTPR4-LIR to the recombinant NMR LC3B, and by establishing a titration curve with the 

amount of LC3B varying from 5 to 0.01 μg, we determined that the CTPR4-LIR probe had a 

detection limit of 0.1 μg LC3B (Figure 7.11). The commercial anti-LC3B antibody (34 ng/mL), 

which we had used to probe the LC3B turnover in the NMR cells (described in Chapter 5), was 

able to detect the NMR LC3B with a limit of 0.025 μg, approximately four times more sensitive 

than the CTPR4-LIR probe (25 μg/mL). The KD values of good commercial antibodies are in 

the nanomolar range, whereas the KD for the binding of FUNDC1-LIR to the human LC3B is 

0.4 μM351. The anti-HRP secondary antibody further amplified the signals of the primary 

antibody, whereas CTPR4-LIR relied solely on the HiBiT reporter per probe. It was therefore 

not surprising that our designed CTPR4-LIR-HiBiT probe was not as sensitive as the 

commercial antibody, but its detection limit can be improved by increasing the concentration 

during incubation and further optimisation of the probe design. No signal was observed using 

the CTPR4-RS control (Figure 7.11).  
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Figure 7. 11. Dot blot analysis using CTPR4-LIR-HiBiT (top) to probe the recombinant 

NMR LC3B protein in comparison with the commercial anti-LC3B antibody (middle) 

and CTPR4-RS-HiBiT control (bottom).  

 

ITC is an analytical tool to measure the heat discharged or absorbed during a bimolecular 

reaction and was used to determine the KD of CTPR4-LIR to NMR LC3B. We used a similar 

experimental setting that was reported previously, where the CTPR4-LIR (ligand) was injected 

to LC3B in the main cell at 25°C in the same buffer system351. However, we failed to observe 

any heat change during the reaction because of massive protein precipitation in the main cell 

once the CTPR4-LIR was injected. We modified conditions by adjusting the temperature (4°C, 

10°C and 20°C), stirring speed (305 and 498 rpm), molar ratios of CTPR4-LIR-to-LC3B, as 

well as addition of detergents (0.05% Triton), but none of these improved the outcome. We 

then altered the setting by placing the CTPR4-LIR in the main cell, to which the LC3B protein 

was injected. Less precipitation was observed, as indicated by smaller pellets after the reaction, 

and a sigmoidal curve of heat change was observed, indicating an exothermic reaction, that is 

similar to previous studies (Figure 7.12). When the LC3B protein was injected to the CTPR4-

RS control, no heat change was observed, suggesting no binding between the two biomolecules. 

When fitting the data using a one-site binding model, however, we found that the N value, 

which indicates the number of sites of binding and was expected to be close to 1, was abnormal, 

presumably due to the protein precipitation, and it remained an issue when a number of other 

conditions were tried. We also performed control experiments by injecting buffer to CTPR4-
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LIR or LC3B and vice versa but did not observe any precipitation, thus suggesting that the 

precipitation occurred only when the two proteins were mixed, although the mechanism by 

which the proteins precipitate was unclear. Therefore, although we could observe binding using 

ITC, it was not an ideal approach to measure the affinity of CTPR4-LIR for NMR LC3B. In 

future, alternative techniques such as surface plasmon resonance could be used in order to 

determine accurately the KD value of the CPTR4-LIR probe. 

 

 

 

Figure 7. 12. Representative ITC measurements of the binding of the CTPR4-LIR probe 

and the NMR LC3B protein. Experiments were performed at 25°C, 305 rpm. A wide range 
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of CTPR4-LIR-to-LC3B molar ratios were tested, including 12 μM CTPR4-LIR, 256 uM 

LC3B (1:21) (A), 12 μM CTPR4-LIR, 120 μM LC3B (1:10) (B) and 60 μM CTPR4-LIR, 119 

μM LC3B (1:2) (C) but all resulted in aberrant N values with slight protein precipitation. (D) 

LC3B (100 μM) was also titrated into the CTPR-RS negative control (10 μM). No heat change 

or binding was observed. All samples were dialysed overnight at 4°C or 3 hr at room 

temperature against the ITC buffer made up of 25 mM sodium phosphate buffer, 100 mM NaCl, 

1 mM TCEP at pH 7.0. 

We next performed a pull-down assay to determine whether the CTPR4-LIR probe could bind 

endogenous LC3B from NMR fibroblast lysates. CTPR4-LIR was able to pull down the LC3B-

I, which was the predominant LC3B form under normal conditions and matched with the size 

of purified LC3B (Figure 7.13). No binding was observed for the CTPR4-RS, further 

indicating that the interaction of CTPR4-LIR with NMR LC3B was due to the grafted LIR 

motif and not non-specific binding. The selectivity of the CTPR4-LIR probe for LC3B over 

other LC3/GABARAP proteins can be also determined using anti-LC3/GABARAP antibodies.  

 

 

Figure 7.13. The pull-down assay using immobilised His-tagged CTPR4-LIR and CTPR4-RS 

and lysates of NMR skin fibroblasts as the source of LC3B. Western blot was performed using 

an anti-LC3B antibody. Purified NMR LC3B was loaded as a control. Experiments performed 

by Dr. Janet Kumita.  
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7.6. Discussion and future work 
 

This chapter presents a new approach to design and create a detection probe specific for the 

endogenous NMR LC3B based on CTPR protein scaffolds and LIR motifs.  

 

Compared to those expensive and relatively unstable commercial antibodies, the CTPR4-LIR 

probe displayed a more robust stability towards both thermal and chemical denaturation and 

can be expressed in E. coli and purified via a single-step affinity chromatography with 

remarkably high yields and purity. Our data suggested that the CTPR4-LIR probe was able to 

bind the NMR LC3B protein with a micromolar affinity, although the precise KD value needs 

to be further determined using alternative tools such as SPR. The incorporation of HiBiT tag 

streamlined the detection process with no need of secondary antibody and prolonged incubation 

time.  

 

This CTPR4-LIR probe can be used in a range of applications such as western blot and ELISA, 

and further optimisation of the probe can be made to enhance its binding affinity and selectivity. 

For example, mutation analysis can be performed to test if altering specific residues in the core 

LIR motif and adjacent N/C-terminal sequences will improve binding affinity to LC3B. Ser8 

in the FUNDC1-LIR peptide is one of the few residues that does not closely interacting with 

LC3B. An S8E mutation may give rise to a new interaction between the polar amino group of 

the Gln26 of LC3B351. In addition, changing the composition of the linker sequence flanking 

either side of the binding peptide, which enables the peptide to maximally adopt its bioactive 

conformation, may also increase binding affinity335. Traditional fluorophore-based detection 

systems can also be introduced, such as maleimide coupling of a fluorophore to an engineered 

cysteine residue on a CTPR repeat, to create a novel CTPR4-LIR probe that is compatible with 

cell assays including flow cytometry and confocal microscopy.  

 

Li et al. recently discovered the structural basis for a potent GABARAP binder derived from 

ANK3/Ankyrin G in the axons of neurons and rendered the ANK3-LIR peptide (E1991R) into 

a selective inhibitor, preferentially targeting GABARAP with a nanomolar affinity (KD = 6.9 

nM) but not LC3s in cells365. The exceptionally tight interaction was mediated by an extended 

amphipathic C-terminal helix in addition to the core LIR domain presented in the ANK3-LIR 

peptide and its mutational variants365, a mechanism described earlier in the FYCO1-LIR 
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peptide which had a shorter C-helix and thus a much weaker affinity345. Although thus far we 

have applied the loop grafting strategy which is appropriate for short linear binding motifs, 

helix grafting could be explored whereby the GABARAP-targeting peptide containing the 

ANK3-LIR motif and a C-terminal helix could be grafted onto the N/C-terminus of the CTPR 

scaffold to create a potentially high-affinity probe as an alternative to anti-GABARAP 

antibodies.  

 

It has been shown that yeast ATG19 harbours multiple LIR-like ATG8 binding sites at its C-

terminus, while mammalian p62 oligomerises via an N-terminal PB1 domain to facilitate the 

multivalent LIR-ATG8/LC3 interactions349,366,367. CTPR provides an excellent platform to 

exploit multivalency, for instance, by grafting an LIR motif onto multiple inter-repeat loops, 

which may result in higher avidity and stronger interaction with ATG8 proteins in the cell. This 

may be particularly useful when developing a CTPR-based therapeutic molecule which recruits 

specific substrates such as disease-relevant aggregates to autophagosome thus inducing 

autophagic degradation. The Itzhaki lab has recently used a designed multi-valent CTPR 

protein to inhibit the cancer-associated tankyrase proteins368. 

 

In summary, this proof-of-concept study has validated the loop-grafting approach and rationale 

using CTPR scaffolds to generate detection probes targeting specific proteins, which is 

particularly useful for the studies in emerging animal models like the NMR where molecular 

tools are scarce and/or when the protein sequence homology between species is too low to be 

detected by commercial antibodies. The moderate affinity to target proteins via LIR motifs and 

the malleability of CTPR also suggest potential applications of these constructs as therapeutic 

molecules to drive the recruitment and degradation of specific cargo via autophagy within the 

cell, which can be further explored in different disease-relevant contexts.  
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8. Final discussion and future studies 
 

The NMR is the longest-living rodent which shows negligible senescence over the majority of 

its lifespan and displays no signs of neurodegeneration. Increasing evidence has suggested that 

proteostatic mechanisms may contribute to the NMR’s exceptional longevity and resistance to 

neurodegenerative disorders. However, current understanding of the proteostasis network in 

the NMR is heavily based on protein-level and/or cell-viability analyses. The publication of an 

NMR genome assembly23 ignited analyses using genomic and transcriptomic approaches, but 

later scrutiny and re-analyses suggested that some of the identified traits might be resulted from 

incorrect annotation and did not overlap when different bioinformatics tools were applied27. In 

this study, we aimed to develop tools for studying protein homeostasis within NMRs and to 

use these methods to establish a relationship between proteostatic mechanisms including the 

UPR and autophagy with age-associated diseases from a molecular perspective.  

 

Several key conclusions can be drawn from this study: 

 

First of all, we have established a set of rigorous mRNA-based assays to monitor changes of 

key proteins involved in the UPR and autophagy in NMR cells. The RT-(q)PCR protocol was 

developed strictly following the MIQE guidelines and was optimised to successfully probe the 

changes of UPR and autophagy markers in NMR fibroblasts when exposed to different stress 

inducers. This methodology is probably the most reliable approach to monitor gene expression 

within MNRs given the poor quality of genome annotation and is more sensitive than the semi-

quantitative immunoblotting analysis which has been widely used in the previous studies. In 

addition, this protocol can be easily modified to suit investigations into other cellular pathways 

and/or samples of different types.  

 

Using the established methodology, we have observed a higher threshold of the UPR activation 

in the NMR kidney fibroblasts when compared to the mouse kidney fibroblasts under the 

treatment of mild-dose ER stress inducers. Our study constitutes the first investigation of the 

UPR in NMRs which is predominantly regulated at the transcript level. The higher threshold 

of the UPR activation in the NMR kidney fibroblasts was supported by the significantly lower 

induction of the UPR markers in all of the three branches, thus indicating a much lower level 

of ER stress induced in the NMR fibroblasts than that in the mouse fibroblasts under low-dose 
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TU or TG-treated ER stress. The lower induction of ER chaperones and PDIs found in the 

NMR fibroblasts was surprising but could suggest less compensation for the protein-folding 

capacity, as NMRs might possess higher constitutive levels of heat shock proteins and 

chaperones72,74,216. Since the NMR has a more stable proteome, it is also reasonable to postulate 

that its ER chaperones may be more resilient to oxidative stress and can maintain potent 

activities under stressed conditions16. A closer examination of structural and kinetic properties 

of ER chaperones in the NMR may help address these questions. The similar phenotype of 

low-level Xbp1 splicing during TU or TG treatments was previously seen in a long-lived, IIS-

impaired daf-2(-) mutant strain of C. elegans which also displayed resistance to ER stressors, 

possibly due to the induction of a new set of genes involved in longevity and ER proteostasis 

regulated by an interplay between the UPR and insulin/insulin-like signalling (IIS)214. A 

broader transcriptional profile can be studied using our established assays to investigate the 

relationship between the ISS and UPR in the NMR and how this may contribute to longevity. 

Another follow-up experiment that may be worth conducting is to treat these cells continuously 

with low-dose ER stressors for a longer period of time, which better mimics the chronic stress 

usually present in the context of diseases, and subsequently probe the UPR activation together 

with the cell viability to see (1) whether the milder level of UPR activation is sustained in the 

NMR cells, and (2) how this phenotype will contribute to the long-term cell survival or death 

in a more physiologically relevant setting. And if these NMR fibroblasts could indeed better 

tolerate chronic ER stress despite the lower induction of pro-survival UPR mechanisms, what 

might lead to their adaption to the chronic stress? The underlying mechanisms will need to be 

further determined. Although RT-qPCR is a powerful tool to study the UPR, posttranslational 

modification such as IRE1 and PERK phosphorylation still requires traditional immunoblotting 

analysis, which could be used, with a careful choice of suitable antibodies, together with the 

RT-qPCR assays to provide a more comprehensive picture of the UPR within NMRs.  

 

We also found that the downregulation of Tfeb seemed to be universal among NMR and mouse 

fibroblasts when treated with chloroquine (CQ), a potent autophagy inhibitor and an anti-

tumour drug. Interestingly, NMR skin fibroblasts were particularly sensitive to CQ, suggesting 

that the level of Tfeb repression correlated with the resistance/sensitivity to the drug. The vast 

majority of autophagy research mainly studied posttranslational modifications of ATG proteins 

until transcriptional factors were discovered and shown to play an important role in regulating 

autophagy-lysosomal pathways in the last decade. Current knowledge of autophagy in NMRs 

is also very limited based almost solely on protein-level analysis. Here we present the first 
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study which shows clues of the transcriptional regulation of autophagy in NMRs under stressed 

conditions. Although TFEB is believed to be primarily regulated by phosphorylation, which 

facilitates its translocation to the nucleus and subsequent activation of autophagy and 

lysosomal genes, transcriptional regulation of Tfeb may also play a role when treated with CQ, 

although the mechanisms by which CQ modulates Tfeb expression remains unknown. A closer 

examination of TFEB localisation within the NMR and mouse fibroblasts will allow us to 

determine how the altered total expression of Tfeb would affect relative amounts of nuclear 

versus cytosolic TFEB, together with the analysis of a broader range of TFEB-regulated genes 

and the LC3B-II turnover assay, thus establishing the relationship between the level of Tfeb 

downregulation with (1) the level of autophagic flux, (2) the transcriptional changes of TFEB 

target genes, and (3) sensitivity to CQ-induced lysosomal stress. In addition, fibroblasts 

originated from NMR skin and kidney have shown different gene expression profiles and 

sensitivity to CQ-induced lysosomal stress, suggesting that the effects of CQ may also be 

tissue-specific, which can be explored in the future as well. 

 

We have also investigated how NMRs respond to the misfolded protein species that are known 

to accumulate and cause toxicity in neurodegenerative disorders. The initial study was designed 

to compare the effects of protein species on NMR and mouse fibroblasts, but we failed to 

observe any signs of UPR activation, which might be resulted from the lack of bindings of Aβ1-

42 oligomers to the fibroblast cell membrane. Instead, sensory neurons (and other neuronal cells) 

seemed to be a better system which could interact with and even internalise Aβ1-42 oligomers, 

although experimental conditions needed to be optimised in order to probe UPR and autophagy 

responses before cell death. Nevertheless, we observed that exogenously added α-synuclein 

oligomers could modulate transcriptional changes of the UPR and autophagy pathways and 

thus lead to toxic effects following an extended treatment, including decreased expression of 

Xbp1s, genes encoding ER chaperones and co-factors regulated by ATF6, and autophagy-

related genes involved in multiple steps of the pathway. These results suggest that α-synuclein 

oligomers could induce a collapse of ER-folding machinery and a decrease of autophagy 

clearance in the NMR kidney fibroblasts, which are only observed following long-term 

treatments but not acute treatments. A previous study showed that α-synuclein inhibited ATF6 

activity in a cellular PD model in SH-SY5Y neuronal cells through physical interactions and 

the disruption of COPII ER-Golgi transport, which might ultimately disrupt signal integration 

among the UPR branches through reduced cooperation between ATF6 and XBP1317. The exact 

mechanisms by which α-synuclein oligomers suppress the expression of UPR and autophagy 
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genes in the NMR cells need to be further determined. The comparison of NMR fibroblasts 

with mouse cells in the context of α-synuclein treatment has not been accomplished due to the 

disruption caused by COVID-19 but can be continued in the future using the same approach to 

determine (1) whether mouse fibroblasts show different levels of sensitivity to α-synuclein, 

and (2) differences in the UPR and autophagy after the treatment of α-synuclein oligomers. 

Furthermore, fluorescent microscopy can be applied to examine the intracellular and 

intercellular trafficking routes of α-synuclein oligomers to (1) identify the subcellular 

compartments (such as lysosomes or ER) and binding partners of α-synuclein (such as ATF6) 

that may be affected by the cellular uptake and accumulation of α-synuclein oligomers, and (2) 

determine whether such trafficking is different in the NMR versus mouse cells. When samples 

are available, we will ideally carry out these experiments in neuronal cultures which better 

resemble the actual disease context. In addition, since the α-synuclein is produced 

intracellularly, it is worth establishing a genetically modified NMR cell line which 

overexpresses α-synuclein to see whether NMR cells may counteract cellular stress and toxicity 

induced by α-synuclein in a different way than mouse and human counterparts.  

 

Finally, we developed and characterised a consensus-designed tetratricopeptide repeat 

protein (CTPR)-based probe that showed remarkable stability and moderate binding affinity 

specifically towards the NMR LC3B protein. Although it was not possible to determine the 

binding affinity using a classic ITC experiment, alternative methods such as surface plasmon 

resonance and ELISA may be used. A western blot assay can be performed using NMR lysates 

to confirm the applicability of our CTPR4-LIR probe as a detection tool in immunoblotting. 

Based on our current results, the binding affinity is within the micromolar range but ideally 

needed to be further improved in order to be comparable to commercial antibodies. Several 

approaches have been proposed to optimise the binding affinity of our probe to the NMR LC3B 

protein, including point mutation of specific residues and the incorporation of linkers to achieve 

better peptide display. With the success of developing such a CTPR4-LIR probe for the NMR 

LC3B, we can try to design other UPR probes that will target proteins which show relatively 

low sequence homology with mouse or human orthologues, and more importantly, explore the 

potential application of designed CTPR constructs to target specific proteins such as disease-

related aggregation-prone α-synuclein for autophagy-mediated degradation.  

 

In summary, using these newly established methods, we have been able to identify some unique 

features of the proteostasis network in the NMR that are different from the short-lived mouse, 
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particularly stress-response pathways including the UPR and autophagy under proteotoxic 

conditions. Further studies can be carried out based on our findings and using our established 

molecular tools to understand how these features may contribute to the NMR’s exceptional 

longevity and resistance to age-associated neurodegeneration, and these results can be applied 

towards therapeutic developments to combat neurodegenerative diseases
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