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Making decisions with uncertainty is challenging for the general public, policymakers, and 
even highly trained scientists. Nevertheless, when faced with the need to respond to a 
potential hazard, people must make high-risk decisions with uncertainty. In some cases, 
people have to consider multiple hazards with various types of uncertainties. Multiple 
hazards can be interconnected by location, time, and/or environmental systems, and the 
hazards may interact, producing complex relationships among their associated 
uncertainties. The interaction between multiple hazards and their uncertainties can have 
nonlinear effects, where the resultant risk and uncertainty are greater than the sum of the 
risk and uncertainty associated with individual hazards. Effectively communicating the 
uncertainties related to such complicated systems should be a high priority because the 
frequency and variability of multiple hazard events due to climate change continue to 
increase. However, the communication of multiple hazard uncertainties and their 
interactions remains largely unexplored. The lack of practical guidance on conveying 
multiple hazard uncertainties is likely due in part to the field’s vast expanse, making it 
challenging to identify entry points. Here, we offer a perspective on three critical challenges 
related to uncertainty communication across various multiple hazard contexts to galvanize 
the research community. We advocate for systematic considerations of multiple hazard 
uncertainty communication that focus on trade-offs between complexity and factors, 
including mental effort, trust, and usability.

Keywords: compound risks, hazards, uncertainty, visualization, multiple, cognitive effort, trust, communication

INTRODUCTION

In early April of 1991, Mount Pinatubo in the Philippines began producing precursory activity 
to a volcanic eruption (Self et  al., 1993). Scientists from the Philippines and the United States 
quickly established monitoring stations around Mount Pinatubo and accurately forecasted the 
eruption on July 15, 1991. Officials evacuated the areas around Mount Pinatubo 48h before 
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the eruption, saving thousands of lives (Westby and Phillips, 
2016). At the same time that Mount Pinatubo was producing 
17 megatons of sulfur dioxide and ash, typhoon Yunya also 
made landfall in the Philippines (Self et  al., 1993; Gill and 
Malamud, 2014). The typhoon’s massive rains combined with 
large amounts of ash caused mudflows and collapsed roofs, 
resulting in unanticipated casualties of people who had been 
evacuated to unfortified structures. This paper is motivated 
by the question: Can the visualization community develop 
methods to convey multiple hazards and their uncertainties 
in a way that would help policymakers and the public prepare 
for such hazard interactions and reduce their vulnerability to 
hazards? In the case of Mount Pinatubo, what challenges could 
have been overcome to visualize a volcanic eruption combined 
with a typhoon and the associated uncertainties that would 
have helped people take appropriate action when the risk  was 
elevated with both hazards occurring concurrently?

Quantifying the interactions of risks and uncertainties for 
multiple hazards is an active research area (for reviews, see 
Balch et al., 2020; Raška et al., 2020). As illustrated in Figure 1 
(see the relationship among hazards), multiple hazards can occur 
in the same location and at the same time (i.e., correlated 
hazards), as in the 1991 volcanic eruption and typhoon in the 
Philippines. The correlation of the eruption and typhoon at 

Mount Pinatubo produced a compound risk, where the risk 
created by the interaction of the two hazards was greater than 
the sum of each hazard (Gill and Malamud, 2014). Concurrent 
hazards occur simultaneously but in different locations, such 
as when the August Complex fire in 2020 burned over a million 
acres in northern California at the same time the SQF Lightning 
Complex fire burned hundreds of thousands in the southern 
part of California (CALFire, 2020; for an alternative definition, 
see De Luca, 2020). Sequential hazards occur at the same location 
but at different times (Balch et  al., 2020; for a discussion of 
terminology, see Cutter, 2018). For example, in 2010, Haiti 
experienced a magnitude 7.0 earthquake that killed 250,000 
people, followed by a cholera epidemic, and then a category 
two hurricane (PAHO/WHO, 2011). Sequences of hazards can 
have a nonlinear additive effect on vulnerability, where the 
resultant risk is greater than the sum of the risk associated 
with individual hazards (Kappes et al., 2012; Haqiqi et al., 2021; 
Kruczkiewicz et  al., 2021).

Even though researchers are making significant advances in 
quantifying the interactions between multiple hazards (e.g., hazards 
that are meaningfully interconnected by space, time, and/or 
environmental systems), visualizing the relationship between 
multiple hazards with uncertainty remains largely unexplored. 
A recent review found that of 693 studies that examined multiple 

FIGURE 1 | Overview of multiple hazard uncertainty visualization considerations discussed in this paper. Uncertainty types based on discussions in Padilla et al. 
(2021). Relationship between hazards based on Balch et al. (2020). Summary of graphical annotations redrawn from Padilla et al. (2021). Mount Pinatubo example 
based on accounts in Gill and Malamud (2014).
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hazards, only 5% visualized the hazards using vulnerability maps, 
and no studies visualized uncertainties (Raška et  al., 2020). 
The underrepresentation of visualizations of multiple hazards 
and their uncertainties is surprising since a substantial body of 
work demonstrates that visualizing uncertainty can significantly 
improve decision quality (for review, see Padilla et  al., 2021).

Communicating the uncertainty associated with multiple hazards 
is imperative to facilitate individuals’ informed decision-making 
on an institutional scale (e.g., national-level anticipatory action 
plans) and on a more personal basis (e.g., evacuating when there 
is a perceived risk from a hazard; Morss et al., 2016). For example, 
the humanitarian sector is increasingly developing standard operating 
procedures for anticipatory action (Pichon, 2019), including impact-
based risk assessments that require policy-makers to understand 
both geophysical and socioeconomic uncertainty (WMO, 2015; 
Forzieri et al., 2016; Taylor et al., 2021). Decision-makers without 
an understanding of the uncertainty in a forecast may 
be underinformed, placing undue levels of confidence in a forecast 
(Fischhoff, 2012; Fischhoff and Davis, 2014).

Further, entities and researchers suggest that when groups 
communicate uncertainty, they can demonstrate the trustworthiness 
of their science by showing a commitment to transparency (e.g., 
O’Neill, 2012; Stocker et al., 2013). Indeed, prior research suggests 
that communicating uncertainty can maintain perceptions of 
trustworthiness (Van Der Bles et al., 2020). Given the pragmatic 
and ethical reasons why communicating uncertainty is critical, 
organizations, including the Intergovernmental Panel on Climate 
Change (IPCC), advocate for communicating uncertainty about 
natural events (Stocker et  al., 2013).

To motivate the visualization community to address the gap 
in research on visualizing multiple hazards with uncertainty, 
we offer a discussion of three critical multiple hazard communication 
challenges for policy and personal decision-making. We also discuss 
potential paths forward for research on visualizing uncertainty 
in multiple hazards. In this paper, we  focus our discussion on 
challenges for uncertainty visualizations of multiple hazards for 
policy decisions, such as governmental disaster-risk reduction and 
personal choices. Efforts are also needed to advance uncertainty 
visualization of multiple hazards for scientific data analysis and 
education but are beyond this discussion’s scope.

MULTIPLE HAZARD UNCERTAINTY 
COMMUNICATION CHALLENGES AND 
PATHS FORWARD

Multiple hazard scenarios have several forms of uncertainties 
associated with each hazard, which could be  visualized for 
decision-makers. Researchers have made efforts to classify these 
forms of uncertainty within various typologies (e.g., Van Asselt 
and Rotmans, 2002; Walker et  al., 2003; Morgan, 2009; 
Spiegelhalter, 2017; van der Bles et  al., 2019).

As demonstrated in Figure  1 (see uncertainty types), 
visualization researchers commonly classify uncertainties into 
two groups:  direct and indirect (Padilla et al., 2020b). Researchers 
can characterize direct quantified uncertainties (i.e., epistemic; 
Spiegelhalter, 2017) with mathematical expressions denoting 

error or variability in measurements. For example, in the case 
of Mount Pinatubo, uncertainties existed within the target 
period of the eruption forecast, along with the extent of the 
impact. Additionally, the typhoon forecast had multiple forms 
of direct uncertainty, including the uncertainty associated with 
the path of the storm, speed of forward motion, wind speeds, 
central pressure, storm surge, and rainfall. For Mount Pinatubo/
Typhoon Yunya, at least nine forecast parameters and 
uncertainties could be visualized along with their interrelations.

Indirect uncertainty (i.e., ontological; Spiegelhalter, 2017) is 
also associated with each forecast parameter, which is uncertainty 
that cannot be  quantified directly, such as unknown amounts 
or levels of missing data, or unidentifiable error that enters 
the modeling pipeline (Pang et al., 1997). For example, forecasts 
for Mount Pinatubo eruptions did not previously have impact 
maps, and the maps were quickly generated (Westby and 
Phillips, 2016). The team of scientists from the Philippines 
and the United States had limited time to create and test the 
impact maps, thereby leading to unquantifiable amounts of 
error. Forecasters can express this type of indirect uncertainty 
as subjective expert interpretations of forecast or model accuracy 
(Budescu et  al., 2012; IPCC, 2014).

The eruption of Mount Pinatubo and Typhoon Yunya had 
at least nine forecast elements, each with both direct and 
indirect uncertainties (nine elements * direct and indirect = 18 
uncertainties) and 18 possible interactions (18 
interactions * direct and indirect uncertainty = 36 uncertainties). 
If forecasters were to fully communicate all the forecast parameters 
and uncertainty, they would need to visualize 54 types of 
uncertainties. Presenting policy-makers or the general public 
with such complex information (i.e., data with numerous 
components and nonlinear relationships) could overburden 
their decision making. However, what is the “right” number 
of uncertainties to visualize, and for whom? Should some 
uncertainties be combined before the visualization step to make 
composite risk indices (if so, which ones?), or should some 
uncertainties be  left out? Can decision-makers deal with more 
uncertainty before a forecasted hazard, such as when developing 
preparatory action plans?

Defining the Optimal Amount of Visualized 
Multiple Hazard Uncertainty for Different 
Decision-Makers
The first challenge we  highlight is the need for research to 
define the optimal amount of visualized uncertainty to support 
decision-making by policy-makers and the general public. 
We  argue that hazard communicators should consider trade-
offs when deciding how to visualize the uncertainty associated 
with multiple hazards and their interactions (Politi et al., 2011; 
Chen et  al., 2016). There may be a sweet spot where decision-
makers are provided with sufficient uncertainty information 
to increase decision efficacy but not so much that their decisions 
become overcomplicated, leading to their reliance more on 
heuristics than on the data (Sullivan-Wiley and Gianotti, 2017). 
For example, in the case of Mount Pinatubo/Typhoon Yunya, 
rather than visualize all 54 types of uncertainty, forecasters 
could summarize the indirect uncertainties across each hazard 
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into one account of model accuracy. Alternatively, forecasters 
could integrate some forecast components, such as volcanic 
impact area and storm surge, into an estimate of vulnerability 
and visualize the aggregated uncertainty. Research is needed 
to provide guidance about the ideal amount of uncertainty, 
which hazard communicators could use to decide when 
uncertainty aggregation or reduction is needed.

Further, researchers have found that making decisions with 
uncertainty requires more of our limited mental effort than 
judgments without uncertainty (Sprenger and Dougherty, 2006). 
Researchers in psychology and cognitive science have established 
that mental effort involves the controlled use of our limited 
ability to process information at a given time (Trujillo, 2019). 
As the number of uncertainties in a multiple hazard visualization 
increases, decision-makers will be  forced to expend more of 
their limited mental effort until they reach their maximum. 
When decision-makers’ mental effort becomes overloaded, they 
will not be  able to process additional uncertainty information, 
which is highly likely in disaster/crisis response and preparedness 
situations and could produce adverse effects on disaster 
management decision-making (Comes et  al., 2013).

Intelligent transparency, which inspires our recommendations 
for future directions, focuses on demonstrating the 
trustworthiness of science to help viewers more accurately 
evaluate if the information is deserving of trust (Gustafson 
and Rice, 2020). As O’Neill (2012) asserts, “Our aim – everybody’s 
aim – is surely to trust the trustworthy, but not the untrustworthy.” 
We  advocate for research that aims to provide people with a 
useful amount of uncertainty to understand the possible outcomes 
of multiple hazard interactions and evaluate if the science is 
honest, competent, and reliable. At the same time, these 
visualizations should not overburden decision-makers with 
superfluous uncertainty information that harms their decision-
making to the point where they discount and or discredit the 
available uncertainty information. Work is also needed to define 
the applicability of such trade-offs (e.g., sweet spot) to various 
multiple hazard situations. For example, would the sweet spot 
be  the same for a multiple hazard scenario with a volcanic 
eruption and a hurricane compared to a heatwave and a 
flash flood?

Determine the Impact of Individual 
Differences and Task Demands on 
Decision-Making With Multiple Hazards
When examining the optimal amount of uncertainty to convey, 
researchers should consider that different viewers may have 
varying abilities to incorporate visualized uncertainties into 
their decision-making processes. Experienced multiple hazard 
risk decision-makers may view multi-hazard risk as a system, 
and they may benefit from seeing unaggregated uncertainties 
since they can easily build up a holistic understanding of the 
interacting risk in their minds. In contrast, the general public 
may try to understand the risk associated with each hazard 
(within that system) and then face the daunting task of fusing the 
uncertainties together in a piecemeal fashion (Tilloy et al., 2019). 
Further, decision-makers vary in the amount of mental effort 

they have available to consider multiple forms of visualized 
uncertainties and their interactions (Padilla et al., 2019). Future 
research should examine how mental effort limits interaction 
with various hazards and tasks, including decisions related to 
disaster-risk reduction within high-stress environments in the 
humanitarian sector.

In humanitarian and disaster contexts, tension is also present 
between the possible increase in mental effort and time needed 
to process visualizations with uncertainty and the lack of  
time to prepare for many hazards – both geophysical and  
nongeophysical (Zhang et  al., 2002; Richardson et  al., 2010; 
Comes, 2016). In such moments, people may rely on their 
automatic, and sometimes biased, judgments of uncertainty 
visualizations rather than systematically evaluating the multiple 
uncertainties presented to them (Padilla et  al., 2018).

Future research also needs to account for emotions and 
prior experiences, and how specific hazards are weighted based 
on affect (e.g., a volcano eruption may take cognitive precedence 
because it may be  perceived as more threatening than rain). 
Uncertainty provokes anxiety (Greis et  al., 2017), and some 
decision-makers may become uncomfortable with depictions 
of uncertainty (Hullman, 2019). If processing uncertainty of 
a single hazard already provokes anxiety, being presented with 
multiple uncertainties and their interactions could increase 
anxiety considerably, leading to situations where decision-makers 
are biased toward more risk-averse actions (Lauriola et  al., 
2007; Fiala, 2017; Bourdeau-Brien and Kryzanowski, 2020). 
Further, decision-makers may not realize the degree to which 
the risk-aversion is leading them to underestimate the genuine 
risk. As stress uses mental effort (Qin et  al., 2009), people 
will likely have less mental effort available to consider multiple 
hazard uncertainties during stressful hazard events. The negative 
impacts of stress may play a more significant role for traditionally 
underserved populations (Evans and Schamberg, 2009), 
commonly the intended beneficiaries of disaster risk reduction 
strategies, but governance of these populations may be  lacking 
(Kruczkiewicz et  al., 2018).

Trust is a crucial predictor of attention to scientific experts 
(e.g., Bleich et al., 2007) and the likelihood of taking preparatory 
action (Losee and Joslyn, 2018). A large body of research 
finds that trust is influenced by prior experiences with hazard 
forecasts (e.g., Wall et al., 2017), particularly after an anticipated 
hazard did not occur (i.e., false alarms; Dow and Cutter, 1998; 
Savelli and Joslyn, 2012; LeClerc and Joslyn, 2015). High rates 
of false alarms lead to poor decision-making and decreased 
trust (LeClerc and Joslyn, 2015). However, less work has 
examined how multiple hazard uncertainties impact trust among 
the public and high-stakes end-users. For example, we  do not 
know how the increased possibility of false alarms will impact 
viewers’ trust in situations where multiple hazards are forecast 
or how previous experiences may influence perceptions of trust.

Two fundamental components of an individual’s judgment 
about who and what to trust include apparent intent and 
competence (Fiske et al., 2007; Fiske and Dupree, 2014), which 
can be  demonstrated by communicating uncertainty (Jensen, 
2008). Whereas communicating uncertainty signals 
trustworthiness in institutions by demonstrating a commitment 
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to transparency and scientific credibility (e.g., O’Neill, 2012, 
2018), giving too detailed an account of multiple uncertainties 
could lead people to view the research as incompetent, and 
then to switch to other less complicated but less reliable sources.

In line with the intelligent transparency approach (O’Neill, 
2018), we  advocate for research seeking to find the sweet 
spot in multiple hazard communication to foster trust but 
not provide superfluous information. Research is needed to 
examine how to optimize the amount of uncertainty visualized 
in multiple hazard scenarios for a wide range of decision-
makers and task demands, particularly for decision-makers 
who might experience high levels of anxiety, time pressure, 
stress, and diminished trust.

Identifying Effective Visualization 
Techniques for Conveying Multiple Forms of 
Hazard Interactions and Their Uncertainties 
That Facilitate Decision Making
Reasoning with visualizations of common forms of probability 
is challenging for both novices and experts (Belia et  al., 2005). 
For example, hurricane path visualizations are one of the most 
studied hazard visualizations, and all currently available 
visualization techniques produce some misunderstanding about 
a storm’s path (Cox et  al., 2013; Ruginski et  al., 2016; 
Padilla et  al., 2017, 2018, 2020a). A few studies have examined 

how to communicate various types of components of one 
hazard, such as hurricane path, storm size, and intensity (see 
Figure 2; Liu et al., 2019). However, no work has systematically 
studied best practices for visualizing uncertainty related to two 
(or more) hazards and their interactions, including the uncertainty 
that results from the co-occurrence of two hazards.

Future work is needed to examine how graphical annotations 
and visual encodings of uncertainty can be  used to convey 
uncertainties’ interactions (see Figure  1 for examples of 
empirically tested graphical annotations and visual encodings 
of uncertainty). As previously discussed, multiple hazards may 
interact differently (as shown in Figure  1, the relationship 
between hazards). Research is needed to identify uncertainty 
visualization techniques that are effective for each type of  
multihazard interaction. For example, Figure 2 shows a redrawn 
eruption impact map produced by United  States Geological 
Survey for Mount Pinatubo (Newhall, 1997) and an empirically 
validated ensemble hurricane forecast technique that shows 
the uncertainty in the storm’s path, size, and intensity (Liu 
et  al., 2019). Research is needed to determine how to combine 
the information from both visualizations to convey interacting 
risk in situations similar to Mount Pinatubo erupting at the 
same time and location as Typhoon Yunya making landfall.

In addition to visualization design guidelines, such as 
minimizing clutter, research should consider the appropriate 

FIGURE 2 | Left, map of Mount Pinatubo pyroclastic flows, lahars, and ash impact areas (redrawn from https://pubs.usgs.gov/fs/1997/fs113-97/). Right, an 
example of an ensemble hurricane forecast map showing the path, size, and intensity of the forecasted storm along with the associated uncertainties (reprinted with 
permission from Liu et al., 2019).
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amounts of uncertainty to display differences in decision-makers’ 
abilities to use visualized uncertainties, prior experiences, and 
trust in the forecasts.

CONCLUSION

With the rise in the frequency and severity of natural-hazard-
driven disasters (Field et  al., 2012), effective communication 
of the uncertainty associated with multiple hazards is increasingly 
essential. This paper demonstrates the need for future work 
in multiple hazard uncertainty communication and highlights 
barriers to visualizing multiple hazards and their uncertainties 
for policymakers and the public. We  highlight the concept of 
intelligent transparency (O’Neill, 2012) as a guiding principle 
in uncertainty communication that can help researchers consider 
the trade-off in visualization complexity, decision-maker abilities, 
and trust. A future set of priorities in this space should 
be  reviewed and refined by the transdisciplinary actors within 
it – using the challenges shared here as a starting point to 

convene and facilitate a discussion and critical reflection. Such 
research would require a large-scale interdisciplinary effort, 
incorporating knowledge from visualization design, disaster 
preparedness, climate science, policy, and governance.
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