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A Bayesian semi-parametric model for thermal
proteome profiling
Siqi Fang1,4, Paul D. W. Kirk2,3, Marcus Bantscheff 5, Kathryn S. Lilley 1,4✉ & Oliver M. Crook 1,2,4✉

The thermal stability of proteins can be altered when they interact with small molecules,

other biomolecules or are subject to post-translation modifications. Thus monitoring the

thermal stability of proteins under various cellular perturbations can provide insights into

protein function, as well as potentially determine drug targets and off-targets. Thermal

proteome profiling is a highly multiplexed mass-spectrommetry method for monitoring the

melting behaviour of thousands of proteins in a single experiment. In essence, thermal

proteome profiling assumes that proteins denature upon heating and hence become inso-

luble. Thus, by tracking the relative solubility of proteins at sequentially increasing tem-

peratures, one can report on the thermal stability of a protein. Standard thermodynamics

predicts a sigmoidal relationship between temperature and relative solubility and this is the

basis of current robust statistical procedures. However, current methods do not model

deviations from this behaviour and they do not quantify uncertainty in the melting profiles. To

overcome these challenges, we propose the application of Bayesian functional data analysis

tools which allow complex temperature-solubility behaviours. Our methods have improved

sensitivity over the state-of-the art, identify new drug-protein associations and have less

restrictive assumptions than current approaches. Our methods allows for comprehensive

analysis of proteins that deviate from the predicted sigmoid behaviour and we uncover

potentially biphasic phenomena with a series of published datasets.
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Thermal proteome profiling (TPP1, also referred to as MS-
CETSA) is a multiplexed mass-spectrometry extension of
the cellular thermal shift assay (CETSA2,3). The guiding

principle of these experiments is that heating generally causes
proteins to denature and become insoluble. This heating can be
performed at various temperatures and the remaining soluble
protein quantified by mass-spectrometry (MS). This allows a
temperature-solubility relationship to be determined and this is
frequently called a melting curve1. The melting curve for each
proteins is context specific and can be modulated upon binding to
small molecules4–6. Thus by determining this melting curve for a
large number of proteins in different contexts, for example in the
presence of a drug, one can find targets and off targets of these
molecules1.

There are numerous applications of TPP and it is most com-
monly used to decipher drug-protein behaviours1,5,7–12. Moreover,
it can be applied to study interactions with metabolites, nucleotides
and nucleic acids10,13–15. Authors have shown that proteins in
complex with each other are more likely to have concordant
in vivo melting curves16 and others have demonstrated that
phosphorylation can alter thermal stability17–19. Thermal pro-
teome profiling has also been complemented with extensive
structural analysis20–23. Furthermore, TPP is not just applicable in
human cells but can be applied in bacteria in vivo12, in the api-
complexan parasite Plasmodium falciparum14,24, and in tissue or
blood25. Extensive work has recently been presented characterising
the melting behaviour of proteins across 13 species, demonstrating
similarities and difference for protein orthologues26.

Thermodynamic theory predicts that the melting curve of pro-
teins should have a sigmoid behaviour27. Melting curves of a protein
may then be compared to determine context-specific behaviours.
Statistical analysis can then follow a number of directions. For
example, one approach involves summarising melting curves into a
Tm-the temperature at which relative solubility has halved1,5. This is
then followed by comparison of Tm values across the two contexts
using the appropriate z-score. This approach assumes that the
melting curve is a bijection, else there might be multiple candidates
for Tm. It also assumes that Tm is defined, which need not be the
case if relative solubility has never halved. Another approach is to
compare the relative solubility at a fixed temperature28. However,
summarising curves to a single value results in loss of information,
loss of sensitivity and does not account for the quality of the fit of
the parametric model29. A more powerful approach is to employ
techniques from functional data analysis30–32 and use the whole
melting curve for statistics29.

Childs et al. 29 introduced the method non-parametric analysis
of response curves (NPARC) for powerful analysis of melting
curves. In brief, the method assumes a sigmoid model for the data
and then proceeds to perform an analysis of variance (ANOVA).
Since typically TPP data involves measurement of melting curves
for a great many proteins per experiment, the appropriate null
distribution can be directly estimated from the data33,34. NPARC
allowed thousands more proteins to be analysed than the original
Tm centric analysis and demonstrated a significant improvement
in statistical power. However, this method still assumes a para-
metric sigmoid model and the method used to estimate the null
distribution assumes that it is unimodal. Moreover, large-scale
testing frameworks assume that the large majority of observations
are samples from the null distribution, which can be problematic
if the context of interest affects many proteins. Furthermore,
there is no uncertainty quantification in the melting curves or the
key model parameters.

To overcome these limitations, here we develop a Bayesian
version of the sigmoid model, which allows uncertainty quanti-
fication. Furthermore, in the Bayesian framework one does not
need to estimate the null distribution and multiplicity control is

automatic via the prior model probabilities35–38. In addition,
including prior information on the model parameters has a
number of benefits; allowing the shrinkage of residuals towards 0,
the regularisation of the inferred parameters and improved
algorithmic stability39. Through exploratory data analysis and
model criticism, we find evidence for model expansion. We show
that the standard sigmoid model is insufficient to model the
relationship between temperature and relative solubility for some
proteins. This motivates the development a semi-parametric
model40. A semi-parametric model is one that includes both
parametric terms, in our case the sigmoid, and unknown non-
parametric terms. A Gaussian Process prior (GP prior41) is used
to infer the non-parametric terms. Gaussian processes are highly
flexible and have been used extensively in other molecular biology
applications, such as gene-expression time courses42–46, single-
cell transcriptomics47–49 and spatial proteomics50,51.

Here we begin with exploratory data analysis of five datasets
which motivates the creation of more flexible models. We then
carefully analyse published data to demonstrate the improved
sensitivity of our method, as well as the value of uncertainty
quantification. Our proposed model can be applied more gen-
erally and we demonstrate, through simulations, that our
approach has improved power and robustness to miss-
specification of the parametric model. We identify putative
protein–drug interactions that have been overlooked in previous
TPP studies, including the protein HDAC 7 in studies designed to
determine targets of the chemotherapeutic drug, Panobinostat.
We proceed to characterise the proteins that deviate from sig-
moid behaviour and uncover functional, as well as localisation,
enrichments.

Results
Exploratory data analysis motivates model extension. First, we
interrogated data from five TPP experiments that were performed
on the K562 human erythroleukemia cell line. The first experi-
ment explored the effects of detergents on ATP-binding profiles.
Then two other experiments explored the effects of different
concentrations of the ABL inhibitor Dasatinib. In one of the
experiments the histone deacetylase (HDAC) inhibitor Panobi-
nostat was used to determine its effects on the behaviour of
proteins. The final experiment explored the effects of the pan-
kinase inhibitor Staurosporine. A summary of the experiments is
given in Table 1.

We applied the NPARC pipeline to each of these experiments
and carefully explored the results. The NPARC analysis approach
makes a number of assumptions. Firstly, when estimating the null
distribution, it assumes that the distribution is unimodal and thus
a single F distribution is appropriate to approximate the null
distribution. Secondly, it assumes that a large majority of the
observed data are samples from the null distribution, which might
not be the case for some contexts. For example, some highly
indiscriminate ligands or perturbations that affected an entire
organelle would violate these assumptions. Finally, it assumes that
the sigmoid model is appropriate. To clarify, the 3-parameter
sigmoid model of interest is the following:

Sa;b;pðTÞ ¼
1� p

1þ expðb� a
TÞ

þ p: ð1Þ

The parameter p is interpreted as a plateau, whilst a and b are
shape parameters. This sigmoid model, and more generally
sigmoid functions, makes the assumption of monotonicity, a
single inflexion point, rotational symmetry around the inflexion
point, a bell-shaped first derivative and horizontal asymptotes (at
p and 1− p). In many cases, such assumptions are appropriate
and this behaviour is widespread in the TPP datasets we
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examined (see Fig. 1C and E). However, we did observe proteins
that deviated from this behaviour and violated these assumptions
(between 3 and 20% depending on the dataset), beyond what
could be attributed to measurement error. These include
examples of a hyper-solubilisation phenomena; that is, proteins
reproducibly increasing in relative solubility as temperature
increases, which is not predicted by thermodynamics27. Max-
imum solubility would be expected at physiological pH and
temperatures. We speculate that increase solubility with tem-
perature might arise for various reasons. Firstly, some proteins
may have insoluble sub-populations which are perturbed during
the heating process. Indeed, we might be observing temperature-
dependent phase transitions on a system-wide scale as noted
previously by ref. 15. Secondly, organeller membranes will be
compromised in intact cells at higher temperatures resulting in
some proteins undergoing conformational changes where the new
conformation has higher thermal stability. Investigating these
relationships further will require additional experimentation and
is outside the scope of our study. Finally, technical issues such a
variable co-isolation of TMT labelled peptides could also lead to
an apparent increase in solubility of proteins with increased
temperature, but we anticipate that this effect is minor.

After fitting a sigmoid model to each protein in each condition,
we computed the residuals for every protein at each temperature.
Classical analysis of variance assumes that the residuals are
independently and normally distributed with homoscedasticity.
We observed that none of these conditions are true for these data
(see Fig. 1A for an example)29 also noted this fact by comparing
the empirically derived F distributions to those which would be
obtained under classical assumptions and by also analysing the
corresponding p-value histograms52. The significant departure of
the F distributions from the theoretical behaviour was observed
and so they used large scale data analysis tools to approximate the
null. This results in different effective degrees of freedom for the F
test and analysis of variance proceeds as usual. For sake of
pedagogy, we state that bootstrapping or permutation methods,
amongst others, could also have been used34.

To perform residual analysis, we computed the sample
Spearman correlation matrix for the residuals and observed that
different datasets have different correlation structures (see Fig. 1B
and C) and that residuals for closer temperatures are, in general,
more correlated. The presence of correlated residuals usually
suggests data structure that has not been correctly modelled53–55.

To avoid estimating the null distribution, we recast the analysis
of TPP data by proposing a Bayesian sigmoid model. This has the
further benefit of allowing expert prior information to be
included for the parameters. The Bayesian framework also allows
us to quantifying the uncertainty in our parameter estimates and
as a result the uncertainty in the fitted function. Given that we
observed deviations from the sigmoid model and strongly
correlated residuals, we proposed to include an additional
functional term in our model. Given no suitable parametric
candidate for this additional term, we sought inspiration from the
Bayesian non-parametric literature and placed a Gaussian process
prior on this additional term, allowing a more flexible set of

functions to be modelled and the uncertainty in this function to
be quantified56–58. We refer to the methods section for a precise
description of our model.

In the following sections, we focus more closely on the
Staurosporine and Panobinostat datasets. The former is useful
because Staurosporine is a pan-kinase inhibitor and we expect a
large number of kinases amongst the true positive cases. As with
previous authors, we use this as a pseudo-ground truth. For the
other datasets true and false positive are poorly defined and we
draw upon complementary literature in our discussions. We
discuss all the datasets in collection in the final section and results
are included as part of the supplement (see Supplementary
data 1).

Analysis of Staurosporine dataset. Having developed sigmoid
and semi-parametric Bayesian models, we applied these approa-
ches to the Staurosporine dataset1. Staurosporine is a pan-kinase
inhibitor, where the inhibition is achieved by a having high
affinity to the ATP-binding site of kinases59. How Staurosporine
affects the cell is not completely understood and has been shown
to induce apoptosis60 and cell cycle arrest61. The Staurosporine
dataset that we consider reports relative solubility of proteins in
the presence of 20 μM of Staurosporine for 2 control replicates
and 2 treatment replicates. A total of 4505 proteins were mea-
sured using quantitative multiplexed TMT LC-MS/MS measure-
ments at temperatures ranging from 37 degrees to 67 degrees in
10 even increments of 3 degrees1.

One advantage of this dataset is that we expect a large number
of kinases to be the target of Staurosporine. Hence, we might
expect such proteins to have shifts in their thermal profiles upon
Staurosporine treatment. Hence, as in previous analysis29, we
curate a set of proteins with the annotation ‘protein kinase
activity’ from ensembl.db62. We then compute the sensitivity, the
proportion of correctly identified positive cases, for the NPARC
and two Bayesian, sigmoid and semi-parametric, approaches
(taking the p-value threshold as 0.01 and, similarly, a posterior
probability threshold as 0.99). The NPARC approach achieves a
sensitivity of 33.7, whilst the Bayesian sigmoid model a sensitivity
of 36.7 and the Bayesian semi-parametric model achieves 39.6
(see Fig. 2B). This suggests that avoiding estimation of the null
and expanding the model flexibility can improve the sensitivity of
the analysis. Unfortunately, in such cases specificity (the true
negative rate), is not well defined, since proteins that are not
kinases may also have their melting curve perturbed, perhaps due
to changes in their phosphorylation state as a result of ablated
kinase function18. We see similar improvements for sensitivity
when considering other datasets (see Supplementary Note) and a
simulation study is also included in the supplement demonstrat-
ing that the two Bayesian approaches outperform the NPARC
method.

Improved sensitivity results in finding new proteins that are
putative targets of Staurosporine. For example, DYRK1A, a dual-
specificity kinase with both serine and tyrosine kinase
activities63,64, which is essential for brain development65,66, was

Table 1 Summary of the datasets and the respective reference used in this manuscript.

Dataset Treatment Concentration number of proteins Reference Intact or Lysate

ATPdata MgATP 2 μM 4177 8 Lysate
Dasatinib 0.5 data Dasatinib 0.5 μM 4625 1 Intact
Dasatinib 5 data Dasatinib 5 μM 4154 1 Intact
Panobinostat data Panobinostat 1 μM 3649 73 Intact
Staurosporine data Staurosporine 20 μM 4505 1 Lysate
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Fig. 1 Residual analysis of thermal proteome profiling datasets. A Scatter plots of residuals for the sigmoid model at different temperatures applied to the
ATP dataset8. Orthogonal regression line shown in dark red and contours shown in yellow. Residuals are strongly correlated. B Sample Spearman
correlation matrix of the residuals for the ATP dataset. C Example melting curves for some proteins from the ATP dataset. LOESS curves shown for
visualisation. D as for (B), but for the Staurosporine dataset1. E Example melting curves from the Panobinostat dataset73. LOESS curves shown for
visualisation. Concentration refers to Panobinostat concentration in μM.
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overlooked by the NPARC analysis. Our Bayesian analysis is able
to determine DYRK1A as a kinase which is stabilised by
Staurosporine (posterior probability >0.99). This observation is
supported by kinobeads competition-biding experiments, where
DYRK1A demonstrated a Staurosporine dependent effect (pIC50

= 6.58)67 and an isothermal shift assay (iTSA) also demonstrated
a Staurosporine dependent effect on DYRK1A at 52 °C28.
Figure 2A demonstrates other benefits of the Bayesian analysis,
where we visualise uncertainty in the inferred sigmoid mean
function. There is clear separation between the sigmoid curve

between the two conditions. However, it also highlights the
potential limitations of the sigmoid model, with rotational
symmetry imposed around the point of inflexion.

An even clearer example were the sigmoid model fails is the
case of AP4S1, a component of the adaptor protein complex
which is involved in vesicle trafficking from the trans-Golgi to the
endosome68,69. Figure 2C shows the sigmoid model cannot model
the multiple inflexion points of the melting curve of AP4S1. The
limitation being the single inflexion point. Figure 2D shows the
inferred mean function and associated uncertainty estimates.

Fig. 2 Analysis of Staurosporine dataset. Condition A denotes the control and Condition B denotes 20 μM of Staurosporine (A) Melting profile for the
DYRK1A with inferred mean sigmoid model function plotted, along with 95% credible bands for the inferred mean function. B Sensitivity for the different
methods applied to the Staurosporine dataset. CMelting profile for AP4S1 using the sigmoid model, with uncertainty estimates in mean function. DMelting
profile for AP4S1 using the semi-parametric model, including inferred mean function and 95% credible bands. E, F Posterior predictive checks for AP4S1
using the two Bayesian models: E sigmoid (F) semi-parametric. The red line corresponds to the observed data. Whilst the black line is the posterior
predictive mean function and the credible bands correspond to 50% and 95% credible bands of the posterior predictive distribution, respectively. Statistics
derived from two biological replicates, for each of two conditions each with 10 measure temperatures.
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Clearly the semi-parametric model is more appropriate for such
cases. The full list of results can be found in the Supplementary
material.

To compare these models more formally, we performed a
posterior predictive check (see section ‘Bayesian inference and
model selection’). From the posterior predictive distributions, we
examined the credible bands. To be precise, given a model, an
observed value is predicted to fall in the credible band of size β
with probability β. Hence, if the observed data fall outside the
credible bands, it is indicative of the model being insufficient.
From Fig. 2E we see the data frequently lies outside the 50%
credible band and occasionally outside the 95% credible band.
Whilst for the semi-parametric model, visualised in Fig. 2F, the
data never falls outside the 95% credible band and is more
frequently contained in the 50% credible band. This suggests that
the semi-parametric is more appropriate, in this case. Kernel
density estimate based posterior predictive checks make a similar
conclusion and are included in the supplement.

For a more quantitative treatment, we examine the out-of-
sample predictive accuracy from the fitted Bayesian models (see
section ‘Bayesian inference and model selection’). We use leave-
one-out cross validation (LOO-CV) with the log-predictive
density as the utility function. Higher scores indicate better out-
of-sample predictive performance. The LOO-CV estimate for the
sigmoid model is 26.7 ± 5.4(SE), whilst for the semi-parametric
model it is 41.1 ± 6.5 (SE). We conclude, for this protein (AP4S1),
the semi-parametric model is superior. As a result of the
improved modelling, our analysis was able to determine that
AP4S1 was destabilised upon Staurosporine treatment (posterior
probability >0.99), which we could not determine from NPARC
or the Bayesian sigmoid model. AP4S1 is not a kinase, thus its
change in behaviour upon Staurosporine treatment is not
straightforward to interpret. In any case, we would expect kinases
to be stabilised, rather than destabilised. This destabilisation
might be an effect of not being correctly localised or not being
able to correctly form a complex. AP4S1 localisation is dependent
on the small G protein ARF170, whose function, it turn, depends
on several kinases71,72. Thus, the destabilisation is likely a
downstream effect of Staurosporine as a pan-kinase inhibitor.

Proteins with altered thermal stability upon Panobinostat
treatment. The analysis of the Staurosporine dataset demon-
strated the improved sensitivity of our method and the ability of
our approaches to model complex behaviours, whilst also quan-
tifying uncertainty. We next applied our method to the Panobi-
nostat dataset where, in the original analysis, only a handful of
hits were identified73. Panobinostat is a non-selective histone
deacetylase inhibitor (pan-HDAC inhibitor) that is approved for
use in patients with multiple myeloma74. Thermal proteome
profiling was applied to K562 cells treated with a vehicle (control)
or 1 μM of Panobinostat. 2 replicates in each context were pro-
duced and a total of 3649 proteins were measured73. These
panobinostat experiments are cell-based rather than lysates and
so we expect our approach to be sensitive to non-canoncial
melting curves that may be due to effects on solubility.

We applied the NPARC pipeline and identified 7 proteins as
having their melting curve significantly altered (p < 0.01), which
included the known Panobinostat targets HDAC 1, 6, 8, 10. The
HDAC proteins are responsible for the deacetylation of lysine
residues of the N-terminal of the core histones, as well as other
proteins75–79. To quantify uncertainty, we applied the Bayesian
sigmoid approach, also avoiding estimation of the null distribu-
tion. The Bayesian sigmoid model was able to identify 34 proteins
whose melting profile was treatment dependent (posterior
probability >0.99). 16 of these proteins are plotted in Fig. 3 and

these putative hits included all of the proteins discovered by the
NPARC approach.

We also observed several proteins whose melting behaviour
was not previously known to depend on Panobinostat; such as,
NCBP1 whose behaviour appears to be destabilised upon
Panobinostat treatment. NCBP1 is a nuclear cap-binding protein
that is dual localised to the cytosol and nucleus, as well as being
an integral component of the cap-binding complex80,81. Given
the role of acetylation in formation of protein complexes82, as
well as NCBP1 having been shown to have two lysine residues
that are substrates for acetylation82 it possible that the observed
melting behaviour is a downstream result of the ablated function
of the HDAC proteins.

We have already demonstrated that non-sigmoidal behaviour
is not unusual in the Panobinostat dataset (see Fig. 1E). Hence,
we applied our Bayesian semi-parametric model to these data. We
identified 85 proteins whose melting profile was panobinostat
dependent with posterior probability greater than 0.99. These
included HDAC 7, one of the core members of the histone
deacetylation complex, which was not identified by either
NPARC or the Bayesian sigmoid model (Fig. 4). In this case,
however, HDAC 7 is not stabilised but, rather, destabilised
suggesting indirect regulation downstream of Panobinostat
targets. This finding is consistent with a recent report showing
that HDAC7 abundance is regulated through activity of the
known Panobinostat targets HDAC 1 and 383 and with HDAC 7
not being enriched in pull-down experiments with the
Panobinostat9.

Another protein that we identified with Panobinostat depen-
dent behaviour was RUVBL1. RUVBL1 is a well-studied protein
involved in histone acetylation and is a component of several
complexes, has multiple localisations and many interaction
partners84–89. RUVBL1 displays curious behaviour with both
hypersolubilsation and destabilisation upon treatment with
Panobinostat (Fig. 4). Since RUVBL1 has multiple states and is
involved in multiple different complexes, it is possible that the
effects of Panobinostat are interrupting only a certain pool of
RUVBL1 proteins, leading to biphasic behaviour. Certain
functional units of RUVBL1 might be more thermally stable
than others, leading to complex temperature-solubility beha-
viours. The extent to which the behaviours are reflected in the
melting curves will depend on many factors. Two dimensional
thermally profiling experiments in lysate HepG2 cells show that
RUVBL1 is highly thermal stable and did not display sigmoidal
behaviour at several concentrations of Panobinostat (5, 1, 0.143,
0.02) μM at a temperature range of 42–63.9 °C9.

Characterising proteins that deviate from sigmoid behaviour.
Having established the utility of our Bayesian models, in parti-
cular the ability of our semi-parametric approach to model
deviations from sigmoid behaviour. We next considered those
proteins that were better modelled by the semi-parametric
approach to see if they have any physical, functional or other-
wise defining features. We began our investigation by selecting a
set of proteins where the semi-parametric model explains at least
5% more variance90 than the sigmoid model does alone (see
Supplementary data 2).

We performed functional enrichment testing of these proteins
using UniprotKB annotations (see supplementary data 3). We
found that the post-translation modifications acetlyation and
phosphoprotein are enriched in these proteins across the 5
human datasets (∀i, pi < 10−8 Fisher exact BH corrected), as well
as RNA binding (∀i, pi < 10−6 Fisher exact BH corrected). The
pattern of enrichment can be visualised in Fig. 5A and is
reproducible across all the datasets. Whilst the effect of
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Fig. 3 Example melting curves for Panobinostat dataset. Melting profiles for 16 protein with posterior probability >0.99 in favour of a condition-
dependent model using the Bayesian sigmoid model. Points are observed protein measurements. The inferred mean function from the sigmoid model is
plotted as a line and the 95% credible band is given by the shaded region. Purple denotes the drug treated context, whilst yellow denotes the control.
Statistics derived from two biological replicates, for each of two conditions each with 10 measure temperatures.
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Fig. 4 Example model fits using semi-parametric model. Melting profiles for HDAC 7 and RUVBL1 using the Bayesian semi-parametric model. The points
are observed protein data. The line represents the inferred mean function and the shaded region is the 95% credible band for the inferred mean function.
Purple denotes the drug treated context, whilst yellow denotes the control. Statistics derived from two biological replicates, for each of two conditions each
with 10 measure temperatures.
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Fig. 5 Enrichment analysis of protein deviating from sigmoid behaviour. A Uniprot key term enrichment analysis. A tile plot show −log10 of the p-values
for each of the terms for the 5 human datasets. B GO CC enrichment analysis. A tile plot showing −log10 of the p-values for each of the terms for the 5
human datasets. C–G Melting profiles of the proteins from the EXOSC complex, across the 5 human datasets, C ATP dataset (D) Dasatinib 5 dataset (E)
Staurosporine dataset (F) Panobinostat dataset (G) Dasatinib 0.5 dataset. Statistics derived from two biological replicates, for each of two conditions each
with 10 measure temperatures.
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phosphorylation on protein thermal stability is well
appreciated18, the role of acetylation on thermal stability has
not been characterised, despite well-established influence on
protein stability82. Enrichment of acetylated proteins could
suggest a mechanistic effect of acetylation on thermal stability.

Non-canonical melting behaviour may represent different
pools of the same protein behaving differently within the cell.
Non-canonical proteins are enriched for RNA-binding proteins
and so the different species of protein, i.e. the RNA-bound form
or the entities not bound to RNA, might have different
temperature-solubility relationships, as well as different drug
induced behaviours. Hence, what we may be observing in TPP
datasets is a mixture of these behaviours being reflected in
different ways. The extent to which one observes such behaviours
will depend on the relative number of copies of each protein in
each state and also on the particular way the modification effects
the thermal stability of the protein. Hence, exactly which protein
display this behaviour will be cell line and context specific, and so
requires further investigation. This interpretation would explain
both the hypersolubilisation and biphasic behaviour we have
observed.

We continued to characterise the subcellular localisations of
these proteins, with the hypothesis that these protein might come
from a single or perhaps multiple localisations. As we see from
Fig. 5B, the pattern for subcellular localisation is much less
consistent than the pattern for functional enrichment and only
the nucleolus and the ribonucleoprotein complex are enriched
annotations for protein with non-sigmoidal behaviour in all the
human datasets.

The nucleolus is a phase-separated sub-nuclear compartment
and is the site of ribosome biogenesis91. Furthermore, during heat
stress molecular chaperones accumulate in the nucleolus to
protect unassembled ribosomal proteins against aggregation92.
This effect is readily seen within 2 hours at 43 degrees. Despite
TPP experiments usually only heating for minutes, we hypothe-
sised that functional role of the nucleolus thus guards against the
phenomena that TPP is attempting to induce. To test this
hypothesis further, we filtered to proteins that are classed as non-
sigmoidal and have known nucleolus annotation. We found that
several proteins of the exosome complex EXOSC[2,5-9] fall into
this class and are measured completely in all experiments.
Figure 5 shows the reproducible non-sigmoidal behaviour.
Remarkably, all members of this complex show hypersolublisa-
tion and increasing stabilisation until roughly 50 degrees. After 50
degrees the proteins destabilised. Without further experiments,
we cannot deduce whether this effect is representative of the
whole nucleolus or solely these EXOSC proteins. One alluring
explanation could be that RNA dissociates from the EXOSC
complex at 50 degrees. Furthermore, we do not observe
significant co-aggregation of EXOSC protein in thermal proxi-
mity coaggregation (TPCA) data16. However, TPCA analysis
derives curve similarity from an inverse euclidean distance, which
may not be a sufficiently sensitive measure of curve similarity in
this case.

Continuing our investigation into subcellular localisation, we
integrated our analysis with spatial proteomics data from
hyperLOPIT experiments93. We used hyperLOPIT data from
U-2 OS cells, providing information on 4883 proteins to 11 sub-
cellular compartments (refs. 94,95 and re-analysed in ref. 96 to
reveal 14 compartments). We projected the proteins that deviate
from sigmoid behaviour onto the PCA coordinates of the
hyperLOPIT data (Fig. 6). In all datasets, we observed enrichment
for nuclear, ribosomal and cytosolic regions, in agreement with
our GO enrichment analysis. Furthermore, also in support of the
GO enrichment results, we saw strong enrichment for mitochon-
drial annotations in the two Dasatinib datasets and the

Panobinostat dataset. To understand the functional relevance of
these proteins, we stratified to the proteins that have mitochon-
drial annotations according to the hyperLOPIT data.

In the Dasatinib 0.5 dataset, we saw enrichment for cofactor
binding (p < 10−13), coenzymee binding (p < 10−9), NAD binding
domains (p < 10−7), small-molecule binding (p < 10−9), FAD
binding domains (p < 0.0001), nucleotide binding (p < 10−9),
ATP-binding and RNA-binding (p < 0.05). We see similar results
in the Dasatinib 5 dataset: cofactor binding (p < 0.001), co-
enzyme binding (p < 0.001), NAD binding (p < 0.001), nucleotide
binding (p < 0.001), small molecular binding (p < 0.01). Almost
identical results are seen for the Panobinostat dateset: cofactor
binding (p < 10−8), NAD binding (p < 10−6), co-enzyme binding
(p < 10−6), small molecule binding (p < 0.01), nucleotide binding
(p < 0.01), FAD binding domain (p < 0.01). Taken as a whole,
these results support our interpretation of biphasic behaviour
where different functional copies of a protein behave differently
from each other and that we observe a mixture of these
behaviours in TPP experiments.

Given the functional and localisation enrichments we have
observed, we sought to further characterise these proteins by
examining their intrinsic disorder. Indeed aggregation-prone
proteins, after non-lethal heatshock, are enriched for intrinsically
disordered regions97. Using the D2P2 database98, we first
obtained the length of the predicted intrinsically disorder regions
(IDRs) for every protein. For stringency, we required that at least
a minimum of four prediction tools were in agreement. To
correct for length bias, we computed the proportion of the
protein that was intrinsically disordered. We then tested if the set
of proteins with non-canonical melting behaviour were enriched
for proteins that had at least 5% of regions predicted to be
intrinsically disordered. No such enrichment was observed
(Fisher’s exact test). We further filtered to proteins in our
analysis that had nucleus annotations and despite nuclear
annotated non-canonical proteins having a large proportion of
IDRs (80–95%), there was no statistical enrichment beyond what
one would have expected for nuclear proteins.

A further consideration is whether the experiment was
performed in intact or lysed cells. Indeed, for the three
experiments that were performed on intact cells (Dasatinib 0.5
and 5 and Panobinostat) the non-sigmoidal proteins showed an
enrichment for mitochondrial localisation whilst the lysate-based
experiments did not. In lysate-based experiments the mitochon-
drial membrane will break down and the local concentration of
NAD will decrease. Hence, the drug has easier access to
mitochondrial proteins in lysate-based experiments. Since cellular
physiology is preserved for intact cells, we might believe that non-
sigmoidal behaviour is indicative of downstream effects. How-
ever, some non-sigmoidal behaviours are reproducible and
independent of whether the experiment was in lysed or intact
cells. Thus, we cannot completely attribute these effects to
whether the experiments were performed in intact cells or not.

Discussion
We have presented Bayesian approaches to the analysis of ther-
mal proteome profiling data. Our Bayesian sigmoid model
quantifies uncertainty and avoids empirical estimation of the null
distribution. The resulting model shows improved sensitivity and,
as a result, we identified new putative targets and off-targets in 5
human TPP experiments. Uncertainty quantification provides
useful additional information and, by inspecting the confidence
bands, we can carefully select the temperatures at which to per-
form validation experiments.

Many proteins exhibit non-sigmoid behaviour and we observed
strong correlation between residuals in all the datasets we
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analysed, motivating an expanded model. Thus, we introduced a
semi-parametric Bayesian model that further improved sensitiv-
ity, had better out-of-sample predictive properties for some
proteins and had confidence bands with improved coverage. This
improved analysis allowed us to identify HDAC 7 as having
altered thermal stability on Panobinostat treatment, which pre-
vious analysis could not identify.

We probed the proteins that deviated from non-sigmoid
behaviour and our analysis suggests that these proteins are
enriched for proteins that contain known phosphorylation and
acetylation sites, as well as RNA-binding proteins. These proteins
also displayed concerted subcellular localisations with enrich-
ments for nucleolus across all datasets and mitochondrion in
particular contexts. This reinforces our interpretation that for
proteins with non-sigmoid behaviour, we are observing a mixture
of behaviours from different functional copies of those proteins.

This motivates expansion of the TPP method to deconvolute
these behaviours, for example, phosphoTPP17–19 and other
PTMs. The RNA-binding behaviour could be examined with
high-throughput RNA-protein enrichment methods99 and fur-
ther deconvolution could be obtained by combining TPP with
spatial proteomics methods93,95. Though we observed non-
sigmoidal behaviour in all datasets, more proteins were found
to deviate in data generated from live cells (as compared to cell
extracts).

As mentioned before, protein thermal stability can be affected
by compound binding, PTMs and protein complex formation. In
addition, protein solubility in cells might be affected by PTMs
and other treatment-dependent effects, and even by ATP levels.
Similar to protein solubility, compound treatment and other
perturbations may affect the extent to which a protein is extracted
in the applied experimental conditions leading to temperature

Fig. 6 Subcellular localisations of proteins deviating from sigmoid behaviour. A–E PCA plots of U-2 OS hyperLOPIT data95, showing the top two principal
components. Each pointer is a protein and marker proteins for each subcellular niche are coloured. Dark red diamonds denote proteins that were deemed
to have non-sigmoid behaviour from TPP data. Each panel represents a different TPP dataset for the projected proteins. HyperLOPIT experiments are from
biological triplicates with using a total of 57 fractions.
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dependent and temperature independent components that man-
ifest themselves in thermal denaturation profiles. Whilst most
referenced studies have been directed at identifying direct targets
of small molecule inhibitors in live cells or in cell extracts, there is
an increasing recognition of the potential of TPP as a metho-
dology to profile molecular phenotypes (e.g. ref. 100) as it inte-
grates multiple dimensions of regulation on proteome level into a
single analytical approach. Such phenotyping could not only be
informative for compound mechanism of action studies and to
detect opportunities for combination treatments, but also to study
effects of gene deletions, genetic variants and external stimuli and
combinations thereof. As a consequence proteins can be affected
in multiple ways and in different sub-cellular compartments
resulting in more complex thermal denaturation behaviour than
what can be robustly assessed with established computational
approaches.

As demonstrated above our semi-parametric Bayesian
approach is sensitive to detect protein effects that do not strictly
follow the thermal denaturation-induced aggregation expected
from isolated proteins and uniquely adds by identifying proteins
affected by multiple parameters at once. Whilst not without
challenges, the careful analysis of features in complex thermal
denaturation curves is expected not only to facilitate hit calling
but also to inform causality. This will be subject of future direc-
tions of our approach.

There are potential extensions of our methods to other TPP-
based experimental designs101, to simultaneous joint modelling of
multiple organisms26 and to include prior information derived
from other experiments. We could also use expected gain in
information to optimise the drug concentration and temperatures
used in the TPP experiments102. Summarising and normalisation
to protein-level could also be avoided by modelling the data at
peptide spectrum match (PSM) level. We have also used a default
global prior for the prior model probabilities - these might be
better specified using known prior properties about the drug
being used.

As with all methods, our approach is not without limitations,
for example, increased computational cost could be a burden.
However, if we are willing to sacrifice uncertainty quantification,
we could simply use optimisation based inference instead. Our
implementation is extensible with prior and model components
easily change within our stan (probabilistic programming
language103) implementation (see supplementary code).

Methods
Non-parametric analysis of response curves. We briefly describe the NPARC
method for completeness29. Let yijk be the relative solubility of protein i at tem-
perature Tj for replicate measurement k. The null hypothesis states that the relative
solubility of protein i at temperature Tj is modelled as a single mean function
regardless of the treatment condition or context:

EðyijkÞ ¼ μiðtjÞ: ð2Þ
The alternative model allows for treatment effects or the mean function to

change for each context

EðyijkcÞ ¼ μicðtjÞ ð3Þ
where c denotes the context. The mean function is modelled using the 3-parameter
sigmoid model:

Sa;b;pðTÞ ¼
1� p

1þ expðb� a
TÞ

þ p: ð4Þ

To clarify, under H0 the parameters a, b, p are fixed for both contexts, whilst
under the alternative H1 the parameters a, b, p are allowed to be context specific.
For hypothesis testing, the F statistic is computed

F ¼ d2
d1

RSS0 � RSS1
RSS1

; ð5Þ

where RSS0/1 denotes the sum of the squared residuals when fitting the null (0) or
the alternative (1) model and d1/2 are referred to as degrees of freedom. Large
values of the F statistic represents reproducible changes thermal stability. If the

residuals were i. i. d normally distribution then we could perform an F-test using
the null distribution F(d1, d2), where the degrees of freedom are computed from
simple parameter and observation counting. However, the i. i. d assumption do not
hold and so ref. 29 estimate the null distribution using new effective degrees of
freedom ~d1; ~d1. Approximating the null distribution assumes a unimodal null
distribution and that the majority of observations are samples from the null dis-
tribution. We refer to ref. 29 for detailed formulae. Once the approximate null has
been obtained p-values can be computed as usual and multiple hypothesis testing
correction applied104.

Bayesian inference and model selection
Bayes’ theorem and hypothesis testing. In this section, we summarise Bayesian
inference and model selection. The advantage of the Bayesian framework is that we
no longer need to estimate a null distribution and multiplicity is automatically
controlled via the prior model probabilities. This avoids making any assumptions
about the properties of the null distribution. Furthermore, prior information is
included on the parameters, which has a number of benefits, including allowing the
shrinkage of residuals towards 0, regularising the inferred parameters and
improving algorithmic stability. Furthermore, in a Bayesian analysis, we obtain
samples from the posterior distribution of the parameters and hence the posterior
distribution of the mean function can be obtained to quantify uncertainty.

Bayesian inference begins with a statistical modelM of the observed data y with
the parameters of the model denoted by θ. Given a prior distribution for the
parameters, denoted pðθjMÞ, and observed data y, Bayes’ theorem tells us we can
update the prior distribution to obtain the posterior distribution using the
following formula:

pðθjyÞ ¼ pðyjθÞpðθjMÞ
pðyjMÞ : ð6Þ

pðyjMÞ is referred to as the marginal likelihood, since it is obtained by
marginalising θ:

pðyjMjÞ ¼
Z

θ
pðyjθÞpðθjMÞ d θ: ð7Þ

The task of hypothesis testing can be cast as a model selection problem. Indeed,
the null hypothesis is associated with a modelM0, whilst the alternative hypothesis
is associated with a model M1. Thus, the task of hypothesis testing is that of
selecting between two competing models.

To perform model selection, we are interested in the following posterior
quantity105,

pðM1jyÞ ¼
pðyjM1ÞpðM1Þ

pðyjM1ÞpðM1Þ þ pðyjM0ÞpðM0Þ
; ð8Þ

that is the posterior model probability, given the data. The relative plausibility of
two model is quantified through the posterior odds, which is the prior odds
multiplied by the Bayes factor106.

pðM1jyÞ
pðM0jyÞ

¼ pðM1Þ
pðM0Þ

´
pðyjM1Þ
pðyjM0Þ

ð9Þ

The challenging of computing these equations is obtaining the marginal
likelihood (equation (7)). We note that because of the integration with respect to
the prior there is automatic penalisation of additional model complexity. The
marginal likelihood is challenging to compute and is only available in analytic form
for a small number of relatively simple models.

A number of sampling based approach are available to compute marginal
likelihoods, such as bridge sampling107,108, path sampling109, importance
sampling110, harmonic mean sampling111, nested sampling112–114 (see also
ref. 115). Though these sampling based approaches produce highly accurate
marginal likelihoods, these approaches require excessive computation in our case.
Instead, we approximate the marginal likelihood using the Metropolis-Laplace
estimator. Briefly, the log of the marginal likelihood (equation (7)) is estimated as
ref. 116:

log ðpðyjMjÞÞ �
P
2
log ð2πÞ þ 1

2
log jĤj þ log ðpðθ̂jMjÞÞ þ log ðpðyjθ̂ÞÞ; ð10Þ

where θ̂ a Monte-Carlo estimator of the parameters, P is the number of parameters
and Ĥ is estimated by the sample covariance of the posterior samples. This
approach is used for both the Bayesian sigmoid model and the semi-
parametric model.

Finally, we have yet to specify the prior model probabilities p(Mj) for j= 0, 1.
To control for multiplicity, we can adjust the prior model properties to assume that
the null model is more likely that the alternative35. Hence, we set pðM0Þ ¼ 0:99
and pðM1Þ ¼ 0:01.

Posterior predictive checks and out-of-sample predictive performance. Formal model
selection via the marginal likelihood can be used to select between two or more
competing models. However, models can also be assessed and criticised using
measures of predictive performance. Here, we consider posterior predictive checks,
as well as out-of-sample predictive performance. A posterior predictive check
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begins with simulating from the posterior predictive distribution:

pð~yjyÞ ¼
Z

θ
pð~yjθ; yÞpðθjyÞ d θ: ð11Þ

This is the distribution obtain by marginalising the distribution of ~y given θ over
the posterior distribution of θ given y. The rationale is that simulated data from the
posterior predictive should look similar to the observed data39. We simulate these
datasets yrep and compute the 50% and 95% credible bands, for the models of
interest. Though other posterior predictive summaries can be used, such as Kernel
Density Estimate posterior predictive checks (see supplement).

Another approach is to examine the out-of-sample predictive accuracy from the
fitted Bayesian models. We use (approximate) leave-one-out cross validation (LOO-
CV) with the log predictive density as the utility function (equivalently the log-loss)117:

ELPDLOO ¼ ∑
n

i¼1
log
Z

pðyijθÞpðθjy�iÞ d θ: ð12Þ

Equation (12) is the leave-one-out predictive density given the observed data without
the ith observation, summed over the observations. This process is intensive so the
expected log pointwise predictive density (ELPD) is estimated using Pareto smoothed
importance sampling (PSIS)117.

Bayesian sigmoid model. In this section, we develop our Bayesian sigmoid model.
For our proposed Bayesian sigmoid model, we assume the aforementioned sigmoid
model. As before, under M0 a single sigmoid model is posited irrespective of any
treatment effects or contexts. While the competing model M1 allows the sigmoid
parameters to be context specific. Thus under the null hypothesis, we assume

yijkjM0 � N ðSa;b;pðTjÞ; σ2i Þ ð13Þ
whilst for the competing model

yijkcjM1 � N ðSac ;bc ;pc ðTjÞ; σ2icÞ for c ¼ 1; 2; ð14Þ
where again c denotes the context or treatment effect. To complete the specification
of our model, we need to declare the priors. The sigmoid shape parameters a, b are
required to be positive and thus we place a Gamma distribution on these para-
meters. The right tail of the Gamma distribution discourages posterior mass on
excessively large values of a and b. To obtain reasonable defaults for these priors,
we examined the fitted values found by previous analysis29, as well as performing a
prior predictive check118. Thus priors are specified for a, b as follows

a � Gð7; 0:01Þ ð15Þ

b � Gð7; 0:4Þ: ð16Þ
The parameter p is restricted between 0 and 1 and thus a Beta prior is appro-

priate for this parameter. Given that the plateau is generally close to 0 and rarely
above 0.5 we specify the following prior

p � Bð1; 20Þ: ð17Þ
For the standard deviation of the residuals σ, we desire these to be considerably

smaller than the scale of the data and shrunk towards 0. This has two purposes: the
first is that we want the data to be explained by variations in the mean function not
simply by wide errors; secondly smaller residuals allow us to discriminate between
small but reproducible shifts in melting profiles. We opt for the folded-normal
distribution on σ119. We specify the prior as follows

σ � FN ð0; 0:05Þ; ð18Þ
which puts significant mass around 0 to encourage shrinkage, whilst residuals up to
0.4 are not considered surprising. There is no conjugacy between our prior and
likelihood, which makes obtaining samples from the posterior distribution chal-
lenging. We employ Hamiltonian Monte-Carlo120, in particular, a variant of the
no-u-turn sampler121,122 with an implementation in Stan103,123.

Bayesian semi-parametric model. Our Bayesian sigmoid model allowed us to
remove the assumptions relating to the estimating the null distribution, but still
assumes a sigmoid functional form and uncorrelated residuals. To relax these
assumptions, we propose a semi-parametric model. We assume the parametric sig-
moid function and introduce an additional term so that the melting curves for protein
i are modelled according the following (suppressing notation on the condition)

yikðTjÞ ¼ Sa;b;pðTjÞ þ μiðTjÞ þ ϵij; ð19Þ
where μ is some deterministic function of temperature and ϵij ¼ Nð0; σ2i Þ is a noise
variable. Without any suitable parametric assumptions for μi, we perform inference
for μi by specifying a Gaussian process prior, so that:

μi � GPðmðTÞ;CðT;T 0ÞÞ: ð20Þ
A Gaussian process (GP) prior is uniquely determined by its mean and covariance

function, which determine the mean vectors and covariance matrices of the associated
multivariate Gaussians. We do not have any prior believe about the symmetry or

periodicity of our functions (beyond what is already encoded by Sa,b,p) and thus we
specify a centred GP with a squared exponential covariance function

C ¼ v2 exp �k Ti � Tjk2
2l2

 !
; ð21Þ

where v2 is a marginal variance parameter and l, a length-scale parameter, encodes the
distance at which observations are correlated. The adopted GP prior of μi tells us that
the relative solubility for protein i is modelled as follows

yikjSa;b;p; μi; σ i � N ðSa;b;p þ μi; σ
2
i IDÞ; ð22Þ

where D denotes the number of measured temperatures. Note that we can make ni
repeated measurement (or replicates) of protein i at temperature Tj. We denote
yi ¼ fyi1; ::; yini g to be the concatenation of replicate measurements. Hence, the above
implies that

yiðT1Þ; :::; yiðTDÞjμi; Sa;b;p; σ i � N ðf iðT1Þ; :::; f iðTDÞ; :::; f iðT1Þ; :::; f iðTDÞ; σ2i IniDÞ;
ð23Þ

where fi(T1), . . . , fi(TD) is repeated ni times and fi(Tj)= Sa,b,p(Tj)+ μi(Tj). Our GP
prior tell us that

μiðT1Þ; :::; μiðTDÞ; :::; μiðT1Þ; :::; μiðTDÞjv; l � N ð0;CiÞ; ð24Þ
where Ci is an niD × niDmatrix. Note that the above means that we can marginalise μi
to avoid inference of this unknown function and obtain:

yijSa;b;p; v; l � N ðSa;b;p;Ci þ σ2i IniDÞ: ð25Þ
Reintroducing the context or treatment effect, we allow the parameters to vary

between them. Thus, under the null hypothesis, we assume

yijkjM0 � N ðSa;b;pðTjÞ þ μiðTjÞ; σ2i Þ ð26Þ
whilst for the competing model

yijkcjM1 � N ðSac ;bc ;pc ðTjÞ þ μicðTjÞ; σ2icÞ for c ¼ 1; 2: ð27Þ
To complete our model, we need to specify the prior distributions. For parameters

in common with the sigmoid model we make the same prior choices. Thus, it remains
to make prior choices for v and l. The challenges of specifying priors for the
hyperparameters of the Gaussian process are well documented124–128. To obtain a
sensible prior it is important to note that our model is weakly non-identifiable. This is
because the non-parametric part can explain the parametric components. However,
this is not, in general, an issue for Bayesian analysis. To advert problems this can
cause for inference, we have to make judicious prior choices.

The first step is to encourage the marginal variance parameter to be on the scale
of the residuals rather than that of the data. We already placed a folded-normal
prior on the measurement error σ. For the marginal variance v2, we impose even
stronger shrinkage towards 0 by using a folded-student-t prior. This prior also has
heavy tails allowing the non-parametric term to explain complex variations, if
supported by the data. To summarise, we specify

v � FT ð3; 0; 0:5Þ; ð28Þ
where FT ðν;m; σÞ denotes a folded-student-t density with degrees of freedom ν,
mean m and scale σ. On the other hand, for the length scale parameter l, we wish to
avoid excessively small values. Short length-scales allow the Gaussian process
simply to interpolate the data and overfit. Thus, we propose a log-normal prior for
l, which has a sharp left tail and heavy right tail, discouraging small length scales
and really large length scales, respectively. We find that the following prior works
well in practice (sensitivity is tested in the supplement):

l � LN ð�0:5; 0:5Þ: ð29Þ
Inference for Bayesian models that incorporate Gaussian processes priors can be

computationally intensive and so we make use of reduced-rank Gaussian process
methods by approximating the covariance function129. As with the sigmoid model
our semi-parametric model is implemented in Stan103.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used in this manuscript are made available as part of the Supplementary
material. Spatial proteomics data is available as part of the Bioconductor package
pRolocdata. Python 2.7.15 was used to collect IDR data. String version 11.0 was used to
collect enrichment data, which is available as Supplementary data 3. The remain data to
reproduce the Figures is provided as Supplementary data 4.

Code availability
The following version of R was used: r-3.6.1-gcc-5.4.0-zrytncq to analyse the data.
Custom stan code was generated using version 2.21.2 and is provided as part of the
Supplementary data 5.
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