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Abstract
Starting from the 3-wave interaction equations in 2+1 dimensions (i.e., two space
dimensions and one time dimension), we complexify the independent variables, thus
doubling the number of real variables, and hence we work in 4+2 dimensions: x1,
x2, y1, y2 and t1, t2. In this paper we solve the initial value problem of the 3-wave
interaction equations in 4+2 dimensions.

1 Introduction

The modern history of integrable systems begins in the late 1960s when Gardner,
Greene, Kruskal and Miura solved the initial value problem of the Korteweg-de Vries
(KdV) equation by what was later called the Inverse Scattering Transform [1]. Here
“integrable” means that the system in question can be written as the compatibility
condition of a set of linear equations, the so-called Lax pair [2,3]. For some years the
KdV equation with its striking properties appeared to be a unique case, until Zakharov
and Shabat showed that the Non-linear Schrödinger (NLS) equation can also be solved
using the Inverse Scattering Transform [4].

The KdV and NLS equations are integrable evolution equations in one spatial
dimension. There exist integrable generalizations of the aforementioned equations to
two spatial dimensions: the Kadomtsev–Petviashvili (KP) [5] and Davey–Stewartson
(DS) [6] equations, respectively. TheKP equation, describing non-linear wavemotion,
has two forms (known as KPI and KPII) which differ in one particular sign appearing
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in the equation. The choice of the sign depends on the relative magnitude of the
gravitational forces and the surface tension. Progress towards solving these and other
equations in 2+1 dimensions (i.e., two spatial dimensions and one time dimension)
was made in the works of Zakharov and Manakov [7–9] and Segur [10]. In the early
1980s Ablowitz, one of the authors, and their collaborators solved both the initial
value problem of the KPI equation using a non-local Riemann–Hilbert (RH) problem
[11] and the analogous problem for the KPII equation (which cannot be written as
a RH problem) using the d-bar formalism [12]. This formalism first appeared in the
works of Beals and Coifman on problems with one spatial dimension [13,14]. By now
the above methodologies have been used to solve the initial value problems of a wide
variety of integrable evolution equations with two spatial dimensions [15,16].

One of the main current topics in the field of integrable systems concerns the
existence of non-linear integrable evolution equations in more than two spatial dimen-
sions. Several attemptsweremade to extend the inverse scatteringmethod to non-linear
evolution equations in three or more spatial dimensions [17–20] but although these
works made important contributions to the solution of inverse problems, they did not
result in the desired construction of integrable multidimensional non-linear evolu-
tion Partial Differential Equations (PDEs). The difficulty they encountered, known
as the ‘characterization problem’, was that the associated scattering data must sat-
isfy non-linear constraints which seem to be incompatible with the existence of local
non-linear integrable evolution PDEs. These non-linear constraints arise in the above
approaches because the corresponding eigenvalue equations involve several complex
spectral variables.

The fact that integrable multidimensional non-linear evolution PDEs exist has been
proven by one of the authors, who in 2006 derived equations of this type in four spatial
dimensions, which however had the disadvantage of containing two time dimensions
[21]. The Cauchy problem of these equations in 4+2 dimensions can be solved by
means of a non-local d-bar problem. The main benefit of this approach is that the
eigenvalue equations depend on only one complex spectral variable, whereas the sec-
ond complex spectral variable only appears in the integration; thus the characterization
problem does not appear here. Subsequently, the same author also identified a large
class of integrable evolution equations in any number of spatial dimensions and 1 time
dimension, by constructing a non-linear Fourier transform pair which can be used to
solve the Cauchy problem of these equations [22,23]. This second class of equations,
however, involves a non-local commutator. In this paper we will concentrate on the
first class, i.e., the one with 2 time dimensions.

In general, the choice of the methodology (local RH, local d-bar, non-local RH,
non-local d-bar) is closely connected to the dimensionality of the equations one wants
to solve [3]. The initial condition q0 of an integrable evolution equation in 1 and
2 space dimensions depends on 1 and 2 real spatial variables, respectively, hence
the associated spectral function should also involve 1 and 2 real spectral variables.
In the case of a local RH problem, the spectral function depends on 1 real spectral
variable k, which describes the curve on which the “jump” of the RH problem occurs,
so this formalism is suitable for solving equations in 1 spatial variable. In the case
of a local d-bar problem, the associated spectral function depends on 2 real spectral
variables (k1, k2) (or equivalently on (k, k), where now k = k1 + ik2 and k is the
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complex conjugate of k) and, hence, this problem is used to solve equations in 2 spatial
dimensions. Alternatively, sometimes the non-local RH formalism can be used for
solving equations in 2 spatial dimensions (as mentioned above for the KPI equation);
here the spectral function depends not only on the real variable k (specifying the curve
along which the jump occurs) but also on the real variable λ, specifying the integration
along a given curve. The non-local RH formalism can be generalized using a limiting
procedure [9] to a non-local d-bar formalism. This is the formalismwe have to employ
when the initial data depend on 4 real spatial variables [21]. In this case, the spectral
functions also depend on 4 real spectral variables (k1, k2, λ1, λ2) (or equivalently on
(k, k, λ, λ) with k = k1 + ik2, λ = λ1 + iλ2), where λ1 and λ2 define the integration
on the complex λ-plane.

As a specific case study, we choose the N -wave interaction equations [24]:

qi j t = αi j qi j x + (Ci − Jiαi j )qi j y +
N∑

n=1
n �=i, j

(αin − αnj )qinqnj ,

for i �= j and qii = 0, i, j = 1, . . . , N , (1.1)

where αi j = Ci−C j
Ji−J j

(for i �= j), Ci , Ji ∈ R. In particular, we study the case N = 3
which is especially important because it is related to the three-wave resonant interaction
equations [25]:

uit + aiuix + biuiy = ci u j un, (1.2)

where bar denotes complex conjugation, ai , bi , ci are constants and i, j, n = 1, 2, 3
cyclically permuted. Indeed, Eq. (1.2) can be obtained from (1.1) by assuming that
qi j = σi j q ji for i > j and σ32σ21 = −σ31 (where the σi j ’s are real normalizing
constants) and taking q12 = u3, q23 = u1, q13 = u2. The three equations contained in
Eq. (1.2) describe the non-linear interaction ofwave packets and are found in numerous
applications such as non-linear optics or internal waves in the ocean [26].

From now on, wewill use the indices a and b rather than themore familiar i and j to
avoid confusion with the imaginary number i , which appears frequently in the analysis
that follows. By complexifying the independent variables of the N -wave interaction
equations (1.1) for N = 3, we obtain the following system of non-linear integrable
equations in 4+2 dimensions:

qabt = αabqabx + (Ca − Jaαab)qaby + (αan − αnb)qanqnb, for a �= b, n �= a, b, and qaa = 0,
(1.3)

where a, b, n = 1, 2, 3 and

x = x1 + i x2, y = y1 + iy2, t = t1 + i t2, x1, x2, y1, y2, t1, t2 ∈ R. (1.4)

The d-bar derivatives appearing in Eq. (1.3) are given by ∂x = 1
2

(
∂x1 + i∂x2

)
and

analogously for ∂y and ∂t [27].
In this paper we apply various methods outlined in Refs. [21,28,29]. The spectral

analysis of the time-independent part of the problem is presented in Sect. 2 via two
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different approaches. Subsequently, the full time-dependent problem in 4+2 dimen-
sions is solved in Sect. 3. Finally, in Sect. 4 we discuss the question of reducing the
problem to fewer dimensions by explicitly eliminating one of the two time variables.

2 Spectral Analysis of the Time-Independent Part of the Lax Pair

In this section we will derive non-linear Fourier transform pairs [30] tailor-made for
solving the 3-wave interaction equations (1.3), by performing the spectral analysis of
the following eigenvalue equation, which is the time-independent part of the Lax pair
associated with the 3-wave interaction equations in 4 + 2 dimensions:

μx − Jμy − k[J , μ] − Qμ = 0. (2.1)

The matrixμ is a 3×3 matrix valued function which depends on the six real variables
(x1, x2, y1, y2, k1, k2), the eigenvalue k is a complex spectral variable, and J and Q
are defined by

J =
⎛

⎝
J1 0 0
0 J2 0
0 0 J3

⎞

⎠ , Q(x1, x2, y1, y2) =
⎛

⎝
0 q12 q13
q21 0 q23
q31 q32 0

⎞

⎠ ,

where J1, J2, J3 ∈ R\{0}, with J1 > J2 > J3 and qab(x1, x2, y1, y2), a, b = 1, 2, 3,
are complex-valued functions which are sufficiently smooth and which decay rapidly
enough for large values of the spatial variables. We observe that Eq. (2.1) can be
written in component form as

μabx − Jaμaby − k (Ja − Jb) μab − (Qμ)ab = 0. (2.2)

Let us introduce some notation:

x = x1 + i x2, y = y1 + iy2, ξ = ξ1 + iξ2,

η = η1 + iη2, k = k1 + ik2, λ = λ1 + iλ2,

dx = dx1dx2, dy = dy1dy2, dξ = dξ1dξ2,

dη = dη1dη2, dk = dk1dk2 and dλ = dλ1dλ2,

where x1, x2, y1, y2, ξ1, ξ2, η1, η2, k1, k2, λ1, λ2 ∈ R.

Also, we shall generally write f (k, λ, x, y) instead of f (k1, k2, λ1, λ2, x1, x2, y1, y2).
At this point, it is important to emphasise that, although our approach is based on the

complexification of the Lax pair of the 3-wave interaction equations, the resulting non-
linear integrable system (1.3) is not the 3-wave interaction equationswith 2+1 complex
variables, but a genuine 4+2 dimensional system with six real variables. Namely, it
does not depend on x1 + i x2, y1 + iy2, t1 + i t2 but on x1, x2, y1, y2, t1, t2. This fact
is not surprising. Indeed, in general if an equation involves a complex parameter,
the solution depends on both the real and the imaginary parts of this parameter. For
example, the time-independent part of the Lax pair Eq. (2.1) or equivalently Eq. (2.2)
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depends among other things on the complex variable k = k1 + ik2, but the associated
eigenfunctions μab depend on the real variables k1, k2. An explicit demonstration that
the type of equations constructed here are genuinely 4+2 dimensional can be found
in [31]; in this paper explicit solutions of the 4+2 Davey–Stewartson equation are
analysed which clearly depend on 4 real spatial variables and on 2 real time variables.

We shall derive the non-linear Fourier transform pairs for the 4+2 dimensional
3-wave interaction equations in two ways.

2.1 First Method: Fourier Transform Formulation

In the above Eq. (2.2), the d-bar derivatives appear with respect to both complex spatial
variables x and y. As an important first step towards solving the system Eq. (2.2), we
will start by disentangling these derivatives. This can be achieved by introducing the
following local coordinates v

(a)
1 (= v1), v

(a)
2 , v(a)

3 and v
(a)
4 :

x1 = v1, x2 = v
(a)
2 + v

(a)
4 , y1 = v

(a)
3 − Jav1, y2 = −Jav

(a)
4 ,

v1 = x1, v
(a)
2 = x2 + 1

Ja
y2, v

(a)
3 = y1 + Jax1, v

(a)
4 = − 1

Ja
y2,

for a = 1, 2, 3.

(2.3)
Hence,

∂x = 1

2

(
∂

∂x1
+ i

∂

∂x2

)
= 1

2

(
∂

∂v1
+ Ja

∂

∂v
(a)
3

+ i
∂

∂v
(a)
2

)
, (2.4a)

∂y = 1

2

(
∂

∂ y1
+ i

∂

∂ y2

)
= 1

2

[
∂

∂v
(a)
3

+ i

(
1

Ja

∂

∂v
(a)
2

− 1

Ja

∂

∂v
(a)
4

)]
. (2.4b)

Defining the new complex variables

z(a) := v1 + iv(a)
4 , for a = 1, 2, 3, (2.5)

and using Eqs. (2.4a)-(2.4b), we find

∂

∂z(a)
= 1

2

(
∂

∂v1
+ i

∂

∂v
(a)
4

)
= ∂x − Ja∂y . (2.6)

Hence, Eq. (2.2) can be written in the desired disentangled form:

∂μab

∂z(a)
− k (Ja − Jb) μab − (Qμ)ab = 0. (2.7)

Taking into consideration the requirement of boundedness, we rewrite (2.7) in the
form

∂

∂z(a)

(
μab e

−k(Ja−Jb)z(a)+k(Ja−Jb)z(a)
)

= e−k(Ja−Jb)z(a)+k(Ja−Jb)z(a)

(Qμ)ab . (2.8)
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14 M. C. van der Weele, A. S. Fokas

In order to solve the direct problem we look for a solution of Eq. (2.8) such that
μ → I as the spatial variables tend to infinity, where I denotes the unit matrix. Using
the Pompeiu formula [27] and the above boundary condition, we obtain

μab = δab − 1

π

∫

R2

(Qμ)ab e
−k(Ja−Jb)

(
ζ−z(a)

)
+k(Ja−Jb)

(
ζ−z(a)

)

ζ − z(a)
dζ. (2.9)

Differentiating Eq. (2.9) with respect to k we find

∂μab

∂k
= − (Ja − Jb)

π

∫

R2
(Qμ)ab e

−k(Ja−Jb)
(
ζ−z(a)

)
+k(Ja−Jb)

(
ζ−z(a)

)
dζ

− 1

π

∫

R2

(
Q ∂μ

∂k

)

ab
e
−k(Ja−Jb)

(
ζ−z(a)

)
+k(Ja−Jb)

(
ζ−z(a)

)

ζ − z(a)
dζ,

(2.10)

where

μab = μab

(
v1, v

(a)
2 + v

(a)
4 , v

(a)
3 − Jav1,−Jav

(a)
4 , k1, k2

)
, (2.11)

(Qμ)ab =
3∑

n=1
n �=a

qan
(
ζ1, v

(a)
2 + ζ2, v

(a)
3 − Jaζ1,−Jaζ2

)
μnb

(
ζ1, v

(a)
2 + ζ2, v

(a)
3

−Jaζ1,−Jaζ2, k1, k2) , (2.12)

ζ = ζ1 + iζ2 and dζ = dζ1dζ2. (2.13)

Our aim is to complement the above equations for theμab’s (which are written in terms
of the qab’s) with an additional set of equations for the sameμab’s, but written in terms
of appropriate “spectral functions” of the qab’s. In order to obtain this additional set
of equations for the μab’s, we shall construct a d-bar problem in which the d-bar
derivatives ∂μab

∂k
are written in terms of the μab’s alone (as opposed to Eq. (2.10),

where the expressions on the right hand side contain both the μab’s and the ∂μab

∂k
’s).

To achieve this, we need to relate Eqs. (2.9) and (2.10). In this connection, we first
introduce appropriate notation for the functions appearing as forcing in (2.10),

∼
f ab

(
v

(a)
2 , v

(a)
3 , k

)
:= − (Ja − Jb)

π

∫

R2
(Qμ)ab e−k(Ja−Jb)ζ+k(Ja−Jb)ζdζ1dζ2,

(2.14)
where (Qμ)ab is as in (2.12).

We can write
∼
f ab

(
v

(a)
2 , v

(a)
3 , k

)
as the two dimensional Fourier transform of the

function Hab:

∼
f ab

(
v

(a)
2 , v

(a)
3 , k

)
=
∫

R2
eλw(a)−λw(a)

Hab(k, λ)dλ, (2.15)
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Solving the Initial Value Problem... 15

where w(a) = v
(a)
3 + iv(a)

2 .
We next introduce the following new variables (the reasons for this particular choice
will become clear later):

λ1 = Jaλ
′
1 − Jbk1, λ2 = λ′

2 − k2. (2.16)

Using the new variables, Eq. (2.15) takes the form

∼
f ab

(
v

(a)
2 , v

(a)
3 , k

)

= |Ja |
∫

R2
e2i[−(Jaλ′

1−Jbk1)v
(a)
2 +(λ′

2−k2)v
(a)
3 ]Hab(k1, k2, Jaλ

′
1 − Jbk1, λ

′
2 − k2)dλ

′
1dλ

′
2

= |Ja |
∫

R2
e2i[−(Jaλ1−Jbk1)v

(a)
2 +(λ2−k2)v

(a)
3 ]Hab(k1, k2, Jaλ1 − Jbk1, λ2 − k2)dλ1dλ2. (2.17)

Denoting fab(k, λ) := Hab(k1, k2, Jaλ1− Jbk1, λ2−k2), by inverting equation (2.17)
and taking into account equation (2.14), we obtain the following expression which can
be considered as the non-linear Fourier transform for the problem under consideration:

fab(k, λ) = − (Ja − Jb)

π3

∫

R4
Eab(k, λ, z(a), w(a)) (Qμ)ab dz

(a)dw(a), (2.18)

where we have defined Eab(k, λ, z(a), w(a)) by

Eab(k, λ, z(a), w(a)) := ek(Ja−Jb)z(a)−k(Ja−Jb)z(a)+2i[−(Jaλ1−Jbk1)v
(a)
2 +(λ2−k2)v

(a)
3 ],
(2.19)

and where

(Qμ)ab =
3∑

n=1
n �=a

qan
(
v1, v

(a)
2 + v

(a)
4 , v

(a)
3 − Jav1,−Jav

(a)
4

)
μnb

(
v1, v

(a)
2 + v

(a)
4 , v

(a)
3

−Jav1,−Jav
(a)
4 , k1, k2

)
. (2.20)

Wenext rewrite everything in the original coordinates andmake the change of variables

ζ1 = ξ1, −Jaζ2 = ξ2. (2.21)

Equation (2.9) then becomes

μab(x, y, k)

= δab − 1

π

∫

R2

(Qμ)ab e
−k(Ja−Jb)

(
(ξ1−x1)+ i

Ja
(ξ2−y2)

)
+k(Ja−Jb)

(
(ξ1−x1)− i

Ja
(ξ2−y2)

)

|Ja | [(ξ1 − x1) + i
Ja

(y2 − ξ2)]
dξ1dξ2.

(2.22)
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16 M. C. van der Weele, A. S. Fokas

Taking into account equation (2.17) and the definition of fab(k, λ), Eq. (2.10) becomes

∂μab

∂k
(x, y, k)

= |Ja |
∫

R2

[
e
2i
[
−(Jaλ1−Jbk1)

(
x2+ 1

Ja
y2
)
+(λ2−k2)(y1+Ja x1)+k2(Ja−Jb)x1+k1

(Ja−Jb )

Ja
y2
]

× fab(k, λ)

]
dλ1dλ2

− 1

π

∫

R2

(
Q ∂μ

∂k

)

ab
e
−k(Ja−Jb)

(
(ξ1−x1)+ i

Ja
(ξ2−y2)

)
+k(Ja−Jb)

(
(ξ1−x1)− i

Ja
(ξ2−y2)

)

|Ja | [(ξ1 − x1) + i
Ja

(y2 − ξ2)]
dξ1dξ2,

(2.23)

where in Eqs. (2.22), (2.23) we have

(Qμ)ab =
(
Q

(
ξ1, x2 + 1

Ja
(y2 − ξ2), y1 + Ja(x1 − ξ1), ξ2

)
μ

(
ξ1, x2

+ 1

Ja
(y2 − ξ2), y1 + Ja(x1 − ξ1), ξ2, k1, k2

))

ab
,

and
(
Q

∂μ

∂k

)

ab
=
(
Q

(
ξ1, x2 + 1

Ja
(y2 − ξ2), y1 + Ja(x1 − ξ1), ξ2

)
∂μ

∂k

(
ξ1, x2

+ 1

Ja
(y2 − ξ2), y1 + Ja(x1 − ξ1), ξ2, k1, k2

))

ab
.

Also, Eq. (2.18), written in the original coordinates, becomes

fab(k, λ) = − Ja − Jb
|Ja | π3

∫

R4
Eab(k, λ, x, y) (Q(x, y)μ(x, y, k))ab dxdy, (2.24)

with the function Eab taking the form

Eab(k, λ, x, y) : = exp[(Jaλ − Jbk)x − (Jaλ − Jbk)x + (λ − k)y − (λ − k)y]
= exp[2i ((−Jaλ1 + Jbk1)x2 + (Jaλ2 − Jbk2)x1

+(k1 − λ1)y2 + (λ2 − k2)y1)]. (2.25)

This expression for Eab in the original coordinates justifies the specific transforma-
tion (2.16) that we used to mix the spectral variables k and λ. The important thing
to note here is the approximately symmetric role played by k and λ in this expres-
sion (2.25). This will allow us to replace k by λ in several steps of our analysis, which
will prove to be very convenient.
We will now construct a d-bar problem via Eqs. (2.22) and (2.23). For concreteness,
we concentrate on the second column of the matrix ∂μ

∂k
. Multiplying Eq. (2.23) for
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Solving the Initial Value Problem... 17

a = 1, 2, 3 and b = 2 (second column) by the factor e2i(−J2k1x2+J2k2x1−k1y2+k2 y1), we
find

e2i(−J2k1x2+J2k2x1−k1 y2+k2 y1) ∂μ12

∂k
(x, y, k)

= |J1|
∫

R2
e2i(−J1λ1x2+J1λ2x1−λ1 y2+λ2 y1) f12(k, λ)dλ

− 1

π

∫

R2

(
q12

∂μ22

∂k
+ q13

∂μ32

∂k

)
e
2i
[
−J2k1

(
x2+ 1

J1
(y2−ξ2)

)
+J2k2ξ1−k1ξ2+k2(y1+J1(x1−ξ1))

]

|J1| [(ξ1 − x1) + i
J1

(y2 − ξ2)]
dξ,

(2.26a)

e2i(−J2k1x2+J2k2x1−k1 y2+k2 y1) ∂μ22

∂k
(x, y, k)

= − 1

π

∫

R2

(
q21

∂μ12

∂k
+ q23

∂μ32

∂k

)
e2i(−J2k1x2+J2k2x1−k1 y2+k2 y1)

|J2| [(ξ1 − x1) + i
J2

(y2 − ξ2)]
dξ,

(2.26b)

e2i(−J2k1x2+J2k2x1−k1 y2+k2 y1) ∂μ32

∂k
(x, y, k)

= |J3|
∫

R2
e2i(−J3λ1x2+J3λ2x1−λ1 y2+λ2 y1) f32(k, λ)dλ

− 1

π

∫

R2

(
q31

∂μ12

∂k
+ q32

∂μ22

∂k

)
e
2i
[
−J2k1

(
x2+ 1

J3
(y2−ξ2)

)
+J2k2ξ1−k1ξ2+k2(y1+J3(x1−ξ1))

]

|J3| [(ξ1 − x1) + i
J3

(y2 − ξ2)]
dξ.

(2.26c)

Multiplying Eq. (2.22) for a = 1, 2, 3 and b = 1 by e2i(−J1k1x2+J1k2x1−k1y2+k2 y1), we
find

e2i(−J1k1x2+J1k2x1−k1 y2+k2 y1)μ11(x, y, k)

= e2i(−J1k1x2+J1k2x1−k1 y2+k2 y1)

− 1

π

∫

R2

(q12μ21 + q13μ31) e2i(−J1k1x2+J1k2x1−k1 y2+k2 y1)

|J1| [(ξ1 − x1) + i
J1

(y2 − ξ2)]
dξ,

(2.27a)

e2i(−J1k1x2+J1k2x1−k1 y2+k2 y1) μ21(x, y, k)

= − 1

π

∫

R2

(q21μ11 + q23μ31) e
2i
[
−J1k1

(
x2+ 1

J2
(y2−ξ2)

)
+J1k2ξ1−k1ξ2+k2(y1+J2(x1−ξ1))

]

|J2| [(ξ1 − x1) + i
J2

(y2 − ξ2)]
dξ,

(2.27b)

e2i(−J1k1x2+J1k2x1−k1 y2+k2 y1) μ31(x, y, k)

= − 1

π

∫

R2

(q31μ11 + q32μ21) e
2i
[
−J1k1

(
x2+ 1

J3
(y2−ξ2)

)
+J1k2ξ1−k1ξ2+k2(y1+J3(x1−ξ1))

]

|J3| [(ξ1 − x1) + i
J3

(y2 − ξ2)]
dξ.

(2.27c)
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18 M. C. van der Weele, A. S. Fokas

In each of the above three equations we replace k by λ, multiply by |J1| f12(k, λ) and
integrate over dλ. Thus, we obtain the following three equations:

|J1|
∫

R2
e2i(−J1λ1x2+J1λ2x1−λ1 y2+λ2 y1)μ11(x, y, λ) f12(k, λ)dλ

= |J1|
∫

R2
e2i(−J1λ1x2+J1λ2x1−λ1 y2+λ2 y1) f12(k, λ)dλ

− |J1|
π

∫

R2

∫

R2

(q12μ21 + q13μ31) e2i(−J1λ1x2+J1λ2x1−λ1 y2+λ2 y1) f12(k, λ)

|J1| [(ξ1 − x1) + i
J1

(y2 − ξ2)]
dξdλ,

(2.28a)

|J1|
∫

R2
e2i(−J1λ1x2+J1λ2x1−λ1 y2+λ2 y1) μ21(x, y, λ) f12(k, λ)dλ

= −|J1|
π

∫

R2

∫

R2

(q21μ11 + q23μ31) e
2i
[
−J1λ1

(
x2+ 1

J2
(y2−ξ2)

)
+J1λ2ξ1−λ1ξ2+λ2(y1+J2(x1−ξ1))

]

f12(k, λ)

|J2| [(ξ1 − x1) + i
J2

(y2 − ξ2)]
dξdλ,

(2.28b)

|J1|
∫

R2
e2i(−J1λ1x2+J1λ2x1−λ1 y2+λ2 y1) μ31(x, y, λ) f12(k, λ)dλ

= −|J1|
π

∫

R2

∫

R2

(q31μ11 + q32μ21) e
2i
[
−J1λ1

(
x2+ 1

J3
(y2−ξ2)

)
+J1λ2ξ1−λ1ξ2+λ2(y1+J3(x1−ξ1))

]

f12(k, λ)

|J3| [(ξ1 − x1) + i
J3

(y2 − ξ2)]
dξdλ.

(2.28c)

We apply a similar procedure to the third column of Eq. (2.22) (with a = 1, 2, 3 and
b = 3): multiplying these three equations by e2i(−J3k1x2+J3k2x1−k1y2+k2 y1), we find

e2i(−J3k1x2+J3k2x1−k1 y2+k2 y1) μ13(x, y, k)

= − 1

π

∫

R2

(q12μ23 + q13μ33) e
2i
[
−J3k1

(
x2+ 1

J1
(y2−ξ2)

)
+J3k2ξ1−k1ξ2+k2(y1+J1(x1−ξ1))

]

|J1| [(ξ1 − x1) + i
J1

(y2 − ξ2)]
dξ,

(2.29a)

e2i(−J3k1x2+J3k2x1−k1 y2+k2 y1)μ23(x, y, k)

= − 1

π

∫

R2

(q21μ13 + q23μ33) e
2i
[
−J3k1

(
x2+ 1

J2
(y2−ξ2)

)
+J3k2ξ1−k1ξ2+k2(y1+J2(x1−ξ1))

]

|J2| [(ξ1 − x1) + i
J2

(y2 − ξ2)]
dξ,

(2.29b)

e2i(−J3k1x2+J3k2x1−k1 y2+k2 y1)μ33(x, y, k)

= e2i(−J3k1x2+J3k2x1−k1 y2+k2 y1)

− 1

π

∫

R2

(q31μ13 + q32μ23) e2i(−J3k1x2+J3k2x1−k1 y2+k2 y1)

|J3| [(ξ1 − x1) + i
J3

(y2 − ξ2)]
dξ.

(2.29c)

In Eqs. (2.29a)-(2.29c) we replace k by λ and then multiply by |J3| f32(k, λ) and
integrate over dλ. In this way we obtain the following three equations:
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Solving the Initial Value Problem... 19

|J3|
∫

R2
e2i(−J3λ1x2+J3λ2x1−λ1 y2+λ2 y1) μ13(x, y, λ) f32(k, λ)dλ

= − |J3|
π

∫

R2

∫

R2

(q12μ23 + q13μ33) e
2i
[
−J3λ1

(
x2+ 1

J1
(y2−ξ2)

)
+J3λ2ξ1−λ1ξ2+λ2(y1+J1(x1−ξ1))

]

f32(k, λ)

|J1| [(ξ1 − x1) + i
J1

(y2 − ξ2)]
dξdλ,

(2.30a)

|J3|
∫

R2
e2i(−J3λ1x2+J3λ2x1−λ1 y2+λ2 y1)μ23(x, y, λ) f32(k, λ)dλ

= − |J3|
π

∫

R2

∫

R2

(q21μ13 + q23μ33) e
2i
[
−J3λ1

(
x2+ 1

J2
(y2−ξ2)

)
+J3λ2ξ1−λ1ξ2+λ2(y1+J2(x1−ξ1))

]

f32(k, λ)

|J2| [(ξ1 − x1) + i
J2

(y2 − ξ2)]
dξdλ,

(2.30b)

|J3|
∫

R2
e2i(−J3λ1x2+J3λ2x1−λ1 y2+λ2 y1)μ33(x, y, λ) f32(k, λ)dλ

= |J3|
∫

R2
e2i(−J3λ1x2+J3λ2x1−λ1 y2+λ2 y1) f32(k, λ)dλ

− |J3|
π

∫

R2

∫

R2

(q31μ13 + q32μ23) e2i(−J3λ1x2+J3λ2x1−λ1 y2+λ2 y1) f32(k, λ)

|J3| [(ξ1 − x1) + i
J3

(y2 − ξ2)]
dξdλ.

(2.30c)

At this point, we use the similarity of the kernels of Eqs. (2.26), (2.28) and (2.30) to
arrive at the desired d-bar problem. Introducing the notations

∼
Ma2(x, y, k)

= e2i(−J2k1x2+J2k2x1−k1y2+k2 y1) ∂μa2

∂k
(x, y, k), a = 1, 2, 3, (2.31)

Ma1(x, y, k)

= |J1|
∫

R2
e2i(−J1λ1x2+J1λ2x1−λ1y2+λ2 y1)μa1(x, y, λ) f12(k, λ)dλ, a = 1, 2, 3,

(2.32)

and

Ma3(x, y, k)

= |J3|
∫

R2
e2i(−J3λ1x2+J3λ2x1−λ1y2+λ2 y1)μa3(x, y, λ) f32(k, λ)dλ, a = 1, 2, 3,

(2.33)

equations (2.26) can be rewritten as follows:

Component 12
∼
M12(x, y, k) = |J1|

∫

R2
e2i(−J1λ1x2+J1λ2x1−λ1y2+λ2 y1) f12(k, λ)dλ

− 1

π

∫

R2

(
q12

∼
M22 + q13

∼
M32

)

|J1| [(ξ1 − x1) + i
J1

(y2 − ξ2)]
dξ,

(2.34a)
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20 M. C. van der Weele, A. S. Fokas

Component 22
∼
M22(x, y, k) = − 1

π

∫

R2

(
q21

∼
M12 + q23

∼
M32

)

|J2| [(ξ1 − x1) + i
J2

(y2 − ξ2)]
dξ,

(2.34b)

Component 32
∼
M32(x, y, k) = |J3|

∫

R2
e2i(−J3λ1x2+J3λ2x1−λ1y2+λ2 y1) f32(k, λ)dλ

− 1

π

∫

R2

(
q31

∼
M12 + q32

∼
M22

)

|J3|[(ξ1 − x1) + i
J3

(y2 − ξ2)]
dξ,

(2.34c)

where in the integrals of equations (2.34a)–(2.34c) the elements depend on the vari-
ables as follows (for a = 1, 2, 3, b = 1, 2, 3 with a �= b)

qab
∼
Mb2 = qab

(
ξ1, x2 + y2 − ξ2

Ja
, y1 + Ja(x1 − ξ1), ξ2

)

× ∼
Mb2

(
ξ1, x2 + y2 − ξ2

Ja
, y1 + Ja(x1 − ξ1), ξ2, k1, k2

)
.

Adding Eq. (2.28a) to (2.30a), Eq. (2.28b) to (2.30b) and Eq. (2.28c) to (2.30c), and
using the notations introduced in (2.32) and (2.33), we obtain the following three
expressions:

Sum of 11 and 13

M11(x, y, k) + M13(x, y, k) = |J1|
∫

R2
e2i(−J1λ1x2+J1λ2x1−λ1y2+λ2 y1) f12(k, λ)dλ

− 1

π

∫

R2

(q12 (M21 + M23) + q13 (M31 + M33))

|J1| [(ξ1 − x1) + i
J1

(y2 − ξ2)]
dξ,

(2.35a)

Sum of 21 and 23

M21(x, y, k) + M23(x, y, k) = − 1

π

∫

R2

(q21 (M11 + M13) + q23 (M31 + M33))

|J2| [(ξ1 − x1) + i
J2

(y2 − ξ2)]
dξ,

(2.35b)

Sum of 31 and 33

M31(x, y, k) + M33(x, y, k) = |J3|
∫

R2
e2i(−J3λ1x2+J3λ2x1−λ1y2+λ2 y1) f32(k, λ)dλ

− 1

π

∫

R2

(q31 (M11 + M13) + q32 (M21 + M23))

|J3| [(ξ1 − x1) + i
J3

(y2 − ξ2)]
dξ,

(2.35c)
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Solving the Initial Value Problem... 21

where in the integrals of equations (2.35a)–(2.35c) the elements depend on the vari-
ables as follows (for a = 1, 2, 3, b = 1, 2, 3 with a �= b and j = 1, 3)

qabMbj = qab

(
ξ1, x2 + y2 − ξ2

Ja
, y1 + Ja(x1 − ξ1), ξ2

)

× Mbj

(
ξ1, x2 + y2 − ξ2

Ja
, y1 + Ja(x1 − ξ1), ξ2, k1, k2

)
.

Comparing Eqs. (2.34a)-(2.34c) with Eqs. (2.35a)-(2.35c), we find

∼
M12 = M11 + M13,

∼
M22 = M21 + M23,

∼
M32 = M31 + M33,

which in the original notation yields the second column of the d-bar problem:

∂μa2

∂k
(x, y, k) =

∫

R2

3∑

n=1
n �=2

|Jn| μan(x, y, λ) fn2(k, λ)En2(k, λ, x, y)dλ, a = 1, 2, 3.

(2.36)
In a similar way, following the same procedure for the first and third columns of the
matrix ∂μ

∂k
, we arrive at the full d-bar problem for the 3-wave interaction equations in

4 + 2 dimensions:

∂μab

∂k
(x, y, k) =

∫

R2

3∑

n=1
n �=b

|Jn|μan(x, y, λ) fnb(k, λ)Enb(k, λ, x, y)dλ, a, b = 1, 2, 3,

(2.37)
where the Enb’s are defined in (2.25).
The above d-bar problem can be written in a more concise form as

∂μ

∂k
(x, y, k) =

∫

R2
μ(x, y, λ)F(k, λ, x, y)dλ, (2.38)

where F(k, λ, x, y) is the 3 × 3 off-diagonal matrix with its ab-th entry equal to

Fab(k, λ, x, y) = |Ja | fab(k, λ)Eab(k, λ, x, y), for a �= b.

Using the Pompeiu formula, and also using the condition that μ → I + O
( 1
k

)
in the

limit k → ∞, Eq. (2.37) yields

μab(x, y, k) = δab + 1

π

∫

R4

3∑

n=1
n �=b

|Jn| μan(x, y, λ) fnb(k
′, λ)Enb(k

′, λ, x, y)
dk′dλ
k − k′ .

(2.39)
In summary, Eq. (2.22) expresses μab in terms of the qab’s, whereas Eq. (2.39)
expresses μab in terms of the fab’s. We can now obtain a relation between the qab’s
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22 M. C. van der Weele, A. S. Fokas

and fab’s by noting that in the limit k → ∞ Eqs. (2.39) and (2.2) imply, respectively,
the following relations:

μab(x, y, k) ∼ δab + 1

πk

∫

R4

3∑

n=1
n �=b

|Jn | μan(x, y, λ) fnb(k, λ)Enb(k, λ, x, y)dkdλ + O

(
1

k2

)

(2.40)
and, for a �= b,

μab(x, y, k) ∼ − 1

k(Ja − Jb)
qab(x, y)μbb(x, y, k) + O

(
1

k2

)

∼ − 1

k(Ja − Jb)
qab(x, y) + O

(
1

k2

)
, k → ∞. (2.41)

The O
( 1
k

)
terms of Eqs. (2.40) and (2.41) yield

qab(x, y) = − Ja − Jb
π

∫

R4

3∑

n=1
n �=b

|Jn| μan(x, y, λ) fnb(k, λ)Enb(k, λ, x, y)dkdλ.

(2.42)
These above expressions for the qab’s in terms of the fab’s, togetherwith the associated
expressions for the fab’s in terms of the qab’s given by (2.24), define the non-linear
Fourier transform pair needed for the solution of the Cauchy problem of the 4+2
3-wave interaction equations.

2.2 SecondMethod: Green’s Function Formulation

In order to solve the direct problemwe look for a solution of Eq. (2.2) such thatμ → I
as the spatial variables tend to infinity, where I denotes the unit matrix. A solution of
Eq. (2.2) statisfying the above condition is given by the following equation

μab(x, y, k) = δab +
∫

R4
Gab(x − x ′, y − y′, k)

(
Q(x ′, y′)μ(x ′, y′, k)

)
ab dx ′dy′,

(2.43)
where we require that the Green’s function G(x, y, k) satisfies

Gabx (x, y, k) − JaGaby (x, y, k) − k (Ja − Jb)Gab(x, y, k)

= δ(x)δ(y) = 1

π4

∫

R4
eρx−ρx+σ y−σ ydρdσ, (2.44)

where ρ = ρ1 + iρ2, σ = σ1 + iσ2, dρ = dρ1dρ2, dσ = dσ1dσ2 and we have used
the notation δ(x) = δ(x1)δ(x2), δ(y) = δ(y1)δ(y2). Hence, from Eq. (2.44) we have

Gab(x, y, k) = 1

π4

∫

R4

eρx−ρx+σ y−σ y

−ρ + Jaσ − k(Ja − Jb)
dρdσ. (2.45)
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Solving the Initial Value Problem... 23

Our aim again is to complement the above equations for the μab’s with another set
of equations for the same μab’s, but now written in terms of appropriate “spectral

functions” of the qab’s, which we will denote by
∧
qab. In order to obtain this additional

set of equations for the μab’s, we shall construct a d-bar problem. Differentiating
Eq. (2.45) with respect to k we find, for a �= b

∂Gab

∂k
(x, y, k) = 1

π4

∫

R4

eρx−ρx+σ y−σ y

−(Ja − Jb)

∂

∂k

(
1

−−ρ+Jaσ
Ja−Jb

+ k

)
dρdσ. (2.46)

Using the formula

∂

∂z

(
1

z − ζ

)
= πδ(z − ζ ) = πδ(z1 − ζ1)δ(z2 − ζ2),

where z = z1 + i z2 and ζ = ζ1 + iζ2, with z1, z2, ζ1, ζ2 ∈ R, we obtain

∂

∂k

(
1

k − −ρ+Jaσ
Ja−Jb

)
= πδ

(
k1 − −ρ1 + Jaσ1

Ja − Jb

)
δ

(
k2 − ρ2 − Jaσ2

Ja − Jb

)
. (2.47)

So combining Eqs. (2.46) and (2.47) we get

∂Gab

∂k
(x, y, k)

= 1

π4

∫

R4

eρx−ρx+σ y−σ y

−(Ja − Jb)
πδ

(
k1 − −ρ1 + Jaσ1

Ja − Jb

)
δ

(
k2 − ρ2 − Jaσ2

Ja − Jb

)
dρdσ

= 1

π3

∫

R4

[
eρx−ρx+σ y−σ y

−(Ja − Jb)

(
Ja − Jb

Ja

)2

δ

(
Ja − Jb

Ja
k1 + 1

Ja
ρ1 − σ1

)

× δ

(
− Ja − Jb

Ja
k2 + 1

Ja
ρ2 − σ2

)]
dρdσ

= − 1

π3

Ja − Jb
(Ja)2

∫

R2
e2i(ρ1x2+ρ2x1+σ1y2+σ2 y1)

∣∣∣∣σ1 = 1
Ja

[(Ja − Jb)k1 + ρ1]
σ2 = − 1

Ja
[(Ja − Jb)k2 − ρ2]

dρ

= − 1

π3

Ja − Jb
(Ja)2

∫

R2
e
2i
{
ρ1x2+ρ2x1+ 1

Ja
[(Ja−Jb)k1+ρ1]y2− 1

Ja
[(Ja−Jb)k2−ρ2]y1

}

dρ,

where in the second step we have used the identity δ(αx) = δ(x)
|α| , α ∈ R\{0}.

With the change of variables

ρ1 = −Jaλ1 + Jbk1, ρ2 = Jaλ2 − Jbk2,

we find
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∂Gab

∂k
(x, y, k) = − Ja − Jb

π3

∫

R2
e2i[(−Jaλ1+Jbk1)x2+(Jaλ2−Jbk2)x1+(k1−λ1)y2+(λ2−k2)y1]dλ

= − Ja − Jb
π3

∫

R2
e
[
(Jaλ−Jbk)x−(Jaλ−Jbk)x+(λ−k)y−(λ−k)y

]
dλ

= − Ja − Jb
π3

∫

R2
Eab(k, λ, x, y)dλ, (2.48)

where Eab is defined in (2.25). Equation (2.48) was found for a �= b, but this equation
is also valid for a = b. Indeed, since Eq. (2.45) does not depend on k or k when a = b,
we have that ∂Gaa

∂k
(x, y, k) = 0, a = 1, 2, 3, which is consistent with Eq. (2.48).

Differentiating Eq. (2.43) with respect to k we get

∂μab

∂k
(x, y, k)

=
∫

R4

∂Gab

∂k
(x − x ′, y − y′, k)

(
Q(x ′, y′)μ(x ′, y′, k)

)
ab dx ′dy′

+
∫

R4
Gab(x − x ′, y − y′, k)

(
Q(x ′, y′) ∂μ

∂k
(x ′, y′, k)

)

ab
dx ′dy′

(2.48)= − Ja − Jb
π3

∫

R4

∫

R2
Eab(k, λ, x − x ′, y − y′)

(
Q(x ′, y′)μ(x ′, y′, k)

)
ab dλ dx ′dy′

+
∫

R4
Gab(x − x ′, y − y′, k)

(
Q(x ′, y′) ∂μ

∂k
(x ′, y′, k)

)

ab
dx ′dy′

= − Ja − Jb
π3

∫

R2

∫

R4
Eab(k, λ, x, y)Eab(k, λ, x ′, y′)

(
Q(x ′, y′)μ(x ′, y′, k)

)
ab dx ′dy′dλ

+
∫

R4
Gab(x − x ′, y − y′, k)

(
Q(x ′, y′) ∂μ

∂k
(x ′, y′, k)

)

ab
dx ′dy′.

By defining

∧
qab(k, λ) := − Ja − Jb

π3

∫

R4
Eab(k, λ, x, y) (Q(x, y)μ(x, y, k))ab dxdy, (2.49)

we have

∂μab

∂k
(x, y, k) =

∫

R2
Eab(k, λ, x, y)

∧
qab(k, λ)dλ

+
∫

R4
Gab(x − x ′, y − y′, k)

(
Q(x ′, y′)∂μ

∂k
(x ′, y′, k)

)

ab
dx ′dy′.

(2.50)

Now, we shall again construct a d-bar problem, this time via equations (2.43)
and (2.50).
Multiplying equations (2.43), for a = 1, 2, 3 and b = 1 with k replaced by λ, by
∧
q12(k, λ)E12(k, λ, x, y) and integrating over dλ, we find
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∫

R2
μ11(x, y, λ)

∧
q12(k, λ)E12(k, λ, x, y)dλ

=
∫

R2
E12(k, λ, x, y)

∧
q12(k, λ)dλ

+
∫

R2

∫

R4
G11(x − x ′, y − y′, λ)E12(k, λ, x, y)

∧
q12(k, λ)

[
q12(x

′, y′)μ21(x
′, y′, λ)

+ q13(x
′, y′)μ31(x

′, y′, λ)
]
dx ′dy′dλ, (2.51a)

∫

R2
μ21(x, y, λ)

∧
q12(k, λ)E12(k, λ, x, y)dλ

=
∫

R2

∫

R4
G21(x − x ′, y − y′, λ)E12(k, λ, x, y)

∧
q12(k, λ)

[
q21(x

′, y′)μ11(x
′, y′, λ)

+ q23(x
′, y′)μ31(x

′, y′, λ)
]
dx ′dy′dλ, (2.51b)

∫

R2
μ31(x, y, λ)

∧
q12(k, λ)E12(k, λ, x, y)dλ

=
∫

R2

∫

R4
G31(x − x ′, y − y′, λ)E12(k, λ, x, y)

∧
q12(k, λ)

[
q31(x

′, y′)μ11(x
′, y′, λ)

+ q32(x
′, y′)μ21(x

′, y′, λ)
]
dx ′dy′dλ. (2.51c)

Now, multiplying (2.43), for a = 1, 2, 3 and b = 3 with k replaced by λ, by
∧
q32(k, λ)E32(k, λ, x, y) and integrating over dλ, we find

∫

R2
μ13(x, y, λ)

∧
q32(k, λ)E32(k, λ, x, y)dλ

=
∫

R2

∫

R4
G13(x − x ′, y − y′, λ)E32(k, λ, x, y)

∧
q32(k, λ)

[
q12(x

′, y′)μ23(x
′, y′, λ)

+ q13(x
′, y′)μ33(x

′, y′, λ)
]
dx ′dy′dλ, (2.52a)

∫

R2
μ23(x, y, λ)

∧
q32(k, λ)E32(k, λ, x, y)dλ

=
∫

R2

∫

R4
G23(x − x ′, y − y′, λ)E32(k, λ, x, y)

∧
q32(k, λ)

[
q21(x

′, y′)μ13(x
′, y′, λ)

+ q23(x
′, y′)μ33(x

′, y′, λ)
]
dx ′dy′dλ, (2.52b)

∫

R2
μ33(x, y, λ)

∧
q32(k, λ)E32(k, λ, x, y)dλ

=
∫

R2
E32(k, λ, x, y)

∧
q32(k, λ)dλ

+
∫

R2

∫

R4
G33(x − x ′, y − y′, λ)E32(k, λ, x, y)

∧
q32(k, λ)

[
q31(x

′, y′)μ13(x
′, y′, λ)

+ q32(x
′, y′)μ23(x

′, y′, λ)
]
dx ′dy′dλ. (2.52c)

Adding equation (2.51a) to (2.52a), equation (2.51b) to (2.52b) and equation (2.51c)
to (2.52c), we obtain the following three expressions:
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∫

R2

[
μ11(x, y, λ)E12(k, λ, x, y)

∧
q12(k, λ) + μ13(x, y, λ)E32(k, λ, x, y)

∧
q32(k, λ)

]
dλ

=
∫

R2
E12(k, λ, x, y)

∧
q12(k, λ)dλ

+
∫

R4

[
q12(x

′, y′)
(∫

R2
G11(x − x ′, y − y′, λ)E12(k, λ, x, y)

∧
q12(k, λ)μ21(x

′, y′, λ)

+ G13(x − x ′, y − y′, λ)E32(k, λ, x, y)
∧
q32(k, λ)μ23(x

′, y′, λ)dλ

)

+ q13(x
′, y′)

(∫

R2
G11(x − x ′, y − y′, λ)E12(k, λ, x, y)

∧
q12(k, λ)μ31(x

′, y′, λ)

+ G13(x − x ′, y − y′, λ)E32(k, λ, x, y)
∧
q32(k, λ)μ33(x

′, y′, λ)dλ

)]
dx ′dy′, (2.53a)

∫

R2

[
μ21(x, y, λ)E12(k, λ, x, y)

∧
q12(k, λ) + μ23(x, y, λ)E32(k, λ, x, y)

∧
q32(k, λ)

]
dλ

=
∫

R4

[
q21(x

′, y′)
(∫

R2
G21(x − x ′, y − y′, λ)E12(k, λ, x, y)

∧
q12(k, λ)μ11(x

′, y′, λ)

+ G23(x − x ′, y − y′, λ)E32(k, λ, x, y)
∧
q32(k, λ)μ13(x

′, y′, λ)dλ

)

+ q23(x
′, y′)

(∫

R2
G21(x − x ′, y − y′, λ)E12(k, λ, x, y)

∧
q12(k, λ)μ31(x

′, y′, λ)

+ G23(x − x ′, y − y′, λ)E32(k, λ, x, y)
∧
q32(k, λ)μ33(x

′, y′, λ)dλ

)]
dx ′dy′, (2.53b)

∫

R2

[
μ31(x, y, λ)E12(k, λ, x, y)

∧
q12(k, λ) + μ33(x, y, λ)E32(k, λ, x, y)

∧
q32(k, λ)

]
dλ

=
∫

R2
E32(k, λ, x, y)

∧
q32(k, λ)dλ

+
∫

R4

[
q31(x

′, y′)
(∫

R2
G31(x − x ′, y − y′, λ)E12(k, λ, x, y)

∧
q12(k, λ)μ11(x

′, y′, λ)

+ G33(x − x ′, y − y′, λ)E32(k, λ, x, y)
∧
q32(k, λ)μ13(x

′, y′, λ)dλ

)

+ q32(x
′, y′)

(∫

R2
G31(x − x ′, y − y′, λ)E12(k, λ, x, y)

∧
q12(k, λ)μ21(x

′, y′, λ)

+ G33(x − x ′, y − y′, λ)E32(k, λ, x, y)
∧
q32(k, λ)μ23(x

′, y′, λ)dλ

)]
dx ′dy′. (2.53c)

We now consider the second column of the matrix ∂μ

∂k
, i.e., the equations obtained

from (2.50) for b = 2:

∂μ12

∂k
(x, y, k) =

∫

R2
E12(k, λ, x, y)

∧
q12(k, λ)dλ

+
∫

R4
G12(x − x ′, y − y′, k)

(
q12(x

′, y′)∂μ22

∂k
(x ′, y′, k)

+q13(x
′, y′)∂μ32

∂k
(x ′, y′, k)

)
dx ′dy′, (2.54a)
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∂μ22

∂k
(x, y, k) =

∫

R4
G22(x − x ′, y − y′, k)

(
q21(x

′, y′)∂μ12

∂k
(x ′, y′, k)

+q23(x
′, y′)∂μ32

∂k
(x ′, y′, k)

)
dx ′dy′, (2.54b)

∂μ32

∂k
(x, y, k) =

∫

R2
E32(k, λ, x, y)

∧
q32(k, λ)dλ

+
∫

R4
G32(x − x ′, y − y′, k)

(
q31(x

′, y′)∂μ12

∂k
(x ′, y′, k)

+q32(x
′, y′)∂μ22

∂k
(x ′, y′, k)

)
dx ′dy′. (2.54c)

Comparing equations (2.53) to equations (2.54) we find

∂μ12

∂k
(x, y, k) =

∫

R2

[
μ11(x, y, λ)E12(k, λ, x, y)

∧
q12(k, λ)

+μ13(x, y, λ)E32(k, λ, x, y)
∧
q32(k, λ)

]
dλ, (2.55a)

∂μ22

∂k
(x, y, k) =

∫

R2

[
μ21(x, y, λ)E12(k, λ, x, y)

∧
q12(k, λ)

+μ23(x, y, λ)E32(k, λ, x, y)
∧
q32(k, λ)

]
dλ, (2.55b)

∂μ32

∂k
(x, y, k) =

∫

R2

[
μ31(x, y, λ)E12(k, λ, x, y)

∧
q12(k, λ)

+μ33(x, y, λ)E32(k, λ, x, y)
∧
q32(k, λ)

]
dλ, (2.55c)

provided that

G12(x − x ′, y − y′, k)E12(k, λ, x ′, y′) = G11(x − x ′, y − y′, λ)E12(k, λ, x, y),
(2.56a)

G12(x − x ′, y − y′, k)E32(k, λ, x ′, y′) = G13(x − x ′, y − y′, λ)E32(k, λ, x, y),
(2.56b)

G22(x − x ′, y − y′, k)E12(k, λ, x ′, y′) = G21(x − x ′, y − y′, λ)E12(k, λ, x, y),
(2.56c)

G22(x − x ′, y − y′, k)E32(k, λ, x ′, y′) = G23(x − x ′, y − y′, λ)E32(k, λ, x, y),
(2.56d)

G32(x − x ′, y − y′, k)E12(k, λ, x ′, y′) = G31(x − x ′, y − y′, λ)E12(k, λ, x, y),
(2.56e)

G32(x − x ′, y − y′, k)E32(k, λ, x ′, y′) = G33(x − x ′, y − y′, λ)E32(k, λ, x, y).
(2.56f)

123



28 M. C. van der Weele, A. S. Fokas

Thus, as a consistency check, we will now verify equations (2.56a) and (2.56b) (the
other equations can be verified in a similar way). Equivalently, we want to show that

G12(x, y, k) = G11(x, y, λ)E12(k, λ, x, y), (2.57a)

G12(x, y, k) = G13(x, y, λ)E32(k, λ, x, y). (2.57b)

These conditions hold, since

(i) G12(x, y, k)

(2.45)= 1

π4

∫

R4

eρx−ρx+σ y−σ y

−ρ + J1σ − k(J1 − J2)
dρdσ

= 1

π4

∫

R4

eρx−ρx+σ y−σ y

(−ρ1 + J1σ1 − k1(J1 − J2)) + i (ρ2 − J1σ2 − k2(J1 − J2))
dρdσ

(2.58)

We replace the variables (ρ1, ρ2, σ1, σ2) with (ρ1 + J2k1 − J1λ1, ρ2 − J2k2 +
J1λ2, σ1 + k1 − λ1, σ2 − k2 + λ2). Then equation (2.58) becomes

G12(x, y, k) = 1

π4

∫

R4

e2i(ρ1x2+ρ2x1+σ1y2+σ2 y1)

(−ρ1 + J1σ1) + i (ρ2 − J1σ2)
dρdσ E12(k, λ, x, y)

= G11(x, y, λ)E12(k, λ, x, y)

which verifies equation (2.57a) and consequently equation (2.56a).
(ii) We now replace the variables (ρ1, ρ2, σ1, σ2)with (ρ1+ J2k1− J3λ1, ρ2− J2k2+

J3λ2, σ1 + k1 − λ1, σ2 − k2 + λ2) in equation (2.58). Then (2.58) becomes

G12(x, y, k)

= 1

π4

∫

R4

e2i(ρ1x2+ρ2x1+σ1y2+σ2 y1)

(−ρ1 + J1σ1 − λ1(J1 − J3)) + i (ρ2 − J1σ2 − λ2(J1 − J3))
dρdσ

× E32(k, λ, x, y)

= G13(x, y, λ)E32(k, λ, x, y)

which verifies equation (2.57b) and consequently equation (2.56b).

Hence, equations (2.55) hold and yield the second column of the d-bar problem

∂μa2

∂k
(x, y, k) =

∫

R2

3∑

n=1
n �=2

μan(x, y, λ)
∧
qn2(k, λ)En2(k, λ, x, y)dλ, a = 1, 2, 3.

(2.59)
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In a similarway,we arrive at the full d-bar problem for the 3-wave interaction equations
in 4 + 2 dimensions:

∂μab

∂k
(x, y, k) =

∫

R2

3∑

n=1
n �=b

μan(x, y, λ)
∧
qnb(k, λ)Enb(k, λ, x, y)dλ. (2.60)

Comparing equations (2.24) and (2.49), we observe that
∧
qab(k, λ) = |Ja | fab(k, λ).

Hence, the above equation is exactly the same as equation (2.37), i.e., the d-bar problem
we found in Sect. 2.1. Thus, we find again

qab(x, y) = − Ja − Jb
π

∫

R4

3∑

n=1
n �=b

|Jn| μan(x, y, λ) fnb(k, λ)Enb(k, λ, x, y)dkdλ

= − Ja − Jb
π

∫

R4

3∑

n=1
n �=b

μan(x, y, λ)
∧
qnb(k, λ)Enb(k, λ, x, y)dkdλ. (2.61)

Hence, equations (2.61) and (2.49) comprise again a non-linear Fourier transform pair
tailor-made for the solution of the Cauchy problem of the 4+2 3-wave interaction
equations. This completes the analysis of the time-independent part of the Lax pair.

3 The Time-dependent Problem

Let us use the non-linear Fourier transform pair qab and fab, given by equations (2.42)
and (2.24) respectively. Suppose that fab(k, λ), a, b = 1, 2, 3 are allowed to depend
on the complex variable t , where t = t1 + i t2, with t1, t2 ∈ R. To avoid confusion, let
hab(k, λ, t) denote these functions. Then qab(x, y) for a, b = 1, 2, 3 will also depend
on the time variable t and we denote these functions by gab(x, y, t).
Let us consider the following non-local d-bar problem:

∂μ

∂k
(x, y, t, k) =

∫

R2
μ(x, y, t, λ)F(k, λ, x, y, t)dλ, (3.1a)

μ(x, y, t, k) = I + μ(1)(x, y, t)

k
+ O

(
1

k2

)
, k → ∞, (3.1b)

where

Fab(k, λ, x, y, t)

= |Ja | hab(k, λ, t)Eab(k, λ, x, y)

= |Ja | fab(k, λ) exp[(Jaλ − Jbk)x − (Jaλ − Jbk)x + (λ − k)y − (λ − k)y

+ (Caλ − Cbk) t − (
Caλ − Cbk

)
t], for a, b = 1, 2, 3 with a �= b,

and Faa(k, λ, x, y, t) = 0, for a = 1, 2, 3, (3.2)
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where C1,C2,C3 ∈ R\{0} (with C1 > C2 > C3), Eab’s are defined in (2.25), fab’s
in (2.24) and

hab(k, λ, t) = fab(k, λ)e(Caλ−Cbk)t−
(
Caλ−Cbk

)
t . (3.3)

We assume that the d-bar problem characterized by (3.1) has a unique solution. Which
means that if we find two operators L andM such that (i) Lμ andMμ satisfy Eq. (3.1a)
and (ii) Lμ and Mμ are of O

( 1
k

)
as k → ∞, then we have Lμ = 0 and Mμ = 0.

The above argument is the main idea of the dressing method (see e.g. [9,32]). Using
the dressing method we will show that μ(x, y, t, k) satisfies the following eigenvalue
equations:

Lμ = μx − Jμy − k[J , μ] − ∼
Qμ = 0, (3.4)

Mμ = μt − Cμy − k[C, μ] − Aμ = 0, (3.5)

where
∼
Q and A are off-diagonal 3 × 3 matrices defined in terms of μ by

∼
Q =

[
μ(1), J

]
, A =

[
μ(1),C

]
, (3.6)

whereC is the diagonal 3×3 matrix with entriesC1, C2, C3. We note that Eqs. (3.6),

by eliminating μ(1), give that the ab-th entry of the 3×3 matrix A is equal to αab
∼
Qab,

where αab := Ca−Cb
Ja−Jb

for a �= b.
Let us now introduce the following operators:

Dxμ := μx + kμJ , (3.7a)

Dyμ := μy + kμ, (3.7b)

Dtμ := μt + kμC . (3.7c)

We shall show that (
Dx − J Dy − ∼

Q

)
μ = 0. (3.8)

We do this in two steps:

(i) First we show that

(
Dx − J Dy − ∼

Q

)
μ satisfies (3.1a).We observe that the oper-

ators Dx , Dy and Dt , commute with the operator ∂

∂k
. Hence, also using (3.2), we

find

∂

∂k

((
Dx − J Dy − ∼

Q

)
μ(k)

)
=
(
Dx − J Dy − ∼

Q

)(
∂μ

∂k
(k)

)

=
(
Dx − J Dy − ∼

Q

)(∫

R2
μ(λ)F(k, λ)dλ

)

=
∫

R2
μx (λ)F(k, λ) + μ(λ)Fx (k, λ) + kμ(λ)F(k, λ)J − Jμy(λ)F(k, λ)
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− Jμ(λ)Fy(k, λ) − k Jμ(λ)F(k, λ) − ∼
Qμ(λ)F(k, λ)dλ

=
∫

R2
μx (λ)F(k, λ) + μ(λ) (λJ F(k, λ) − kF(k, λ)J ) + kμ(λ)F(k, λ)J

− Jμy(λ)F(k, λ) + Jμ(λ)(k − λ)F(k, λ) − k Jμ(λ)F(k, λ) − ∼
Qμ(λ)F(k, λ)dλ

=
∫

R2

[
μx (λ) − Jμy(λ) + λμ(λ)J − λJμ(λ) − ∼

Qμ(λ)

]
F(k, λ)dλ

=
∫

R2

((
Dx − J Dy − ∼

Q

)
μ(λ)

)
F(k, λ)dλ, (3.9)

where for convenience we have surpressed the dependence ofμ and F on {x, y, t}.
(ii) The second step is to recognize that

(
Dx − J Dy − ∼

Q

)
μ = O

(
1

k

)
as k → ∞. (3.10)

Indeed, by taking into account the asymptotic expansion (3.1b) of μ, we obtain

(
Dx − J Dy

)
μ = μx− Jμy−k[J , μ] =

[
μ(1), J

]
+O

(
1

k

)
, k → ∞. (3.11)

From the definition (3.6) of
∼
Q in terms of μ, we conclude that (3.10) holds.

Therefore, by virtue of (3.9) and (3.10), we have indeed

(
Dx − J Dy − ∼

Q

)
μ = 0.

As a consequence, μ(x, y, t, k) satisfies (3.4).
In a similar way we can show that

(
Dt − CDy − A

)
μ = 0. (3.12)

After expanding the operators, equation (3.12) takes the form (3.5).

Let us denote the ab-th entry of the matrix
∼
Q by gab(x, y, t). Then by the note we

made under (3.6), we have that the ab-th entry of A is equal to αabgab(x, y, t), where
αab := Ca−Cb

Ja−Jb
(a �= b). In the Appendix we show that (3.4) and (3.5) provide a Lax

pair for the following 3-wave system in 4+2, i.e., in four spatial and two temporal
dimensions

gabt = αabgabx + (Ca − Jaαab)gaby + (αan − αnb)gangnb,

for a �= b and n �= a, b, and gaa = 0, (3.13)

where a, b, n = 1, 2, 3.
Using the non-linear Fourier transformpairs in four dimensions fab and qab, which are
defined in equations (2.24) and (2.42), respectively, we can solve the Cauchy problem
of equations (3.13) supplemented with the initial condition

gab(x1, x2, y1, y2, 0, 0) = qab(x1, x2, y1, y2), ∀a, b = 1, 2, 3. (3.14)
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Indeed, suppose that the functionsqab are Schwartz functions in four dimensionswhich
satisfy appropriate small norm conditions such that equations (2.22) and (2.39) have
unique solutions. We define the fab’s by equations (2.24), then the hab’s are given
by equations (3.3). We define gab(x, y, t) by equations (2.42) where the fab’s are
replaced by the corresponding hab’s. Then, the functions gab satisfy equation (3.13)
and condition (3.14) for all a, b = 1, 2, 3. The above discussion implies that the
solution of the Cauchy problem of the 3-wave interaction equations in 4+2 dimensions
is given by

gab(x, y, t) = − Ja − Jb
π

∫

R4

⎡

⎢⎢⎣
3∑

n=1
n �=b

|Jn| μan(x, y, t, λ) fnb(k, λ)Enb(k, λ, x, y)

×e(Cnλ−Cbk)t−
(
Cnλ−Cbk

)
t

⎤

⎥⎥⎦ dkdλ, (3.15)

where the Enb’s are defined in (2.25) and where the μan’s are the entries of the time-
dependent 3×3 matrix-valued function μwhich satisfies the non-local d-bar problem
(3.1). Hence, these time-dependentμan’s are given by Eq. (2.9) with the fab’s replaced
by the corresponding hab’s of Eq. (3.3).

4 On the Reduction to Fewer Dimensions

Having solved the problem in 4+2 dimensions, one would like to be able to reduce this
to 3+1 dimensions in order to comply with the physical world. This is not a simple
matter, as we will discuss in this section. A logical first step is to eliminate one of
the two time variables, and this step at least can be accomplished in a straightforward
manner. We show this by eliminating the t1 variable, focusing in first instance on
the relatively simple case of the linear limit, i.e., for qab → εqab + O(ε2), with
ε → 0 and a, b = 1, 2, 3. The t2 variable may be eliminated in analogous fashion.
The present analysis may be compared with that in [29], where the reduction of the
4+2 dimensional Davey–Stewartson system to 3+1 dimensions was discussed.
In the linear limit we have, as can be inferred from Eq. (2.39),

μaa → 1, μab → 0, for a �= b, (4.1)

implying that in Eq. (3.15) we now have only to deal with a single term out of the
sum-over-n, i.e. only for n = a. Noting that the exponent appearing in Eq. (3.15) is
of the following form (with n = a):

(Caλ − Cbk) t − (
Caλ − Cbk

)
t = 2i [(Caλ2 − Cbk2) t1 − (Caλ1 − Cbk1) t2] ,

(4.2)
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we see that the t1 variable can be eliminated by imposing the condition

Caλ2 − Cbk2 = 0, i.e., λ2 = Cb

Ca
k2. (4.3)

The t2 variable may be eliminated in an analogous manner by imposing Caλ1 −
Cbk1 = 0. In what follows, however, we focus on the elimination of t1.

In the linear limit, the 3-wave interaction equations decouple, so we only have to
consider one of the equations (e.g. the one for a = 1 and b = 2) for a dependent
variable denoted by u: u(x1, x2, y1, y2, t2). For the choice a = 1 and b = 2, the
condition (4.3) becomes

λ2 = C2

C1
k2. (4.4)

Making in equations (2.42) and (2.24) the substitutions

μ11 = 1, μ13 = 0, μ22 = 1, μ32 = 0, f12(k, λ) = ∼
f (k, λ), q12(x, y) = u(x, y; 0),

(4.5)
we obtain the Fourier transform pair in four dimensions:

u(x, y; 0) = −|J1|(J1 − J2)

π

∫

R4

[
e2i[(−J1λ1+J2k1)x2+(J1λ2−J2k2)x1+(k1−λ1)y2+(λ2−k2)y1)]

×∼
f (k, λ)

]
dkdλ, (4.6)

∼
f (k, λ) = − (J1 − J2)

|J1| π3

∫

R4

[
e−2i[(−J1λ1+J2k1)x2+(J1λ2−J2k2)x1+(k1−λ1)y2+(λ2−k2)y1)]

×u(x, y; 0)
]
dxdy. (4.7)

In order to impose the reduction (4.4) in the above pair, we make in equation (4.6) the
substitution ∼

f (k, λ) = f (k, λ) δ

(
λ2 − C2

C1
k2

)
. (4.8)

Then, (4.6) becomes

u(x, y; 0)
= −|J1|(J1 − J2)

π

∫

R3

[
e
2i
[
(−J1λ1+J2k1)x2+

(
J1

C2
C1

−J2
)
k2x1+(k1−λ1)y2+

(
C2
C1

−1
)
k2 y1)

]

× f (k1, k2, λ1)

]
dk1dk2dλ1,

(4.9)

where f (k1, k2, λ1) denotes f
(
k1, k2, λ1,

C2
C1
k2
)
. Introducing the notation

(k1, k2, λ1; x1) = f (k1, k2, λ1)e
2i
(
J1

C2
C1

−J2
)
k2x1

, (4.10)
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equation (4.9) can be rewritten in the form

u(x, y; 0) = −|J1|(J1 − J2)

π

∫

R3

[
e
2i
[
(−J1λ1+J2k1)x2+(k1−λ1)y2+

(
C2
C1

−1
)
k2 y1)

]

× (k1, k2, λ1; x1)
]
dk1dk2dλ1

= −|J1|(J1 − J2)

π

∫

R3

[
e
2i
[
(J2x2+y2)k1+

(
C2
C1

−1
)
y1k2+(−J1x2−y2)λ1

]

× (k1, k2, λ1; x1)
]
dk1dk2dλ1. (4.11)

Defining
→
p := (k1, k2, λ1) ≡ (p1, p2, p3) (4.12)

and

→
r :=

(
2 (J2x2 + y2) , 2

(
C2

C1
− 1

)
y1, 2 (−J1x2 − y2)

)
≡ (r1, r2, r3) . (4.13)

So we can write u(x, y; 0) as a function of r1, r2, r3 and x1, which we will denote
by h(r1, r2, r3; x1).
Hence, we can write equation (4.11) as

u(x, y; 0) ≡ h(r1, r2, r3; x1) = 1

(2π)3

∫

R3
ei

→
p ·→r (−8π2|J1|(J1 − J2)(

→
p ; x1)

)
d3

→
p .

(4.14)
Employing the inverse Fourier transform in the variables (r1, r2, r3), the above equa-
tion yields

− 8π2|J1|(J1 − J2)(
→
p ; x1) =

∫

R3
e−i

→
p ·→r h(r1, r2, r3; x1)d3→

r . (4.15)

We want to change variables from d3
→
r to dx2dy1dy2, hence we compute the Jacobian

∂(r1, r2, r3)

∂(x2, y1, y2)
= 8

(
C2

C1
− 1

)
(J1 − J2). (4.16)

Thus,

(
→
p ; x1)

= −
∣∣∣C2
C1

− 1
∣∣∣

π2|J1|
∫

R3
e
−2i

[
(J2x2+y2)k1+

(
C2
C1

−1
)
y1k2+(−J1x2−y2)λ1

]

u(x, y; 0)dx2dy1dy2.
(4.17)
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Hence, recalling the definition of  from (4.10), the above equation becomes

f (k1, k2, λ1) = −
∣∣∣C2
C1

− 1
∣∣∣

π2|J1|
∫

R3

[
e
−2i

[
(−J1λ1+J2k1)x2+

(
J1

C2
C1

−J2
)
k2x1+(k1−λ1)y2+

(
C2
C1

−1
)
k2 y1)

]

× u(x, y; 0)
]
dx2dy1dy2. (4.18)

The reduction (4.4) imposes the constraint

∂x1u = J1C2 − J2C1

C2 − C1
∂y1u. (4.19)

The “reduced” Fourier transform pair (4.9) and (4.18) can be used for the solution of
the t1-independent linearized version of equation (1.3) for a = 1 and b = 2, i.e. of
the equation

i

2
ut2 = α12ux + (C1 − J1α12)uy, (4.20)

supplemented with the constraint (4.19). Indeed, using in (3.15) the substitutions (4.5)
and (4.8) we find the equation

u(x, y, t2)

= −|J1|(J1 − J2)

π

∫

R3

[
e
2i
[
(−J1λ1+J2k1)x2+

(
J1

C2
C1

−J2
)
k2x1+(k1−λ1)y2+

(
C2
C1

−1
)
k2 y1)

]

×e−2i(C1λ1−C2k1)t2 f (k1, k2, λ1)

]
dk1dk2dλ1. (4.21)

In summary, there exist two different ways to solve the system of equations (4.19)
and (4.20). One way is to solve equations (4.19) and (4.20) using the novel Fourier
transform pair (4.9) and (4.18): consider the Cauchy problem of equations (4.19)
and (4.20), where

u(x1, x2, y1, y2, 0) = u0(x1, x2, y1, y2), x1, x2, y1, y2 ∈ R, (4.22)

with u0 a scalar function. Then, equation (4.21) with f defined in terms of u0 by
equation (4.18) where u(x1, x2, y1, y2, 0) is replaced by u0, provides the solution of
the above Cauchy problem. Indeed, it is straightforward to verify that if u is defined
by the right hand side of (4.21), this function satisfies (4.19) and (4.20). Furthermore,
evaluating (4.21) at t2 = 0,we find (4.22) in lieu of the validity of the Fourier transform
pair (4.9) and (4.18). Hence, the above defined function u(x1, x2, y1, y2, t2) solves the
Cauchy problem.

The second way of solving Eqs. (4.19) and (4.20) is to use (4.19) to eliminate one
of the space variables from (4.20) and then to use the standard Fourier transform, or
alternatively the method of characteristics. For example, eliminating ∂x1 from (4.20)
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we find

iut2 = α12

(
J1C2 − J2C1

C2 − C1
uy1 + iux2

)
+ (C1 − J1α12)

(
uy1 + iuy2

)
(4.23)

and recalling that α12 = C1−C2
J1−J2

, we see that Eq. (4.23) simplifies further to

ut2 = α12ux2 + (C1 − J1α12)uy2 , (4.24)

which has the form of the 2+1 dimensional linearized 3-wave interaction equations.
This shows that, in the linear limit, the elimination of t1 has brought about a greater
reduction than intended; instead of a problem in 3+1 dimensions we are left with a
2+1 dimensional equation. That is to say, the evolution involving the variables x2, y2
and t2 is described by Eq. (4.24), while the relation involving the x1 and y1 variables is
governed by Eq. (4.19). This separation can also be inferred directly from the way in
which the general solution (4.21),which satisfies both (4.19) and (4.24), depends on the
four spatial variables x1, x2, y1, y2 and the time variable t2. Namely, the exponential
expression can be separated into one part containing x1 and y1 that involves only
the spectral variable k2, and a second part containing x2, y2 and t2 that involves the
remaining spectral variables k1 and λ1. In the end, then, Eqs. (4.19) and (4.24) can be
solved independently of each other.

It is readily checked that the elimination of the t2 variable leads to a similar conclu-
sion. So the method presented above exceeds its original aim, giving an over-reduced
set of equations, at least in the linear limit. This over-reduction appears to be a pecu-
liarity of the 3-wave interaction equations, since the same method applied to the linear
limit of the 4+2 dimensionalDavey–Stewartson systemyields a 3+1 dimensional result
[29].

The non-linear problem is technically more difficult. In this case, in contrast to the
linear limit, the μan’s do not simplify and hence, in the function gab of Eq. (3.15), we
have to deal with both terms of the sum-over-n (n = 1, 2, 3, n �= b). To eliminate t1
(or t2) from the exponential appearing in this function, we thus have to impose two
conditions for each value of b, instead of the single condition (4.3) we had in the
linear limit. Furthermore, since the equations remain coupled in the non-linear case,
all three values b = 1, 2, 3 must be considered, giving six conditions in total. The
implementation of these conditions, and their implications for the desired reduction
of the full non-linear problem to 3+1 dimensions, are currently under investigation.

As a final remark, we note that the original 2+1 dimensional problem is easily
recovered from the 4+2 dimensional version. Indeed, to accomplish this reduction, it
is sufficient to assume that the functions gab appearing in Eq. (3.13) are independent
of x2, y2 and t2. Then Eq. (3.13) reduces to a non-linear problem in 2+1 dimensions,
equivalent to the original N -wave interaction equations (1.1) for N = 3.

Acknowledgements M. C. van der Weele gratefully acknowledges support from the Cambridge Trust
and Christ’s College via the “Vice-Chancellor’s and Christ’s College Warwick Scholarship”, from the
Foundation for Education and European Culture (Founders Nicos and Lydia Tricha), from the Onassis
Foundation — Scholarship ID: F ZQ 004-1/2020-2021, and from The A. G. Leventis Foundation. A. S.

123



Solving the Initial Value Problem... 37

Fokas is supported by EPSRC via a senior fellowship. Both authors want to thank the anonymous referee
for very insightful comments and suggestions.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

Here we shall show that equations (3.4) and (3.5) indeed provide a Lax pair for (3.13).
In order to see this explicitly, let us prove that the compatibility condition

μt x = μxt (5.1)

yields equation (3.13). Differentiating equation (3.4) with respect to t we get

μxt − Jμyt − k
[
J , μt

]− ∼
Qtμ − ∼

Qμt = 0. (5.2)

Likewise differentiating equation (3.5) with respect to x we get

μt x − Cμyx − k [C, μx ] − Axμ − Aμx = 0. (5.3)

Hence, combining equations (5.1), (5.2) and (5.3) we obtain

Jμyt +k Jμt −kμt J + ∼
Qtμ+ ∼

Qμt = Cμyx +kCμx −kμxC + Axμ+ Aμx . (5.4)

We will use the following relations:

• μyt = Cμyy + k
[
C, μy

]+ Ayμ + Aμy , this equation is found by differentiating
equation (3.5) with respect to y and using the compatibility condition μyt = μt y .

• μt = Cμy + k[C, μ] + Aμ, which is equation (3.5).

• μyx = Jμyy+k
[
J , μy

]+ ∼
Qyμ+ ∼

Qμy , this equationwas found by differentiating
equation (3.4) with respect to y and using the compatibility condition μx y = μyx .

• μx = Jμy + k [J , μ] + ∼
Qμ, which is equation (3.4).

Substituting the above in equation (5.4) we arrive at

J
(
Cμyy + k

[
C, μy

]+ Ayμ + Aμy
)+ k J

(
Cμy + k[C, μ] + Aμ

)

− k
(
Cμy + k[C, μ] + Aμ

)
J + ∼

Qtμ + ∼
Q
(
Cμy + k[C, μ] + Aμ

)

= C

(
Jμyy + k

[
J , μy

]+ ∼
Qyμ + ∼

Qμy

)
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+ kC

(
Jμy + k [J , μ] + ∼

Qμ

)
− k

(
Jμy + k [J , μ] + ∼

Qμ

)
C

+ Axμ + A

(
Jμy + k [J , μ] + ∼

Qμ

)
.

Thus, ∼
Qt = Ax + C

∼
Qy − J Ay + [A,

∼
Q] (5.5)

where we have used that [J , A] = [C,
∼
Q], i.e., (Ja − Jb)Aab = (Ca −Cb)gab which

is true because of the definitions of the matrix A and the coefficient αab := Ca−Cb
Ja−Jb

.
We observe that the component form of equation (5.5) gives us the 3-wave sys-
tem (3.13) and, hence, equations (3.4) and (3.5) indeed provide a Lax pair for (3.13).
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