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Abstract

Against the current COVID-19 pandemic, governments worldwide have devised a variety of

non-pharmaceutical interventions to mitigate it. However, it is generally difficult to estimate

the joint impact of different control strategies. In this paper, we tackle this question with an

extended epidemic SEIR model, informed by a socio-political classification of different inter-

ventions. First, we inquire the conceptual effect of mitigation parameters on the infection

curve. Then, we illustrate the potential of our model to reproduce and explain empirical data

from a number of countries, to perform cross-country comparisons. This gives information

on the best synergies of interventions to control epidemic outbreaks while minimising impact

on socio-economic needs. For instance, our results suggest that, while rapid and strong

lockdown is an effective pandemic mitigation measure, a combination of social distancing

and early contact tracing can achieve similar mitigation synergistically, while keeping lower

isolation rates. This quantitative understanding can support the establishment of mid- and

long-term interventions, to prepare containment strategies against further outbreaks. This

paper also provides an online tool that allows researchers and decision makers to interac-

tively simulate diverse scenarios with our model.

Introduction

The current global COVID-19 epidemic has led to significant impairments of public life

world-wide. To mitigate the spread of the virus and to prevent dramatic situations in the

healthcare systems, many countries have implemented a combination of rigorous measures

like lockdown, isolation of symptomatic cases and the tracing, testing, and quarantine of their

contacts. In order to obtain information about the efficacy of such measures, a quantitative

understanding of their impact is necessary. This can be based on statistical methods [1] and on
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epidemiological models [2]. Epidemiological modeling in particular can provide detailed

mechanisms for the epidemic dynamics and allow investigating how epidemics will develop

under different assumptions.

Preliminary efforts have been made to quantify the contribution of different policy inter-

ventions [3], but these rely on complex models based on a number of assumptions. Instead, we

base our study on a classical SEIR-like epidemiological model. SEIR models are minimal

mechanistic models that consider individuals transitioning through Susceptible! Exposed!

Infectious! Removed state during the epidemics [4]. The essential control parameter is the

basic reproduction number R0 [5], that worldwide non-pharmaceutical mitigation strategies

aim at reducing below the threshold value 1. Several literature studies consider the effect of sin-

gle interventions in SEIR-like models [6–8]. We aim at considering the added value of early

interventions, namely those that target Susceptible and Exposed people, and the effect of differ-

ent combinations of control strategies on the infection curve. To do so, we incorporate addi-

tional compartments reflecting different categories of control strategies, identified by socio-

political studies [9]. In particular, the model focuses on four main mitigation programs: social

distancing (lowering the rate of social contacts), active protection (decreasing the number of

susceptible people), active removal of latent asymptomatic carriers [10], and active removal of

infectious carriers. This study investigates how these programs achieve mitigation both indi-

vidually and combined, first conceptually and then by cross-country comparison. By our

modelling choice, we consider how and how much preventive interventions can supplement

the quarantining of contagious individuals. We ultimately show that analogous containment

levels of the infectious curve can be achieved by alternative synergies of non-pharmaceutical

interventions. This information can supply Government decisions, helping to avoid overload-

ing the healthcare system and to minimise stressing the economic system (due to prolonged

lockdown). We expect our model, together with its interactive online tool, to contribute to cru-

cial tasks of decision making and to prepare containment strategies against further outbreaks.

Materials and methods

This study links policy measures to epidemiological modelling, focusing on how the dynamics

of the infectious curve is controlled by several interventions. Initially, we perform a conceptual

analysis, like in other works [11, 12]. Then, we investigate how well the considered control syn-

ergies reproduce and explain the evolution of empirical data from the first COVID-19 wave in

six different countries. By doing so, we hope to contribute to discussions about the relevance

of such conceptual strategies in real-world conditions. In this section, we illustrate the model-

ling choices and the use of data.

The classical SEIR model

SEIR models are continuous-time, mass conservative compartment-based models of infectious

diseases [4, 13]. They assume a homogeneously mixing population (or fully connected graphs)

and focus on the evolution of mean properties of the closed system. All of these models are

classical and widely used tools to investigate the principal mechanisms governing the spread of

infections and their dynamics. There is a broad range of such models, from more conceptual

to more realistic versions, e.g. SEIR with delay [14], spatial coupling [15, 16], extended com-

partments [17], or those that consider progression of treatments and age distribution [18].

Main compartments of SEIR models (see Fig 1, framed) are: susceptible S (the pool of indi-

viduals socially active and at risk of infection), exposed E (corresponding to latent carriers of

the infection), infectious I (individuals having developed the disease and being contagious)

and removed R (those that have processed the disease, being either recovered or dead). The
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model’s default parameters are the average contact rate β, the inverse of mean incubation

period α and the inverse of mean contagious period γ. When focusing on infection dynamics

rather than patients’ fate, the latter combines recovery and death rate [19]. From these parame-

ters, epidemiologists calculate the “basic reproduction number” R0 = β/γ [20] at the epidemic

beginning. During the epidemic progression, isolation after diagnosis, vaccination campaigns

and active mitigation measures are in action. Hence, we speak of “effective reproduction num-

ber” R̂ðTÞ [21].

Data and analyzed countries

When investigating the ability of our conceptual model to explain mitigation, we compared it

with empirical data. To do this, we considered the main non-pharmaceutical interventions

applied by several countries, by integrating multi-disciplinary information. In fact, govern-

ments worldwide have issued a number of social measures, including those for public health

safeguard, economic support, movement restriction and non-pharmaceutical interventions to

hamper disease spreading. Scholars from political sciences and sociology have recorded and

classified such measures [22, 23]. Among the resources listed on the World Health Organiza-

tion “Tracking Public Health and Policy Measures” [9], we used information from the ACAPS

database [24] that contains a curated categorization of policy measures. ACAPS is an indepen-

dent, non-profit information provider helping humanitarian actors to respond more effec-

tively to disasters. The ACAPS analysis team has aggregated and classified interventions from

different sources (media, governments and international organizations), for all countries and

in time. Mitigation measures against the epidemic are classified under “Movement restric-

tions”, “Lockdown”, “Social Distancing” and “Monitoring and Surveillance”. Our modelling

choice is based on these categories, which are reflected by additional compartments to the clas-

sical SEIR model (see next section).

Epidemiological data for all selected countries and regions were obtained from the

COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at

Johns Hopkins University [25]. The data are from 22 Jan 2020 to 08 July 2020. Lombardy data

were obtained from the Protezione Civile Italiana data repository “Dati COVID-19 Italia” [26],

from 22 Feb 2020 to 08 July 2020. We acknowledge that the quality of data of early detection of

COVID-19 cases is often associated with limited testing capabilities, which could bias subse-

quent analysis. However, across the analysed countries, the share of positive tests was similar

(see e.g. [27]), and no significant deviation from expected dynamics was observed by studies

applying Benford’s law [28, 29], possibly indicating that these data still capture to a reasonable

extent the dynamics of the epidemic wave. In addition, the analysed countries were selected

Fig 1. Scheme of the SPQEIR model. The basic SEIR model (framed blue blocks) is extended by the red blocks to the

SPQEIR model. Parameters that are linked to mitigation strategies are shown in red. Interpretation and values of

parameters are given in Table 2.

https://doi.org/10.1371/journal.pone.0252019.g001
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based on the fact that they sufficiently met the other model assumptions, e.g. low spatial het-

erogeneity and large amount of cases to fulfill the mean field assumption.

This study analyses the effect of mitigation measures in flattening the curve. Despite having

a precise starting date, such measures take some days to be fully effective. We estimate an aver-

age delay using the Google Mobility Reports [27, 30] for the selected countries. Google pro-

vides changes in mobility with respect to a monthly baseline, w.r.t. 6 locations: Retail &

Recreation, Grocery & Pharmacy, Transit stations, Workplaces, Residential, Parks. We average

the decrease in mobility at the first four locations (corresponding to those where social mixing

happens more frequently [31]) to get a proxy of the time needed for hard lockdown to be fully

effective (cf. Fig 4c).

The extended SPQEIR model to reflect suppression strategies

SEIR models reproduce the typical bell-shaped epidemic curves for the number of infected

people. The dynamics of this curve is of high importance for practical policy making. Not only

it relates to the main stressors for the health system [17, 18, 31], but it also has an impact on

the economic system [32–34], e.g. because it takes some time (T) to mitigate the curve, until

the number of new infections is below an accepted threshold. Commonly, mitigation measures

against epidemics aim at flattening the curve of new infections [10]. However, the classical

SEIR model is not granular enough to investigate mitigation measures when they need to be

considered or should be sequentially reduced if already in place. Therefore, we extend the clas-

sical SEIR model as in Fig 1 (red insertions) into the SPQEIR model, to reflect the intervention

categories described above. We particularly focus on the control of Susceptible and Exposed

people, given by preventive isolation, contact tracing or social distancing measures, but we

also include the control of infectious people by isolation. The model can be summarized as

follows:

• The classical blocks S, E, I, R are maintained;

• A social distancing parameter ρ is included to tune the contact rate β;

• Two new compartments are introduced where:

• Protected P includes individuals that are removed from the susceptible pool and are thus

protected from the virus. This can happen through full isolation as in China in early 2020

[35] or by different vaccination strategies which reduce the susceptible pool;

• Quarantined Q describes latent carriers that are identified and quarantined after monitor-

ing and tracing of contacts.

We do not explicitly introduce a second quarantined state for isolation of confirmed cases

after the Infectious state [17, 36] but consider this together with the Removed state, by tuning

the removal rate with an extra parameter (see [37] and references therein). Quarantining

infected symptomatic patients is a necessary first step in every epidemic [38]. An additional

link from Q to R, even though realistic, is neglected as both compartments are already outside

the “contagion system” and would therefore be redundant from the perspective of evolution of

the infection. In general, protected individuals can get back to the pool of susceptible after a

while, but here we neglect this transition, to focus on simulating mitigation programs alone at

their early stage. Long-term predictions could be modelled even more realistically by consider-

ing such link, that would lead to an additional parameter to be estimated and is beyond the

scope of the present paper.
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The model has in total 7 parameters. Three of them (β, α, γ introduced in Fig 1) are based

on the classical SEIR model. The new parameters ρ, μ, χ, η account for alternative mitigation

programs to control the infectious curve (see Table 2 for details). Commonly, social distancing

is modelled by the parameter ρ. In a closed-system setting where all individuals belong to the

susceptible pool, but interact less intensively with each other, ρ tunes the contact rate parame-

ter β, resulting in the effective reproduction number R̂ ¼ r � bg� 1. The parameter μ stably

decreases the susceptible population by introducing an active protection rate. This accounts

for improvements of public health, e.g. stricter lockdown of communities, or reduction of the

pool of susceptible people after reduced commuters’ activity, or vaccination. The parameter χ
introduces an active removal rate of latent carriers. Intensive early contact tracing and

improved methods to detect asymptomatic latent carriers may enhance the removal of exposed

subjects from the infectious network. Following earlier works [39, 40] and adjusting the cur-

rent parameters, R̂ can be then expressed as R̂ ¼ bg� 1a aþ wð Þ
� 1

. Finally, ηmodels the isola-

tion of contagious individuals by handling the removal rate. This would correspond to

identifying infectious individuals before they recover or die, and prevent them from infecting

other susceptibles. Consequently, for this parameter alone R̂ ¼ bðgþ ZÞ� 1
. Parameter values

that are not related to mitigation strategies are set from COVID-19 epidemic literature [37,

41], as the main focus of the present model lies on sensitivity analysis of mitigation parameters.

Our model can be further extended by time dependent parameters [38]. Default values for mit-

igation parameters are {ρ, μ, χ, η} = {1,0,0,0}, corresponding to the classical SEIR model.

The dynamics of our SPQEIR model is described by the following system of differential

equations:

_S ¼ �
rbSI
N
� mS ;

_E ¼
rbSI
N
� wþ að ÞE ;

_I ¼ aE � ðgþ ZÞI ;
_R ¼ ðgþ ZÞI ;
_P ¼ mS ;
_Q ¼ wE ;

Here, :N ¼ 0 with N = S + E + I + R + P + Q, implying the conservation of the total number of

individuals. As value for the qualitative study, we used N = 10,000. For the cross-country

assessment, N is adjusted to true population values for each country. Overall, the effective

reproductive number becomes

R̂ ¼
rb

gþ Z

a

aþ w

S
N
; ð1Þ

Mitigation measures are initiated several days after the first infection case. Hence, we acti-

vate non-default parameter values after a delay τ. For data fitting, we fit and compare τ to the

official date when measures are initialized (cf. Table 1). To integrate the model numerically,

we use the odeint function from scipy.integrate Python library.

Model fitting

To show how our conceptual analysis is able to reproduce and explain empirical data, we fit

the model to the official number of currently infected (active) cases of the first epidemic wave

(winter-spring 2020), for each considered country. The choice is corroborated by the fact that

all considered countries applied rapid, population-wide measures [24]. Model fitting to the
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infectious curves is performed in two steps, using the parameters known to be active (cf.

Table 1). First, we estimate the “model consistent” date of first infection, so that the simulated

curve matches the reported data of active infections. This initial step corresponds to setting the

time initial conditions of the SEIR model [17]. The fitting is performed with default parameter

values, on a subset of data corresponding to the first outbreak, from first case until when mea-

sures are implemented (cf. Table 1). We use a grid search method for least squares, sufficient

to fit a single parameter:

t0 ¼ t0 j RMS ¼ min
t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ptm

i¼t0 ðxðiÞ � x̂ðiÞÞ2

n

s8
<

:

9
=

;
ð2Þ

where t0 is the “model consistent” estimated date of first infection, tm refers to the date mea-

sures are implemented, x̂ and x are respectively reported and model-predicted data, and n is

the number of points between t and tm.

The second step estimates a reasonable set of the mitigation parameters that yield the best

fitting of the simulated SPQEIR curve on reported data, during the first phase with imple-

mented measures. This period is identified between the starting date tm (also included in the

fitting) and the phase-out date tp, cf. Table 1. Holding the epidemic parameters to literature

values to achieve cross-country comparison on intervention parameters alone, the fitting is

performed for a set of mitigation parameters relative to each country, as reported by policy

Table 1. Test countries, with measures implemented.

Country Measures Param. involved Starting Date Population (rounded)

Austria (AT) Partial lockdown μ, ρ 16 Mar 9,000,000

Social distancing ρ, μ 16 Mar

Contact tracing χ 16 Mar

Phase-out Around 14 April

Denmark (DK) Social distancing ρ, μ 13 Mar 6,000,000

Mild surveillance η 13 Mar

Phase-out 14 Apr

Ireland (IR) Partial lockdown μ, ρ 28 Mar 5,000,000

Social distancing ρ, μ 13 Mar

Phase-out 18 May

Israel (IL) Partial lockdown μ, ρ 15 Mar 9,000,000

Social distancing ρ, μ 15 Mar

Contact tracing χ 15 Mar

Phase-out 19 April

Lombardy (LO) Lockdown μ, ρ 13 Mar (Italian) 10,000,000

Social distancing ρ, μ 13 Mar

Phase-out Around 15 Apr

Switzerland (CH) Lockdown μ, ρ 16 Mar 8,500,000

Social distancing ρ, μ 16 Mar

Phase-out 27 Apr

Test countries, with corresponding implemented measures (following the ACAPS database [24]), parameters in our SPQEIR model, starting date and rounded

population of each country. For Lombardy, we used the Italian official date for lockdown. Ireland issued measures on two different dates; we use this case to compare

social distancing and lockdown effect in a single country. We assume that the parameter η is associated to all countries, which worked to isolate contagious individuals.

https://doi.org/10.1371/journal.pone.0252019.t001
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databases (cf. Table 1). The fit is performed with the widely used lmfit Python library. In S1

Text, we discuss such fitted parameters set and alternative ones.

We also perform a comparative quantitative analysis between our extended model and the

simplest SEIR that lumps parameters under a single “social distancing” ρ. This allows compar-

ing the estimate reproduction number R̂ and shows the similarity or divergence of different

control strategies in explaining the data. To assess how well they allow to fit the data, we

employ the classical reduced χ2 statistics to evaluate the goodness-of-fit for each of the two

models, considering the degrees of freedom [43]:

w2
red ¼

1

n0 � 1 � k

Xn0

j¼1

ðyj � ŷjÞ
2

ŷj
ð3Þ

where n0 is the number of data points until phase-out, k is the number of parameters in the

model, yj are estimated values (from data) and ŷj the expected ones (from model simulations).

Results

First, we focus on the conceptual analysis of the effect of preventive mitigation interventions,

initially for single measures (social distancing, active protection and active quarantining) and

subsequently for a number of synergistic approaches. Additionally, we compare them to the

effect of isolating contagious individuals. In particular, we study how crucial quantities,

namely R̂, the infectious peak height and time to zero infectious T, depend on mitigation

parameters. We define T as the time when there are less than 0.5 individuals in the I compart-

ment, because ODE models approximate discrete quantities with continuous variables. Finally,

we perform model fitting and intervention assessment over a set of countries. This provides

quantitative outputs about the effectiveness of control measures, informing about the synergies

applied and enabling cross-comparison.

Simulations of single suppression measures

Only social distancing. The parameter ρ captures social distancing effects, taking values

in the interval [0, 1], where 0 indicates no contacts among individuals while 1 is equivalent to

no action taken. To perform the current simulations, we assume a delay τ in implementing the

measures of 10 days. Such value does not modify the qualitative behavior of the epidemic

dynamics but influences the quantitative estimations of peak height and mitigation timing.

We refer to S1 Text for further discussion. Overall, Fig 2 reports simulation results about the

Fig 2. Effect of social distancing. (a) Effects of social distancing on the epidemic curve. The grey area indicates when measures are not yet in place. (b)

The peak is progressively flattened until a mitigation is reached for sufficiently small ρ. For these settings, the critical value for ρ is 0.4 (it pushes R̂ below

1). (c) Unless ρ is small enough, stronger measures of this kind might delay the mitigation time T of the epidemic.

https://doi.org/10.1371/journal.pone.0252019.g002
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effects of ρ. The curve of infectious is progressively flattened by social distancing (Fig 2a) and

its peak mitigated (Fig 2b). However, the time to mitigation gets delayed for decreasing ρ, until

a threshold yielding a disease-free equilibrium rapidly (Fig 2c). In this case, the critical value

for ρ is 0.4, leading to R̂ < 1. Fig 2c reveals that the dependence of T on ρ is not monotonous.

With the current settings, values of ρ� 0.3 are best effective to minimise the mitigation timing.

In general, the optimal ρ value that minimises mitigation timing depends on τ, as discussed in

S1 Text. In fact, longer delays in issuing interventions are not only associated with higher

peaks in the infection curves, but also in more stringent parameter values that are necessary to

obtain minimal T. This fact further stresses the importance of prompt interventions to control

the quantitative aspects of epidemic mitigation.

Only active protection. As discussed above and in S1 Text, our simulations take into

account 10 days delay from the first infection to the initiation of active protection. Small values

can reflect continuous improvement of protection measures (as people learnt better how to

deal with the virus) or different vaccination strategies (thus going beyond non-pharmaceutical

strategies). Higher values are considered to model certain effects of a step-wise hard lockdown

(see following paragraph). The results are reported in Fig 3. We see that small precautions can

make an initial difference (Fig 3a and 3b). The time to zero infectious is decreased with higher

values of active protection (Fig 3a and 3b). In particular, μ = 0.01d−1 mitigates the epidemics in

about 6 months by protecting 70% of the population. Higher values of μ achieve mitigation

faster, while protecting almost 100% of the population. It is probably not fully realistic to con-

sider that these protection rates are obtained only by isolation. Instead, they could represent

improved hygiene routines or vaccination strategies and are thus worthy to consider.

In addition to what analysed above, we also consider strategies which isolate many people

at once [44]. This corresponds to reducing S to a relatively small fraction rapidly. Since μ is a

rate, we mimic what could happen during a step-wise hard lockdown: large values of μ, but

whose effect only lasts for a short period of time (Fig 4b). We thus use the notation μld. In the

figure, an example shows how to rapidly protect about 68% of the population with a step-wise

μld function. In particular, we use an average four-days long step-wise μld function (Fig 4b) to

mimic the rapid, but not abrupt, change in mobility observed in many countries by Google

Mobility Reports [30] (Fig 4c). The effects of strong, rapid protection are reported in Fig 4a,

showing that such strategy is effective in mitigating the epidemic curve and in reducing the

time to mitigation.

Only active quarantining. Controlling latent carriers before symptom onset is an impor-

tant strategy to limit transmission. We here consider how mitigation is achieved by targeted

interventions, e.g. by contact tracing, and we quantify the interplay between precision and

Fig 3. Effect of lock-down. (a) Effects of active protection on the infectious curve. The grey area indicates when measures are not yet in place. μ is

expressed in d−1. (b) Dependency of peak height on μ: the peak is rapidly flattened for increasing μ, then it is smoothly reduced for higher parameter

values. (c) High μ values are effective in anticipating the mitigation of the epidemic, but require protecting more than 90% of the population.

https://doi.org/10.1371/journal.pone.0252019.g003

PLOS ONE Assessing control interventions against COVID-19 with dynamical SPQEIR model

PLOS ONE | https://doi.org/10.1371/journal.pone.0252019 May 21, 2021 8 / 21

https://doi.org/10.1371/journal.pone.0252019.g003
https://doi.org/10.1371/journal.pone.0252019


delay in tracing, thus expanding [45]. As above, not only we consider the impact on R̂ but on

the whole infectious curve, its height and its time evolution.

The simulations in this part are based on realistic assumptions: testing a person is effective

only after a few days that that person has been exposed (to have a viral charge that is detect-

able). This induces a maximal quarantining rate θ, which we set θ = 0.33d−1 as testing is often

considered effective after about three days from contagion [46]. Therefore, we get the active

quarantining rate χ = χ0 � θ, where χ0 is a tuning parameter associated e.g. to contact tracing.

As θ is fixed, we focus our analysis on χ0. As above, we also assume that testing starts after the

epidemic is seen in the population, i.e. some infectious are identified with 10 days delay in the

activation of measures.

The corresponding results are reported in Fig 5. The curve is progressively flattened by

latent carriers quarantining and its peak mitigated, but the time to mitigation gets delayed for

increasing χ0. This happens until a threshold value of w0thr ¼ 0:9 that pushes R̂ below 1. This

value holds if we accept a strategy based on testing, with θ = 0.33. If preventive quarantine of

suspected cases does not need testing (for instance, when it is achieved by contact tracing

apps), the critical χ0 value could be drastically lower. In particular, w0thr ¼ 0:3 d� 1 if θ = 1d−1, i.e.

latent carriers are quarantined the day after a contact.

Fig 4. Effect of step-wise hard lock-down. (a) Flattening the infectious curve by hard lockdown. Rapidly isolating a large population fraction is

effective in mitigating the epidemic spreading. (b) Modeling hard lockdown: high μld (orange) is active for four days to isolate and protect a large

population fraction rapidly (blue). As an example, we show μld = 0.28d−1 if t 2 [10, 14]. It results in protecting about 68% of the population in two days.

Higher values, e.g. μld = 0.65d−1 would protect 93% of the population at once. (c) Google Mobility Report visualization [30] for analysed countries,

around the date of measures setting. Each line reports the mean in mobility change across Retail & Recreation, Grocery & Pharmacy, Transit stations,

and Workplaces, around the date of implementation of the measures. A minimum of four days (from top to bottom of steep decrease) is required for

measures to be fully effective. Abbreviations explanation: AT = Austria, CH = Switzerland, DK = Denmark, IL = Israel, IR = Ireland, LO = Lombardy.

https://doi.org/10.1371/journal.pone.0252019.g004

Fig 5. Effect of latent carriers quarantining. (a) Effects of active latent carriers quarantining on the epidemic curve. The grey area indicates when

measures are not yet in place. (b) The peak is progressively flattened until a disease-free equilibrium is reached for sufficiently large χ0. (c) Unless χ0 is

large enough, stronger measures of this kind might delay the mitigation of the epidemic. Note that the critical χ0 can be lowered for higher θ, e.g. if

preventive quarantine does not wait for a positive test.

https://doi.org/10.1371/journal.pone.0252019.g005
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The parameter χ0 tunes the rate of removing latent carriers. Hence, it combines tracing and

testing capacities, i.e. probability of finding latent carriers (Pfind) and probability that their tests

are positive (P+). The latter depends on the false negative rate δ− as

Pþ ¼ ð1 � d� Þ : ð4Þ

So, χ0 = Pfind � P+. Hence, mitigating the peak of infectious requires an adequate balance of

accurate tests and good tracing success as reported in Fig 6. Further quantifying the latter

would drastically improve our understanding of the current capabilities and of bottlenecks,

towards a more comprehensive feasibility analysis.

Only isolation of infectious. Isolating contagious individuals is a first step to contrast the

pandemic, on top of preventive measures. In this section, we consider its effect alone, to be

compared with that of other single parameters shown above. As discussed above, we here con-

sider simulations that include a delay of 10 days from the first infection to the initiation of the

measures. Quantitative changes associated with different τ are discussed in the S1 Text. The

results are reported in Fig 7. Targeting the infectious population means that fewer people can

spread the contagion. The curve of infections is progressively flattened, the more rapidly con-

tagious people are identified and isolated, until a threshold value η = 0.51 (for our initial

parameters). In turn, the mitigation time gets longer if η is increased, but has not yet crossed

the threshold value. These findings point to the importance of complementing the control of

contagious individuals with additional preventive measures such as the ones presented above.

We acknowledge that these results are valid on average, but that breaking the infectious chain

at specific links can have additional benefits in heterogeneous social networks.

Fig 6. Dependence of latent carriers quarantining on control parameters. Assessing the impact of Pfind and P+ on

the peak of infectious separately. This way, we separate the contribution of those factors to look at resources needed

from different fields, e.g. network engineering or wet lab biology. Solutions to boost the testing capacity like [47] could

impact both terms.

https://doi.org/10.1371/journal.pone.0252019.g006
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Synergistic scenarios

Fully enhanced active quarantining and active protection might not be always feasible, e.g.

because of limited resources, technological limitations or welfare restrictions. On the other

hand, the isolation of a limited portion of contagious individuals could not be sufficient.

Therefore a synergistic approach is very attractive as it can flatten the curve with combinations

of interventions that target different population groups and require distinct resources. This

section shows a number of possible synergies, concentrating as before on abstract scenarios to

investigate how combining different mitigation programs impact the control parameter R̂ (cf.
Eq (1), the infection curves and the mitigation timing.

As case studies, we consider the 6 synergistic scenarios listed below. Parameters are set

without being specific to real measures taken: their value is so far conceptual and meaningful

when compared across scenarios. Just like above, we consider a 10 days delay from the first

infection to issuing measures; as suggested in other studies [48], delaying action could worsen

the situation. To differentiate between a rapid isolation and a constant protection, we use μld
(associated to “hard lockdown strategies”, see Section “Only active protection”) separated

from μ. To get R̂ when measures are initiated, we follow Eq 1, considering χ = χ0 � θ as in Sec-

tion “Only active quarantining”. Our scenarios are the following:

1. During the first COVID-19 wave, many European countries opted for a lockdown strategy.

A quite large fraction of the population was isolated, individuals were recommended to

self-quarantine in case of suspected positiveness, social distancing got mandatory but was

sometimes not fully followed, masks and sprays were suggested for protection. So, we set an

initial “rapid protection” μld = 0.12 to protect around 38% of the population quickly. Then

we chose ρ = 0.7, χ0 = 0.12, η = 0.12 and μ = 0. This yields R̂ ¼ 0:65.

2. In case that isolation of contagious individuals fails, an alternative procedure is to rapidly

protect only the population fraction at high risk (μld = 0.06, driving 15% of initial S to P).

Social distancing and latent carrier quarantine should then be enforced (ρ = 0.65, χ0 = 0.55).

This gives R̂ ¼ 0:67.

3. In case both preventive quarantine of latent carriers and isolation of contagious are not

greatly effective (χ0 = 0.03, η = 0.07), and in case of low protection rate and scarce isolation

(μ = 0, μld = 0.08), we rise social distancing for all individuals doing business as usual (ρ =

0.45). In this case, R̂ ¼ 0:64.

Fig 7. Dependence of infectious isolation on control parameters. (a) Effects of isolation of contagious individuals on the epidemic curve. The grey

area indicates when measures are not yet in place. (b) The peak is progressively flattened until a disease-free equilibrium is reached for sufficiently large

η. (c) Unless η is large enough, stronger measures of this kind might delay the mitigation of the epidemic. Note that the critical η can be higher if there is

delay in intervening, i.e. if infectious individuals are isolated after several days and can thus spread the infection.

https://doi.org/10.1371/journal.pone.0252019.g007
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4. If there are no safety devices that provide an adequate protection (μ = 0) and no isolation is

foreseen (μld = 0), we set ρ = 0.6, χ0 = 0.2, η = 0.25 to get R̂ ¼ 0:65.

5. This case has higher R̂ than the previous ones, namely R̂ ¼ 0:84. The corresponding

parameters are μld = 0.1, μ = 0.002, ρ = 0.7, η = 0.1. This shows that even low enforcement

of single interventions can achieve R̂ < 1, even thought the corresponding mitigation is

slower.

6. Finally, we consider “draconian” [49] measures such that R̂ ¼ 0:32 only through isolation

and massive screening, that targets Exposed and Infectious individuals. So, μld = 0.3, χ0 =
0.1, η = 0.2 while ρ = 1 and μ = 0. This points to the importance of tracing capacities to min-

imise the total isolation period.

Simulation results in Fig 8 show that different synergies can lead to different timing, even

though the peak is contained similarly (Fig 8a). This has an impact on the cumulative number

of cases (Fig 8b) that will be reflected on the death toll. This holds even when the R̂ values are

very close, as in scenarios 1 to 4: even though R̂ is the main driver of the epidemic, the contri-

bution of finer-grained parameters is relevant for the fine-tuning of interventions. Focusing

on scenarios 2 and 3, we notice that prevention measures and latent quarantine accelerate the

mitigation, even when isolating only vulnerable people. This achieves similar effects as strong

social distancing. In addition, active protective measures with relatively low values further con-

cur in mitigating the peak. This finding asks for rapid assessment of masks and sanitising

routines.

Overall, the strength of mitigation measures influences how and how fast the epidemic is

flattened. μld mostly governs the peak height after measures are implemented, ρ mainly tunes

the curve steepness together with μ, while χ shifts the decaying slope up and down. Overall, a

R̂ < 1 suffices to avoid breakdown of the health system, but its effects could be too slow.

Decreasing its value with additional synergistic interventions could speed up epidemic mitiga-

tion. A careful assessment of measures’ strength is thus recommended for cross-country

comparison.

Model fitting and interventions assessment

In this section, we test our results on several datasets, to estimate the likely impact of different

strategies and to show which combination could have yield a similar R̂. This way, we show

Fig 8. Synergistic scenarios. Simulations of the 6 synergistic scenarios. (a) Curves of infectious Individuals, (b) Cumulative cases. The grey area

indicates when measures are not yet in place. It is evident that scenarios leading to similar R̂ could show different patterns and mitigation timing. (c)

Distribution of times to zero infections T for different scenarios.

https://doi.org/10.1371/journal.pone.0252019.g008
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how countries could achieve mitigation through a synergy of control measures with similar

impact on the epidemic but different management and possibly socio-economic impact.

Model fitting. As described in the Methods section, we first estimate the “model consis-

tent” date of first infection t0, i.e. the temporal initial condition for the SPQEIR model. Com-

paring this date with the starting date for intervention measures (Table 1) corresponds to

estimating τ for each country. We do not claim this to be the true date of first infection in a

country; it is the starting date of infections in case of homogeneous transmission, under the

assumption of no superspreading events [50], and with the hypothesis of coherent R0 (cf.

Table 2). During the second fitting step, we also estimate the date at which mitigation measures

start having effect on the infectious curve, tm. Comparing tm with official intervention dates

from Table 1, we notice that about 8 days are necessary to register lockdown effects. This is

consistent to early findings on lockdown effectiveness [51]. Estimated dates are reported in

Table 3.

Then, we fit mitigation parameters to data of active cases, from the estimated starting date

of control measures tm to phase-out tp (cf. Table 1). The active parameters for the fit are

reported in the same table. For the protection parameter, we used μld acting on 4 days (as

introduced in Fig 4) since it better reflects the rapid protection of certain individuals that hap-

pened during the first COVID-19 wave. Since S* N, its quantitative impact is anyway greater

on the S compartment. Other compartments are impacted by the remaining parameters. The

results of the model fitting are reported in Fig 9. The SPQEIR model, with appropriate parame-

ters for each country (cf. Table 1), is fitted to reported infection curves and, overall, model fit-

ting have good agreement with data. This supports the model structure as very simple yet

realistic enough to capture the main dynamical behaviour of the infection curves in multiple

countries. In addition, it allows for each country to obtain multiple sets of parameters repre-

senting different strategies. We notice that the effect of social distancing (ρ) is predominant as

it homogeneously prevents the big pool of Susceptible individuals to stream into the Exposed

compartment. However, also tracing and isolation can have a considerable effect in comple-

menting population-wide interventions. The values associated to the fitted parameters

Table 2. SPQEIR model parameters.

Fixed parameters Mitigation parameters

β = (average contact rate in the population) = 0.85 d−1 μ = (rate of active protection) [d−1]

α = (mean incubation period)−1 = 0.2 d−1 ρ = (social distancing tuning)

γ = (mean infectious period)−1 = 0.34 d−1 χ = (active removal rate) [d−1]

R0 = 2.5 η = (rate of contagious isolation)[d−1]

SPQEIR model parameters with their standard values for the COVID-19 pandemic from literature [37, 42]. Here “d”

denotes days.

https://doi.org/10.1371/journal.pone.0252019.t002

Table 3. COVID-19 significant dates.

Country AT DK IR IL LO CH

1st official detection 24 Feb 04 Mar 29 Feb 21 Feb 21 Feb 25 Feb

t0 22 Jan 22 Jan 29 Jan 24 Jan 05 Jan 14 Jan

tm 26 Mar 21 Mar 06 Apr 30 Mar 19 Mar 21 Mar

Dates of official detection of first COVID-19 case [25], estimated dates for first infection t0 (according to Eq 2) and date at which measures start being effective tm, per

country.

https://doi.org/10.1371/journal.pone.0252019.t003
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correspond to non-negligible numbers of individuals affected by the interventions. Such values

are discussed in S1 Text. This is informative about how synergistic approaches can realistically

explain the mitigation of the infectious curve, and highlight the potential advantages associated

with modifying the combination of strategies in subsequent epidemic waves. Finally, it allows

a comparison between different countries through the corresponding best fit parameters. For

Ireland, although initial social distancing advises were issued on 13th March (cf. Table 1), fit-

ting the complete curve was only possible when considering the lockdown date (28th March)

as the major driver of the mitigation.

Model fitting is slightly hindered by data quality. For instance, Ireland reported intermit-

tent data, while Lombardy is not perfectly represented, probably because of some data report-

ing issues and larger heterogeneity in its spacial patterns.

Finally, the reduced χ2 metric (Eq 3) reports that the complete SPQEIR model and the sim-

ple social distancing one attain similar goodness of fit, although values for the SPQEIR are

slightly lower in all cases. Country-specific extra parameters (cf. Table 1) are thus useful to

fine-tune the reproduction of epidemic curves, as noticed in the conceptual analysis, Sec. “Syn-

ergistic scenarios”. This shows that synergistic measures are able to provide a similar mitiga-

tion of the curve of infections, and an analogous R̂, as the pure social distancing scenario. In

turn, synergistic approaches allow lower social distancing values, possibly having less severe

social and psychological impacts on the population. This in turn supports the use of several

interventions to control the epidemic curve in an effective and timely manner, while balancing

social benefits. In addition, the SPQEIR is confirmed to be informative, on top of being fully

interpretable and linked to recognised social policy categories.

Fig 9. Results of model fitting. Results of model fitting. Infection curves for the considered countries (dotted) are fitted with the SPQEIR model with

appropriate parameters (red curves). We also show a comparison with the fitted curve obtained from the “basic” SEIR model with only social distancing

(turquoise curves). Parameter values are reported for each country, as well as the corresponding R̂ (for the grey area, following Eq 1) and w2
red. The

period of measures enforcement, from tm to tp, is highlighted by the grey region. Time progresses from the estimated day of first infection t0 (cf.

Table 3). Population fraction refers to country-specific populations (cf. Table 1). After phase-out, we prolong the fitted curve (parameter values

unchanged) to compare observed data with what could have been if measures had not been lifted (dashed lines). From the data, we can observe a

resurgence of cases that points to possible “second outbreaks” (particularly in Israel).

https://doi.org/10.1371/journal.pone.0252019.g009

PLOS ONE Assessing control interventions against COVID-19 with dynamical SPQEIR model

PLOS ONE | https://doi.org/10.1371/journal.pone.0252019 May 21, 2021 14 / 21

https://doi.org/10.1371/journal.pone.0252019.g009
https://doi.org/10.1371/journal.pone.0252019


Cross-country interventions assessment. Fitting a number of countries with the same

model containing the same epidemiological parameters allows to perform a comparison on

the efficacy of their interventions, to inform future decision making. In Fig 9, parameter values

providing the best fit of model to data are reported, together with the simulation results (mean

values) calculated by the lmfit algorithm [52]. Different synergies yield similar values for R̂, but

the curve is different in its evolution as already observed in the previous sections. As expected

from the model analysis above, the lower R̂ is (below 1), the faster the mitigation of the epi-

demic. In addition, different parameter combinations generate curves that differ in amplitude

and time evolution. This might well explain differences in reported total cases and deaths

between various countries. Comparing Austria, Denmark and Lombardy, we observe that con-

tact tracing and monitoring contribute to speeding up the curve decay, despite the fact that

population-wide interventions played so far a major role. In general, combined isolation and

tracing strategies would reduce transmission in addition to social distancing or self-isolation

alone. In general, a strong, rapid lockdown that combines protection and social distancing

seems the best option, as also suggested by the conceptual analysis. However, intervening with

additional synergies is a viable option to mitigate the epidemic faster and with lower social

values.

Finally, we observe the value of timely interventions: we see that intervening earlier with

respect to the date of first infection helps reducing the daily curves by almost a factor of 10.

For instance, we can compare Denmark and Lombardy in Fig 9: the first one got a peak corre-

sponding to about 0.08% of the whole population, while the second region registered a number

of active cases of about 0.5% of the whole population. This translates in more than 3800 infec-

tious on the Danish peak, and on more than 37000 on Lombardy’s.

Discussion

The SPQEIR model assesses and compares the effectiveness of several control measures to mit-

igate the COVID-19 epidemic curve. It integrates previous literature and considers synergy

strategies often considered alone. In particular, we focus on preventive measures, i.e. those

that target people that are not yet fully infectious. Initially, we perform conceptual simulations

to investigate the effect of single and combined measures not only on R̂, but also on the com-

plete time evolution of the infectious curve. Then, we compare them with the isolation of con-

tagious individuals. The possibility of choosing among several strategies is of practical

importance for decision makers: a comparison of Figs 2, 3, 5 and 7 reveals that increasing

social distancing delays and decrease the height of the peak of infections, increasing active pro-

tection as well decreases the height of the peak of infections, but anticipates the occurrence of

such peak, increasing active quarantining also delays and decrease the height of the peak of

infections like social distancing, but the same peak mitigation by active quarantining is associ-

ated with shorter delays than with social distancing.

Moreover, the model is fitted to several countries, to estimate the plausible impact of syner-

gistic strategies. The fit is performed until phase-out dates for the first epidemic wave (winter-

spring 2020), when measures are progressively lifted and therefore the model assumptions do

not hold anymore. We remark that the current set of parameters may not be unique, as there is

high correlation among parameters. This is a common identifiability issue of SIR parameters,

particularly when several of them contribute to the same control parameter R̂ [53]. For

instance, the lmfit diagnostic reports 0.9 correlation between ρ and μld and 0.99 between ρ and

χ, for Austria. This means that they can equally well explain the evolution of the curve, so they

could be alternatively chosen for epidemic control, while targeting different population

groups. This is in line with our above analysis, as we aim at showing how different
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combinations of interventions can tune the mitigation of infection curves. We remark that,

due to this degeneracy of parameters (i.e. several combination can yield to same R̂), the ones

reported in Fig 9 constitute a reasonable set obtained by an automatic least-square algorithm,

but estimating their true values (inverse problem) needs to be complemented with alternative,

targeted approaches.

In Fig 9 we extrapolate the model, with same parameter values, after phase-out (dashed

lines), to compare observed data to the most optimistic scenario, where measures would not

have been lifted. We observe that, up to July 8th, the infection curves mostly maintained an

inertial decreasing trend: despite some fluctuations that make them generally higher than the

best scenario, they kept on following a downward trend similar to that of the model. We specu-

late that this phenomenon is linked to changed behaviors, face masks [54] and improved sani-

tising practices that maintained social distancing values, as well as contact tracing practices

issued by many countries along with the phase-out. However, some countries (Israel in partic-

ular, but also Austria) already showed a worrisome upward trend, eventually associated to a

second outbreak [27]. As this is not a low probability event, we stress the usefulness of our

analysis to prepare for future developments in pandemic progression.

It has been asked whether the peak of infections was reached because of herd immunity or

because of interventions [55]. An added value of this study is to confirm that the peak of infec-

tion, for the considered countries, was not reached because of herd immunity. On the con-

trary, it is the effect of a number of mitigation measures that reduced the number of cases

artificially. This should warn about the high numbers of people that are still susceptible.

We acknowledge the limitations of our analysis. Due to its structure and the use of ordinary

differential equations, the model only accounts for average trends. However, it cannot repro-

duce fluctuations in the data, being them intrinsic in the epidemic, or from testing and report-

ing protocols that might differ among countries. The model focuses on initialization of

measures that last for short-medium periods, as it does not include out-fluxes from the “safe-

guarded” compartments P and Q. This assumption is not completely realistic and we are

aware that household infections concurred to a significant number of contagions. Like other

studies [56], our simulations thus underestimate the disease burden coming from this source.

However, the synergy with other parameters can retain the modulation of the dynamics posed

by different behaviors. Overall, our model is used to assess the validity of control measures

rather than to predict the complete evolution of the epidemic. Similarly, in order to concen-

trate on the generic control of infectious curves, we did not include further compartments

about hospitalization, as they are already upstream with respect to the I compartment, nor we

considered asymptomatic patients, that would not impact the main findings about synergistic

mitigation. In addition, the constant nature of parameters used in this analysis allows good

agreement between model and data when countries implemented rapid and strong measures

point-wise in time, with little follow-ups. Further studies, with time varying parameters, could

obtain more precise values. In the same way, transferring models from country to country

requires fulfilling the same assumptions on model structure and basic hypothesis. This is

shown by the different fitting performances, that suggest that a transfer is not always possible.

The same fitting performance is often impacted by the data quality, related to monitoring, test-

ing and reporting; despite our carefulness in selecting countries that had similar positive rates,

there could be additional uncertainties to the parameter values that we estimated. Finally, we

remark that the retrospective dates in Table 3 should be interpreted under the model assump-

tions: they could suggest that the first infection happened several weeks before the official

detection, but they could as well be associated to the inherent identifiability limits of SIR-like

parameters [57, 58].
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In general, this study is not intended to make a ranking of country responses, nor to suggest

that different strategies could have led to better outcomes. Contrariwise, it should be used as a

methodological step towards quantitatively inquiring the effect of different intervention cate-

gories and of their combinations. It examines possible abstract scenarios and compares quanti-

tative, model-based outputs, but it is not intended to fully represent specific countries nor to

reproduce the epidemic complexity within societies. In fact, the model does not provide fine-

grained quantification of specific interventions, e.g. how effective masks are in protecting peo-

ple, how much proximity tracing apps increase Pfind, how changes in behavior are associated

with epidemic decline [59] and so on. We acknowledge that the new compartments cannot

perfectly match policy measures, but are a reasonable approximation. Some real measures

might also affect multiple parameters at once, e.g. safety devices and lockdown could impact

both μ and ρ. Comparing results of this macro-scale model with those of complex, micro-scale

ones [3] could inform researchers and policy makers about the epidemic dynamics and effec-

tive synergies to hamper it. Any conclusion should be carefully interpreted by experts, and the

feasibility of tested scenarios should be discussed before reaching consensus.

Conclusion

We have developed a minimal model to link intervention categories against epidemic spread to

epidemiological model compartments. This allows quantitative assessment of non-pharmaceu-

tical mitigation strategies on top of social distancing, for a number of countries. Strategies have

different effects on epidemic evolution in terms of curve flattening and timing to mitigation. As

with previous studies [31, 60], we have observed the need to enforce containment measures

(i.e., detect and isolate cases, identify and quarantine contacts and at risk neighborhoods) along

with mitigation (i.e., slow down viral spread in the community with social distancing).

By extending the classic SEIR model into the SPQEIR model, we distinguished the impact

of different control programs in flattening the peak and anticipating the mitigation of the epi-

demic. Depending on their strength and synergy, non-pharmaceutical interventions can ham-

per the disease from spreading in a population. First, we performed a complete sensitivity

analysis of their effects, both alone and in synergy scenarios. Then, we moved from idealised

representations to fitting realistic contexts, allowing preliminary mapping of intervention cate-

gories to abstract programs. We verified that the model is informative in interpolating the

infection curves for a number of countries, and performed cross-country comparison. We

could then obtain model-based outputs on the strength of interventions, for a number of coun-

tries that respected the model assumptions. This provides better, quantitative insights on the

effect of mitigation measures and their timing, and allows improved comparison.

Overall, this work could contribute to quantitative assessments of epidemic mitigation

strategies. To tackle current epidemic waves, and against possible resurgence of contagion [61]

(also cf. Fig 9), better understanding the effect of different non-pharmaceutical interventions

could help planning mid- and long-term measures and to prepare preventive plans while

allowing a relaxation of social distancing measures. In fact, this synergistic approach still

remains of high importance in this second lockdown times, where countries still need to bal-

ance different non-pharmaceutical interventions to keep the infection at bay while comple-

menting vaccination strategies and containing the impacts on other aspects of society.
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Software: Daniele Proverbio, Françoise Kemp, Jose Ameijeiras-Alonso.

Supervision: Stefano Magni, Andreas Husch, Alexander Skupin, Jorge Gonçalves, Christophe
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