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Abstract

A new class of time series models is used to track the progress of the COVID-19 epi-

demic in the UK in early 2021. Models are fitted to England and the regions, as well

as to the UK as a whole. The growth rate of the daily number of cases and the in-

stantaneous reproduction number are computed regularly and compared with those

produced by SAGE. The results from figures published each day are compared with

results based on figures by specimen date, which may be more accurate but are subject

to substantial revisions. It is then shown how data from the two different sources can

be combined in bivariate models.
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1. Introduction

The application of classical time series methods to data on epidemics is relatively un-

developed. Most of the emphasis has been on building models to simulate the path of an

epidemic under different assumptions about behaviour and policies and the forecasting per-

formance has often been unimpressive; see Avery et al (2020) and Ioannides et al (2020).

Here we show how a new class of time series models can be used to track the progress of

an epidemic and forecast key indicators. The methods draw much of their inspiration from

econometrics, but take into account the special characteristics of time series for epidemics.

The univariate time series model described in Harvey and Kattuman (2020a) - hereafter

HK - fits a trend to the logarithm of the growth rate of the cumulated series of the target

variable, which is usually new cases, hospital admissions or deaths. Allowing this trend to be

time-varying introduces flexibility which, in the context of an epidemic, enables the effects

of changes in policy and population behaviour to be tracked. Such stochastic trend models

are a standard econometric tool and they are easily handled within a state space framework.

Application of the Kalman filter enables nowcasts and forecasts of variables of interest, such

as the growth rate of the daily number of cases and the instantaneous reproduction number,

to be made. Estimation of the models is by maximum likelihood and goodness of fit can be

assessed by standard statistical test procedures.

This article describes our experience tracking the progress of the COVID-19 epidemic

in the UK in early 2021. This period is of considerable interest because a new variant of

the virus appeared in the south-east of England in December 2020 and started to spread

throughout the country. The lockdown of January 5th 2021 was partially in response to this

new variant. The number of new cases quickly rose to a peak around the beginning of the

new year and then started to fall. The ability of models to respond to these movements in

a timely fashion is clearly important. Here we investigate how our models fared by showing

how the response, as captured by both nowcasts and forecasts, adapted to observations

available on a daily basis.1

We first examined the results for the country as a whole before moving on to monitor the

regions. Regional variation is significant because in October some areas of the country, such

as north-west England, were particularly hard hit whereas the big rises in December came

primarily from the new variant and were mainly in the south-east. There are systematic

movements in daily observations according to the day of the week with the figures for the

weekend tending to be lower. Our model is able to take account of these movements without

1This methodology forms the basis for the weekly projections of new cases and the R number for the
United Kingdom, its constituent nations and the regions of England, published weekly by NIESR from 18
February 2021 (https://www.niesr.ac.uk/latest-weekly-covid-19-tracker).

1

https://www.niesr.ac.uk/latest-weekly-covid-19-tracker


using seven-day moving averages which tend to result in a delayed response when there are

rapid upward or downward movements.

Multivariate state space models can combine information in different series. There are

two data sources for new COVID cases. One is the figure published each day, while the

other is by specimen date. The second series is subject to substantial revisions as new data

are processed and the series only settles down after about three days. However, it may be a

better indicator of the spread of the epidemic and so the question arises as to whether the

information it contains can be combined with that in the published data. This is essentially

a question of combining different ’vintages’, something which is often done with economic

data. Sometimes the observations are made in a different way and at different frequencies,

for example by surveys; see Harvey and Chung (2000) and, more recently, Anesti et al (2018).

Our treatment of published and specimen data owes much to this literature but there are

some novel features, primarily concerned with time-varying slopes and the notion of balanced

growth. The methods may be generalized to deal with leading indicators as in Harvey (2020).

Section 2 of the paper reviews the model and explains how estimates of the growth rate

of daily numbers can be made and how these yield corresponding estimates of instantaneous

reproduction number, Rt. Our experience with UK data in January is reported in Section 3

and the multivariate models are described and implemented in Section 4.

2. Forecasting and nowcasting with the dynamic Gom-

pertz model

The observational model uses data on the time series of the cumulated total of confirmed

cases or deaths, Yt, t = 0, 1, ..., T, and the daily change. HK show how the theory of

generalized logistic growth curves suggests models for ln yt, where yt = ∆Yt = Yt−Yt−1, and

the logarithm of the growth rate of the cumulated series, ln gt, where gt = yt/Yt−1 or ∆ lnYt.

For the special case of the Gompertz growth curve, the implication is that ln gt follows a

downward linear trend. However, additional flexibility is needed to cope with situations

where there are recurrent waves. This may be achieved by a stochastic, or time-varying,

trend so that

ln gt = δt + εt, εt ∼ NID(0, σ2
ε), t = 1, 2, ..., T, (1)

where2

2HK had a negative sign in front of γ in (1) and (2) because in a growth curve the growth rate is always
falling so it is more convenient to let γ be positive. This ceases to be the case once there are second waves.
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δt = δt−1 + γt−1 + ηt, ηt ∼ NID(0, σ2
η),

γt = γt−1 + ζt, ζt ∼ NID(0, σ2
ζ ),

(2)

and the normally distributed irregular, level and slope disturbances, εt, ηt and ζt, respectively,

are mutually independent. When σ2
ζ is positive but σ2

η = 0 the trend is an integrated random

walk (IRW). HK found IRW trend to be particularly useful for tracking an epidemic and it

will be adopted in the applications here. The speed with which a trend adapts to a change

depends on the signal-noise ratio, which for the IRW is qζ = σ2
ζ/σ

2
ε ; the trend is deterministic

when q = 0.

Allowing γt to change over time means that the progress of the epidemic is no longer

tied to the proportion of the population infected as it would be if Yt followed a determin-

istic growth curve. Instead the model adapts to movements brought about by changes in

behaviour and policies. If γt falls to zero, the growth in Yt becomes exponential whereas a

positive γt means that the growth rate is increasing.

Stochastic trend models can be estimated using techniques based on state space models

and the Kalman filter (KF); see Durbin and Koopman (2012) and Harvey (1989). The com-

putations for the multivariate model were performed using the STAMP package of Koopman

et al. (2020) while the results reported in Section 3 were obtained with a new program in

the R language specifically written for this project. The KF outputs the estimates of the

state vector (δt, γt)
′. Estimates of the state at time t conditional on information up to and

including time t are denoted (δtpt, γtpt)
′ and given by the contemporaneous filter while the pre-

dictive filter outputs (δt+1pt, γt+1pt)
′. The smoother estimates the state at time t based on all

T observations in the series and is denoted (δtpT , γtpT )′. Estimation of the unknown variance

parameters is by maximum likelihood. Tests for normality and residual serial correlation are

based on the one-step ahead prediction errors, vt = ln gt − δtpt−1, t = 3, ..., T.

Additional components, such as day of the week effects, can be added to (1). These may

be deterministic or stochastic. Stationary autoregressive or ARMA components may also be

included as may explanatory variables, including interventions. However, isolated outliers

are most easily handled by treating them as missing observations.

Remark 1 When the observations on daily cases or deaths are small, a negative binomial

distribution for yt, conditional on past observations including Yt−1, may be appropriate. HK

show how the model may be modified to deal with this possibility for a univariate time series.

Software can be found in Lit et al (2020). Estimates of the state based on small numbers

are likely to be unreliable but if the KF is to operate during periods when numbers are small,

as they were for COVID-19 cases in the summer of 2020, it may be better to set vt =

3



gt exp(−δtpt−1)− 1 rather than to treat the observation as missing.

2.1. Forecasting and nowcasting the growth rate of daily observations and R

The direction in which an epidemic is moving is best tracked by nowcasts and forecasts of

gy,t, the growth rate of yt. Harvey and Kattuman (2020b) construct the nowcast of gy,t from

the filtered estimates in the state space model, (1) and (2). Thus gy,t|t = gt|t + γt|t. These

estimates can be translated into estimates of the instantaneous reproduction number Rt, in

a number of ways, as described in Wallinga and Lipsitch (2007). Harvey and Kattuman

(2020b) argue that the most useful for COVID-19 are

R̃t,τ = 1 + τgy,t|t and R̃e
τ,t = exp(τgy,t|t), (3)

where τ is the generation interval, that is the number of days that must elapse before

an infected person can transmit the disease. The nowcasts of yt peak when gy,t|t = 0,

corresponding to R̃t,τ = R̃e
τ,t = 1.

For tracking and forecasting the epidemic all that is needed are estimates of gy,t. The

estimates of Rt are a by-product. Despite being dependent on assumptions about the gen-

eration interval, estimates of Rt have become the main metric for reporting the state of the

epidemic.

Predictions of gy,t, and hence of Rt, are given by

gy,T+`|T = exp δT+`|T + γT+`|T = exp(δT |T + γT |T `) + γT |T , ` = 1, 2, . (4)

If γT |T is zero, the growth of yt is exponential and it is helpful to characterize it by the

doubling time, ln 2/gy,T |T = 0.693 exp(−δT |T ).

When exp δT |T + γT |T > 0, so that the nowcast g̃y,T |T is positive and the estimates of Rt

given by (3) are greater than one, there is still a saturation level so long as γT |T is negative;

correspondingly, as T → ∞, R̃e
τ,T+`|T → exp(τγT |T ) < 1 . Hence a negative γT |T signals a

flattening of the curve and an upcoming peak in yt.

Remark 2 The basic forecasts are made with the estimates of δT and γT . However, alter-

native scenarios in which γt is assumed to evolve in a certain way, perhaps to reflect changing

behaviour and policies, may also be envisaged. If a future scenario arises in terms of a time

path for RT+`|T , it can easily be translated into one for γT+`|T . The time path for γT+`|T

leads directly to the forecasting equations of (10) and so no simulations are needed for the

predictions of yT+`.
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2.2. Sampling variability of nowcasts and forecasts

Harvey and Kattuman (2020b) show that the conditional distribution of nowcasts of gy,t

can be approximated by the conditional distribution of γt, which is normal with mean γt|t

and variance σ2
γ,t|t, both of which are produced by the KF.

When R̃t,τ is defined as 1 + τgy,t, its distribution, conditional on current and past obser-

vations, can be treated as N(gy,t|t, τ
2σ2

γ,t|t). On the other hand the conditional distribution

of R̃e
τ,t is lognormal with mean

Et(R̃
e
τ,t) = exp(τ(gt|t + γt|t + (τ/2)σ2

γ,t|t)) (5)

and standard deviation

SDt(R̃
e
τ,t) = Et(R̃

e
τ,t)

√
(exp τ 2σ2

γ,t|t − 1). (6)

Note that exp τ 2σ2
γ,t|t−1 ' τ 2σ2

γ,t|t so whenEt(R̃t,τ ) is close to one, SDt(R̃
e
τ,t) ' SDt(R̃t,τ ).

The probability that Rt exceeds one is Pr(gy,t|t > 0) and this does not depend on τ or the

formula used to estimate Rt from gy,t|t.

Remark 3 For the Spanish flu data Chowell et al (2007) discuss two approaches to esti-

mating Rt based on SEIR models, the more complex one having eight nonlinear differential

equations. They also use the Bayesian method of Bettencourt and Ribeiro (2008). Estimates

of Rt obtained from the model discussed at the end of this section are not out of line with

those reported by Chowell et all (2007) and they are simpler, more transparent and open to

diagnostic checks on the statistical assumptions.

As with nowcasts, the predictive distribution of gy,T+`, and hence of RT+`, can be approx-

imated from the conditional distribution of γT+` given observations up to and including time

T. This is Gaussian with mean γT |T and variance σ2
γ,T+`|T ,. These estimates are produced by

the predictive equations of the KF as in Harvey (1989, p 147, eq 3.5.5). For an IRW trend

it can be shown that

V arT (gy,T+`) ' V arT (γT+`) = V arT (γT ) + `σ2
ζ = σ2

γ,T |T + `qσ2
ε (7)

when the effect of the daily component is not included. The factor by which the variance

of an ` step ahead forecast of Rt = 1 + τgy,t is inflated above that of the variance of the

corresponding nowcast is the same as it is for gy,t. For example, when q = 0.005, σ2
γ,T |T =

0.001 and σ2
ε = 0.02, expression (7) indicates that the SDs of gyt and Rt will increase by 30%

for ` = 7 and 55% for ` = 14.
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The probability that RT+` > 1 is Pr(gy,T+` > 0) ' Pr(z > −gy,T+`|T/SDy,T+`|T ) where

z ∼ N(0, 1) and SDy,T+`|T is the square root of (7). Thus for new cases in England by date

of publication, the nowcast made on January 18th was −0.048, while the 14 day forecast

was −0.054. The value of σ2
γ,T |T for q = 0.005, and a daily effect included, was 0.0004, while

σ2
ε was estimated to be 0.014. These values give Pr(RT > 1) ' Pr(z > 0.048/

√
0.0004) =

Pr(z > 2.40) = 0.008 and Pr(RT+14 > 1) ' Pr(z > 1. 30) = 0.10.

The ability to make predictions offers a way to deal with reporting delay, as described in

Abbott et al (2020, p3-4). If the observation for time t− k is not available until time t, the

current Rt is better estimated by a k-step ahead forecast. Taking the parameter values of

the previous paragraph gives an increase in the SD of 14% for k = 3.

2.3. Moving averages

In the UK the current level of new infections or deaths is usually reported together with

the seven day moving average (MA7) which is more stable than the daily figure and irons

out the daily effects. The moving average figure is often divided by 100,000 so as to give a

standardized measure. Estimates of gy,t and Rt can be calculated directly from the moving

average. For example

R̂t,k,τ =

∑k−1
j=0 yt−j∑k+r−1
j=r yt−j

=

∑k−1
j=0 yt−j∑k−1
j=0 yt−r−j

= 1 + rĝy,t, (8)

where the sum in the denominator starts at a lag of four and the sums in the numerator

and denominator may overlap. The lag of r reflects the generation interval, which is number

of days that elapse before an infected person can transmit the disease. The Robert Koch

Institute estimator3 has r = 4, and k = 4 or 7; setting k = 7 has the advantage of smoothing

out the daily effect.

Following on from (8) estimates of gy,t can be calculated directly from the moving average.

However, because the observations are best captured by a location/scale model in which the

level is proportional to scale, estimates formed from the level have poor statistical properties.

A better approach would be to take logarithms before averaging. Harvey and Kattuman

(2020b, section 3.3) show that doing so would give a result much closer to that obtained

from the model.

A disadvantage of using simple moving averages to track the epidemic is that they give the

last seven observations equal weights and so can be slow to respond to upward or downward

movements. By contrast the model deals directly with day of the week effects and so is able

3There is some prior nowcasting to to account for reporting delays; the methodology is based on Höhle
and an der Heiden ( 2014)
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Fig. 1. German new cases from 29th March till 26th June (data sourced from ECDC) showing
nowcasts from model and 7-day moving averages.

to gradually discount past observations. Hence it can respond more quickly. Figure 1 shows

nowcasts of the underlying trend in new cases produced by the model for Germany (ECDC

data), together with the MA7. The attraction of the model is clear and, of course, it also

has the advantage of being able to produce forecasts. Lagging the MA7 so it is centred at

t− 3 would shift it more in line with the observations but at the cost of losing the last three

observations.

2.4. Forecasting the trend in future observations

The forecasts of the trend in future values of ln gt in the dynamic Gompertz model are

given by δT+`|T = δT |T + γT |T `, ` = 1, 2, .., where δT |T and γT |T are the KF estimates of δT

and γT at the end of the sample. Forecasts of the trend in the daily observations, yt, may

be obtained from a recursion for the trend in their cumulative total, Yt, namely

µT+j|T = µT+j−1|T (1 + gT+j|T ) = µT+j−1|T (1 + exp δT+j|T ), j = 1, 2, .., `, (9)
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with µT |T = YT . The trend in the daily figures is then

µy,T+`|T = gT+`|TµT+`−1|T , ` = 1, 2, ..

Combining the above equations gives

µy,T+`|T = YT exp δT+`|T

`−1∏
j=1

(1 + exp δT+j|T ), ` = 2, 3, .. (10)

µy,T+1|T = YT exp δT+1|T .

Daily effects can be added to δt. In this case forecasts of the observations themselves,

that is ŷT+`|T and ŶT+`|T , are given by adding the filtered value of the daily component to

the trend component, δT+`|T .

The conditional distribution of future values of the trend, δT+`, in ln gT+` is Gaussian.

The conditional distribution of exp δT+` is therefore lognormal but, for more than one-step

ahead, the distribution of the corresponding trend in the observations is not lognormal

because of the presence of the unknown cumulative total in our equation for the underlying

trend which is µy,T+` = gT+`YT+`−1, ` = 2, 3, . However since Yt changes relatively slowly it

may be possible to ignore its effect by treating it as fixed.

An alternative to working with the distribution of the trend of the observations, is to

convert a prediction interval for ln gT+` into one for µy,T+` by replacing δT+j|T in (9) by

δT+j|T ±z.σδ,T+j|T , where σ2
δ,T+j|T is the conditional variance of δT+j and z is a constant such

as one or two. Again, with Yt changing slowly, there may be a case for simply constructing a

prediction interval from (10) by replacing δT+`|T by δT+`|T ± z.σδ,T+j|T for ` = 1, 2, 3, . . .. If a

prediction interval for the observations themselves is wanted, the standard deviation σδ,T+j|T

may be replaced by
√
σ2
δ,T+j|T + σ2

ε in the preceding formulae. Allowance may also need to

be made for a daily component.

2.5. Nowcasts of the trend in daily observations

The nowcast for the trend in yt is

µy,t|t = Yt−1 exp δt|t, t = t′, ..., T.

Using the current rather than the lagged cumulative total, that is Yt exp δt|t, makes vir-

tually no difference once Yt has become relatively large. Since δt is conditionally Gaussian,

exp δt is lognormal and a credible interval may be produced if required.
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Fig. 2. Nowcasts and 7-day moving averages for San Francisco flu from 29th September till 24th
October 1918.

Example Daily cases of influenza4 in San Francisco during the worldwide outbreak of

Spanish flu in 1918 show exponential growth in the upward phase; see Chowell et al (2007).

Consequently a plot of the logarithm of the growth rate (LDL) shows very little downward

movement at first. Fitting the Gaussian dynamic Gompertz to the whole series gives q = 0.05.

The slope in LDL adapts so it is close to zero in early October and then falls so as to capture

the downward phase. Figure 2 contrasts the nowcasts with a seven day moving average, which

lags behind the observations throughout.

3. COVID-19 in the UK and regions

Our empirical focus is on trends in new cases in the UK, its nations and English regions.

We focus on early 2021, when the new strain of COVID-19 was the leading cause of increase

in infection rates, initially in the south-east of England.

The daily counts of COVID-19 cases are based on the results of laboratory-based or

swab tests for the presence of SARS-CoV-2 virus in specimens taken from people, as well

4The data are supplementary material to the article by Chowell (2007) https://www.ncbi.nlm.nih.

gov/pmc/articles/PMC2358966/

9

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2358966/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2358966/


as results of antibody serology tests. The new cases data are available by the date the

specimen was collected (the specimen date series) and by the date the testing process was

completed and the case was first included in the published totals (published date series).

A key issue is how information in the specimen date series can be combined with that in

the published date series. There are pronounced daily effects in the specimen date series,

which however can be accommodated in a model with seasonal effects. More importantly

the specimen date series is subject to substantial reporting delays and revisions. Figure 3

illustrates the extent of revisions over time of the specimen date series, with reference to the

same data as revised three weeks in the future by when revisions are almost complete and

very small. To be precise, let y
(v)
t denote the v day ahead update (or vintage) for yt, the

specimen cases recorded on date t. Thus, the current vintage of the data is given by the

series: y
(t)
t , y

(t)
t−1, ..., y

(t)
1 . The date r revision to the current vintage of specimen cases for date

i is defined as: rev
(r)
i = y

(r)
i − y

(t)
i . Figure 3 presents the revisions three weeks ahead for the

last four entries of the current vintage, rev
(t+21)
t , . . . , rev

(t+21)
t−3 . It is evident that except in

the neighbourhood of Christmas day and New Year’s day when data quality was very poor,

revisions were substantially complete within three days.

A technical issue led to a large number of infections that occurred between 25th Septem-

ber and 2nd October 2020 going unrecorded and then being assigned to 3rd and 4th October,

thereby creating an artificial spike. Rather than attempting to reallocate observations we

start our analysis with data published on 5th October 2020. Cases by specimen date were

not affected by the above issue. On 27th November 2020 another technical issue led to the

total number of people who tested positive being revised down.

We fit models to the logarithm of the growth rate of new cases as measured by the

specimen date up to and including time t−3 and report nowcasts and forecasts of gy,t+h and

R̃e
t+h for h =−3, 0, 7 and 14. For models fitted to new cases measured by published date,

we report nowcasts and forecasts for h = 0, 7 and 14. Note that the published data for time

t is actually released at t+ 1.

The forecasts we generate make no assumptions about the effects of measures imposed to

control the spread of the epidemic. Thus the forecasts made at the start of the year overshoot

the eventual numbers. As the restrictive measures begin to bite, the forecasts made by the

model adapt.

3.1. Nowcasts and forecasts in January 2021

Tables 1 and 2 present, at weekly intervals starting on 28th December 2020, nowcasts

and forecasts of the growth rate of new cases, gy,t, gy,t+7 and gy,t+14, and of the reproduction
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Fig. 3. Differences between new cases in the specimen date series at t, and the same data revised
three weeks in the future.

number, Rt, Rt+7 and Rt+14, for England. Table 1 uses the publication date series while

Table 2 is for the specimen date series. The projections from both series are based on trends

without daily effects, and show broadly similar patterns of accelerating growth rates before

Christmas that increased through the New Year to the first observations in 2021. The lock

down of 5th January 2020 brought both sets of growth rates and reproduction numbers

down to the same broad range within a week. The growth rates estimated from both the

publication date series and the specimen date series have continued to be negative since

then.

Figure 4 gives the forecasts of new cases based on publication date series for England,

including the daily effect. Figure 5 gives the forecasts based on the specimen date series.

Vertical dashed lines denote the end of the estimation sample. These figures demonstrate

that once past the imposition of the January lockdown, the model adapted quickly to the

change in the series and in a relatively stable environment provided accurate forecasts.
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Table 1: England: gy,t+h and R̃e
t+h based on publication date series

t h

0 7 14

gy
2020-12-28 5.25 5.76 6.40
2021-01-04 5.47 6.04 6.76
2021-01-11 -1.31 -1.66 -1.95
2021-01-18 -4.78 -5.17 -5.43
2021-01-25 -7.02 -7.31 -7.48
2021-02-01 -4.99 -5.16 -5.27

R
2020-12-28 1.23 1.26 1.29
2021-01-04 1.24 1.27 1.31
2021-01-11 0.95 0.94 0.92
2021-01-18 0.83 0.81 0.80
2021-01-25 0.76 0.75 0.74
2021-02-01 0.82 0.81 0.81

Table 2: England: gy,t+h and R̃e
t+h based on specimen date series.

t h

-3 0 7 14

gy
2020-12-28 2.02 2.03 2.06 2.10
2021-01-04 4.24 4.37 4.73 5.13
2021-01-11 -2.39 -2.60 -3.01 -3.31
2021-01-18 -3.96 -4.14 -4.46 -4.68
2021-01-25 -4.35 -4.47 -4.70 -4.85
2021-02-01 -4.62 -4.70 -4.85 -4.95

R
2020-12-28 1.08 1.08 1.09 1.09
2021-01-04 1.18 1.19 1.21 1.23
2021-01-11 0.91 0.90 0.89 0.88
2021-01-18 0.85 0.85 0.84 0.83
2021-01-25 0.84 0.84 0.83 0.82
2021-02-01 0.83 0.83 0.82 0.82
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Fig. 4. England: forecasts of new cases based on publication date series.

3.2. Forecast accuracy

We assess forecast accuracy using Mean Absolute Percentage Error (MAPE) over the 14-

day period from the date on which the data is released. For the publication date series we

evaluate forecasts against subsequent realisations of the same series, whereas for specimen

date series we evaluate forecasts against the first vintage with a release date that allows

the first major revisions to vanish from the evaluation sample. This also maintains a fixed

number of days for each evaluation date relative to the forecast origin for revisions to enter

the evaluation sample. Thus, evaluation data for the specimen data series with vintage

dated t requires evaluation data of vintage (v) from y
(v)
t−2 to y

(v)
t+14, because we truncate the

estimation sample at y
(t)
t−3. We choose a vintage of v = t + 17 to allow for the discarding of

the heavily revised data at t+ 15 to t+ 17. Where this is not possible due to lack of data, we
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Fig. 5. England: forecasts of new cases based on specimen date series.

set v equal to the last date upon which data is available (which in Figure 5 is 23rd February

2021). For publication date series ending at time t, we require evaluation data from y
(j)
t+1

until y
(j)
t+14. As the publication data is just the first release of the specimen data this results

in the evaluation sample y
(t+1)
t+1 , . . . , y

(t+14)
t+14 .

Table 3 reports the MAPE for the forecasts of new cases based on the publication date

series. Recall that data on new cases at t becomes available at t+ 1 in the publication date

series. Table 4 reports the corresponding forecasts for the specimen date series. Accuracy

is comparable for nowcasts and forecasts generated from the two series. Once the shocks to

data quality over Christmas and the New Year are past and the initial effect of the January

lockdown has worked through, both the 7 and 14 day ahead forecasts become more accurate.
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Table 3: England: Accuracy (MAPE) of forecasts of publication date series of new cases.
t h

1 7 14

2020-12-28 4.8 3.7 28.6
2021-01-04 15.9 47.7 119.1
2021-01-11 20.8 21.7 36.1
2021-01-18 2.5 11.7 9.7
2021-01-25 3.9 17.5 24.8
2021-02-01 1.0 5.1 6.5

Table 4: England: Accuracy (MAPE) of forecasts of specimen date series of new cases.
t h

-2 0 7 14

2020-12-28 27.7 25.8 31.4 22.2
2021-01-04 21.3 12.2 47.0 102.1
2021-01-11 3.9 5.9 9.2 16.1
2021-01-18 0.5 3.4 5.7 5.1
2021-01-25 4.2 13.1 6.6 6.0
2021-02-01 5.0 2.8 4.3 6.0

3.3. Comparison with R published by DHSS and SAGE

The benchmarks for our results are the estimates of the growth rate and R values pub-

lished jointly by the Department of Health and Social Care and the Scientific Advisory

Group for Emergencies, based on contributions by different modelling groups using a variety

of data sources. Estimates can vary between different models and are presented as ranges.

For example, on 5 February 2021 the published range estimates for England were [0.7, 0.9]

for Rt and [−5%,−2%] for the growth rate. Note that due to time delays, estimates reflect

transmission of the disease over the past few weeks.

Figure 6 presents the model based estimates of R for England using the publication

and specimen date series, and for comparison, the empirical estimate of R based on the RKI

estimator (Section 2.3), as well as the range estimates ofR published by SAGE, obtained from

https://www.gov.uk/guidance/the-r-number-in-the-uk. The model based estimates of

R are quicker to reveal the effect of the January lockdown on infection transmission than

the SAGE estimates.

Analysis and results corresponding to the above for the UK, other nations and the regions

of England are presented in an online supplement to this paper.
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4. Combining observations by publication date and spec-

imen date

Methods of dealing with preliminary observations and observations at different vintages

have long been employed in econometrics. Our treatment of published and specimen data

owes much to this literature but there are some novel features, primarily concerned with

time-varying slopes and the notion of balanced growth. The techniques may be generalized

to deal with situations where growth may not be balanced. Similar techniques may be

employed when one series is a leading indicator of the other.

The bivariate model has observations on the first variable (published series), which is

effectively a leading indicator, available at time t, whereas the second (specimen series) is

only observed after k periods. Thus at time t the observations on ln g2t are missing for

t− k + 1, ..., t. The model is
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ln g1t = δt + ψ1t + ε1t, t = 1, ...., T, (11)

ln g2t = δt + δ + ψ2t + ε2t

ψjt = φjψj,t−1 + ηjt, ηjt ∼ NID(0, σ2
ηj).

where δ is a constant term; δt will contain a constant that can be (arbitrarily) assigned to

series one. As in the univariate models of the last section, the trend, δt, is an IRW that

contains the information needed to estimate the underlying movements in the growth rate

of the target series, g2,y,t. All disturbances, including ε1t and ε2t, are Gaussian and assumed

to be mutually as well as serially independent. Provided |φj| < 1, j = 1, 2, the series are co-

integrated of order (2,2), that is CI(2, 2), with balanced growth. The difference ln g1t− ln g2t

is a stationary ARMA(2,2) process, but setting φ1 = φ2 gives an AR(1) plus noise.

The Kalman filter provides the (filtered) state estimates needed to compute the nowcasts

for g2,y,T , RT and y2T. As new observations become available these nowcasts are updated

by the KF. Smoothed estimates of variables from t = T − k + 1 to t = T − 1 can be

computed if needed. Forecasts of the state beyond time T are made by the predictive KF

and corresponding forecasts of Rt and y2t can be formed. Daily effects are included in the

applications and are handled in (11) by adding a ‘seasonal’ component.

A modified version of the model confines the AR(1) component to the first variable so

that

ln g1t = δt + ψt + ε1t, t = 1, ...., T, (12)

ln g2t = δt + δ + ε2t

ψt = φψt−1 + η1t, ηt ∼ NID(0, σ2
η).

An advantage of this simplication is that the signal-noise ratio in the target can be compared

with that of a univariate model and, if desired, set to a pre-assigned value.

Nowcasts of the trend in observations are obtained from recursions similar to those in

sub-section 2.4, except that filtered estimates of δt are replaced by smoothed ones. Thus

µT−k+`|T = µT−k+`−1|T (1 + gT−k+`|T ) = µT+`−1|T (1 + exp δT−k+`|T ), ` = 1, 2, .., k (13)

with µT |T−k = YT , so

µy,T+`|T = gT+`|TµT+`−1|T , ` = 1, 2, .., k
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Fig. 7. Forecasts of trend in specimen cases made with observations up to 15th January 2021 but
using published data up to 18th January 2021.

The recursions can be continued to give forecasts. The difference is that when ` > k, the

δ′T−k+`|T s are forecasts, not smoothed estimates.

The bivariate model, (12), was fitted to data available on 19th January. The observations

start on October 4th and finish on January 18th for the published series and on January 15th

for specimen series. The Christmas day and New Year specimen observations were treated

as missing. The reasons for omitting the last three specimen dated figures were set out in

sub-section 3. Estimation details can be found in Appendix B.

The estimates of gy,T and Re
T for the specimen dated series are −0.040 (0.026) and 0.85

(0.10) respectively. These are the same (to two decimal places) as the estimates for the

univariate series. Figure 7 shows nowcasts, from 16th to 18th January, and forecasts, from

19th, of the trend in specimen data. The prediction interval for the observations on ln gt is

one standard deviation either side of its predicted trend. (A daily effect was not included in

the model.)

18



5. Conclusions and future directions

This article has demonstrated the way in which our new time series models are able to

track the progress of the COVID-19 epidemic in the UK in early 2021. The models are not

only simple and transparent, but are able to adapt quickly to changes in key series. This

ability to respond in a timely fashion is illustrated by the comparison of our estimates of

the current R number with those produced by SAGE. The complexity of the behavioural

response to lockdown and the restrictive measures imposed by the Tier system in different

areas in late 2020 makes a formal structural modelling difficult. The roll out of the vaccine

adds yet more complexity. Our models track these changes and project forward to make

short-term forecasts of the situation over the next few weeks.5 Models are estimated for the

four UK nations and for the regions within England. All the models have the same form.

We show how multivariate generalizations of our models can combine information in

different series, some of which are subject to substantial revisions. The approach derives from

econometric approaches to handling different vintages, but there are some novel technical

features. The methods are new to epidemiology. We demonstrate that joint modelling of

published and specimen dated observations on new cases can be accomplished without too

much difficulty. The methods may be adapted to use some time series as leading indicators

for others. Further work on using new cases as a leading indicator of admissions and deaths

is currently underway.
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A: Data sources

The data for the UK was obtained from Public Health England’s (PHE) Coronavirus

toolkit (https://coronavirus.data.gov.uk/developers-guide). Archived, or, real-time data

is currently not available in the first release, ’v1’, of their Application Programming In-

terface (API). Discussion of access to archived data is summarised in this github ticket:

https://github.com/publichealthengland/coronavirus-dashboard/issues/241. To-

wards the later part of 2020 PHE released an experimental version, ’v2’, of their API which

has archived data from 12th August 2020 onwards. All archived data is taken from this end-

point: https://api.coronavirus.data.gov.uk/v2/. It is worth restating their disclaimer

that this is an experimental endpoint and “subject to active development and may become

unstable or unresponsive without prior notice”.

B: Estimation for bivariate model for publication and

specimen data series

The prediction error variances for specimen and published were 0.0134 and 0.0172 respec-

tively with a correlation of 0.077. The slope variances were constrained to be the same and q

was set at 0.015 for the specimen series. The estimated AR coefficient in the published series

was 0.672 and its variance was 0.0056. The irregular variances for specimen and published

were 0.0082 and 0.0091 respectively with a correlation of -0.190.

Figure 8 shows the residual ACFs and histograms. The diagnostic statistics were6 as

follows for specimen : r(1) = 0.20, Q(18) = 25.41, BS = 9.87 and H = 3.95 and for

published: r(1) = −0.07, Q(18) = 20.21, BS = 0.38 and H = 0.90. There is some remaining

serial correlation, but not a great deal. Fitting an AR(1) to the specimen series as well as to

the published series may reduce r(1). The greater stability in the published series is reflected

in the smaller BS normality test statistic.

6r(1) is the autocorrelation at lag one, Q(P) is Box-Ljung statistic with P autocorrelations, BS is the
Bowman-Shenton normality statistic and H is a heteroscedasticity statistic constructed as the ratio of the
sum of squares in the last third of the sample to the sum of squares in the first third.
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Fig. 8. Residuals from bivariate model fitted to data up to 19th January 2021.

The output for the state vector shows that the slopes on January 18th are almost identical

for the two series; for specimen data −0.0506 (0.0260) and for published it is −0.0502

(0.0261). The difference arises because, although STAMP is able to constrain the variances

of the slopes to be the same, it is currently unable to set the deterministic parts of the slope

to be equal.
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