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Abstract
Objectives Hypoxia is associated with poor prognosis and treatment resistance in breast cancer. However, the temporally variant
nature of hypoxia can complicate interpretation of imaging findings. We explored the relationship between hypoxia and vascular
function in breast tumours through combined 18F-fluoromisonidazole (18 F-FMISO) PET/MRI, with simultaneous assessment
circumventing the effect of temporal variation in hypoxia and perfusion.
Methods Women with histologically confirmed, primary breast cancer underwent a simultaneous 18F-FMISO-PET/MR exam-
ination. Tumour hypoxia was assessed using influx rate constant Ki and hypoxic fractions (%HF), while parameters of vascular
function (Ktrans, kep, ve, vp) and cellularity (ADC) were derived from dynamic contrast-enhanced (DCE) and diffusion-weighted
(DW)-MRI, respectively. Additional correlates included histological subtype, grade and size. Relationships between imaging
variables were assessed using Pearson correlation (r).
Results Twenty-nine women with 32 lesions were assessed. Hypoxic fractions > 1% were observed in 6/32 (19%) cancers,
while 18/32 (56%) tumours showed a %HF of zero. The presence of hypoxia in lesions was independent of histological subtype
or grade. Mean tumour Ktrans correlated negatively with Ki (r = − 0.38, p = 0.04) and %HF (r = − 0.33, p = 0.04), though
parametric maps exhibited intratumoural heterogeneity with hypoxic regions colocalising with both hypo- and hyperperfused
areas. No correlation was observed between ADC and DCE-MRI or PET parameters. %HF correlated positively with lesion size
(r = 0.63, p = 0.001).
Conclusion Hypoxia measured by 18F-FMISO-PET correlated negatively with Ktrans from DCE-MRI, supporting the hypothesis
of perfusion-driven hypoxia in breast cancer. Intratumoural hypoxia-perfusion relationships were heterogeneous, suggesting that
combined assessment may be needed for disease characterisation, which could be achieved using simultaneous multimodality
imaging.
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Key Points
• At the tumour level, hypoxia measured by 18F-FMISO-PET was negatively correlated with perfusion measured by DCE-MRI,
which supports the hypothesis of perfusion-driven hypoxia in breast cancer.

• No associations were observed between 18F-FMISO-PET parameters and tumour histology or grade, but tumour hypoxic
fractions increased with lesion size.

• Intratumoural hypoxia-perfusion relationships were heterogeneous, suggesting that the combined hypoxia-perfusion status of
tumours may need to be considered for disease characterisation, which can be achieved via simultaneous multimodality
imaging as reported here.
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Abbreviations
%HF Percentage hypoxic fraction
18F-FMISO 18F-fluoromisonidazole
ADC Apparent diffusion coefficient (mm2/s)
kep Contrast efflux rate constant (min−1)
Ki Tracer influx rate constant (mL/cm3/min)
Ktrans Contrast influx transfer rate

constant (mL/g/min)
SUV Standardised uptake value (g/mL)
Tmax/M Maximum tumour-to-muscle ratio
Tmax/P Maximum tumour-to-plasma ratio
ve Extravascular-extracellular volume fraction
vp Plasma volume fraction

Introduction

Hypoxia is a common characteristic of the tumour microenvi-
ronment and arises due to avid metabolism and poor perfusion
as a result of the structurally and functionally aberrant micro-
circulation found in tumours [1]. In breast cancer, the presence
of hypoxia has been confirmed with pO2 histography and
occurs irrespective of histological type, molecular subtype,
grade or patient characteristics [2, 3]. In vitro studies have
shown that hypoxia promotes a dedifferentiated phenotype
in ductal carcinoma in situ [4] and downregulates the expres-
sion and function of oestrogen receptor-α (ERα) [5]. Several
clinical and preclinical studies in breast cancer have demon-
strated that overexpression of hypoxia-related proteins is as-
sociated with an aggressive phenotype, poor prognosis and
resistance to treatment [6–8].

Although tumour hypoxia can be broadly categorised as
diffusion or perfusion limited, it is generally accepted that
the tumour microenvironment is a highly dynamic entity,
exhibiting temporally varying perfusion patterns and hetero-
geneous oxygen-tension gradients [9]. Experimental evidence
suggests that oxygen levels continually fluctuate owing to
transient changes in perfusion [10]. These changing perfusion
and oxygenation levels induce a variety of gene expression
profiles resulting in a unique micromilieu that is pivotal for
tumour growth and metastatic dissemination [11]. Given the

temporal variation in oxygenation and perfusion within tu-
mours, sequential multimodal imaging investigations may
not always be effective in assessing the association between
these parameters, as similar tumour status cannot be guaran-
teed between imaging sessions. Simultaneous assessment of
the hypoxia and perfusion in tumours can mitigate con-
founders associated with the dynamic character of these pro-
cesses, and thus allow additional pathophysiological charac-
terisation of breast cancer.

Imaging methods, including positron emission tomogra-
phy (PET) and magnetic resonance imaging (MRI), have
been used for the non-invasive assessment of the tumour
microenvironment. Dynamic contrast-enhanced (DCE) MRI
has shown utility in characterising tumour perfusion and
vascular permeability in clinical studies [12], while
diffusion-weighted imaging (DWI) can provide surrogate
measures of tumour cellular density [13]. PET with 18F-la-
belled nitroimidazoles can provide specific measures of in-
tracel lular hypoxia [14] . In breast cancer , 18F-
fluoromisonidazole (18F-FMISO) has been used for the eval-
uation of response to anti-angiogenic and HER2-targetted
treatment [15, 16] and shown potential utility as a predictor
of response to primary endocrine therapy [17, 18].
Additionally, high 18F-FMISO uptake at baseline has been
associated with shorter disease-free survival [18] and
disease-specific death [19].

Despite the intrinsic link between tumour hypoxia and per-
fusion, multimodal imaging approaches to characterise this
aspect of cancer pathophysiology have been limited in the
clinical setting [16, 19–24]. To effectively assess relationships
between temporally varying microenvironment parameters,
combined PET/MR imaging presents an attractive option as
it permits examination of the tumour under the same physio-
logic conditions, while also conferring methodological advan-
tages in the spatial registration of data from the two
modalities.

The primary objective of this study was to examine the
association between hypoxia and vascular function in patients
with treatment-naïve breast cancer using simultaneous 18F-
FMISO-PET/MRI. To our knowledge, this is the first such
study in breast cancer.
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Materials and methods

Study participants

Women aged > 18 years with histologically confirmed prima-
ry breast cancer and a tumour diameter > 10mm onmammog-
raphy and/or ultrasound were eligible for the study (February
2017 to November 2018). Pregnancy, lactation, previous sur-
gery or radiotherapy for cancer or benign breast disease, inad-
equate renal function and contraindications to MRI were ex-
clusion criteria for the study. The research was approved by a
National Research Ethics Committee (14/EE/0145). All study
participants provided written informed consent before PET/
MRI examination.

PET/MRI acquisition

Participants underwent a 60-min simultaneous PET/MR
scan of the breasts in the prone position on a SIGNA
PET/MR scanner (GE Healthcare), using a 16-channel
bilateral breast array (RAPID Biomedical) 120 min
(median [range], 120.2 [119.8–127.5] min) after injection
of 306 ± 14 MBq 18F-FMISO. The uptake period post in-
jection (p.i.) was used to enhance hypoxic-to-normoxic
tissue contrast and allow the free 18F-FMISO concentra-
tions in tissue and blood to reach equilibrium [25, 26], a
requirement for influx rate constant (Ki) determination by
Patlak analysis [27].

PET: Emission data from 120 to 180 min p.i. (12 × 5-min
frames) were reconstructed using time-of-flight ordered-
subsets expectation-maximisation (TOF-OSEM) with 4 itera-
tions and 28 subsets (Supplemental Methods I). Plasma radio-
activity concentration from two venous blood samples, ac-
quired immediately before and after PET/MR acquisition,
was used to scale a 18F-FMISO population-based arterial input
function (AIF) derived from existing data, permitting calcula-
tion of Ki [28] (Supplemental Methods II; Supplemental
Fig. 1; [29–31]).

MRI: TheMRI protocol involved a 2-point Dixon sequence
for PET attenuation correction, T1- and T2-weighted images,
DWI, and a DCE series. Sequences were also acquired to
measure B1

+ transmission-field non-uniformity, using a
Bloch-Siegert method, and baseline T1 (T10) as required for
the pharmacokinetic analysis of DCE-MRI data [32]. DCE-
MRI acquisition involved five pre-contrast images, followed
by 43 phases after intravenous bolus injection of 0.1 mmol/kg
of Gadovist (Bayer Healthcare). MRI sequence details are
given in Supplemental Table 1.

Image analysis

Tumour regions were manually delineated in OsiriX, ver-
sion 8.0.2 (Pixmeo SARL), by three radiologists in

consensus (1, 3 and > 20 years of experience in breast
MRI). Regions were drawn on the peak-enhancing vol-
umes of the DCE-MRI series on all contiguous axial sec-
tions encompassing the invasive part of the tumour and
including multifocal/multicentric disease (Supplemental
Methods III). Synchronous bilateral cancers were regarded
as independent lesions [33].

DCE-MRI: Pharmacokinetic analysis of the DCE-MRI
series was performed in MIStar, version 3.2.63 (Apollo
Medical Imaging), using the extended Tofts’ model [34]
to calculate contrast influx rate constant, Ktrans; efflux-rate
constant, kep; extravascular-extracellular volume fraction,
ve; and plasma volume fraction, vp (Supplemental
Methods III).

Table 1 Clinical characteristics for the patient population (n = 29)

Characteristic n (%)

Age at diagnosis (years)a 57 [37–78]

Lesions 32

Pathological size (mm)a, b 26 [10–142]

Lesion longest diameter on MRI

≤ 20 mm 10 (31)

> 20 mm 22 (69)

Histopathological subtype

Ductal (IDC) 21 (66)

Lobular (ILC) 6 (19)

Mucinous (IMC) 2 (6)

Mixedc 3 (9)

Histological graded

1 3 (9)

2 16 (50)

3 13 (41)

Hormone-receptor statuse

Positive (ER or PR) 31 (97)

Negative 1 (3)

HER2 statusf

Positive 7 (22)

Negative 25 (78)

ER oestrogen receptor, PR progesterone receptor, HER2 human epider-
mal growth factor receptor 2
a Data presented as median [range]
b Pathological size measured on tumour specimens from patients under-
going primary surgery (n = 21)
c Invasive carcinomas with presence of both lobular and ductal compo-
nents on histology
dNottingham combined histologic grade
e Tumours classified as ER or PR-positive, if > 10% of the cells demon-
strated nuclear staining by immunohistochemistry
f Tumours classified as HER2-positive, if they scored 3+ on immunohis-
tochemistry or if they carried gene amplification as detected by fluores-
cence in situ hybridisation (FISH)
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DWI: Calculation of apparent diffusion coefficient (ADC)
maps was performed in OsiriX, using b values of 0 and 900 s/
mm2. Mean lesion ADCwas calculated bymanually outlining
whole tumour regions on the b = 900 s/mm2 image
(Supplemental Methods III; [35] ).

PET: Image frames from 150 to 180 min p.i. were aver-
aged, rigidly registered to the peak-enhancing phase of the
DCE-MRI series and subsequently employed for the determi-
nation of 18F-FMISO uptake as mean and maximum
standardised uptake values normalised by body weight
(SUVmean, SUVmax) and maximum tumour-to-plasma (Tmax/
P) and tumour-to-muscle (Tmax/M) ratios within the regions
defined on the DCE-MRI. The influx rate of 18F-FMISO into
the trapped (hypoxic) tissue compartment (Ki) was determined
by Patlak-plot analysis, utilising all frames in the registered
18F-FMISO series and the scaled population-based AIF.
Hypoxic fractions (%HF) in tumour regions were calculated
as the percentage of voxels with Ki values > 2 × standard de-
viations (SD) of the mean K i of normoxic muscle
(Supplemental Methods III).

Histology

Histopathological information including tumour histological
subtype, grade, oestrogen receptor (ER), progesterone recep-
tor (PR) and human epidermal growth factor receptor-2
(HER2) status was obtained from core biopsies or surgical

tumour specimens. Cancers with positive ER or PR expres-
sion were classified as hormone-receptor (HR) positive.

Statistics

Statistical analysis was performed in IBM SPSS Statistics for
MacOS, v25.0 (IBM Corp.) or Matlab 2016b. Continuous
data were assessed for normality using the Anderson-
Darling test. Correlations between continuous variables were
assessed using the Pearson correlation coefficient (r). t tests
were used for comparison between means of two groups, and
ANOVA when more than two groups were compared. Where
data were not normally distributed, or normality could not be
assessed, Mann-Whitney U and Mood’s median or Kruskal-
Wallis H tests were employed for comparisons between two
or more groups, respectively. p values < 0.05 were considered
statistically significant.

Results

A total of 32 women were enrolled into the study. Two partici-
pants withdrew before the PET/MR examination. PET/MRI data
and DCE-MRI data from two participants were excluded owing
to inadequate acquisit ion of DCE-MRI and poor
pharmacokinetic-model fitting respectively. In total, data from
29 participants with 32 biopsy-confirmed primary breast cancers

Fig. 1 18F-FMISO-PET Ki and hypoxic fraction (%) vs. the following
DCE-MRI parameters: (a, e) contrast influx rate, Ktrans (mL/g/min); (b, f)
contrast efflux rate, kep (min−1); (c, g) fractional volume of extravascular-

extracellular space, ve; (d, h) plasma fractional volume, vp. IDC, invasive
ductal carcinoma; ILC, invasive lobular carcinoma; IMC, invasive mu-
cinous carcinoma; Mixed, carcinoma of mixed ductal and lobular type
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were analysed. ADC calculations included data from 18 patients
(19 lesions), who successfully completed the DWI examination.

Two thirds of the lesions (21/32; 66%)were invasive ductal
cancers (IDC). The majority of cancers (29/32; 91%) were
either grade 2 or 3. HR-positive expression was noted for
31/32 (97%) lesions, with 24/32 (77%) cancers being
HER2-negative. Tumour characteristics are summarised in
Table 1. Additional clinical information is provided in
Supplemental Table 2.

Relationship between 18F-FMISO-PET and DCE-MRI
parameters

Scatter plots indicating the relationships between DCE-MRI
parameters and Ki or %HF are illustrated in Fig. 1. An inverse
relationship was observed between mean lesion Ki and Ktrans,
ve and vp (Fig. 1(a–d); Supplemental Fig. 2 [36]), which was
statistically significant for Ki vs. K

trans (r = − 0.38, p = 0.04),
but not for Ki vs. ve (r = − 0.30, p = 0.10) or vp (r = − 0.28, p =
0.12). Associations between %HF and DCE-MRI parameters
followed similar trends, also indicating a decrease in hypoxia
with increasing Ktrans, ve and vp (Fig. 1(e–h)). Statistically

significant correlations were observed between%HF and both
Ktrans (r = − 0.33, p = 0.04) and ve (r = − 0.38, p = 0.03). No
correlation was observed between kep and either Ki (r = 0.08,
p = 0.65) or %HF (r = 0.02, p = 0.90).

Figure 2 presents axial slices throughKi andK
trans paramet-

ric maps of four tumours of different histological subtypes,
indicating heterogeneous spatial relationships between hypox-
ia and perfusion; other DCE-MRI parametric images are given
in Supplemental Fig. 3.

18F-FMISO-PET and DCE-MRI parameters vs. tumour
histology and grade

Hypoxic fractions > 1% were observed in 6/32 (19%) cancers
with an additional 8/32 (25%) lesions displaying hypoxic frac-
tions greater than zero but less than 1%; the remaining 18/32
(56%) tumours had a %HF of zero. Dot plots of %HF vs. tu-
mour histological subtype and grade are presented in Fig. 3. Ki,
%HF and 18F-FMISO uptake parameters showed no significant
difference between different histological subtypes or grades
(Tables 2 and 3). Similarly, no significant differences were ob-
served between histological groups or grades for the DCE-

Fig. 2 Axial images of four
representative patients with: a
invasive ductal carcinoma (IDC);
b invasive lobular carcinoma
(ILC); c invasive mucinous
carcinoma (IMC); and d
carcinoma of mixed ductal and
lobular type (Mixed). (Left-to-
right) DCE-MRI image at peak
enhancement; Ktrans map
representing tumour perfusion for
the lesion ROI overlaid on the
peak-enhancing DCE-MRI
image; Ki map representing
tumour hypoxia for the lesion
ROI overlaid on the peak-
enhancing DCE-MRI image;
scatter plot and regression line of
Ki vs. K

trans voxel values within
the tumour. Ktrans, contrast influx
rate (mL/g/min); Ki,

18F-FMISO
influx rate (mL/cm3/min)
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derived parameters (Tables 2 and 3), except for the efflux rate
constant kep, which displayed a statistically significant difference
among grade 2 and 3 cancers (median [range], 0.25 [0.13–0.34]
vs. 0.30 [0.10–0.35] min−1; p = 0.01). Furthermore, analysis of
hypoxia and Ktrans values in the most vascularised area of the
tumour (hotspot on DCE-MRI) yielded no significant differ-
ences among different subtypes or grades (Supplemental
Tables 3 and 4).

Effect of tumour size on 18F-FMISO-PET and DCE-MRI
parameters

Table 4 presents correlations between imaging indices and
tumour size as measured by longest diameter on MRI or path-
ological size. No or weak negative correlations were observed
between tumour size and DCE-MRI parameters. Conversely,
18F-FMISO-PET parameters correlated positively with size;

Table 2 MRI and 18F-FMISO-PET parameters with respect to tumour histology. Data are presented as median [range] or mean ± standard deviation
(SD) as appropriate

Parameter Histology p value

IDC ILC Mixed IMC

Lesions (n = 31) 20 6 3 2

Ktrans 0.43
[0.14–1.97]

0.26
[0.10–0.94]

0.41
[0.23–0.45]

0.44
[0.25–0.64]

0.77a

kep 0.26
[0.10–0.35]

0.28
[0.17–0.35]

0.25
[0.19–0.25]

0.26
[0.25–0.26]

0.14a

ve 0.46
[0.21–0.95]

0.39
[0.26–0.84]

0.44
[0.39–0.64]

0.49
[0.31–0.66]

0.30a

vp 0.08
[0–0.55]

0.05
[0.01–0.2]

0.06
[0.03–0.19]

0.09
[0.06–0.13]

0.77a

Lesions (n = 19) 14 3 1 1

ADC (× 10−3) 0.90
[0.42–1.55]

1.05
[0.84–1.28]

1.02
[−]

2.46
[−]

0.51b

Lesions (n = 32) 21 6 3 2

Ki (× 10
−3) 0.00 ± 0.52 0.37 ± 0.65 0.08 ± 0.61 0.97 ± 0.91 0.26c

%HF 0
[0–4.74]

0.10
[0–2.58]

0.13
[0–1.22]

1.54
[0–3.07]

0.63a

SUVmax 1.53 ± 0.41 1.77 ± 0.16 1.60 ± 0.21 1.25 ± 0.12 0.31c

SUVmean 1.14 ± 0.26 1.27 ± 0.18 1.17 ± 0.16 1.07 ± 0.15 0.65c

Tmax/M 1.02 ± 0.24 1.30 ± 0.29 1.09 ± 0.22 0.95 ± 0.02 0.12c

Tmax/P 0.87 ± 0.22 0.83 ± 0.33 0.87 ± 0.09 0.84 ± 0.09 0.99c

IDC invasive ductal carcinoma, ILC invasive lobular carcinoma, Mixed invasive carcinoma with presence of lobular and ductal components, IMC
invasive mucinous carcinoma, Ktrans contrast influx rate (mL/g/min), kep contrast efflux rate (min−1 ), ve fractional volume of extravascular-extracellular
space, vp plasma fractional volume, ADC apparent diffusion coefficient (mm2 /s), Ki

18 F-FMISO influx rate (mL/cm3 /min), %HF percentage hypoxic
fraction, SUV standardised uptake value (g/mL), Tmax/M maximum tumour-to-muscle ratio, Tmax/P maximum tumour-to-plasma ratio
aMood’s median test
bMann-Whitney U test for malignancies of type IDC and ILC only (mixed and IMC lesions were not included in the comparison)
c One-way analysis of variance (ANOVA)

Fig. 3 Dot plots of hypoxic
fraction (%) by (a) histological
type and (b) nuclear grade
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%HF significantly correlated with pathological size (r = 0.63,
p = 0.001), while 18F-FMISO-PET uptake metrics displayed
associations of moderate strength with longest diameter on
MRI.

ADC vs. 18F-FMISO-PET and DCE-MRI parameters

Positive correlations were observed between ADC and DCE-
MRI indices (Ktrans: r = 0.24, p = 0.34; ve: r = 0.29, p = 0.25;
vp: r = 0.20, p = 0.43), except for kep which correlated nega-
tively with ADC (r = − 0.15, p = 0.56; Fig. 4), none of which
were statistically significant. No correlations were observed
betweenADC andKi or %HF (Ki: r = 0.05, p = 0.84; %HF r =

0.04, p = 0.88; Fig. 5). Representative ADCmaps are given in
Fig. 6.

Discussion

This study explored the relationship between tumour hypoxia
and vascular function in breast cancer using combined 18F-
FMISO-PET/MRI. Hypoxic fractions and Ki measured on
18F-FMISO-PET showed inverse relationships with the
DCE-MRI perfusion parameter Ktrans, consistent with the gen-
erally accepted view that tumour hypoxia is a consequence of
inadequate oxygen supply to the tumour [1]. Previous clinical
studies in cervical and head-and-neck carcinomas have dem-
onstrated significant negative correlations between contrast
enhancement or pharmacokinetic parameters from DCE-
MRI and polarographic pO2 measurements or pimonidazole
immunohistochemistry [37, 38]. These findings are consistent
with our results in breast cancer.

However, PET and DCE-MRI parametric images exhibited
largely heterogeneous intratumoural patterns with hypoxic
islands on Ki maps often colocalising with areas of increased
Ktrans. This spatially discrepant relationship between hypoxia

Table 3 MRI and 18F-FMISO-PET parameters with respect to nuclear
grade. Data are presented as median [range] or mean ± standard deviation
(SD) as appropriate

Parameter Grade p value

1 2 3

Lesions (n = 31) 3 15 13

Ktrans 0.41
[0.24–0.54]

0.24
[0.10–1.98]

0.45
[0.17–1.27]

0.29a

kep 0.29
[0.26-0.31]

0.25*c

[0.13–0.34]
0.30*d

[0.10–0.35]
0.009**a

ve 0.38
[0.24–0.77]

0.45
[0.23–0.84]

0.43
[0.21–0.95]

0.65a

vp 0.06
[0.05-0.08]

0.06
[0.00–0.55]

0.09
[0.00–0.37]

0.46a

Lesions (n = 19) 1 9 9

ADC (× 10−3) 1.08
[−]

1.05
[0.42–2.46]

0.84
[0.70–1.28]

0.34b

Lesions (n = 32) 3 16 13

Ki (× 10
−3) − 0.18 ± 0.52 0.25 ± 0.58 0.06 ± 0.65 0.47c

%HF 0
[0-0.04]

0
[0–4.74]

0.04
[0–2.6]

0.35a

SUVmax 1.28 ± 0.29 1.55 ± 0.29 1.66 ± 0.46 0.28c

SUVmean 0.98 ± 0.09 1.18 ± 0.19 1.18 ± 0.29 0.37c

Tmax/M 0.96 ± 0.02 1.04 ± 0.17 1.56 ± 0.36 0.36c

Tmax/P 0.78 ± 0.08 0.81 ± 0.20 0.85 ± 0.25 0.21c

Ktrans contrast influx rate (mL/g/min), kep contrast efflux rate (min−1 ), ve
fractional volume of extravascular-extracellular space, vp plasma fraction-
al volume, ADC apparent diffusion coefficient (mm2 /s), Ki

18 F-FMISO
influx rate (mL/cm3 /min), %HF percentage hypoxic fraction (%), SUV
standardised uptake value (g/mL), Tmax/M maximum tumour-to-muscle
ratio, Tmax/P maximum tumour-to-plasma ratio
* p < 0.05; ** p < 0.01
aKruskal-Wallis H
bMann-Whitney U test for grade 1 and 2 cancers only (grade 1 lesions
were not included in the comparison)
c One-way analysis of variance (ANOVA)
d Significant difference between grade 2 and 3 cancers (p = 0.01).
Pairwise multiple comparison analysis utilised the Dwass-Steel-
Critchlow-Fligner method

Table 4 Pearson correlation coefficient r (p value) between tumour
size, MRI and 18F-FMISO-PET parameters

Parameter Tumour size (mm)

Longest diameter on MRI Pathological sizea

Lesions (n) 31 21

Ktrans − 0.15 (0.42) − 0.16 (0.48)
kep − 0.04 (0.84) − 0.15 (0.48)
ve − 0.04 (0.83) − 0.27 (0.22)
vp − 0.13 (0.50) − 0.09 (0.70)
Lesions (n) 19 11

ADC (× 10−3) 0.06 (0.80) 0.56 (0.07)

Lesions (n) 32 21

Ki (×10
−3) 0.15 (0.29) 0.21 (0.48)

HF (%) 0.26 (0.16) 0.63 (0.001**)

SUVmax 0.48 (0.02*) 0.26 (0.24)

SUVmean 0.42 (0.006**) 0.39 (0.07)

Tmax/M 0.45 (0.01*) 0.32 (0.14)

Tmax/P 0.43 (0.02*) 0.49 (0.02*)

Ktrans contrast influx rate (mL/g/min), kep contrast efflux rate (min−1 ), ve
fractional volume of extravascular-extracellular space, vp plasma fraction-
al volume, ADC apparent diffusion coefficient (mm2 /s), Ki

18 F-FMISO
influx rate (mL/cm3 /min), %HF percentage hypoxic fraction, SUV
standardised uptake value (g/mL), Tmax/M maximum tumour-to-muscle
ratio, Tmax/P maximum tumour-to-plasma ratio
* p < 0.05; ** p < 0.01
a Pathological size as measured on tumour specimens from patients un-
dergoing primary surgery (n = 21)
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and perfusion has been previously documented, with the co-
existence of hypoxic and hyperperfused tumour sub-volumes
[39]. Various biological mechanisms, including hypoxia-
induced angiogenesis, interstitial fluid pressure, a fluctuating
haemodynamic response, increased oxygen diffusion dis-
tances from the microvasculature and the presence of longitu-
dinal oxygen gradients across tumour vessels, have all been
proposed to explain the occurrence of hypoxia in highly per-
fused areas [40, 41]. Thus, although the general trend of our
results would support the widely accepted view that hypoxia
develops in hypoperfused breast tumours, the diverse relation-
ships observed in individual tumour sub-volumes indicate het-
erogeneity in hypoxia-perfusion patterns and reflect the vari-
ety of pathophysiological mechanisms occurring in cancers.

The weak relationship between PET hypoxia parameters
with kep suggests that the degree of tumour hypoxia is more
strongly influenced by vascular flow rather than vessel

permeability. Li et al [42] have previously suggested that kep
is a much more sensitive measure of vessel permeability than
Ktrans, as the latter represents a combined measure of blood
flow, vessel permeability and capillary-surface area. Our find-
ings broadly agree with previous research in cervical and
head-and-neck carcinomas, which illustrated weaker correla-
tions between hypoxia and permeability-surface-area product
than between hypoxia and blood flow [37, 43]. The relation-
ship between Ktrans and regional hypoxia observed in our
study suggests this is due to fluctuations in tumour vascular
flow rather than capillary permeability.

No or weak positive correlations were found between static
18F-FMISO parameters (SUVmean, SUVmax, Tmax/M, Tmax/P)
and DCE-MRI metrics. In contrast, in human head-and-neck
cancer, where hypoxia is often marked, 18F-FMISO SUV
measurements were negatively correlated with both Ktrans

and kep [20]. A plausible explanation for this disparity is the

Fig. 5 18F-FMISO-PET
parameters vs. apparent diffusion
coefficient (ADC): (a) influx rate
Ki and (b) hypoxic fraction (%).
IDC, invasive ductal carcinoma;
ILC, invasive lobular carcinoma;
IMC, invasive mucinous carcino-
ma; Mixed, carcinoma of mixed
ductal and lobular type

Fig. 4 Apparent diffusion coefficient (ADC) vs. DCE-MRI parameters: a
contrast influx rate, Ktrans; b contrast efflux rate, kep; c fractional volume
of extravascular-extracellular space, ve; d plasma fractional volume, vp.

IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; IMC,
invasive mucinous carcinoma; Mixed, carcinoma of mixed ductal and
lobular type
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higher level of hypoxia typically encountered in head-and-
neck cancer, which will lead to uptake values being more
dominated by hypoxia-specific 18F-FMISO trapping rather
than non-specific tracer accumulation. Due to the higher con-
tribution of non-specific 18F-FMISO accumulation at low
hypoxia levels [44], the use of uptake values in cancers with-
out marked hypoxia may not accurately reveal relationships
between hypoxia and perfusion.

No significant correlation was observed between PET hyp-
oxia parameters and tumour grade or subtype. Our sample size
of non-IDC cases was small for evaluating the impact of his-
tology on tumour hypoxic status, but the presence of non-zero
hypoxic fractions was observed in all histological subtypes
studied. Hypoxic fractions and higher Ki were noted in both
grade 2 and 3 tumours, and less so in grade 1 cancers. These
findings are concordant with previously reported small differ-
ences in hypoxia between low- and high-grade breast malig-
nancy [2].

Correlations between DCE-MRI functional parameters and
pathological size or MR tumour diameter yielded moderate
negative relationships and conversely positive associations
between 18F-FMISO-PET hypoxia parameters and size. The
size-related hypoxia changes could be ascribed to diffusion-
limited hypoxia, concomitant perfusion decreases or increased
interstitial fluid pressure [45].

ADC has been shown to inversely correlate with cellular
density [46], and therefore, a reduction in ADC should theo-
retically be accompanied by an increase in tumour hypoxia.
Our findings indicated no association between ADC and PET
hypoxia parameters. This result could be explained by the
molecular subtype of lesions in our sample, which

predominantly consisted of ER-positive/HER2-negative can-
cers. Due to lower blood flow, ER-positive or HER2-negative
lesions exhibit lower ADC values than ER-negative or HER2-
positive cancers [47, 48]. As ADC is affected not only by
tissue cellularity but several pathophysiologic processes in-
cluding blood flow, membrane permeability and the geomet-
ric architecture of the interstitial space [49, 50], it is likely that
the lack of association between the PET hypoxia parameters
and ADC is a consequence of the combined effect of cellular-
ity, perfusion and microvessel structure on ADC. This asser-
tion is further supported by the weak correlations between
DCE-MRI indices and ADC observed in this study. It should
be noted, however, that inconsistent correlations between
ADC and DCE-MRI parameters have been reported in tu-
mours, including breast cancer [51–53].

We calculated hypoxic fractions based on a specific param-
eter for hypoxia namely influx rate constant Ki. Despite the
higher variability associated with kinetic parameter estimates,
our choice was based on two considerations. First, several
authors have reported lack of correlation between 18F-
FMISO uptake ratios and pO2 measurements casting doubt
on the accuracy of thresholds derived from static PET imaging
for hypoxic quantification [54, 55]. Kinetic parameters, in-
cluding Ki, have provided superior correlations with physio-
logical measures of hypoxia from pO2 histography and immu-
nohistochemistry [54, 55]. Second, these thresholds have
mostly been defined on measurements from head-and-neck
cancers and are not necessarily applicable to other tumour
types, including breast cancer.

The main limitations of our study are the small sample size
and that the majority of cancers were HR-positive ductal

Fig. 6 Axial images of two patients with: a invasive ductal carcinoma
(IDC); b invasive lobular carcinoma (ILC). (Left-to-right) DCE-MRI im-
age at peak enhancement; Ktrans map representing tumour perfusion for
the lesion ROI overlaid on the peak-enhancing DCE-MRI image; Ki map

representing tumour hypoxia for the lesion ROI overlaid on the DCE-
MRI image at peak enhancement; ADC map. Ktrans, contrast influx rate
(mL/g/min); Ki,

18F-FMISO influx rate (mL/cm3/min); ADC, apparent
diffusion coefficient (mm2/s)
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carcinomas. Though our findings cannot be generalised to the
full spectrum of histological/molecular subtypes encountered
in breast cancer, our study indicates the presence of hypoxia in
all histological subtypes studied independent of nuclear grade.
While the majority of lesions (56%) examined were found to
be non-hypoxic, it should be noted that breast tumours are
generally less hypoxic than cancers of the head and neck,
cervix or lung and show greater variability in hypoxia among
molecular subtypes, with basal-like subtypes being the most
hypoxic [56].

Our demonstration of in vivo simultaneous measurement
of perfusion and hypoxia is clinically important for three rea-
sons. First, previous reports have indicated that tumours with a
high hypoxia-perfusion ratio (i.e. hypoxia due to low perfu-
sion) have a poorer prognosis and suboptimal treatment re-
sponse [57, 58]. In breast cancer, studies have described dif-
ferences in the response to perfusion-related hypoxic exposure
between molecular subtypes [59, 60], emphasising the need
for combined hypoxia-perfusion measurements to provide
more accurate prognostic information or tailor treatment.
Second, preoperative radiotherapy or radiochemotherapy re-
gimes in early or locally advanced breast cancer have reported
beneficial clinical outcomes [61, 62]. Hypoxia and hypoper-
fusion are known to reduce the effectiveness of radiotherapy
and chemotherapy, and the hypoxia-perfusion status of tu-
mours at baseline could allow optimisation of these regimens.
Third, tumour hypoxia can occur independently of hypoper-
fusion as evidenced in the oncology literature [39, 40, 57, 58]
and our findings. As such, the data presented here can be
viewed as providing further indication of the benefit of non-
invasive multimodal assessment of the tumour microenviron-
ment for disease characterisation.

In conclusion, we found a negative relationship between
tumour hypoxia, measured by 18F-FMISO-PET, and markers
of perfusion and vascular function from DCE-MRI, endorsing
the hypothesis of perfusion-driven hypoxia in breast cancer.
No associations were observed between 18F-FMISO-PET pa-
rameters and tumour histology or grade, but hypoxic fractions
increased with lesion size. The intratumoural heterogeneity
observed in hypoxia and perfusion images is consistent with
the known complex relationship between perfusion and the
hypoxic tumour micromilieu. The combined hypoxia-
perfusion status of tumours may need to be considered in
determining treatment efficacy or informing therapy selection
in breast cancer, which could be achieved using simultaneous
multimodality imaging as reported here.
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