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Abstract

Understanding how organisms adapt to their local environment is central to evolu-
tion. With new whole-genome sequencing technologies and the explosion of data,
deciphering the genomic basis of complex traits that are ecologically relevant is be-
coming increasingly feasible. Here, we studied the genomic basis of wing shape in two
Neotropical butterflies that inhabit large geographical ranges. Heliconius butterflies
at high elevations have been shown to generally have rounder wings than those in
the lowlands. We reared over 1,100 butterflies from 71 broods of H. erato and H.
melpomene in common-garden conditions and showed that wing aspect ratio, that is,
elongatedness, is highly heritable in both species and that elevation-associated wing
aspect ratio differences are maintained. Genome-wide associations with a published
data set of 666 whole genomes from across a hybrid zone, uncovered a highly poly-
genic basis to wing aspect ratio variation in the wild. We identified several genes that
have roles in wing morphogenesis or wing aspect ratio variation in Drosophila flies,
making them promising candidates for future studies. There was little evidence for
molecular parallelism in the two species, with only one shared candidate gene, nor
for a role of the four known colour pattern loci, except for optix in H. erato. Thus,
we present the first insights into the heritability and genomic basis of within-species
wing aspect ratio in two Heliconius species, adding to a growing body of evidence that

polygenic adaptation may underlie many ecologically relevant traits.
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1 | INTRODUCTION

Climate change is forcing organisms to “move, adapt, or die”. With
temperatures rising and land-use changing in the lowlands, shifting
to higher elevations might be the only way to flee extinction for

many taxa (Chen et al., 2011). However, the environment changes

drastically along mountains, with diverse sets of challenges ex-
pected to drive local adaptation (Halbritter et al., 2015). Thus, identi-
fying the genomic mechanisms that allow organisms to inhabit wide
ranges is key to understanding which taxa are most likely to adapt
locally when forced to colonise new, high-elevation, environments.

With novel sequencing technologies and the explosion of genomic
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data, we now have the tools to decipher the genetic basis of ecolog-
ically relevant traits in the wild.

Insect flight has many essential functions, including dispersal,
courtship, and escaping predators (Dudley, 2002). As such, it is under
strong selection to be optimised to suit local environments. Air pres-
sure decreases with elevation, which in turn reduces lift forces re-
quired for taking flight, as well as oxygen available for respiration
(Hodkinson, 2005). Subtle variation in wing morphology can have
bigimpacts on flight mode and performance (Berwaerts et al., 2002).
For example, butterflies in tropical rain forests have been found to
have rounder wings when they inhabit the understory, both within
closely related taxa (Chazot et al., 2014) and across many species
(Mena et al., 2020). Elongated wings reduce wing-tip vortices, result-
ing in more efficient and faster flight, whereas short and wide wings
are associated with higher manoeuvrability and lift (Le Roy et al.,
2019a). Monarch butterflies have evolved two wing phenotypes:
migratory populations have longer wings for long-distance gliding
than those that remain year-round in Caribbean islands (Altizer &
Davis, 2010). Thus, wing aspect ratio represents a trait probably
undergoing strong selection across elevations and conferring local
adaptation in insects.

Insect wing shape is phylogenetically conserved in many taxa
(Houle et al., 2003; Montejo-Kovacevich et al., 2019; Thomas et al.,
2000), but also highly evolvable in the laboratory (Houle et al., 2003),
suggesting that it can be heritable. Experimental common-garden
designs can help overcome the challenges of studying phenotypic
clines in the wild and the effects of phenotypic plasticity, by pro-
viding the same environmental conditions to genotypes of differ-
ent populations, which allows for the estimation of heritability (de
Villemereuil et al., 2016). At the genetic level, wing morphogenesis
has been mostly studied in Drosophila, with developmental pathways
identified and many genes functionally tested (Carreira et al., 2011;
Diaz de la Loza & Thompson, 2017; Pitchers et al., 2019). In other
insects with wing dimorphisms, simple genetic architectures have
been identified controlling wingless, or short winged, morphs (Li
et al., 2020; McCulloch et al., 2019). However, studies describing the
genetic basis of quantitative wing shape variation in organisms other
than Drosophila are lacking.

Significant advances have been made in understanding the ge-
netic basis of local adaptation in the wild. There are two general
strategies to identify loci potentially under selection: (i) forward ge-
netics, where known phenotypic traits are associated to genotypes
(via genome-wide association studies or quantitative trait loci with
laboratory crosses), and (ii) reverse genetics, where variation in allele
frequencies in natural populations is studied to detect signatures of
selection across the genome, without any prior knowledge of the
phenotypes involved (Fuentes-Pardo and Ruzzante 2017; Pardo-
Diaz et al., 2015). A good strategy is to study steep clines, where
the environment changes continuously over a small space while
gene flow is high, and combine both forwards and reverse genetics
approaches (Cornetti & Tschirren, 2020; Tigano & Friesen, 2016).
Sequencing individuals along such clines allows for sufficient phe-
notypic variance to measure and associate to genotypes (forward

genetics), while maintaining low genetic structure, and addition-
ally test which genomic regions might be undergoing selection by
comparing the extremes of the clines (reverse genetics). The study
of aposematic wing pattern coloration in Heliconius butterflies is a
prime example of this approach. Whole-genome sequencing in ele-
vationally structured colour-morph hybrid zones has allowed for the
identification of regions repeatedly differentiated across morphs
and for each region to be associated via GWA studies with variation
in specific patterns (Meier et al. 2021; Nadeau et al. 2014). Thus,
population genetics across steep environmental clines or hybrid
zones is a good approach to disentangle the genomic underpinnings
of ecologically relevant traits.

Here we study the genetic basis of wing aspect ratio variation
in two widespread species of Heliconius butterflies across an eleva-
tional cline in the Ecuadorian Andes. Heliconius inhabiting high alti-
tudes have recently been found to have rounder wings than lowland
butterflies, a pattern seen both across species and within species
along elevational clines (Montejo-Kovacevich et al., 2019). To esti-
mate the heritability of this potentially adaptive trait, we common-
gardenreared 71 broods of H. erato lativitta and H. melpomene malleti
from across the cline, yielding 1141 offspring (Figure 1). We then
used forward (GWAS) and reverse genetic approaches with whole-
genome data of 666 of H. erato (n = 479) and H. melpomene (n = 187)
individuals to identify regions associated with quantitative variation
in wing aspect ratio and determined which regions diverged be-
tween extremes of the cline and had signatures of selective sweeps.
This genomic data set was obtained from a study that developed a
new low-cost linked-read sequencing technology, “haplotagging”, to
examine colour pattern clines in an altitudinally structured hybrid
zone (Figure 1c, Meier et al. 2021). Here, we present the first study
to examine the heritability and genomic basis of wing aspect ratio of

two butterfly species in the wild.

2 | MATERIALS AND METHODS

2.1 | Study system and wild butterfly collection

H. erato and H. melpomene are the two most widespread Heliconius
species, which diverged 12 million years ago and have Miillerian
aposematic mimicry to advertise their toxicity to predators (Jiggins,
2016; Kozak et al., 2015). They can be found continuously coexisting
across elevational clines ranging from sea level up to 1600 m along
the Andean mountains. We sampled females of H. erato lativitta and
H. melpomene malleti across the eastern slope of the Ecuadorian
Andes for common-garden rearing (Figure 1b, orange triangles). For
the genomic analyses we used a large data set from a nearby hy-
brid zone (Meier et al. 2021), where there are exclusively highland
subspecies (H. e. notabilis and H. m. plesseni) that meet their respec-
tive lowland subspecies (H. e. lativitta and H. m. malleti) and mate
freely within species, producing a stable intermediate wing pattern
population (Figure 1c). Heliconius butterflies were collected with
hand nets and precise location recorded. All detached wings were
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FIGURE 1 a)Each point represents an individual butterfly collected in the wild (triangles: females used for common garden rearing,
circles: individuals whole genome-sequenced with haplotagging Meier et al. 2021). The cross highlights the positioning of the University
of lkiam, where the common-garden rearing took place. (b) Common-garden rearing protocol. (c) Topographic surface of transect across
elevations used for whole-genome sequencing. Both species co-occur and have three main colour pattern morphs along this cline: two
distinct colour pattern morphs (H. e notabilis and H. m. plesseni, referred to as "black", and H. e lativitta and H. m. malletti, referred to as
"rayed") and within-species hybrids displaying admixed phenotypes (green circles), the most common hybrid phenotype is shown

gliding (Le Roy et al., 2019b; Wootton, 2002), and they tend to be

photographed with a DSLR camera with a 100 mm macro-lens in
more damaged in Heliconius due to in-flight predation.

standardised conditions, images and full records with data are stored
in the EarthCape database (https://Heliconius.ecdb.io, Jiggins et al.,

2019).
2.3 | Common garden rearing

Fertilised females of H. erato lativitta and H. melpomene malleti were
caught in the wild at elevations ranging from 380 m up to 1600 m
(Table S1). Females from all altitudes were simultaneously kept
in separate 2 x 1 x 3 m cages of purpose-built insectaries at the
Universidad Regional Amazonica lkiam (Figure 1b. Tena, Ecuador,
615 m). Eggs were collected daily and individuals reared in separate
containers throughout development in constant laboratory condi-
tions (21.2 + 1.1°C) between 2019-2020, except 10 families from
H. erato which were reared in common outdoor insectary condi-
tions in 2018. Offspring were individually fed the same host plants,
Passiflora punctata for H. erato and Passiflora edulis for H. melpomene.

2.2 | Wing measurements

Wing morphology was analysed with an automated pipeline in the
public software Fiji (Schindelin et al., 2012). Custom scripts auto-
matically crop, extract the right or left forewing and perform parti-
cle analysis on the wing (Figure 1b). Wing area is estimated for the
whole wing in mm?. Wing aspect ratio is estimated by obtaining the
best fitting ellipse of the same area as the wing, and obtaining the
ratio between the major and minor axis’ lengths. We only include
forewings in this study, as they determine flight speed and mode,
whereas hindwings act as an extended surface to support flight and
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Development rates, pupal, and adult mass were recorded for all

offspring.

2.4 | Whole genome data set

We used 666 whole-genomes of H. erato (n = 479) and H. melpomene
(n = 187) from a recent study (Meier et al. 2021), sequenced with
“haplotagging”. This linked-read sequencing technique retains long-
range information via barcoding of DNA molecules before sequenc-
ing, which permits megabase-size haplotypes to be computationally
reconstructed (Meier et al. 2021). Linked-read sequencing (hap-
lotagging) was performed to a mean read coverage of 1.54x and
2.77x (Meier et al. 2021). More details on analysis and phasing of
molecules can be found in Meier et al. 2021, and summarised in the
Supporting Information Materials (Note S1). The resulting data set
used for analyses contained 25.4 million SNP positions for H. erato
(66.3 SNPs/kbp) and 23.3 million for H. melpomene (84.7 SNPs/kbp).

2.5 | Statistical analyses

All nongenomic analyses were run in R V2.13 (R Development Core
Team, 2011) and graphics were generated with the package ggplot2
(Ginestet, 2011). Packages are specified below and R scripts are pub-
licly available (Zenodo https://doi.org/10.5281/zenodo.5060061).
Sequence data from Meier et al. (2021) is deposited at the NCBI
Short Read Archive (PRJNA670070).

2.5.1 | Effects of altitude on wing aspect ratio

To test the effects of maternal altitude on wing aspect ratio of
common-garden reared offspring, we fitted a linear mixed model
that included as fixed effects wing area, sex, development time (days
from larva hatching until pupating), and altitude (“high” if the mother
was collected 2600 m.a.s.l.) with Ime4 model fits (Bates et al., 2015).
All continuous fixed effects were standardized to a mean of zero
and unit variance to improve model convergence (Zuur et al., 2009).
We included family ID as a random effect (intercept) to account for
relatedness among offspring in H. melpomene. In H. erato, we nested
family ID within experiment location as an additional random effect,
as 10 of the families were reared in common-garden insectary condi-
tions (2018), whereas the rest were reared in laboratory conditions
(2019). We performed backward selection of random and fixed ef-
fects, in that order, with the package ImerTest (Kuznetsova et al.,
2017), with likelihood ratio tests and a significance level of a = 0.1
(functions ranova() and drop1() Kuznetsova et al., 2017). When com-
paring models with different fixed effects we fitted maximum like-
lihood (REML = FALSE), otherwise restricted maximum likelihood
models were fitted. Model residuals were checked for homoscedas-
ticity and normality. With the coefficient of determination (R?), we
estimated the proportion of variance explained by the fixed factors

alone (marginal R?, RZLMM(m)) and by both, the fixed effects and the
random factors (conditional R?, RZLMM(C)), implemented with the
MuMiIn library (Bartéon, 2015; Nakagawa et al., 2017).

2.5.2 | Heritability estimates

To test the heritability of wing aspect ratio, we assessed wing aspect
ratio variation across individuals from families reared in common-
garden conditions. We used all broods with at least three offspring
that could be phenotyped. First, we first used an ANOVA approach,
with family identity as a factor explaining the variation in aspect
ratio. We then estimated narrow-sense heritability (hz) with two
approaches (more details in Note S2). First, we estimated intraclass
correlation coefficient (ICC) or repeatability (R) with a linear mixed
model approach; family ID was set as the grouping factor, with a
Gaussian distribution and 1000 parametric bootstraps to quantify
uncertainty, implemented with the function rptGaussian() in the rptR
package (Stoffel et al., 2017). Second, we estimated narrow-sense
heritability (h?) from the slope of mother and mid-offspring wing as-
pect ratio regressions for those families where the mother's wings
were intact (31/48 broods in H. erato and 10/23 in H. melpomene).

2.5.3 | Genome-wide association mapping of wild
wing aspect ratio

All population genomics analyses were performed in ANGSD ver-
sion 0.933, which uses genotype likelihoods as input to account for
genotype uncertainty and a Bayesian framework well-suited for
large low-coverage sequencing data sets (Korneliussen et al., 2014).
To account for population structure across the cline, we first calcu-
lated admixture proportions. We used a VCF with genotype likeli-
hoods as input (Note S1) and ran NGSadmix (Skotte et al., 2013) on a
random subset of 10% of the total sites with a minor allele frequency
of at least 0.05. We specified two (k = 2) or three (k = 3) clusters
for H. erato and H. melpomene, respectively, following Meier et al.
(2021) who performed cluster selection with Clumpak (Kopelman
et al,, 2015).

To identify genomic regions potentially controlling quantitative
wing aspect ratio variation in these two Heliconius species, we per-
formed genome-wide association mapping (GWAS, doAsso ANGSD).
VCF files from Meier et al. (2021) containing genotype likelihoods
were used as input (-vcf-pl). We performed the GWAS with a gen-
eralized linear framework and a dosage model (-doAsso 6), which
calculates the expected genotype from the input and implements a
normal linear regression with the dosages as the predictor variable.
Aspect ratio was used as the continuous response variable (-yQuant).
Default filters were applied to remove sites with low heterozygosity
(-minHigh 10) and with very low minor allele frequencies (-minCount
10). Three covariates were incorporated (-cov) to control for sex,
wing area, and population structure with the admixture proportions
obtained from NGSadmix, as described above. Likelihood ratio test
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(LRT) statistics are calculated per site (following a chi-square distri-
bution with one degree of freedom) under an additive model (-model
1) (Skotte et al., 2012).

In GWAS with fewer unlinked SNPs, those with strong associa-
tions can sometimes be found in isolation, that is, without flanking
SNPs showing association, and assumed to be in linkage with the
causal SNP. However, with large SNP data sets that are not pruned
for LD, many are expected to show strong associations when located
near the causal site or at random due to noise (Zhou et al., 2020). To
partly account for this and facilitate the visualisation of regions with
many associated SNPs, we obtained median and minima SNP asso-
ciation p-values for sliding windows of 50 SNP, with a step size of
10 SNP, with the R package “WindowScanR” (Tavares, 2016/2020).
When visualising our results, we first use median p-value per win-
dow, plotted as -log10(p-value), to regionally smooth the results
so that spurious associations get dampened by their flanking high
p-value SNPs, while regions with many SNPs with strong associa-
tions will be easily identifiable, as their median will remain high. This
is analogous to recently developed methods for medical genetics
that use penalized moving-window regressions (Bao & Wang, 2017,
Begum et al., 2016; Braz et al., 2019; Chen et al., 2017) or LD clump-
ing (Marees et al., 2018).

We generated a per SNP null distribution of p-values by repeat-
ing the genome-wide association analysis 200 times, with randomly
permuted phenotypes (aspect ratios) in each run. To obtain a null
distribution of p-values per window, we then computed median
p-values of the same sliding windows as in the observed data set
across the genome for all 200 permutations. Our final set of outliers
only included windows that ranked above the 99th percentile of the
window null distribution of p-values, that is, if the observed median
p-value was the lowest or second lowest among the 200 median
p-values obtained from permutations. We additionally performed
“traditional” genome-wide thresholding by recording the lowest
overall p-value and lowest window median p-value in each permu-
tation and obtaining a critical p-value threshold at p < .05, to then
assess if these outliers overlapped with our regions of interest. To
check for outlier overlaps between species we mapped the H. mel-
pomene windows (starts and end positions) to the H. erato reference
genome using a chainfile from Meier et al. (2021) and the liftover
utility (Hinrichs, 2006). Finally, to compare the distribution of outlier
p-values in quantitative wing aspect ratio variation with a less poly-
genic trait, we additionally ran a GWAS with “red colour pattern” as a
discrete phenotype (highland-like, hybrid-like, lowland-like).

2.54 | Identifying regions diverging between
highland and lowland populations

We computed genetic differentiation (Fg;) between the highland
and lowland subspecies (excluding the mid-elevation hybrids), to
identify regions diverging across altitudes and potentially overlap-
ping with wing aspect ratio associated regions. We calculated the
site frequency spectrum (SFS) with genotype likelihoods for each

population (dosaf, ANGSD). We then obtained folded 2D-SFS for
both populations combined to use as a prior for the joint allele fre-
quency probabilities with the function realsfs. F¢; was calculated
per site using the Weir-Cockerham correction (realsfs F¢; index,
ANGSD), and 5 kb window averages with 1 kb steps were obtained
for plotting (following Meier et al. 2021). We additionally checked
for overlaps between regions of interest and signatures of selec-
tive sweeps (obtained from Meier et al. 2021), such as reductions
in nucleotide diversity differentiation between highland and low-
land populations (AIT), and high levels of intrapopulation integrated
haplotype scores (iHS), which compare the levels of linkage disequi-
librium surrounding the positively selected allele and those in the
background allele at the same position (Szpiech & Hernandez, 2014).

2.5.5 | Candidate gene annotation

To study in depth some of the potentially many genes affecting wing
aspect ratio, we examined regions that had at least one 50 SNP
window with a median p-value below the threshold of p < .01 (-
10g10(p) e qian > 2), and 10 contiguous outlier windows (>99th per-
centile). We obtained the positions of the SNP with the strongest
and second strongest association, to get the region with strongest
association. We identified one gene if this region was within a gene,
or the two closest genes if the region was intergenic or across two
genes. We used reference genomes for both species stored in the
genome browser Lepbase (Challis et al., 2016) to identify the genes
(H. erato demophoon v.1; H. melpomene H. melpomene Hmel2.5),
and extract the protein sequence. We then searched for similarity
in protein sequence databases flybase, uniprotk, and ncbi, and pre-
sent Drosophila melanogaster gene names in the main text and fig-
ures. Protein information, E-values, and GO-terms were recorded for
each candidate. Additionally, we examined functional enrichment of
all genes overlapping with any outlier window across the genome,
which we present in the Supporting Information (Note S4).

3 | RESULTS

3.1 | Wing aspect ratio predictors and heritability

Wing aspect ratio was phenotyped in 721 H. erato offspring indi-
viduals from 48 full-sib families, and 419 individuals of H. melpomene
from 23 full-sib families. Wing aspect ratio varied across families of
both species (ANOVA: H. erato F47' 673 = 3.93, p < .0001, H. mel-
pomene F,, 59, = 11.9, p < .0001). Offspring of highland H. erato
mothers, on average, had rounder wings than those of lowland areas
(Figure 2b, t test: H. erato: t,,, = -3.5, p < .001), whereas highland
H. melpomene offspring were only marginally rounder than lowland
families (Figure 2d; t test: t,, = -2.02, p = 0.06 and wing area did not
differ across broods from different elevations (Figure S1C). Mean
aspect ratio of broods recapitulated those found in wild specimens
in a previous study (Figure S2; Montejo-Kovacevich et al., 2019).
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Altitude, wing area, development time, and sex were significant pre-
dictors of wing aspect ratio in common-garden reared individuals of
H. erato, whereas H. melpomene offspring's wing aspect ratio was
marginally explained by altitude, with sex and wing area having a
stronger effect (Table 1). Of the variation in offspring wing aspect
ratio, 15% and 38% was explained by family identity while account-
ing for significant fixed effects in H. erato (repeatability = 0.15,
SE = 0.04, p < .0001) and H. melpomene, respectively (repeatabil-
ity = 0.38, SE = 0.08, p < .0001), indicating heritability or maternal
effects.

We obtained wing aspect ratios for all mothers that retained in-
tact wings in captivity, totalling 31/48 broods of H. erato, and for
10/23 of H. melpomene broods. Mother and mid-offspring regres-
sions showed strong correlations (Figure 2a,c), but heritability was
lower in H. erato compared to H. melpomene (H. erato: slope = 0.37,
R? = 0.3, p = .001; H. melpomene: slope = 0.79, R* = 0.6, p = .007).
Due to the strong sexual wing aspect ratio dimorphism in H. erato

(Figure S3), mother-to-male offspring regressions had a higher inter-
cept (Figure S4A). The high aspect ratio heritability observed in both

species supports the study of its genomic basis.

3.2 | Genome-wide association mapping of aspect
ratio variation

3.2.1 | Subspecies and hybrid phenotypes

Aspect ratio varied slightly across the elevational cline sampled for
whole-genome sequencing of both species. Highland subspecies,
H. e. notabilis and H. m. plesseni (black, Figure 3) were on average
rounder than hybrids (green, Figure 3), i.e. with lower aspect ratios,
and in H. erato they were also rounder than lowland subspecies H.
e. lativitta (orange, Figure 3a). Hybrids did not differ in wing aspect
ratio compared to their corresponding lowland subspecies, in other
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TABLE 1 W.ing aspect ratio linear mixed model summaries. Fixed effects are scaled and centred

Fixed effects (scaled)

Random effects

df t-value p-value e
0.21

Estimate

R® mmo Variable

0.33

SD

Variance

Variable

Species

<.001

52

3.
-3.34

11.02
-2.88

37

526
658
219

0.029
-0.008

Altitude (low)

0.022

4.7e-04

Mother ID (n = 48)

687

H. erato

<.0001
<.0001
<.01
.06

Area

0.052

2.7e-04

Residual

0.045
-0.008

Sex (male)

Development time

Altitude (low)

0.11

214 1.95
-4.57

0.028
-0.010

0.032 0.45

1.0e-03

Mother ID (n = 23)

419

H. melpomene

<.0001
<.0001

410.3

Area

0.043

1.9e-03

Residual

5.04

398.6

319.5

0.021

Sex (male)

[IESH

1.01

0.004

Development time

Abbreviations: df, degrees of freedom based on Sattherwaithe's approximations. p, the p-values of fixed and random effects. Development time, time in days from larvae hatching to pupating. N, number of

individuals with data for all fixed effects. Conditional R? values for models with fixed and random effects (RZLMM(C)), residual R? values fixed-effects only models (RZLMM(m)).
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words, hybrids were phenotypically more lowland-like (Figure 3a).
More importantly, the aspect ratio of hybrid individuals encom-
passed most of the trait variance of the pure subspecies (Figure S5),
increasing our power to detect genomic associations. Migration and
gene flow across the altitudinally-structured transect led to clinal
variation in genome-wide admixture proportions between individu-
als (Figure S6; Meier et al. 2021).

3.2.2 | Association mapping of aspect
ratio variation

Genome-wide association mapping for wing aspect ratio revealed
many 50 SNP windows of high association (Figure 4). This suggests
a highly polygenic basis, especially when compared to the effect
size distribution of the red pattern phenotype association which
is controlled by a single large-effect locus (Figures S7, S8). We ob-
tained association statistics for 11.3 million SNPs (29.4 SNPs/kb) and
10.7 million SNPs (38.8 SNPs/kb) for H. erato and H. melpomene, re-
spectively, from SNPs that passed the heterozygosity and minimum
minor allele count filters. We found that certain genomic regions
were strongly associated (Q-Q plots Figure S9, permutations Figure
$10). Outlier 50 SNP windows were on average 1681 bp (back-
ground = 1641 bp) and 1273 bp (background = 1251 bp) long for
H. erato and H. melpomene, respectively, and much smaller than the
observed LD blocks (Figure S11). We further investigated 28 regions
that had 10 adjacent outlier windows supported by permutations
and had a median p-value <.01 (-log10(p)>2, Figure 4). In each spe-
cies, one of these regions had SNPs above the genome-wide critical
threshold (p < .05), and four (/12) and two (/16) for H. erato and H.
melpomene, respectively, had median p-values above the window

median p-value genome-wide critical threshold (p < .05; Figure S12).

3.2.3 | Candidate genes

To highlight candidates potentially controlling wing aspect ratio that
could warrant further investigation, we identified genes in 28 re-
gions of interest that had a high density of outlier SNPs, yielding 23
and 22 candidate genes for H. erato and H. melpomene, respectively.
In 12 out of the 28 regions, SNPs within the region of strongest as-
sociation were found within genes that could be annotated (Tables
2, 3). The remaining outliers were intergenic (n = 16) and potentially
associated with regulatory variants, and were, on average, 35.8kb
from the nearest (n = 6) or second nearest gene (n = 10, Tables 2,
3), that is, either upstream or downstream. The second nearest gene
was presented in the main text if the closest gene was poorly an-
notated, or if it had a more relevant biological function, for example,
known to affect wing aspect ratio or colour patterning in Heliconius
(all genes in Table S1).

Several candidate genes, in both species, encoded proteins pre-
viously identified in Drosophila as involved in wing morphogenesis.
The most relevant and functionally tested candidate genes of wing
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aspect ratio variation were su(dx) in H. erato, and dok, knrl, lowfat,
and tap42 in H. melpomene (Figure 4, Tables 2, 3). Tracheal devel-
opment and septate junction assembly functions were also associ-
ated with several candidates (vari, pickle, “pasi”, punch, pak1, knrl), as
well as chitin-based cuticule development (punch, pgm2a Pan et al.,
2020), pigment transport or synthesis (MCT9, optix, punch, ABCG)
and oxidative stress responses and regulation of cell apoptosis (tefu,
daxx, pak1, naam). Some of these candidates, even if not directly
involved in wing morphogenesis, have been functionally tested in
Drosophila and lead to wing aspect ratio or wing vein abnormali-
ties (knrl Lunde et al., 2003, pgm2a Pan et al., 2020, tefu Song et al.,
2004, daxx Hwang et al., 2013). More importantly, 1/23 and 5/22
candidate genes in H. erato and H. melpomene, respectively, were di-
rect enhancers or suppressors of genes recently identified as being
involved with multivariate wing aspect ratio variation in D. melano-
gaster (Tables 2, 3; Pitchers et al., 2019; Thurmond et al., 2019).

We detected one case of possible parallelism between the two
species on chromosome 13, with SNPs with the lowest p-values in
both species mapping near the rugose gene, which affects neuro-
muscular junction development, synaptic architecture, brain mor-

phology, and associative learning (Figure S13, Tables 2, 3. Wise et al.,

2015; Zhao et al., 2013). The epidermal growth factor receptor (Egfr)
regulates rugose (Shamloula et al., 2002) and has been associated
with wing aspect ratio variation in wild D. melanogaster (Dworkin
et al.,, 2005) and, recently, in multivariate analyses of wing aspect
ratio and knockdowns (Pitchers et al., 2019). In contrast, despite high
levels of parallelism between species in the loci that control colour
pattern differences across this hybrid zone (Figure S14, Meier et al.
2021), only one was significantly associated with wing aspect ratio
variation in H. erato, the transcription factor controlling presence/
absence of red, optix (Figure S13).

We found 39 and 23 significantly enriched GO-terms with genes
overlapping with any outlier window across the genome in H. erato
(Table S2) and H. melpomene (Table S3), respectively, seven of which
were enriched in both species (Note S4, Figure S15). However, we
found through simulations that genes overlapping GWAS hits are
length biased, leading to certain categories being repeatedly en-
riched (Note S4, Figure S16, Figure S17). Categories most strongly
enriched in the observed data set but not enriched in simulations
included “actin filament organisation” in H. erato and “calcium ion
transport” in H. melpomene (Tables S2, S3). Actin filaments have
long been known to regulate butterfly wing scales (Dinwiddie et al.,
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FIGURE 4 Genome wide association for wing aspect ratio in H. erato (a) and H. melpomene (b). Black points represent windows with p-
values lower or equal to the top 1% of 200 permutations. Top panels for each species are manhattan plots of genome-wide associations, and
bottom are zoomed-in regions of interest. In these regions, minimum p-values per outlier window are shown in red, gene tracks are shown
as grey rectangles, selected genes within or near outlier regions are highlighted in red with gene abbreviations above them, and genetic
differentiation between highland and lowland subspecies (excluding hybrids) along the region in green (F;)

2014) and calcium ion channels are essential for wing development
in Drosophila (George et al., 2019).

3.3 | Signatures of selection

To assess whether regions of interest identified in our association
study presented signatures of positive selection at high altitude we
used F¢; and nucleotide diversity differentiation between altitudes,
as well as integrated haplotype scores (iHS, Figure S18). There is lit-
tle background genomic differentiation between highland and low-
land populations of both species (mean F¢; in H. erato: 0.0261 and
in H. melpomene: 0.0189, Figure S14, Meier et al. 2021). Of the 28
regions identified as potentially associated with wing aspect ratio
variation, nine were found to be in regions of elevated genomic dif-
ferentiation between highland and lowland populations (23 stand-
ard deviations from the mean, F¢; green lines, Figure 4). Several
regions of interest were also associated with negative differences

in nucleotide diversity between the highlands and the lowlands and
with high integrated haplotype scores (Tables 2, 3; Figures 518, S19),
both signatures of selective sweeps. The strongest four F¢; peaks in
this cline are associated with colour patterning (Figure S14, Meier
etal. 2021; Nadeau et al. 2014), but only optix (chr. 18) in H. erato was
also strongly associated with wing aspect ratio (Figure S13).

4 | DISCUSSION

Here, we combine the power of hybrid zones across steep en-
vironmental clines, common garden rearing, and whole-genome
sequencing to study the genomic basis of a potentially adaptive
trait in the wild. We found that wing aspect ratio is highly cor-
related between mothers and their offspring in two butterfly
species, highly repeatable across common-garden reared off-
spring families, and correlated with the altitude at which the
mother was collected (Figure 2). With a large data set comprising
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666 whole-genomes sequenced with haplotagging (Meier et al.
2021) and association mapping, we uncover a highly polygenic
basis to wing aspect ratio, and identify potential candidate genes
in regions with many SNPs showing associations (Figure 4).
Furthermore, with a population genetics approach, we find that
many of these regions are also diverging between highland and
lowland populations and some also overlap with signatures of se-
lective sweeps, potentially being selected for local adaptation to

highland environments.

4.1 | Wing aspect ratio is heritable

The amount of wing aspect ratio variation explained by family
across common-garden reared offspring was high for both species
(H. erato: 21% and H. melpomene: 39%), especially when compared
to the 74% of variance explained by species identity in a previous
comparative study (Montejo-Kovacevich et al., 2019). The resem-
blance in wing aspect ratio between mothers and their offspring is
indicative of a highly heritable trait (Figure 2a), although we cannot
rule out maternal effects partly driving this pattern. Rearing off-
spring in common-garden conditions strongly reduces the effects
of shared mother-offspring environmental variables, but cannot
account for, for example, variation in resources the mothers pro-
vide to their eggs. We found, however, that mother wing area did
not correlate with offspring wing areas in H. erato, whereas it did
in H. melpomene (Note S3). This highlights that wing aspect ratio
might be less affected by maternal effects compared to other
more condition-dependent traits, such as size. Furthermore,
strong sexual dimorphism in wing aspect ratio present in H. erato,
was maintained in common-garden reared individuals and both
sexes had similar correlations with mother phenotypes, implying
a strong genetic component to wing aspect ratio variation (Allen
etal, 2011).

From a local adaptation perspective, we might predict wing
aspect ratio to be highly heritable. Insects can behaviourally com-
pensate for damaged or abnormal wings through changes in flight
and body kinematics (Fernandez et al., 2017). Yet, this might incur
a fitness cost, as many behaviours, such as courtship and preda-
tor escape, are dependent on efficient flight (Le Roy et al., 2019a).
Generally, cases of wing aspect ratio plasticity are rarer than size
plasticity, especially if the two traits are allometrically decoupled,
allowing for subtle changes to be selected if advantageous (Carreira
et al., 2011; Gilchrist & Partridge, 2001; Strauss 1990). In Heliconius,
wings have been found to be rounder at higher elevations, both
across and within species that inhabit large ranges (Montejo-
Kovacevich et al., 2019). In our study, wing aspect ratio differences
observed in the wild in H. erato and H. melpomene were maintained
in common-garden reared broods, with individuals from highland
mothers having, on average, rounder wings (Figure 2b, Figure S2).
Together, this supports the hypothesis that subtle changes in wing
aspect ratio are highly heritable, and may be involved in local adap-
tation to altitude.

4.2 | Candidate genes associated with wing
aspect ratio

We found 5/28 regions mapping to genes involved in the biological
process of “wing disc development” and one involved in wing vein
formation (Lunde et al., 2003). In H. erato, the most promising candi-
date gene was the suppressor of deltex, su(dx) (Figure 4a, Table 2), an
E3 ubiquitin-protein ligase of the Notch signalling pathway (Jennings
et al., 2007). su(dx) knockouts in D. melanogaster result in rounder
wings via reduction of longitudinal wing venation (Mazaleyrat et al.,
2003), wing margin reduction (Wilkin et al., 2004) or via interac-
tions with other proteins (Djiane et al., 2011). Interestingly, this
region has moderately high levels of genetic differentiation across
= 0.24, Figures 4a, 1(a)),

negative AII (difference in nucleotide diversity), and very high in-

high and low elevation populations (Fgr,. ..
tegrated haplotype score in the highland population (0.88), which
points towards altitude-associated selection on this candidate
gene. In H. melpomene, we found four regions with genes function-
ally known to be involved in determining wing shape in Drosophila
(Figure 4b, Table 3). Mutants of lowfat have shorter, rounder wings
in Drosophila (Hogan et al., 2011; Mao et al., 2009), whereas dok mu-
tants have shrivelled wings (Biswas et al., 2006). The knirps-related
protein (knrl) is involved in second wing vein development (Table 3,
Lunde et al., 2003), and Tap42 (Figure 4b) triggers apoptosis in the
developing wing discs (Wang et al., 2012). Thus, we have identified
some promising genes that could be studied further in this system
in future.

Despite phenotypic convergence towards rounder wings at high
altitude, we found little evidence for molecular parallelism underly-
ing wing aspect ratio variation between H. erato and H. melpomene.
One of the 28 regions identified as potentially involved with this trait
was found in the regulatory region of the gene rugose in both species
(Figure S13). Rugose mutants also exhibit the “rough eye phenotype”,
aberrant associative odour learning, changes in brain morphol-
ogy, and increased synapses in the larval neuromuscular junction
(Shamloula et al., 2002; Volders et al., 2012). Furthermore, there
was clear evidence of a selective sweep in this region in the high-
land H. erato notabilis (iHS, Table 2; Figures 518, S19). Interestingly,
in H. melpomene a 4.8MB inversion was detected encompassing the
rugose region (Meier et al. 2021). Inversions can aid local adaptation
by retaining multiple co-adapted SNPs together (Mérot et al., 2020)
but can also complicate GWA studies by causing large blocks of as-
sociation that prevent the detection of causative SNPs or genes.
The window approach we took could cause a bias toward such low-
recombination regions, but this was the only one of our regions of
interest to overlap with an inversion, out of the 33 detected for both
species in Meier et al. (2021). In addition, the associations that we
see are localised upstream of rugose and do not span the entire in-
version, which is only present in H. melpomene. Thus, this region may
be affecting aspect ratio in both species and under selection at high
altitude, warranting future study.

In contrast, we found a strong association with wing aspect ratio
variation at the optix locus uniquely in H. erato, which controls most
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of the red colour patterning (Bainbridge et al., 2020; Lewis et al.,
2019; Meier et al. 2021; Van Belleghem et al., 2017). Mimicry can
play a role in Heliconius' wing shape, for example, morphs of H. nu-
mata that mimic the distantly related genus Melinea tend to con-
verge in wing aspect ratios where they coexist (Jones et al., 2013).
Although H. erato and H. melpomene mimic each other across their
range and both have rounder wings in the highlands, the differences
in aspect ratio between the two species are larger than those across
elevations (Figure 3d). Thus, while some mimicry-related wing as-
pect ratio variation may be controlled by optix, many other loci are
probably involved in shaping wings to suit the local environment and
life-history of each species.

4.3 | Genetics basis of an ecologically relevant trait
A common criticism of population genomics approaches, reverse
genetics, that aim to link genotypes and environments is that they
often lack phenotypes. Traits directly measured from the wild
might be a result of phenotypic plasticity, and are thus rarely used
to infer local adaptation. Common-garden rearing can bridge the
gap between phenotypes, genotypes, and environment, by pro-
viding measurements of heritability and repeatability of a trait
across families whose genetic material comes from different ex-
tremes of an environmental cline (de Villemereuil et al., 2016). On
the other hand, using highly differentiated populations can result
in spurious phenotypic associations and makes identifying diver-
gent outliers challenging. Thus, GWAS in the wild should use ran-
domly mating populations with little population structure, while
ensuring there is enough phenotypic variation to detect genetic
associations with the trait of interest. Hybrid zones, where closely
related subspecies or morphs come into contact along an environ-
mental cline, can provide such ideal conditions to carry out GWAS
in the wild.

Here, we have demonstrated the value of combining these
approaches to gain insight into the genomic basis of an ecologi-
cal relevant trait in the wild. We found that wing aspect ratio is
highly heritable in two widespread species of Heliconius butter-
flies, and that altitude explains part of the variation in this trait.
We have identified several regions potentially shaping wings in H.
erato and H. melpomene, including five candidate genes involved
in wing morphogenesis and several identified to be affecting wing
aspect ratio in recent Drosophila studies (Pitchers et al., 2019).
We found evidence of molecular parallelism between species and
selective sweeps at high altitude at the gene rugose, and a strong
association of H. erato wing aspect ratio with a known colour pat-
tern locus, optix. Our study adds to a growing body of evidence
showing that most quantitative traits conferring local adaptation
are highly polygenic (Barghi et al., 2020). Spatial environmental
heterogeneity and gene flow are thought to maintain high lev-
els of standing genetic variation (Tigano & Friesen, 2016). This

can favour polygenic adaptation, so that incomplete sweeps of

many redundant loci can shift traits towards an optimum (Yeaman,
2015). A slow-moving optimum, such as range-expansions towards
the highlands, should favour polygenic adaptation via small-effect
loci, whereas selection for a distant optimum, such as a switch in
colour pattern mimicry in Heliconius, should favour large-effect
loci (Barghi et al., 2020). New whole-genome sequencing tech-
nologies could foster the study of local adaptation to the envi-
ronment and shape our understanding of the mode and tempo of

evolution in the wild.
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