
Quantitative Economics 12 (2021), 779–816 1759-7331/20210779

A unified framework for efficient estimation of general
treatment models

Chunrong Ai
School of Management and Economics, Chinese University of Hong Kong, Shenzhen

Oliver Linton
Faculty of Economics, University of Cambridge

Kaiji Motegi
Graduate School of Economics, Kobe University

Zheng Zhang
Center for Applied Statistics, Institute of Statistics & Big Data, Renmin University of China

This paper presents a weighted optimization framework that unifies the binary,
multivalued, and continuous treatment—as well as mixture of discrete and con-
tinuous treatment—under a unconfounded treatment assignment. With a general
loss function, the framework includes the average, quantile, and asymmetric least
squares causal effect of treatment as special cases. For this general framework,
we first derive the semiparametric efficiency bound for the causal effect of treat-
ment, extending the existing bound results to a wider class of models. We then
propose a generalized optimization estimator for the causal effect with weights
estimated by solving an expanding set of equations. Under some sufficient con-
ditions, we establish the consistency and asymptotic normality of the proposed
estimator of the causal effect and show that the estimator attains the semipara-
metric efficiency bound, thereby extending the existing literature on efficient es-
timation of causal effect to a wider class of applications. Finally, we discuss esti-
mation of some causal effect functionals such as the treatment effect curve and
the average outcome. To evaluate the finite sample performance of the proposed
procedure, we conduct a small-scale simulation study and find that the proposed
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estimation has practical value. In an empirical application, we detect a significant
causal effect of political advertisements on campaign contributions in the binary
treatment model, but not in the continuous treatment model.

Keywords. Causal effect, entropy maximization, treatment effect, semiparamet-
ric efficiency, sieve method, stabilized weights.

JEL classification. C14, C21.

1. Introduction

Modeling and estimating the causal effect of certain treatments or policies is of ma-
jor interest in economics and social science more generally (see, e.g., Hirano, Imbens,
and Ridder (2003), Imbens (2004), Abadie (2005), Heckman and Vytlacil (2005), Cher-
nozhukov, Fernández-Val, and Melly (2013), Athey, Imbens, and Wager (2018), Wager
and Athey (2018)). Most existing studies focus on the binary treatment where an individ-
ual either receives the treatment or does not, ignoring the treatment intensity. In many
applications, however, the treatment intensity is a part of the treatment, and its causal
effect is also of great interest to decision makers. For example, in evaluating how finan-
cial incentives affect health care providers, the causal effect may depend on not only the
introduction of incentive but also the level of incentive. Similarly, in studying how taxes
affect addictive substance usages, the causal effect may depend not only on the impo-
sition of tax but also on the tax rate. In finance, there are many plausible examples of
interest. For example, in evaluating the effect of corporate bond purchase schemes on
market quality, the causal effect may depend not just on whether the bond is selected
into the scheme but on how much of it is purchased (see Boneva, Elliott, Kaminska, Lin-
ton, McLaren, and Morley (2018)).

In recognition of the importance of the treatment intensity, the binary treatment lit-
erature has been extended to the multivalued treatment (e.g., Imbens (2000), Cattaneo
(2010)) and continuous treatment (e.g., Hirano and Imbens (2004), Imai and van Dyk
(2004), Florens, Heckman, Meghir, and Vytlacil (2008), Fong, Hazlett, and Imai (2018),
Yiu and Su (2018)). The parameter of primary interest in this literature is the average
causal effect of treatment, defined as the difference in response to two levels of treat-
ment by the same individual, averaged over a set of individuals. The identification and
estimation difficulty is that each individual only receives one level of treatment. To over-
come this difficulty, researchers impose the unconfounded treatment assignment condi-
tion, which allows them to find statistical matches for each observed individual from all
other treatment levels.

The main objective of this paper is to present a weighted optimization estima-
tion framework that unifies the binary, multivalued, and continuous treatment—as well
as the mixture of discrete and continuous treatment—and to identify and estimate
causal effect parameters through a population minimization problem under the uncon-
founded treatment assignment condition. The weights are called the stabilized weights
by Robins, Hernán, and Brumback (2000) and are defined as the ratio of the marginal
probability distribution of the treatment status over the conditional probability distri-
bution of the treatment status given covariates. We first compute the semiparametric
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efficiency bound (Bickel, Klaassen, Ritov, Wellner (1993)) of the causal effect of treat-
ment, extending the results of Hahn (1998), Firpo (2007), and Cattaneo (2010) from the
binary treatment to a variety of treatments and to parameters defined through a pop-
ulation minimization problem. Our bound reveals that the weighted optimization with
known stabilized weights does not produce efficient estimation since it fails to account
for the information restricting the stabilized weights. This observation was made by Hi-
rano, Imbens, and Ridder (2003) in the binary treatment case; here, we show that their
observation holds true for a much wider class of treatment models. We exploit the in-
formation that the stabilized weights satisfy certain moment conditions (an expanding
number thereof) by estimating the stabilized weights from those equations by a novel
entropy maximization method; we then estimate the causal effect by the generalized op-
timization method with the true stabilized weights replaced by the estimated weights.
Under some sufficient conditions, we show that our proposed estimator is consistent
and asymptotically normally distributed and, more importantly, it attains the semipara-
metric efficiency bound. We propose consistent standard errors based on the same sieve
methodology. We propose a tuning parameter selection methodology to guide the prac-
tical implementation. We also discuss estimation of the full nonparametric effect curve
and establish its pointwise asymptotic normality and uniform consistency.

We next present some simulation evidence that the proposed methodology operates
well in finite samples and is robust to misspecification, whereas the existing methodol-
ogy of Fong, Hazlett, and Imai (2018) is somewhat fragile. We apply our methodology
to the study of the effect of political advertisements on campaign contributions using
data considered by Urban and Niebler (2014) and Fong, Hazlett, and Imai (2018). We
detect a significant causal effect of advertisements on contributions in the binary treat-
ment model, but not in the continuous treatment model. The former result is consistent
with Urban and Niebler (2014), while the latter is consistent with Fong, Hazlett, and Imai
(2018).

Literature review. In the binary treatment case with unconfounded treatment assign-
ment, the average causal effect is estimated by the difference of the weighted average
responses with the propensity scores as weights (see, e.g., Rosenbaum and Rubin (1983),
Hirano, Imbens, and Ridder (2003)). Other popular methods include regression adjust-
ment (Angrist and Pischke (2008)), matching (Imbens (2004), Abadie and Imbens (2006,
2016)), imputation (Heckman, Ichimura, and Todd (1998), Cattaneo and Farrell (2011)),
and hybrid method (Farrell (2015), Słoczyński and Wooldridge (2018)). The efficiency
bound of the average causal effect in this model is derived by Robins, Rotnitzky, and
Zhao (1994) and Hahn (1998), and efficient estimation is proposed by Robins, Rotnitzky,
and Zhao (1994), Hahn (1998), Hirano, Imbens, and Ridder (2003), Graham, Pinto, and
Egel (2012), and Chan, Yam, and Zhang (2016). Of particular interest in this literature is
the study by Hirano, Imbens, and Ridder (2003), which shows that the weighted aver-
age difference estimator attains the semiparametric efficiency bound if the weights are
estimated by the empirical likelihood estimation.

In the multivalued treatment case, Imbens (2000) generalized the propensity score,
and Cattaneo (2010) derived the efficiency bound and proposes an estimator that at-
tains the efficiency bound. In the continuous treatment case, Hirano and Imbens (2004)
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and Imai and van Dyk (2004) parameterized the generalized propensity score function
and propose a consistent estimator of the average causal effect. Their estimators are not
efficient and could be biased if the generalized propensity score function is misspeci-
fied. Florens et al. (2008) used a control function approach to identify the average causal
effect in the continuous treatment and propose a consistent estimation. It is unclear if
their estimation is efficient. Galvao and Wang (2015) estimated the continuous treat-
ment effect through stabilized weighting. They do not study how to construct the sta-
bilized weights such that their estimator is efficient. Kennedy, Ma, McHugh, and Small
(2017) proposed a nonparametric kernel estimator for the treatment effects curve, again
the efficient estimation is still unclear. Fong, Hazlett, and Imai (2018) proposed an esti-
mator of the average causal effect of continuous treatment but do not establish consis-
tency of their estimation. In fact, their simulation results indicate their estimation could
be seriously biased. Yiu and Su (2018) studied the average causal effect of both discrete
and continuous treatment by parameterizing the propensity score. Their estimator is
generally biased if their parameterization is incorrect.

In addition to the average causal effect of treatment (ATE), it is also important to in-
vestigate the distributional impact of treatment. For instance, a decision maker may be
interested in the causal effect of a treatment on the outcome dispersion or on the lower
tail of the outcome distribution. Firpo (2007) computed the efficiency bound and pro-
posed an efficient estimation of quantile causal effect of treatment (QTE) for the binary
treatment. For additional studies on QTE, we refer to Chernozhukov and Hansen (2005),
Angrist and Pischke (2008), and Donald and Hsu (2014).

To the best of our knowledge, we are unaware of any previous work that computes
the efficiency bound and proposes efficient estimation of the causal effect in the contin-
uous treatment or mixture of discrete and continuous treatment under a general mini-
mization problem that permits ATE and QTE. The present paper fills this gap rigorously.

The paper is organized as follows. Section 2 sets up the basic framework, Section 3
computes the semiparametric efficiency bound of the causal effect of treatment, Sec-
tion 4 presents the generalized optimization estimator, Section 5 establishes the large
sample properties of the proposed estimator. Section 6 constructs confidence intervals
based on plug-in and simulation-based approaches. In Section 7, we propose two data-
driven approaches for selecting tuning parameters. In Section 8, we discuss some exten-
sions. Section 9 reports on a simulation study, while Section 10 presents an empirical
application, followed by some concluding remarks in Section 11. All technical proofs
and extra simulation results are relegated to the supplemental material (Ai et al. (2021)).

2. Basic framework and notation

Let T denote the observed treatment status variable with support T ⊂ R, where T is ei-
ther a discrete set, a continuum, or a mixture of discrete and continuum subsets, and
T has a marginal probability distribution function FT (t). Let Y ∗(t) denote the poten-
tial response when treatment T = t is assigned. Let L(·) denote a known convex loss
function whose derivative, denoted by L′(·), exists almost everywhere. For the leading
part of the paper, we shall maintain that there exists a parametric causal effect function
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g(t;β) with the unknown value β∗ ∈ R
p (with p ∈ N) uniquely solving the minimization

problem below, that is,

β∗ = arg min
β

∫
T
E
[
L
(
Y ∗(t)− g(t;β))]dFT (t)� (2.1)

The parameterization of the causal effect is restrictive, but quite common in applica-
tions. Some extensions to the unspecified causal effect function shall be discussed later
in the paper (see Section 8).

Model (2.1) includes many prominent models in the literature as special cases. For
example, it includes: the average causal effect of binary treatment studied in Hahn
(1998) and Hirano, Imbens, and Ridder (2003) (i.e., T ={0�1}, L(v) = v2, and g(t;β) =
β0 + β1t); the quantile causal effect of binary treatment studied in Firpo (2007) (i.e.,
T ={0�1}, L(v) = v(τ − I(v ≤ 0)) is an almost everywhere differentiable function with
τ ∈ (0�1) and g(t;β) = tβ1 + (1 − t)β0), the average causal effect of multivalued treat-
ment studied in Cattaneo (2010) (i.e., T ={0�1� � � � � J} for some J ∈ N, L(v) = v2 and
g(t;β) = ∑J

j=0βjI(t = j)), and the average causal effect of continuous treatment stud-

ied in Hirano and Imbens (2004) (i.e., L(v) = v2 and E[Y ∗(t)] = g(t;β) is a parametric
model indexed by β for the potential outcome means, which is also called a marginal
structural model in Robins, Hernán, and Brumback (2000). Examples include the linear
marginal structure model E[Y ∗(t)] = β0 + β1 · t, and the nonlinear marginal structure
model E[Y ∗(t)] = β0 · t + 1/(t + β1)

2 studied in Hirano and Imbens (2004)). It also in-
cludes the quantile causal effect of multivalued (i.e.,L(v)= v(τ−I(v≤ 0))with τ ∈ (0�1)
and g(t;β)=∑J

j=0βjI(t = j)) and continuous treatment (i.e.,L(v)= v(τ− I(v≤ 0)) and
inf{q : P(Y ∗(t) ≥ q) ≤ τ} = g(t;β) is a parametric model indexed by β for the potential
outcome quantiles. Examples include the linear model inf{q : P(Y ∗(t) ≥ q) ≤ τ} = β0 +
β1 · t and the Box–Cox transformation model inf{q : P(Y ∗(t) ≥ q) ≤ τ} = hλ(β0 + β1 · t)
studied in Buchinsky (1995), where hλ(z)= (λz + 1)−1/λ). The latter has so far not been
covered by the existing literature. Moreover, with L(v)= v2|τ− I(v≤ 0)|, our framework
covers the asymmetric least squares estimation of the causal effect of (binary, multival-
ued, continuous, mixture of discrete and continuous) treatment. The asymmetric least
squares regression received attention from some noted econometricians (see Newey
and Powell (1987)) but zero attention in the causal effect literature. Our framework can
also accommodate vector-valued treatment T and the inclusion of multiple variables
in g(·), although they would add to the dimensionality problem. (We are grateful for an
anonymous referee for pointing out these possible extensions.)

The problem with (2.1) is that the potential outcome Y ∗(t) is not observed for all t.
Let Y := Y ∗(T) denote the observed response. One may attempt to solve the following
optimization problem:

min
β

E
[
L
(
Y − g(T ;β))]�

However, if there exists a selection into treatment, the true value β0 does not solve the
above minimization problem. Indeed, in this case, the observed response and treatment
assignment data alone cannot identify β∗. To address this identification issue, studies
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in the literature impose a selection on observable condition (e.g., Hirano, Imbens, and
Ridder (2003), Imai and van Dyk (2004), Fong, Hazlett, and Imai (2018)). Specifically, let
X denote a vector of covariates. The following condition shall be maintained throughout
the paper.

Assumption 1 (Unconfounded treatment assignment). T is independent of Y ∗(t) for
all t ∈ T given X, that is, Y ∗(t)⊥ T |X.

Let FT |X denote the conditional probability distribution of T given the observed co-
variates X and let dFT |X denote the corresponding probability measure. In the literature,
dFT |X is called the generalized propensity score (Hirano and Imbens (2004), Imai and van
Dyk (2004)). Suppose that dFT |X(T |X) is positive everywhere and let

π0(T�X) := dFT (T)

dFT |X(T |X) �

The function π0(T�X) is called the stabilized weight in Robins, Hernán, and Brumback
(2000). Under Assumption 1, we obtain

E
[
π0(T�X)L

(
Y − g(T ;β))]=

∫
E
[
L
(
Y ∗(t)− g(t;β))]dFT (t) (2.2)

(see Appendix A in the Replication file (Ai, Linton, Motegi, and Zhang (2021) for deriva-
tion), and hence the true value β∗ solves the weighted optimization problem

β∗ = arg min
β

E
[
π0(T�X)L

(
Y − g(T ;β))]� (2.3)

This result is very insightful. It tells us that the selection bias in the unconfounded treat-
ment assignment can be corrected through covariate-balancing. More importantly, it
says that the true value β∗ can be identified from the observed data. The weighted op-
timization (2.3) provides a unified framework for estimating the causal effect of a vari-
ety of treatments, including binary, multilevel, continuous, and mixture of discrete and
continuous treatment, and under a general loss function. The goal of this paper is to
compute the semiparametric efficiency bound and to present an efficient estimator for
β∗ under this general framework.

Although the parametric specification of g(t;β) is somewhat restrictive, it is useful
from a practical point of view. First, if T is a discrete variable, model misspecification
is not an issue since the coefficient β∗ has a clear causal interpretation. Second, if T
is a continuous variable, usually a parametric specification may suffer from the model
misspecification problem. Since T is univariate, the true response model can be well ap-
proximated through several polynomials of t. Third, a parametric specification of g(t;β)
allows us to infer the parameters at

√
N-consistent rate and to construct the most effi-

cient estimator. Fourth, the proposed framework (2.1) is more general than the existing
literature of continuous treatment (Hirano and Imbens (2004), Fong, Hazlett, and Imai
(2018)), where either a regression model E[Y |T�X] or a response model E[T |X] is often
required. In Section 8, we also consider fully nonparametric estimation of g(t) under
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several important cases. The fully nonparametric estimation of g(t) within the general
framework (2.1) is beyond the scope of this article, and it will be pursued in a future
work.

3. Efficiency bound

We begin by applying the approach of Bickel et al. (1993) to compute the semiparametric
efficiency bound of the parameter β∗ defined by (2.1) under Assumption 1. This gives the
least possible variance achievable by a regular estimator in the semiparametric model.
The result is presented in the following theorem.

Theorem 1. Suppose that g(T ;β) is twice differentiable with respect to β in the param-
eter space Θ ⊂ R

p, with m(T ;β∗) := ∇βg(T ;β∗), and E[L′(Y − g(T ;β))|Y�X] is differ-
entiable with respect to β ∈ Θ. Denote ε(T�X;β∗) := E[L′(Y − g(T ;β∗))|T�X], H0 :=
−∇βE[π0(T�X)L

′(Y − g(T ;β))m(T ;β)]|β=β∗ , and

ψ
(
Y�T�X;β∗)
:= π0(T�X)m

(
T ;β∗)L′(Y − g(T ;β∗))−π0(T�X)m

(
T ;β∗)ε(T�X;β∗)

+E
[
ε
(
T�X;β∗)π0(T�X)m

(
T ;β∗)|T ]+E

[
ε
(
T�X;β∗)π0(T�X)m

(
T ;β∗)|X]�

Suppose that H0 is nonsingular and E[ψ(Y�T�X;β∗)ψ(Y�T�X;β∗)�] exists and is finite.
Under Assumption 1, namely Y ∗(t)⊥ T |X for all t ∈ T , and model (2.1), the efficient in-
fluence function of β∗ is given by

Seff
(
Y�T�X;β∗)=H−1

0 ψ
(
Y�T�X;β∗)�

Consequently, the efficient variance bound of β∗ is

Veff = E
[
Seff

(
Y�T�X;β∗)Seff

(
Y�T�X;β∗)�]� (3.1)

The proof of Theorem 1 is given in the Online Supplemental Material (Ai et al. (2021),
Section 2.1). It is worth noting that our bound Veff is equal to: the bound of Hahn (1998)
for the case of binary average treatment, the bound of Cattaneo (2010) for the case of
multivalued average treatment, and the bound of Firpo (2007) for the case of binary
quantile treatment (see Ai et al. (2021), Sections 2.2–2.4). Moreover, our bound applies
to a much wider class of models, including quantile causal effect of multivalued, contin-
uous, and mixture of discrete and continuous treatment as well as the asymmetric least
squares estimation of the causal effect of all kinds of treatments.

Based on the expression of the efficient influence function, many papers construct
an efficient estimator by solving the estimated efficient score equation (Athey, Im-
bens, Pham, and Wager (2017), Chernozhukov et al. (2018)). Such estimators typically
have the double or multiple robustness property. However, in our case the efficient in-
fluence function Seff(T�X�Y ;β) involves five unknown functionals fT (T), fT |X(T |X),
ε(T�X;β), E[π0(T�X)ε(T�X;β)m(T�β)|T ], and E[π0(T�X)ε(T�X;β)m(T�β)|X]. Esti-
mation of these functionals is difficult in practice, and we expect that the finite sam-
ple performance of the estimated β∗ would be poor. Instead of explicitly estimating the
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efficient influence function Seff, we propose a simple weighted optimization estimator
based on (2.3) by estimating the stabilized weights π0(T�X). This procedure is remark-
ably stable numerically and performs well statistically in small samples as we demon-
strate in the Monte Carlo section.

It is also worth noting that, if the stabilized weights are known and g(t;β∗) is cor-
rectly specified, one can estimate β∗ by solving the sample analogue of the weighted
optimization (2.3). The asymptotic variance of this estimator is

Vineff = E
[
Sineff

(
Y�T�X;β∗)Sineff

(
Y�T�X;β∗)�]�

with

Sineff
(
Y�T�X;β∗)=H−1

0 ·π0(T�X)m
(
T ;β∗)L′{Y − g(T ;β∗)}�

It is easy to show that Vineff > Veff (see Proposition C.1 of Appendix C in the Replication
file), implying that the weighted optimization estimator is not efficient. This follows be-
cause the weighted optimization does not account for the restriction on the stabilized
weight π0(t�x) that

E
[
π0(T�X)u(T)v(X)

]= E
[
u(T)

] ·E[v(X)] (3.2)

holds for any suitable functions u(t) and v(x). Incorporating restriction (3.2) into the
estimation of the causal effect can improve efficiency. A similar observation was made by
Hirano, Imbens, and Ridder (2003) in the binary treatment. Exactly how to incorporate
restriction (3.2) into the estimation is the subject of the next section.

4. Efficient estimation

One way to incorporate (3.2) into the estimation is to estimate the stabilized weights
from (3.2) and then implement (2.3) with the estimated weights. But before doing so, we
must verify that (3.2) uniquely identifies π0(T�X).

Theorem 2. For any integrable functions u(T) and v(X), E[π(T�X)u(T)v(X)] =
E[u(T)] ·E[v(X)] holds if and only if π(T�X)= π0(T�X) a.s.

The proof is presented in Appendix B in the Replication file. Therefore, condition
(3.2) identifies the stabilized weights. The challenge now is that (3.2) implies an infinite
number of moment conditions. With a finite sample of observations, it is impossible to
solve an infinite number of equations. To overcome this difficulty, we approximate the
(infinite dimensional) function space with the (finite dimensional) sieve space. Specif-
ically, let uK1(T) = (uK1�1(T)� � � � � uK1�K1(T))

� and vK2(X) = (vK2�1(X)� � � � � vK2�K2(X))
�

denote the known basis functions with dimensionsK1 ∈N andK2 ∈N� respectively, and
letK :=K1 ·K2. The functions uK1(t) and vK2(x) are called the approximation sieves that
can approximate any suitable functions u(t) and v(x) arbitrarily well (see Newey (1997),
Chen (2007), for more discussion on sieve approximation). Since the sieve approximat-
ing space is also a subspace of the function space, π0(T�X) satisfies

E
[
π0(T�X)uK1(T)vK2(X)

�]= E
[
uK1(T)

] ·E[vK2(X)
]�
� (4.1)
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Let {Ti�Xi�Yi}Ni=1 denote an independently and identically distributed sample of ob-
servations drawn from the joint distribution of (T�X�Y). We propose to estimate the
stabilized weights πi = π0(Ti�Xi) by solving the entropy maximization problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

max

{
−

N∑
i=1

πi logπi

}

subject to
1
N

N∑
i=1

πiuK1(Ti)vK2(Xi)
� =

(
1
N

N∑
i=1

uK1(Ti)

)(
1
N

N∑
j=1

vK2(Xj)
�
)
�

(4.2)

Noting
∑N
i=1N

−1πi = 1 (since both uK1(T) and vK2(X) contain the constant 1) and

max

{
−

N∑
i=1

πi logπi

}
= −min

{
N∑
i=1

{
N−1πi

} · log
N−1πi

N−1

}
�

the formulation (4.2) can be interpreted as the minimization of the Kullback–Leibler
divergence between the estimated weights {N−1πi}Ni=1 and the empirical frequencies
{N−1} subject to the empirical moment constraints (4.1). This idea is similar to the ex-
ponential tilting (ET) idea developed in Kitamura and Stutzer (1997) and Imbens, Spady,
and Johnson (1998). The difference is that they consider a parametric problem and we
consider a nonparametric problem.

The primal problem (4.2) is hard to solve numerically. We instead consider its dual
problem, which can be solved by numerically efficient and stable algorithms. Specifi-
cally, let ρ(v) := −e−v−1 for any v ∈ R, by Tseng and Bertsekas (1991), we can show that
the dual solution is given by

π̂K(Ti�Xi) := ρ′(uK1(Ti)
�Λ̂K1×K2vK2(Xi)

)
� (4.3)

where Λ̂K1×K2 is the maximizer of the strictly concave function ĜK1×K2 defined by

Λ̂K1×K2 = arg max
Λ
ĜK1×K2(Λ)

:= 1
N

N∑
i=1

ρ
(
uK1(Ti)

�ΛvK2(Xi)
)

−
(

1
N

N∑
i=1

uK1(Ti)

)�
Λ

(
1
N

N∑
j=1

vK2(Xj)

)
� (4.4)

By the first-order condition, the constraints of (4.2) are automatically satisfied by
{π̂K(Ti�Xi)}Ni=1. The duality between (4.2) and (4.4) is shown in Appendix D in the Repli-
cation file. Having estimated the weights, we now estimate β∗ by solving the generalized
optimization problem, that is,

β̂= arg min
β

N∑
i=1

π̂K(Ti�Xi)L
(
Yi − g(Ti;β)

)
� (4.5)
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Remarks:

1. Alternatively, one can estimate the stabilized weights by estimating the generalized
propensity score function as well as the marginal distribution of the treatment vari-
able nonparametrically (e.g., kernel estimation). But these alternative estimated
weights do not satisfy the empirical moment condition in (4.2). Kang and Schafer
(2007) argued that the inverse probability weighting method is likely to produce ex-
treme weights and unstable estimates. If the number of moment restrictions (i.e.,
K) is large enough, our method is unlikely to produce extreme weights, thereby im-
proving the finite sample performance of β̂. See Imai and Ratkovic (2014) for sim-
ulation evidence on how the covariate balancing method dramatically improves
the poor performance of the propensity score matching and weighting estimator,
reported by Smith and Todd (2005) and Kang and Schafer (2007).

2. The primal problem (4.2) is different from the empirical likelihood approach
(Smith (1997), Imbens (2002)). Notice that ρ(v) = −e−v−1 satisfies the invariance
property (i.e., −ρ′′(v) = ρ′(v)). It turns out that this invariance property is critical
for establishing consistency of the generalized optimization estimator. Any other
choice of ρ(·) that does not have the invariance property may result in biased
causal effect estimation.

3. The proposed estimation (4.5) is a semiparametric estimation problem that con-
tains both finite dimensional and infinite unknown parameters. The general semi-
parametric estimation problem has been studied by Ai and Chen (2003) and Chen,
Linton, and Van Keilegom (2003). Ai and Chen (2003) studied the large sample
properties in the smooth objective function case, while Chen, Linton, and Van Kei-
legom (2003) extended the analysis to criterion functions that are not necessarily
smooth. Equation (4.5) is a special case of the general setting of Chen, Linton, and
Van Keilegom (2003), and we will indeed apply their Theorem 2 (p. 1594) to derive
the asymptotic properties of β̂. There is a major difference between the present
paper and Chen, Linton, and Van Keilegom (2003), however. Our focus is on the
efficiency bound derivation and efficient estimation, whereas their focus is on de-
riving the asymptotic properties of the sequential estimator under high level con-
ditions (e.g., Condition 2.6, p. 1594). These high level conditions are nontrivial to
verify. Most of our derivations are indeed verifying those high level conditions; see
Section 4.2 of the Online Supplemental Material (Ai et al. (2021)).

Related methods

In the binary treatment effect model with T ∈ {0�1}, the propensity score is defined by
π(X) := P(T = 1|X). Hirano, Imbens, and Ridder (2003) estimated the propensity score
function by fitting a logit regression for T onto uK(X). As K increases to infinity, their
estimator attains the efficiency bound of ATE developed by Hahn (1998).

The propensity score satisfies the following covariate balancing equation:

E
[
T ·π(X)−1v(X)

]= E
[
v(X)

]
� (4.6)
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Based on (4.6), various estimators of average treatment effects have been proposed in
the existing literature. Graham, Pinto, and Egel (2012) parametrically model the propen-
sity score π(X) = π(γ�v∗(X)) by a finite dimensional parameter γ and known v∗(X).
They estimate γ by solving the empirical moment of (4.6) with v(X) = v∗(X). Their es-
timator attains the efficiency bound if both the propensity score function is correctly
specified and the conditional potential outcomes {E[Y ∗(t)|X]� t ∈ {0�1}} are linear func-
tion of v∗(X). Imai and Ratkovic (2014) parametrically modeled the propensity score by
π(X;γ) and considered the overidentified moment condition with v(X)= vK(X) being a
specifiedK-dimensional vector of covariates, whereK is possibly larger than the dimen-
sion of γ. They propose to estimate γ through generalized method of moments (GMM)
and empirical likelihood (EL). We note neither GMM nor EL leads to the empirical mo-
ment of (4.6) because both of them are defined to be the maximizer of certain criterion
functions rather than directly solving the empirical moment of (4.6). In addition, the es-
timation of Imai and Ratkovic (2014) is not guaranteed to attain the efficiency bound of
ATE developed by Hahn (1998).

Fong, Hazlett, and Imai (2018) extended the covariate balancing propensity score
approach to a continuous treatment by noticing the moment condition

E
[
π(T�X) · {T −E[T ]} · {X −E[X]}]= 0� (4.7)

They consider estimating the stabilized weights by balancing covariates such that
weighted correlation between T and X is minimized. However, equation (4.7) is of finite
dimension and cannot identify π(T�X). Hence, Fong, Hazlett, and Imai (2018) imposed
a parametric model for the stabilized weights in order to achieve consistent estimation.

5. Large sample properties

To establish the large sample properties of the generalized optimization estimator, we
first show that the estimated weight function π̂K(t�x) is consistent and compute its con-
vergence rates under both theL∞ norm and theL2 norm. The following conditions shall
be imposed.

Assumption 2. (i) The support X of X is a compact subset of Rr . The support T of the
treatment variable T is a compact subset of R. (ii) There exist two positive constants η1
and η2 such that

0<η1 ≤ π0(t�x)≤ η2 <∞� ∀(t�x) ∈ T ×X �

Assumption 3. There exist ΛK1×K2 ∈R
K1×K2 and a positive constant α> 0 such that

sup
(t�x)∈T ×X

∣∣(ρ′−1(π0(t�x)
)− uK1(t)

�ΛK1×K2vK2(x)
∣∣=O(K−α)�

where ρ(v)= −exp(−v− 1).

Assumption 4. (i) For every K1 and K2, the smallest eigenvalues of E[uK1(T)uK1(T)
�]

and E[vK2(X)vK2(X)
�] are bounded away from zero uniformly in K1 and K2. (ii) There
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are two sequences of constants ζ1(K1) and ζ2(K2) satisfying supt∈T ‖uK1(t)‖ ≤ ζ1(K1)

and supx∈X ‖vK2(x)‖ ≤ ζ2(K2), K = K1(N)K2(N) and ζ(K) := ζ1(K1)ζ2(K2), such that
ζ(K)K−α → 0 and ζ(K)

√
K/N → 0 asN → ∞.

Assumption 2(i) restricts both the covariates and treatment level to be bounded. This
condition is restrictive but convenient for computing the convergence rate under L∞
norm. It is commonly imposed in the nonparametric regression literature. This con-
dition can be relaxed, however, if we restrict the tail behavior of the joint distribution
of (X�T ). Assumption 2(ii) restricts the weight function to be bounded and bounded
away from zero. Given Assumption 2(i), this condition is equivalent to dFT |X(T |X) be-
ing bounded away from zero, meaning that each type of individual (denoted by X)
always have a sufficient portion participating in each level of treatment. This restric-
tion is important for our analysis since each individual participates only in one level of
treatment and this condition allows us to construct her statistical counterparts from all
other treatments. Although Assumption 2(ii) is useful in causal analysis and establish-
ing the convergence rates, it is not essential and could be relaxed by allowing η1 (resp.,
η2) to depend on N and to go to zero (resp., infinity) slowly, as N → ∞. Notice that
uK1(t)

�ΛvK2(x) is a linear sieve approximation to any suitable function of (X�T ).
Assumption 3 requires the sieve approximation error of ρ′−1(π0(t�x)) to shrink at a

polynomial rate. This condition is satisfied for a variety of sieve basis functions. For ex-
ample, if both X and T are discrete, then the approximation error is zero for sufficiently
large K and in this case Assumption 3 is satisfied with α = +∞. If some components
of (X�T ) are continuous, the polynomial rate depends positively on the smoothness
of ρ′−1(π0(t�x)) in continuous components and negatively on the number of the con-
tinuous components; indeed, for power series and B-splines, α = −s/r, where s is the
smoothness of approximand and r is the dimension of X. Hence, the proposed method
still suffers from the curse of dimensionality that typically occurs in nonparametric es-
timation. We will show that the convergence rate of the estimated weight function (and
consequently the rate of the generalized optimization estimator) is bounded by this
polynomial rate.

Assumption 4(i) essentially ensures the sieve approximation estimator is nonde-
generate. Similar conditions are common in the sieve regression literature (Andrews
(1991), Newey (1997)). If the approximation error is nonzero, Assumption 4(ii) requires
it to shrink to zero at an appropriate rate as the sample size increases. Newey (1997)
showed that if uK1(t) (resp., uK2(x)) is a power series then ζ1(K1) = O(K1) (resp.,
ζ2(K2)=O(K2)), and if uK1(t) (resp., uK2(x)) is a B-spline, then ζ1(K1)=O(√K1) (resp.,
ζ2(K2)=O(√K2)).

Under these conditions, we are able to establish the following theorem.

Theorem 3. Suppose that Assumptions 2–4 hold. Then we obtain the following:∫
T ×X

∣∣π̂K(t�x)−π0(t�x)
∣∣2 dFT�X(t�x)=Op

(
max

{
K−2α�

K

N

})
�

1
N

N∑
i=1

∣∣π̂K(Ti�Xi)−π0(Ti�Xi)
∣∣2 =Op

(
max

{
K−2α�

K

N

})
�
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The proof of Theorem 3 immediately follows from the Online Supplemental Material
(Ai et al. (2021), Lemma 3.1 and Corollary 3.3).

The following additional condition is needed to establish the consistency of the pro-
posed estimator β̂.

Assumption 5. (i) The parameter space Θ ⊂ R
p is a compact set and the true param-

eter β∗ is in the interior of Θ, where p ∈ N. (ii) L(Y − g(T ;β)) is continuous in β,
supβ∈ΘE[|L(Y − g(T ;β))|2]<∞ and E[supβ∈Θ |L(Y − g(T ;β))|]<∞.

Assumption 5(i) is commonly imposed in the nonlinear regression literature, but can
be relaxed if g(t;β) is linear in β. Assumption 5(ii) is an envelope condition that is suf-
ficient for the applicability of the uniform law of large numbers. A similar condition is
also imposed in Newey and McFadden (1994), Lemma 2.4.

Under these and other conditions, we establish the consistency of the generalized
optimization estimator. The proof of Theorem 4 is given in the Online Supplemental
Material Ai et al. (2021), Section 4.1).

Theorem 4. Suppose that Assumptions 1–5 hold. Then ‖β̂−β∗‖ p−→ 0.

To establish the asymptotic distribution of the proposed estimator, we need some
smoothness condition on the regression function and some undersmoothing condition
on the sieve approximation (i.e., larger K than needed for consistency). We also have
to address the possibility of a nonsmooth loss function. These conditions are presented
below.

Assumption 6. (i) The loss function L(v) is differentiable almost everywhere, g(t;β)
is twice continuously differentiable in β ∈ Θ and we denote its first derivative by
m(t;β) := ∇βg(t;β);

(ii) E[π0(T�X)L
′(Y − g(T ;β))m(T ;β)] is differentiable with respect to β and H0 :=

−∇βE[π0(T�X)L
′(Y − g(T ;β))m(T ;β)]|β=β∗ is nonsingular;

(iii) ε(t�x;β∗) := E[L′(Y − g(T ;β∗))|T = t�X = x] is continuously differentiable in
(t�x);

(iv) Suppose that N−1∑N
i=1 π̂K(Ti�Xi)L

′(Yi − g(Ti; β̂))m(Ti; β̂) = op(N
−1/2) holds

with probability approaching one.

Assumption 7. (i) E[supβ∈Θ |L′(Y − g(T ;β))|2+δ]<∞ for some δ > 0; (ii) The function
class {L′(y − g(t;β)) : β ∈Θ} satisfies

E

[
sup

β1:‖β1−β‖<δ

∣∣L′(Y − g(T ;β1)
)−L′(Y − g(T ;β))∣∣2]1/2 ≤ a · δb

for any β ∈Θ and any small δ > 0 and for some finite positive constants a and b.
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Assumption 6(i) imposes sufficient regularity conditions on both the regression
function and the loss function. These conditions permit nonsmooth loss functions and
are satisfied by the examples mentioned in previous sections. Assumption 6(ii) ensures
that the efficient variance to be finite. Assumption 6(iv) is essentially saying that the al-
most sure first order condition is approximately satisfied; see Pakes and Pollard (1989).
Assumption 7 is a stochastic equicontinuity condition, which is needed for establishing
weak convergence; see Andrews (1994). Again, it is satisfied by widely used loss func-
tions such as L(v)= v2, L(v)= v{τ− I(v≤ 0)}, and L(v)= v2 · |τ− I(v≤ 0)| discussed in
Section 2.

Under the above sufficient conditions, we have the following theorem.

Theorem 5. Suppose that Assumptions 1–7 hold, and strengthen Assumption 4(ii) to

Assumption 4(ii)′ ζ(K)

√
K2/N → 0 and

√
NK−α → 0�

Then
√
N(β̂−β∗) d−→N(0� Veff), where Veff = E[Seff(T�X�Y ;β∗)Seff(T�X�Y ;β∗)�]. There-

fore, β̂ attains the semiparametric efficiency bound of Theorem 1.

Assumption 4(ii)′ imposes further restrictions on the smoothing parameter (K) so
that the sieve approximation is undersmoothed. This condition is stronger than As-
sumption 4(ii) but it is commonly imposed in the semiparametric regression literature.
The proof of Theorem 5 is given in the Online Supplemental Material (Ai et al. (2021),
Section 4).

6. Confidence interval and variance estimation

The asymptotic normality of β̂ = (β̂0� β̂1� � � � � β̂p−1)
� established in Theorem 5 has a

direct implication for constructing the confidence interval of β∗ = (β∗
0�β

∗
1� � � � �β

∗
p−1)

�.
The 95% symmetric confidence interval for β∗

j is given by

[β̂j − 1�96 · ŜEj� β̂j + 1�96 · ŜEj]� (6.1)

where ŜEj = V̂
1/2
jj /

√
N is the standard error of β̂j , and V̂jj is a consistent estimator for

Vjj . Here, Vij denotes the (i� j)-element of Veff, the asymptotic covariance matrix of the
estimator (recall (3.1)). Broadly, there are two approaches for computing the standard
error ŜEj : plug-in and simulation-based approaches. The plug-in approach is described
in Section 6.1, and the simulation-based approach is described in Section 6.2.

6.1 Plug-in approach

The plug-in approach is a conceptually straightforward approach, which estimates Veff

by replacing unknown quantities in (3.1) with consistent estimators. This approach re-
quires the consistent estimation of H0 and ψ(Y�T�X;β∗) (recall Theorem 1). Since the
nonsmooth loss function may invalidate the exchangeability between the expectation
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and derivative operators, some care in the estimation ofH0 is warranted. Using the tower
property of conditional expectation,H0 can be rewritten as follows:

H0 = −∇βE
[
π0(T�X)E

[
L′(Y − g(T ;β))|T�X]m(T ;β)]|β=β∗

= −E
[
π0(T�X)∇βE

[
L′(Y − g(T ;β))|T�X]|β=β∗m

(
T ;β∗)�]

−E
[
π0(T�X)E

[
L′(Y − g(T ;β∗))|T�X]∇βm(T ;β∗)]�

Applying integration by parts (see Appendix E in the Replication file), we obtain

∇βE
[
L′(Y − g(T ;β))|T = t�X = x

]|β=β∗

= E

[
L′(Y − g(T ;β∗)) ∂

∂y
log fY�T�X(Y�T�X)|T = t�X = x

]
m
(
t;β∗) (6.2)

and consequently,

H0 = −E

[
π0(T�X)L

′(Y − g(T ;β∗))
×
{
∂

∂y
log fY�T�X(Y�T�X)m

(
T ;β∗)m(T ;β)� + ∇βm

(
T ;β∗)�}]�

The log density log fY�T�X(y� t�x) can be estimated via the widely used sieve extremum
estimator Chen (2007), Example 2.6, p. 5565:

f̂Y�T�X(y� t�x) := exp
(
â�
K0
rK0(y� t�x)

)∫
Y×T ×X

exp
(
â�
K0
rK0(y� t�x)

)
dy dt dx

�

where âK0 ∈R
K0 (K0 ∈N) maximizes the following concave objective function:

âK0 := arg max
a∈RK0

1
N

N∑
i=1

[
a�rK0(Yi�Ti�Xi)− log

∫
Y×T ×X

exp
(
a�rK0(y� t�x)

)
dy dt dx

]
�

and rK0(t� y�x) is aK0-dimensional sieve basis. ThenH0 can be estimated by

Ĥ := − 1
N

N∑
i=1

π̂K(Ti�Xi)L
′(Yi − g(Ti; β̂))

×
{
â�
K0

∂

∂y
rK0(Yi�Ti�Xi)m(Ti; β̂)m(Ti; β̂)� + ∇βm(Ti; β̂)

}
�

Also, ψ(Y�T�X;β∗) can be directly estimated by the plug-in sieve estimator:

ψ̂(Y�T�X; β̂)
= π̂K(T�X)L′(Y − g(T ; β̂))m(T ; β̂)− π̂K(t�x)Ê

[
L′(Y − g(T ; β̂))|T�X]m(T ; β̂)

+ Ê
[
π̂K(T�X)L

′(Y − g(T ; β̂))|T ]m(T ; β̂)+ Ê
[
π̂K(T�X)L

′(Y − g(T ; β̂))|X]m(T ; β̂)�
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where Ê[π̂K(T�X)L′(Y −g(T ; β̂))|T�X] is the least square regression of π̂K(T�X)L′(Y −
g(T ; β̂)) on a sieve basis wK0(T�X); Ê[L′(Y − g(T ; β̂))|T ] and Ê[π̂K(T�X)L′(Y −
g(T ; β̂))|X] are defined similarly.

Finally, a consistent estimator of Veff is given by

V̂ := Ĥ−1

{
1
N

N∑
i=1

ψ̂(Yi�Ti�Xi; β̂)ψ̂(Yi�Ti�Xi; β̂)�
}(
Ĥ�)−1

� (6.3)

The sieve extreme estimator is uniformly strong consistent in the almost sure sense (see
Chen (2007), Theorem 3.1). Also from Theorems 3 and 4, we have sup(t�x)∈T ×X |π̂K(t�x)−
π0(t�x)| = op(1) and ‖β̂−β∗‖ → 0. With these results, the consistency of V̂ follows from
standard arguments.

6.2 Simulation-based approach

The plug-in approach described in Section 6.1 is conceptually straightforward, but may
be hard to implement from a practical point of view. In this section, we describe the Jack-
knife and bootstrap methods as alternative approaches. First, the Jackknife method pro-
ceeds as follows (Wasserman (2013)). The ith Jackknife sample is constructed by deleting
the ith observation from the data set:

J [−i] := {
Tj�Xj�Yj : j ∈ {1�2� � � � � i− 1� i+ 1� � � � �N}}�

The ith Jackknife replicate, denoted as β̂
[−i] = (β̂[−i]

0 � β̂[−i]
1 � � � � � β̂[−i]

p−1)
�, is defined as the

point estimator for β∗ computed on the ith Jackknife sample J [−i]. The Jackknife-based
standard error of estimated β∗

j is given by

ŜE
jack
j =

{
N − 1
N

N∑
i=1

(
β̂[−i]
j − β̂[·]

j

)2
} 1

2

� (6.4)

where β̂[·]
j =N−1∑N

i=1 β̂
[−i]
j . Substitute (6.4) into (6.1) to compute the confidence inter-

val.
Second, the bootstrap method proceeds as follows. The bth bootstrap sample

{T {b}
i �X

{b}
i �Y

{b}
i }Ni=1 is resampled with replacement from the original sample {Ti�Xi�

Yi}Ni=1 with the uniform probability. The bth bootstrap replicate, denoted by β̂
{b} =

(β̂
{b}
0 � β̂

{b}
1 � � � � � β̂

{b}
p−1)

�, is defined as the point estimator for β∗ computed on the bth

bootstrap sample. Repeat B times to get {β̂{b}}Bb=1. The bootstrapped standard error of
estimated β∗

j is given by

ŜE
boot
j =

{
1
B

B∑
b=1

(
β̂

{b}
j − β̂{·}

j

)2
} 1

2

� (6.5)
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where β̂{·}
j = B−1∑B

b=1 β̂
{b}
j . Substitute (6.5) into (6.1) to compute the confidence inter-

val. (An alternative bootstrap approach can be found in Chen, Linton, and Van Keilegom
(2003), Section 3.3).

Bootstrapping provides another way to construct a confidence interval. Sort the B
bootstrap replicates from the smallest to the largest, and relabel them as β̂(1)j ≤ · · · ≤
β̂(B)j . The 95% bootstrapped equitailed confidence interval for β∗

j is given by

[
β̂(0�025B)
j � β̂(0�975B)

j

]
� (6.6)

The entire confidence interval (6.1) can be replaced with (6.6). The former bootstrap
approach (6.5) relies on the asymptotic normality result, while the latter approach (6.6)
does not. We distinguish them hereafter, calling the former bootstrap method I and the
latter bootstrap method II.

7. Selection of tuning parameters

The large sample properties of the proposed estimator permit a wide range of val-
ues of K1 and K2. This presents a dilemma for applied researchers who have only
one finite sample and would like to have some guidance on the selection of smooth-
ing parameters. Several data-driven methods for selecting tuning parameters in series
estimation have been discussed in Li (1987) and Li and Racine (2007), Section 15.2.
Based on that background, we present two data-driven approaches to select K1 and
K2. The first one is simply to minimize a (penalized) loss function. Define L̄(K1�K2) :=
N−1∑N

i=1 π̂K(Ti�Xi)L(Yi − g(Ti; β̂)). There are several ways to penalize using large K1

orK2:

No penalty. L(K1�K2)= L̄(K1�K2).
Additive penalty. L(K1�K2)= (1 + 2(K1 +K2)/N)× L̄(K1�K2).
Multiplicative penalty. L(K1�K2)= (1 + 2K1K2/N)× L̄(K1�K2).

Choose (K∗
1 �K

∗
2) that minimizes L(K1�K2) in some choice sets (K1�K2) ∈ K1 ×K2.

The second approach is the J-fold cross-validation (CV), which proceeds as follows:

1. Divide N samples into J groups, (say J = 5 or 10), and let n=N/J. The data in the
jth group is denoted by Sj = {X(j)i � T (j)i �Y

(j)
i : i= 1� � � � � n} for j ∈ {1� � � � � J}.

2. For each j ∈ {1� � � � � J}, compute the following quantities based on the data set
S(−j) = {Xi� Ti�Yi}Ni=1/Sj :

Λ̂
(−j)
K1×K2

= arg max
Λ
Ĝ
(−j)
K (Λ)

= 1
N − n

∑
i∈S(−j)

ρ
(
u�
K1
(Ti)ΛvK2(Xi)

)
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−
[

1
N − n

∑
i∈S(−j)

u�
K1
(Ti)

]
Λ

[
1

N − n
∑
i∈S(−j)

vK2(Xi)

]
�

π̂
(−j)
K (T�X)= ρ′(u�

K1
(T)Λ̂

(−j)
K1×K2

vK2(X)
)
�

β̂
(−j)
K = arg min

∑
i∈S(−j)

π̂
(−j)
K (Ti�Xi)

{
Yi − g(Ti;β)

}2
�

3. Choose optimal K1 and K2 so that the following cross-validation criterion is mini-
mized:

CV (K1�K2)=
J∑
j=1

[∑
k∈Sj

π̂
(−j)
K (Tk�Xk)

{
Yk − g(Tk; β̂(−j)K

)}2
]
�

When J = N , the second approach coincides with the leave-out cross-validation
(Stone (1974)). Li (1987) showed that the above procedures to select K1 and K2 are
asymptotically optimal in the sense of minimizing a weighted loss function for regres-
sion.

It should be noted that theK1 andK2 chosen by the above criteria are not guaranteed
to satisfy the undersmoothing conditions Assumption 4(ii′), which has been pointed out
by Li and Racine (2007), Section 15.2. Linton (1995) and Donald and Newey (2001) de-
veloped second-order theory to determine the optimal tuning parameters with respect
to higher order MSE for a class of semiparametric estimation problems. In general, the
optimal rates for K1 and K2 according to this criterion are larger reflecting the need for
undersmoothing. This suggests that in practice one should take the K1 and K2 deter-
mined by CV or L as a lower bound.

8. Some extensions

The condition (2.1) that the causal effect is parameterized may be restrictive for some
applications. To relax this condition, we can consider the nonparametric specification

min
g(·)

∫
T
E
[
L
(
Y ∗(t)− g(t))]dFT (t)�

Under Assumption 1, the above optimization is equivalent to

min
g(·) E

[
π0(T�X)L

(
Y − g(T))]�

We can estimate g(·) through the weighted nonparametric sieve regression:

min
g(·)∈HK1

N∑
i=1

π̂K(Ti�Xi)L
(
Yi − g(Ti)

)
�

where HK1 := {g(·) : T → R� g(t) = λ�uK1(t) : λ ∈ R
K1} is a specified sieve space. The

extension to the general loss function requires considerable derivation and shall be
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dealt with in a separate paper. In this section, we only consider three specific cases:
first, the dose-response curve θt := E[Y ∗(t)], which corresponds to L(v) = v2; second,
the average treatment effects (ATE), which is defined by θt1�t0 := E[Y ∗(t1) − Y ∗(t0)] for
t1 �= t0; third, the average treatment effects on the treated (ATT), which is defined by
θt1�t0|t0 := E[Y ∗(t1)−Y ∗(t0)|T = t0] for t1 �= t0.

8.1 Estimation of effect curve and average treatment effects

We begin with estimation of θt . Note that, for all t ∈ T and under Assumption 1, we can
rewrite θt as

θt := E
[
Y ∗(t)

]= E
[
π0(T�X)Y |T = t]�

With π0(T�X) replaced by π̂K(T�X), we estimate θt by regressing π̂K(T�X)Y on uK1(t),
thus

θ̂t :=
[
N∑
i=1

π̂K(Ti�Xi)YiuK1(Ti)
�
][

N∑
i=1

uK1(Ti)uK1(Ti)
�
]−1

uK1(t)�

To aid presentation of the asymptotic properties of θ̂t , define the following quantities:

�K1×K1 := E
[
uK1(T)u

�
K1
(T)

]
�

bK1(Ti�Xi�Yi) := π0(Ti�Xi)Yi · uK1(Ti)−E
[
π0(Ti�Xi)Yi · uK1(Ti)|Ti�Xi

]
+E

[
π0(Ti�Xi)Yi · uK1(Ti)|Xi

]−E
[
π0(Ti�Xi)Yi · uK1(Ti)

]
�

Vt := E
[{
u�
K1
(t)�−1

K1×K1
bK1(Ti�Xi�Yi)

}2]
= u�

K1
(t) ·�−1

K1×K1
·E[bK1(Ti�Xi�Yi)b

�
K1
(Ti�Xi�Yi)

] ·�−1
K1×K1

· uK1(t)�

Theorem 6. Suppose supt∈T |θt − (γ∗)�uK1(t)| =O(K−α̃
1 ) holds for some α̃ > 0 and γ∗ ∈

R
K1 , λmin{E[bK1(T�X�Y)b

�
K1
(T�X�Y)]} ≥ c > 0, and Assumptions 1–4 hold. Then:

1. (Consistency)∫
T

|θ̂t − θt |2 dFT (t)=Op
(
ζ(K)2

{
K

N
+K−2α

}
+K−2α̃

1

)
�

sup
t∈T

|θ̂t − θt | =Op
(
ζ1(K1)

{
ζ(K)

(√
K

N
+K−α

)
+K−α̃

1

})
�

2. (Asymptotic normality) suppose Assumption 4’ and
√
NK−α̃

1 → 0 hold. Then for any
fixed t ∈ T ,

√
NV

−1/2
t [θ̂t − θt] d−→N(0�1)�

See Ai et al. (2021), Section 5.1, for a proof of Theorem 6.



798 Ai, Linton, Motegi, and Zhang Quantitative Economics 12 (2021)

The proposed estimation procedure can also be used to estimate the average treat-
ment effects (ATE), which is defined by

θt1�t0 := E
[
Y ∗(t1)−Y ∗(t0)

]= θt1 − θt0 for t1 �= t0�

The estimator of θt1�t0 is defined by θ̂t1�t0 := θ̂t1 − θ̂t0 . Let

Vt1�t0 := E
[{
u�
K1
(t1)�

−1
K1×K1

bK1(Ti�Xi�Yi)− u�
K1
(t0)�

−1
K1×K1

bK1(Ti�Xi�Yi)
}2]

= {
uK1(t1)− uK1(t0)

}�
�−1
K1×K1

E
[
bK1(Ti�Xi�Yi)b

�
K1
(Ti�Xi�Yi)

]
×�−1

K1×K1

{
uK1(t1)− uK1(t0)

}
�

Similar to prove Theorem 6, we have the following corollary.

Corollary 7. Suppose supt∈T |θt − (γ∗)�uK1(t)| = O(K−α̃
1 ) holds for some α̃ > 0 and

γ∗ ∈ R
K1 , λmin{E[bK1(T�X�Y)b

�
K1
(T�X�Y)]} ≥ c > 0, Assumptions 1–4’ hold, and√

NK−α̃
1 → 0. Then

√
NV

−1/2
t1�t0

[θ̂t1�t0 − θt1�t0] d−→N(0�1)�

Feasible versions of the above CLT’s are implemented using plug-in sieve estimation
of the unknown quantities. For example, Vt can be estimated by

V̂t = 1
N

N∑
i=1

{
u�
K1
(t)�̂−1

K1×K1
b̂K1(Ti�Xi�Yi)

}2
�

where �̂K1×K1 :=N−1∑N
i=1 uK1(Ti)u

�
K1
(Ti),

b̂K1(Ti�Xi�Yi)

:= π̂K(Ti�Xi)Yi · uK1(Ti)− Ê
[
π̂K(Ti�Xi)Yi · uK1(Ti)|Ti�Xi

]
+ Ê

[
π̂K(Ti�Xi)Yi · uK1(Ti)|Xi

]− Ê
[
π̂K(Ti�Xi)Yi · uK1(Ti)

]
is the plug-in estimates of bK1(Ti�Xi�Yi), and Ê[π̂K(T�X)YuK1(T)|T�X] is the least
square regression of π̂K(T�X)YuK1(T) on a sieve basis wK0(T�X), and Ê[π̂K(T�X) ×
YuK1(T)|X] is the least square regression of π̂K(T�X)YuK1(T) on a sieve basis vK0(X).

8.2 Average treatment effects on the treated

Another important parameter for program evaluation is the average treatment effects
on the treated (ATT), which is defined by

θt1�t0|t0 := E
[
Y ∗(t1)−Y ∗(t0)|T = t0

]≡ θt1|t0 − θt0|t0 for t1 �= t0�
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Note that θt0|t0 = E[Y ∗(t0)|T = t0] = E[Y |T = t0], so it can be estimated by regressing Y
on uK1(t0):

θ̂t0|t0 :=
[
N∑
i=1

Yi · u�
K1
(Ti)

][
N∑
i=1

uK1(Ti)u
�
K1
(Ti)

]−1

uK1(t0)�

The difficulty is to estimate θt1|t0 = E[Y ∗(t1)|T = t0] owing to that Y ∗(t1) cannot be ob-
served under the treatment level T = t0. Under Assumption 1, θt1|t0 can be identified as
follows:

θt1|t0 = E
[
Y ∗(t1)|T = t0

]= E
[
E
[
Y ∗(t1)|X�T = t0

]|T = t0
]

= E
[
E
[
Y ∗(t1)|X�T = t1

]|T = t0
]
(by Assumption 1)

=
∫

E[Y |X = x�T = t1] · fX|T (x|t0)
fX|T (x|t1) · fX|T (x|t1)dx

=
∫

E[Y |X = x�T = t1] · fT (t1)/fT |X(t1|x)
fT (t0)/fT |X(t0|x) · fX|T (x|t1)dx

= E

[
π0(T�X)

π0(t0�X)
·Y

∣∣∣∣T = t1
]

= E

[
π0(T�X)

π0(T − δ�X) ·Y
∣∣∣∣T = t1

]
� (8.1)

where δ := t1 − t0. Based on (8.1), we replace π0(·) by the estimator π̂K(·) then apply
sieve regression on uK1(t1), so that θt1|t0 can be estimated by

θ̂t1|t0 :=
[
N∑
i=1

π̂K(Ti�Xi)

π̂K(Ti − δ�Xi) ·Yi · u�
K1
(Ti)

][
N∑
i=1

uK1(Ti)u
�
K1
(Ti)

]−1

uK1(t1)�

Therefore, θt1�t0|t0 can be estimated by

θ̂t1�t0|t0 := θ̂t1|t0 − θ̂t0|t0 �
To aid presentation of the asymptotic properties of θ̂t1|t0 , define the following quan-

tities:

b1�K1(Ti�Xi�Yi)

:= fT (Ti + δ)
fT (Ti)

·E[Y |T = Ti + δ�X = Xi] · uK1(Ti + δ)

−E

[
fT (Ti + δ)
fT (Ti)

·E[Y |T = Ti + δ�X = Xi] · uK1(Ti + δ)
∣∣∣∣Xi]

−E

[
fT (Ti + δ)
fT (Ti)

·E[Y |T = Ti + δ�X = Xi] · uK1(Ti + δ)
∣∣∣∣Ti]

+E

[
fT (Ti + δ)
fT (Ti)

·E[Y |T = Ti + δ�X = Xi] · uK1(Ti + δ)
]
�
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b2�K1(Ti�Xi�Yi)

:= π0(Ti�Xi)

π0(Ti − δ�Xi) ·Yi · uK1(Ti)−E

[
π0(Ti�Xi)

π0(Ti − δ�Xi) ·Yi · uK1(Ti)

∣∣∣∣Ti�Xi]
+E

[
π0(Ti�Xi)

π0(Ti − δ�Xi) ·Yi · uK1(Ti)

∣∣∣∣Xi]−E

[
π0(Ti�Xi)

π0(Ti − δ�Xi) ·Yi · uK1(Ti)

]
�

b3�K1(Ti�Yi) := uK1(Ti) · {Yi −E[Yi|Ti]
}
�

Note that the expectations of b1�K1 , b2�K1 and b3�K1 are zeros. Let

Vt1�t0|t0 := E
[{
u�
K1
(t1)�K1×K1(b1�K1 + b2�K1)− u�

K1
(t0)�K1×K1b3�K1

}2]=w�Σ2K1×2K1w�

where w := (u�
K1
(t1) ·�K1×K1�u

�
K1
(t0) ·�K1×K1)

� ∈R
2K1 and

Σ2K1×2K1 := E

[
{b1�K1 + b2�K1}{b1�K1 + b2�K1}�� −{b1�K1 + b2�K1}b�

3�K1

−b3�K1{b1�K1 + b2�K1}�� b3�K1b
�
3�K1

]
�

Theorem 8. Suppose supt∈T |E[π0(T�X)Y/π0(T −δ�X)|T = t]−(γ∗)�uK1(t)| =O(K−α̃
1 )

holds for some α̃ > 0 and γ∗ ∈ R
K1 , λmin(Σ2K1×2K1) ≥ c > 0, Assumptions 1–4’ hold, and√

NK−α̃
1 → 0. Then

√
NV

−1/2
t1�t0|t0[θ̂t1�t0|t0 − θt1�t0|t0] d−→N(0�1)�

See Ai et al. (2021), Section 5.2, for a proof of Theorem 8. Feasible versions of the
above CLTs are implemented using plug-in sieve estimation of the unknown quantities.

9. Monte Carlo simulations

The large sample properties established in previous sections do not indicate how the
generalized optimization estimator behaves in finite samples. To evaluate its finite sam-
ple performance, we conduct a simulation study on a continuous treatment. A simula-
tion design is described in Section 9.1, and results are discussed in Section 9.2. To save
space, the simulation study in the present section is kept compact; see the Online Sup-
plemental Material (Ai, Linton, Motegi, and Zhang (2021), Section 6) for a complete sim-
ulation study.

9.1 Simulation design

Let Xi
i�i�d�∼ N(0�1) be a covariate. Error terms are drawn mutually independently as

ξi
i�i�d�∼ N(0�1) and εi

i�i�d�∼ N(0�1). We consider two data generating processes (DGPs):

DGP-L T = 1 + 0�2X + ξ and Y = 1 +X + T + ε. (X affects T and Y linearly.)
DGP-NL T = 0�1X2 + ξ and Y =X2 + T + ε. (X affects T and Y nonlinearly.)
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For each DGP, the true link function is E[Y(t)] = 1 + t, a simple linear function with
β∗

1 = β∗
2 = 1. We use a linear link function g(T ;β) = β1 + β2T , compute the general-

ized optimization estimator β̂ = (β̂1� β̂2)
� with the exponential tilting function ρ(v) =

−e−v−1, and examine its performance.
To compute the generalized optimization estimator, two sieve basis functions

uK1(T) and vK2(X) need to be specified. For uK1(T), we consider

u2(T)= (1�T )�� u3(T)= (
1�T�T 2)�� u4(T)= (

1�T�T 2�T 3)��
For vK2(X), we consider

v2(X)= (1�X)�� v3(X)= (
1�X�X2)�� v4(X)= (

1�X�X2�X3)��
Since K1�K2 ∈ {2�3�4}, there are 9 pairs of (K1�K2) in total. The 10-fold cross validation
is employed to select an optimal pair (K∗

1 �K
∗
2) among the 9 pairs (recall Section 7). For

comparison, simulation results with fixed (K1�K2)= (2�3) are also reported.
We also compute Fong, Hazlett, and Imai’s (2018) covariate balancing generalized

propensity score estimator with a linear model specification and the quadratic loss func-
tion. The linear specification is correct under DGP-L, while it is incorrect under DGP-NL.
Comparing our estimator and the parametric estimator of Fong, Hazlett, and Imai (2018)
allows us to highlight the robustness of the former to nonlinear DGPs. Fong, Hazlett, and
Imai (2018) also proposed a nonparametric estimator in their Section 3.3. In their simu-
lation study, the parametric and nonparametric estimators exhibit similar performance
for each DGP considered (Fong, Hazlett, and Imai (2018), Figure 2). Hence, the present
paper focuses on the parametric version of their estimator to save space.

Our proposed estimator and the parametric version of Fong, Hazlett, and Imai’s
(2018) estimator are computed in a simulated sample with size N ∈ {100�500}, after
which another sample is generated and both estimators are computed again. This ex-
ercise is repeatedM = 1000 times.

To evaluate the performance of point estimation, the bias, standard deviation, and
root mean squared error (RMSE) of β̂1 and β̂2 are calculated from (a subset of)M = 1000
simulations. In a small portion of the M = 1000 samples, π̄N ≡ (1/N)

∑N
i=1 π̂K(Ti�Xi),

which should be equal to 1 in theory, takes a value far from 1 due to numerical instabil-
ity in the computation ofΛ∗

K1×K2
. The numerical maximization with respect toΛ should

lead to a global maximizer Λ∗
K1×K2

in theory, but optimizing the K1 ×K2 elements of Λ
all at once is sometimes hard in practice. Hence, we calculate the bias, standard devia-
tion, and RMSE from Monte Carlo samples such that π̄N ∈ [0�5�2]. There can be a few
samples in which π̄N /∈ [0�5�2], and these samples are simply discarded. (We admit that
this computational problem becomes worse as the dimension of covariates X becomes
larger.)

To evaluate the finite sample performance of the interval estimation associated with
the proposed method, we implement the bootstrap method II with B = 500 iterations
based on (6.6). In this method, we construct bootstrapped confidence intervals with-
out using the asymptotic normality. For each of β1 and β2, we compute the 95% cover-
age probability and the average width of the 95% confidence intervals across M = 1000
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Table 1. Simulation results on point estimation.

Intercept β1 (Truth: β∗
1 = 1) Slope β2 (Truth: β∗

2 = 1)

N = 100 N = 500 N = 100 N = 500

(K1�K2) Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE Bias, Stdev, RMSE

DGP-L: T = 1 +X + ξ and Y = 1 +X + T + ε
GOE (2�3) 0�005�0�187�0�187 0�001�0�083�0�083 0�001�0�107�0�107 0�002�0�050�0�050
GOE CV10 −0�005�0�190�0�190 0�006�0�080�0�080 0�006�0�112�0�112 0�000�0�047�0�047
CBGPS – −0�005�0�149�0�149 0�001�0�067�0�067 0�003�0�106�0�106 −0�001�0�049�0�049

DGP-NL: T = 0�1X2 + ξ and Y =X2 + T + ε
GOE (2�3) 0�002�0�176�0�176 0�004�0�079�0�079 0�004�0�104�0�104 −0�001�0�048�0�048
GOE CV10 −0�037�0�176�0�180 −0�012�0�077�0�078 0�102�0�173�0�201 0�080�0�107�0�133
CBGPS – −0�035�0�179�0�182 −0�021�0�075�0�078 0�189�0�188�0�267 0�194�0�083�0�211

Note: “GOE” is the proposed generalized optimization estimator. K1 and K2 are the dimensions of the polynomials of T
and X , respectively. CV10 signifies the 10-fold cross validation, where the choice set is K1�K2 ∈ {2�3�4}. “CBGPS” is Fong, Ha-
zlett, and Imai’s (2018) parametric covariate balancing generalized propensity score estimator. The sample size isN ∈ {100�500},
and the number of Monte Carlo iterations is M = 1000.

Monte Carlo samples. For simplicity, the dimensions of the sieve basis functions are
fixed at (K1�K2)= (2�3) when the performance of the interval estimation is evaluated.

9.2 Simulation results

Simulation results on point and interval estimation are reported in Tables 1 and 2, re-
spectively. We discuss point estimation first, and then discuss interval estimation. Under
DGP-L, the generalized optimization estimator (labeled as GOE) has reasonably small
RMSE whether (K1�K2) are fixed at (2�3) or selected via the 10-fold cross validation.
For the intercept parameter β1, the RMSE of the parametric version of the covariate bal-
ancing generalized propensity score estimator (labeled as CBGPS) is even smaller than
the RMSE of GOE. For the slope parameter β2, the RMSE of CBGPS is as small as the
RMSE of GOE. The sharp performance of CBGPS is not surprising, since it has a correct
parametric specification under DGP-L1.

Under DGP-NL, GOE dominates CBGPS in terms of the estimation of β2. WhenN =
100, the RMSEs with respect to β2 are {0�104�0�201�0�267} for GOE with fixed (K1�K2),
GOE with the cross validation, and CBGPS, respectively. Similarly, when N = 500, the
RMSEs are {0�048�0�133�0�211}. The bias and RMSE of GOE shrink to 0 as the sample
size grows, indicating that GOE operates well under the nonlinear DGP. CBGPS, by con-
trast, fails with considerable bias under DGP-NL. The bias of CBGPS is 0�189 forN = 100
and 0�194 for N = 500. These results suggest that GOE performs well for both linear and
nonlinear scenarios, while CBGPS performs well for linear scenarios only.

We now discuss the results on interval estimation associated with GOE. For each
DGP, parameter, and sample size, the 95% coverage probability is nearly identical to 0�95.
Further, the average width of the bootstrapped confidence intervals shrinks as the sam-
ple size grows, as expected. See β2 under DGP-NL, for example. The coverage probabil-
ities are 0�956 and 0�950 when N ∈ {100�500}, respectively. Similarly, the average widths
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Table 2. Simulation results on interval estimation (generalized optimization estimator).

DGP-L DGP-NL

Intercept β1 Slope β2 Intercept β1 Slope β2

CP95 AveW CP95 AveW CP95 AveW CP95 AveW

N = 100 0�957 0�709 0�940 0�428 0�944 0�677 0�956 0�422
N = 500 0�966 0�311 0�947 0�184 0�942 0�305 0�950 0�180

Note: DGP-L: T = 1 +X+ξ and Y = 1 +X+T + ε. DGP-NL: T = 0�1X2 +ξ and Y =X2 +T + ε. 95% confidence intervals on
the target parameters (β1�β2) are constructed via the bootstrap with B= 500 iterations. The sieve basis functions are specified
as u2(T) = (1�T )� (i.e., K1 = 2) and v3(X) = (1�X�X2)� (i.e., K2 = 3). “CP95” signifies the 95% coverage probability, while
“AveW” signifies the average width of the confidence intervals across M = 1000 Monte Carlo samples. The sample size is N ∈
{100�500}.

are 0�422 and 0�180. These results indicate that the bootstrap method II given in (6.6)
operates sufficiently well under both linear and nonlinear scenarios.

10. Empirical study

We revisit the U.S. presidential campaign data analyzed by Urban and Niebler (2014) and
Fong, Hazlett, and Imai (2018). The motivation of the original study, Urban and Niebler
(2014), is well summarized in Fong, Hazlett, and Imai (2018), Section 2:

Urban and Niebler (2014) explored the potential causal link between advertising and cam-
paign contributions. Presidential campaigns ordinarily focus their advertising efforts on
competitive states, but if political advertising drives more donations, then it may be worth-
while for candidates to also advertise in noncompetitive states. The authors exploit the fact
that media markets sometimes cross state boundaries. This means that candidates may
inadvertently advertise in noncompetitive states when they purchase advertisements for
media markets that mainly serve competitive states. By restricting their analysis to non-
competitive states, the authors attempt to isolate the effect of advertising from that of other
campaigning, which do not incur these media market spillovers.

The treatment of interest, the number of political advertisements aired in each zip
code, can be regarded as a continuous variable since it takes a range of values from
0 to 22379 across N = 16265 zip codes. Restricting themselves to a binary treatment
framework, Urban and Niebler (2014) compared 5230 zip codes that received more than
1000 advertisements and 11035 zip codes that received less than 1000 advertisements.
Their empirical results suggest that advertising in noncompetitive states had a signifi-
cant causal effect on the level of campaign contributions.

Fong, Hazlett, and Imai (2018) used the continuous treatment model, taking advan-
tage of their proposed CBGPS method. Their empirical results suggest, contrary to Ur-
ban and Niebler (2014), that advertising in noncompetitive states did not have a signif-
icant causal effect on the level of campaign contributions (cf. Fong, Hazlett, and Imai
(2018), Table 2).

Using the generalized optimization estimator, we analyze the impact of advertise-
ments on contributions based on both binary and continuous treatment models. Let Yi
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and Ti be the log of the campaign contribution and political advertisement in zip code
i ∈ {1� � � � �N}, respectively. Stack eight covariates as

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

log(Population)
%Over 65

log(Income + 1)
%Hispanic

%Black
log(Population Density + 1)

%College Graduates
Can Commute

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� (10.1)

Subscript i is omitted for brevity, but (10.1) is defined for each zip code. The definition of
each covariate is almost self-explanatory (see Fong, Hazlett, and Imai (2018), Section 5
for more details). The log-transformation is implemented for Y , T , and some of the co-
variates in order to stabilize computation. Urban and Niebler (2014) made the data pub-
licly available at the American Journal of Political Science (AJPS) Dataverse archive. See
Section 10.1 for the binary treatment model and Section 10.2 for the continuous treat-
ment model.

10.1 Binary treatment model

We dichotomize the treatment variable (i.e., the log-advertisement) as D = 1(T > 4).
This is equivalent to dichotomizing the advertisement at 100, and 7137 zip codes out of
N = 16265 are above the cut-off level. The potential outcome model is written as

E
[
Y ∗(d)

]= β1 +β2 × d�
Then the stabilized weight reduces to

π0(D�X)=D× P(D= 1)
P(D= 1|X) + (1 −D)× P(D= 0)

P(D= 0|X) �

The parameters of interest, β = (β1�β2)
�, are identified as

β1 = E
[
Y ∗(0)

]= E
[
(1 −D)π0(D�X)Y

]
E
[
(1 −D)π0(D�X)

] �
β2 = E

[
Y ∗(1)−Y ∗(0)

]= E
[
Dπ0(D�X)Y

]
E
[
Dπ0(D�X)

] − E
[
(1 −D)π0(D�X)Y

]
E
[
(1 −D)π0(D�X)

] �
The covariate balancing equation of propensity score becomes

E
[
Dπ(D�X)v(X)

]
E[D] = E

[
v(X)

]= E
[
(1 −D)π(D�X)v(X)]

E[1 −D] �

Our proposed estimator of stabilized weights becomes

π̂K(Di�Xi)=Diρ′(λ̂�
1KvK(Xi)

)+ (1 −Di)ρ′(λ̂�
2KvK(Xi)

)
�
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where

λ̂1K = arg max
λ1

{ N∑
i=1

Diρ
(
λ�

1 vK(Xi)
)

N∑
i=1

Di

− 1
N

N∑
i=1

λ�
1 vK(Xi)

}
�

λ̂2K = arg max
λ2

{ N∑
i=1

(1 −Di)ρ
(
λ�

2 vK(Xi)
)

N∑
i=1

(1 −Di)
− 1
N

N∑
i=1

λ�
2 vK(Xi)

}
�

Finally, the generalized optimization estimator for β is given by

β̂1 =

N∑
i=1

(1 −Di)π̂K(Di�Xi)Yi
N∑
i=1

(1 −Di)π̂K(Di�Xi)
� β̂2 =

N∑
i=1

Diπ̂K(Di�Xi)Yi

N∑
i=1

Diπ̂K(Di�Xi)

− β̂1�

The sieve basis function is specified as vK(X)= (1�X�)� with K = 9, where the covari-
ates are given in (10.1). The exponential tilting function ρ(w)= −e−w−1 is used. As in the
simulation study in Section 9, 95% confidence intervals for β1 and β2 are computed via
the bootstrap method II with B= 1000 iterations; recall (6.6).

Our empirical results are as follows. First, β̂1 = 1�227 and the bootstrapped con-
fidence interval is [1�198�1�257]. Second, β̂2 = 0�061 and the bootstrapped confidence
interval is [0�003�0�076]. The latter result indicates that advertising in noncompetitive
states has a significantly positive causal effect on the level of campaign contributions at
the 5% level, which is a consistent result with Urban and Niebler (2014).

10.2 Continuous treatment model

The procedure for the continuous treatment model is described in detail in Section 9,
hence we refrain from repeating it here. The link function is specified as g(T�β) =
β1 + β2T + β3T

2, where β = (β1�β2�β3)
�. The sieve basis functions are specified as

uK1(T) = (1�T�T 2)� with K1 = 3 and vK2(X)= (1�X�)� with K2 = 9, where the covari-
ates are given in (10.1). The exponential tilting function ρ(w) = −e−w−1 is used. 95%
confidence intervals for β are computed via the bootstrap method II with B= 1000 iter-
ations.

Our empirical results are as follows. First, β̂1 = 1�100 and the bootstrapped con-
fidence interval is [0�909�1�320]. Second, β̂2 = 0�140 and the confidence interval is
[−0�025�0�232]. Third, β̂3 = −0�015 and the confidence interval is [−0�025�0�001]. The
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latter two results suggest that advertising in noncompetitive states does not have a sig-

nificant causal effect on the level of campaign contributions, which is a consistent result

with Fong, Hazlett, and Imai (2018).

The binary and continuous approaches lead to the opposite conclusions; the former

finds the marginally significant impact of advertisements on campaign contributions

at the 5% level, while the latter finds the marginally insignificant impact. These results

suggest that the causal effect should be small if it exists at all. The binary model involves

only one sieve basis function v9(X), while the continuous model involves two sieve basis

functions u3(T) and v9(X). The latter requires the joint estimation of a relatively large-

dimensional parameter matrix Λ3×9; recall (4.4). This numerical complexity might be a

reason why a significant causal effect is not detected under the continuous model.

11. Concluding remarks

The weighted optimization framework provides a unified approach toward estimation

of treatment effects, under the condition of unconfounded treatment assignment. We

established the semiparametric efficiency of our methodology, but perhaps the main

advantage is its relatively simple form and good finite sample properties.

There are several extensions worth pursuing in future projects. First, estimation of

the nonparametric causal effect function under general loss function has not been com-

pletely dealt with in this paper. But this is an important extension since it removes the

burden of parameterizing the causal effect. Second, the extension of the current setting

to allow for high dimensional covariates is also an important project. Third, panel data

are common in the empirical literature. Our approach is readily applicable to those data,

although the efficiency issue is more difficult. All these extensions shall be taken up in

future studies.

Appendix A: Proof of (2.2)

Using the law of iterated expectation and Assumption 1, we can deduce that

E
[
π0(T�X)L

(
Y − g(T ;β))]

=
∫
π0(t�x) ·E[L(Y ∗(T)− g(T ;β))|T = t�X = x

]
dFT |X(t|x)dFX(x)

=
∫

E
[
L
(
Y ∗(t)− g(t;β))|T = t�X = x

]
dFT (t)dFX(x)

=
∫

E
[
L
(
Y ∗(t)− g(t;β))|X = x

]
dFT (t)dFX(x) (using Assumption 1)

=
∫

E
[
L
(
Y ∗(t)− g(t;β))]dFT (t)�
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Appendix B: Proof of Theorem 2

The sufficient part is obvious. We prove the necessary part. Let u(T)= exp(a · T · i) and
v(X)= exp(b�X · i) be the test functions, where a ∈R and b ∈R

r . By assumption,

E
[{
π(T�X)−π0(T�X)

}
exp

{
a · T · i+ b�X · i}]+E

[
π0(T�X)exp

{
a · T · i+ b�X · i}]

= E
[
exp(a · T · i)] ·E[exp

(
b�X · i)]�

By definition, E[π0(T�X)exp{a · T · i+ b�X · i}] = E[exp(a · T · i)] · E[exp(b�X · i)]. Then
E[{π(T�X)−π0(T�X)}exp{a · T · i+ b�X · i}] = 0 for all a ∈ R and b ∈ R

r . By the unique-
ness of Fourier transform, we can obtain π(T�X)= π0(T�X) a.s.

Appendix C: Asymptotic result when π0(T�X) is known

Suppose the stabilized weight function π0(T�X) is known, the weighted optimization
estimator of β∗, denoted by β̂known, is

β̂known = min
β

N∑
i=1

π0(Ti�Xi)L
(
Yi − g(Ti;β)

)
�

We also assume the asymptotic first-order condition

1
N

N∑
i=1

π0(Ti�Xi)L
′(Yi − g(Ti; β̂known)

)
m(Ti; β̂known)= op

(
N−1/2) (C.1)

holds with probability approaching to one.

Proposition C.1. Suppose Assumptions 5, 6(i)–(ii), and 7 hold, and (C.1) holds, then we
have:

1. β̂known
p−→ β∗;

2.
√
N(β̂known −β∗) d−→N(0� Vineff), where

Vineff :=H−1
0 ·E[π0(T�X)

2L′(Y − g(T ;β∗))2
m
(
T ;β∗)m(T ;β∗)�] ·H−1

0 ;
3. furthermore, if E[L′(Y(t)− g(t;β∗))] = 0 holds for all t ∈ T , then Vineff ≥ Veff in the

sense of that c� · Vineff · c ≥ c� · Veff · c for any vector c ∈R
p.

Proof. By Assumption 5 and the uniform law of large numbers, we obtain

1
N

N∑
i=1

π0(Ti�Xi)L
{
Yi − g(Ti;β)

}
→ E

[
π0(T�X)L

{
Y − g(T ;β)}] in probability uniformly over β�

which implies the consistency result ‖β̂known −β∗‖ p−→ 0.
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The first-order condition (C.1) holds with probability approaching to one. Note that
L′(·) may not be a differentiable function, for example, L′(v) = τ − I(v < 0) in quan-
tile regression, we cannot simply apply mean value theorem on (C.1) to obtain the ex-
pression for

√
N(β̂known −β∗). To solve this problem, we resort to the empirical process

theory in Andrews (1994). Define

f (β) := E
[
π0(T�X)L

′(Y − g(T ;β))m(T ;β)]�
which is a differentiable function in β and by (2.3) f (β∗)= 0. Using the mean value the-
orem, we can obtain

0 = √
Nf

(
β∗)= √

Nf(β̂known)− ∇βf (β̄) · √N(β̂known −β∗)�
where β̄ lies on the line joining β̂known and β∗. Because ∇βf (β) is continuous in β at β∗,

and ‖β̂known −β∗‖ p−→ 0, then we have
√
N
(
β̂known −β∗)=[∇βf (β∗)]−1 · √Nf(β̂known)+ op(1)�

Define the empirical process

νN(β)= 1√
N

N∑
i=1

{
π0(Ti�Xi)L

′(Yi − g(Ti;β))m(Ti;β)
−E

[
π0(T�X)L

′(Y − g(T ;β))m(T ;β)]}�
By (C.1) and the definition of νN(β), we have

√
N
(
β̂known −β∗)

= ∇βf
(
β∗)−1 ·

{√
Nf(β̂known)

− 1√
N

N∑
i=1

π0(Ti�Xi)L
′(Yi − g(Ti; β̂known)

)
m(Ti; β̂known)

+ 1√
N

N∑
i=1

π0(Ti�Xi)L
′(Yi − g(Ti; β̂known)

)
m(Ti; β̂known)

}

= −∇βf
(
β∗)−1 · νN(β̂known)+ op(1)

=H−1
0 · {(νN(β̂known)− νN

(
β∗))+ νN

(
β∗)}+ op(1)�

By Assumptions 6, 7, Theorems 4 and 5 of Andrews (1994), we have that νN(·) is stochas-

tically equicontinuous, which implies νN(β̂known)− νN(β∗) p−→ 0. Therefore,

√
N
(
β̂known −β∗)=H−1

0
1√
N

N∑
i=1

π0(Ti�Xi)L
′(Yi − g(Ti;β∗))m(Ti;β∗)+ op(1)�

then we can conclude that the asymptotic variance of
√
N(β̂known −β∗) is Vineff.
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We next show Vineff ≥ Veff. From Theorem 1, we have

Veff =H−1
0 · {E[π0(T�X)

2L′(Y − g(T ;β∗))2
m
(
T ;β∗)m(T ;β∗)�]

+E
[
E
[
π0(T�X)L

′(Y − g(T ;β∗))m(T ;β∗)|T�X
]

×E
[
π0(T�X)L

′(Y − g(T ;β∗))m(T ;β∗)|T�X
]�]

+E
[
E
[
π0(T�X)L

′(Y − g(T ;β∗))m(T ;β∗)|X]
×E

[
π0(T�X)L

′(Y − g(T ;β∗))m(T ;β∗)|X]�]
+E

[
E
[
π0(T�X)L

′(Y − g(T ;β∗))m(T ;β∗)|T ]
×E

[
π0(T�X)L

′(Y − g(T ;β∗))m(T ;β∗)|T ]�]
− 2 ·E[E[π0(T�X)L

′(Y − g(T ;β∗))m(T ;β∗)|T�X
]

×π0(T�X)L
′(Y − g(T ;β∗))m(T ;β∗)�]

− 2 ·E[E[π0(T�X)L
′(Y − g(T ;β∗))m(T ;β∗)|T�X

]
×E

[
π0(T�X)L

′(Y − g(T ;β∗))m(T ;β∗)|X]�]
− 2 ·E[E[π0(T�X)L

′(Y − g(T ;β∗))m(T ;β∗)|T�X
]

×E
[
π0(T�X)L

′(Y − g(T ;β∗))m(T ;β∗)|T ]�]
+ 2 ·E[π0(T�X)L

′(Y − g(T ;β∗))m(T ;β∗)
×E

[
π0(T�X)L

′(Y − g(T ;β∗))m(T ;β∗)|X]�]
+ 2 ·E[π0(T�X)L

′(Y − g(T ;β∗))m(T ;β∗)
×E

[
π0(T�X)L

′(Y − g(T ;β0)
)
m
(
T ;β∗)|T ]�]

+ 2 ·E[E[π0(T�X)L
′(Y − g(T ;β∗))m(T ;β∗)|T ]

×E
[
π0(T�X)L

′(Y − g(T ;β∗))m(T ;β∗)|X]�]}H−1
0

=H−1
0

{
E
[
π0(T�X)

2L′(Y − g(T ;β∗))2
m
(
T ;β∗)m(T ;β∗)�]

−E
[
E
[
π0(T�X)L

′(Y − g(T ;β∗))m(T ;β∗)|T�X
]

×E
[
π0(T�X)L

′(Y − g(T ;β∗))m(T ;β∗)|T�X
]�]

+E
[
E
[
π0(T�X)L

′(Y − g(T ;β∗))m(T ;β∗)|X]
×E

[
π0(T�X)L

′(Y − g(T ;β∗))m(T ;β∗)|X]�]}H−1
0 �

where the last equality holds by noting

E
[
π0(T�X)L

′(Y − g(T ;β∗))m(T ;β∗)|T = t]= E
[
L′(Y ∗(t)− g(t;β∗))] ·m(t;β∗)= 0�
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since the model is correctly specified, that is, E[L′(Y ∗(t)−g(t;β∗))] = 0 for t ∈ T . There-
fore,

Vineff − Veff

=H−1
0

{
E
[
E
[
π0(T�X)L

′(Y − g(T ;β∗))m(T ;β∗)|T�X
]

×E
[
π0(T�X)L

′(Y − g(T ;β∗))m(T ;β∗)|T�X
]�]

−E
[
E
[
π0(T�X)L

′(Y − g(T ;β∗))m(T ;β∗)|X]
×E

[
π0(T�X)L

′(Y − g(T ;β∗))m(T ;β∗)|X]�]}H−1
0

≥ 0�

where the last inequality holds by Jensen’s inequality:

E
[
E
[
π0(T�X)

(
Y − g(T ;β∗))m(T ;β∗)|X] ·E[π0(T�X)

(
Y − g(T ;β∗))m(T ;β∗)|X]�]

< E
[
E
[
π0(T�X)

(
Y − g(T ;β∗))m(T ;β∗)|T�X

]
×E

[
π0(T�X)

(
Y − g(T ;β∗))m(T ;β∗)|T�X

]�]
�

Appendix D: Duality of primal problem (4.2)

We first introduce some notation:

• LetmK(T�X)= vec(uK1(T)v
�
K2
(X)) denote aK-dimensional column vector formed

by the elements of the matrix uK1(T)v
�
K2
(X). Let MK×N = (mK(T1�X1)� � � � �

mK(TN�XN)), which is aK ×N matrix.

• Let uK1�k(T) (resp., vK2�k′(X)) denote the kth (resp., k′th) component of uK1(T)

(resp. vK2(X)), and denote

uK1�k = 1
N

N∑
i=1

uK1�k(Ti) and vK2�k′ = 1
N

N∑
i=1

vK2�k′(Xi)�

Let bK be a K dimensional column vector whose elements are formed by
{ūK1�kv̄K2�k′ ;k= 1� � � � �K1�k

′ = 1� � � � �K2}.

• Denote π = (π1� � � � �πN) and F(π)=∑N
i=1πi logπi.

The primal optimization problem (4.2) can be written as⎧⎨⎩min
π
F(π)

subject toMK×N ·π =N · bK
(D.1)

By Tseng and Bertsekas (1991), the conjugate convex function of F(·) is

F∗(z)= sup
π

N∑
i=1

{ziπi −πi logπi} =
N∑
i=1

{
ziπ

∗
i −π∗

i logπ∗
i

}
�



Quantitative Economics 12 (2021) A unified framework for efficient estimation 811

where π∗
j satisfies the first-order condition:

zj = logπ∗
j + 1 ⇒ π∗

j = ezj−1 = ρ′(zi)�

By substitution, we obtain

F∗(z)=
N∑
i=1

{
zie

zi−1 − ezi−1(zi − 1)
}=

N∑
i=1

ezi−1 =
N∑
i=1

−ρ(−zi)�

By Tseng and Bertsekas (1991), the dual problem of (D.1) is

max
λ∈RK

{
λ�(N · bK)− F∗(λ�MK×N

)}
= max
Λ∈RK1×R

K2

N∑
i=1

{
u�
K1
ΛvK2 + ρ(−uK1(Ti)

�ΛvK2(Xi)
)}

= max
Λ∈RK1×R

K2

N∑
i=1

{
ρ
(
uK1(Ti)

�ΛvK(Xi)
)− u�

K1
ΛvK2

}
= max
Λ∈RK1×R

K2
ĜK1×K2(Λ)� (D.2)

Therefore, the dual solution of (4.2) is given by

π̂K(Ti�Xi)= ρ′(uK1(Ti)
�Λ̂K1×K2vK2(Xi)

)
�

where Λ̂K1×K2 is the maximizer of the strictly concave objective function ĜK1×K2 .

Appendix E: Proof of (6.2)

∇βE
[
L′(Y − g(T ;β))|T = t�X = x

]|β=β∗

= ∇β
[∫

R

L′(y − g(t;β))fY |T�X(y|t�x)dy
]∣∣∣∣

β=β∗

= ∇β
[∫

R

L′(z)fY |T�X
(
z+ g(t;β)|t�x)dz]∣∣∣∣

β=β∗(
use z = y − g(t;β))

=
∫
R

L′(z) · ∂
∂y
fY |T�X

(
z+ g(t;β∗)|t�x)dz ·m(t;β∗)

=
∫
R

L′(y − g(t;β∗)) · ∂
∂y
fY |T�X(y|t�x)dy ·m(t;β∗)

=
∫
R

L′(y − g(t;β∗)) ·
∂

∂y
fY�T�X(y� t�x)

fY�T�X(y� t�x)
fY |T�X(y|t�x)dy ·m(t;β∗)
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= E

[
L′(Y − g(T ;β∗)) ∂∂y fY�T�X(Y�T�X)

fY�T�X(Y�T�X)

∣∣∣∣T = t�X = x

]
m
(
t;β∗)�
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