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Single-cell molecular tools have been developed at an incredible pace over the last five
years as sequencing costs continue to drop and numerous molecular assays have been
coupled to sequencing readouts. This rapid period of technological development has
facilitated the delineation of individual molecular characteristics including the genome,
transcriptome, epigenome, and proteome of individual cells, leading to an unprecedented
resolution of the molecular networks governing complex biological systems. The immense
power of single-cell molecular screens has been particularly highlighted through work in
systems where cellular heterogeneity is a key feature, such as stem cell biology,
immunology, and tumor cell biology. Single-cell-omics technologies have already
contributed to the identification of novel disease biomarkers, cellular subsets,
therapeutic targets and diagnostics, many of which would have been undetectable by
bulk sequencing approaches. More recently, efforts to integrate single-cell multi-omics
with single cell functional output and/or physical location have been challenging but have
led to substantial advances. Perhaps most excitingly, there are emerging opportunities to
reach beyond the description of static cellular states with recent advances in modulation
of cells through CRISPR technology, in particular with the development of base editors
which greatly raises the prospect of cell and gene therapies. In this review, we provide a
brief overview of emerging single-cell technologies and discuss current developments in
integrating single-cell molecular screens and performing single-cell multi-omics for clinical
applications. We also discuss how single-cell molecular assays can be usefully combined
with functional data to unpick the mechanism of cellular decision-making. Finally, we
reflect upon the introduction of spatial transcriptomics and proteomics, its complementary
role with single-cell RNA sequencing (scRNA-seq) and potential application in cellular and
gene therapy.
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INTRODUCTION

The crucial role that single-cell approaches play in
understanding cell function has been recognised for decades.
Early advances in immunology, and particularly hematopoiesis,
have demonstrated the power of such approaches for ascribing
functional properties to a single cell. Pioneering work by Till and
McCulloch uncovered functional heterogeneity of hematopoietic
stem cells (HSCs) by performing single cell-derived assays
termed colony-forming unit spleen, or CFU-S, assays (1, 2).
Similarly, early studies of single multipotent progenitors
provided insights into the progenitor cell commitment and the
development of mature immune cells, such as T and B
lymphocytes (3, 4). Perhaps most transformative was the
introduction of fluorescence activated cell sorting (FACS)
which enabled the near-ubiquitous adaption of single-cell
functional assays in immunology, hematopoiesis, and beyond
(5–7).

Efforts to characterize the cellular function of single cells have
fuelled an increased desire to understand detailed molecular
mechanisms, but the technologies to do so in single cells have
lagged substantially. The development of the polymerase chain
reaction (PCR) for amplifying DNA ultimately paved the way for
the first glimpse into the transcriptome of single cells (8, 9). The
initial protocol for the amplification of cDNA using PCR from
single macrophages was introduced by Brady et al. (10), where
robust exponential amplification was achieved without
disturbing the relative abundance of mRNA sequences,
enabling the inspection of rare transcripts in a complex single
cell-derived cDNA library. In parallel, Eberwine and colleagues
developed a linear RNA amplification approach, based on the
amplification of antisense RNA using a T7 RNA polymerase (11,
12). By inspecting mRNAs from single pyramidal neurons
isolated from rat brains, they provided the first evidence for
global molecular heterogeneity between morphologically similar
cells (11).

While targeted single-cell PCR-based molecular screens
revolutionized molecular biology, the low throughput and
hypothesis-driven nature prevented unbiased exploratory
screening. In 1991, Fodor and colleagues developed a novel
photolithography-based approach for efficient synthesis of
complex oligonucleotides on the microscale (13). This
pioneering work would lead to the development of microarray
technology where several years later, Schena et al. first applied
this method for monitoring gene expression, examining the
expression of 45 Arabidopsis genes from total mRNA (14). The
following decade saw a rapid expansion of the technology,
resulting in genome-wide genomic, transcriptomic and
epigenetic screening using microarrays [reviewed elsewhere:
(15–18)]. This ultimately enabled microarray analysis at single
cell level (19), leading to insights into the molecular pathways
governing cell fate (20, 21).

Microarrays, a hybridisation-based approach, assayed the
known transcriptome and was therefore unsuitable for
unbiased detection of novel transcripts. In 1977, Sanger and
colleagues published the first genome to be sequenced (22) and
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soon after early generation sequencing methods began to rapidly
develop (23). However, these approaches were extremely costly
and time consuming (23). This opened up space for next
generation sequencing (NGS) to lead to a revolution in
molecular profiling, enabling low-cost, high-throughput and
highly parallelised sequencing of nucleic acids. To date, a wide
variety of NGS platforms have been developed [reviewed in (24,
25)] and in all cases, sheared DNA is bound to adapter sequences
which are immobilised within flow cells, facilitating the synthesis
of complementary DNA fragments for subsequent amplification
(26). By using fluorophore-labelled nucleotides and
simultaneous fluorescence readouts across the entire flow cell,
the respective sequences can be determined and ultimately
mapped against the reference genome (24, 27, 28). NGS for
routine DNA and RNA sequencing provides multiple advantages
over microarray technology, including reduced background
noise, an increased dynamic range and the detection of novel
transcripts (25, 29, 30).

For these reasons, NGS was rapidly adapted to a variety of
model systems, including the inspection of rare cell types at
single cell resolution (31–36). Tang et al. pioneered the first
protocol for single-cell RNA sequencing (scRNA-seq) in single
mouse blastomeres with improved performance compared to
microarray-based single-cell protocols (36). Following this there
has been an explosion of single-cell molecular technologies,
enabling unbiased screening of the transcriptome (37, 38),
genome (39, 40), DNA methylation (41), chromatin
accessibility (42) and spatial resolution of gene expression (43).
While these methods provide comprehensive snapshots of
molecular states, their integration with cellular phenotype and
function is less common and remains vital to the inspection of
tissue complexity, disease progression, therapeutic intervention,
and beyond. To achieve this goal, pioneering work to integrate
omics protocols led to the development of several multimodal
technologies. These include simultaneous screening of I) cell
surface proteins and mRNA (44, 45), II) DNA methylation and
mRNA (46), III) perturbations and mRNA (47), IV) DNA and
mRNA (48), V) lineage tracing and mRNA, and VI) cellular
function and mRNA (44, 49, 50).

Single-cell technologies have thus provided insight into a
wide-range of disease mechanisms, especially in illnesses with
significant heterogeneity (51), leading to a long list of potential
new therapeutic options. In recent years, the fields of cellular and
gene therapy have been steadily evolving for treatment of some
monogenic diseases (gene therapy) and B cell leukemias (cell
therapy) in particular (52, 53). However, to enable further
improvements and applications to other more complex disease
types such as autoimmune type 1 diabetes, key aspects such as
characterizing target tissues, identifying novel targets in
heterogeneous diseases and assessing efficacy of therapeutic
interventions all require deeper interrogation. Recent advances
in single-cell technologies are ideally positioned to address a
number of these unmet needs (51).

In this review, we outline a wide range of recent technologies
for screening the genome, epigenome, transcriptome and
proteome of single cells and the multimodal integration of
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these platforms. We focus on the integration of functional
cellular phenotypes with molecular profiles and emphasise the
use of single-cell technologies in gene and cell therapies.
A GOLDEN AGE FOR GENE THERAPY -
RECENT SUCCESSES IN TREATING
MONOGENIC DISORDERS

In its simplest form, gene therapy aims to cure a patient’s disease
by introducing a normal or corrected copy of a gene into target
cells. In 1972, Friedmann and Roblin first proposed the concept
of gene therapy as a treatment for inherited genetic defects that
largely affected children, many of whom experienced severe, life-
threatening symptoms (54). Initially, HSC transplantation
represented the primary curative option for many of these
disorders, but the availability of matched sibling donors and
the risk of severe graft-versus-host disease were barriers for many
patients (55). To circumvent these issues, the first gene therapy
clinical trials used patient-derived differentiated (T lymphocytes)
or immature (hematopoietic stem and progenitor cells, HSPCs)
cells that were engineered ex vivo to express a disease-correcting
transgene (56, 57). Pioneering studies in the late 1990s and early
2000s initially reported successful treatment of adenosine
deaminase-deficient severe combined immunodeficiency
(ADA-SCID) and other hematological disorders (56–59);
however, these successes were soon overshadowed by reports
of patients who experienced significant adverse events including
the development of treatment-related leukemias and severe
immune reactions (60–65). Many of these unanticipated
biological effects were later directly linked to the viral vectors
used for transgene delivery (66, 67). Consequently, research
Frontiers in Immunology | www.frontiersin.org 3
efforts became focused on improving the safety of viral vectors
(68–70) and monitoring for pre-leukemic mutations became a
standard feature of treatment follow-up (71–74).

Following these improvements, a number of clinical trials have
demonstrated the long-term benefits achieved in individuals with
various primary immunodeficiencies and monogenic blood
disorders who have received gene therapy treatments (75–84).
The follow-up data being reported for these patients mainly focus
on disease-relevant parameters such as blood counts and overall
clinical symptoms. As a result, numerous questions related to the
gene therapy process still remain (Figure 1). For example, which
HSPC populations are readily transduced during drug product
creation and how does this impact outcomes? Do gene corrected
terminally differentiated cells have any advantage over their non-
transduced counterparts? These types of questions can best be
answered using single-cell technologies. Another area of active
research involves the development of in vivo non-viral delivery
systems. These strategies include the use of nanoparticles,
aptamers/oligonucleotides and extracellular vesicles to deliver
transgenes or siRNAs/shRNAs (85–90). While in vivo
treatments circumvent issues related to the isolation and
manipulation of target cells, they have the potential to induce
expression of transgenes or siRNAs/shRNAs in cell types that are
not relevant to curing disease. High resolution single-cell
transcriptomic and proteomic data will be vital in dissecting
how these new treatments affect cell populations receiving the
correcting vector. These types of information, especially at the
level of preclinical studies, will greatly aid in the development of
these technologies.

Moving beyond monogenic disorders, multi-target
approaches may be useful in treating complex acquired
diseases, such as cancers or autoimmune diseases like type 1
A Target Identification

B

C Treatment

in vivo

+ =

ex vivo
Gene Modification

FIGURE 1 | A workflow for developing and administering gene therapy. Novel gene therapy approaches involve (A) the identification of therapeutic targets, (B) an ex
vivo gene modification step to create a transduced drug product (left) or the production of an in vivo product (right), and (C) the infusion of these products into
patients following myeloablative conditioning.
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diabetes. Large-scale bulk pan-cancer genomics studies have
suggested that tumors harbour an average of 4-5 driver
mutations (91–94). While this represents an opportunity for
the simultaneous manipulation of multiple drivers, the efficacy of
this approach in individual patients depends on the specific
combinations of these mutations within tumor cell
subpopulations. As most genetic profiling of tumors is done
using bulk sequencing, the resolution of major/minor clones and
subclones becomes very difficult without the use of single-cell
approaches. If individual cancers could be profiled to such high
resolution, gene therapy strategies could be imagined to target
genes essential to cancer cell survival (95–98) or disrupt
processes such as angiogenesis that facilitate tumor growth
(99–102). Combination therapies may also prove to be highly
effective in some contexts (103, 104).

Type 1 diabetes is an autoimmune disease driven by loss of T
cell tolerance resulting in islet autoimmunity. During disease
development, insulin-producing b-cells in the pancreas are
abnormally targeted by infiltrating immune cells (105). For
monogenic disorders such as immune dysregulation
polyendocrinopathy enteropathy X-linked syndrome where
patients are at a much higher risk of developing secondary
type 1 diabetes, gene therapy treatment could offer a potential
cure (106). However, the genetic drivers of primary type 1
diabetes are complex and may act at the level of b-cells
themselves and/or various T cell populations (105). Preclinical
studies exploring the use of gene therapy to treat type 1 diabetes
have clearly demonstrated the need for treatments that function
on two levels - one to create or maintain functional insulin-
Frontiers in Immunology | www.frontiersin.org 4
secreting b-cells and another to protect these cells from
autoimmune responses (107–110). Regardless of disease
context, the overall diversity of cellular interactions driving
human disease presents many challenges to the development of
successful treatments. Single-cell studies can address questions
pertaining to cell type interactions, disease-specific immunity,
clonal dynamics of gene corrected cells and therapy-escape
mechanisms, moving gene therapy forward to the next level.
CELL THERAPY AS A PROMISING
TREATMENT FOR MORE COMPLEX
DISEASES

While gene therapy has revolutionized the treatment of primary
immunodeficiencies and monogenic disorders, other strategies
may be required to treat more complex diseases. Currently, the
primary standard of care for many cancers is chemotherapy,
radiation therapy or, in the case of solid tumors, surgery.
Immune-based treatments including cell therapy and immune
checkpoint inhibitors are now being developed, already showing
promise in treating refractory or relapsed patient cohorts. Cell
therapy strategies involving chimeric antigen receptor (CAR) T
cells have been particularly successful in the treatment of B-cell
malignancies (111–113). In brief, these therapies use autologous
lymphocytes with synthetically engineered antigen receptors to
target tumor-specific antigens (114), thereby harnessing the
immune system to trigger anti-tumor immunity (Figure 2).
Pioneering work by several groups led to the first successful
A Detection

B Viral Transduction
and Expansion

C Infusion

D  Monitoring
Virus

Antibody

T cell

Abnormal cells

Healthy cells

Pancreas

FIGURE 2 | A workflow for developing and administering cell therapy. CAR T cell-based therapies involve (A) the discovery of disease-associated antigens which
can then be used to target the cytotoxic effects of engineered CAR T cells, (B) the isolation and manipulation of patient-derived T cell populations, (C) the infusion of
these cells into patients, and (D) downstream monitoring of disease.
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application of this technology in the treatment of B-cell
malignancies (111–113), with the first therapy approved by the
US-FDA in 2017 for use in B-cell acute lymphoblastic leukemia
and diffuse large B-cell lymphoma (115).

Although stable remission is reportedly achieved in
approximately 40-60% of patients with these B-cell
malignancies (116), a number of significant barriers to
increasing treatment efficacy have been identified. CAR T cell
persistence and expansion has been shown to be variable
between patients. Researchers have suggested that the use of
less differentiated T cell subsets or T cells with an altered genetic
background (for example, TET2 disruption) during the
manufacturing phase may improve outcomes (115, 117–123).
However, a better understanding of the key molecular drivers of
T cell expansion and persistence is required to inform future
efforts to tailor the production of CAR T cells. Single-cell
technologies can be used here to dissect these processes at the
molecular level. In addition to increasing the overall performance of
CAR T cells, another key aspect required to improve therapeutic
outcomes is to control immune responses not directly mediated by
CAR T cells (111–113, 124). In order to minimise these responses, a
more thorough understanding of immune cell interactions must
first be developed. In this context, single-cell approaches will
provide the resolution required to dissect these complex systems.
On a different level, selective pressures applied by anti-CD19 CART
cells may also lead to antigen escape and lineage switching as 10-
25% of patients go on to develop a CD19- cancer (125). While
groups reported acquired CD19 loss-of-function mutations (126)
and abnormal splicing events leading to loss of CD19 expression
(127, 128), the specific origin of CD19- cancer cells was not clear. A
recent paper using single-cell techniques provides evidence that in at
least some patients, treatment-resistant CD19- cancer cells exist
prior to treatment (129), underscoring the vital role of single-cell
approaches pinpointing the mechanisms by which cancer cells
escape treatment and informing strategies targeting
refractory disease.

On the other hand, there has been relatively limited success
seen in CAR T cell treatments outside of B cell malignancies,
despite the development of therapeutics targeting multiple
antigens simultaneously or sequentially [reviewed in (130–
132)]. In solid cancers, tumor-specific antigens (TSAs) first
need to be comprehensively profiled to allow for selection of
appropriate candidate TSAs (133) which is especially important
when dealing with heterogeneous tumors. Understanding the
consequences of on-target/off-tumor effects is also essential to
creating safe and effective therapies as evidenced by recent reports
of adverse events experienced by patients in two separate cell
therapy clinical trials (134, 135). Even once promising TSAs have
been selected and tested in both animal models and early phase
clinical trials, a number of other tumor-specific factors will likely
interfere with the effectiveness of this treatment strategy. For
example, immunosuppressive mechanisms that dampen T cell
anti-tumor responses may also impact CAR T cell function.
Combination therapies or further disruptions to create CAR T
cells that are resistant to these immune evasion pathways may
therefore become essential (136, 137). Other CAR immune cell
Frontiers in Immunology | www.frontiersin.org 5
populations such as B cells, natural killer (NK) cells and
macrophages may also be useful in treating certain diseases
(138–140).

In the context of diabetes, both CAR T cell and regulatory T cell
(Tregs)-based treatments are currently being developed (141–146).
Under normal conditions, Tregs mediate immune tolerance by
expressing anti-inflammatory cytokines and dampening the
inflammatory or cytotoxic responses of other types of T
lymphocytes (147). While patients with type 1 diabetes have
similar frequencies of Tregs compared to control individuals, it
has been shown that these Tregs have reduced immunosuppressive
capacity (148–150). Adoptive Treg transfers from healthy donors
into patients have shown promise in preclinical models for a
number of different diseases driven by immune dysregulation
including type 1 diabetes (145, 151–156). However, a thorough
understanding of the heterogeneous cell types that facilitate disease
initiation and progression will be crucial to optimizing these
treatment regimens.
USING SINGLE-CELL APPROACHES TO
REFINE TREATMENT AND INFORM THE
DEVELOPMENT OF NOVEL
THERAPEUTICS

Although great strides have been made in gene and cell therapy,
applications to a wider range of diseases requires more information.
Key aspects, such as characterizing target tissues, identifying novel
targets in heterogeneous diseases and assessing efficacy of
therapeutic interventions require deeper interrogation and single-
cell approaches are well-positioned to provide this information.

While a number of groups have begun to use single-cell
approaches to dissect various aspects of CAR T cell-based
therapy (129, 157, 158), the gene therapy field has not explored
this to the same extent. That said, a handful of studies have used
bulk sequencing approaches to examine post-transplantation
clonal dynamics in a small number of patients (159–161).
Biasco and colleagues used this approach to estimate
transduced HSPC population size and describe the
contributions of HSPC subpopulations to various stages of
hematopoietic reconstitution (159, 160). Most recently, Six and
colleagues addressed questions pertaining to clonal selection
following gene therapy in WAS, sickle cell disease (SCD) or
beta-thalassemia patients and found no indications of clonal
skewing caused by insertional mutagenesis (161). While all three
of these studies provide important insights into human
hematopoiesis, the reliance on bulk sequencing approaches to
map viral integration sites means that several key questions
remain unanswerable. For example, these methods do not
allow unedited cells or low abundance clones to be tracked or
the effects of multiple integration sites to be assessed.
Furthermore, relationships between transduced and non-
transduced cells cannot be assayed. These details can only be
examined using strategies that analyse single cells and their
clonal progeny (162).
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In contrast, studies employing single-cell technologies have
already begun to deconstruct the fundamental biology behind anti-
CD19 CAR T cell therapeutic outcomes. Shieh et al. used single-cell
transcriptomics to identify gene signatures associated with good
treatment outcomes for patients with B cell malignancies, providing
insights relevant to the optimisation of CART cell production (157).
Deng et al. used a similar approach to discover transcriptional
signatures connected to both complete and poor treatment
responses (158). This study also identified a novel, transcriptionally
distinct cell population found specifically in the infusion products of
patients who went on to develop high-grade immune effector cell-
associated neurotoxicity syndrome (158). This finding demonstrates
the value of single-cell approaches in generating essential
information that can then be fed back into clinical practice.
Another recent publication applying single-cell technologies
reported that the disease-driving clone observed in one patient’s
relapsed B cell acute lymphoblastic leukemia existed prior to anti-
CD19 CAR T treatment (129). Taken together, these studies clearly
illustrate howsingle cell-baseddatasets canprovide clinically relevant
insights into various aspects of the cell therapy process (Figure 2).

For every stage of the gene and cell therapy process, a number
of important questions remain unanswered (Table 1).
Ultimately, single-cell approaches will be instrumental both in
informing our understanding of human disease and in
developing the effective therapeutics required to treat them.
Data generated using these methods has the potential to
better inform our understanding of the numerous complex
Frontiers in Immunology | www.frontiersin.org 6
factors influencing treatment outcomes. The generation of
novel targets and delivery methods for heterogeneous
diseases relies on a high level of detail and the ability to map
cell-cell interactions, especially for disorders with a strong
immune component.
SINGLE-CELL MULTI-OMICS PLATFORMS
AND THEIR PROSPECT IN GENE AND
CELL THERAPY

A wide array of screening platforms have been developed to
interrogate molecular states at the single cell level to give insight
into tumor heterogeneity and clonal evolution of complex tissues.
Here, we describe a selection of the most widely used omics tools
and discuss their application in gene or cell therapy, including
their potential role in addressing future clinical challenges.

Genome
The first protocol for DNA sequencing at the single cell level,
termed single nucleus sequencing (SNS), was described by Navin
and colleagues (40). Comparable and reproducible detection
levels of copy number variations were observed in single cell
and bulk (106) samples. By sequencing the genomes of 100 single
monogenomic breast tumor cells and the associated liver
metastatic tissue, the authors also observed substantial clonal
TABLE 1 | Unmet needs and addressable questions in gene and cell therapy.

Prior to therapy

What is the underlying clonal diversity for complex diseases such as cancer or diabetes?
Are there tumor-specific antigens/mutations or cell susceptibilities that can be used to target various disease subclones/abnormal cell populations?
Can understanding the heterogeneity of diseases refined diagnosis?

Isolation of cells to be edited/manipulated

Gene therapy (ex vivo only) Cell therapy
Which HSCs are mobilized and can gene therapy outcomes be improved if this is further
optimized?

Are T cells obtained from different individuals inherently different? What
contributes to CAR T cell product variability?

Manipulation of cells for therapeutic purposes

Gene therapy (ex vivo only) Cell therapy
Are some HSPCs easier to transduce than others?
Can we adjust this to improve treatment efficacy?
Do HSPCs acquire mutations or epigenetic changes during ex vivo expansion and
transduction steps?

What makes a successful T cell product?
Which T cell population should be used in the production of CAR T cells?
How can CAR T cells be engineered to be more specific/minimise off-target
immune cell activation?

Post-treatment follow-up

Gene therapy (ex vivo and in vivo) Cell therapy
What are the clonal dynamics of edited cells over time and how does that change in
relation to unedited cells?
When transgenes or shRNAs/siRNAs are expressed in HSPCs, what are the molecular
consequences of these changes and how do the molecular signatures of these cells
compare to HSPCs from age-matched healthy controls?
Can low level leukemic clones be detected prior to overt leukemias for patients?
When using in vivo approaches, what are the consequences of gene correction or
transgene expression in cells that do not usually express the gene of interest?
Can in vivo gene therapy approaches be designed to specifically target disease-causing
cells?

Which factors contribute to the toxicities associated with CAR T cells
[cytokine-release syndrome (CRS), hemophagocytic lymphohistiocytosis
(HLH) and/or macrophage activation syndrome (MAS)]?
How can on-target, off-tumor toxicities be minimized?
Which CAR T cells survive over time and are some better at targeting tumor
cells than others?
Are there differences between CAR T cell populations in the blood versus
those present in tumor tissue?
How do cancer cells (especially in solid tumors) adapt to evade targeting by
CAR T cells?
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heterogeneity (40). After FACS of single nuclei and whole
genome amplification (WGA), each nucleus is sequenced in an
individual flow lane. The requirement of full sequencing lanes for
single nuclei limited the throughput of such experiments and
consequently, several groups introduced barcoding technologies
to permit multiplexing of single cells in a single sequencing lane
(163–167). To address this challenge, Amini et al. developed a
combinatorial barcoding approach, first using Tn5 transposome-
mediated labelling followed by PCR-based indexing to yield
nearly 10,000 unique barcodes (165). In turn, Vitak et al.
demonstrated the efficacy of a single-cell combinatorial
indexed sequencing (SCI-seq) platform by acquiring >1500
single cell genomes from a primary pancreatic ductal
adenocarcinoma sample (39). To date, a multitude of single-
cell sequencing platforms rely on these barcoding principles
(168, 169). However, only ~32% of sequenced cells had
sufficient coverage for copy-number variation (CNV) detection
(39). To address this issue and avoid amplification biases of
exponential WGA, Chen and colleagues developed a linear
amplification protocol, significantly reducing the required
resolution for CNV calling and this was further complemented
by experimental and computational approaches to improve the
detection of single nucleotide variants (170, 171).

Despite experimental drawbacks related to coverage, single-
cell whole genome sequencing (scWGS) has enabled an
unprecedented insight into clonal dynamics during
tumorigenesis and normal hematopoiesis (162, 172). One
notable example includes a temporal study of single human B
lymphocytes that explored the evolution of mutational signatures
and age-related accumulation of oncogenic mutations (173),
only achievable through scWGS.

While bulk WGS studies can infer which disease-causing
mutations co-occur based on average variant allele frequencies,
there is the potential to group populations of cells that in reality
are part of distinct clonal entities. scWGS provides a more
precise overview of clonal subpopulations while also capturing
information that can be used to pinpoint mutation co-
occurrence and order of acquisition (174–178). This approach
has been used to profile mutant clones in diseases such as
childhood acute lymphoblastic leukemia, childhood T cell
acute lymphoblastic leukemia and adult acute myeloid
leukemia (179–181). Rare cancer cell populations missed in
bulk WGS may also be detected in scWGS assays, as
demonstrated by Xu and colleagues (181). Capturing this
heterogeneity is essential to understanding how clones with
certain mutational profiles impact disease evolution and
response to treatment.

Once gene corrected cells have been infused into a patient
receiving gene therapy, it is important to track the clonal
evolution of these corrected cells. scWGS could be used to
track these dynamics as well as answer questions surrounding
whether treatment-related mutations are acquired in cells during
the gene therapy process. While this method is particularly
effective at identifying copy number variants and aneuploidy,
technical challenges exist such as low read coverage and
sequencing depth. This may significantly hamper efforts to
Frontiers in Immunology | www.frontiersin.org 7
profile single nucleotide changes in gene corrected cells. For
HSPCs, bulk WGS of single cell-derived clonal cultures or
colonies has bypassed these obstacles (182); however, this
approach is not feasible for cell types where ex vivo expansion
is not possible. Provided that technical challenges are overcome,
scWGS represents a promising avenue to explore clonal
dynamics. However, the cost for sufficient whole genome
coverage in bulk and scWGS currently remains a major barrier
for routine adoption.

Following cell therapy treatments, scWGS can be used to
assess mutation profiles at the single cell level for highly
heterogeneous tumors during the follow-up stage. This
information would be particularly helpful in determining why
certain patients experience disease relapse, allowing for the
identification of specific clones that are either highly
susceptible or resistant to CAR T cell cytotoxicity.
Additionally, building a more comprehensive understanding of
tumor cell clonal dynamics will be key to dissecting out
subpopulations that could then be profiled with the aim of
identifying new TSAs. This type of approach can be applied to
any group of diseases where complex mutation profiles are
expected to impact the effectiveness of treatment.

Immune receptor repertoire analysis facilitates the
interrogation of clonal dynamics of the adaptive immune
response and thus provides a crucial tool for immunotherapy
(183). In particular, the development of VDJ-sequencing and
single-cell T cell receptor (TCR) sequencing enabled robust
profiling of the output of VDJ recombination, using targeted
PCR and NGS (184, 185). A multitude of studies outlined the
efficacy of TCR sequencing for immune cell profiling in cancer
patients to help stratify patient cohorts for immunotherapy,
identify the T cell repertoire in the tumour microenvironment
and determine the response to PD-1 therapy (186–188).
Intriguingly, computational tools have also been developed to
enable retrospective VDJ profiling from global single cell
sequencing data, thus negating the need for separate immune
receptor profiling (157). Nevertheless, limited availability of
patient tissue samples and peripheral blood can prevent
identification of rare clones and sequential PCR amplification
increases risk of amplification biases (189).

Epigenome
The epigenome plays a crucial role in determining cell identity
and function with chromatin organization playing a critical role
in modulating gene expression and other regulatory functions
(190). Chromatin accessibility is governed by the core epigenetic
mechanisms of DNA methylation and post-translational
modifications of histones (191). Thus, being able to screen
DNA methylation, chromatin accessibility and histone
modification at single cell resolution can provide crucial
insight into tissue heterogeneity.

To identify open chromatin regions and characterize
regulatory elements, Buenrostro and colleagues pioneered the
assay for transposase-accessible chromatin using sequencing
(ATAC-seq) protocol (192). In brief, this protocol leveraged
the previously described hyperactive Tn5 transposase to
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simultaneously fragment open chromatin regions and introduce
sequencing adaptors for subsequent library synthesis (164, 192,
193). While the original ATAC-seq protocol required 500-50,000
cells, the adaptation to inspect single cells soon followed.
Buenrostro et al. used the Fluidigm microfluidic platform,
allowing single cell capture and downstream processing of
hundreds or thousands of single cells (42). Since its inception,
others have developed approaches to increase the throughput of
scATAC-seq to tens, or even hundreds of thousands of cells (194,
195). Illustrating its power, Sapathy et al. generated scATAC-seq
profiles for over 60,000 primary human bone marrow and
peripheral blood mononuclear cells (PBMC) (194). Here, the
authors identified cell-type specific cis-elements, key transcription
factor (TF) activity across a broad range of hematopoietic
populations and gene activity, using aggregate accessibility of
multiple cis-elements for a single gene. Most intriguingly, such
high density of single cell clusters permits the inference of
complex differentiation trajectories. Using the well-
characterized development of B cells, the authors were able to
reconstruct the differentiation pathway, characterize cis-elements
of each cell type, and identify active TF programs along the entire
differentiation trajectory. Unsurprisingly, scATAC-seq enabled a
previously unseen insight into tumor evolution, such as the role of
naïve cell types in driving tumorigenesis (194, 196, 197).

DNA methylation of cytosine residues (5mC) plays a crucial
role in epigenetic regulation, including the modulation of cis-
regulatory elements (198). In particular, DNA methylation has
been implicated in gene silencing to regulate transcriptional
activity during development and altering transcription factor
binding (199, 200). The development of bisulphite sequencing
(BS-seq) enabled unbiased, genome-wide inspection of the DNA
methylome (201). To enable BS-seq at single cell resolution
(scBS-seq), pioneering work by Smallwood et al. adapted the
existing post-bisulfite adapter tagging protocol to derive
quantitative DNA methylation signatures at up to 50% of CpG
islands (202–204). Smallwood et al. and others have extensively
applied scBS-seq to interrogate mouse gastrulation, human
implantation, embryonic stem cells and alternative splicing at
single cell resolution (203, 205–207).

The clinically-relevant utility of scATAC-seq in building a
comprehensive understanding of the tumor microenvironment
has been clearly shown by Sapathy et al. (194) where chromatin
accessibility was mapped for more than 37,000 cells from five sets of
serial basal cell carcinoma tumor biopsies. Pre- and post-PD-1
inhibitor treated samples were profiled and cell types formed clearly
defined clusters, with tumor cells and non-tumor populations
clustering away from one another (194). One major strength of
this method is the ability to assess chromatin accessibility at specific
cis-elements in disease-associated loci across multiple cell types.
This allows for the annotation of tumor-specific, immune cell
population-specific or stromal-cell specific active cis-elements.
Aside from describing active and inactive chromosomal regions
for various cell populations, scATAC-seq can also be combined with
individual lentiviral integration site mapping, enabling researchers
to examine where these sites fall in relation to open chromosome
regions (208). This type of information can be useful in assessing
Frontiers in Immunology | www.frontiersin.org 8
whether integration of viral components in or near specific genes
can be connected to robust expansion or in vivo persistence of CAR
T cells (208). The same approaches could be used to assess how viral
integration in certain chromosomal regions affects outcomes in gene
therapy. These studies clearly demonstrate how this approach
permits comparison of diverse cell populations that directly
impact both the disease microenvironment and response
to treatment.

In some diseases, therapeutic benefits may be attained
through the de-repression of epigenetically silenced genes. One
such example involves triggering the expression of fetal gamma-
globin (HbF) to correct the pathophysiological defects associated
with SCD (80, 209). One preclinical study aiming to identify a
novel treatment for Fragile X syndrome used a directed DNA
demethylation tool to remove methylation marks in the FMR1
promoter region, leading to increased FMR1 expression (210).
Newly developed CRISPR/Cas9-mediated demethylation and
methylation tools allow for the manipulation of the methylome
(211–214). In order for these strategies to be developed into
viable treatments, techniques such as scBS-seq will be required to
ensure that targeting is specific and that it does not lead to
outgrowth of modified cells.

Recent evidence suggests that changes in CAR T cell global
methylation status may have some bearing on treatment efficacy.
One study found enhanced proliferation and persistence of a
dominant CAR T clone with biallelic disruption of the TET2
gene, which encodes a demethylating enzyme (121). Another
study provided evidence that decitabine treatment-mediated
epigenetic reprogramming of CAR T cells led to enhanced
cytotoxicity and persistence (215). scBS-seq profiling of CAR T
cells in a variety of patient samples has the potential to identify
novel mechanisms that play a role in determining overall
treatment response.

Single-cell epigenomic screening, such as scATAC-seq and
scBS-seq, can provide crucial insights into the disease
microenvironment, tumor-infiltrating lymphocytes or
epigenetic disruption in disease. However, the rapid
technological advances in single cell epigenomics posed a new
challenge – the computational analysis of large data volumes. In
addition, high background noise levels, low sequencing depth
and limited capture rates of single-cell epigenetic screens restricts
the analytical scope of pipelines developed for bulk sequencing
protocols (216). Hence, current analytical strategies leverage a
pseudo-bulk approach. First, single cells are aggregated for peak
calling, then individuals cells are inspected for identified pseudo-
bulk peaks (217). More recently, comprehensive tools have been
developed to integrate dimensionality reduction, peak calling,
identification of variable peaks, motif analysis, prediction of gene
association and differentiation trajectories into single pipelines
(218, 219).

Transcriptome
Single-cell RNA sequencing (scRNA-seq) is arguably the most
widely applied and established single-cell molecular screening
platform. Consequently, a multitude of novel scRNA-seq
protocols and adaptations have been developed [extensively
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reviewed elsewhere: (220, 221)]. Amongst these, two major
groups have emerged, primarily differing in sequence coverage
to either profile full-length transcripts or sequence the 3’ or 5’
ends of captured transcripts. Picelli and colleagues pioneered
Smart-seq2 for full-length transcriptomic profiling of hundreds
of cells (38). Alternatively, platforms for 3’ mRNA profiling,
such as Drop-seq (37) and more recently Chromium (10X
Genomics) (222), utilise droplet-based microfluidic devices and
unique molecular identifiers for massively high-throughput
single-cell screens. This technological advance allowed
profiling of tens or hundreds of thousands of cells at
significantly reduced sequencing costs per cell compared to
full-length profiling protocols. These high throughput
techniques enable deep molecular profiling of complex tissues
and are particularly beneficial for the identification of rare cell
types. In contrast, full-length profiling protocols are not
compatible with droplet-based approaches, thus reducing the
throughput by 10- to 1000-fold at increased sequencing cost per
cell (221). However, Smart-seq2 provides deeper sequencing
coverage, resulting in the detection of a larger number of genes
with fewer sequencing dropouts (223, 224), allowing much
more robust conclusions about transcript co-expression in
single cells. Increased sequencing depth also provides
increased detection of low-abundance transcripts. Perhaps
most useful, full-length transcript profiling also permits the
detection of alternative splicing and novel transcripts (221).
Taken together, both sequencing platforms provide a diverse
toolbox to cover a broad range of biological questions, but it is
imperative to choose the right tool for the biological question
being addressed.

Multiple studies have demonstrated the utility of scRNA-seq
in describing cell-cell interactions, discovering unique disease-
associated cell populations, identifying minimal residual disease
following treatment and even distinguishing host- versus donor-
derived cells following transplantation (222, 225–228). These
types of applications can easily be used to address a number of
currently unanswered questions relating to all phases of the gene
therapy process (Table 1). As a lower-cost alternative to WGS,
scRNA-seq can be used to identify single nucleotide variants
(SNVs) and splice variants in gene corrected cells (221, 229).
Given that scRNA-seq is also particularly powerful in separating
heterogeneous groups of cells (225), these datasets can be very
useful in identifying genes and pathways relevant to the function
of abnormal cell types that participate in the establishment of
diseases such as diabetes (230, 231). In turn, this information can
be employed to develop new therapeutic avenues.

Similar to its applications in gene therapy, scRNA-seq can
also be used to dissect basic biological processes such as T cell
development (232), aspects of which may inform the
optimization of CAR T cell therapies. As discussed above, a
number of studies profiling anti-CD19 CAR T cell populations
before and after infusion into patients have been able to draw
clinically relevant conclusions about transcriptional profiles
that mark CAR T cells associated with both good and poor
clinical outcomes (158, 232). scRNA-seq studies can also be
used to examine interactions occurring within the tumor
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microenvironment between various endogenous immune cell
types and CAR T cells (233).

Proteome
The eukaryotic proteome provides the greatest molecular
complexity within the genotype-phenotype paradigm. With the
addition of post-translational modification, the number of
functionally distinct proteins considerably exceeds the ~20,000
identified protein-coding genes (234). In addition to the
complexity of the proteome, the absence of protein
amplification tools has limited our ability to perform unbiased
proteomic screens. Traditional hypothesis-driven approaches,
such as high-resolution microscopy, flow cytometry and
immunohistochemistry, have enabled protein quantification at
single cell resolution (235); however, these techniques are limited
by the number of screened proteins, cell throughput, and the
need to know the target a priori. These limitations are partly
addressed by mass cytometry, a high-throughput quantitative
screen for up to 60 proteins using currently available protocols
and a theoretical capacity of up to 120 proteins (236). The
principle of mass cytometry, or cytometry by time-of-flight
(CyTOF), was based on the core concept of covalent
conjugation of multiple individual antibodies with unique
heavy metal reporter isotopes with district ion masses (237). In
brief, single cells, labelled with a complex set of reporter-
conjugated antibodies, are vaporised by inductively coupled
plasma to release reporter ions for analysis by time-of-flight
mass spectrometry (238–240). Unique ion mass sizes permit
deconvolution and ultimately the quantitative comparison of
labelled proteins on individual cells.

Pioneering work by Palii and colleagues utilised CyTOF to
determine the role of lineage-specific transcription factors (LS-
TF) in hematopoietic lineage specification (241). By performing
a temporal screen during erythropoiesis, the authors
demonstrated that multipotent progenitor populations undergo
gradual LS-TF changes to commit to single lineages at the single
cell level. Furthermore, CyTOF has been widely applied in
immune cell profiling, biomarker discovery and treatment
response studies (236, 242, 243). Such findings demonstrate
the power of single-cell approaches to decipher complex
molecular interactions, which would otherwise be masked in
bulk studies.

As previously mentioned, one of the potential risks of virus-
based gene therapy is the development of an immune response
targeting the delivery vehicle. A major strength of CyTOF is its
ability to profile multiple cell types simultaneously, allowing
researchers to create snapshots of proteins being expressed both
on the cell surface and intracellularly (244, 245). With the aim of
determining whether healthy donor PBMCs were reactive to
viral vector components used in many gene therapy clinical
trials, Kuranda et al. simultaneously profiled cytokine secretion,
immune cell activation, and T cell exhaustion using CyTOF
(246). Different immune cell responses were observed, some of
which correlated with whether or not the donor had previously
been exposed to the virus originally used to develop clinical viral
vectors. These findings indicate that it may be possible to predict
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which patients will go on to develop vector immunogenicity
(246). This type of approach can also be applied to the
monitoring of immune cell interactions following CAR T
cell infusion.

While CyTOF was originally developed for the screening of
suspension cells, Giesen et al. pioneered imaging mass cytometry
(IMC) to introduce spatially resolved mass cytometry of ~30
proteins (247). Giesen and colleagues elegantly combined
traditional immunohistochemistry with laser ablation and mass
cytometry, thus enabling mass cytometric screening across tissue
sections with subcellular resolution. Two concurrent studies
utilised IMC for screening islets and the immune cell
compartment of type 1 diabetes patients at single-cell
resolution (248, 249). The authors demonstrated the alterations
in islet topology during disease progression and the role of T
lymphocytes in b-cell destruction.

As outlined above, high-throughput single-cell phenotyping
plays a crucial role in gene and cell therapy. CyTOF and other
flow cytometry-based technologies, such as full spectrum flow
cytometry (FSFC) and Chipcytometry, enable phenotyping of
dozens of distinct cell types (250, 251). In brief, Chipcytometry
utilises microfluidics to enable iterative inspection of cell surface
markers, while FSFC relies on full spectral acquisition to enable
parallel screening of dozens of cell surface markers (250, 251).
Near limitless throughput and high capture efficiency paired with
the ability to distinguish rare cell populations provides a
powerful tool for immunophenotyping. Indeed, FSFC has been
successfully applied to identify therapy-mediated alterations in
peripheral blood mononucleocyte profiles of head and neck
squamous cell carcinoma patients (252).

Despite these advances, the high cell throughput and
complexity of acquired CyTOF data provides a significant
computational challenge and remains a key focus area for
technical development [comprehensively reviewed elsewhere:
(253)]. Recent technological advances in mass spectrometry
and upstream sample processing have also raised the prospect
of unbiased proteomic screens. Separate work by the Slavov and
Mann groups have shown a capacity to capture ~3000 and ~800
proteins per cell, respectively (254–256). At present, however, the
technology is prohibitive for routine application and will require
substantial development to become a powerful tool in the
near future.
MULTIMODAL SEQUENCING OF
COMPLEX TISSUES

The development of single-cell uni-modal sequencing platforms
to independently interrogate the genome, epigenome,
transcriptome or proteome has raised the prospect of screening
multiple components simultaneously (multimodal profiling).

Numerous approaches for separating genomic DNA and
mRNA from the same single cell have been proposed [various
approaches extensively reviewed elsewhere: (163)]. Amongst
these, the elegant G&T-seq protocol, pioneered by Macaulay
et al., separates mRNA from genomic DNA by using magnetic
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beads and biotinylated oligo(dT) primers against poly-A tails of
mRNA molecules (Figure 3 and Table 2) (48). The full-length
transcript profiling in G&T-seq assays provides a powerful tool
for identifying alternatively spliced transcripts, fusion transcripts
and expression of single nucleotide variants (SNVs) (269). The
ability to associate such information with DNA copy number
and structural variants at the single cell level allows
unprecedented insight into the relationship of the genotype
and its gene expression profiles. Nevertheless, manual
separation of DNA and mRNA during the G&T-seq protocol
increases sample handling, thereby limiting the throughput to
hundreds of cells (269) which is further compounded by the high
sequencing costs to ensure sufficient genome coverage.

Whole genome sequencing (WGS) approaches provide a
crucial tool for characterizing genomic abnormalities in
primary tumors (270). Zhu et al. recently applied G&T-seq to
a subset of lymphovascular invasive cells, isolated from a breast
cancer patient (271), describing the relationship between RNA
and CNV clones and outlining multiple functionally distinct
clones and their role in metastatic dynamics. This illustrates the
power of G&T-seq to uniquely integrate genomic abnormalities
with transcriptional consequences, potentially of substantial
utility in deciphering tumor heterogeneity and intra-tumoral
clonal dynamics post CAR T therapy.

Existing epigenetic single-cell assays have also been adapted
to enable multimodal approaches (Figure 3 and Table 2). For
example, Angermueller et al. adapted the existing principles of
G&T-seq by introducing a bisulfite treatment step which allowed
DNA methylation profiles and gene expression to be obtained
from the same cell (scM&T-seq) (46). A more recent adaptation
to the scM&T-seq protocol introduced chromatin accessibility as
the third dimension for simultaneous single-cell nucleosome,
methylation and transcription sequencing (scNMT-seq) (257).
Here, a methyltransferase is used to label accessible DNA prior to
scBS-seq. Such labelling permits downstream computational
deconvolution of DNA methylat ion and chromatin
accessibility profiles (272). To date, scM&T-seq and scNMT-
seq have provided intriguing insight into stem cell biology and
mouse gastrulation. For instance, pioneering work by Argelaguet
and colleagues described the role of epigenetic priming at
lineage-specific enhancers during lineage commitment (205). A
second pioneering study revealed that changes in DNA
methylation drive increasing transcriptional heterogeneity
during stem cell ageing (273). These studies demonstrate the
impact of a multi-modal scNMT-seq for characterising the role
of the epigenome in complex tissues and biological processes,
including the underlying cellular heterogeneity.

Taking into account the role of DNA methylation in driving
autoimmune defects, age-related diseases and tumorigenesis
(274, 275), scNMT-seq can provide a powerful and versatile
tool for uncovering novel therapeutic avenues. These principles
can also be applied for assessing the extent to which normal
tissue function can be restored following corrective gene
therapies. Similarly, multimodal epigenetic and gene expression
profiling can provide a valuable tool for characterizing the tumor
microenvironment and its interaction with CAR T cells to
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increase therapeutic efficacy. However, the relatively low-
throughput of scNMT-seq can limit the coverage of large,
complex tissues.

To determine the impact of cis- and trans-regulatory elements
on gene expression profiles, collecting chromatin accessibility
and gene expression profiles from the same cell are of paramount
importance. Cao et al. pioneered sci-CAR to simultaneously
perform nuclear scRNA-seq and scATAC-seq (258) by
adapting previously established principles of single-cell
combinatorial indexing to barcode mRNA and open chromatin
regions from single nuclei extracts. Shortly thereafter, Chen and
Frontiers in Immunology | www.frontiersin.org 11
colleagues developed SNARE-seq for performing simultaneous
gene expression and chromatin accessibility profiling (259). In
contrast to sci-CAR, SNARE-seq utilized the high-throughput
Drop-seq platform to incorporate single nuclei and adapter-
coated beads. Upon nuclei lysis within each droplet, released
nuclear RNA and chromatin fragments bind to the uniquely
barcoded beads allowing connectivity of ATAC-seq and RNA-
seq profiles of individual cells. Furthermore, SNARE-seq enabled
significantly improved capture of chromatin fragments and
improved the transcript sequencing depth (259). That said, the
potential of SNARE-seq is partially restricted by the complexity of
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downstream data analysis and this prompted the development of
integrated analysis pipelines, such as Signac (218) and the
Chromium Single-Cell Multiome ATAC + Gene Expression
platform. The simplification of the sample preparation process
and analysis pipelines will be required to facilitate the wider
adoption of multi-modal epigenetic and gene expression screening.

A vast array of computational tools has been developed for
the analysis of unimodal single cell data. For instance, advances
in dimensionality reduction, clustering and algorithms for
identifying marker genes, constructing lineage trajectories and
batch correction contributed greatly to current widespread access
to scRNA-seq analysis tools (163). The assembly and curation of
key tools into unified analysis pipelines, such as Seurat, SCRAN
or SCANPY, has enabled bench-trained scientists to
independently analyse scRNA-seq data (276–279). Datasets
from multimodal analysis with distinct cellular dimensions
inherently do not share common features (280), making data
integration across distinct modalities from the same cell a
profound and novel computational challenge. To integrate
multiple modalities collected from the same cells into a single
reference describing cell identities, Hao et al. developed a
Weighted Nearest Neighbour (WNN) framework (281). In
brief, WNN utilises nearest neighbour analysis and computes
modality weights to derive a single landscape, reflecting the
similarities of all modalities. The increased adoption of single-
cell multimodal screens provides another computational
challenge - the integration of multimodal data across distinct
experiments, platforms and batches. While multiple strategies to
integrate and batch-correct unimodal scRNA-seq datasets have
been proposed (278, 282), their applicability to multimodal
datasets is limited. To overcome this limitation, Stuart and
colleagues adapted canonical correlation analysis and L2
normalisation to derive anchors for data integration (283). To
enable integration in a variety of experimental settings, several
anchoring methods have been proposed [reviewed in (284)].
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Nevertheless, the rapidly expanding landscape of novel
multimodal screening technologies continues to require
bespoke analytical approaches and recent developments in
multimodal data analysis are expansively reviewed elsewhere
(163, 280).

Overall, technological advances have resulted in an
unprecedented proliferation of novel single-cell molecular
assays. Intriguingly, the capability of incorporating such
approaches to acquire multiple elements from single cells has
allowed the interrogation of the direct relationship of multiple
molecular dimensions. Such extensive single-cell profiling is
particularly beneficial for application in future cell therapies
where the interrogation of tumor infiltrating lymphocytes and
tumor microenvironments will provide a crucial component
for target discovery and monitoring of therapeutic efficacy.
Due to the heterogeneous nature and shifting clonal dynamics
of malignant tissues, single-cell approaches are of paramount
importance for the development of effective cell therapies.
MULTIMODAL SINGLE-CELL
APPROACHES INTEGRATING
FUNCTIONAL AND MOLECULAR DATA

Simultaneously acquiring functional and molecular readouts
from the same cells have historically represented an
experimental challenge, as omics profiling tools typically result
in destruction of the target cell. This is particularly challenging
when the functional state of a cell is determined by a
retrospective assay, thereby making its prospective isolation
and molecular characterization impossible. Hence, most
technical developments that combine functional and molecular
multimodal approaches have focused on capturing cellular
function prior to a destructive single-cell assay.
TABLE 2 | Multimodal single-cell tools.

Name Modalities Feature coverage Throughput Cost References

G&T-seq Genome + Transcriptome Whole Genome + Whole Transcriptome 100-1000 $$$ (48)
scM&T-seq Epigenome + Transcriptome Whole Genome + DNA methylation 100-1000 $$$ (46)
scNMT-seq Epigenome + Transcriptome Whole Genome + DNA methylation + chromatin

accessibility
100-1000 $$$ (257)

sci-CAR Epigenome + Transcriptome Chromatin accessibility + Whole transcriptome 1,000-20,000 $$ (258)
SNARE-seq Epigenome + Transcriptome Chromatin accessibility + Whole transcriptome 5,000-20,000 $$ (259)
CITE-seq Transcriptome + Proteome Whole transcriptome + 200 proteins 5,000-30,000 $$ (45)
ECCITE-seq Transcriptome + Proteome +

Perturbation
Whole transcriptome + 200 proteins + sgRNAs + VDJ
recombination

5,000-30,000 $$ (260)

Perturb-CITE-
seq

Transcriptome + Proteome +
Perturbation

Whole transcriptome + 200 proteins + sgRNAs 5,000-30,000 $$ (261)

Perturb-seq Transcriptome + Perturbation Whole transcriptome + sgRNAs 5,000-100,000 $$ (47)
TAP-seq Transcriptome + Perturbation Hundreds of genes + Thousands of gRNAs 5,000-250,000 $ (262)
LINNAEUS Transcriptome + Lineage Tracing Whole transcriptome + Lineage 1,000-10,000 $$ (263)
scGESTALT Transcriptome + Lineage Tracing Whole transcriptome + Lineage 1,000-10,000 $$ (264)
scarTrace Transcriptome + Lineage Tracing Whole transcriptome + Lineage 1,000-10,000 $$ (265)
seqFISH+ Transcriptome + Spatial Up to 10,000 genes + Subcellular location Thousands (limited by field of view

and imaging time)
$$$ (266)

MERFISH Transcriptome + Spatial Up to 10,000 genes + Subcellular location Thousands (limited by field of view
and imaging time)

$$$ (267, 268)
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Transcriptome and the Cell
Surface Proteome
One of the first applications of multimodal omics technologies
arose from the desire to connect cell surface phenotypes with
gene expression profiles. Several well-characterized biological
systems, particularly immune cell subtypes and hematopoiesis,
have benefited from in-depth characterization of cell surface
markers for a variety of functionally distinct cellular populations
(285). As a result, quantitative phenotypic information of
selected cell surface markers can permit inference of cellular
function. Fluorescence-activated cell sorting (FACS) in
combination with index sorting allows simultaneous recording
of cell surface protein levels prior to deposition in lysis buffer for
downstream destructive molecular assay, such as the Smart-seq2
protocol for gene expression profiling (38). The application of
such approaches has allowed the linkage of stem cell function
with global molecular profile for the first time and provided
numerous insights into our understanding of transcriptional
heterogeneity throughout hematopoiesis (44, 285–287).

Strategies involving index sorting and downstream scRNA-
seq are particularly powerful when combined with functional
outcome analyses. Wilson et al. and others have shown how these
methods can be applied to understanding the heterogeneity
inherent to many normal tissues and identifying features that
differentiate normal and disease-causing cell types (44, 287–292).
These methods would be particularly useful in linking T cell
function to distinct gene expression profiles, allowing for the
identification of subpopulations of cells that are associated with
specific clinical outcomes.

Nevertheless, isolation strategies of functional cell types
frequently do not achieve homogeneity and contaminating
cells cannot be fully excluded from destructive molecular
assays. This is in contrast to selective single-cell functional
assays that can distinguish truly functional cells from
contaminants, meaning that cellular heterogeneity is often the
first to be identified (i.e., they drop out of the assay and do not
generate a confusing data point) (293). Furthermore, cell
isolation by FACS requires prior knowledge of distinct cell
types, thereby precluding the discovery of novel cell types. In
addition, index-sorting FACS-based approaches are not
compatible with droplet-based high-throughput sequencing
platforms. To overcome these limitations, Stoeckius et al.
pioneered CITE-seq (cellular indexing of transcriptomes and
epitopes by sequencing, Figure 3 and Table 2) (45). Here,
antibodies against cell surface proteins of interest are labelled
using unique oligonucleotide barcodes. Antibody-labelled cells
are subjected to the Drop-seq protocol, encapsulating single cells
in droplets containing beads to introduce unique cellular
barcodes to mRNA and the antibody-derived tags (ADTs).
Subsequently, ADT counts are used to quantify antibody-
bound cell surface proteins and provide a link to the
corresponding single-cell gene expression profiles. Consistent
surface proteome quantification and resolution were achieved
compared to traditional flow cytometry approaches, while
providing a theoretically unlimited scope for antibody
multiplexing (45).
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The application of CITE-seq in tumor microenvironment
biology has been noted previously (294, 295). Praktiknjo et al.
screened healthy and tumor-bearing mouse salivary glands,
including the immune compartment of the tissue (295). By
performing CITE-seq, the authors were able to construct a
comprehensive gene expression atlas and simultaneously
recorded a comprehensive set of 63 immune-specific cell
surface proteins. Most notably, they derived a comprehensive
cell atlas of the tumor microenvironment, using gene expression
profiles and quantification of cell surface proteins, underscoring
the utility of CITE-seq in the discovery of novel tumor-specific
cell surface antigens for cell therapy. By linking surface protein
quantification with gene expression profiling at single cell
resolution, CITE-seq can identify novel antigens associated
with specific clones within heterogeneous cancer tissues,
ultimately raising the prospect of a broader spectrum of
effective cell therapies. The efficacy of multimodal single-cell
screens, such as CITE-seq has been particularly evident
throughout the scientific response to the COVID-19 outbreak.
Combined efforts to screen >780,000 single PBMCs from
COVID-19 patients and healthy donors using CITE-seq
revealed the immune response to COVID-19 infections and its
role in disease pathology (296). Such studies provide a prominent
example how single-cell multiomics can provide rapid insight
into previously unknown diseases and help inform the
development of effective therapeutics.

Perturbation Screens
Large-scale perturbation screens have previously provided
unprecedented insights into gene functions and their role in
complex biological mechanisms (297). The advent of CRISPR/
Cas9 has revolutionized our ability to conduct high-throughput
perturbation screening and multiple groups have now developed
multimodal single-cell perturbation screens, combining CRISPR
technology with scRNA-seq (47, 298–301). In Perturb-seq
(Figure 3 and Table 2), a pool of barcoded single-guide RNAs
(sgRNAs) is constructed against a set of 24 transcription factors
and transduced cells are subjected to high-throughput droplet-
based sequencing, whereby unique cell barcodes are also
introduced. The dual barcoding approach allows connection
of single-cell gene expression profiles with a respective
perturbation. Such single-cell CRISPR screens and their ability
to interrogate transcriptional consequences of perturbations
provided a novel method to assess the functional effectors of
complex biological mechanism and tissues (301, 302). Of note,
Jin et al. demonstrated the application of Perturb-seq in an in
vivo setting (303). To interrogate the underlying molecular
mechanisms driving autism, the authors introduced a guide
RNA pool against risk genes to the forebrain of a developing
embryo in utero. The progeny of perturbed cells was then
collected at P7 for downstream scRNA-seq analysis, providing
key insights into the molecular mechanisms of neocortical
cell types.

Perturb-seq can be very useful in trying to understand larger
pathways that integrate multiple signals. For example, Adamson
et al. used Perturb-seq to understand how activation of the
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unfolded protein response (UPR) differed between individual
cells (301). This type of data has the potential to disentangle
larger signaling networks, all of which is important for
understanding complex processes such as immune responses.

Despite the demonstrated efficacy, application of Perturb-seq
is limited by the sequencing depth of high-throughput
approaches. Acquired data is subject to significant background
noise and low-abundant transcripts are frequently missed (47,
298). Furthermore, the multiplicity problem of combining
multiplexed perturbations with single-cell gene expression
profiles poses a computational challenge. Schraivogel proposed
an intriguing adaptation, termed targeted Perturb-seq (TAP-seq)
(262). By performing targeted amplification of a selected set of
genes prior to sequencing, the cost and analytical complexity
could be significantly reduced. This approach provides a
powerful tool for screening cellular pathways with defined
genetic biomarkers. In the context of cell therapy, TAP-seq
could thus provide a cost-effective tool for identifying
underlying molecular mechanisms of immune cell evasion of
CAR T therapy.

There have been a wide variety of additional approaches to
integrate single-cell perturbation screens with the surface proteome
of the same cell. Most notably, Mimitou et al. proposed ECCITE-
seq (260) and Frangieh et al. described Perturb-CITE-seq (261). In
brief, Mimitou et al., adapted the existing CITE-seq protocol by
introducing addition oligonucleotides against unique sgRNA
identifiers to cellular barcoding beads. Thus, sgRNA, transcripts,
antibody-oligonucleotides and up to 2 other parameters can be
recorded for individual cells (260). More recently, Frangieh et al.
proposed Perturb-CITE-seq to provide a scalable solution for
Perturb-seq with simultaneous screening of cell surface proteins
(261). Here, the authors demonstrated the benefits of Perturb-
CITE-seq by identifying molecular pathways driving immune
evasion of a melanoma cell line against primary tumor
infiltrating lymphocytes (261). Overall, the ability to connect
gene expression profiles and the cell surface proteome from
single cells under perturbation provides a comprehensive
characterisation of complex molecular systems. As demonstrated
by Frangieh et al., such technologies can help identify and
characterize immune evasion drivers and ultimately reveal novel
targets that might lead to enhanced therapeutic potency
of immunotherapies.

Clonal Tracking and Lineage Tracing
Recent work by Lee-Six et al. outlined the application of whole
genome sequencing (WGS) approaches to establish the clonal
dynamics of human HSPCs (182). The authors isolated single
HSPCs from a healthy donor and were able to retrospectively
reconstruct the phylogenetic tree of single cell-derived colonies,
based on a broad set of shared or unique acquired somatic
mutations. By simultaneously screening mature cells isolated
from peripheral blood samples of the same individual, Lee-Six
et al. were able to infer the progeny and extended relatedness of
stem cell clones. Using this approach in a 59 year old human, the
authors could map all the way back to the most recent common
ancestor for blood and buccal epithelium, observed an early
Frontiers in Immunology | www.frontiersin.org 14
expansion of the stem cell compartment and confirmed
hematopoietic activity of a large number of diverse HSC clones
estimated to be between 50,000 and 200,000 actively contributing
HSCs (162, 182).

This technique could be powerfully applied to gain insight
into the clonal dynamics of HSCs used in gene therapy. Careful
patient monitoring must be undertaken to ensure therapeutic
efficacy and restoration of normal tissue function. As
multipotent cells provide the most common target for gene
therapies, gene corrections can significantly impact the clonal
dynamics of the target tissue. Intriguingly, previous efforts to
track therapeutic efficacy of corrective therapies large depended
on monitoring progeny cells, their homeostatic function and
particularly the proportion of target cells expressing the desired
gene edit (159, 304). However, such approaches do not provide
sufficient resolution to fully characterize clonal dynamics of
corrected cell types and their impact on homeostatic tissue
function. WGS of single cell-derived colonies allows to
monitor naturally occurring somatic mutations in multipotent
cells and their progeny to establish their relationship and infer
clonal dynamics of single cells (162). When applied to a pool of
edited cell and mature cell progeny post-gene therapy, such
approaches can provide a direct insight into therapeutic efficacy
and long-term tissue health.

In contrast, upfront labelling of target cells followed by
temporal tracking of their progeny can reveal patterns of clonal
evolution. Here, the advent of routine and cost-effective
sequencing also revolutionised lineage tracing, providing a
compelling alternative to traditional imaging-based approaches.
In the context of diabetes, lineage tracing has been used to track
the various cell types which originate from pancreatic progenitor
cell populations (305–307) and identify cell types that are able to
transdifferentiate into insulin-secreting cells (110, 308, 309). High-
throughput screening at single cell resolution and integration into
multimodal approaches greatly expand the scope of lineage tracing
(310). While fluorescent tags limit the capacity of parallel
barcoding, DNA sequence complexity provides a scalable
barcoding approach. In principle, unique DNA barcodes are
first introduced into a large population of target cells.
Subsequently, amplification of the unique set of DNA barcodes
in cell progeny can be used to compute lineage phylogenies (311,
312). A prominent barcoding approach relies on CRISPR/Cas9-
mediated dynamic lineage tracing. Here, CRISPR/Cas9-mediated
double-stranded breaks are introduced at defined genomic loci
(313). The resulting insertions and deletions (indels) create unique
cellular barcodes, which evolve over time. By sequencing such
regions, the mutational patterns can be used to establish
phylogeny and clonal evolution. Multiple groups have
independently pioneered such CRISPR/Cas9-based lineage
tracing approaches, which predominantly differentiate in the
number of loci used to store lineage barcodes (263, 265, 314–
318). Of note, using genome editing of synthetic target arrays for
lineage tracing (GESTALT), McKenna et al. were able to trace and
reconstruct early developmental pathways in a whole organism.

Dynamic lineage tracing protocols outlined above have been
integrated in multimodal screens to link cellular progeny to their
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respective gene expression profiles, including single-cell
GESTALT (scGESTALT), linear tracing by nuclease-activated
editing of ubiquitous sequences (LINNAEUS) and ScarTrace
(Figure 3 and Table 2) (263–265). Raj et al. integrated the
underlying principles of GESTALT with scRNA-seq to
simultaneously acquire lineage information and gene
expression profiles of the same cell (264). Instead of targeted
sequencing of genomic DNA, scGESTALT relies on sequencing
of expressed transgenes, which encode the unique cellular
barcode. The use of droplet-based high-throughput gene
expression thus provides cell type information, otherwise lost
in previous lineage tracing protocols. Intriguingly, the
LINNAEUS and ScarTrace protocols introduce barcodes in
fluorescent transgenes to allow monitoring of successful
integration of cellular barcodes. Thus, providing a crucial
quality control mechanism prior to performing computational-
and capital-intense sequencing (263, 265).

While prospective lineage tracing is not possible in humans,
the use of these techniques in preclinical studies has the potential
to unlock cellular relationships that are relevant to
understanding cell origins in normal and diseased tissues.
Furthermore, lineage tracing may also be used to link
immature immune cell types to their immunologically active
terminally differentiated counterparts. This could feed into
refinements of CAR T cell production protocols for example,
allowing for the selection of specific populations with maximal
effector function (117).

Nevertheless, these multimodal lineage tracing technologies
are currently in their infancy and a variety of experimental and
computational limitations require attention. Shallow sequencing
depth of high-throughput approaches can prevent barcode
detection and CRISPR/Cas9-induced cell toxicity has recently
been described, thus potentially disrupt the effective construction
of phylogeny or distort separation of cell types (310, 319, 320).
Furthermore, Spanjaard et al. noted the probability of double
scarring, whereby a subset of non-homologous end joining-
mediated errors have a higher probability of occurring (263).
Thus, if not excluded, high-frequency scars can result in false
inference of lineage relationship. To address the issue of barcode
duplications and noise, Zafar et al. recently proposed a novel
analytical pipeline for improved lineage tree reconstruction and
integration of separate single-cell lineage tracing experiments
(49). While these advances are promising, further computational
innovation will be of paramount importance for the adoption of
single-cell lineage tracing in gene and cell therapy developments.
INTRODUCING SPATIAL RESOLUTION IN
GENE AND CELL THERAPY

Single-cell sequencing technologies and their multimodal
integration continue to push the boundaries of understanding
the mechanisms governing complex tissue organization.
However, such single-cell screening protocols are largely based
on removing the cells and destroying them, typically discarding
any spatial information of the underlying tissue from which they
Frontiers in Immunology | www.frontiersin.org 15
were extracted. The crucial role of cellular location and spatial
gene expression throughout early embryogenesis has been widely
recognized (321). Similarly, cellular location in heterogeneous
tumors and the surrounding tumor microenvironment are vital
to cell function (322). Therefore, resolving spatial dimensions
and linking these with gene expression profiles to infer gene
function and cell identity can help us understand disease
pathology and complex tissue function. Here, we discuss
selected technological developments in spatial transcriptomics
and their prospect in the development of novel cell and gene
therapies [spatial omics protocols are comprehensively described
elsewhere: (321, 323)].

The development of fluorescence in situ hybridisation (FISH)
techniques first enabled the detection of DNA and RNA
molecules in structurally preserved, fixed tissue sections (43,
324, 325). Oligonucleotides, complementary to a target
nucleotide sequence, are labelled with single or multiple
fluorophores. In turn, fluorescently labelled oligos bound to a
target region can be observed using optical microscopy.
Ultimately, the principles of FISH facilitated quantitative
detection of mRNA at subcellular resolution (43, 324, 326).
Here, the authors constructed a library, consisting of short
single fluorophore-labelled oligos, against a single mRNA
target to estimate the number of mRNA molecules in a single
cell, screening up to 3 mRNA sequences in parallel.

To enable high-throughput spatial transcriptomic screening,
Lubeck et al. first established the principles of sequential FISH
(seqFISH), providing a strategy with theoretically whole
transcriptome coverage (327, 328). In brief, multiple single
fluorophore-labelled probes are used for mRNA labelling
during a single hybridization round. By stripping probes and
performing multiple rounds of hybridisation, the number of
unique barcoding increases exponentially. Shah et al.
demonstrated the efficacy of seqFISH for screening hundreds
of genes at sub-cellular resolution, providing a novel insight into
the spatial organisation and transcriptional heterogeneity of the
mouse brain (329). The recent introduction of an additional
fluorophore to sequential hybridisation allowed further scaling of
seqFISH (seqFISH+) (Figure 3 and Table 2) (266). This strategy
avoids optical crowding by effectively diluting mRNA molecules
into separate images. The result was a robust protocol for
screening 10,000 genes in spatially resolved tissues, spanning
thousands of cells (266). Here, the use of confocal microscopy for
the seqFISH+ protocol provides a key advantage to facilitate
wider adaption. A recent study by Lohoff et al. applied seqFISH
to construct spatially resolved gene expression profiles for mouse
organogenesis using a computational framework for the
integration of spatially-resolved gene expression maps with
scRNA-seq profiles of cell types in early mouse development
(330, 331). In parallel, Chen et al. pioneered a multiplexed error-
robust FISH (MERFISH) approach which combined error-
corrected barcoded probes and sequential imaging to perform
a multiplexed screen of hundreds of genes (Figure 3 and
Table 2) (267). Further MERFISH developments, such as the
use of expansion microscopy, enabled quantification of
thousands of genes in hundreds spatially resolved cells at a
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detection efficiency of ~80% (268). This high capture efficiency is
a major advantage of MERFISH.

While the methods outlined above drove innovation in spatial
transcriptomics, their relative infancy is accompanied by
experimental and computational complexity, which currently
provides a barrier to wide-spread adoption. Several commercially
available platforms have been established to provide a
standardised experimental framework. The Visium platform
utilised NGS for deriving spatially resolved gene expression
profiles (323, 332). Here, a tissue section of interest is
deposited onto a slide, coated with uniquely barcoded arrays
(barcode spacing permits 55um resolution). Following barcoding
of captured mRNA molecules, cDNA libraries are subjected to
high-throughput NGS and spatial deconvolution based on the
unique barcoding. However, the current barcode spacing
prevents interrogation of neighbouring cells. Here, in situ
analysis can provide a complementary approach, allowing
interrogation of a defined set of mRNA targets at spatial singe
cell resolution (333–335).

Collectively, spatial transcriptomics technologies are
currently in the developmental and early adaption phase. As a
result, several key limitations persist. For instance, the tissue-
dependent optimisation and sequential hybridisation rounds
require significant experimental time, while the use of
customised equipment also impacts implementation. However,
increasing throughput and the desire to reach whole-
transcriptome coverage will greatly increase imaging time and
data complexity, making the most prominent limiting factor the
development of robust analytical tools. To overcome the
computational barrier, recent advances aim to address key
unmet needs in data analysis and its scalability (336, 337).

Despite these challenges, several major advances have already
been made using spatial transcriptomics, including studies in
tumor heterogeneity and transcriptional changes in the
microenvironment. In one study, Berglund et al. constructed a
comprehensive spatial map of tumor and healthy prostate tissue
biopsies from a prostate adenocarcinoma patient (322). The
authors uncovered significant transcriptional differences
between the tumor core and its periphery. Intriguingly,
thorough interrogation of stromal and immune cell types,
surrounding the primary tumor, facilitated the identification of
heterogeneous gene expression networks in the tumor
microenvironment (322). Spatial transcriptomics has also been
applied for mapping the localisation of Cxcl12-abundant
reticular cells in the bone marrow niche and for the
characterisation of stromal cell heterogeneity in tumor
microenvironments (338, 339). These and other studies
demonstrate that the potential of spatial transcriptomics in
deciphering tumor architecture , heterogeneity and
microenvironments has been widely recognised. Beside its role
in therapeutic discovery and disease pathology, spatially resolved
gene expression profiles can become of paramount importance
for monitoring therapeutic outcomes of cell therapies and
identify evasion mechanisms in response to cell therapies. In
addition, spatial characterisation post CAR T cell therapy could
provide an insight into the impact of off-target effects on the
Frontiers in Immunology | www.frontiersin.org 16
function of proximal tissues. Similarly, spatial transcriptomics
could aid in long-term monitoring of patients undergoing
corrective gene therapies.
CONCLUDING REMARKS

The past decade has produced an abundance of novel single-cell
molecular tools, facilitating the unbiased screening of a wide
array of molecular dimensions at unprecedented resolution.
Unimodal sequencing technologies have proved particularly
impactful in the first wave of wide-scale adoption, but more
approaches have been focused on combining such techniques
into multimodal screens to allow simultaneous capture of
multiple molecular dimensions from the same cell. These
technologies have allowed researchers to unpick the molecular
mechanisms driving disease pathology at a scale not previously
considered possible. Tissue and disease heterogeneity, previously
masked in bulk sequencing approaches, are now routinely being
explored at single cell resolution.

Techniques such as scRNA-seq have been widely adopted due
to the production of robust experimental protocols and
increasing consensus surrounding the computational
approaches for quality control and data analysis. On the other
hand, multimodal screens have not yet enjoyed similar uptake
due to their reliance on high sequencing costs, advanced
integrative computational tools and technical expertise.
However, just as moving to single cells was a technical hurdle
of 10 years ago, the research benefits derived from novel
multimodal screening platforms will push the limits of
discovery and accelerate technical development and method
standardization. The next few years should see these technical
and computational approaches streamlined to create
reproducible protocols and standardised analytical pipelines to
facilitate rapid adoption rates, as has occurred for scRNA-
seq historically.

Concomitant with the technical challenges and need for
standardization, the increased accessibility of single-cell
technologies has exponentially increased the amount of data
generated during these studies. This provides a unique
opportunity to leverage the power of these studies by
integrating datasets but also makes for substantial computing
and processing challenges. Batch correction and data integration
across experiments and different sequencing platforms are areas
that will require particular attention and novel computational
approaches for handling and analysing increasing amounts of
data will be of paramount importance. Ultimately, the
continuous technical improvements and aggregation of data
could provide the foundation for a fully characterized reference
atlas of the human body at single cell resolution. The drive
towards such a resource is evident in the recently announced
efforts to establish a common coordinate framework (CCF) for
data collection and integration (340). In line with that, initiatives
such as the Human Biomolecular Atlas Program and the CCF
aim to provide a publicly available tool to help researchers map
data from diseased states onto healthy single-cell datasets and
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provide a reference for the entire scientific community
(340, 341).

A number of recent studies have clearly demonstrated the
utility of these approaches in (1) understanding complex
biological processes such as cell fate determination and
immune response, (2) dissecting tissue and disease
heterogeneity, and (3) stimulating innovative research aimed at
developing novel therapeutics (342–344). Within the next
decade, it is anticipated that an increasing number of patients
across many disease types will be treated with gene and cell
therapy. Using samples obtained from these growing patient
cohorts, single-cell technologies will undoubtedly be used to
answer essential questions related to the relationships between
disease-causing cells, normal or corrected cell types, tumor-
targeting lymphocytes such as CAR T cells, and endogenous
immune populations. For autoimmune diseases such as type 1
diabetes where the risk of relapse is relatively high due to
immunogenicity, this level of detail will be essential to finding
new ways to increase treatment efficacy. Additionally, due to the
relatively recent wider application of these therapeutics, only a
limited number of gene or cell therapy clinical trial patients have
been monitored for more than 10 years following treatment
initiation (65, 84, 345–347). Depending on the stability of edited
cells and the influence of other comorbidities, detailed studies
using single-cell approaches may also become relevant during
long-term follow up. As patients enter the later decades of life,
the intersection of age-related and treatment-related
abnormalities may present unique clinical challenges. Further
refinements and innovations to single-cell profiling technologies
Frontiers in Immunology | www.frontiersin.org 17
have the potential to unlock and disentangle relationships
between key drivers of disease phenotypes, leading to wider
delivery of authentic personalised medicine.
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Á, et al. The Bone Marrow Microenvironment at Single-Cell Resolution.
Nature (2019) 569:222–8. doi: 10.1038/s41586-019-1104-8

344. Peng J, Sun BF, Chen CY, Zhou JY, Chen YS, Chen H, et al. Single-Cell RNA-
Seq Highlights Intra-Tumoral Heterogeneity and Malignant Progression in
Pancreatic Ductal Adenocarcinoma. Cell Res (2019) 29:725–38. doi: 10.1038/
s41422-019-0195-y

345. Candotti F, Shaw KL, Muul L, Carbonaro D, Sokolic R, Choi C, et al. Gene
Therapy for Adenosine Deaminase-Deficient Severe Combined Immune
Deficiency: Clinical Comparison of Retroviral Vectors and Treatment
Plans. Blood (2012) 120:3635–46. doi: 10.1182/blood-2012-02-400937

346. Gaspar HB, Cooray S, Gilmour KC, Parsley KL, Adams S, Howe SJ, et al.
Immunodeficiency: Long-term Persistence of a Polyclonal T Cell Repertoire
After Gene Therapy for X-Linked Severe Combined Immunodeficiency. Sci
Transl Med (2011) 3(97):97ra79. doi: 10.1126/scitranslmed.300271

347. Aiuti A, Cattaneo F, Galimberti S, Benninghoff U, Cassani B, Callegaro L,
et al. Gene Therapy for Immunodeficiency Due to Adenosine Deaminase
Deficiency. N Engl J Med (2009) 360:447–58. doi: 10.1056/nejmoa0805817

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Bode, Cull, Rubio-Lara and Kent. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
July 2021 | Volume 12 | Article 702636

https://doi.org/10.1038/s41467-019-09816-4
https://doi.org/10.1016/j.cell.2019.11.025
https://doi.org/10.1016/j.cell.2019.11.025
https://doi.org/10.1186/s13059-021-02286-2
https://doi.org/10.1101/2021.02.19.431994
https://doi.org/10.1038/s41467-020-19920-5
https://doi.org/10.1038/s41556-019-0439-6
https://doi.org/10.1038/s41556-019-0439-6
https://doi.org/10.1016/j.cell.2019.11.019
https://doi.org/10.1038/s41586-019-1629-x
https://doi.org/10.1038/s41586-019-0933-9
https://doi.org/10.1038/s41586-019-0933-9
https://doi.org/10.1038/s41586-019-1104-8
https://doi.org/10.1038/s41422-019-0195-y
https://doi.org/10.1038/s41422-019-0195-y
https://doi.org/10.1182/blood-2012-02-400937
https://doi.org/10.1126/scitranslmed.300271
https://doi.org/10.1056/nejmoa0805817
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Exploiting Single-Cell Tools in Gene and Cell Therapy
	Introduction
	A Golden Age for Gene Therapy - Recent Successes in Treating Monogenic Disorders
	Cell Therapy as a Promising Treatment for More Complex Diseases
	Using Single-Cell Approaches to Refine Treatment And Inform the Development of Novel Therapeutics
	Single-Cell Multi-Omics Platforms and Their Prospect in Gene and Cell Therapy
	Genome
	Epigenome
	Transcriptome
	Proteome

	Multimodal Sequencing of Complex Tissues
	Multimodal Single-Cell Approaches Integrating Functional and Molecular Data
	Transcriptome and the Cell Surface Proteome
	Perturbation Screens
	Clonal Tracking and Lineage Tracing

	Introducing Spatial Resolution in Gene and Cell Therapy
	Concluding Remarks
	Funding
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


