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Axon degeneration represents a pathological feature of many neurodegenerative diseases,
including Alzheimer’s disease and Parkinson’s disease where axons die before the
neuronal soma, and axonopathies, such as Charcot-Marie-Tooth disease and
hereditary spastic paraplegia. Over the last two decades, it has slowly emerged that a
central signaling pathway forms the basis of this process in many circumstances. This is an
axonal NAD-related signaling mechanism mainly regulated by the two key proteins with
opposing roles: the NAD-synthesizing enzyme NMNAT2, and SARM1, a protein with
NADase and related activities. The crosstalk between the axon survival factor NMNAT2
and pro-degenerative factor SARM1 has been extensively characterized and plays an
essential role in maintaining the axon integrity. This pathway can be activated in
necroptosis and in genetic, toxic or metabolic disorders, physical injury and
neuroinflammation, all leading to axon pathology. SARM1 is also known to be involved
in regulating innate immunity, potentially linking axon degeneration to the response to
pathogens and intercellular signaling. Understanding this NAD-related signaling
mechanism enhances our understanding of the process of axon degeneration and
enables a path to the development of drugs for a wide range of neurodegenerative
diseases.
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INTRODUCTION

Neurons are the longest cells in the body; this structure lends itself to their function of transmitting
signals around the body to react to changing stimuli, but their length leaves them vulnerable to injury
and other stresses. As they cannot rely solely on diffusion of cell survival factors over distances up to
1 m, they have to actively transport a multitude of molecules along their axons in an energy-intensive
process (De Vos et al., 2008). Changes in metabolism can disrupt axon transport and lead to
degeneration, as can physical injury such as axon transection or crush (Coleman, 2005). Chemicals
such as vincristine and paclitaxel are also known to induce degeneration by inhibiting axonal
transport, limiting their use as cancer chemotherapeutics (Lapointe et al., 2013; Turkiew et al., 2017;
Geisler et al., 2019a). Recently, it has been shown that neuroinflammation and necroptosis can also
induce axon degeneration (Ko et al., 2020).

The first stage of many neurodegenerative diseases is axon degeneration, precisely because of their
vulnerability to damage (Stokin et al., 2005; Cheng et al., 2010; Loring and Thompson, 2020).
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Diseases involving axon loss, such as Alzheimer’s disease (AD),
amyotrophic lateral sclerosis (ALS) (van Rheenen et al., 2016) and
peripheral neuropathies, contribute greatly to global disease
burden, and are examples of such diseases where axon
degeneration is involved in disease progression (Stokin et al.,
2005; Geisler et al., 2016; Coleman and Höke, 2020).

We review here the well-understood and widely-occurring
mechanism, programmed axon degeneration (or Wallerian
degeneration), in which NAD (nicotinamide adenine
dinucleotide) and related biology are known to play a central
role. A large number of disease models in animals and cell culture,
and a growing list of human disorders involve axon loss through
this mechanism (Conforti et al., 2014; Coleman and Höke, 2020;
Loreto et al., 2020b).

NAD is a molecule found in all the kingdoms of life. It exists in
either oxidized (NAD+, electron acceptor) or reduced form
(NADH, electron donor). Under physiological conditions, the
cytoplasmic NAD+-to-NADH ratio is from 1 to 700, while in
mitochondria, this ratio is maintained at 7–8 (Ying, 2008). In
cells, NAD is dynamically regulated through continuous
biosynthesis, consumption and recycling. In mammals, NAD

is synthesized from three main pathways. The de novo, Preiss-
Handler and salvage pathways use tryptophan, nicotinic acid
(NA) and nicotinamide (Nam), respectively to generate NAD.
NAD-consuming enzymes include sirtuins, PARPs
(poly(ADP–ribose) polymerases), CD38 (cluster of differention
38) (Navarro et al., 2021) and SARM1 (sterile alpha and Toll/
interleukin-1 receptor motif-containing 1) (Essuman et al., 2017).
NAD is recognized for its ability to carry electrons in redox
reactions (Warburg and Christian, 1936; Nikiforov et al., 2015),
and plays an important role in various physiological processes
including energy metabolism, DNA repair and transcriptional
regulation (Ziegler and Oei, 2001; Luo and Kraus, 2012; Cantó
et al., 2015), and in pathological processes associated with
neurodegeneration, cancer and inflammation (Demarest et al.,
2019; Lautrup et al., 2019). Emerging evidence reveals that NAD
depletion is found during mitochondrial dysfunction, impaired
DNA repair and inflammation, while an NAD increase enhances
metabolic fitness (Lautrup et al., 2019).

NAD links two key players in the programmed axon
degeneration pathway: the proteins NMNAT2 (nicotinamide
mononucleotide adenylyltransferase 2) catalyzing the synthesis

FIGURE 1 | The NMNAT2 and SARM1 catalyzed reactions. NMNAT2 catalyzes the synthesis of NAD from NMN and ATP. SARM1 cleaves NAD into Nam and
either ADPR or cADPR; SARM1 catalyzes the exchange of Nam of NADP with NA (nicotinic acid) to produce NAADP (nicotinic acid adenine dinucleotide phosphate).
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of NAD from NMN (nicotinamide mononucleotide) and ATP
(adenosine triphosphate), and SARM1 whose multiple activities
include hydrolysis of NAD into Nam and ADPR (adenosine
diphosphate ribose), cyclization of NAD into cADPR (cyclic
ADPR) and base exchange of the nicotinamide group for free
bases (Figure 1) (Conforti et al., 2014; Zhao et al., 2019; Coleman
and Höke, 2020). The activity of NMNAT2 is essential for axonal
survival, while SARM1 activation can kill most cells but is blocked
in healthy axons (Gilley and Coleman, 2010; Osterloh et al., 2012;
Gerdts et al., 2013; Gilley et al., 2015). NAD also limits SARM1’s
activity through blocking its activation (Gilley and Coleman,
2010; Essuman et al., 2017; Jiang et al., 2020; Sporny et al.,
2020; Figley et al., 2021). Recently, NMN has been shown to
be an activator of SARM1, indicating that NMNAT2 has a dual
action in preventing SARM1 activation by converting an
activator, NMN, into a molecule that opposes activation, NAD
(Di Stefano et al., 2015; Zhao et al., 2019; Bratkowski et al., 2020;
Figley et al., 2021).

Intriguingly, SARM1 is not only involved in axon
degeneration, but also in innate immunity (Carty and Bowie,
2019). Its structure contains a TIR (Toll/interleukin-1 receptor)
domain, which is commonly seen in Toll-like receptors (TLRs) in
the innate immune system (O’Neill et al., 2013; Ve et al., 2015). As
removing SARM1 delays axon degeneration (Osterloh et al.,
2012), it is seen as a good candidate for therapies (Loring and
Thompson, 2020). It is currently unclear, though, whether
targeting SARM1 could lead to innate immune consequences
(Uccellini et al., 2020).

In this review, the mechanisms of axon degeneration are
thoroughly examined, while detailing the importance of NAD
and related metabolites as signaling molecules. We also discuss
whether the role of SARM1 in innate immunity indicates
important roles in the response to pathogens and axonal damage.

AXON DEGENERATION RESEARCH FROM
1850 TO TODAY

Axons have been known to degenerate upon injury since Waller’s
observations of lesioned nerves of frogs in 1850 (Waller, 1851);
however, it was long thought to be a passive process. This process
of axon fragmentation is now known as Wallerian degeneration
(Figure 2), and differs from neuronal death by apoptosis (Geden
and Deshmukh, 2016). While Waller’s work demonstrated the
gross degeneration of the distal stump of nerves after transection,
it was later work by Ramón y Cajal, in 1928 that detailed the
histological changes taking place for the first time (Ramón y
Cajal, 1991 English translation).

Axon degeneration can be divided into twophases: the latent phase
and the execution phase (Figure 2). The latent phase lasts up to 36 h
wherein the axons appear normal and formuch of this time retain the
ability to conduct an action potential, although the axon becomes
committed to degenerate (Tsao et al., 1999; Beirowski et al., 2004;
Beirowski et al., 2005; Conforti et al., 2014). This is also the stage in
which the immune system is first seen to be involved; tissue-resident
macrophages are activated and bone-marrow derived macrophages,

neutrophils and phagocytes infiltrate into the nerve (Perkins and
Tracey, 2000; Sta et al., 2014; Zigmond and Echevarria, 2019;
Boissonnas et al., 2020; Ydens et al., 2020; Chen et al., 2021).
There is also an injury-associated increase in the levels of
cytokines (Yi et al., 2017). The execution stage becomes apparent
once the axon morphology starts to change visibly but molecular
execution steps may precede this. The axons fragment and the
compound action potential is lost as they become non-functional
(Beirowski et al., 2004; Beirowski et al., 2005; Conforti et al., 2014; Sta
et al., 2014). Neutrophils may contribute in the early stages of the
execution of degeneration by phagocytosing axonal debris (Lindborg
et al., 2017), whilst macrophages clear myelin and axonal debris and
later are involved in the axon regeneration process (Boissonnas et al.,
2020).

Molecules that actively regulate axonal survival and
degeneration have long been hypothesized (Lubińska, 1977;
Lubińska, 1982). In 1982, Lubińska first proposed that an
‘axonal trophic factor’ is responsible for axon survival and it
was likely transported along axons to inhibit Wallerian
degeneration, but was unable to identify it (Lubińska, 1982).
This unnamed ‘axonal trophic factor’ fits the properties of the
protein NMNAT2, and NMNAT2 remains the best candidate for
the proposed molecule in Lubińska’s studies (Gilley and
Coleman, 2010). Recently, the loss-of-function genetic screens
in invertebrates (Drosophila) and vertebrates (mouse) identified
SARM1, which was shown to be a central executioner in
Wallerian degeneration; its deficiency protects severed axons
for weeks (Osterloh et al., 2012; Gerdts et al., 2013) and
permanently rescues the lethal axon growth deficit of Nmnat2
null mice (Gilley et al., 2017).

Wallerian Degeneration Slow Mice
The discovery of WldS (Wallerian degeneration slow) mice, a
strain in which injured axons survive 10-fold longer than in wild-
type mice (Lunn et al., 1989), challenged the hypothesis that
Wallerian degeneration is a passive process and revolutionized
the study of axon degeneration (Coleman and Höke, 2020). The
WldS mouse strain arose from a spontaneous intrachromosomal
triplication event (Coleman et al., 1998) that results in the
formation of a unique chimeric protein, WLDS. The WLDS

protein was shown to be a fusion of a 70-amino acid
N-terminal fragment of ubiquitin ligase UBE4B joined by a
unique short linker (Wld18) to NMNAT1 (nicotinamide
mononucleotide adenylyltransferase 1) (Conforti et al., 2000;
Mack et al., 2001). While NMNAT1 is normally localized to
the nucleus of neurons, when fused to UBE4B in WLDS, it is
partially relocalized to the axons (Babetto et al., 2010). WLDS

confers a concentration-dependent axon protection (Mack et al.,
2001) and was later found to act by maintaining axonal NMNAT
activity if NMNAT2, an axonal protein essential for axon
survival, is degraded upon axon injury or is absent for other
reasons (Araki et al., 2004; Babetto et al., 2010; Gilley and
Coleman, 2010; Gilley et al., 2013; Loreto et al., 2020b). The
serendipitous discovery of WldS mice uncovered one of non-
redox roles for NAD and provided the initial evidence that
NMNATs and NAD signaling have a role in axon regulation.
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REGULATION OF AXON DEGENERATION
BY NICOTINAMIDE ADENINE
DINUCLEOTIDE-MEDIATED SIGNALING

In damaged axons and nerves, the level of NAD is known to decrease
and the presence of WLDS prevents this decrease suggesting it has an
axonal site of action (Wang et al., 2005; Di Stefano et al., 2015), even
though it was difficult to detect in axons (Mack et al., 2001).
Additional evidence for this came from findings that shifting
WLDS or NMNAT1 from nuclei, where these proteins are most
abundant, into the cytoplasm (Beirowski et al., 2009; Sasaki et al.,
2009a) and subsequently more specifically into axons (Babetto et al.,
2010) provided stronger axon protection. Finally, chemical-genetic
methods were used to manipulate the stability of axonal WLDS after
separating axons from the soma to definitively prove that it has to be
present, and stable, in axons to protect them (Cohen et al., 2012;Wang
et al., 2015) (Figure 3).

Nicotinamide Mononucleotide
Adenylyltransferase 2
In axons, NAD synthesis relies predominantly on NMNAT2, a
labile NMNAT isoform (Gilley and Coleman, 2010). At least in
primary neuronal cultures, NMNAT2 appears to be largely
synthesized in the cell bodies and transported constantly to
axons, where it is required for maintenance of axonal health;
axotomy causes its axonal levels to decline rapidly (Gilley and
Coleman, 2010). In primary neurons, the majority of NMNAT2 is
associated with membranes (Summers et al., 2018), which
requires NMNAT2 to be modified by palmitoylation (Milde
et al., 2013). Palmitoylated NMNAT2 is relatively unstable,
compared to cytosolic non-palmitoylated NMNAT2 (Milde
et al., 2013). Depletion of NMNAT2 is sufficient to trigger
axon degeneration, which can be counteracted by
overexpressing NMNAT2, WldS or other NMNAT isoforms
before axons are damaged (Sasaki et al., 2009b; Yahata et al.,

FIGURE 2 | Phases of programmed axon degeneration. Programmed axon degeneration is split into two main phases, the latent phase, where the axons are
morphologically normal but are committed to degeneration, and the execution phase, where the axon undergoes gross swelling and granulation as it breaks down. In
healthy neurons, NMNAT2 pro-survival factor converts NMN to NAD, maintaining NAD and NMN levels that keep SARM1 pro-degenerative factor inactive. After injury, in
the latent phase NMNAT2 starts to be broken down and cannot be transported along the axon. NAD levels thus lower and NMN levels rise, leading to the activation
of SARM1. Immune cells are seen to enter the nerve at this stage. After up to 36 h, the axons progress to the execution phase, where Ca2+ levels increase, calpains are
activated and the axon breaks down. Mouse superior cervical ganglia (SCGs) are often used as an assay for axon degeneration. The box on the bottom corner shows
axon degeneration progressing over 24 h post-axotomy. At 8 h axons are committed to degenerate and some have started visibly breaking down. By 24 h, all axons are
degenerating and much of what is seen is axon debris.
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2009; Gilley and Coleman, 2010; Yan et al., 2010; Coleman and
Höke, 2020), demonstrating its neuroprotective role.
Interestingly, protection of axons by NMNAT seems not to
depend on an elevated basal level of NAD in axons, but on its
enzymatic activity of NAD synthesis after axonal injury (Di
Stefano et al., 2015).

CD38 and PARP1 are two important enzymes that consume
NAD (Malavasi et al., 2008). Inmice, deficiency in CD38 alone, or
deficiency in both CD38 and PARP1, leads to an increase of NAD
in brain lysates and cultured DRG (dorsal root ganglion) neurons,
but axons of these mutated DRG neurons undergo a similar rate
of injury-induced degeneration to that seen in the wild-type
neurons (Sasaki et al., 2009b).

NMNAT2 is shown to be lost rapidly and spontaneously in
damaged neurons as a result of natural turnover before axon
degeneration (∼2 h) (Gilley and Coleman, 2010). Axon injury can
cause a failure in NMNAT2 transport and so the constant supply
of wild-type NMNAT2 into axons is disrupted. The remaining
NMNAT2 is regulated by two independent pathways, the MAPK
(mitogen-activated protein kinase) signaling pathway and the
ubiquitin proteasome system (Milde et al., 2013; Walker et al.,
2017; Summers et al., 2018). MAPK signaling promotes the
degradation of the palmitoylated NMNAT2 via the MAP3K
(MAPK kinase kinase) DLK (dual leucine zipper kinase) and
LZK (leucine zipper kinase) (Summers et al., 2018). The non-
palmitoylated NMNAT2 is degraded by an E3 ubiquitin ligase
complex (Summers et al., 2018). In Drosophila, the Highwire
(Hiw) E3 ubiquitin ligase has been shown to promote the rapid
loss of dNmnat upon injury (Xiong et al., 2012), while its

orthologue MYCBP2 (MYC binding protein 2), also known as
PHR1 (PAM-Highwire-Rpm-1) E3 ubiquitin ligase promotes
NMNAT2 loss in mice (Babetto et al., 2013). A recent serine/
threonine-linked ubiquitination mechanism of MYCBP2
suggests ways in which it could be inhibited as a potential
therapy in axonal and other disorders (Mabbitt et al., 2020).

NMNAT2 loss is the initial event and an important node in the
axon degeneration pathway; thus, understanding the mechanism
of NMNAT2 loss and what its loss causes will further our
understanding of the axon degeneration process.

Sterile Alpha and Toll/Interleukin-1
Receptor Motif-Containing 1
Around 2012, loss-of-function genetic screens for axon
protection after injury were performed in Drosophila olfactory
receptor neuron axons (Osterloh et al., 2012) and mouse DRG
neurons (Gerdts et al., 2013), both with follow-up in vivo studies
in mice; both screens identified the protein SARM1, or its
Drosophila orthologue dSarm, to be involved in the axon
degeneration process. Loss of SARM1 provides axonal
protection upon injury for weeks in vivo, while expression of
wild-type SARM1 in Sarm1−/− neurons restores the phenotype of
rapid injury-induced axon degeneration (Osterloh et al., 2012;
Gerdts et al., 2013). Moreover, TIR-1, the SARM1 orthologue in
C. elegans (Caenorhabditis elegans), has recently been shown to
inhibit regeneration of damaged motor axons via the NSK-1/
ASK1 MAPK pathway, that is independent on its role in axon
degeneration (Julian and Byrne, 2020). This dual role of SARM1

FIGURE 3 |NAD-mediated signaling regulating injury-induced axon degeneration. Upon injury, NMNAT2 loss results in an increased ratio of NMN-to-NAD, which is
a signal to activate SARM1 from the inactive state (PDB: 7LD0) to active state (PDB (ARM): 7LCZ; PDB (TIR): 6O0R). Active SARM1 cleaves NAD into Nam and either
ADPR or cADPR, initiating the pathways downstream, including intracellular Ca2+ influx, ATP loss, Axed activation and eventually axon loss.
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in both axon degeneration and regeneration indicates that
inhibiting SARM1 can be a way to block axon loss making it a
therapeutic candidate for drug development to slow or stop
aberrant Wallerian degeneration in several neurodegenerative
diseases.

SARM1 has been initially described as one of the adaptor
proteins in TLR signaling (O’Neill et al., 2003; Carty et al., 2006).
It is a highly conserved protein consisting of an N-terminal ARM
(armadillo repeat motif) domain, two central tandem SAM
(sterile-alpha motif) domains and a C-terminal TIR domain,
responsible for auto-inhibition, oligomerization and NAD
hydrolysis, respectively (Mink et al., 2001; O’Neill et al., 2003;
Kim et al., 2007; Gerdts et al., 2013; Essuman et al., 2017;
Horsefield et al., 2019). In solution, SARM1 exists as ring-
shaped octamers, with oligomerization mediated by the SAM
domains (Horsefield et al., 2019; Sporny et al., 2019; Bratkowski
et al., 2020; Jiang et al., 2020; Sporny et al., 2020; Figley et al., 2021;
Shen et al., 2021). In neurons where SARM1 shows the greatest
abundance, SARM1 is mostly present in the axons (Osterloh
et al., 2012). In healthy axons, SARM1 is held in an inactive state
by the auto-inhibitory ARM domains, by means of a direct
interaction with and separation of the TIR domains away
from each other (Bratkowski et al., 2020; Jiang et al., 2020;
Sporny et al., 2020; Figley et al., 2021; Shen et al., 2021). Upon
injury and consequent NMNAT2 loss, this auto-inhibition is
relieved, permitting the C-terminal TIR domains to self-associate
to hydrolyze NAD into Nam, and either ADPR or cADPR, along
with other activities, and axons degenerate (Essuman et al., 2017;
Horsefield et al., 2019). Although the mechanism of SARM1
activation is still not fully understood, the discovery that SARM1
is a self-regulated NADase (Essuman et al., 2017), together with
the discovery of NMNAT2 loss upon injury (Gilley and Coleman,
2010), is particularly important, because it not only solves the
puzzle why the activation of SARM1 leads to NAD destruction,
but also further provides the evidence for the key role of axonal
NAD- and NADP-related metabolism in this death pathway of
axon degeneration.

Nicotinamide Adenine Dinucleotide
Depletion vs Nicotinamide Mononucleotide
Accumulation Hypotheses
NMNAT2 loss is known to be an event upstream of SARM1
activation (Gilley et al., 2015; Summers et al., 2020). The direct
results of NMNAT2 loss are a decrease of the product NAD and
an accumulation of the substrate NMN (Di Stefano et al., 2015;
Gilley et al., 2015). Therefore, two hypotheses have been proposed
to explain the mechanism of the NMNAT2 loss-induced SARM1
activation, the “NAD depletion hypothesis” and the “NMN
accumulation hypothesis.”

The “NAD depletion hypothesis” proposes a feed-forward
model, where the depletion of NMNAT2’s product NAD is a
trigger for SARM1 activation (Gerdts et al., 2016). The studies by
Sasaki et al. (2016) found that cytNMNAT1, an engineered
NMNAT1 mutant that only targets the cytoplasm and axons,
protects axons by blocking the SARM1-mediated NAD depletion,
rather than through NAD synthesis. Because NMNAT2 is

predominantly expressed in axons, it was inferred that it is
likely that NMNAT2 also blocks SARM1-mediated NAD
depletion by a similar mechanism in axons. This is consistent
with the mouse knockout experiment, in which the embryonically
lethal phenotype of Nmnat2 null mice was rescued by a knockout
of SARM1 in the double Nmnat2 null and Sarm1−/− mice (Gilley
et al., 2013; Gilley et al., 2015). The recently published cryo-
electron microscopy (EM) structures of the NAD-bound SARM1,
combined with functional data, provide evidence to support the
‘NAD depletion hypothesis’ (Jiang et al., 2020; Sporny et al.,
2020). However, this hypothesis could not explain the effects of
modulating NMN described below.

Conforti, Coleman and colleagues proposed an alternative
model, in which NMN accumulation upon injury-induced
NMNAT2 loss may be a trigger for SARM1 activation in
damaged axons (Di Stefano et al., 2015; Di Stefano et al.,
2017). To provide support for this hypothesis, they used two
independent methods to keep NMN at low levels, with and
without altering NAD levels, and studied the effect on axon
degeneration. The first method involved the inhibition of
NAMPT (nicotinamide phosphoribosyl transferase), an NMN
synthesizing enzyme, using the inhibitor FK866 (Sasaki et al.,
2009b; Di Stefano et al., 2015); the second method involved
exogenous expression of bacterial NMN deamidase, an NMN
utilizing enzyme, without altering NAD levels (Di Stefano et al.,
2015; Di Stefano et al., 2017). It was found that both methods of
blocking the increase of NMN resulted in axon protection, similar
to that seen in the WldS phenotype, more modestly with FK866
but as strong as WldS with NMN deamidase. Further research to
study the mechanism demonstrated that NMN indeed
accumulated in the distal axons during Wallerian degeneration
(Di Stefano et al., 2015; Sasaki et al., 2016) and its accumulation
induced the influx of extracellular Ca2+, which depended on the
appearance of SARM1 and was sufficient to initiate Wallerian
degeneration (Loreto et al., 2015). Consistently, fluorescence-
based NADase assays in vitro illustrated that NMNwas indeed an
activator of SARM1 (Zhao et al., 2019; Bratkowski et al., 2020;
Figley et al., 2021). Moreover, NMN analogues including CZ48, a
synthetic cell-permeable molecule (Zhao et al., 2019), and vacor
mononucleotide (VMN), a metabolite of neurotoxin vacor
(Loreto et al., 2020a), could also activate SARM1 NADase
activity, the latter also inducing axon degeneration. However,
this hypothesis could also not explain the experimental data that
raising the level of both NMN and NAD together protects axons
from degeneration (Wang et al., 2015; Sasaki et al., 2016).

Because neither hypothesis could explain all the observations,
it was hypothesized that both of NMN and NAD, or NMN-to-
NAD ratio, regulate SARM1 activity (Di Stefano et al., 2017). In
most cells, the NAD levels are known to be much higher than
NMN levels (Formentini et al., 2009; Mori et al., 2014). In the
brain, NMN-to-NAD ratio is estimated to be around 0.02
([NAD]/[NMN] ≈ 49), based on the analysis of the extracts
from C57BL/6 mice brain immediately frozen post mortem (Mori
et al., 2014). Although it is still not clear how much this ratio
changes in axons after injury, when NMNAT2 is lost, NMN
accumulation and NAD depletion lead to an increased ratio of
NMN-to-NAD, which could be a signal for SARM1 activation.
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Recently, both NMN and NAD were demonstrated to interact
directly with the ARM domain of SARM1 (Jiang et al., 2020;
Figley et al., 2021). Using cell-, NMR (nuclear magnetic
resonance)- and structure-based assays, Figley et al. further
demonstrated that SARM1 acts as a metabolic sensor activated
by an increasing NMN-to-NAD ratio (Figley et al., 2021). In the
proposed model, NAD competes with NMN for the binding site
in the regulatory ARM domain, prevents the NMN-induced
compaction of this domain and hence promotes the auto-
inhibition of the protein (Figure 3) (Figley et al., 2021).
Further work is still required to fully understand the
mechanism of the relief of auto-inhibition and the activation
of NAD-cleavage activity of SARM1.

Pathways Downstream of Sterile Alpha and
Toll/Interleukin-1 Receptor
Motif-Containing 1
In 2015, Loreto et al. showed that an increase of intra-axonal Ca2+

occurred downstream of SARM1, prior to Wallerian
degeneration (Loreto et al., 2015). They argued that this Ca2+

increase belongs to the second Ca2+ influx after injury, and could
be a causative event marking the execution phase of Wallerian
degeneration. Active SARM1 cleaves NAD into Nam and either
ADPR or cADPR (Essuman et al., 2017; Horsefield et al., 2019),
resulting in local NAD destruction and eventually axon
degeneration (Gerdts et al., 2015). Both ADPR and cADPR are
powerful agents that mobilize Ca2+ by targeting the TRPM2
(transient receptor potential melastatin 2) and RyR (ryanodine
receptor), respectively (Perraud et al., 2001; Guse, 2004).
Consistently, preventing extracellular Ca2+ influx using
ryanodine receptor antagonist ryanodine confers axonal
protection from NMN-induced degeneration (Loreto et al.,
2015). One of the possible pathways downstream of SARM1
activation is the activation of neuronal calpains, the Ca2+-
activated nonlysosomal cysteine proteases that play a role in
neurodegenerative events of traumatic brain injury (TBI)
(Saatman et al., 2010). It has been shown that calpain activity
is increased within minutes in the animal model of TBI (Büki
et al., 1999). Consistently, the endogenous calpain inhibitor
calpastatin, which inhibits Wallerian degeneration in vivo and
in vitro, is depleted upon physical injury (Yang et al., 2013).
Future work is needed to investigate if the change of Ca2+ through
the SARM1 pathway is necessary and sufficient to activate
calpains. SARM1 activation also results in a local energy
deficit, inducing pathological axon degeneration. Using
traumatic injury as a model, Yang et al. showed that SARM1
is required for the activation of a MAPK cascade involving
MEKK4, MLK2, DLK, MKK4, MKK7, JNK1, JNK2, and JNK3,
to trigger axon degeneration (Yang et al., 2015). This SARM1-
dependent MAPK pathway results in ATP depletion prior to
calpain activation and axon destruction, demonstrating that this
MAPK cascade is also one of the pathways downstream of
SARM1. However, the mechanism of how SARM1 activates
the MAPK pathway and how this pathway causes ATP
depletion remains obscure. Another possible mediator
downstream of SARM1 activation is Axundead (Axed), which

was identified in a genetic screen in glutamatergic sensory
neurons from the Drosophila wing (Neukomm et al., 2017).
Axed loss-of-function leads to a complete block of SARM1-
induced axon degeneration, suggesting that SARM1 executes
its pro-degenerative activity through an Axed-dependent
pathway (Neukomm et al., 2017). However, much is still
required to be learned regarding to the roles of the Axed
orthologues in other species. Finally, there is accumulation of
ROS (reactive oxygen species) that occurs either before or after
SARM1 activation whose origin and function in axon
degeneration requires further study (Press and Milbrandt,
2008; Summers et al., 2014).

Over the past two decades, the NAD-related signaling
mechanism associated with the axon degeneration pathway
has been slowly being elucidated (Figure 3). It is now known
that it starts with the loss of the axon survival factor NMNAT2
through different possible pathways, which results in an increased
ratio of NMN-to-NAD due to NMN accumulation and NAD
depletion in axons; this leads to the activation of SARM1NADase
activity, local NAD destruction, intracellular Ca2+ influx, ATP
loss, Axed activation and eventually axon loss, although the
potential causative roles of some of the later steps require
further clarification. Despite several questions remaining,
studying this novel NAD metabolism in axons will enhance
our understanding of the degenerative mechanism of axons,
and also facilitate the development of drugs for a wide range
of neurodegenerative diseases.

NICOTINAMIDE ADENINE DINUCLEOTIDE
SIGNALING AND THE IMMUNE SYSTEM

Roles of Toll/Interleukin-1 Receptor
Domain-Mediated NADase Activity in the
Plant Immune System
SARM1 TIR domain-mediated NAD hydrolysis requires a
catalytic glutamate residue at position 642 (E642) in the
human protein. An analogous glutamate is also present in
plant TIR domain-containing immune receptors, such as
Linum usitatissimum L6 (E135), Muscadinia rotundifolia
RUN1 (E100), and Arabidopsis thaliana RBA1 (E86) and
RPP1 (E164), suggesting there may be NADase activity by the
TIR domains involved in plant immune responses; this
suggestion has been experimentally confirmed (Horsefield
et al., 2019; Wan et al., 2019). In plants, NLRs (nucleotide-
binding (NB), leucine-rich repeat (LRR) receptors) detect
pathogen effectors and induce immune responses, often
characterized by localized cell death (hypersensitive response)
to restrict the pathogens to the infection sites (Dangl et al., 2013).
Plant NLRs typically consist of an N-terminal TIR domain or
coiled-coil (CC) domain, a central NB and oligomerization
domain (NOD) and a C-terminal LRR domain, responsible for
signaling, oligomerization and recognition of pathogen effectors,
respectively (Maekawa et al., 2011; Burdett et al., 2019). Once
TIR-NLRs are activated, the central NOD undergoes a
conformational change to an oligomerization-prone state,
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bringing the TIR domains together to facilitate NAD hydrolysis.
The recently determined cryo-EM structures of two TIR-NLRs in
their active states, Arabidopsis thaliana RPP1 and Nicotiana
benthamiana ROQ1, revealed the protein forms a tetramer,
suggesting a minimum functional unit of four TIR domains
for NADase activity (Ma et al., 2020; Martin et al., 2020). In
both proteins, the TIR domains are arranged through two
interfaces, the symmetrical “AE interface,” consisting of the
αA helix and the neighboring αE helix, and the asymmetrical
“BE interface,” also referred to as the “BB-loop interface” (the BB-
loop connects the βB and αB secondary structure elements) (Ma
et al., 2020; Martin et al., 2020). Analogous interfaces are also
observed in the crystal structure of human SARM1 TIR domain,
and mutagenesis showed that the residues mediating these
interfaces are important for NADase activity (Horsefield et al.,
2019). These similar interactions between the TIR domains
illustrate a common mechanism of the TIR domain-mediated
NAD cleavage. Interestingly, NAD hydrolysis by plant TIR
domains produces a non-canonical variant of cADPR
(v-cADPR) (Wan et al., 2019). Future work is required to
understand the specificity of the products and the role of this
v-cADPR.

Roles of Toll/Interleukin-1 Receptor
Domain-Mediated NADase Activity in the
Prokaryotic Immune System
TIR domain-mediated NADase activity is also found in the
bacterial and archaeal TIR-domain containing proteins (Tcps),
such as Staphylococcus aureus TirS, Echerichia coli TcpC and
Theionarchaea archaeon TcpA (Essuman et al., 2018). Like the
TIR domains in SARM1 and plant proteins, NAD hydrolysis
activity of prokaryotic TIRs also relies on a catalytic glutamate
residue (e.g. E216 in TirS, E244 in TcpC and E267 in TcpA).
Interestingly, in the available crystal structures of bacterial TIR
domains, these glutamates are not found in a location structurally
similar to the location in SARM1 and plant TIR domains.
Bacterial and archaeal TIR domains from different species also
show differences in terms of reaction kinetics and types of the
products (Essuman et al., 2018).

In bacteria and archaea, diverse antiphage defense systems
have evolved to protect themselves from attack by viruses. Genes
encoding these systems are prone to cluster in genomic defense
islands (Makarova et al., 2013). A recent study indicated that
some bacterial Tcps are found in the defense islands important
for anti-phage defense (Doron et al., 2018). The authors named
this prokaryotic Tcp defense system as the Thoeris defense
system. The Thoeris system is broadly distributed in
prokaryotic genomes, encodes an NAD-binding protein ThsA
and a TIR domain-containing protein ThsB (Doron et al., 2018).
Using Bacillus subtilis expressing the Thoeris system (MSX-D12),
ThsB has been found to produce a v-cADPR that activates ThsA
upon detection of phage infection (Ofir et al., 2021). Activated
ThsA further hydrolyzes NAD, causing cell suicide, probably by
depleting cellular NAD (Ofir et al., 2021).

In addition, plant TIR domains, SARM1 TIR domain and Tcps
also cleave NADP (nicotinamide adenine dinucleotide

phosphate) (Horsefield et al., 2019; Wan et al., 2019; Zhao
et al., 2019; Essuman et al., 2018), but only SARM1 TIR
domain has been shown to have a base-exchange activity
(Figure 1) (Zhao et al., 2019). Further studies are required to
explain the mechanism of the similar and different functions
between different TIR domains.

Roles of Sterile Alpha and Toll/Interleukin-1
Receptor Motif-Containing 1 in Innate
Immunity
The role of NAD metabolism in the immune response has been
reviewed in a number of papers (Singhal and Cheng, 2019;
Navarro et al., 2021; Navas and Carnero, 2021). It is
important to highlight that CD38, predominantly expressed in
immune cells, acts as the main enzyme digesting cellular NAD
under basal conditions (Camacho-Pereira et al., 2016; Navarro
et al., 2021). CD38 has been shown to be involved in NAD
cleavage at the inflammation site to maintain T-cell survival
(Adriouch et al., 2007). Its expression is increased during
infections by a variety of pathogens (Adekambi et al., 2015)
and aging (Chini et al., 2020; Covarrubias et al., 2020). CD38
expression is induced by senescence-associated inflammation
during aging, which contributes to age-related NAD decline in
macrophages (Chini et al., 2020; Covarrubias et al., 2020), as
knockout of CD38 prevents this decline and leads to enhanced
metabolic health in mice (Camacho-Pereira et al., 2016).
Although axon degeneration-related SARM1 NADase activity
has been extensively characterized in neurons (rather than
immune cells), it still remains unclear if this enzymatic activity
plays a role also in the immune system. However, SARM1 has
initially been found to be involved in the innate immunity
pathways through the ability of its TIR domain to interact
with other proteins, rather than its NADase activity (O’Neill
et al., 2003; Panneerselvam and Ding, 2015; Carty and Bowie,
2019). TIR domains involved in innate immunity pathways form
higher-order assemblies and carry out their signaling function
through a mechanism termed signaling by co-operative assembly
formation (SCAF) (Nimma et al., 2017; Vajjhala et al., 2017;
Nanson et al., 2019).

Negative Regulation by Sterile Alpha and Toll/
Interleukin-1 Receptor Motif-Containing 1 in Toll-Like
Receptor Signaling
TLRs are an important set of germline-encoded pattern-
recognition receptors in the innate immune system; they
recognize pathogen-associated molecular patterns, including
microbial lipids, lipoproteins and nucleic acids (Kawai and
Akira, 2010; Thompson et al., 2011). Once activated, TLRs
dimerize to create an intracellular TIR-domain signaling
scaffold, which then recruits TIR domain-containing adaptor
proteins to transfer signals downstream (O’Neill et al., 2013).
Six adaptor proteins have been identified in TLR signaling
pathways; they are MyD88 (myeloid differentiation primary
response gene 88), MAL (MyD88 adaptor-like protein), TRIF
(TIR domain-containing adaptor protein-including interferon β),
TRAM (TRIF-related adaptor molecule), SARM1 and BCAP
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(B-cell adaptor for PI3K). Unlike the four key cytosolic adaptor
proteins (MyD88, MAL, TRIF and TRAM), SARM1 is not
required for TLR signaling, but regulates this signaling
through its interaction with other adaptor proteins.

In humans, SARM1 negatively regulates TRIF-dependent
TLR3 and TLR4 signaling, hence inactivating the NF-κB
(nuclear factor-κB) response (Carty et al., 2006). Using co-
immunoprecipitation, yeast two-hybrid assays and GST pull-
down assays, it has been shown that SARM1 inhibition of
TRIF was achieved through a direct TIR-TIR domain
interaction (Carty et al., 2006). Moreover, the BB loop in the
SARM1 TIR domainmay participate in the interaction, as the BB-
loop mutant G601A disrupted SARM1 interaction with TRIF,
and its inhibition of the lipopolysaccharide-regulated expression
of inflammatory cytokines (Carlsson et al., 2016). The ARM
domain plays an inhibitory role, because SARM1 truncation to
remove the ARM domain causes a more potent inhibition in
TRIF-dependent signaling (Carty et al., 2006). Consistently, in
mice, SARM1 expression has been shown to increase during the
infection of macrophages with Burkholderia pseudomallei,
leading to the inhibition of TRIF and hence decreasing IFNβ
(β interferon) production (Pudla et al., 2011). In pigs, the SARM1
orthologue negatively regulates NF-κB in a TRIF-dependent
pathway during the infection with porcine reproductive and
respiratory syndrome virus (Zhou et al., 2013). In horseshoe
crabs, Carcinoscorpius rotundicauda, the SARM1 orthologue is
shown to downregulate TRIF-dependent NF-κB activation
during the infection with Pseudomonas aeruginosa (Belinda
et al., 2008). These results demonstrate the functional
conservation of SARM1 as a negative regulator in TRIF-
dependent TLR signaling.

Besides inhibiting the NF-κB response, SARM1 also inhibits
TRIF- and MyD88-regulated activation of AP1 (activator protein
1) through TIR-TIR domain interactions (Carlsson et al., 2016),
or/and direct involvement in inhibiting the phosphorylation of
MAPKs via an unknown mechanism (Peng et al., 2010). The
ARM domain also self-regulates SARM1 activity in this pathway,
as full-length SARM1 is less efficient in this inhibition than the
SAM-TIR domains-only-containing fragment. Although it is still
not clear if the NADase activity of SARM1 plays any roles in these
processes, the ARM domain removal permits self-association of
the TIR domains and leads to a more efficient inhibition,
suggesting that the SARM1 TIR assembly may facilitate the
interaction with the TIR domains of other adaptor proteins,
hence likely interfering with the downstream signaling.

Up-Regulatory Role of Sterile Alpha and Toll/
Interleukin-1 Receptor Motif-Containing 1 in Cytokine
and Chemokine Production
SARM1 has also been shown to positively regulate the production
of cytokines and chemokines. In the liver of mice suffering from
non-alcoholic fatty liver disease (NAFLD) induced by a high fat
diet (HFD), SARM1 shows a significant increase in both mRNA
and protein levels. SARM1 knockout in these mice leads to a
reduction in inflammatory response (a decrease in IL-1β
(interleukin-1β), IL-6, TNF-α (tumor necrosis factor α) and
MCP-1 (monocyte chemotactic protein-1)) through

inactivating TLR4, 7 and 9 signaling, and the NF-κB pathway,
supporting a positively regulatory role of SARM1 in cytokine and
chemokine production in TLR signaling pathways (Pan and An,
2018). Interestingly, TNF-α also seems to function upstream of
SARM1. The Yang lab has recently shown that TNF-α mediates
axonal loss via SARM1 in mice liver (Liu et al., 2021), consistent
with the finding that TNF-α induces SARM1-dependent axon
degeneration in sensory neurons (Ko et al., 2020).

In mice, the neuronal immune response to traumatic axonal
injuries was investigated using the in vivo model of murine
sensory neurons, showing that SARM1 is required for the
expression of chemokines Ccl2, Ccl7, and Ccl12, and the
cytokine Csf1, through a SARM1-JNKs-cJun pathways, and
demonstrating an important role of SARM1 in the
inflammatory gene expression in the central nervous system
(CNS) (Wang et al., 2018). A number of studies were also
performed to investigate the physiological role of SARM1 in
the CNS against microbial infection, showing that infecting the
CNS of Sarm1−/− mice with vesicular stomatitis virus (VSV,
commonly used as a model for neurotropic viral infection),
but not Listeria monocytogenes, Mycobacterium tuberculosis
and influenza virus, restricts viral infection by decreasing
cytokine production, suggesting an up-regulatory role of
SARM1 in cytokine production (Hou et al., 2013).
Interestingly, it has also been shown that Sarm1−/− mice were
more susceptible to West Nile virus (WNV) infection in a brain-
specific manner. Despite a similar reduction of TNF-α observed
in Sarm1−/− mice, the increased cell death occurred during WNV
infection but not VSV infection (Szretter et al., 2009). Although
further studies are required to understand this difference, the
result indicates that SARM1 contributes to the immune responses
during microbial infection in the CNS, linking viral pathogenesis-
induced neuronal injury and innate immunity. Because SARM1
NADase activity is required for cell death, it is likely that this
enzyme activity also plays a role in this process.

Similar mouse studies were also performed to study the
role of SARM1 in the peripheral immune system, by
examining the cytokine or chemokine responses to TLR
ligands or viral infection in the macrophages of Sarm1−/−

mice (Gürtler et al., 2014; Uccellini et al., 2020). Using bone
marrow-derived macrophages from wild-type and Sarm1−/−

mice, the Bowie lab demonstrated that SARM1 promotes gene
induction of Ccl5 through recruiting the RNA polymerase II
to the Ccl5 promoter by an unknown mechanism, following
TLR4 and TLR7 stimulation (Gürtler et al., 2014). However,
the recent data from the García-Sastre lab showed that the
deficiency in the production of chemokines, such as Ccl5, Ccl3
and Ccl4, was due to the background effects of the knockout
strain 129. These chemokine loci are so close to the Sarm1
gene, that they remain linked to the null mutation in
subsequent crosses to C57BL/6. Uccellini et al. (2020) also
corrected their previous finding of the important role of
SARM1 in VSV infection in the CNS (Hou et al., 2013).
These reports indicate a need to re-evaluate the role of
SARM1 in the immune responses during microbial
infection using methods or resources independent of the
129-derived null strain (Uccellini et al., 2020).
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Roles of Sterile Alpha and Toll/Interleukin-1 Receptor
Motif-Containing 1 Beyond Toll-Like Receptor
Signaling
In some species, SARM1 has been reported to have innate
immunity functions beyond TLR signaling. Inflammasome
activation upon infection and injury result in either cytokine
release (without cell death) or pyroptosis (Broz and Dixit, 2016).
In mice, SARM1 has been shown to negatively regulate the
NLRP3 (NLR family pyrin domain containing 3)
inflammasome–dependent caspase-1 activation, hence reducing
the release of IL-1β (Carty et al., 2019). On the other hand,
SARM1 has also been shown to mediate mitochondrial
depolarization (MDP), which is required for optimal
pyroptosis and a key to distinguishing from other NLRP3
activators causing cytokine release (Carty et al., 2019). In C.
elegans, inactivation by RNA interference of TIR-1, the human
SARM1 orthologue, decreased worm survival when subjected to
fungal and bacterial infections (Carole et al., 2004). This is
because TIR-1 is required for the expression of antimicrobial
peptide genes (Carole et al., 2004). TIR-1 has also been shown to
play a significant role in specifying the asymmetric odorant
receptor expression through NSY-1 (ASK1) MAP3K signaling.
In this context, TIR-1 functions downstream of a voltage-gated
calcium channel and calcium-calmodulin-dependent protein
kinase II (CaMKII), UNC-43. It interacts directly with UNC-
43 at a high level of Ca2+ and localizes NSY-1 to post-synaptic
regions of AWC (amphid wing “C”) axons, silencing str-2 gene (a
putative chemoreceptor gene) expression and hence leading to a
AWCOFF phenotype (default state) (Chuang and Bargmann,
2005).

LINKS TO DISEASES AND FUTURE
THERAPIES

There are few drugs currently on the market that treat
neurodegenerative diseases effectively; most either manage the
symptoms or slow disease progression, and there are no therapies
yet that can reverse the damage done (Durães et al., 2018). This is
where research into Wallerian degeneration, in particular
SARM1, could prove vital. Wallerian degeneration is a well
characterized, druggable pathway that is involved in a number
of neurodegenerative diseases (Coleman and Höke, 2020).
Wallerian degeneration has been shown to be a cause of
axonal death in a number of disease models, including
peripheral neuropathies such as those induced by
chemotherapy or diabetes (Lapointe et al., 2013; Cashman and
Höke, 2015; Geisler et al., 2016; Feldman et al., 2017; Turkiew
et al., 2017), traumatic brain injury (Henninger et al., 2016; Ziogas
and Koliatsos, 2018), some motor neuron disorders (Ferri et al.,
2003; Veriepe et al., 2015; White et al., 2019), Parkinson’s disease
(Sajadi et al., 2004; Hasbani and O’Malley, 2006), as well as eye
diseases such as glaucoma (Howell et al., 2007; Beirowski et al.,
2008; Wang et al., 2013; Zhu et al., 2013; Williams et al., 2017a;
Williams et al., 2017b; Fernandes et al., 2018). Loss of SARM1 has
been shown to protect mice from peripheral neuropathies
(Geisler et al., 2016; Turkiew et al., 2017) and TBI-induced

axon loss (Henninger et al., 2016), although there is still a
debate on the contribution of SARM1 to ALS (Fogh et al.,
2014; Veriepe et al., 2015; Peters et al., 2018).

By targeting SARM1, a drug could be developed that not only
slows the progression of one disease, but potentially many that
involve axon degeneration. Acute injury, such as chemotherapy-
induced peripheral neuropathy (CIPN), is a particularly good
initial target for a SARM1 inhibitor, as it is a major reason for
limiting the doses of chemotherapies, and the neuropathy onsets
only after chemotherapy starts (Cashman and Höke, 2015; Simon
and Watkins, 2018; Coleman and Höke, 2020; Bosanac et al.,
2021). Ideally, an inhibitor would be given throughout the course
of chemotherapy to slow the progression of CIPN or even
prophylactically to prevent the neuronal injury from starting.

Another question currently being addressed is whether people
have mutations in genes encoding any of the proteins involved in
Wallerian degeneration, and if so, do they cause or act as risk
factors for neurological diseases? The first evidence of humans
with mutations in NMNAT2 was found in 2019, with biallelic
NMNAT2 loss-of-function mutations found in sisters with
polyneuropathy (Huppke et al., 2019). Furthermore, stillborn
fetuses with biallelic NMNAT2 null mutations were also reported
(Lukacs et al., 2019). Following earlier human studies implicating
this pathway in ALS by GWAS association to the SARM1
chromosomal locus and loss of potential SARM1 regulator
STMN2 in human induced pluripotent stem cell (hiPSC)-
derived motor neurons (Fogh et al., 2014; van Rheenen et al.,
2016; Klim et al., 2019; Melamed et al., 2019), recent work has
revealed that human SARM1 variant alleles that hyperactivate
SARM1 NADase function and enhance neuronal vulnerability
are enriched in patients with sporadic ALS, hereditary spastic
paraplegia and other motor nerve disorders (Bloom et al., 2021;
Gilley et al., 2021). Whether further mutations to NMNAT2,
SARM1 or other proteins involved in the Wallerian degeneration
pathway represent risk factors for other neurological diseases in
living humans, is yet to be seen. It has been hypothesized that
such mutations, affecting the enzymatic activity of NMNAT2 or
SARM1, could be considered risk factors for neurodegenerative
diseases (Coleman and Höke, 2020).

There are several potential ways to target Wallerian
degeneration, but at present these remain in preclinical
development. Gene therapy where SARM1 dominant-negative
mutants are transfected into neurons using AAV (adeno-
associated virus), robustly protected axons from degeneration
both in cut DRGs in vitro and cut sciatic nerve in vivo in mice
(Geisler et al., 2019b). Antisense oligonucleotides that target
SARM1 and lower SARM1 levels in axons by more than 50%
were also shown to slow degeneration in vitro (Gould et al., 2021).
Furthermore, the first small molecule inhibitors of SARM1 have
been discovered and are shown to slow axon degeneration in
DRGs to the same level as Sarm1−/− (Hughes et al., 2021; Li et al.,
2021). Interestingly, the Hughes et al. paper indicated that the
inhibitor could be added up to 3 h after injury with the same level
of protection, and could even protect axons fated to degenerate
through rotenone exposure and promote recovery from the latent
stage of degeneration back towards healthier axons (Hughes et al.,
2021). Small-molecule inhibitors of SARM1 have recently been
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tested in hiPSC-derived motor neurons, protecting the axons
from degeneration at 16h post-axotomy and in vivo, where there
was a partial protection of axonal function in mouse models of
CIPN (Bosanac et al., 2021; Hughes et al., 2021). These different
approaches to tackling axon degeneration and their successes so
far in preclinical models are encouraging for the prospects of
clinical testing in the near future.

CONCLUSIONS AND FUTURE QUESTIONS

Axons are eliminated through programmed axon degeneration, a
subcellular self-destruction program that can be activated in
necroptosis, genetic, toxic metabolic disorders, physical injury,
in addition to neuroinflammation. The central executioner of this
process is SARM1, an enzyme with NADase, NADPase and base-
exchange activities, whose activation is regulated by an upstream
NAD synthesizing enzyme, NMNAT2. Emerging structural and
functional data for SARM1 indicates allosteric regulation through
its N-terminal ARM domain sensing the NMNAT2-mediated
change of NMN-to-NAD ratio. Both the regulatory and catalytic
sites in SARM1 in the ARM and TIR domains, respectively,
represent paths to therapeutic intervention.

SARM1 also plays a role in innate immunity, including
regulating TLR signaling, cytokine and chemokine production
and gene expression for antimicrobial peptides, and inducing
cell death. It is important to be cautious when changing the
activity of SARM1, as it may have off-target effects on the
immune system of patients. Gilley et al. have demonstrated
that NMNAT2gtE/gtE; Sarm1−/− mice live as long as the wild-
type ones, so the act of knocking out the proteins themselves
does not shorten lifespan (Gilley et al., 2015). However, the
mice are kept in specific pathogen-free conditions, so the
effects of the changes in the immune response in Sarm1−/−

mice are currently uncertain. Reassuringly though, the work by
Uccellini et al. has shown that many of the supposed immune
system effects of SARM1 could be due to passenger mutations
in Sarm1−/− mouse lines, rather than through SARM1 activity
(Uccellini et al., 2020).

Despite the questions surrounding SARM1’s potential
involvement in immunity, it remains a promising target for
drug development. The possibility of slowing or even halting

axon degeneration in a number of neurodegenerative diseases,
such as AD, PD, TBI, ALS and peripheral neuropathies, could be
incredibly impactful, as these diseases contribute greatly to the
global disease burden. Both activators and inhibitors of SARM1
are already known, as is its three-dimensional structure. Basic
research continues to investigate how SARM1 is activated and
will be crucial in understanding how to inhibit its NADase
activity. Excitingly, initial small molecule screens have shown
that inhibition of SARM1 is possible and that it does delay axon
degeneration in vitro. It is likely that further investigation into
these initial small molecule inhibitors will move into in vivo work
and potential new drugs to treat neurodegenerative diseases will
be developed. If the rate of discovery in this promising field
continues on its current trajectory, it is likely that great strides
towards the improvement of human health will be made in the
near future–an exciting prospect for all.
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