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Abstract 

Background: Incretin therapies appear to provide cardioprotection and improve cardiovascular outcomes in 
patients with diabetes, but the mechanism of this effect remains elusive. We have previously shown that glucagon‑
like peptide (GLP)‑1 is a coronary vasodilator and we sought to investigate if this is an adenosine‑mediated effect.

Methods: We recruited 41 patients having percutaneous coronary intervention (PCI) for stable angina and allocated 
them into four groups administering a specific study‑related infusion following successful PCI: GLP‑1 infusion (Group 
G) (n = 10); Placebo, normal saline infusion (Group P) (n = 11); GLP‑1 + Theophylline infusion (Group GT) (n = 10); and 
Theophylline infusion (Group T) (n = 10). A pressure wire assessment of coronary distal pressure and flow velocity 
(thermodilution transit time—Tmn) at rest and hyperaemia was performed after PCI and repeated following the study 
infusion to derive basal and index of microvascular resistance (BMR and IMR).

Results: There were no significant differences in the demographics of patients recruited to our study. Most of the 
patients were not diabetic. GLP‑1 caused significant reduction of resting Tmn that was not attenuated by theo‑
phylline: mean delta Tmn (SD) group G − 0.23 s (0.27) versus group GT − 0.18 s (0.37), p = 0.65. Theophylline alone 
(group T) did not significantly alter resting flow velocity compared to group GT: delta Tmn in group T 0.04 s (0.15), 
p = 0.30. The resulting decrease in BMR observed in group G persisted in group GT: − 20.83 mmHg s (24.54 vs. 
− 21.20 mmHg s (30.41), p = 0.97. GLP‑1 did not increase circulating adenosine levels in group GT more than group T: 
delta median adenosine − 2.0 ng/ml (− 117.1, 14.8) versus − 0.5 ng/ml (− 19.6, 9.4); p = 0.60.

Conclusion: The vasodilatory effect of GLP‑1 is not abolished by theophylline and GLP‑1 does not increase adeno‑
sine levels, indicating an adenosine‑independent mechanism of GLP‑1 coronary vasodilatation.

Trial registration: The local research ethics committee approved the study (National Research Ethics Service‑NRES 
Committee, East of England): REC reference 14/EE/0018. The study was performed according to institutional guide‑
lines, was registered on http:// www. clini caltr ials. gov (unique identifier: NCT03502083) and the study conformed to 
the principles outlined in the Declaration of Helsinki.
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Background
Cardiovascular disease is the leading cause of death 
across the world, predominantly related to athero-
sclerosis [1]. Diabetes mellitus is one of the major risk 
factors for premature atherosclerotic coronary artery 
disease (CAD). Patients with diabetes mellitus are also 
susceptible to microvascular dysfunction. Endothe-
lium-dependent vasodilation and microvascular coro-
nary flow are frequently abnormal in patients with 
diabetes [2] and both are partly responsible for the 
observed increased cardiac morbidity and mortality in 
patients with diabetes mellitus.

Safety trials of contemporary hypoglycaemic treat-
ments for type-2 diabetes mellitus have demonstrated 
beneficial reductions in cardiovascular outcomes [3–6]. 
One class of drugs—the incretin hormone, Glucagon-
like peptide (GLP)-1, stimulates glucose-dependent 
insulin release and suppresses glucagon resulting in 
hypoglycaemia [7]. GLP-1, as well as its analogues, such 
as semaglutide and liraglutide, also improve long-term 
cardiovascular outcomes with reduction in myocardial 
infarction and cardiovascular death for patients with 
diabetes [3, 6, 8]. GLP-1 has been shown to improve 
left ventricular function during ischaemia–reperfusion 
injury [9, 10]. However, the underlying mechanism of 
these of target GLP-1 effects is not well understood 
[11], although the GLP-1 receptor is expressed in heart 
tissue and in particular on vascular smooth muscle cells 
[12].

Adenosine is a naturally occurring compound that 
binds to A2A and A2B receptors in the microcircula-
tion [13], exerting a potent vasodilatory effect in ves-
sels below 150 µm [14]. Our previous work has shown 
that GLP-1 causes coronary microvascular vasodilata-
tion and increases coronary flow velocity in humans 
[15]. Animal studies have shown that alogliptin, an 
inhibitor of dipeptidyl peptidase (DPP)-4, a ubiqui-
tous enzyme responsible for the degradation of active 
GLP-1(7–36) to GLP-1(9–36), exerts its cardioprotec-
tive effect on infarct size reduction via an adenosine 
receptor-dependent pathway [16]. A similar adenosine-
dependent mechanism may be responsible for the car-
dioprotective effect of GLP-1 in humans, although this 
has not yet been explored.

We have undertaken a mechanistic study to explore 
whether GLP-1 causes coronary microvascular vasodil-
atation via an adenosine-mediated pathway in humans.

Methods
Identification and recruitment of patients (Fig. 1)
One hundred and one patients with stable angina await-
ing elective angiography were screened and thirty-one 
patients were found to be eligible and gave informed 
written consent. Out of these, nine patients had non-
obstructive coronary arteries and therefore, did not 
require stenting. Two further patients had complex coro-
nary anatomy: one requiring left main bifurcation stent-
ing and the other had surgical revascularization, and 
therefore were excluded from our study.

Inclusion criteria included patients undergoing elec-
tive PCI for stable angina; age above 18  years; and able 
to give informed consent for the study. Exclusion cri-
teria included any severe co-morbidity with expected 
life expectancy < 6  months; use of warfarin, nicorandil, 
glibenclamide, sitagliptin, vildagliptin, saxagliptin, lina-
gliptin, alogliptin, exenatide, liraglutide, lixisenatide and 
insulin use; women of child-bearing age; breast-feed-
ing women; myocardial infarction within the previous 
3  months in a remote territory; heart failure with ejec-
tion fraction < 50%; deranged renal function with eGFR 
< 60  ml/min/1.73   m2 by Modification of Diet in Renal 
Disease (MDRD); deranged liver function with alanine 
transaminase (ALT) > 3 times upper limit of normal; 
active peptic ulcer disease confirmed on endoscopy; his-
tory of seizures; history of tachyarrhythmias; patients 
already taking oral theophylline; allergy to theophylline 
or caffeine.

Twenty patients having percutaneous coronary inter-
vention (PCI) were studied in two groups: those receiv-
ing post-PCI infusions of GLP-1 + Theophyline (Group 
GT) and Theophylline (Group T) respectively. Data 
from these two groups were compared with historically-
recruited patients who received GLP-1 infusion (Group 
G) and placebo (normal saline infusion) (Group P) [15]. 
Theophylline infusion was used with and without GLP-1 
as an adenosine receptor antagonist to determine any 
adenosine mediated effect of GLP-1.

Procedural details
All patients received aspirin, 300  mg and clopidogrel, 
300 mg preloading, unless they were already established 
on these antiplatelets. Patients were anticoagulated with 
a heparin bolus (70–100 U/kg) after arterial sheath inser-
tion (radial or femoral) to achieve an activated clotting 
time > 250  s. Iopromide (Ultravist; Bayer HealthCare 

Keywords: Glucagon‑like peptide 1 (GLP‑1), Glucagon‑like peptide 1 receptor agonists (GLP‑1 RA), Basal 
microvascular resistance (BMR), Index of microvascular resistance (IMR), Coronary artery disease (CAD)
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Pharmaceuticals, Leverkusen, Germany) was used as 
the contrast agent for all cases. The choice of stent and 
implantation technique was left to operator discretion. 
Following successful stent implantation baseline bloods 
were taken to measure serum adenosine levels using a 
Stop solution.

A Pressure wire X (Abbott Vascular, Santa Clara), con-
nected wirelessly to Coroflow (Coroventis, Uppsala), 
was positioned and maintained in the distal third of the 
stented coronary artery. A 0.2 mg bolus of intracoronary 
glyceryl trinitrate (GTN) was administered, and once 
steady state coronary haemodynamics were achieved, the 
baseline coronary pressures [aortic pressure (Pa) and dis-
tal wire pressures (Pd)] and flow velocity measurements 
were measured. The latter was derived from the recip-
rocal of mean transit time (Tmn) of an intracoronary 
injectate of room temperature saline (thermodilution 
technique) measured in triplicate [17, 18]. These meas-
urements were repeated following intravenous adminis-
tration of adenosine at 140 mcg/kg/min. Coronary wedge 
pressure (Pw) was measured separately as Pd during the 
occlusive coronary balloon inflation.

An intravenous infusion of GLP-1 (1.2  pmol/kg/
min)(7–36) amide (Bachem AG, Switzerland) and an 
adenosine receptor inhibitor, theophylline (5  mg/kg 

in 100 ml 0.9%  NaCl over 20 min) or GLP-1 or Theo-
phylline (5  mg/kg in 100  ml 0.9% NaCl over 20  min) 
(Hameln pharma Ltd; UK) or Placebo (100  ml 0.9% 
NaCl over 20  min) was infused depending upon 
patient’s group. At the end of infusion, a repeat blood 
sample was taken from the coronary catheter to meas-
ure theophylline and adenosine levels. All the haemo-
dynamic measurements were repeated at rest and 
hyperaemia after completion of the infusion, usually 
within 30-min of baseline. At the end of the proce-
dure, the pressure wire was withdrawn to the coronary 
ostium to enable pressure-drift correction of Pd, if 
necessary. Pv was assumed to be 5  mmHg in all the 
patients in this study.

These measurements enabled offline cal-
culation of, basal microvascular resistance 
(BMR =  Pa ×  Tmn ×  ((Pd −  Pw)/(Pa −  Pw))baseline) 
and index of microvascular resistance 
(IMR = Pa × Tmn × ((Pd − Pw)/(Pa − Pw)) hyperaemia), 
both corrected for collaterals, fractional flow reserve, 
(FFR = (Pd)/(Pa)hyperaemia), coronary flow reserve 
(CFR = (Tmn) baseline/(Tmn)hyperaemia) and collateral flow 
index by pressure  (CFIP = (Pw − Pv)/(Pa − Pv)baseline) 
and coronary resistive reserve ratio (RRR = BMR/IMR), 
as previously described and validated [19, 20] (Fig. 2).

Fig. 1 Consort diagram of the recruitment and allocation of study patients
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Blood sampling
Adenosine has a very short half-life and therefore we 
used a previously published composition of Stop solu-
tion to prevent enzymatic breakdown of the extracted 
serum adenosine samples [21, 22] Blood samples to 
determine adenosine concentration were collected from 
the guide catheter, at the completion of PCI and after 
20  min of study drug infusion, and placed directly into 
vacutainers containing Stop solution. This comprised 
dipyridamole 0.2 mmol/L, 4.2 mmol/L ethylene-diamine-
tetraacetic acid disodium (Na2 EDTA), erythro-9-
(2-hydroxy-3-nonyl)-adenine (EHNA) 5  mmol/L, 
α,β-methyleneadenosine-5′-diphosphate (AMPCP) 
79  mmol/L, heparin sulfate 1  IU/mL, deoxycoformy-
cin 1 μg/mL in 0.9% NaCl, all sourced from Merck, UK. 
After centrifugation, supernatants were deproteinized, 
and serum adenosine concentration measured by high-
performance liquid chromatography. Similarly, blood for 
theophylline levels was collected from coronary arteries 
just before the end of infusion and analyzed to confirm 
therapeutic levels.

Statistical analysis
On the basis of previous data, we calculated that 
10-paired data sets would provide 80% power to detect a 
clinically significant difference (ΔBMR, 20 mmHg s; SD, 
15 mmHg s) after administration of GLP‐1.

Data are given as mean (SD) or median (Q1, Q3) as 
appropriate unless otherwise stated. Comparisons were 
made for any significant differences by unpaired T test, 
one-way ANOVA or Kruskal–Wallis test, where appro-
priate using GraphPad Prism version 8.1.2 (227) (Graph-
Pad Software, La Jolla California USA). Similarly, a simple 
linear regression was performed between resting adeno-
sine levels and basal coronary flow velocity before and 
after the study infusion to explore any correlation. A two-
sided value of p < 0.05 was deemed significant. Authors 
had full access to the data and take full responsibility its 
integrity.

Results
Baseline characteristics
Baseline characteristics are summarized in Table  1. All 
four groups (G, P, GT and T) were well matched although 
the GT group had more female patients and fewer 
patients receiving GLP-1 were taking an ACE-inhibitor 
or angiotensin receptor blocker. Of note, the majority of 
patients recruited into this study were not diabetic.

Haemodynamic data
Haemodynamic data are summarized in Table 2 and illus-
trated in Fig. 2. There were no differences in the baseline 
or post-infusion heart rate and blood pressure between 
all the four groups. Similarly, there were no differences 
in CFR and FFR immediately after stenting and following 

Fig. 2 Example of Coroventis screen during invasive haemodynamic assessment of coronary artery. Blue curves show resting Tmn, orange showing 
hyperaemic Tmn. Resting as well as hyperaemic pressure and flow indices including Pa, Pd, FFR, IMR and CFR are displayed in the upper right‑hand 
corner
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infusion. The basal microvascular resistance (BMR) before 
infusion was similar in all groups. BMR was significantly 
lower in the groups receiving GLP-1 (G and GT) after 
infusion compared to baseline: delta BMR −  20.83 (24.8) 
and −  21.20 (30.1), p = 0.97 respectively, confirming that 
theophylline did not attenuate the GLP-1 vasodilatory 
effect in group GT (Fig. 2). The lower BMR was attributed 
to a significantly lower (faster) resting Tmn after infusion 
in the G and GT groups: − 0.23 (0.27) and − 0.18 (0.37) 
respectively, whereas it was essentially unaltered in group 
T, 0.04 (0.15), p < 0.001. GLP-1 exhausted the vasodilatory 
capacity of the microvasculature, with delta median resis-
tive reserve ratio (RRR) in group G: − 1.00 (− 2.95, − 0.01) 
and in group GT: − 0.88 (− 3.79, − 0.27) compared to 2.01 
(0.23, 3.57) in group S and − 0.16 (− 1.06, 0.61) in group T, 
p = 0.03, (Fig. 3). Similarly, delta CFR was lower in group G: 
− 0.89 (− 2.01, 0.97) versus the other three groups. There 
was no significant difference in IMR or delta IMR across all 
the four groups.

Biochemical data
The mean theophylline levels measured at the end of infu-
sion were in the therapeutic range (10–20  mcg/ml) and 
similar between GT and T groups: 13.58 mcg/ml (4.48) 
versus 15.05 mcg/ml (2.15), p = 0.40. There was no dif-
ference in delta median adenosine levels after infusion 
between the two groups: GT, − 2.00 ng/ml (− 117.1, 14.8) 
versus T, − 0.50 ng/ml (− 19.6, 9.4), p = 0.60.

Correlation of basal adenosine and Tmn
There was no correlation found in the measured adenosine 
levels and basal coronary flow velocity, before or after the 
study infusion (Additional file 1).

Discussion
This study demonstrates that GLP-1 does not increase 
circulating adenosine levels, and that GLP-1-induced 
reduction in Tmn and BMR at rest was not attenuated 

by co-administration of the adenosine receptor antago-
nist theophylline. This indicates that GLP-1 exerts an 
adenosine-independent vasodilatatory effect.

GLP-1 receptor agonists are associated with improved 
long-term cardiovascular outcomes [6, 23] and a vari-
able reduction in infarct size in previous human stud-
ies [8, 9, 24, 25]. Adenosine is a naturally occurring 
vasodilator and is a cellular mediator of cardioprotec-
tive ischaemic conditioning (IC) [26] by directly acti-
vating phospholipase C and/or protein kinase C (PKC) 
via adenosine 1 receptors (A1R), which are widely pre-
sent in myocardial tissue [27, 28]. GLP-1 activates pro-
tein kinase A (PKA) along with other physiologically 
active metabolites at a cellular level [29]. The cross talk 
between PKC and PKA is well established and activa-
tion of PKA could in theory result in reduction of the 
activation threshold of PKC, thus potentiating the car-
diac effects of adenosine [30, 31]. This PKC and PKA 
interaction has been postulated to be the underlying 
physiological mechanism of adenosine-mediated car-
dioprotection by GLP-1 in an animal model [16].

We have previously shown that GLP-1 attenuates 
ischaemia-induced LV dysfunction and the derived 
cardioprotection, but unlike conditioning is not associ-
ated with a potassium adenosine tri-phasphate (KATP) 
channel-dependent pathway [10] and is also inde-
pendent of changes in cardiac substrate use [9]. More 
recently, we have shown that GLP-1 is a coronary vas-
odilator, possibly resulting indirectly from lusitropic 
forces “opening” the myocardial microcirculation in 
diastole as a result of ventricular–microcirculatory 
interactions [15, 32, 33]. Although in the same study 
we confirmed GLP-1 receptor(R) expression on ven-
tricular myocytes, others have suggested that GLP-1R 
expression is confined to atrial cardiomyocytes [34] 
and vascular smooth muscle [12]. Therefore, we were 
keen to explore if GLP-1 could cause vasodilatation via 
an adenosine-mediated effect on the microcirculation, 

Table 1 Baseline characteristics

Data is given as Mean (SD) and n (%) where appropriate. p < 0.05 is considered significant. p < 0.05 is given as bold

GLP-1 group Saline group GLP-1 + Theophylline group Theophylline group p value

Age 68.30 (10.13) 62.30 (7.44) 62.20 (8.19) 63.10 (18.39) 0.62

Male 8 (80) 11 (100) 4 (40) 8 (80) 0.002
Diabetes 1 (10) 2 (18) 0(0) 1 (10) 0.57

Hypertension 6 (60) 8 (73) 4 (40) 5 (50) 0.31

Previous MI 1 (10) 8 (73) 4 (40) 3 (30) 0.06

(Ex) Smoker 7 (70) 7 (64) 2 (20) 7 (70) 0.09

Statin 10 (100) 11 (100) 10(10) 10 (10) 1

ACEI/ ARB 3 (30) 7 (64) 4 (40) 8 (80) 0.03
B Blocker 4 (40) 8 (73) 7 (70) 9 (90) 0.13
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indirectly improving ventricular function via the Gregg 
effect [32].

We clearly demonstrate in this study that GLP-1 
vasodilatation is unlikely to be the mediated by aden-
osine. GLP-1 increases basal coronary flow velocity 

and reduces BMR irrespective of theophylline. GLP-1 
exhausts vasodilatory capacity, such that response 
to exogenous adenosine is blunted as measured by 
a reduction in CFR and RRR. Theophylline has been 
used to investigate adenosine-mediated effect of other 
therapies; it is a potent adenosine receptor inhibitor at 

Table 2 Haemodynamic data of study patients

Results expressed as mean (SD). Tmn—transit time; Pa—aortic pressure; Pd– distal coronary pressure; BMR—basal microcirculatory resistance = Pa * Tmn 
baseline * ((Pd − Pw)/(Pa − Pw)); IMR—index of microcirculatory resistance = Pa *  Tmnhyperemic * ((Pd − Pw)/(Pa − Pw)); FFR– fractional flow reserve = Pd/Pahyperemic; CFR—
coronary flow reserve =  Tmnbaseline/Tmnhyperemic;  CFIP—Collateral flow index by pressure = (Pw − Pv)/(Pa − Pv)baseline and coronary resistive reserve ratio (RRR) = BMR/
IMR

Variable GLP-1 group Saline group GLP-1 + Theophylline 
group

Theophylline group p value

Immediate post PCI

Baseline

Heart rate (bpm) 65.6 (8.9) 79.3 (32.1) 68.5 (9.0) 62.6 (4.6) 0.21

Systolic BP (mmHg) 131.8 (27.5) 133.1 (35.9) 138.3 (20.3) 133.4 (25.7) 0.91

Diastolic BP (mmHg) 59.2 (11.3) 72.3 (17.1) 64.8 (9.4) 66.3 (9.9) 0.14

Pa mmHg 89.7 (16.5) 97.3 (23.4) 95.1 (10.8) 97.6 (14.9) 0.58

Pd mmHg 84.6 (16.5) 93.3 (24.1) 90.5 (9.6) 94.3 (15.1) 0.49

Pd/Pa 0.94 (0.04) 0.95 (0.04) 0.95 (0.04) 0.96 (0.04) 0.51

Tmn (s) 0.87 (0.39) 0.48 (0.23) 0.85 (0.79) 0.48 (0.40) 0.16

BMR 76.3 (37.9) 45.9 (34.7) 78.5 (70.8) 46.6 (44.8) 0.25

Hyperaemia

Pa (mmHg) 81.2 (17.8) 90.6 (19.9) 89.9 (14.1) 86.2 (17.3) 0.49

Pd (mmHg) 71.9 (14.9) 81.6 (19.7) 80.0 (11.7) 79.5 (16.0) 0.44

FFR 0.88 (0.06) 0.89 (0.08) 0.89 (0.05) 0.92 (0.07) 0.41

Tmn (s) 0.24 (0.10) 0.20 (0.07) 0.21 (0.10) 0.24 (0.17) 0.71

CFR 4.0 (2.2) 2.4 (0.8) 4.6 (4.2) 2.1 (0.8) 0.16

IMR 16.3 (10.2) 15.6 (5.8) 16.5 (9.7) 18.8 (14.2) 0.86

CFIP 0.15 (0, 0.23) 0.09 (0, 0.21) 0.12 (0.05, 0.27) 0.18 (0.06, 0.29) 0.78

RRR 5.1 (1.9) 2.9 (1.3) 5.5 (5.4) 2.6 (1.2) 0.13

Post Infusion

Baseline

Heart rate (bpm) 63.0 (13.9) 68.7 (11.9) 68.8 (8.4) 66.0 (12.3) 0.58

Systolic BP (mmHg) 138.3 (22.3) 140.1 (26.1) 134.7 (21.5) 133.0 (23.1) 0.81

Diastolic BP (mmHg) 63.4 (7.8) 71.8 (15.3) 68.3 (13.2) 64.8 (13.1) 0.36

Pa (mmHg) 90.8 (16.6) 89.6 (15.4) 92.6 (15.3) 94.9 (8.6) 0.77

Pd (mmHg) 84.9 (15.9) 86.4 (16.7) 88.6 (14.2) 91.4 (9.0) 0.65

Pd/Pa 0.93 (0.03) 0.96 (0.04) 0.96 (0.04) 0.96 (0.03) 0.11

Tmn (s) 0.63 (0.27) 0.83 (0.41) 0.66 (0.54) 0.52 (0.39) 0.37

BMR 55.4 (30.4) 66.7 (37.2) 57.3 (48.5) 47.8 (38.8) 0.64

Hyperaemia

Pa (mmHg) 80.1 (16.7) 89.6 (15.4) 90.5 (10.9) 89.5 (23.9) 0.38

Pd (mmHg) 71.9 (15.3) 76.2 (17.1) 88.6 (14.2) 82.6 (19.2) 0.14

FFR 0.89 (0.06) 0.89 (0.08) 0.93 (0.03) 0.93 (0.06) 0.24

Tmn (s) 0.29 (0.21) 0.21 (0.07) 0.25 (0.14) 0.26 (0.13) 0.53

CFR 3.0 (2.4) 4.2 (2.0) 2.6 (1.5) 2.1 (1.1) 0.11

IMR 19.7 (14.6) 15.0 (6.2) 20.1 (11.4) 21.2 (12.2) 0.49

CFIP 0.17 (0.00, 0.29) 0.08 (0.00, 0.23) 0.13 (0.05, 0.29) 0.19 (0.07, 0.28) 0.96

RRR 3.61 (2.5) 4.73 (2.3) 2.76 (1.6) 2.46 (1.5) 0.09
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levels achieved in our study [35]. In addition, the aden-
osine levels remained unchanged after GLP-1 infusion.

Coronary microvascular dysfunction (CMD) is asso-
ciated with worse clinical outcomes [36] and micro-
vascular injury at the time of elective PCI is associated 
with procedure-related myocardial infarction and a 
worse prognosis [37]. GLP-1 improves coronary flow 
after stenting [15], decreases periprocedural left ven-
tricular dysfunction and stunning [8, 38, 39], and 
improves immediate as well as long-term cardiovas-
cular outcomes after revascularization for coronary 
ischemia [24]. GLP-1 and its analogues should be fur-
ther investigated for symptomatic as well as prognos-
tic benefit in patients with CMD. Furthermore; GLP-1 
has the potential to be a much simpler addition to the 
currently utilized armamentarium of cardioprotective 
strategies for patients at high risk of peri-procedural 
cardiovascular events [11].

Limitations
There are several limitations in our study. Firstly, this 
was not a randomized controlled trial but was per-
formed in two phases by block allocation to understand 
the mechanistic effects of GLP-1 on coronary physiol-
ogy. However, the patients were unselected and sequen-
tially recruited if eligible, and we believe this prevented 
significant bias. Second, we studied the coronary vaso-
dilatory effects of GLP-1 following PCI. Coronary phys-
iology may not be stable at this time due to reactive 
hyperaemia and microvascular stunning [15, 40]; how-
ever, we mitigated this by waiting for reactive hyper-
aemia to dissipate before making our measurements. 
Third, we used a surrogate for coronary flow—Tmn 
measured by a pressure wire based coronary thermodi-
lution technique. This is a well-validated and accu-
rate technique, that is comparable to other measures 
of coronary flow velocity [17, 18]. Fourth, we did not 

Fig. 3 Comparison of change in thermodilution time, Tmn at rest (a) and hyperemia (b); basal microvascular resistance, BMR (c); index of 
microvascular resistance, IMR (d) and resistive reserve ratio, RRR (e) after each infusion. p < 0.05 is given as bold
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perform invasive measurements to confirm our previ-
ously published protective effects of GLP-1 on peri-
procedural LV dysfunction and also assumed Pv to be 
5 mmHg in our patients; this was for logistical reasons. 
Fifth, patients with diabetes were under-represented in 
our study and the GLP-1 effect in this group needs con-
firming. Finally, we only measured adenosine levels in 
the latter two prospectively-recruited GT and T groups 
due to logistical reasons. Endogenous adenosine levels 
did not correlate with resting coronary flow velocity. 
The reason for this is unclear but may be due to dif-
ficulties in assaying adenosine and also that the sam-
ple site was at the level of the coronary ostium rather 
than at the microcirulation. Theophylline is reported 
to increase local serum catecholamine levels by off-
target effects, which may also blunt adenosine medi-
ated vasodilatation [41]. It is also possible that different 
batches of Stop solution may explain some of the inter-
group differences in adenosine levels, although patient-
level changes in adenosine level were assayed with the 
same Stop solution and remain valid.

Conclusion
The coronary vasodilatory effect of GLP-1 appears to be 
independent of adenosine. Further studies are required 
to understand the mechanism of the cardioprotective 
effects of GLP-1.
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