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The eukaryotic replisome coordinates template unwinding and nascent-strand synthesis
to drive DNA replication fork progression and complete efficient genome duplication.
During its advancement along the parental template, each replisome may encounter an
array of obstacles including damaged and structured DNA that impede its progression and
threaten genome stability. A number of mechanisms exist to permit replisomes to
overcome such obstacles, maintain their progression, and prevent fork collapse. A
combination of recent advances in structural, biochemical, and single-molecule
approaches have illuminated the architecture of the replisome during unperturbed
replication, rationalised the impact of impediments to fork progression, and enhanced
our understanding of DNA damage tolerancemechanisms and their regulation. This review
focusses on these studies to provide an updated overview of themechanisms that support
replisomes to maintain their progression on an imperfect template.
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INTRODUCTION

In eukaryotes, DNA replication is initiated from multiple origins across the genome (Robinson and
Bell, 2005). Here, MCM double hexamers—loaded onto duplex DNA in G1 phase of the cell
cycle—are activated upon entry into S phase in a highly regulated manner, facilitated by the
recruitment of numerous “firing factors” (Douglas et al., 2018). Many other origins remain dormant
and only fire in response to replication impediments (Courtot et al., 2018). During activation, the
lagging strand is ejected from eachMCM ring to initiate unwinding of the parental duplex (Langston
et al., 2017; Douglas et al., 2018), culminating in the formation of two active CMG (Cdc45-MCM-
GINS) holo-helicases encircling their respective leading-strand templates (Lewis and Costa, 2020).
Each CMGhelicase translocates 3′–5′ on the leading strand to catalyse bidirectional fork propagation
and additionally acts as a hub to coordinate the replicative enzymes and binding partners that
collectively compose the replisome (Gambus et al., 2006; Fu et al., 2011; Pellegrini and Costa, 2016;
Georgescu et al., 2017). Unwinding of the parental duplex provides a template for synthesis of
nascent strands by the replicative polymerases (Pols) α, δ, and ε (Guilliam and Yeeles, 2020a). Since
the DNA double helix is antiparallel and all DNA polymerases catalyse synthesis in the 5′–3′
direction, the nascent leading strand is synthesised mostly continuously in the same direction as
replisome progression. Conversely, the lagging strand is replicated discontinuously in the opposite
direction through repeated priming and extension to form Okazaki fragments. These are
subsequently ligated together to generate a continuous daughter-strand molecule (Kainuma-
Kuroda and Okazaki, 1975; Burgers and Kunkel, 2017).
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To efficiently complete DNA replication, yeast replisomes
must traverse inter-origin distances up to 100 kilobases (kb)
before fork convergence and termination (Sekedat et al., 2010;
Dewar and Walter, 2017). To cover such distances within S
phase, replisomes progress at an average rate of 1.5–2 kb min−1

(Conti et al., 2007; Sekedat et al., 2010; Yeeles et al., 2017).
However, genotoxic stress including DNA damage, DNA
secondary structures and repeat sequences, interstrand and
DNA-protein crosslinks, and limiting nucleotide levels can
slow or stall replisome progression by inhibiting template
unwinding and/or DNA synthesis (Zeman and Cimprich,
2014). Since CMG encircles and tracks along the leading
strand, bulky obstacles located only in the lagging-strand
template are more readily bypassed by the replisome (Fu
et al., 2011). Similarly, during lagging-strand replication,
polymerase stalling at one Okazaki fragment does not affect
synthesis of subsequent fragments or replisome progression,
resulting only in the generation of a single-stranded (ss) DNA
gap (Taylor and Yeeles, 2018). Here, DNA damage tolerance
(DDT) occurs in a postreplicative gap-filling manner to
complete synthesis of the daughter strand molecule. In
contrast, bulky leading-strand obstacles can block CMG
translocation while cessation of leading-strand synthesis
significantly slows the replisome (Fu et al., 2011; Taylor and
Yeeles, 2018, 2019). This necessitates the coordination of DDT
mechanisms with the replisome to maintain canonical
replication fork progression in the presence of leading-strand
template aberrations.

In recent years, structural, biochemical, and single-molecule
approaches have begun to decipher the architecture and
mechanism of unperturbed replisome progression, the effect of
impediments on this, and the details of DDTmechanisms used to
maintain progression. This review highlights these recent studies
to provide an overview of DDT mechanisms which maintain or

restart efficient CMG progression following slowing or stalling of
the replisome.

REPLISOME ARCHITECTURE AND
UNPERTURBED PROGRESSION

The driving force of replisome progression is the ATP-dependent
DNA unwinding activity of MCM, a two-tiered hetero-hexameric
ring of Mcm2–7 subunits. One tier is composed of amino-
terminal domains (N tier) and the other of carboxy-terminal
AAA + ATPase domains (C tier), with ATP-binding sites located
at the subunit interfaces, which serve as the motor to power DNA
template unwinding (Bell and Botchan, 2013). Loading of Cdc45
and GINS—a hetero-tetramer of Psf1–3 and Sld5—on to MCM
during initiation forms the CMG holo-helicase and stabilises the
N tier (Figure 1) (Costa et al., 2011; Yuan et al., 2016). Following
the reconstitution of origin-dependent eukaryotic DNA
replication with purified yeast proteins (Yeeles et al., 2015),
2D single-particle electron microscopy (EM) studies of
reconstituted CMG revealed that the helicase translocates with
an N tier first orientation (Douglas et al., 2018). This is consistent
with the orientation suggested by a previous 3D cryo-EM
structure (Georgescu et al., 2017) and that observed in more
recent studies (Goswami et al., 2018; Eickhoff et al., 2019; Yuan
et al., 2020a; Baretić et al., 2020).

Helicase translocation results from the allosteric coupling of
ATP hydrolysis to movement of DNA-binding elements in each
subunit lining the centre of the ring (Enemark and Joshua-Tor,
2006). Structures of homo-hexameric helicases support a rotary
translocation mechanism (Enemark and Joshua-Tor, 2006;
Thomsen and Berger, 2009; Itsathitphaisarn et al., 2012; Gao
et al., 2019; Meagher et al., 2019). Here, five-subunits form a
right-handed staircase surrounding the DNA with the sixth

FIGURE 1 | Replisome architecture during unperturbed progression. CMG (Cdc45-GINS-MCM2-7) tracks along the leading strand to unwind the parental duplex.
Pol ε synthesises the leading strand continuously in complex with CMG. Pol α initiates discontinuous lagging-strand synthesis through regular priming. Primers are
extended by Pol δ to form Okazaki fragments that are ligated together to produce a continuous daughter strand. Possible physical links between Pol α, Pol δ, Ctf4 (And-
1), and CMG are indicated by gray arrows. Both Pol ε and Pol δ associate with PCNA during synthesis and RPA binds any exposed ssDNA. Csm3-Tof1(Tipin-
Timeless) bind ahead of CMG and contact the parental duplex. Mrc1 (Claspin) may bind across one side of CMG spanning the N and C tiers. Synthesis by Pol ε, Pol δ,
and Pol α is shown in red, blue, and green respectively.
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disengaged. Sequential ATP binding, hydrolysis, and product
release facilitate subunit movement to escort DNA between
each subunit and through the staircase (reviewed in Enemark
and Joshua-Tor, 2008). However, studies of CMG translocation
are complicated by the observation that not all ATPase domains
are equally important among the MCM subunits (Ilves et al.,
2010; Eickhoff et al., 2019). Insight into this process has been
offered by high resolution cryo-EM structures of Drosophila
CMG in three translocation states during unwinding (Eickhoff
et al., 2019). This study proposed an asymmetric hand-over-hand
rotational mechanism of CMG translocation in which binding of
Mcm5-Mcm3 to the ATPase staircase occurs as a block,
promoting a double step. This could explain the functional
asymmetry of ATPase domains in the MCM ring (Eickhoff
et al., 2019). A recent cryo-EM structure of human CMG
bound to fork DNA is consistent with a sequential rotary
model of translocation, but the ATP-hydrolysis status of
Mcm3 differs from the asymmetric translocation model
proposed by Eickhoff et al. (2019). Further studies are
necessary to resolve if these differences represent species-
specific variation in the CMG translocation mechanism.

Regardless of the precise mechanistic details, the C tier motor
ring pulls DNA through the N tier to facilitate strand separation
and replisome translocation. In contrast to classic strand-
exclusion models, where one strand is sterically excluded from
the central channel of the helicase while the other is pulled
through, duplex DNA enters the N tier of yeast CMG a short
distance (Georgescu et al., 2017) and, moreover, the central
channel is wide enough to completely accommodate duplex
DNA (Wasserman et al., 2019). The N tier is subdivided into
a zinc finger (ZF) ring at the front of CMG followed by an
oligonucleotide-binding (OB) fold ring. A recent structure of
yeast CMG revealed that separation of the parental duplex occurs
at the bottom of the ZF sub-ring (Yuan et al., 2020a). Here, the
lagging strand is diverted by the OB hairpin loops of Mcm3,
Mcm4, Mcm6, and Mcm7, with a possible exit channel between
the ZF domains of Mcm3 and Mcm5. This mechanism, referred
to as the dam-and-diversion model, differs from the separation
pin model, whereby a specific structural element separates the
two strands. However, a putative strand-separation pin has been
identified in a subsequent structure (Baretić et al., 2020). This is
provided by a conserved phenylalanine in the N-terminal hairpin
loop of Mcm7 that abuts the final base pair before strand
separation (Baretić et al., 2020). Whether this conserved
residue is required for efficient unwinding remains to be
determined. In both structures, the path of the DNA template
is the same and therefore separation may be achieved by a
combination of the two mechanisms.

Although activated CMG helicases reconstituted from an
origin in vitro are sufficient for robust DNA synthesis in the
presence of Pol α and Pol ε, replication fork speeds are much
slower than those observed in vivo in the absence of critical
accessory proteins (Yeeles et al., 2015, 2017). These include the
“fork protection complex” (FPC) comprised of Mrc1 (Claspin)
and Csm3-Tof1 (Tipin-Timeless). A recent high resolution cryo-
EM structure of the FPC and CMG on forked DNA revealed that
Csm3-Tof1 bind to MCM via Tof1 at the front of the replisome

(Figure 1) and grip the parental DNA duplex ahead (Baretić et al.,
2020). Fork rate enhancement by Csm3-Tof1 is dependent on
Mrc1 (Yeeles et al., 2017) which appears to bind across one side of
CMG, spanning the N and C tiers (Baretić et al., 2020). The
mechanism by which Mrc1 stimulates fork rates is not currently
clear, however it also interacts with the flexible catalytic domain
of Pol ε (Lou et al., 2008), potentially aiding its correct positioning
behind CMG (Zhou et al., 2017). Pol ε—comprised of the
catalytic subunit Pol2 and three non-catalytic subunits Dpb2,
Dpb3, and Dpb4—is a core component of the replisome required
for origin firing (Sengupta et al., 2013; On et al., 2014). It binds
stably to CMG via interactions between the noncatalytic
C-terminal domain of Pol2 with Mcm2 and Mcm5 (Goswami
et al., 2018) and, additionally, between Dpb2—the accessory
subunit of Pol ε—with Mcm3 and the GINS subunit Psf1
(Sengupta et al., 2013; Sun et al., 2015; Goswami et al., 2018;
Yuan et al., 2020b). Dpb2 may also serve to direct the leading
strand from CMG to the Pol ε active site (Yuan et al., 2020b).
These interactions place Pol ε in complex with and behind CMG
to couple leading-strand synthesis to template unwinding
(Figure 1) (Guilliam and Yeeles, 2020a), which is essential for
maximum fork rates (Yeeles et al., 2017; Taylor and Yeeles, 2018,
2019). The homo-trimeric eukaryotic sliding clamp processivity
factor, PCNA, additionally helps tether the flexible catalytic
domain of Pol2 to the nascent leading strand, further
contributing to maximum replisome progression rates in vitro
(Yeeles et al., 2017).

Unlike leading-strand synthesis, which is mostly continuous,
lagging-strand replication requires repeated priming by Pol α and
extension by Pol δ to generate Okazaki fragments (Figure 1)
(Guilliam and Yeeles, 2020a). How Pol α is recruited to CMG to
initiate primer synthesis is not currently understood. One
potential mechanism is through Ctf4 (And-1), a trimeric hub
that binds to CMG at the Cdc45-GINS interface (Yuan et al.,
2019; Baretić et al., 2020; Rzechorzek et al., 2020) and interacts
with a range of proteins including Pol α (Gambus et al., 2009;
Simon et al., 2014; Villa et al., 2016; Guan et al., 2017; Kilkenny
et al., 2017). However, Ctf4 is not required for DNA replication
in vitro (Yeeles et al., 2015, 2017; Kurat et al., 2017) and only
minimally affects retention of Pol α at the replisome in yeast cells
(Kapadia et al., 2020). Instead, the Ctf4-Pol α interaction may be
more important for recycling of parental histones on to the
lagging strand, than for primer synthesis (Evrin et al., 2018;
Gan et al., 2018). Curiously, a recent cryo-EM report
demonstrated that Ctf4 can link two CMGs into a single
“replication factory” (Yuan et al., 2019). However, further
studies are required to confirm whether this occurs during
active replication.

Until recently, Pol δ was assumed to function disconnected
from the replisome, synthesising each Okazaki fragment while
bound to PCNA before dissociating from DNA to permit ligation
(Bell and Labib, 2016; Lancey et al., 2020a). However, two single-
molecule studies, one in vitro (Lewis et al., 2020) and one in vivo
(Kapadia et al., 2020), have challenged this assumption by
demonstrating that Pol δ is retained at the replisome for
multiple rounds of Okazaki fragment synthesis. It was
suggested that Pol δ may interact with the replisome via Pol α
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(Huang et al., 1999; Johansson et al., 2004; Lewis et al., 2020).
However, in vivo the residency time of Pol δ at the replisome
exceeded that of Pol α, indicating that it interacts with CMG
independently, potentially through Ctf4 (Figure 1) (Bermudez
et al., 2010; Kapadia et al., 2020). Since lagging-strand synthesis
occurs in the opposite direction to CMG progression, these
findings additionally posit the existence of lagging-strand
loops (Figure 1). Unlike Pol ε, Pol δ is not required for
maximum rates of replisome progression, but can support
leading-strand synthesis, albeit more slowly, in the absence of
active Pol ε and is essential for complete lagging-strand synthesis
(Yeeles et al., 2017). Consequently, although emerging evidence
supports Pol δ as a stable component of the replisome, coupling of
Pol δ to CMG does not appear to be important for maximum fork
rates, likely because lagging-strand synthesis occurs in the
opposite direction to replisome translocation. However, recent
biochemical and cellular studies revealed that Pol δ also plays a
key role in the initiation of leading-strand synthesis. Here, it
extends the first lagging-strand primer, generated by the
oppositely translocating replisome, back across the origin to
couple synthesis to CMG-Pol ε and establish rapid fork
progression (Garbacz et al., 2018; Aria and Yeeles, 2019).

UNCOUPLING OF LEADING-STRAND
SYNTHESIS AND FORK SLOWING

Since the central channel of CMG is wide enough to
accommodate duplex DNA, many DNA lesions can readily
pass through the helicase, stalling DNA synthesis instead of
CMG translocation (Zeman and Cimprich, 2014). Damaged
nucleobases, abasic sites, and more bulky adducts such as
pyrimidine dimers can be accommodated in the central
channel of CMG and therefore do not pose a steric block to
unwinding even when present in the leading-strand template
(Taylor and Yeeles, 2018, 2019; Guilliam and Yeeles, 2021).
However, the replicative polymerases are typically considered
to be intolerant to DNA lesions and mismatched 3′ termini (Sale
et al., 2012). The general structure of replicative polymerases is
likened to a right hand; the catalytic site sits in the palm domain
while the finger and thumb domains grip the template and primer
(Sale et al., 2012). The intolerance of replicative polymerases is in
part due to “induced fit” conformational changes during catalysis,
whereby the finger domain moves to switch the polymerase from
an open to a closed conformation only when the incoming dNTP
correctly pairs with the templating base (Johnson, 2008;
Freudenthal et al., 2013; Yang and Gao, 2018). The recent
structure of the Pol ε holoenzyme revealed that the finger
domain tilts 27° upon DNA-dNTP binding, changing the
enzyme from a gapped circle conformation to one that
completely encircles DNA ready for catalysis (Yuan et al.,
2020b). The compact catalytic site prevents the
accommodation of bulky DNA adducts, while 3′ mismatches
weaken DNA binding to the active site triggering relocation to the
3′–5′ proofreading exonuclease domain (Reha-Krantz, 2010).
These features greatly improve fidelity and processivity but
also make the enzyme intolerant to lesions which pass through

CMG (Yang and Gao, 2018). Similarly, limiting nucleotide levels
and repetitive DNA sequences can stall synthesis without directly
stopping CMG translocation (Zeman and Cimprich, 2014;
Devbhandari and Remus, 2020).

Stalling of Pol δ on the lagging strand does not affect ongoing
replisome progression or the synthesis of subsequent Okazaki
fragments because priming occurs continually downstream, with
respect to helicase translocation direction (Figure 2A) (Taylor
and Yeeles, 2018). This leaves a short ssDNA gap which can be
filled in behind the fork by classic DDTmechanisms (Leung et al.,
2019). Moreover, Pol δ is not required for maximum fork rates
(Yeeles et al., 2017). In contrast, stalling of Pol ε causes
uncoupling of leading-strand synthesis from template
unwinding, resulting in slow uncoupled fork progression
(Figure 2B). Here, template unwinding and lagging-strand
synthesis continue in the absence of leading-strand synthesis
but at a much-reduced rate (Taylor and Yeeles, 2018, 2019).
Uncoupled forks can progress multiple kilobases (Taylor and
Yeeles, 2018, 2019), generating long stretches of RPA-coated
ssDNA on the leading strand, as observed in UV-irradiated
yeast cells (Lopes et al., 2006). It is likely that uncoupling
occurs as a result of the dissociation of the flexibly tethered
catalytic domain of CMG-bound Pol ε from the 3′ end of the
nascent leading strand and PCNA (Figure 2B). This has been
proposed to also occur spontaneously in the absence of genotoxic
stress to populate the leading strand with PCNA for nucleosome
assembly andmismatch repair (Georgescu et al., 2017; Zhou et al.,
2017).

If not rapidly resolved, the RPA-coated ssDNA accumulated
from uncoupling can activate the DNA replication checkpoint by
providing a platform for recruitment of Mec1-Ddc2 in yeast, or
ATR-ATRIP in vertebrates (Byun et al., 2005; Pardo et al., 2017).
This subsequently activates the checkpoint effector kinase Rad53
in budding yeast, or CHK1 in vertebrates, to elicit the cellular
stress response. In reconstituted DNA replication experiments,
Rad53 was recently shown to further slow uncoupled CMG
progression (Devbhandari and Remus, 2020). This may help
prevent RPA depletion when uncoupling occurs for an
extended period of time (Toledo et al., 2013). This mechanism
was shown to be important in response to hydroxyurea (HU)
which inhibits ribonucleotide reductase (RNR), resulting in
dNTP depletion (Gan et al., 2017). In rad53-1 mutant yeast
cells, HU treatment caused asymmetric DNA synthesis
whereby extension proceeded much further along the lagging
strand than the leading strand as a result of uncoupling. This may
be due to a requirement for higher dNTP levels for leading-strand
synthesis by Pol ε than lagging-strand synthesis by Pol δ.
Uncoupling in rad53-1 cells was suppressed by elevated dNTP
levels (Gan et al., 2017). Importantly, checkpoint kinases
upregulate dNTP levels in response to replication stress
(Yeeles et al., 2013). Rad53 may therefore be important for
limiting uncoupling by both directly preventing excessive
template unwinding by CMG and promoting recoupling by
elevating dNTP levels. Recent biochemical data demonstrate
that direct slowing of replication forks by Rad53 is at least in
part mediated by Mrc1 (McClure and Diffley, 2021, Preprint).
Although Mrc1 functions upstream of Rad53 following
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replication stress, it is also a target for phosphorylation by Rad53
and Mec1 (Alcasabas et al., 2001). Phosphorylation of Mrc1
prevents it from stimulating CMG, thereby slowing template
unwinding (McClure and Diffley, 2021, Preprint).

Interestingly, inhibition of RNR by HU also elevates reactive
oxygen species (ROS) in human cells (Somyajit et al., 2017). This
can cause replication fork slowing via a checkpoint-independent
mechanism. Here, peroxiredoxin 2 (PRDX2) acts as a ROS
sensor. At low ROS levels it binds to Timeless in an
oligomeric state. However, elevated ROS levels disrupt
oligomerised PRDX2, causing its dissociation and the
displacement of Timeless from the replisome, consequently
slowing fork progression (Somyajit et al., 2017).

REPLICASE SWITCHING AND
RECOUPLING

Accumulating evidence suggests that, in addition to its role as the
lagging-strand replicase, Pol δ replicates the leading strand whenever
synthesis is not coupled to CMG (Guilliam and Yeeles, 2020a).
Consistent with this, Pol δ acts as a “first responder” to stalling of
leading-strand synthesis by outcompeting other polymerases,
including free Pol ε, for the uncoupled nascent strand

(Figure 3A) (Guilliam and Yeeles, 2020b). Once recruited, Pol δ
can readily recouple the leading strand to CMG-Pol ε whenever
uncoupling occurs spontaneously or due to factors which are more
readily tolerated by Pol δ than Pol ε (Figure 3B) (Guilliam and
Yeeles, 2020b). Indeed, we recently showed that Pol δ can efficiently
bypass the oxidative single base lesions, thymine glycol and 8-
oxoguanine, to recouple uncoupled forks in vitro (Guilliam and
Yeeles, 2021). Similarly, Pol δ promotes recoupling following
stalling of leading-strand synthesis at hairpin-forming sequences
(Casas-Delucchi et al., 2021, Preprint). In conjunction, studies of
vertebrate cells support a role for Pol δ in bypassing some lesions at
the replication fork (Hirota et al., 2015, 2016). This replicase switch
mechanism allows the replisome to quickly resume rapid progression
following uncoupling, limiting ssDNA exposure on the leading strand
while maintaining synthesis by the high-fidelity replicative
polymerases; in turn avoiding potentially mutagenic DDT
mechanisms or checkpoint activation. Similarly, Pol δ can excise
and correct errors made by Pol ε, whereas Pol ε can only correct its
own misincorporations (Flood et al., 2015; Bulock et al., 2020). This
suggests that misincorporated nucleotides that are not removed by
Pol ε may cause uncoupling, facilitating a switch to Pol δ before
proofreading of the error and recoupling of leading-strand synthesis.
A recent cryo-EM structure of the yeast Pol δ holoenzyme revealed a
high degree of flexibility between the Pol3 catalytic and Pol31–Pol32

FIGURE 2 | Polymerase stalling on the leading and lagging strands. (A) Stalling of Pol δ at a DNA lesion during synthesis of one Okazaki fragment does not affect
synthesis of subsequent fragments or ongoing replication fork speeds. Instead, a persistent ssDNA gap is formed. Synthesis by Pol δ and Pol α are shown in blue and
green respectively. Other replisome components are shown in gray for clarity (B) Stalling of Pol ε by a DNA lesion during leading-strand synthesis causes uncoupling due
to disengagement of the flexible catalytic domain from the nascent strand and PCNA. Here, template unwinding and lagging-strand synthesis continue but at a
much-reduced rate, resulting in the generation of RPA-coated ssDNA on the leading strand. Synthesis by Pol ε is shown in red.
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regulatory subunits, which may aid proofreading and facilitate
binding to a wider variety of DNA substrates (Jain et al., 2019).

Pol δ is likely favored for recoupling due to its faster rate of
synthesis than the rate of uncoupled CMG progression, higher
affinity than free Pol ε for PCNA, and its ability to processively
synthesise kilobases of DNA on an RPA-coated template in the
presence of PCNA (Langston and O’Donnell, 2008; Georgescu
et al., 2014; Yeeles et al., 2017; Sparks et al., 2019). Interestingly, a
structure of Pol δ-PCNA recently demonstrated that the
polymerase holds the DNA substrate such that it is positioned
through the centre of the PCNA clamp without direct PCNA-
DNA contacts (Zheng et al., 2020). DNA-clamp interactions are

instead mediated by water, allowing PCNA to function as a
“water skate” to permit rapid and processive DNA synthesis
while generating minimal resistance. Likewise, PCNA was
recently shown to enhance nucleotide incorporation rates by
Pol δ from 40 nucleotides per second to more than 350 per
second (Mondol et al., 2019). This rate of nucleotide
incorporation would allow the polymerase to rapidly catch up
with uncoupled CMG, which has been estimated to unwind DNA
at ∼55 base pairs per minute (Sparks et al., 2019; Devbhandari
and Remus, 2020). It is not currently understood how the nascent
leading strand is transferred from Pol δ back to CMG-Pol ε
(Figure 3C). However, unlike free Pol ε, CMG-Pol ε does

FIGURE 3 | Replicase switching and recoupling of leading-strand synthesis. (A) Upon uncoupling, a replicase switch occurs. Here, Pol δ is recruited to the
uncoupled nascent leading strand. Other replisome components are shown in gray for clarity. (B) When stalling of Pol ε occurs due to any factor that is more readily
tolerated by Pol δ, such as certain oxidative lesions, Pol δ directly extends the nascent leading strand through the impediment to recouple synthesis. (C)Upon recoupling
the nascent leading strand is handed back to CMG-bound Pol ε to restore rapid replisome progression. Synthesis by Pol ε and Pol δ is shown in red and blue
respectively.
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outcompete Pol δ for the leading strand (Georgescu et al., 2014).
It is possible handover occurs through collision release in which
Pol δ is ejected from PCNA upon running into uncoupled CMG,
similar to the mechanism proposed to occur during Okazaki
fragment synthesis (Langston and O’Donnell, 2008; Schauer and
O’Donnell, 2017). Regardless, rapid fork rates are reinstated
following Pol δ-mediated recoupling, suggesting CMG-Pol ε
efficiently resumes leading-strand synthesis downstream
(Guilliam and Yeeles, 2020b).

TRANSLESION SYNTHESIS
POLYMERASES

Despite a greater ability to tolerate certain single-base lesions than
Pol ε (Guilliam and Yeeles, 2021), Pol δ also stalls upon

encountering more bulky or distorting lesions such as a
cyclobutane pyrimidine dimer (CPD), a well-characterised
UV-induced photoproduct (Taylor and Yeeles, 2018; Guilliam
and Yeeles, 2020b). In these instances, specialised translesion
synthesis (TLS) polymerases are required for direct synthesis
across damage prior to recoupling (Guilliam and Yeeles, 2020b).
TLS that functions to promote recoupling is termed “on the fly”
TLS (Figure 4) to distinguish it from gap-filling TLS. The main
TLS polymerases in eukaryotes are those of the Y-family; Pol η,
Pol ι, Pol κ, and Rev1, in addition to the B-family polymerase Pol
ζ (Sale et al., 2012). Of these, only Pol η, Rev1, and Pol ζ are
present in budding yeast. The Y-family polymerases have
spacious solvent accessible active sites formed between the
palm and finger domains that make few, mostly non-specific,
contacts with the DNA template, permitting the accommodation
of bulky lesions and template distortions (Fleck and Schär, 2004;

FIGURE 4 |On the fly translesion synthesis can promote recoupling. (A)When Pol δ is recruited to the leading strand following uncoupling, but is unable to bypass
the impediment, TLS is required prior to recoupling. Other replisome components are shown in gray for clarity. (B) i. RPA-coated ssDNA recruits Rad6-Rad18 which
catalyse monoubiquitination of PCNA. This stimulates recruitment of a TLS polymerase. ii. The TLS polymerase extends the nascent strand past the impediment. This
could occur without complete dissociation of Pol δ from PCNA. iii. After bypass a switch back to Pol δ facilitates rapid recoupling. (C) Pol δ hands the nascent
leading strand back to Pol ε to restore canonical fork rates. Synthesis by Pol ε, Pol δ, and the TLS polymerase is shown in red, blue, and purple respectively.
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Sale et al., 2012). They also possess an additional “little finger”
domain, not present in other polymerase families, which together
with the thumb domain grips duplex DNA and may play a role in
lesion specificity (Boudsocq et al., 2004; Fleck and Schär, 2004;
Wilson et al., 2013). Compared to the replicative polymerases, the
finger domain of the Y-family polymerases is stubbier and
remains in a closed conformation irrespective of DNA-dNTP
binding, thereby removing the “induced fit”mechanism of dNTP
selection (Vaisman and Woodgate, 2017). They also lack
proofreading exonuclease activity and therefore the ability to
excise mispaired nucleotides. Consequently, the Y-family
polymerases gain an increased tolerance of template lesions at
the expense of fidelity and processivity.

Pol ζ is thought to function as an extender when two
polymerases are required for lesion bypass. Here, a Y-family
polymerase first incorporates nucleotides opposite the damage,
before Pol ζ takes over to catalyse extension beyond the lesion in a
process that is typically error-prone (Johnson et al., 2000). Only
recently was the structure of Pol ζ determined (Malik et al., 2020),
revealing that it adopts a pentameric ring conformation
composed of the catalytic subunit Rev3, two Rev7 subunits,
and the non-catalytic Pol31 and Pol32 subunits which are
shared with Pol δ (Johnson et al., 2012; Makarova et al.,
2012). Similar to the replicative polymerases, the finger
domain transitions from an open to a closed conformation
upon binding the correct dNTP, conferring higher fidelity
during nucleotide selection compared to the Y-family
polymerases (Malik et al., 2020). However, key differences
between Pol ζ and Pol δ explain the former’s penchant for
extending aberrantly paired 3′ ends (Johnson et al., 2000). In
Pol δ, the linker between the NTD and palm domain contacts the
terminal base pair to prevent efficient extension of a mismatch.
However, these contacts are not present in Pol ζ and although the
polymerase contains an exonuclease domain, it is inactive. These
features make Pol ζ well suited to fulfill an extender role during
TLS and reveal why, despite having higher fidelity than the
Y-family polymerases (McCulloch and Kunkel, 2008), it is
involved in almost all damage-induced mutagenesis (Lawrence,
2002).

THE POLYMERASE SWITCH DURING TLS

On the fly TLS can rescue uncoupled forks when Pol δ alone is
unable to recouple the leading strand (Figure 4A) (Guilliam and
Yeeles, 2020b). However, Pol δ outcompetes TLS polymerases for
binding to stalled nascent 3′ ends and in doing so limits
mutagenesis by negatively regulating TLS when it is not
required for recoupling (Guilliam and Yeeles, 2020b). RPA-
coated ssDNA, generated by persistent stalling, recruits the
E2–E3 ubiquitin ligase complex, Rad6–Rad18 (Watanabe et al.,
2004; Davies et al., 2008), which facilitates monoubiquitination of
PCNA to promote a switch from Pol δ to TLS polymerase to
facilitate lesion bypass (Figure 4B) (Hoege et al., 2002; Stelter and
Ulrich, 2003; Bienko et al., 2005; Garg and Burgers, 2005; Plosky
et al., 2006; Guilliam and Yeeles, 2020b). Y-family TLS
polymerases are recruited to monoubiquitinated PCNA via

their ubiquitin-binding ZF (Pol η and Pol κ) or helical
ubiquitin-binding motifs (Pol ι and Rev1), in addition to
canonical PCNA interacting peptide (PIP) box motifs in their
non-catalytic C-terminal extensions (Leung et al., 2019). Rev1
lacks a PIP box and instead interacts with PCNA via its
N-terminal BRCT and little finger domains (Guo et al., 2006;
Sharma et al., 2011).

The ubiquitin moiety is located on the back side of PCNA
(Freudenthal et al., 2010). This may allow TLS polymerases to be
recruited to the back face of monoubiquitinated PCNA while Pol
δ remains bound at the front (Freudenthal et al., 2010). This
toolbelt model, in which multiple binding partners can occupy
PCNA monomers not bound by Pol δ, is supported by the recent
structure of Pol δ-PCNA-FEN1 in complex on DNA (Lancey
et al., 2020a) which suggests a toolbelt mechanism for flap
cleavage during Okazaki fragment maturation. This study also
revealed that PCNA can tilt up to 20°, disrupting interactions
between the catalytic subunit of Pol δ and PCNA that are critical
for DNA synthesis, while the polymerase remains bound to
PCNA via the PIP box located in its thumb domain (Lancey
et al., 2020a). The same group recently solved the structure of Pol
κ-PCNA-DNA and stalled Pol δ-PCNA-DNA to propose a
mechanism of polymerase switching (Lancey et al., 2020b,
Preprint). Therein, Pol δ releases the primer-template from
the active site upon stalling, Pol κ binds to an exposed PCNA
protomer in a flexible state and either actively displaces Pol δ, or
Pol δ independently dissociates, fromDNA to form the final Pol κ
holoenzyme. Importantly, tilting of PCNA provides enough room
to accommodate active Pol κ and retain Pol δ on PCNA via its
thumb domain PIP box. Pol δ might therefore hand over
synthesis to the TLS polymerase without dissociating from
PCNA to allow a rapid switch back after lesion bypass
(Figure 4B), before subsequent recoupling (Figure 4C).
Importantly, evidence supports a toolbelt model of polymerase
switching in E. coli (Indiani et al., 2005; Kath et al., 2016) and
archaea (Cranford et al., 2017), giving credence to the prospect
that a similar mechanism occurs in eukaryotes. However, it is also
possible that Pol δ fully dissociates from PCNA and DNA to
permit TLS before reassociating to recouple synthesis.

In addition to PCNA, the C-terminal domain of Rev1 interacts
with the other Y-family TLS polymerases through PIP-like motifs
(Boehm and Washington, 2016), and binds the Rev7 subunit of
Pol ζ (Murakumo et al., 2001; Zhao and Washington, 2017).
Numerous studies support a non-catalytic role for Rev1 in the
recruitment of other TLS polymerases (Nelson et al., 2000;
Haracska et al., 2001; Ross et al., 2005; Edmunds et al., 2008).
One proposed mechanism is through the formation of “Rev1
bridges” in which a TLS polymerase is linked to PCNA via Rev1
without interacting directly with the clamp. Both PCNA toolbelts
and Rev1 bridges have been observed in single-molecule studies
and they can interchange dynamically without dissociation
(Boehm et al., 2016). The relative contribution of PCNA
monoubiquitination and Rev1 in recruiting and coordinating
TLS is likely to be lesion specific (Wang and Xiao, 2020).
Indeed, accurate CPD bypass by Pol η does not require Rev1
or Pol ζ but is dependent on PCNA monoubiquitination
(Kannouche et al., 2004; Bienko et al., 2005; Andersen et al.,

Frontiers in Molecular Biosciences | www.frontiersin.org July 2021 | Volume 8 | Article 7129718

Guilliam Mechanisms Maintaining Eukaryotic Replisome Progression

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


2011; Guilliam and Yeeles, 2020b), whereas BaP-dG (N2-benzo[a]
pyrene-dG) bypass by Pol κ is dependent on its interaction with
Rev1 (Ohashi et al., 2009). The requirement for Rev1 is more
important for two-polymerase TLS that also requires Pol ζ for
extension and is typically error-prone (Livneh et al., 2010).
Moreover, the affinity of different TLS polymerases for Rev1
varies, in some cases being relatively weak and allowing
competition (Pustovalova et al., 2016). Consequently, Rev1
may help select a different polymerase if the first cannot
bypass the lesion following recruitment via monoubiquitinated
PCNA, switching TLS from a one to a two-polymerase mode
where necessary. In addition to Rev7, Rev1 was more recently
found to also interact with the PolD3 (Pol32 in yeast) subunit of
human Pol ζ/Pol δ with higher affinity than it does with other
Y-family polymerases (Pustovalova et al., 2016). This interaction
may help displace the “inserter” polymerase from Rev1 and
monoubiquitinated PCNA to facilitate extension by Pol ζ
beyond the lesion (Pustovalova et al., 2016). The sharing of
Pol31-Pol32 between Pol δ and Pol ζ led to the proposal that
removal of Pol3 and recruitment of Rev3-Rev7 at the site of
damage coordinates a switch between the two (Baranovskiy et al.,
2012). In support, Pol3 is degraded in response to damage
(Daraba et al., 2014). However, Pol ζ exists as a stable four-
subunit complex (Rev3–Rev7–Pol31–Pol32) in all stages of the
cell cycle irrespective of damage, potentially arguing against
subunit exchange with Pol δ (Makarova et al., 2012).

REPRIMING

Aside from TLS, uncoupled replication forks can be rescued by
reinitiating leading-strand synthesis through the generation of a
new primer downstream of the impediment in a process termed
repriming. Similar to ongoing Okazaki fragment synthesis after
Pol δ stalling on the lagging strand, this leaves behind a ssDNA
gap which can be filled by TLS or template switching. In
reconstitution experiments with yeast proteins, Pol α could
readily synthesise primers on the lagging strand but was
inefficient at repriming the leading strand due to inhibition by
RPA (Taylor and Yeeles, 2018). This disparity between leading
and lagging-strand priming efficiency suggests these two
processes are mechanistically distinct. It is likely that lagging-
strand priming is facilitated by the position of Pol α in the
replisome, while leading-strand repriming uses free Pol α and
is therefore sensitive to RPA concentrations. Coupling of leading-
strand synthesis during initiation occurs via extension of a
lagging-strand primer back across the origin by Pol δ
(Garbacz et al., 2018; Aria and Yeeles, 2019), further arguing
against an efficient Pol α-mediated leading-strand priming
mechanism in unperturbed conditions. However, it is possible
that leading-strand repriming by Pol α occurs under conditions of
RPA exhaustion, or requires factors or modifications not present
in the reconstituted system (Lopes et al., 2006; Fumasoni et al.,
2015; Toledo et al., 2017; Taylor and Yeeles, 2018).

In higher eukaryotes, leading-strand repriming is catalysed by
a second archaeo-eukaryotic primase named PrimPol that is
absent in budding yeast (Bianchi et al., 2013; García-Gómez

et al., 2013; Wan et al., 2013; Guilliam et al., 2015b; Guilliam
and Doherty, 2017). PrimPol interacts directly with RPA and this
interaction is required for recruitment of the primase to the
ssDNA generated by uncoupling (Figure 5A) (Guilliam et al.,
2015a, 2017; Šviković et al., 2019). The naming of PrimPol reflects
its ability to perform both DNA primase and polymerase
activities, and similar to the TLS polymerases it can directly
bypass a number of lesions in vitro (Bianchi et al., 2013; Keen
et al., 2014b). However, the catalytic domain of PrimPol does not
resemble a canonical polymerase fold, completely lacks a thumb
subdomain, makes almost no contacts with the primer strand, has
very low inherent processivity, and does not noticeably interact
with PCNA (Keen et al., 2014b; Guilliam et al., 2015a; Rechkoblit
et al., 2016). Likewise, although PrimPol can bypass a (6–4) T–T
photoproduct, its active site is not able to accommodate this
lesion and it is likely bypassed by a looping out mechanism that
generates deletions (Bianchi et al., 2013; Rechkoblit et al., 2016;
Guilliam and Doherty, 2017). Moreover, the primase but not
polymerase activity of PrimPol is dependent on its noncatalytic
C-terminal ZF domain, which binds and selects the first 5′-
nucleotide of the nascent primer strand (Keen et al., 2014b;
Martínez-Jiménez et al., 2018). An intact ZF is essential for
PrimPol’s function in vivo (Mourón et al., 2013; Keen et al.,
2014a, 2014b; Kobayashi et al., 2016; Schiavone et al., 2016;
Šviković et al., 2019). Consequently, the available evidence
strongly suggests the primary function of PrimPol in vivo is as
a primase not a TLS polymerase (Guilliam and Doherty, 2017).

In avian cells, loss of PrimPol causes damage sensitivity,
replication fork slowing and growth arrest after damage
(Bailey et al., 2016; Kobayashi et al., 2016). In human cells,
deletion of PrimPol does not affect survival after damage but
does result in delayed recovery, increased mutagenesis, and sister
chromatid exchanges (Bailey et al., 2019). However, loss of
PrimPol in human cells lacking Pol η or Pol ζ significantly
increases sensitivity to damage (Kobayashi et al., 2016; Bailey
et al., 2019). This suggests that PrimPol may function to rescue
uncoupled forks when Pol δ alone or TLS cannot readily bypass a
leading-strand obstacle (Figure 5A). In support of this, PrimPol
is required for the tolerance of impediments not efficiently
bypassed by TLS, including chain-terminating nucleosides
(Kobayashi et al., 2016), DNA secondary structures (Schiavone
et al., 2016), R-loops (Šviković et al., 2019), cisplatin-induced
adducts and hydroxyurea (Quinet et al., 2020), bulky DNA
adducts that induce recombination (Piberger et al., 2020), and
interstrand crosslinks (ICLs) (González-Acosta et al., 2020,
Preprint). Indeed, although Rev1 is involved in bypass of G4-
quadruplexes (G4s)—DNA secondary structures formed by
Hoogsteen base-pairing between guanines—containing long
loops (Schiavone et al., 2014), PrimPol is required for
tolerance of G4s that are more thermodynamically stable
(Schiavone et al., 2016). Moreover, on the fly TLS by Pol η
was recently found to be the primary mechanism to recouple
replisomes in response to UV damage in human fibroblasts, while
PrimPol compensated for loss of Pol η, with the resulting ssDNA
gaps filled in by template switching (Benureau et al., 2020,
Preprint). Therefore, the relative efficiency of TLS bypass of a
given impediment vs. repriming by PrimPol may dictate pathway
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choice. Although importantly, TLS can also function to fill in the
ssDNA gap generated after repriming (Figure 5B) (Daigaku et al.,
2010; Karras and Jentsch, 2010).

Following repriming, the nascent primer is likely extended by
Pol δ to promote recoupling, as observed following TLS
(Figure 5B) (Guilliam and Yeeles, 2020b). Interestingly,
PolDIP2 (Pol δ-interacting protein 2, PDIP38) interacts with
Pol δ, PCNA, and PrimPol, enhancing the polymerase activity of
the latter (Maga et al., 2013; Guilliam et al., 2016; Kasho et al.,
2021). PolDIP2 might therefore promote primer extension by
PrimPol before also coordinating a switch to Pol δ for recoupling.
A number of TLS polymerases also interact with PolDIP2 and loss
of the protein causes a decrease in TLS in vivo (Tissier et al., 2010;
Maga et al., 2013; Tsuda et al., 2019). However, whether PolDIP2
coordinates a switch back to Pol δ or another aspect of TLS or
repriming in higher eukaryotes remains to be determined.

FORK REVERSAL

Template switching is a homologous recombination (HR)-like
mechanism that promotes damage tolerance by using the
undamaged nascent strand of the sister chromatid as a
template (Branzei and Szakal, 2016). It can function
postreplicatively to fill ssDNA gaps on the lagging strand, or
following repriming on the leading strand by PrimPol (Piberger
et al., 2020). However, template switching may also occur at the

replication fork through fork reversal (Berti et al., 2020). Here, the
fork regresses by annealing the nascent daughter strands,
generating a four-way “chicken foot” structure (Figure 6A).
This may allow extension of the nascent leading strand by
using the undamaged nascent lagging strand as a template
(Figure 6B), or place the damaged parental strand in a
dsDNA context to permit canonical repair before fork restart
(Figure 6C) (Berti and Vindigni, 2016).

Fork reversal requires Rad51 which binds ssDNA to promote
strand invasion during HR (Scully et al., 2019) and partially
replaces RPA on the ssDNA exposed by uncoupling, or nascent
strand resection, to promote reversal (Berti et al., 2020). How
these short stretches of Rad51 separated by RPA—termed
metastable Rad51 filaments—are able to promote fork reversal
is not currently clear (Berti et al., 2020). However, intriguingly
this is not dependent on the enzymatic strand exchange activity of
Rad51 (Mason et al., 2019). Additionally, following
monoubiquitination by Rad6-Rad18, PCNA can be
polyubiquitylated (Ripley et al., 2020). In yeast, Rad5 serves as
the E3 ubiquitin-ligase (Hoege et al., 2002) and also has helicase
activity that can directly reverse forks (Blastyák et al., 2007).
Humans have two Rad5-related proteins, HLTF and SHPRH,
both of which can polyubiquitylate monoubiquitinated PCNA,
with HLTF shown to catalyse fork reversal in vitro (Unk et al.,
2006; Blastyák et al., 2010; Kile et al., 2015). Two additional
translocases also mediate fork reversal in humans, ZRANB3 and
SMARCAL1, which are recruited by polyubiquitylated PCNA

FIGURE 5 | PrimPol-mediated repriming restarts leading-strand synthesis. (A)When replicase switching and on the fly TLS are inefficient at bypassing the leading-
strand impediment, extended uncoupling occurs. This stimulates the recruitment of PrimPol to RPA-coated ssDNA downstream and subsequent repriming. Other
replisome components are shown in gray for clarity. (B) Following repriming, Pol δ may extend the nascent primer to recouple synthesis to Pol ε and restore rapid
replisome progression rates. This leaves behind a ssDNA gap at the site of the lesion whichmay be filled in postreplicatively by TLS or template switching. Synthesis
by Pol ε, Pol δ, and PrimPol are shown in red, blue, and green respectively.
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and RPA-ssDNA respectively (Ciccia et al., 2012; Bétous et al.,
2013; Kolinjivadi et al., 2017; Taglialatela et al., 2017). These
translocases fulfill non-redundant roles and might therefore
contribute to different steps or be required in different
contexts (Berti et al., 2020).

Although the generation of reversed forks does not require
stable Rad51 filaments, BRCA2-mediated stable Rad51
filaments are required to protect reversed forks from
nucleolytic degradation following their formation (Schlacher
et al., 2011; Berti et al., 2020). Forks can subsequently be
restarted by unwinding and controlled resection by WRN-
DNA2 (Thangavel et al., 2015) or through reversed-branch
migration by RECQ1 (Figures 6B,C) (Berti et al., 2013).
Alternatively, a protected reversed fork could await
resolution by the arrival of the convergent fork. However,
prolonged fork reversal or de-protection can lead to
processing by structure specific endonucleases, producing a
broken fork (Berti et al., 2020). This can be rescued by
break-induced replication, whereby strand invasion by the
broken parental strand restarts replication but in an error
prone and conservative manner that does not rely on a
canonical replisome (Kramara et al., 2018).

Reversed forks have been directly detected using transmission
electronmicroscopy (TEM) in human cells treated with a range of
genotoxic agents, suggesting it is a universal response to
replication stress (Zellweger et al., 2015). In support, fork
reversal has been observed as an ATR-dependent global
response to ICLs, even at forks not directly challenged by
damage, to slow replication and promote repair (Mutreja
et al., 2018). However, ATR phosphorylation of SMARCAL1
has also been shown to limit fork remodeling (Couch et al., 2013).
Moreover, a recent study of human fibroblasts failed to detect any
evidence of fork reversal by TEM in response to UV damage, even
in the absence of Pol η, with repriming instead compensating for
loss of TLS (Benureau et al., 2020, Preprint). In yeast, reversed
forks were observed in repriming (Fumasoni et al., 2015) and
checkpoint (Sogo et al., 2002; Lopes et al., 2006) mutants in
response to bulky DNA lesions. A recent report showed that
ATR-dependent up-regulation of PrimPol in cancer cells
following multiple doses of cisplatin treatment suppresses fork
reversal, revealing a competition between the two mechanisms
(Quinet et al., 2020). This may be because PrimPol limits
uncoupling and RPA-ssDNA is a prerequisite for fork reversal
(Zellweger et al., 2015). Therefore, fork reversal and repriming

FIGURE 6 | Fork reversal may maintain or restart replisome progression past leading-strand impediments. (A) Following uncoupling, fork reversal can be catalysed
by Rad51, ZRANB3, SMARCAL1, and HLTF to generate a four-way chicken foot structure in a process which is not currently well understood. The fate of CMG here is
not clear, one possibility is that it transitions on to duplex DNA downstream of the lesion. (B) The nascent lagging strand could serve as a template for extension of the
nascent leading strand. Subsequent reversed branch migration, catalysed by RECQ1, may support fork restart if the extended 3′ end of the nascent leading strand
is relocated downstream of the lesion. CMGmay then transition back onto ssDNA to restart canonical replication. (C) Alternatively, fork reversal may place the lesion in a
dsDNA context to permit repair, before resetting of the fork by RECQ1 or resection of nascent strands by DNA2-WRN. Again, CMG may transition back onto ssDNA to
restart rapid fork progression. (D) Another possibility is that accessory helicases unwind the parental duplex downstream of the impediment following fork reversal. This
may allow the establishment of a new replication fork which would require repriming of the leading strand. This would leave the chicken foot structure behind the new fork
to be resolved following postreplicative repair of the lesion.
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likely compete when on the fly TLS cannot promote efficient
bypass, with cell type, the nature of the replication impediment,
and complex ATR-orchestrated responses potentially dictating
which pathway is favored.

The precise details of fork reversal remain to be determined. In
particular, it is not clear what happens to the replisome during
this process. In bacteriophage T4, the replicative helicase must

dissociate to permit remodeling of the fork (Manosas et al., 2012).
However, in eukaryotes reloading of MCMs is inhibited in S
phase to prevent re-replication (Chen and Bell, 2011; Frigola
et al., 2013). To function as a mechanism to restart or maintain
progression of a replisome, fork reversal must not cause
dissociation of CMG. One possibility is that uncoupled CMG
traverses onto dsDNA downstream of the stalled fork junction,

FIGURE 7 | Bypass of CMG-blocking impediments on the leading strand. (A) Bulky leading-strand impediments including DPCs, ICLs, and preformed G4s can
pose a block to CMG translocation, causing stalling of the replisome. (B) CMG traversal of the impediment is aided by transient opening of the MCM2-7 ring and
accessory helicases which unwind the downstream parental duplex. The specific accessory helicase involved depends on the nature of the lesion, see text for details.
Note that the accessory helicase may act on either the leading or lagging strand. Other replisome components are greyed out for clarity. (C) Following CMG
traversal of the impediment, the replisome is uncoupled and fork progression is slow. (D) Recoupling first requires resolution of the impediment and/or extension of the
leading strand past the damage site. Alternatively, leading-strand synthesis may be reinitiated downstream by repriming before postreplicative repair of the damage. In
the case of DPCs, proteolysis occurs before TLS and recoupling. G4s are unwound by FANCJ to promote bypass and recoupling. ICL bypass requires PrimPol-
mediated repriming before recoupling, leaving an X-shaped structure for postreplicative repair. Upon recoupling, rapid fork rates resume. Recoupling is indicated by a
blue dotted line and Pol ε synthesis is shown in red.
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before moving back onto ssDNA to restart replication when the
canonical fork is restored (Figures 6A–C). Single-molecule
analyses recently demonstrated that MCM can transiently
open to transition from ssDNA to dsDNA, before diffusing
back again to reform a functional replisome (Wasserman
et al., 2019). This is not dependent on the Mcm2–5 gate used
for loading during origin licensing, but does require Mcm10
which is essential for CMG activation. Here, Mcm10 may prevent
dissociation of CMG upon opening of the ssDNA gate. However,
Mcm10 also inhibits fork reversal by SMARCAL1 in vitro (Mayle
et al., 2019). Moreover, in Xenopus egg extracts when CMG runs
onto dsDNA at a lagging-strand nick it is ubiquitylated and
removed by the same pathway used during termination (Vrtis
et al., 2021). It is currently unclear how CMG encircling dsDNA
to permit fork reversal would resist unloading by the same
mechanism. Alternatively, CMG may rapidly reengage ssDNA
downstream of the stalled fork junction, aided by accessory
helicases (Figure 6D). Such a mechanism would require
repriming and leave behind the chicken foot structure for
resolution in a postreplicative manner (Berti et al., 2020). In
either case, it is unclear what would trigger uncoupled CMG to
transition from ssDNA to dsDNA. Indeed, in reconstitution
experiments uncoupled CMG continues to unwind the
parental template for multiple kb downstream of a CPD
(Taylor and Yeeles, 2018, 2019).

TRAVERSAL OF IMPEDIMENTS TO CMG
TRANSLOCATION

Instead of causing uncoupling, bulkier replication impediments
can directly block CMG translocation (Figure 7A). One example
are DNA-protein crosslinks (DPCs), chromatin-bound proteins
which are covalently crosslinked to DNA by chemotherapeutics
or endogenous aldehydes (Stingele et al., 2017). Since dsDNA
enters CMG a short distance, with strand separation occurring at
the bottom of the ZF sub-ring (Yuan et al., 2020a; Baretić et al.,
2020), DPCs might be expected to stall replisomes regardless of
which template strand they are located in. However, in Xenopus
extracts replisome progression is stalled much more significantly
by a streptavidin block in the leading strand compared to the
lagging strand (Fu et al., 2011). Purified yeast CMG is stalled by a
streptavidin block located in either strand (Langston and
O’Donnell, 2017), but can bypass the lagging-strand block in
the presence of Mcm10 (Langston et al., 2017). Here, Mcm10 is
hypothesised to bind the N tier of CMG to isomerise it to a steric
exclusionmodel capable of bypassing impediments on the lagging
strand (Langston et al., 2017). It is unknown if Mcm10 remains
stably bound to the replisome following initiation or if it interacts
dynamically when required.

Recent experiments in Xenopus extracts have revealed that the
accessory helicase RTEL1 also stimulates bypass of a lagging strand
DPC, although bypass still occurs in its absence (Sparks et al.,
2019). Meanwhile, CMG stalling at a leading strand DPC is more
extended and more sensitive to loss of RTEL1. Here, RTEL1
generates ssDNA downstream of stalled CMG to facilitate DPC
bypass by transient opening of the Mcm2-7 ring, potentially aided

by Mcm10 (Figure 7B) (Sparks et al., 2019; Wasserman et al.,
2019). Single-molecule experiments confirmed that CMG bypass
occurs beforeDPC degradation by the specialised protease SPTRN/
DVC1 (Wss1 in yeast) (Sparks et al., 2019). Interestingly, upon
collision the replisome facilitates ubiquitylation of the DPC by the
E3 ubiquitin ligase TRAIP to promote proteolysis after CMG
bypass. Ubiquitylation of the DPC also aids CMG bypass
(Sparks et al., 2019). TRAIP is proposed to bind the leading
edge of the replisome to fulfill this role which also positions it
to ubiquitylate an adjacent CMG after fork convergence at an ICL
(Wu et al., 2019, 2021). Following bypass, CMG progression is
initially slow due to uncoupling (Figure 7C). TLS after DPC
proteolysis subsequently recouples the fork (Figure 7D) (Duxin
et al., 2014; Sparks et al., 2019).

ICLs also represent a block to replisome progression. In Xenopus
extracts, ICL repair occurs following fork convergence at the lesion
(Zhang et al., 2015). Here, TRAIP-dependent ubiquitylation of CMG
stimulates recruitment of the NEIL3 glycosylase to resolve psoralen
and abasic ICLs (Wu et al., 2021). If NEIL3 fails to unhook the
crosslink, continued ubiquitylation of CMG by TRAIP triggers
replisome disassembly to permit repair of the ICL by the Fanconi
anemia pathway (Wu et al., 2021). Since both pathways depend on
fork convergence, they cannot be considered as mechanisms to
maintain progression of individual replisomes. However, studies in
avian andmammalian cells suggest CMG can also traverse ICLs and
maintain progression via an alternative mechanism (Huang et al.,
2013, 2019; Ling et al., 2016; Mutreja et al., 2018). Here, FANCM
associates with CMG in a FANCD2 and ATR-signalling dependent
manner which triggers release of GINS from the replisome (Huang
et al., 2019). FANCM translocase activity and loss of GINSmay then
promote opening of theMcm2-7 ring and allow traversal of the ICL.
FANCMalso interacts with BTR (BLM/TOP3A/RMI1–2), and BLM
helicase activity is important for ICL traverse (Ling et al., 2016). BLM
might therefore play an analogous role to RTEL1 duringDPCbypass
by unwinding the parental strands downstream of the ICL (Ling
et al., 2016). BTR also interacts with both RPA (Wu et al., 2018) and
PrimPol (González-Acosta et al., 2020, preprint). Recent work
demonstrated that PrimPol participates in ICL bypass, likely by
reinitiating leading-strand synthesis to restore rapid fork rates
(González-Acosta et al., 2020, preprint). Traversal would leave
the X-shaped ICL structure behind the re-established replication
fork to be repaired by the Fanconi anaemia pathway in a
postreplicative manner (Lopez-Martinez et al., 2016).

Accessory helicases also assist the replisome in bypassing
preformed G4 structures that can stall CMG when present in
the leading-strand template (Lerner and Sale, 2019). Experiments
in Xenopus extracts have recently delineated a mechanism for G4
bypass similar to that employed for DPC traversal (Sato et al.,
2020, preprint). Following CMG collision with a G4, the
accessory helicase DHX36 unwinds the parental duplex
downstream of the structure. This allows CMG to bypass the
G4 without unwinding through opening of the Mcm2-7 ring
(Sparks et al., 2019; Wasserman et al., 2019). A second helicase,
FANCJ, then assists G4 unwinding to permit recoupling of the
leading strand to the replisome. There is partial redundancy
between these two helicases for CMG bypass and notably the
requirement for both is abolished by a convergent fork (Sato et al.,
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2020, preprint). DHX36 and FANCJ likely facilitate bypass in this
context instead of RTEL1 due to their high affinity for G4s (Wu
et al., 2008; Giri et al., 2011). G4s can also be bypassed by another
recently identified mechanism (Lerner et al., 2020). Here, the
replisome plays an active role in G4 resolution facilitated by a
DNA binding domain in Timeless that has a strong preference for
G4s. This allows Timeless to detect G4s in the vicinity of the
replisome and promote their unwinding by DDX11, an accessory
helicase that interacts with and is stimulated by Timeless (Lerner
et al., 2020). The recent structure of Tof1, the yeast homologue of
Timeless, in complex with CMG revealed that it binds ahead of
the replisome, positioning it in an ideal location to detect G4s in
the unwound parental duplex (Baretić et al., 2020). Importantly,
G4s can adopt many different conformations and therefore these
two mechanisms may favor different subsets of these.

SUMMARY

Aided by advances in biochemical systems, structural approaches,
and single-molecule techniques, our understanding of the
architecture of the replisome during unperturbed progression,
the response of the replisome to impediments, and the DDT
mechanisms employed to overcome these has increased greatly
over recent years. In particular, these studies have revealed that
DDT mechanisms function not only to relieve polymerase stalling,
but also to maintain CMG translocation in the presence of
obstacles previously thought to pose a complete block to
template unwinding. Here, the combined action of transient
opening of the MCM ring, unwinding of the parental duplex by
accessory helicases, and recoupling of the nascent leading strand by
classic DDT mechanisms has expanded the range of obstacles
considered able to be tolerated by the replisome (Sparks et al., 2019;
Wasserman et al., 2019; González-Acosta et al., 2020; Sato et al.,
2020, preprint). Meanwhile, the chronology of pathway choice for
recoupling leading strand replication is beginning to be deciphered.
Recruitment of Pol δ to the leading strand appears to be the
primary mechanism of recoupling (Guilliam and Yeeles, 2020b,
2021). When Pol δ is unable to fulfill this role, on the fly TLS is
triggered by PCNA monoubiquitination and/or Rev1 recruitment

to prevent prolonged uncoupling (Guilliam and Yeeles, 2020b). At
bulkier impediments, or when TLS is inactivated, repriming and
fork reversal compete to restore canonical replisome progression
(Benureau et al., 2020, preprint; Quinet et al., 2020). In the case of
repriming, the resulting ssDNA gaps can be filled in by
postreplicative TLS or template switching, as will always occur
on the lagging strand.

Many of these mechanisms offer potential targets for future
chemotherapeutics. In particular, the role of TLS in both
chemoresistance and mutagenesis has made TLS inhibitors a
potentially promising future anti-cancer tool (Nayak et al., 2021).
Further advances in biochemistry and structural biology will be
key to fully understanding the mechanisms for maintaining
replisome progression and how these can be exploited for
disease treatment.
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