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expression programs favoring SARS-CoV-2 entry

and severity
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Patients with chronic lung disease (CLD) have an increased risk for severe coronavirus
disease-19 (COVID-19) and poor outcomes. Here, we analyze the transcriptomes of
611,398 single cells isolated from healthy and CLD lungs to identify molecular characteristics
of lung cells that may account for worse COVID-19 outcomes in patients with chronic lung
diseases. We observe a similar cellular distribution and relative expression of SARS-CoV-2
entry factors in control and CLD lungs. CLD AT2 cells express higher levels of genes linked
directly to the efficiency of viral replication and the innate immune response. Additionally, we
identify basal differences in inflammatory gene expression programs that highlight how CLD
alters the inflammatory microenvironment encountered upon viral exposure to the peripheral
lung. Our study indicates that CLD is accompanied by changes in cell-type-specific gene
expression programs that prime the lung epithelium for and influence the innate and adaptive
immune responses to SARS-CoV-2 infection.
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n December 2019, a respiratory disease associated with a novel

coronavirus emerged in Wuhan, China!=3. The syndrome,

now called COVID-19, was caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) and has since rapidly
spread worldwide®. As of May 18, 2021, a total of over 163
million confirmed COVID-19 cases and more than 3.3 million
deaths have been reported around the globe.

The clinical manifestations of SARS-CoV-2 infection range from
asymptomatic to fulminant cases of acute respiratory distress syn-
drome (ARDS) and life-threatening multi-system organ failure.
Development of ARDS in patients with SARS-CoV-2 dramatically
increases the risk of ICU admission and death®-12. Risk factors for
severe SARS-CoV-2 include age, smoking status, ethnicity and male
sex!3-15 Baseline comorbidities including hypertension, diabetes
and  obesity, increase SARS-CoV-2  susceptibility —and
severity»1016-19 Tn addition, chronic lung disease (CLD) has been
identified as a risk factor for hospitalization and mortality in
patients with COVID-1920-27, Patients with chronic obstructive
pulmonary disease (COPD) and interstitial lung disease (ILDs),
especially Idiopathic Pulmonary Fibrosis (IPF), have a significantly
higher COVID-19 mortality rate compared to patients without
chronic lung disease?8. However, the molecular mechanisms
underlying the increased risk of SARS-CoV-2 severity and mortality
in patients with pre-existing lung diseases are not well understood.

In this work, we performed an integrated analysis of four lung
single cell RNA-sequencing (scRNA-seq) datasets?®~32 in addi-
tion to unpublished data, together including 78 control and 132
CLD samples (n =31 COPD, 82 IPF and 19 other ILDs), to
investigate the molecular basis of SARS-CoV-2 severity and
mortality risk in CLD patients. We found that CLD is associated
with baseline changes in cell-type specific expression of genes
related to viral replication and the immune response, as well as
evidence of immune exhaustion and altered inflammatory gene
expression. Together, these data provide a molecular framework
underlying the increased risk of SARS-CoV-2 severity and poor
outcomes in patients with certain pre-existing CLD.

Results

Integrated analysis of lung single cell RNA sequencing data-
sets. To determine why COVID-19 patients with CLD have a
higher risk of severe infection and poorer outcomes, we per-
formed an integrated analysis on four published scRNA-seq lung
datasets: Northwestern (biopsy deemed representative of
explanted lung), Pittsburgh and VUMC/TGen (biopsy of apical
and basal region of explanted lung) and Yale/BWH (longitudinal
biopsy through explanted lung) (Supplementary Table 1a), in
addition to previously unpublished samples (VUMC/TGen). We
analyzed the transcriptomes from 611,398 single cells derived
from healthy donors (78 samples), COPD (31 samples), IPF
(82 samples) and Non-IPF ILD (Other ILD, 19 samples) (Sup-
plementary Table 1b, 2). Using published cell type specific
markers3!-32, we identified 32 distinct cell types in the dataset
(Supplementary Fig. 1). Overall, we observed similar cell type
proportions between the different datasets and diagnosis groups
(Supplementary Table 3, Supplementary Fig. 2), with the excep-
tion of high AT2 cell numbers in the Northwestern dataset, as
expected due to the protocol favoring isolation of AT2 and
macrophages (personal communication). Despite the variation in
sample collection and processing at different research institutes,
the similarity in cell type composition per dataset indicated the
compatibility of samples and that no major sampling bias would
confound an integrated analysis.

Expression profile of SARS-CoV-2 associated receptors and
factors in the diseased lung. SARS-CoV-2 utilizes the host ACE2,

and other putative factors such as BSG, NRP1 and HSPAS5, as
entry receptors and TMPRSS2, CTSL or FURIN as priming pro-
teases to facilitate cellular entry33-40. Consistent with prior
reports analyzing normal lung tissue333441, ACE2 and TMPRSS2
are expressed predominantly in epithelial cell types (Fig. la),
while other putative SARS-CoV-2 entry receptors (BSG, NRPI,
HSPAS5) and priming proteases (CTSL, FURIN) have substantially
more widespread expression in nearly all cell types (Supple-
mentary Fig. 3). The total number and proportion of ACE2+
cells are highest in pericytes, type 2 alveolar cells (AT2) and
secretory cells, while TMPRSS2 is widely expressed in all epithelial
cell types. There were no significant differences in the proportion
of ACE+ cells in any cell-type in CLD versus control groups
(Fig. 1b). The proportion of TMPRSS2 + AT?2 cells is decreased in
IPF lungs while TMPRSS2 4+ AT1 and Transitional AT2 cells are
higher in all CLD samples; and TMPRSS2+ SCGB3A2
+/SCGBIA+ club cells are in significantly higher numbers in
COPD patients compared to controls (Fig. 1¢c). The putative entry
factor NRPI is expressed in more pDCs, myofibroblasts and
HAS1 high fibroblasts in CLD samples compared to control
(Supplementary Fig. 3).

Next, we compared the number of double positive cells, i.e.,
cells co-expressing a receptor and priming protease, in control
and CLD samples. A notable fraction of cells co-expresses all
established and putative entry receptors (ACE2, BSG, NRPI,
HSPA5) and proteases (TMPRSS2, CTSL, FURIN); AT2 cells
comprised nearly half of all such cells (43.3%) (Fig. 1d,
Supplementary Fig. 4). While the percentage of cells co-
expressingACE2 and priming proteases (TMPRSS2, CTSL,
FURIN) was similar across disease subtypes, there was a
significantly higher number of cells co-expressingACE2 and
FURIN in the COPD AT2 and Transitional AT2 cells (Fig. le,
Supplementary Fig. 4). We detected significant differences in the
number of cells co-expressingBSG, NRP1, HSPA5 with a priming
protease in CLD samples in multiple cell types (Fig. 1f,
Supplementary Fig. 4).

To examine whether CLD patients express higher levels of
SARS-CoV-2 receptors and priming proteases, we performed
differential expression analysis of those genes in the CLD versus
control samples. The two major SARS-CoV-2 cellular entry
factors, ACE2 and TMPRSS2, have similar expression profiles in
the disease and control samples. ACE2 expression is relatively low
in all cell types and there were no significant differences in ACE2
expression in CLD groups compared to control (Supplementary
Fig. 5). The putative alternative receptor NRPI, recently
confirmed as another host entry factor for SARS-CoV-232, is
slightly up-regulated in the COPD macrophages, but down-
regulated in both IPF and Other-ILD macrophages (Supplemen-
tary Fig. 6). TMPRSS2 expression is high in ATI, AT2,
Transitional AT2, PNEC/ionocytes and club cells (Fig. 2b,
Supplementary Fig. 5) and is slightly upregulated in the AT2
COPD samples (log2FC =0.28, g value 0.04) (Supplementary
Dataset 3), in contrast to a recent publication demonstrating
decreased TMPRSS2 expression in severe COPD#2, Two alter-
native priming proteases (CTSL and FURIN) are expressed at low
level and show no significant differences in expression between
control and disease samples (Fig. 2b, Supplementary Fig. 5).
However, the SARS-CoV-2 entry gene score (calculated on the
average expression levels of all SARS-CoV-2 entry factors over a
random control gene set) is significantly increased in the CLD
samples in many epithelial cell types, including AT1, AT2, Basal,
Club cells, and KRT5-/KRT17 + cells, an ECM-producing epithe-
lial cell type enriched in the fibrotic lung3132 (Fig. 2c,
Supplementary Fig. 8a, b). Together, these data suggest CLD is
associated with modest changes in expression of established
SARS-CoV-2 entry factors, and alternative mechanisms are likely
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Fig. 1 Percentage of cells expressing SARS-CoV-2 receptor genes in lung cell types in different diagnosis subgroups. a Percentage of cells expressing

ACE2 and TMPRSS2 in all cell types. Numbers are the total number of ACE2 +

or TMPRSS2 + cells in each cell type in the dataset. b, ¢ Percentage of cells

expressing ACE2 (b) and TMPRSS2 (¢) in each diagnosis group in the epithelial cell types. d Venn diagram shows overlapping of cells co-expressing the
proposed receptors (ACE2, BSG and NRPT) and the protease TMPRSS2. e, f Percentage of cells co-expressing receptors and TMPRSS2 split by cell type and
diagnosis group. Plots were generated with mean values of percentage of cells per individual samples, and data are presented as mean values + SEM.
Significant differences between diagnosis groups were calculated using Tukey_HSD test, p value < 0.05: *p value < 0.01: **p value < 0.001: ***p value <

0.0001: ****,

additionally responsible for observed differences in outcome
severity.

Dysregulation of viral infection and innate immune response
genes in disease epithelial cells. Given the relatively modest
differences in SARS-CoV-2 entry factors in epithelial cells
between CLD and control lungs (Fig. 2b, Supplementary Figs. 5,
6), we hypothesized that rather than greatly increased cellular
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susceptibility to SARS-CoV-2 infection, patients with CLD are
predisposed to severe lung injury due to underlying differences in
epithelial gene expression in key pathways mediating the antiviral
response. Focusing on the epithelial cell population (a total of
143,114 cells), we selectively examined genes that have been
demonstrated in the SARS, MERS and rapidly expanding
COVID-19 literature to impact viral pathogenesis. We noted that
many of these genes are significantly dysregulated (Bonferroni
adjusted p-value, FDR,<0.1) in several epithelial cell types
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(Fig. 2a). Included are genes thought to directly impact viral
replication (TMPRSS2, NPR1, CTSB), interferon stimulated genes
(ISGs) thought to be involved in restricting viral entry and
replication (LYGE, SPATS2L)*3, and key regulators of the host
viral response including cytokine and inflammatory response
genes (IFN type I and type II receptors, SOCS1/2, CCL2, CD47)
(Fig. 2a, Supplementary Fig. 8¢, d). In addition, the complement
pathway gene C3, an important component of the innate immune
response and previously found to be elevated in SARS patients*4,
and autophagy (FGG, FGA, PTPNI1) genes are also significantly
dysregulated in many CLD epithelial cells; these pathways are
important for propagating viral infection and the host
response?>~47. Among the epithelial cell types, AT2 cells have the
largest number of significantly dysregulated genes in CLD com-
pared to control samples (Fig. 2a). These data suggest that there
are basal differences in the expression profiles of genes regulating
viral infection and the immune response in diseased epithelial
cells, in particular in AT2 cells, and that this epithelial “priming”
may contribute to COVID-19 severity and poor outcomes.

Elevated ACE2 protein expression level in the small airways in
IPF lungs. To further study the expression of the major SARS-
CoV-2 entry factor ACE2 in the fibrotic lungs, we examined
protein levels of ACE2 in different lung regions using the anti-
ACE2 ab108252 antibody (Supplementary Fig. 9a). In agreement
with the transcript quantification above and previous immuno-
histology analysis*8, we detected overall low expression level of
ACE2 across all tissue types in both IPF (Fig. 2d-f) and control
lung sections (Supplementary Fig. 9b, c). Semi-quantitative eva-
luation of ACE2 expression scoring showed elevated ACE2
expression in all IPF sections compared to control, reaching sta-
tistical significance in the IPF small airway sections (Fig. 2j),
suggesting that while overall ACE2 expression is low, there is a
regional concentration of ACE2 + cells within the distal IPF lung
that may promote a more severe localized viral response. Upre-
gulation of the epithelial integrin alpha-V beta-6 (avp6) plays an
important role in enhanced fibrosis in response to lung injury*’,
and enhances TGFP activation which can suppress type I inter-
feron responses from alveolar macrophages increasing suscept-
ibility to viral infection®). We detected a significant increase of
avp6 integrin expression in all lung sections isolated from IPF
patients (Fig. 2g-i). While there was additional positive staining in
the peripheral lung, av6 expression is highest in the AT2 epi-
thelial cells in the IPF samples compared to overall low expression
level in the normal lung sections (Supplementary Fig. 9b, c),
mirroring the expression data of ITGB6 described below (Fig. 3b).

CLD specific ACE2+ transcriptional profiles in AT2 cells. In
the distal lung, AT2 cells have been proposed to be the primary
targets of SARS-CoV-2344151 and comprise the initial micro-
environment the virus encounters. Thus, we examined the gene
expression profile of CLD AT2 cells in more detail. As described
above, AT2 cells in all diagnosis subgroups have significantly
higher SARS-CoV-2 entry gene scores than control cells (Fig. 2c).
In addition, CLD AT2 cells express higher levels of many genes
related to viral infection and innate immune responses than any
epithelial cell type (Fig. 2a). COPD and Other-ILD, but not IPF,
AT?2 cells express higher levels of CSF3, an important cytokine in
the regulation of granulocytes, and the suppressor of cytokine
signaling-2 (SOCS2) (Fig. 3b). The epithelial integrin ITGBS6,
involved in wound healing and pathogenic fibrosis®?, is upregu-
lated in COPD and IPF AT2 cells; the ISG lymphocyte antigen 6
complex (LY6E), known to restrict SARS-CoV-2 entry*3>3, is
upregulated in the IPF and Other-ILD AT2 cells (Fig. 3b, Sup-
plementary Fig. 8e). Gene correlation analysis showed strong

positive correlation between TMPRSS2 and ACE2, NRPI in COPD
AT?2 cells (Fig. 3a, Supplementary Fig. 10). NRPI expression is also
positively correlated with the protease FURIN in the AT2 cells
isolated from IPF samples (Supplementary Fig. 10c).

Since ACE2 is the best-establishedSARS-CoV-2 entry factor, and
AT?2 cells accounted for 54.63% of all ACE2 + epithelial cells, we
focused on the transcriptional profile of ACE2+ AT2 cells. All of
the 34 differentially expressed genes (FDR<0.1) in ACE2+ AT2
cells between CLD and control overlapped with the ACE2- cells
CLD vs. control analysis (Fig. 3c), suggesting that these genes
reflected the disease state and were not related to ACE2 expression.
However, when we performed the same differential expression
analysis on ACE2 + vs. ACE2- CLD cells, we identified 20 unique
genes that were dysregulated in CLD ACE2+cells (Fig. 3c,
Supplementary Table 4). Among these 20 genes, the tumor
suppressor DMBT]I, a glycoprotein that has been shown previously
to be highly expressed in ACE2+ AT2 cells®* and can bind to
SARS-CoV-2 spike proteins®, and the cartilage acidic protein 1
(CRTACI), previously known to be downregulated significantly in
COVID-19 patients with severe infection®®, were upregulated in
ACE2 + compared to ACE2- AT2 CLD cells (Fig. 3d).

Next, we sought to identify ACE2 correlated genes in the ACE2
+ AT2 cells in different disease groups; thus, identifying the
immediate cellular environment SARS-CoV-2 encounters upon
infecting a host. We performed Spearman correlation analysis
with Benjamini-Hochberg adjusted p values and identified
distinct gene profiles significantly correlated with ACE2 for each
disease group (Fig. 3c, e). There were only two ACE2 correlated
genes in the Control samples with a cutoff of 99th percentile
Spearman rho values and q value less than 0.03, none of those
genes are associated with the immune response. In the disease
samples, we identified 706 genes (COPD: 330 genes, IPF: 108
genes and Other-ILD: 268 genes) with significant correlation to
ACE2 (99th percentile rho values, g value less than 0.03)
(Supplementary Dataset 4). ACE2 correlated genes are involved
in various cellular processes, including viral processes (Supple-
mentary Table 5). Many ACE2-correlated genes in the disease
samples are associated with the innate and antiviral immune
response. In the COPD samples, genes with strong correlation
coefficients with ACE2 include several interferon-induced genes
(IF16, IFIT1, IFIT2), a modulator of innate immune function
(OASI), the chemokine receptor ACKR4, a gene associated with
West Nile viral infection (OASL), and the ECM regulated
transcription factor SOX9. In the IPF samples, ACE2 expression
is strongly correlated with the nuclear factor NXF3, the
transcription factor SP4, the antiviral factor TRIMI11I, and the
Forkhead Box Q1 (FOXQI). In other ILD diseases (non-IPF
related), the integrin ITGBS, a member of the TNF receptor
family (TNFRSF11B), an important component of the immune
response system (NOD2) and an innate immune pathway
component (ITLNI) are among the genes with high correlation
with ACE2. The transcription factor FOXQI was identified
among the 20 unique transcription factors specific for SARS-
CoV-2 in a recent in silico study®’, while OASI was among the
top 50 genes with a significant correlation coefficient with ACE2
in a previous study>3. The presence of immune-associated genes
in these gene correlation profiles suggests that in patients with
CLD, ACE2+ AT?2 cells are conditioned and primed to express
these genes to cope with viral infection.

Baseline differences in inflammatory response programs in
chronic lung disease. Recent publications have suggested that
immune dysregulation, including sustained cytokine production
and hyper-inflammation, is associated with SARS-CoV-2
severity>®-1. We performed an in-depth examination of the
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Fig. 3 CLD AT2 cells exhibit baseline differences in gene expression profile coping with viral infection. a Significant gene expression correlation in AT2
cells between TMPRSS2 and ACE2, BSG (CD147) and NPR1 in COPD and IPF samples, each dot represents the average expression level of the genes of
interest per sample, pairwise gene correlation analysis was done using a fitting linear model and p value was calculated using Anova. b Boxplot shows
differences in gene expression of selected SARS-CoV-2 response genes in the AT2 cell types among different diagnosis groups, Boxes: interquartile range,
lower and upper hinges correspond to the first and third quantiles, upper and lower whisker extends from the hinge to the largest values or smallest values
of 1.5 x interquartile range; **p value-adj < 0.05 (negative binomial test, corrected for Age, Ethnicity, Smoking_status and Dataset). ¢ Upset plot shows
shared differential expression genes (DEGs) between different comparisons: ACE2— CLD vs. Control, ACE2 + CLD vs. Control, CLD ACE2 + vs. ACE2-,

Control ACE2 + vs. ACE2- and ACE2 correlated genes in the AT2 cells. d Upregulation of two genes uniquely differentially expressed in the CLD ACE2 + vs.
ACE2—. e Spearman gene correlation analysis identified genes correlated with ACE2 expression in AT2 ACE2 + cells in different diagnosis groups, p-value

was adjusted using Benjamini-Hochberg corrections, dashed lines indicate the 99th percentile of Spearman rho values.

immune cell population to determine whether preexisting
immune dysregulation in chronic lung disease patients could
contribute to SARS-CoV-2 severity and mortality. We analyzed a
total of 421,059 cells from 12 immune cell types (Supplementary
Table 3, Supplementary Fig. 1) and found significant increases in
the proportion of CD4 T Cells, CD8 T Cells, cDCs and NK cells
in the disease groups, most notably in COPD samples (Fig. 4a).
Similar to Fig. 2a, we examined the expression of SARS-CoV-2
and cellular immune response genes in the CLD immune cells.
Several genes related to SARS-CoV-2 entry (CTSL, CTSB,
ADAM]17) and components of the Interferon and IL6 pathways
are significantly dysregulated in the CLD Macrophages and cDCs
(Fig. 4b). Moreover, many immune cells isolated from CLD
samples showed elevated levels of genes in the major

6

histocompatibility complex (MHC) class II genes (HLA type II
genes) (Fig. 4b). HLA type II gene module score increased across
all disease groups but especially in the Other-ILD samples,
compared to controls (Fig. 4d). Type I IFN response (IFNa score)
is slightly elevated in the diseased macrophages and pDCs
(Supplementary Fig. 11a). IL6-associated tocilizumab responsive
genes (IL6 score) are expressed at a higher level in the disease
groups IPF and Other-ILD, but lower in the COPD samples
(Supplementary Fig. 11b). Previous studies demonstrated elevated
exhaustion levels in CD8 T cells in severely affected COVID-19
patients®263, All CLD T cells have higher expression levels of
cytotoxicity and exhaustion genes compared to controls (Fig. 4e,
f). These perturbations in the T Cell population of CLD lungs
may diminish the host immune response to viral infection,
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leading to a higher risk of severe disease and poor outcomes in
response to SARS-CoV-2 infection.

To further investigate differences in immune cell type-specific
gene expression profiles, we examined expression levels of genes
associated with viral infection in disease versus control samples.
Amphiregulin (AREG), a ligand for epidermal growth factor
receptor, is known to have essential roles in wound repair and
inflammation resolution; furthermore, upregulation of AREG is
associated with viral infections of the lung®. In COVID-19
patients, AREG is significantly upregulated in PBMCs®°, mono-
cytes, CD4 T Cells, NK cells, neutrophils, and DCs®!, suggesting
that upregulation of AREG may be an attempt to ameliorate the
severe injury induced by SARS-CoV-2 infection. We observed
reduced expression of AREG in the cDCs and macrophages, but
not in the monocytes, in the CLD samples (Fig. 4c, Supplemen-
tary Dataset 3, Supplementary Fig. 12). SOCSI, a suppressor of
cytokine signaling, was shown to reduce the type I IFN antiviral
response in bronchial epithelial cells after influenza infection®-67,

Expression of the S100A8/A9, members of the S100 family, and
the IL6 co-receptorIL6ST was elevated in COVID-19
patients®8-70. In our study, SI00A8/A9 expression is lower in
the disease samples in ¢cDCs, macrophages and monocytes while
SOCSI expression is elevated in Other-ILD samples in NK Cells
and pDCs (Fig. 4c, Supplementary Dataset 3). IL6ST expression
level is elevated significantly in COPD and IPF but reduced
dramatically in Other-ILD samples in macrophages (log2FC =
—2.75, q value = 1.63e-61) (Fig. 4c, Supplementary Dataset 3).
These basal differences in inflammatory gene expression
programs highlight how chronic lung disease alters the
inflammatory microenvironment encountered upon viral expo-
sure to the peripheral lung.

Discussion
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has
affected tens of millions of individuals around the globe in just
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the first nine months of 2020. Patients with CLD have an
increased risk for severe SARS-CoV-2 infection: COPD patients
have a five-fold increased risk of severe COVID-1923-2471-73 and
ILD patients have up to a four-fold increased odds of death from
COVID-192874, Here, we performed an integrated transcriptomic
analysis of scRNA-seq data from healthy and CLD patients to
identify potential molecular causative factors determining SARS-
CoV-2 severity. To summarize the results (Fig. 5): (1) ACE2 and
TMPRSS2 are expressed predominantly in epithelial cells and
there are no significant differences in the number of ACE2 + cells
in all cell types in disease compared to control samples; (2) a viral
entry score including multiple entry factors is increased in cells
isolated from diseased lungs; (3) CLD epithelial cells, especially
AT?2 cells, exhibit pre-existing dysregulation of genes involved in
viral infection and the immune response; (4) ACE2 protein levels
are elevated in the IPF small airway sections; (5) the CLD ACE2
+ cells differentially express genes related to SARS-CoV-2
infection compared to CLD ACE2- AT2 cells; (6) a unique
ACE2 correlated gene profile for each diagnosis group included
antiviral and immune regulatory genes; (7) there are baseline
differences in the cellular immune population in disease com-
pared to control samples.

Similar to other coronaviruses, SARS-CoV-2 utilizes cellular
receptors (ACE2 and putatively, BSG, NRP1 and HSPA5 gene
products) and priming proteases (TMPRSS2, CTSL, FURIN), for
viral entry. These factors are expressed predominantly in the
upper and lower airways, with ACE2 being expressed highly in
nasal goblet and ciliated cells and in a subset of AT2 cells and the
absorptive enterocytes in the gut3334414851 We observed a
similar expression pattern of ACE2 in our dataset, with AT2 cells
having the highest number ACE2+ cells. To our knowledge,

publications investigating baseline expression of these SARS-
CoV-2 entry factors in lung disease have been limited to asthma
and COPD with variable results. For example, studies in asthma
patients showed elevated expression of ACE2, TMPRSS2, and
FURIN in patients with severe but not mild-moderate
asthma’>7. Leung et al. performed bulk RNAseq and immuno-
histochemical staining on bronchial epithelial cells and showed
significantly elevated expression levels of ACE2 and ACE2 protein
in the small airways of COPD patients compared to control’’.
Another study on bronchoscopically isolated tissue showed no
relationship between disease status (mild to moderate asthma or
COPD) on the expression levels of all SARS-CoV-2 entry
factors2. Our study utilized scRNAseq technology to study gene
expression at a very granular level and did not identify increased
ACE?2 expression at the single-cell level in CLD, including COPD.
However, in the IPF lung, there was a regional concentration of
ACE2 + cells in the small airways upon immunohistochemical
examination (Fig. 3a, g), similar to the findings of Leung et al.”’.
While the overall frequency of ACE2+ cells and the ACE2
expression level may be low, changes in the proportional cellular
makeup of the diseased lung epithelium may lead to a propor-
tionate increase in ACE2 + “infectable” cells in the distal lung.
Importantly, IPF lungs exhibit abnormal expansion of epithelial
cell programs, specifically the presence of more proximal specific
cell types in the distal lungs32. Thus, our data along with
previously published studies together suggest that while overall
differences in ACE2 expression and other entry factors may be
minimal in CLD, the localization of susceptible cells in the distal
lung may promote disease pathogenesis and severity. However, it
seems clear that viral entry alone cannot explain the variation in
disease severity between patients with and without CLD. In a
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COVID-19 autopsy study, Dolorey et al. found that in these
patients who succumbed to complications of infection, SARS-
CoV-2 RNA +cells in the lung were largely in the myeloid
lineage and did not overlap with entry factor expression’S. Thus,
once the infection has become established and significant cellular
injury has taken place, viral entry factor expression may no longer
be essential to continued propagation of injury.

A balanced immune response is crucial to viral clearance and
avoidance of excessive injury to the host, as evidenced by poor
outcomes related both to immunosuppression as well as hyper-
inflammation in COVID-19 patients’>. COPD patients with
severe COVID-19 had elevated serum levels of various inflam-
matory cytokines including IL-2R, IL-6, IL-8, IL-10, and TNF-a
suggesting there may be global alterations in the immune
response?’. We observed that COPD AT?2 cells expressed elevated
levels of immune-response related genes (CSF3, ITGB6, SOCS2).
G-CSF (encoded by CSF3) is found at high levels in patients with
severe COVID-19 and thought to play a role in the hyperin-
flammatory syndrome while SOCS2 is part of a negative feedback
system that regulates the response to cytokines®081. ACE2 cor-
related genes in this cell population were enriched for regulators
of the immune response (Fig. 2e), with several of these genes
found to be upregulated in alveolosphere cultures infected with
SARS-CoV-2%¢, In addition to alterations in the cytokine
microenvironment, changes in cellular immune populations were
also identified in the COPD samples, dysregulation of several
genes in inflaimmatory pathways (AREG, IL6ST, SI00A8/AY,
SOCS1), and high levels of cytotoxic and exhaustion-related genes
in CD4 and CD8 T Cells from COPD lungs. Expression of
cytotoxic and exhaustion genes was increased compared to con-
trols but similar in IPF and Other-ILD immune cell types.
Together, our data suggest that the immune microenvironment at
both the molecular and cellular level in the fibrotic and COPD
lung is dysregulated and may promote severe infection and poor
outcomes in COVID-19.

One limitation of our study is that we focus mainly on the
peripheral regions of the lungs, and do not analyze cells in the
upper airways or trachea. It is possible that there are significant
differences in SARS-CoV-2 entry gene expression between disease
and control samples in the more proximal regions of the lungs.
Our study is also limited to the expression profiles of patients
with CLD without SARS-CoV-2 infection, as samples from
patients who are both infected with SARS-CoV-2 and have
chronic lung disease are difficult to collect at present. In addition,
scRNA-seq is inherently limited to analyses of gene expression
which does not always correlate with protein levels. The net effect
of many changes in gene expression levels is also difficult to
predict and requires determination in experimental models. For
example, our analysis demonstrated increased expression of viral
entry restriction factors concurrently with an increased viral entry
gene score in diseased epithelial cells. Furthermore, scRNA-seq
cannot determine spatial relationships which would preclude
analysis of cellular behaviors influenced by neighboring cells such
as the priming of the viral spike protein by adjacent protease
positive cells®2. Nevertheless, given the inherent limitations in
studying human biology, our study highlights crucial areas for
future research into the pathogenesis of COVID-19 in patients
with CLD including the dysregulation of genes related to viral
replication and the innate immune response in epithelial cells,
and basal differences in inflammatory cell gene expression
programs.

Methods

scRNA-seq samples. scRNA-seq data were obtained from published data with
samples in the “VUMC/TGen” dataset from Habermann et al.32 (GEO accession
GSE135893), samples in the “Yale/BWH?” dataset came from Adams et al.3! (GEO

accession number GSE136831), samples in the “Pittsburgh” dataset from Morse
et al.30 (GEO accession GSE128033) and samples in the “Northwestern” dataset
from Reyfman et al.2? (GEO accession GSE122960) (Supplementary Tables 1, 2).
For specific IRB review of each dataset, please refer to the original paper cited here.
In addition, there are 39 unpublished scRNA-seq samples in the “VUMC/TGen”
dataset that were collected under Vanderbilt IRB #s 060165, 171657 and Western
IRB # 20181836.

scRNA-seq data processing. Seurat v4.0 package®? was used to process the
scRNA-seq data. Specifically, for the Pittsburgh, Northwestern datasets and 39
unpublished samples from the VUMC/TGen, the CellRanger (10X Genomics)
output files were read into Seurat using the function Readl0X, the remaining
datasets were already in Seurat format and were loaded using the function
readRDS. To eliminate low-quality/dying cells or empty droplets, we removed any
cells containing fewer than 1000 genes or more than 25% mitochondrial genes. Due
to the large size of the joint dataset, we performed SCTransform®* for normal-
ization and scaling of each dataset separately, split into four major cell populations
using known markers: EPCAM + (Epithelial), PECAMI 4 PTPRC - (Endothelial),
PTPRC + (Immune) and EPCAM- PECAM- PTPRC- (Mesenchymal). Each
population from the four datasets was then merged together to generate four
merged Seurat objects (Endothelial, Epithelial, Inmune and Mesenchymal). Next,
each object was SCTransformed with “dataset” being used as batch_var to elim-
inate batch effects between datasets. Cell clustering was performed using the Seurat
function FindNeighbors and FindClusters and cell type annotation was manually
performed on each object using known cell-type specific markers (Supplementary
Fig. 132). For each cell population, cell type annotation was performed at four
levels, ranging from the most general to more granular annotation. Cells expressing
more than one cell type specific marker were identified as doublets. After removing
doublet cells, all four population datasets were merged to generate the final ILD
object containing a total of 611,398 cells and 32 distinct cell types (Supplementary
Table 3, Supplementary Fig. 1).

Integrated analysis of joint dataset. To calculate the percentage of single positive
or double positive cells for ACE2 and other cofactors, we counted the number of
cells with >0 transcripts of corresponding genes. For double positive, cells have >0
transcripts of both genes of interest.

To assess the expression profile of SARS-CoV-2 mediators (ACE2, BSG, NRP1,
HSPAS5), the corresponding proteases (TMPRSS2, CTSL, FURIN) and other
candidate genes involved in SARS-CoV-2 infection in different chronic lung
disease subset (COPD, IPF or Other-ILD), we ran the function FindMarkers in
Seurat package using the negative binomial test. Using Seurat function
CellCycleScoring, we calculated the cell cycle state across all epithelial cells to
ensure the cell cycle is not a factor contributing to the differential expression
analysis (Supplementary Fig. 7). To account for batch effects, we used the
parameter “latent_vars” to incorporate the four variables (Age, Ethnicity, Smoking
status and Dataset) into the negative binomial model. For the binary heatmap, the
differential expression analysis was performed between the Disease (including all
chronic disease subset) and Control samples. Then, log,fold-change was converted
into 0 (downregulated in the disease samples) or 1 (upregulated in the disease
samples) regardless of the Bonferroni adjusted p values. Heatmaps were generated
from the adjusted log,FC values using the heatmap.2 function of the gplots R
package$”. For the boxplots, count numbers of selected genes were plotted using
the geom_boxplot and geom_jitter function of the ggplot2 R package®®.

Gene module score. To calculate the combined expression of genes, we used the
AddModuleScore in Seurat v3.1.5 package. SARS-CoV-2 entry gene scores were
calculated on SARS-CoV-2 receptors and mediators: ACE2, BSG (CD147), NRP1I,
HSPA5(GRP78), TMPRSS2, CTSL, FURIN and ADAM]17. Viral entry restriction
ISGs: LYGE, CLEC4D, UBD, ELF1, FAM46C, REC8%. Viral replication inhibition
ISGs: SPATS2L, ZBP1, DNAJC6, IFIT3, RGS22, IFIT1, IFIT5, BAGALT5%. HLA
type II score includes HLA-DRA, HLA-DQAI, HLA-DQA2, HLA-DPAI, HLA-
DRBI, HLA-DPBI, HLA-DQB2, HLA-DRB5, HLA-DQBI, HLA-DMA, HLA-DMB.
IFN score includes ISG15, IFI44, IFI27, CXCL10, RSAD2, IFIT1, IFI44L, CCLS,
XAFI1, GBPI1, IRF7, CEACAMI. IL6 scores were calculated on six tocilizumab
responsive genes: ARID5A, SOCS3, PIM1, BCL3, BATF, MYC that are associated
with the IL-6 pathway®!. Cytotoxicity associated genes include PRF1, GZMH,
IFNG, NKG7, KLRGI, PRF1°! and GNLY, GZMB, GZMK®’. Exhaustion gene set:
LAG3, TIGIT, PDCDI, CTLA4, HAVCR2, TOX®3, and PRDM1, MAFS!. Significant
differences between different groups were calculated using the Tukey_HSD statistic
test in the R package rstatix with a confidence level of 0.95 (Supplementary
Dataset 2).

Gene correlation analysis. To identify genes that correlate with ACE2 in the AT2
ACE2 + cells, we performed Spearman correlation coefficient analysis on the log-
transformed and normalized data using the function cor.test in the R stats v3.6.1
package with Benjamini-Hochberg corrections for p-adjusted values. Gene ontology
analysis for the significant correlated genes (p value <0.03 and 99th percentile rho)
was performed with the Bioconductor R package TopGO version 2.42 and the
Bioconductor annotation data package org.Hs.eg.db version 3.12.0;
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Kolmogorov-Smirnov (KS) statistic method with TopGO default algorithm
weight01 test was used for GO term enrichment test®8, and Benjamini Hochberg
(BH) adjusted p values (g values or FDR) were computed using the R function p.adj.

Immunohistochemistry of ACE2 and anti-avf6 integrin. Formalin-fixed par-
affin-embedded histological sections of human lung were cut at 5-microns and
dewaxed in xylene prior to rehydration in decreasing concentrations of ethanol.
The tissue samples were obtained after informed consent and local ethics approval
(South East Scotland SAHSC Bioresource-reference number 06/S1101/41;
Brompton Node samples—reference number 15/SC/0101; Papworth Node Sam-
ples; non-diseased controls- reference number (Q)GM030404 and Nottingham
BRC samples- reference number 08/H0407/1). ITHC staining was performed using
the Novocastra Novolink™ Polymer Detection Systems kit (Code: RE7280-K, Leica,
Biosystems, Newcastle, UK) as previously described®®. Heat-induced citrate antigen
retrieval (pH 6.0) and pepsin antigen retrieval was performed for Rabbit mono-
clonal ACE2 (ab108252, EPR4435(2) Abcam, UK) and the anti-avP6 integrin
antibody (6.2A1; Biogen, Cambridge, MA, USA), respectively. Rabbit monoclonal
ACE2 (1:400) and anti-avf6 integrin (1:3000) was diluted in Leica antibody diluent
(RE AR9352, Leica, Biosystems, UK) and incubated with the sections overnight at
4°C. Novolink DAB substrate buffer plus was used as the chromogen and the
slides were counterstained with Novolink haematoxylin for 6 min, dehydrated and
cover slipped. A negative control without the application of the primary antibody,
and was also used to ensure staining was only related to the presence of the
antibody.

The immunohistochemically stained slides were scanned using a ScanScope XT
Slide Scanner (Leica Aperio Technologies, Vista, CA, USA) under 20x objective
magnification (0.5 pm resolution) using Pannoramic Viewer (3DHISTECH Ltd
Budapest, Hungary) slide viewing software. Both the percentage of staining and
staining intensity of ACE2 expression in lung sections were individually assessed.
For ACE2 quantification, the following scoring system of five high-power fields at
X40. per tissue section were used:

The coding was performed prior to scoring/analysis as: 0- Negative; 1- 0-<10%;
2- 11-<25%; 3- <26%. Statistical analyses were completed using GraphPad Prism
7.0 (GraphPad Software, San Diego, CA, USA). One-way analysis of variance was
used for comparison of more than two datasets and significant differences between
diagnosis groups were calculated using the Tukey HSD test.

ACE2 western blot. Cell protein was isolated using Cell Lysis Buffer (Cell sig-
nalling, USA) supplemented with protease inhibitor cocktail (Sigma, USA) and the
quantification performed using BCA Protein Assay Kit (Thermofisher Scientific,
UK). Western blotting was performed using 4-12%, pre-cast Bis-Tris gradient gels
(Thermofisher Scientific, UK) and 25 ug of protein was loaded per lane. Immu-
noblots were incubated with anti-ACE2 (ab108252; Rabbit monoclonal-Abcam-
EPR4435(2)—1:500 dilution of stock antibody) diluted in 5% skim milk/Tris
buffered saline with 0.1% Tween-20 for overnight at 4 °C. A loading control of
GAPDH was also used to demonstrate protein loading (ab8245; Mouse
monoclonal-anti-GAPDH antibody [6C5] at 1:10000 dilution of stock antibody).
Following day immunoblots were incubated with an anti-mouse-HRP and anti-
rabbit-HRP conjugated secondary antibodies (Dako, USA) at 1:2500 for 1 hr at
room temperature. Visualization was performed with Clarity Max™ ECL Substrate
(Biorad, UK) on a Licor C-DiGit. For more information on the anti-ACE2 anti-
body, please refer to the manufacturer’s datasheet here: https://www.abcam.com/
ace2-antibody-epr44352-ab108252.html. Two replicates were performed for the
western blot.

Statistical analysis. Tukey Honest Significant Difference (Tukey_HSD) statistical
test from the R package rstatix with a confidence level of 0.95 was used to test
statistical dependence of cells expressing the SARS-CoV-2 mediators among
chronic disease subsets. Tukey_HSD test was also used to test significant difference
in gene expression module score, quantification of cell types and the ACE2 protein
expression quantification. Significant differences in gene expression were the
Bonferroni adjusted p-values calculated from the FindMarkers function between
Control and Disease groups (COPD, IPF, Other ILD) using the fitted negative
binomial model and latent_vars parameters as described above. Significance in
gene correlation analysis between ACE2 and other SARS-CoV-2 entry factors
(Fig. 3a and Supplementary Fig. 10) was calculated using Anova.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The majority of the data used in this manuscript are publicly available from published
papers: GEO accession “GSE135893732, GEO accession “GSE13683173!, GEO accession
“GSE128033730 and GEO accession “GSE1229607%°. The unpublished data from VUMC/
TGen (39 samples) are included in the supplementary data (Supplementary Dataset 1) as
a count matrix format containing all the genes being used in the manuscript. All other
relevant data supporting the key findings of this study are available within the article and
its Supplementary Information files or from the corresponding author upon reasonable

request. Source data are provided with this paper. A reporting summary for this article is
available as a Supplementary Information file. Source data are provided with this paper.

Code availability
The code for genomic analyses in this paper is available at https://github.com/tgen/
banovichlab/Disease_lung COVID19_2020/.

Received: 1 December 2020; Accepted: 4 June 2021;
Published online: 14 July 2021

References

1. Huang, C. et al. Clinical features of patients infected with 2019 novel
coronavirus in Wuhan, China. Lancet 395, 497-506 (2020).

2. Zhu, N. et al. A Novel Coronavirus from Patients with Pneumonia in China,
2019. N. Engl. J. Med. 382, 727-733 (2020).

3. Wang, C, Horby, P. W, Hayden, F. G. & Gao, G. F. A novel coronavirus
outbreak of global health concern. Lancet 395, 470-473 (2020).

4. Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of
probable bat origin. Nature 579, 270-273 (2020).

5. Home - Johns Hopkins Coronavirus resource center. https://coronavirus.jhu.
edu/.

6. Marini, J. J. & Gattinoni, L. Management of COVID-19 Respiratory Distress.
JAMA (2020) https://doi.org/10.1001/jama.2020.6825.

7. Murthy, S., Gomersall, C. D. & Fowler, R. A. Care for critically ill patients with
COVID-19. JAMA (2020) https://doi.org/10.1001/jama.2020.3633.

8. Bhatraju, P. K. et al. Covid-19 in critically ill patients in the seattle region—
case series. N. Engl. J. Med. 382, 2012-2022 (2020).

9. Wu, C. et al. Risk factors associated with acute respiratory distress syndrome
and death in patients with Coronavirus disease 2019 pneumonia in Wuhan,
China. JAMA Intern. Med. (2020) https://doi.org/10.1001/
jamainternmed.2020.0994.

10. Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients
with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395,
1054-1062 (2020).

11. Fan, E. et al. COVID-19-associated acute respiratory distress syndrome: is a
different approach to management warranted? Lancet Respir. Med. 8, 816-821
(2020).

12. Gattinoni, L. et al. COVID-19 does not lead to a “typical” acute respiratory
distress syndrome. Am. J. Respir. Crit. Care Med. 201, 1299-1300 (2020).

13. Zheng, Z. et al. Risk factors of critical & mortal COVID-19 cases: a systematic
literature review and meta-analysis. J. Infect. 81, e16-e25 (2020).

14. Williamson, E. J. et al. Factors associated with COVID-19-related death using
OpenSAFELY. Nature 584, 430-436 (2020).

15. Chen, L. et al. Risk factors for death in 1859 subjects with COVID-19.
Leukemia 34, 2173-2183 (2020).

16. Wortham, J. M. Characteristics of persons who died with COVID-19—United
States, February 12-May 18, 2020. Morb. Mortal. Wkly. Rep. 69, 923-

929 (2020).

17. Dowd, J. B. et al. Demographic science aids in understanding the spread
and fatality rates of COVID-19. Proc. Natl Acad. Sci. U.S.A. 117, 9696-9698
(2020).

18. Richardson, S. et al. Presenting characteristics, comorbidities, and outcomes
among 5700 patients hospitalized with COVID-19 in the New York City Area.
JAMA (2020) https://doi.org/10.1001/jama.2020.6775.

19. Feng, Y. et al. COVID-19 with different severities: a multicenter study of
clinical features.Am. J. Respir. Crit. Care Med. 201, 1380-1388 (2020).

20. CDC. Coronavirus Disease 2019 (COVID-19). https://www.cdc.gov/
coronavirus/2019-ncov/need-extra-precautions/people-with-medical-
conditions.html (2020).

21. Southern, B. D. Patients with interstitial lung disease and pulmonary
sarcoidosis are at high risk for severe illness related to COVID-19. Cleve. Clin.
J. Med.https://doi.org/10.3949/ccjm.87a.ccc026 (2020).

22. George, P. M., Wells, A. U. & Jenkins, R. G. Pulmonary fibrosis and COVID-
19: the potential role for antifibrotic therapy. Lancet Respir. Med. 8, 807-815
(2020).

23. Lippi, G. & Henry, B. M. Chronic obstructive pulmonary disease is associated
with severe coronavirus disease 2019 (COVID-19). Respir. Med. 167, 105941
(2020).

24. Alqahtani, J. S. et al. Prevalence, severity and mortality associated with COPD
and smoking in patients with COVID-19: a rapid systematic review and meta-
analysis. PLoS One 15, 0233147 (2020).

25. Halpin, D. M. G,, Faner, R, Sibila, O., Badia, J. R. & Agusti, A. Do chronic
respiratory diseases or their treatment affect the risk of SARS-CoV-2
infection? Lancet Respir. Med. 8, 436-438 (2020).

10 | (2021)12:4314 | https://doi.org/10.1038/s41467-021-24467-0 | www.nature.com/naturecommunications


https://www.abcam.com/ace2-antibody-epr44352-ab108252.html
https://www.abcam.com/ace2-antibody-epr44352-ab108252.html
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE135893
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136831
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE128033
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122960
https://github.com/tgen/banovichlab/Disease_lung_COVID19_2020/
https://github.com/tgen/banovichlab/Disease_lung_COVID19_2020/
https://coronavirus.jhu.edu/
https://coronavirus.jhu.edu/
https://doi.org/10.1001/jama.2020.6825
https://doi.org/10.1001/jama.2020.3633
https://doi.org/10.1001/jamainternmed.2020.0994
https://doi.org/10.1001/jamainternmed.2020.0994
https://doi.org/10.1001/jama.2020.6775
https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-conditions.html
https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-conditions.html
https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-conditions.html
https://doi.org/10.3949/ccjm.87a.ccc026
www.nature.com/naturecommunications

ARTICLE

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Leung, J. M., Niikura, M., Yang, C. W. T. & Sin, D. D. COVID-19 and COPD.
Eur. Respir. J. 56, 2002018 (2020).

Song, J. et al. Distinct effects of asthma and COPD comorbidity on disease
expression and outcome in patients with COVID-19. Allergy (2020) https:/
doi.org/10.1111/all.14517.

Jenkins, G. et al. Outcome of hospitalisation for COVID-19 in patients with
Interstitial Lung Disease: an international multicentre study. Respir. Med.
https://doi.org/10.1101/2020.07.15.20152967 (2020).

Reyfman, P. A. et al. Single-cell transcriptomic analysis of human lung
provides insights into the pathobiology of pulmonary fibrosis.Am. J. Respir.
Crit. Care Med. 199, 1517-1536 (2019).

Morse, C. et al. Proliferating SPP1/MERTK-expressing macrophages in
idiopathic pulmonary fibrosis. Eur. Respir. J. 54, 1802441 (2019).

Adams, T. S. et al. Single-cell RNA-seq reveals ectopic and aberrant lung-
resident cell populations in idiopathic pulmonary fibrosis. Sci. Adv. 6,
eabal983 (2020).

Habermann, A. C. et al. Single-cell RNA sequencing reveals profibrotic roles
of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci.
Adv. 6, eabal972 (2020).

Sungnak, W. et al. SARS-CoV-2 entry factors are highly expressed in nasal
epithelial cells together with innate immune genes. Nat. Med. 26, 681-687
(2020).

Muus, C. et al. Single-cell meta-analysis of SARS-CoV-2 entry genes across
tissues and demographics. Nat. Med. 27, 546-559 (2021).
Cantuti-Castelvetri, L. et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry
and infectivity. Science 370, 856-860 (2020).

Katsura, H. et al. Human lung stem cell-based alveolospheres provide insights
into SARS-CoV-2-mediated interferon responses and pneumocyte
dysfunction. Cell Stem Cellhttps://doi.org/10.1016/j.stem.2020.10.005 (2020).
Coutard, B. et al. The spike glycoprotein of the new coronavirus 2019-nCoV
contains a furin-like cleavage site absent in CoV of the same clade. Antivir.
Res. 176, 104742 (2020).

Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2
and is blocked by a clinically proven protease inhibitor. Cell 181, 271-280.e8
(2020).

Ibrahim, I. M., Abdelmalek, D. H., Elshahat, M. E. & Elfiky, A. A. COVID-19
spike-host cell receptor GRP78 binding site prediction. J. Infect. 80, 554-562
(2020).

Aguiar, J. A. et al. Gene expression and in situ protein profiling of candidate
SARS-CoV-2 receptors in human airway epithelial cells and lung tissue. Eur.
Respir. ]. (2020) https://doi.org/10.1183/13993003.01123-2020.

Ziegler, C. G. K. et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated
gene in human airway epithelial cells and is detected in specific cell subsets
across tissues. Cell 181, 1016-1035.e19 (2020).

Aliee, H. et al. Determinants of SARS-CoV-2 receptor gene expression in
upper and lower airways. medRxiv (2020).

Martin-Sancho, L. et al. Functional landscape of SARS-CoV-2 cellular
restriction. Mol. Cell (2021) https://doi.org/10.1016/j.molcel.2021.04.008.
Chen, J.-H. et al. Plasma proteome of severe acute respiratory syndrome
analyzed by two-dimensional gel electrophoresis and mass spectrometry. Proc.
Natl Acad. Sci. U.S.A. 101, 17039-17044 (2004).

Yang, N. & Shen, H.-M. Targeting the endocytic pathway and autophagy
process as a novel therapeutic strategy in COVID-19. Int. . Biol. Sci. 16,
1724-1731 (2020).

So, J.-S. Roles of endoplasmic reticulum stress in immune responses. Mol.
Cells 41, 705 (2018).

Chan, C.-P. et al. Modulation of the unfolded protein response by the severe
acute respiratory syndrome coronavirus spike protein. J. Virol. 80, 9279-9287
(2006).

Hikmet, F. et al. The protein expression profile of ACE2 in human tissues. Mol
Syst Biol. 16, €9610 (2020).

Jenkins, G. Demystifying pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol.
Physiol. 319, L554-1559 (2020).

Meliopoulos, V. A. et al. An epithelial integrin regulates the amplitude of
protective lung interferon responses against multiple respiratory pathogens.
PLoS Pathog. 12, 1005804 (2016).

Singh, M., Bansal, V. & Feschotte, C. A single-cell RNA expression map of
human coronavirus entry factors. Cell Rep. 32, 108175 (2020).

Meecham, A. & Marshall, J. F. The ITGB6 gene: its role in experimental and
clinical biology. Gene X 5, 100023 (2020).

Pfaender, S. et al. LY6E impairs coronavirus fusion and confers immune
control of viral disease. Nat Microbiol 5, 1330-1339 (2020).

Han, G. & Sinjab Single-cell analysis of human lung epithelia reveals
concomitant expression of the SARS-CoV-2 receptor ACE2 with multiple
virus receptors and scavengers in .... Cancers 13, 1250 (2021).

Zarei, M. et al. Potential role of glycoprotein 340 in milder SARS-CoV-2
infection in children. Expert Rev. Anti. Infect. Ther. 19, 675-677 (2021).

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

Overmyer, K. A. et al. Large-scale multi-omic analysis of COVID-19 severity.
Cell Syst. 12, 23-40.e7 (2021).

Chetta, M., Rosati, A., Marzullo, L., Tarsitano, M. & Bukvic, N. A SARS-CoV-
2 host infection model network based on genomic human Transcription
Factors (TFs) depletion. Heliyon 6, €05010 (2020).

Lucas, C. et al. Longitudinal analyses reveal immunological misfiring in severe
COVID-19. Nature 584, 463-469 (2020).

Valle, D. M. D. et al. An inflammatory cytokine signature predicts COVID-19
severity and survival. Nat. Med. (2020) https://doi.org/10.1038/s41591-020-
1051-9.

Giamarellos-Bourboulis, E. J. et al. Complex immune dysregulation in
COVID-19 patients with severe respiratory failure. Cell Host Microbe 27,
992-1000.€3 (2020).

Unterman, A. et al. Single-cell omics reveals dyssynchrony of the innate and
adaptive immune system in progressive COVID-19. medRxiv (2020).

Zheng, H.-Y. et al. Elevated exhaustion levels and reduced functional diversity
of T cells in peripheral blood may predict severe progression in COVID-19
patients. Cell. Mol. Immunol. 17, 541-543 (2020).

Zhang, J.-Y. et al. Single-cell landscape of immunological responses in
COVID-19 patients. Nat. Imm 21, 1107-1118 (2020).

Zaiss, D. M. W., Gause, W. C., Osborne, L. C. & Artis, D. Emerging functions
of amphiregulin in orchestrating immunity, inflammation, and tissue repair.
Immunity 42, 216-226 (2015).

Xiong, Y. et al. Transcriptomic characteristics of bronchoalveolar lavage fluid
and peripheral blood mononuclear cells in COVID-19 patients. Emerg.
Microbes Infect. 9, 761-770 (2020).

Pothlichet, J., Chignard, M. & Si-Tahar, M. Cutting edge: innate immune
response triggered by influenza A virus is negatively regulated by SOCS1 and
SOCS3 through a RIG-I/IFNAR1-dependent pathway. J. Immunol. 180,
2034-2038 (2008).

Sallenave, J.-M. & Guillot, L. Innate immune signaling and proteolytic
pathways in the resolution or exacerbation of SARS-CoV-2 in Covid-19: key
therapeutic targets? Front. Immunol. 11, 1229 (2020).

Coperchini, F., Chiovato, L., Croce, L., Magri, F. & Rotondi, M. The cytokine
storm in COVID-19: an overview of the involvement of the chemokine/
chemokine-receptor system. Cytokine Growth Factor Rev. 53, 25-32

(2020).

Zhu, L. et al. Single-cell sequencing of peripheral mononuclear cells reveals
distinct immune response landscapes of Covid-19 and influenza patients.
Immunity 53, 685-696.e3 (2020).

Chen, L. et al. Elevated serum levels of S100A8/A9 and HMGBI at hospital
admission are correlated with inferior clinical outcomes in COVID-19
patients. Cell. Mol. Immunol. 17, 992-994 (2020).

Banerjee, A. et al. Estimating excess 1-year mortality associated with the
COVID-19 pandemic according to underlying conditions and age: a
population-based cohort study. Lancet 395, 1715-1725 (2020).

Docherty, A. B. et al. Features of 20 133 UK patients in hospital with covid-19
using the ISARIC WHO clinical characterisation protocol: prospective
observational cohort study. BMJ 369, m1985 (2020).

Guan, W.-]. et al. Clinical characteristics of Coronavirus disease 2019 in
China. N. Engl. J. Med. 382, 1708-1720 (2020).

Esposito, A. J. et al. Increased odds of death for patients with interstitial lung
disease and COVID-19: a case-control study. Am. J. Respir. Crit. Care Med.
(2020) https://doi.org/10.1164/rccm.202006-2441LE.

Kermani, N. et al. Sputum ACE2, TMPRSS2 and FURIN gene expression in
severe neutrophilic asthma. Respir Res 22, 10 (2021).

Camiolo, M., Gauthier, M., Kaminski, N., Ray, A. & Wenzel, S. E. Expression
of SARS-CoV-2 receptor ACE2 and coincident host response signature varies
by asthma inflammatory phenotype. J. Allergy Clin. Immunol. 146, 315-324.e7
(2020).

Leung, J. M. et al. ACE-2 expression in the small airway epithelia of smokers
and COPD patients: implications for COVID-19. Eur. Respir. ]. 55, 2000688
(2020).

Delorey, T. M. et al. A single-cell and spatial atlas of autopsy tissues reveals
pathology and cellular targets of SARS-CoV-2. Cold Spring Harbor Lab.
2021.02.25.430130 (2021) https://doi.org/10.1101/2021.02.25.430130.

Fung, M. & Babik, J. M. COVID-19 in immunocompromised hosts: what we
know so far. Clin. Infect. Dis. (2020) https://doi.org/10.1093/cid/ciaa863.

Lu, C, Li, S. & Liu, Y. Role of immunosuppressive therapy in rheumatic
diseases concurrent with COVID-19. Ann. Rheum. Dis. 79, 737-739

(2020).

Yoshimura, A., Naka, T. & Kubo, M. SOCS proteins, cytokine signalling and
immune regulation. Nat. Rev. Immunol. 7, 454-465 (2007).

Wei, J. et al. Genome-wide CRISPR screens reveal host factors critical for
SARS-CoV-2 infection. Cell 184, 76-91.e13 (2021).

Stuart, T. et al. Comprehensive integration of single cell data. Cell 177,
1888-1902 (2019).

| (2021)12:4314 | https://doi.org/10.1038/s41467-021-24467-0 | www.nature.com/naturecommunications 11


https://doi.org/10.1111/all.14517
https://doi.org/10.1111/all.14517
https://doi.org/10.1101/2020.07.15.20152967
https://doi.org/10.1016/j.stem.2020.10.005
https://doi.org/10.1183/13993003.01123-2020
https://doi.org/10.1016/j.molcel.2021.04.008
https://doi.org/10.1038/s41591-020-1051-9
https://doi.org/10.1038/s41591-020-1051-9
https://doi.org/10.1164/rccm.202006-2441LE
https://doi.org/10.1101/2021.02.25.430130
https://doi.org/10.1093/cid/ciaa863
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

84. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-
cell RNA-seq data using regularized negative binomial regression. Genome
Biol. 20, 296 (2019).

85. Warnes, G. R. et al. gplots: various R programming tools for plotting data. R.
package version 2, 1 (2009).

86. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer, 2016).

87. Szabo, P. A. et al. Single-cell transcriptomics of human T cells reveals tissue
and activation signatures in health and disease. Nat. Commun. 10, 4706 (2019).

88. Alexa, A., Rahnenfiihrer, J. & Lengauer, T. Improved scoring of functional
groups from gene expression data by decorrelating GO graph structure.
Bioinformatics 22, 1600-1607 (2006).

89. Joseph, C. et al. Elevated MMP9 expression in breast cancer is a predictor of
shorter patient survival. Breast Cancer Res. Treat. 182, 267-282 (2020).

Acknowledgements

This study was supported by the NTH/NHLBI RO1HL145372 (NEB/JAK), the Depart-
ment of Defense W81XWH1910415 (NEB/JAK), Doris Duke Charitable Foundation (J.
AK.), T32HL094296 (NIW, JBB), the Department of Veterans Affairs IK2BX003841
(BWR), DoD W81XWH-19-1-0131 (J.C.S.), ROIHL127349 (N.K.), ROIHL141852 (N.K.),
U01HL145567 (N.K.), UH2 HL123886 (N.K.), and a generous gift from Three Lakes
Partners to N.K. and LO.R. The integrated data sets were funded by various sponsors as
indicated in the original publications. R.G.J. is funded by and NIHR Research Pro-
fessorship (RP-2017-08-ST2-014).

Author contributions

LTB., N.LW., M.-L.C,, N.EB,, and J.A.K. conceived and designed the analysis. Sample
collection was performed by A.CH., T.S.A,,].CS,, S.P.,LM.P,,CJ.T,,].B.B, BW.R, AG.
N, DR, WAW, RGJ. AJ.G, LT.B,, N.EB, and J.AK. performed quality checks, data
integration, and computational analyses. L.T.B., NI.W., N.E.B,, and J.A.K. analyzed and
interpreted scRNA-seq data. CJ. performed the immunohistology and semi-
quantification analysis. L.T.B., NILW., M.-1.C, N.E.B,, and J.A.K. wrote and revised the
manuscript, with signiﬁcant input from LO.R, R.G.J., N.K, and the HCA Lung Biolo-
gical Network. All authors read and approved the manuscript before submission.

Competing interests

J.A.K. has received advisory board fees from Boehringer Ingelheim, Inc, Janssen Phar-
maceuticals, is on the scientific advisory board of APIE Therapeutics, and has research
contracts with Genentech. In the last 36 months, N.K. reported personal fees from
Biogen Idec, Boehringer Ingelheim, Third Rock, Samumed, Numedii, AstraZeneca, Life
Max, Teravance, RohBar, and Pliant and Equity in Pliant; collaboration with MiRagen,
AstraZeneca; Grant from Veracyte, all outside the submitted work. In addition, N.K. has

a patent for New Therapies in Pulmonary Fibrosis, and Peripheral Blood Gene
Expression licensed to Biotech. A.G.N. has received advisory board fees from Boehringer
Ingelheim, Galapagos, Medical Quantitative Image Analysis and personal fees for edu-
cational material from Up to Date and Boehringer Ingelheim. RGJ reports grants from
AstraZeneca, grants from Biogen, personal fees from Boehringer Ingelheim, personal fees
from Chiesi, personal fees Daewoong, personal fees from Galapagos, grants from Galecto,
grants from GlaxoSmithKline, personal fees from Heptares, nonfinancial support from
NuMedii, grants and personal fees from Pliant, personal fees from Promedior, non-
financial support from Redx, personal fees from Roche, other from Action for Pulmonary
Fibrosis, outside the submitted work. All other authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/541467-021-24467-0.

Correspondence and requests for materials should be addressed to N.E.B.

Peer review informationNature Communications thanks Manvendra Singh and the
other anonymous reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
BY

Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

Human Cell Atlas Lung Biological Network

Alexander V. Misharin'¥, Alexander M. Tsankov'®, Avrum Spira'®", Pascal Barbry'®, Alvis Brazma'®,

19

Christos Samakovlis20:2 Douglas P. Shepherdzz, Emma L. Rawlins2324, Fabian J. Theis?>26,

Jennifer Griffonnet?’, Haeock Lee?®, Herbert B. Schiller?®39, Paul Hofman313233, Joseph E. Powell3435,
Joachim L. Schultze363, Jeffrey Whitsett38, Jiyeon Choi3®, Joakim Lundeberg4o, Naftali Kaminski,

Jonathan A. Kropski, Nicholas E. Banovich, Jose Ordovas-Montanes*"424344 jayaraj Rajagopal*3,

Kerstin B. Meyer®, Mark A. Krasnow?®, Kourosh Saeb-Parsy?’, Kun Zhang?®, Robert Lafyatis*?,

Sylvie Leroy50'51, Muzlifah Haniffa®2>3>4, Martijn C. Nawijn55, Marko Z. Nikoli¢®®, Maarten van den Berge57'58,
Malte Kuhnemund®®, Charles-Hugo Marquette®%! Michael Von Papen®?, Oliver Eickelberg®3,

Orit Rosenblatt-Rosen®*, Paul A. Reyfman65, Dana Pe'er®®, Peter Horvath®’:®8, Purushothama Rao Tata®®,
Aviv Regev64'7o'71, Mauricio Rojas72, Max A. Seibold’3, Alex K. Shalek’47576, Jason R. Spence77'78'79,

Sarah A. Teichmann®>80, Stephen Quake8', Thu Elizabeth Duong®?, Tommaso Biancalani?®!, Tushar Desai®3,

Xin Sun848> & Laure Emmanuelle Zaragosi®®

“Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA. >Genetics and Genomic Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY, USA. '®Department of Medicine, Boston University School of Medicine, Boston, MA, USA. "Johnson &
Johnson Innovation, Cambridge, MA, USA. "8Université Cote d'Azur, CNRS, IPMC, Sophia-Antipolis, France. wEuropean Molecular Biology

12 | (2021)12:4314 | https://doi.org/10.1038/s41467-021-24467-0 | www.nature.com/naturecommunications


https://doi.org/10.1038/s41467-021-24467-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/541467-021-24467-0 ARTICLE

Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK. 205ciLifeLab, Department
of Molecular Biosciences, Stockholm University, Stockholm, Sweden. ?'Cardiopulmonary Institute, Justus Liebig University, Giessen, Germany.
22Center for Biological Physics and Department of Physics, Arizona State University, Tempe, AZ, USA. 23Wellcome Trust/CRUK Gurdon Institute,
Cambridge, UK. *Department Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK. 2*Institute of Computational
Biology, Helmholtz Zentrum Miinchen, Oberschleifsheim, Germany. 2°Departments of Mathematics and Life Sciences, Technical University
Munich, Munich, Germany. 2 Pneumology Department, Nice University-Affiliated Hospital, Nice, France. 2Department of Biomedicine and Health
Sciences, The Catholic University of Korea, Seoul, Korea. 2°Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease
(ILBD), Helmholtz Zentrum Muinchen, Oberschleifsheim, Germany. 39Member of the German Center for Lung Research (DZL), Munich, Germany.
S aboratory of Clinical and Experimental Pathology, Pasteur Hospital, University Cote d'Azur, Nice, France. >?Hospital-Related Biobank, Pasteur
Hospital, University Cote d'Azur, Nice, France. 3FHU OncoAge, Pasteur Hospital, BP69, Nice cedex 01, France. 34Garvan-Weizmann Centre for
Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia. 3SUNSW Cellular Genomics Futures Institute, University of New
South Wales, Sydney, NSW, Australia. **Department for Genomics & Immunoregulation, LIMES-Institute, University of Bonn, Bonn, Germany.
3’PRECISE Platform for Single Cell Genomics & Epigenomics, Germany Center for Neurodegenerative Diseases and University of Bonn, Bonn,
Germany. *8Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA. 3*Division of Cancer Epidemiology and Genetics, National Cancer
Institute, Bethesda, MD, USA. “%ScilifeLab, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden. “Broad
Institute of MIT and Harvard, Cambridge, MA, USA. **Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston,
MA, USA. “*Harvard Stem Cell Institute, Cambridge, MA, USA. 44F’rogram in Immunology, Harvard Medical School, Boston, MA, USA. “>Cellular
Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK. *®Department of Biochemistry and Wall
Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, USA. *’Department of Surgery, University of Cambridge and NIHR
Cambridge Biomedical Research Centre, Cambridge, UK. “®Department of Bioengineering, UCSD, La Jolla, CA, USA. **Division of Rheumatology,
Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA. *°Department of Pulmonary Medicine and Allergology,
Université Cote d'Azur, CHU de Nice, FHU OncoAge, Nice, France. ®'CNRS UMR 7275—Institut de Pharmacologie Moléculaire et Cellulaire,
Sophia Antipolis, France. >>Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK. *Biosciences Institute, Faculty of
Medical Sciences, Newcastle University, Newcastle upon Tyne, UK. **Department of Dermatology and NIHR Newcastle Biomedical Research
Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK. **Department of Pathology and Medical Biology, University of
Groningen, GRIAC Research Institute, University Medical Center Groningen, Groningen, the Netherlands. >®UCL Respiratory, Division of Medicine,
University College London, London, UK. ®’Department of Pulmonary Diseases, University Medical Center Groningen, Groningen, the Netherlands.
58Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, the Netherlands. >*Cartana AB, Stockholm, Sweden.
%OTeam 4, IRCAN, FHU OncoAge, University Cote d'Azur, CNRS, INSERM, Nice CEDEX 02, France. ®'Department of Pneumology and Oncology,
CHU Nice, FHU OncoAge, University Cote d'Azur, Nice, France. ©?Comma Soft AG, Bonn, Germany. ©Department of Medicine, University of
Pittsburgh, Pittsburgh, PA, USA. ®*Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA. ®*Division of Pulmonary
and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. **Computational and Systems Biology
Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA. ®’Biological Research Centre of the Hungarian
Academy of Sciences, Szeged, Hungary. %8 nstitute for Molecular Medicine Finland (FIMM), University of Helsinki, Tukholmankatu, Helsinki,
Finland. ®Department of Cell Biology, Regeneration Next Initiative, Duke University School of Medicine, Durham, NC, USA. "°Department of
Biology, Howard Hughes Medical Institute, MIT, Cambridge, MA, USA. "'Genentech, South San Francisco, CA, USA. 7?Division of Pulmonary,
Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA. “>Department of Pediatrics; Center for Genes, Environment, and
Health, National Jewish Health, Denver, CO, USA. 74Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA. "Snstitute for Medical
Engineering and Science (IMES), Koch Institute for Integrative Cancer Research, Cambridge, MA, USA. “®Department of Chemistry,
Massachusetts Institute of Technology, Cambridge, MA, USA. "’Department of Internal Medicine, Gastroenterology, University of Michigan
Medical School, Ann Arbor, MI, USA. "®Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, M,
USA. "°Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA. 8°Department of Physics/
Cavendish Laboratory, University of Cambridge, JJ Thompson Ave, Cambridge, UK. 8'Chan Zuckerberg Biohub, San Franscisco, CA, USA.
82Department of Pediatrics, Respiratory Medicine, University of California, San Diego, CA, USA. 8Department of Medicine and Institute for Stem
Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA. 84Depar‘[men‘[ of Pediatrics, University of
California, San Diego, San Diego, CA, USA. 85Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA. 8%Université Cote
d'Azur, CNRS, IPMC, Sophia-Antipolis, France.

NATURE COMMUNICATIONS | (2021)12:4314 | https://doi.org/10.1038/s41467-021-24467-0 | www.nature.com/naturecommunications 13


www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Chronic lung diseases are associated with gene expression programs favoring SARS-CoV-2 entry and severity
	Results
	Integrated analysis of lung single cell RNA sequencing datasets
	Expression profile of SARS-CoV-2 associated receptors and factors in the diseased lung
	Dysregulation of viral infection and innate immune response genes in disease epithelial cells
	Elevated ACE2 protein expression level in the small airways in IPF lungs
	CLD specific ACE2+ transcriptional profiles in AT2 cells
	Baseline differences in inflammatory response programs in chronic lung disease

	Discussion
	Methods
	scRNA-seq samples
	scRNA-seq data processing
	Integrated analysis of joint dataset
	Gene module score
	Gene correlation analysis
	Immunohistochemistry of ACE2 and anti-αvβ6 integrin
	ACE2 western blot
	Statistical analysis

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




