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Abstract: We present a new framework for characterizing quasinormal modes (QNMs)
or resonant states for the wave equation on asymptotically flat spacetimes, applied to
the setting of extremal Reissner–Nordström black holes. We show that QNMs can be
interpreted as honest eigenfunctions of generators of time translations acting on Hilbert
spaces of initial data, corresponding to a suitable time slicing. The main difficulty that is
present in the asymptotically flat setting, but is absent in the previously studied asymp-
totically de Sitter or anti de Sitter sub-extremal black hole spacetimes, is that L2-based
Sobolev spaces are not suitableHilbert space choices. Instead,we considerHilbert spaces
of functions that are additionally Gevrey regular at infinity and at the event horizon. We
introduce L2-based Gevrey estimates for the wave equation that are intimately con-
nected to the existence of conserved quantities along null infinity and the event horizon.
We relate this new framework to the traditional interpretation of quasinormal frequen-
cies as poles of the meromorphic continuation of a resolvent operator and obtain new
quantitative results in this setting.
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1. Introduction

An important problem in the theory of general relativity is to classify the behaviour of
gravitational radiation emitted by dynamical solutions to the vacuum Einstein equations

Ric[g] = 0, (1.1)

where g is a Lorentzian metric and Ric[g] is the corresponding Ricci tensor. It is ex-
pected that a significant proportion of the gravitational radiation emitted by dynamical
black hole solutions to (1.1) may be dominated by quasinormal modes (QNMs), also
known as resonant states as they settle down to a stationary Kerr black hole solution
[54]; see for example the numerics in [19,23], the first experimental observations of
gravitational radiation in [76] and subsequent further analysis in [52]. QNMs are ex-
ponentially damped, oscillating solutions to linear wave equations on fixed stationary
spacetime backgrounds that are characterized by a discrete set of complex frequen-
cies called quasinormal frequencies (QNFs) or scattering resonances. They were first
observed in numerics of Vishveshwara [78] and have been a prevalent topic in the the-
oretical physics literature ever since, see the review articles [20,56,57] and references
therein.1 QNMs may be viewed as the dispersive analogues of the normal modes that
dictate the dynamics of an idealized vibrating string.

If one assumes the dominance of QNMs in the gravitational radiation emitted at
late time intervals in the dynamical evolution of perturbations of Kerr black holes, it
is possible to entertain the notion of “black hole spectroscopy” [35,52] which is the
inference of properties of black hole end state from precise experimental measurements
of the most dominant QNFs in the gravitational radiation.

Recently, there have been significant advances towards a mathematical proof of the
Kerr Stability Conjecture in linearized settings, see [28,29,33,53,61] and also [2,45,
51].2 This conjecture asserts that initially small and localized metric perturbations of
sub-extremal Kerr black hole solutions to (1.1) should decay in time and the metric
should asymptotically approach a nearby Kerr solution. We note moreover a recent
related nonlinear stability result in the black hole setting: the stability of Schwarzschild
black holes under axisymmetric, polarized perturbations [55]. Stability is established by
showing that perturbations decay at least inverse polynomially in time.

In fact, early heuristic and numerical analysis of the linearized problem initiated by
Price [44,59,69] suggested that one can do no better than proving inverse polynomial
decay estimates, because at sufficiently late times, the leading-order behaviour should be
exactly inverse polynomial (this is sometimes referred to as “Price’s law”). The presence
of so-called polynomial tails in the context of the linear wave equation on asymptot-
ically flat, spherically symmetric black hole backgrounds has recently been proved in
a mathematically rigorous setting [4–6], where it has moreover been connected to the
existence of conservation laws along null hypersurfaces, first discovered by Newman

1 See Sect. 1.1 for further discussion regarding the precise definitions of QNMs in the literature.
2 We refer to [32] for a comprehensive list of additional earlier foundational results in the direction of linear

stability.
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and Penrose at null infinity [65] and discovered in a different guise by Aretakis at the
event horizons of extremal black holes3 [10–13].4 In Fourier space, polynomial tails can
alternatively be related to the precise behaviour of resolvent operators corresponding to
the wave equation near the zero time frequency, see [48,59,75].

The presence of polynomial tails illustrates a clear contrast with the non-dispersive
setting of the wave equation on a compact domain, where normal modes form an or-
thonormal basis for the space of solutions and therefore characterize fully the dynamics
and in particular the late-time behaviour. Let us also note that polynomial tails are char-
acteristic to asymptotically flat spacetimes. Indeed, in the proof of the nonlinear stability
of slowly rotating Kerr–de Sitter black holes [49], it was shown that in the cosmologi-
cal setting there are no polynomial tails and the asymptotic behaviour of gravitational
radiation is instead determined by QNMs.5

It remains an open problem in the asymptotically flat setting to reconcile the expected
polynomial tails in gravitational radiation with the observed exponentially decaying and
oscillating QNMs. In order to discern the dominant behaviour in a given time interval
and to determine how this behaviour depends on the type of initial data, it is necessary
to establish in the first place a suitably robust and quantitative understanding of QNMs
in the context of the linear wave equation

�gψ = 0, (1.2)

with �g the Laplace–Beltrami operator corresponding to an asymptotically flat black
hole spacetime background (M, g).

In this paper, we present a novel, mathematically rigorous construction of quasi-
normal modes for (1.2) on extremal Reissner–Nordström black hole spacetimes.
Using this construction, we obtain new quantitative statements regarding the distribu-
tion of QNMs near the zero time frequency and the properties of infinite sums over all
angular frequencies.We provide in particular the first construction of QNMs on extremal
Reissner–Nordström and the first construction of asymptotically flat black hole QNMs
without the a priori assumption of fixed angular frequencies.

We moreover demonstrate for each extremal Reissner–Nordström quasinormal fre-
quency in a sector of the complex plane and for each sequence of Reissner–Nordström–
de Sitter spacetimes with cosmological constants � approaching zero and black hole
charges e approaching the extremal Reissner–Nordström value, the existence of a corre-
sponding converging sequence of Reissner–Nordström–de Sitter quasinormal frequen-
cies.6 We present rough statements of the main theorems of the paper in Sect. 1.7; see
Sect. 4 for precise statements of the main results.

We restrict to extremal Reissner–Nordström only because of technical simplifications
resulting from the existence of simple, closed-form expressions for conserved quantities
along the event horizon and future null infinity.7 The exploitation of the aforementioned
conservation laws along future null infinity and the event horizon plays a fundamental
role in the new type of L2-based “Gevrey estimates” that are introduced in this paper and
involve functions that are Gevrey regular at infinity and near the horizon, a notion that

3 See [14] for a comprehensive overview on extremal black holes.
4 The connection between the conserved quantities of Newman–Penrose and Aretakis was first observed

in [21,60].
5 We refer to Sect. 1.4 for a further discussion on the de Sitter black hole setting.
6 See Sect. 1.4 for further details regarding the role of �.
7 In the sub-extremal case, there are no conserved quantities at the horizon but conserved quantities at null

infinity are still present.
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first appeared in [43].8 In future work, we hope to explore applications and extensions
of the methods introduced in the present paper to a quantitative study of QNMs in
sub-extremal Reissner–Nordström and Kerr spacetimes.9

A key feature of themethods introduced in the present paper is the demonstration that,
in contrast with previous approaches, QNMsmay be interpreted as honest eigenfunctions
of the infinitesimal generator of time translations acting on a suitable Hilbert space of
initial data, thus placing them on a similar footing to normal modes. This interpretation
was first introduced in the asymptotically anti de Sitter setting in [79]. In contrast with
the asymptotically (anti) de Sitter settings, where it is sufficient to consider (modified)
L2-based Sobolev spaces as Hilbert spaces, the Hilbert spaces in the asymptotically flat
setting are shown to consist of functions that are Gevrey regular at future null infinity
and at the future event horizon. The results of the present paper demonstrate that such
spaces are natural candidate initial data spaces for investigating the role of quasinormal
modes in the time evolution of solutions to (1.2). Note that weighted L2-based Sobolev
spaces are not well-suited for this purpose, see Theorem 4.5 and Remark 4.4 in [8] and
the discussion in Sect. 1.5.2.

1.1. Traditional approaches to defining quasinormal modes. The wave equation (1.2)
on a Reissner–Nordström spacetime with mass M and charge e (see Sect. 2.1 for
more details) takes the following form in standard (t, r, θ, ϕ) coordinates when re-
stricted to the coefficients ψ�m(t, r) in a spherical harmonic expansion ψ(t, r, θ, ϕ) =∑

�∈N0,m∈Z,|m|≤� ψ�m(t, r)Y�m(θ, ϕ):

D−1r−1
[
(D∂r )

2(rψ�m)− ∂2t (rψ�m)− V� · rψ�m

]
= 0, (1.3)

with

D(r) = 1− 2Mr−1 + e2r−2,
V�(r) = �(� + 1)r−2D(r) + r−1DD′(r),

where r ∈ (r+,∞) and D(r+) = 0.
Solutions to (1.3) of the form ψ�m(t, r) = est ψ̂�m(r) with s ∈ C therefore satisfy

the following (time-independent) Schrödinger equation:

L̂s,�(ψ̂�m) = 0, where

L̂s,�(·) := d2

dr2∗
(r(·))− (s2 + V�)(r(·)), (1.4)

and we changed from the coordinate r to the radial coordinate r∗(r), which satisfies
dr∗
dr = D−1 (see Sect. 2.1 for more details).

8 The spaces of Gevrey functions can be viewed as lying “between” smooth and analytic functions. See
Sect. 3.1 for a precise definition. Moreover, in the sub-extremal setting we expect Gevrey regularity at infinity
(i.e. regularity with respect to the variable 1

r for large values of r , with r a radial coordinate) to be sufficient,
which allows us to include in particular all smooth and compactly supported data.

9 An alternative strategy to deal with the sub-extremal case in the setting of fixed angular frequency
solutions is to view the relevant operators on sub-extremal Reissner–Nordström as compact perturbations of
the analogous operators in Minkowski or extremal Reissner–Nordström and apply more directly the methods
of the present paper and the companion paper [40].We refer to the companion paper [40] for related arguments
involving compact operator perturbations.
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Standard asymptotic analysis of second-order homogeneous ODE, see for example
Chapter 7 Sect. 2 of [66], implies that solutions to (1.4) must satisfy the asymptotic
behaviour

rψ̂�m ∼ esr∗ or rψ̂�m ∼ e−sr∗ ,
both as r∗ → ∞ and r∗ → −∞, if s /∈ −κ+N0, with κ+ > 0 a constant known as the
surface gravity of the event horizon, defined in Sect. 2.2.10 Here, the notation “∼” means
that there exists smooth functions Phor,±(r) near r = r+ and Pinf,±(ρ) near ρ = 0 and
constants A+, A− > 0 and B+, B−, such that we can decompose

rψ̂�m(r) = A+e
+sr∗ Phor,+(r) + A−e−sr∗ Phor,−(r) near r = r+ and, (1.5)

rψ̂�m(r) = B+e
+sr∗ Pinf,+(1/r) + B−e−sr∗ Pinf,−(1/r) for large r. (1.6)

A key question that is relevant for the definition of quasinormal modes is whether the
above decompositions are unique (up to renormalization). Approach 1 and Approach 2
below provide two different paths towards obtaining uniqueness, which allows one to
define “ingoing” and “outgoing” solutions.

1.1.1. Approach 1: quasinormal modes as solutions to a boundary value problem with
convergent Taylor series If V� was compactly supported in r∗, then the solution rψ�m
to (1.4) at sufficiently large |r∗| could have be written a sum of ingoing and outgoing
travelling waves, so we would have made the canonical choice Phor,± ≡ Pinf,± ≡ 1 for
large |r∗|. In the seminal work [24], quasinormal modes were characterized as solutions
to (1.4) withRe s < 0 (corresponding to compactly supported analogues of V�) that are
“outgoing at infinity” (B+ = 0) and “ingoing at the horizon” (A− = 0).

The choice of Phor,± and Pinf,± (which determines the notions of “ingoing” and
”outgoing” by setting A− = B+ = 0) is, however, not so straightforward since V� is not
compactly supported. Indeed, let Pinf,+ and Pinf,− be a choice of smooth functions as in
(1.6) and consider the following ingoing solution at infinity with respect to Pinf,±:

rψ̂�m(r) = B+e
+sr∗ Pinf,+(1/r) = B+e

−sr∗(e+2sr∗ Pinf,+(1/r)).

Define P̃inf,−(1/r) := e+2sr∗ Pinf,+(1/r) and note that P̃inf,− is also smooth in 1
r (because

Re s < 0!). Then the above solution is actually outgoing with respect to P̃inf,−.
In the case of sub-extremal Reissner–Nordström, smoothness of Phor,+(r) in r at

r = r+ does turn out to be a sufficient regularity condition to determine uniqueness
of Phor,+(r) up to renormalization, since e−2sr∗ Phor,− (with Phor,− smooth) fails to be
smooth in r at r = r+ (when s /∈ −κ+N0). In extremal Reissner–Nordström, however,
e−2sr∗ Phor,− is smooth in r ; see also Sect. 1.5.2.

One approach to deal with the non-uniqueness of the decomposition involving Pinf,±
in the sub-extremal case is to demand more than smoothness by requiring sufficiently
rapid decay of the coefficients of the Taylor series of e+2sr∗rψ̂�m(r) in terms of z =
1 − r+/r around z = 0 so that the series converges at z = 1.11 This approach was
first carried out by Leaver [58] in the sub-extremal setting, following earlier ideas in the

10 If s ∈ −κ+N0, then there are still two linearly dependent solutions, but the asymptotic behaviour is
slightly different, see for example [66].
11 Note that convergence is guaranteed at z < 1 by analyticity. Indeed, analyticity of Phor,+(r) at r = r+

follows from the fact that r = r+ is a regular singular point of the ODE in the sub-extremal case, whereas
r = ∞ corresponds to an irregular singular point and, a priori, only smoothness of Pinf,−(1/r) can be

guaranteed at 1
r = 0.
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setting of the Schrödinger equation describing hydrogenmolecule ions [15], and it forms
the basis of the continued fraction method for approximating quasinormal frequencies
numerically. Indeed, in [9] numerical evidence is given for the claim that the coefficients
in the Taylor series of the function e+sr∗ around z = 0 indeed do not decay sufficiently
rapidly so as to guarantee convergence at z = 1. Furthermore, [58] provides numerical
evidence that the set of s for which the Taylor series of e+2sr∗rψ̂�m(r) does converge is
discrete.

The continued fraction method of Leaver was generalized to extremal Reissner–
Nordström in [67].

1.1.2. Approach 2: quasinormal modes as poles of the meromorphic continuation of the
resolvent A different approach to defining QNMs is to interpret solutions to (1.4) with
the desired boundary behaviour as analytic continuations in s of analogous solutions
with Re s > 0 instead of Re s < 0. Indeed, when Re s > 0, one can unambiguously
exclude the solutions with an undesired boundary behaviour e+s|r∗| (which now grow
exponentially in |r∗|) by demanding rψ̂�m to be suitably bounded at r∗ = ±∞. Quasinor-
mal frequencies then correspond to zeroes of the analytic continuation of theWronskian
corresponding to the twoRe s > 0 solutions which are outgoing at infinity and ingoing
at the event horizon, respectively.12

This approach was carried out by Bachelot–Motet-Bachelot in [16] in Schwarzschild
(where e = 0), and it constitutes the first mathematically rigorous result regarding the
definition and distribution of QNMs.13

Theorem A [16]. Fix � ∈ N0. The resolvent operator R�(s) = L̂−1s,� : L2(R)→ L2(R)

is a bounded linear operator that is holomorphic in s when Re s > 0 and for any pair
(χ, χ ′) ∈ C∞c (R), the operator

χ ′ ◦ R�(s) ◦ χ : L2(R)→ L2(R)

can be meromorphically continued to C \ R≤0.
One can define “quasinormal frequencies” to be the poles of R�(s) and corresponding

solutions to (1.2) to be “quasinormal modes”. Theorem A illustrates the discreteness of
the set of quasinormal frequencies in the complex plane away from the non-positive real
axis. We refer to [18] for additional results regarding the distribution of quasinormal
frequencies in a small conic sector around the imaginary axis when |s| → ∞ and
�→∞.

A key feature in both [16,18] is the complex scaling method which uses analyticity
of the Schwarzschild metric components to analytically continue the coordinate r∗ away
from the real axis into the complex plane. This method was introduced in [1,17] and
extended to a very general, “black-box” setting, in [73,74].

Note that it is not clear from the above discussions that the notions of “quasinormal
modes” and “quasinormal frequencies” as prescribed in Approach 1 and Approach 2
actually agree (although there is ample numerical evidence, presented for example in
[16,58]). We refer to Remark 1.3 for a further discussion on this issue. In order to
differentiate between the two approaches, we will refer in this paper to the (heuristic)
QNMs/QNFs of Approach 1 as Leaver quasinormal modes/quasinormal frequencies
and the QNMs/QNFs of Approach 2 as resonant states/scattering resonances.

12 The analytic continuation of the Wronskian is only valid away from the non-positive real axis.
13 See also earlier heuristic work [34,58] providing a similar interpretation of QNMs.
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The resolvent operator with Re s > 0 can be defined without the restriction to
spherical harmonic modes of fixed � in all Reissner–Nordström spacetimes, using basic
uniform energy boundedness properties from [10,25] and this definition can be extended
tomore general classes of spacetimes satisfying suitable energy boundedness properties.

One would arrive at a natural extension of the notion of fixed � scattering resonances
by considering the poles of a meromorphic continuation of this more general resolvent
operator to a suitable subset of the complex left half-plane. It does not follow from the
proof of Theorem A that such a continuation exists as, in particular, one cannot rule
out a priori accumulation points of scattering resonances with fixed � as � → ∞!
We address this point in Theorem 4.2 in the setting of extremal Reissner–Nordström.

1.2. Quasinormal modes in time evolution. The relevance of the scattering resonances
described in Sect. 1.1 for the behaviour of general solutions to the initial value problem
corresponding to (1.2) becomes clear when one considers the Laplace transform of
solutions to (1.2). Let us consider for simplicity initial data of the form:

(ψ |t=0, ∂tψ |t=0) ∈ (C∞c ((r+,∞)r × S
2))2.

The corresponding solutions ψ to (1.2) are uniformly bounded in L∞ in both sub-
extremal and extremal Reissner–Nordström (see for example [10,25]), so for Re s > 0
the following Laplace transform is well-defined

ψ̂(s, r, θ, ϕ) =
∫ ∞

0
e−stψ(t, r, θ, ϕ) dt,

and after restricting to fixed spherical harmonic modes, it follows immediately that ψ̂�m
is the unique solution to

L̂s,�(ψ̂�m) = f�m,

with
f�m(r; s) = −s · rψ�m |t=0(r)− ∂t (rψ�m)|t=0(r).

Note moreover that we can express

ψ̂�m = R�(s)( f�m).

Let χ, χ ′ be cut-off functions in r , as in Theorem A such that χ ≡ 1 on supp f�m ,
then the following inverse Laplace transform can then be obtained via the Bromwich
integral:

χ ′ · ψ�m(t, r) = lim
S→∞

1

2π i

∫ s0+i S

s0−i S
(χ ′ ◦ R�(s) ◦ χ)( f�m) ds,

for any s0 > 0.
By the meromorphicity property of χ ′ ◦ R�(s)◦χ , established in TheoremA, we can

deform the contour of integration in the Bromwich integral so that it enters the complex
left half-plane (while avoiding R≤0), see Fig. 1 below.

Poles of R�(s) in the left half-plane, which correspond to scattering resonances, will
contribute to the contour integral via the Residue Theorem as exponentially decaying
and oscillating terms, proportional to resonant states, with coefficients determined by
f�m .
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Fig. 1. An example of a possible integration contour deformation. The dots indicate possible poles of the
resolvent operator

If one could determine the remaining contributions to the deformed contour integral,
one could in theory reconstruct the solution ψ�m to determine the dominant contribu-
tions of various parts of the contour integral at sufficiently late times. See for example
the heuristics in Schwarzschild spacetimes in [58] where the resonant state contribu-
tion is compared to a polynomial tail contribution, which dominates the very late-time
behaviour [6].

The first observation of the appearance of exponentially damped and oscillating
functions in the time evolution of solutions to (1.2) was made in a numerical setting
in [78] and actually preceded the time-independent definitions of quasinormal modes
described in Sect. 1.1.

1.3. Open problems in the traditional approach. In order to make use of a contour
deformation for the inverse Laplace transform, as in Sect. 1.2, for determining the role of
quasinormal modes in the temporal behaviour of solutions to (1.2) arising from suitably
regular, localized and generic initial data, additional information is needed with regards
to the distribution of scattering resonances and further properties of the resolvent operator
R�(s).

In this paper, we will address the following points in the setting of extremal
Reissner–Nordström spacetimes:

(I) The resolvent operator R�(s) is only defined for fixed �. What happens when
summing over all spherical harmonic modes? Is it possible to meromophically
continue R(s) =∑�∈N0

R�(s)?
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(II) What does the distribution of scattering resonances look like near s = 0?
(III) The L2-norm of resonant states along {t = const.} slices is infinite, due to their

exponential growth in |r∗| as |r∗| → ∞ (see Sect. 1.1).
(IV) It is tempting to view scattering resonances as eigenfunctions of the operator

L̂s,�+s2, with eigenvalues s2, in analogywith normal modes. However, in contrast
with normal modes it is not clear what the corresponding Hilbert spaces should
be (see (III)).

(V) By Sect. 1.2, one has to restrict to initial data that are supported away from the
horizon and infinity in order to reconstruct ψ�m using the meromorphic continu-
ation of R�(s). There is no physical motivation for solely considering initial data
supported away from the horizon.

(VI) Since R�(s) has to be multiplied with cut-off functions in order for a meromorphic
continuation to be well-defined, the contour deformation of the inverse Laplace
transform can not be used directly to provide information about the behaviour in
time at the horizon and null infinity.

In the companion paper [40], we moreover address:

(VII) What is the relation between Leaver QNFs and scattering resonances?

In the setting of Schrödinger operators Ls,� as in (1.4) with more general V�, we address
also in [40]:

(VIII) It is possible to define quasinormal modes when the potential V� in (1.4) behaves
to leading-order like 1

r2∗
, but is non-analytic in the variable 1

r∗ ?

See also the recent work [41] for progress towards addressing (VIII) using complex
scaling methods.

1.4. Comparison with the cosmological setting. A key difficulty in determining the
regularity class of homogeneous solutions to L̂s,�(ψ̂�m) = 0, that is required to be able
impose the desired outgoing boundary condition, is the slow r−2∗ fall-off of V� when
r∗ → ∞; see Sect. 1.1. A similar difficulty is additionally present in the extremal case
(|e| = M) when r∗ → −∞, in contrast with the sub-extremal (|e| < M) case where
V� ∼ eκ+r∗ as r∗ → −∞, with κ+ the surface gravity of the event horizon (see Sect.
2.2). This exponential fall-off is intimately related to the presence of a red-shift effect
along the event horizon at r = r+, see [30].

In order to avoid dealing with the difficulty present at r∗ = ∞, one can consider a
different problem by replacing “infinity” with a cosmological horizon along which there
is an additional red-shift effect (see for example [32]).

Indeed, we can consider modified Reissner–Nordström metrics by adding a cosmo-
logical constant term depending on an additional parameter � > 0:

D(r) = 1− 2Mr−1 + e2r−2 − �

3
r2, so that

V� ∼e−κcr∗ as r∗ → ∞,

where κc > 0 (the surface gravity of the cosmological horizon) and r ∈ (r+, rc) for
some rc > 0 with D(r+) = 0 and D(rc) = 0. The corresponding spacetimes are called
Reissner–Nordström–de Sitter spacetimes and they are solutions to the electrovacuum
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Einstein–Maxwell equations with positive cosmological constant, see for example [46].
See Sect. 2.1 for more details.

Geometrically, the �-modification amounts to replacing null infinity with a Killing
horizon at finite radius r = rc and as a result, when κ+, κc > 0, there is a red-shift
effect along both the event and the cosmological horizon. From an ODE perspective,
the homogeneous ODE L̂s,�(ψ̂�m) = 0 has an irregular singular point at r∗ = ∞ and a
singular point at r∗ = −∞ that is either regular (κ+ > 0) or irregular (κ+ = 0) in the
� = 0 case, whereas in the κ+, κc > 0 (� > 0) case both singular points are regular
singular points.

In the κ+, κc > 0 setting it is possible to define scattering resonances as poles of the
resolvent operator for the (massive) wave equation as in Theorem A, without requiring a
decomposition into spherical harmonics, addressing (I) of Sect. 1.3 in the� > 0 setting;
see [18,22,36,63]. See also the very general set-up developed by Vasy for defining
scattering resonances in the � > 0 setting [77], where the red-shift effect is indirectly
also exploited. The role of scattering resonances in the � > 0 setting on the time-
evolution of solutions to the wave equation was moreover investigated in [37].

The above works use microlocal methods that have previously been applied to study
scattering resonances in a variety of settings (see [38] for a detailed overview of the
corresponding literature) and they are closely related to the study of resonances on
asymptotically hyperbolic Riemannian manifolds [62]. The above results address more-
over (II), (V), (VI) in the� > 0 setting. Let usmention finally that quasinormalmodes in
Kerr–de Sitter spacetimes play a fundamental role in the proof of the nonlinear stability
of Kerr–de Sitter in [49].

A different perspective on QNMs was taken in [79], and when applied to the setting
of Reissner–Nordström–de Sitter, it results in the following theorem that addresses all
the points (I)—(VI) above in the � > 0 setting:

Theorem B [79]. Let k ∈ N0 and � be a hypersurface in sub-extremal Reissner–
Nordström–de Sitter that intersects both horizons to the future of the bifurcation sphere.
Then the infinitesimal generator of time translations14 A : Hk+1(�) × Hk(�) ⊇
D(A) → Hk+1(�) × Hk(�) is a well-defined (unbounded) closed, linear operator
and:

(i) The operator A has pure point spectrum �k
QN F in

{

s ∈ C |Re s > −
(
1

2
+ k

)

min{κ+, κc}
}

,

with
⋃

k∈N0
�k

QN F ⊂ C a discrete subset, and the corresponding eigenfunctions are
smooth.

(ii) For every scattering resonance there exists a sufficiently large k such that the scat-
tering resonance is an element of �k

QN F and there exists a subspace Hk
res(�) <

Hk+1(�)× Hk(�) such that the union over k of the set of eigenvalues of the restric-
tions A|Hk

res(�) coincides precisely with the total set of scattering resonances.

14 If one denotes with S(τ ) : Hk+1(�)×Hk (�)→ Hk+1(�)×Hk (�) the semigroup of time translations
along a timelike Killing vector field that map initial data to the corresponding solution to (2.9) and its time
derivative in Reissner–Nordström–de Sitter along a time slice at time τ , then we can write S(τ ) = eτA, with
A a densely defined operator. See Sect. 7 for more details.



Quasinormal Modes in Extremal Reissner–Nordström Spacetimes 1405

We will refer to
⋃

k∈N0
�k

QN F as regularity quasinormal frequencies and the cor-
responding eigenfunctions as regularity quasinormal modes.15

See also the related results in [77], where, in addition, high frequency estimates are
obtained. We note that in [79], a general asymptotically anti de Sitter � < 0 setting is
considered rather thanReissner–Nordström–deSitter, but themethods can be straightfor-
wardly applied to the � > 0 Reissner–Nordström–de Sitter setting to arrive at Theorem
B; see also Appendix B. See [42] for an alternative consideration of the � < 0 setting
and [50] for a related construction of “quasimodes” in the � < 0 setting.

We emphasize that Theorem B addresses (III) and (IV) by demonstrating that the
restrictions of quasinormal modes to hypersurfaces intersecting the horizons to the fu-
ture of the bifurcation spheres (rather than hypersurfaces of constant t , which intersect
the bifurcation spheres) can be viewed as eigenfunctions in suitable L2-based Sobolev
spaces.

Furthermore, since normal frequencies can also be interpreted as eigenvalues of A
(on a Sobolev space), corresponding to a non-degenerate wave equation on a spatially
compact domain, TheoremBmoreover allows one to viewnormalmodes and (regularity)
quasinormal modes as the same kind of objects.

We note that the proof of Theorem B relies fundamentally on the red-shift estimates
and the enhanced red-shift16 estimates near both horizons, developed in [30].Since there
is no red-shift at null infinity in the � = 0 setting, and additionally no red-shift at
the event horizon in the extremal (|e| = M) case, the methods of Theorem B do not
apply in the present paper!

The above results in the cosmological setting motivate another problem that will be
addressed the present paper:

(IX) How do cosmological quasinormal modes and frequencies behave in the limit
� ↓ 0?

1.5. Asymptotically hyperboloidal and null foliations. Theorem B demonstrates how,
rather than considering hypersurfaces of constant t in Reissner–Nordström–de Sitter
(that intersect the bifurcation spheres), it is more natural to consider hypersurfaces inter-
esting the event and cosmological horizons to the future of the bifurcation spheres when
investigating candidate function spaces containing regularity QNMs. In this section we
consider analogous foliations of Reissner–Nordström by hypersurfaces that intersect the
event horizon and are moreover asymptotically hyperboloidal or null (they “intersect”
future null infinity in the conformal picture; see Fig. 2).

1.5.1. Uniform decay estimates A foliation of stationary asymptotically flat spacetimes
by asymptotically hyperboloidal or null hypersurfaces (intersecting the event horizon to
the future of the bifurcation sphere), rather than the asymptotically flat foliation by t-level
sets is well-suited for deriving uniform decay estimates for solutions to (1.2). Indeed,
while the energy associated to the vector field generating the time translation symmetry

15 Note that in the specific case of Reissner–Nordström–de Sitter, by applying standard ODE theory, one can
appeal to regularity of mode solutions to show that for−s /∈ κ+N0∪κcN0, the regularity QNFs agree precisely
with the scattering resonances. In the case of exact de Sitter spacetimes, the set of scattering resonances is
empty but the set of regularity QNFs is non-empty and coincides with −κN0, with κ > 0 the surface gravity
of the de Sitter horizon, see [79] and the toy model problem discussed in Sect. 1.6.
16 Here, “enhanced” refers to an increase of the strength of the red shift effect when considering higher-

derivative norms.
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Fig. 2. A Penrose diagrammatic depiction of examples of an asymptotically null foliation {�τ }τ≥0 and an
asymptotically hyperboloidal foliation {�′τ }τ≥0, compared to a foliation of asymptotically flat t-level sets

is conserved along t-level sets, when considered along asymptotically hyperboloidal or
null hypersurfaces, the energy is generically decreasing in time due to energy radiation
through the event horizon and future null infinity, see Fig. 2.We refer to [7,31,33,64,71]
and references therein for energy decay results along asymptotically hyperboloidal or
null hypersurfaces in the asymptotically flat setting. Of particular relevance to the setting
of the present paper is the Dafermos–Rodnianski r p-weighted energy method [31] and
the extended methods in [5,7], which relate the existence of hierarchies of r -weighted
energy estimates along asymptotically hyperboloidal or null hypersurfaces to polynomial
energy time-decay rates.

In the context of extremal Reissner–Nordström spacetimes, energy and pointwise
decay estimates for solutions to (1.2) were first obtained by Aretakis in [10,11]. Aretakis
presented a novel instability phenomenon: transversal derivatives of waves along the
event horizon generically do not decay and higher order transversal derivatives blow
up asymptotically in time along the horizon. The mechanism for this instability is the
presence of conserved quantities along the spheres foliating the event horizon.

The conserved quantities discovered by Aretakis are intimately connected to the con-
served quantities along future null infinity that were discovered by Newman and Penrose
[65] and are present in much more general, stationary, asymptotically flat spacetimes.
Indeed, one can explicitly relate the conserved quantities at the horizon with the con-
served quantities at null infinity via a conformal transformation that maps the horizon
to null infinity [27], see [21,60].

In [5] further results were obtained regarding (1.2) on extremal Reissner–Nordström,
exploiting heavily the aforementioned connection between null infinity and the event
horizon and the presence of conserved quantities along both. In particular, the precise
leading-order behaviour in time was obtained for solutions to (1.2), demonstrating the
presence of polynomial tails, first predicted in heuristics and numerics [60,68,72]. See
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also [6] for an illustration of the importance of conserved quantities along future null
infinity in the sub-extremal setting.

1.5.2. Smoothmode solutions In [8], a scattering theory is developed in extremalReissner–
Nordström involving non-degenerate energies. As an application of this theory, it is
shown that for any smooth, superpolynomially decaying scattering data along the event
horizon and future null infinity, there exists a corresponding unique solution to (1.2) that
is smooth along an asymptotically null foliation and is moreover smooth with respect
to the coordinate 1

r at r = ∞. In particular, one can construct smooth solutions in the
above sense (with respect to 1

r ) and with the exact time dependence est for any s ∈ C

with Re s < 0. We refer to such solutions as mode solutions.
If we were to consider the infinitesimal generator of time translations A, as in The-

orem B, acting on a dense subset of a naturally r -weighted L2-based Sobolev space of
arbitrarily high order in extremal Reissner–Nordström, the point spectrum of A would
therefore include the entire open left half-plane!

The above result illustrates that weighted Sobolev spaces are ill-suited as choices for
Hilbert spaces for which the point spectrum of A coincides with the set of quasinormal
frequencies. Indeed, if we want to interpret all eigenfunctions ofA as regularity QNMs
orwe demand at least discreteness of the set of eigenvalues, we need to exclude the above
smooth mode solutions, but we cannot achieve this by simply restricting to a Sobolev
space of suitably high regularity.

An alternative motivation for the failure of weighted Sobolev spaces as candidate
Hilbert spaces, which applies also to sub-extremal Reissner–Nordström, can be found
at the ODE level by considering the functions Phor,± and Pinf,± appearing in (1.5) and
(1.6). Recall that both Pinf,− and e2sr∗ Pinf,+ are smooth in 1/r for large r , whereas
Phor,+ is smooth in r near r = r+, but e−2sr∗ Phor,− is not when |e| < M . Hence, for any
frequency s with Re s < 0, we can restrict to homogeneous solutions with boundary
behaviour Phor,+ near r = r+ to obtain a smooth solution in 1/r near r = ∞. As a result,
the corresponding radiation field rψ�m , with ψ�m a solution to (1.2), is smooth along
suitable hyperboloidal/asymptotically null hypersurfaces intersecting the horizon to the
future of the bifurcation sphere.17 This implies that, in contrast with the � �= 0 settings,
a restriction to an arbitrarily regular Sobolev space will also not ensure discreteness of
the set of eigenvalues of A in the sub-extremal (� = 0) setting.

The above observations may instil doubts on the relevance of QNMs when consider-
ing the time evolution of solutions to (1.2) in the � = 0 setting, as in Sect. 1.2, arising
from generic smooth initial data along an asymptotically hyperboloidal or null slice,
with rψ moreover smooth at infinity with respect to the coordinate 1

r . Indeed, it is not
immediately clear in this setting what singles out quasinormal mode solutions over other
smooth mode solutions with arbitrary frequencies s. See, however, Remark 1.4 for a dis-
cussion on why QNMs are relevant when considering smooth and suitably localized
initial data.

1.6. A toy model. In this section, we briefly discuss a toy model ODE which illustrates
the key differences between the � = 0 and � > 0 settings and motivates the necessity
of Gevrey regularity. We discuss this toy model at length in a companion paper [40].

17 When |e| = M , the mode solutions corresponding to any homogeneous solution to the ODE are smooth
at the horizon and at infinity with respect to 1/r , which is consistent with the scattering theory viewpoint in
[8] where exponentially decaying data along future null infinity and the event horizon that lead to smooth
solutions can be chosen independently.
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Consider the following Dirichlet problem:

Ls,κ (u) := d

dx

(

(κx + x2)
du

dx

)

+ s
du

dx
= f for x ∈ [0, 1],

u(1) = 0, (1.7)

with f a suitably regular function on [0, 1], s ∈ C and κ ≥ 0. The parameter κ plays
the role of either κc, the surface gravity of the cosmological horizon, or κ+, the surface
gravity of the event horizon. When κ = 0, the above equation models the equation for
the spherical mean of rψ with ψ a mode solution to (1.2) near infinity, with x taking on
the role of 1

r , or near the event horizon of extremal Reissner–Nordströmwith x = r−M ,
where M is the radius of the event horizon. The κ > 0 case models the � > 0 setting
with ψ a solution to the conformally invariant Klein–Gordon equation (2.9).18

One can easily verify that in the κ > 0 case, any solution to Ls,κ (u) = 0 can be
expressed as a linear combination of the following solutions:

u1(x) = 1,

u2(x) =
( x

x + κ

)− s
κ

.

Note that forRe s < 0 and s /∈ −κN,19 we have that u2 ∈ Ck([0, 1]) \ Ck+1([0, 1]) for
k = �κ−1|Re s|�, whereas u1 ∈ C∞([0, 1]). Hence, by restricting to Cn([0, 1]), with
n ∈ N suitably high depending on Re s, we can rule out the existence of homogeneous
solutions to theDirichlet problem and guarantee uniqueness of solutions to Ls,κ (u) = f .

In the κ = 0 case, any solution to Ls,κ (u) = 0 can be expressed as a linear combi-
nation of the following solutions:

u1(x) = 1,

u2(x) = e
s
x .

If Re s < 0, both solutions are smooth, so restricting to Cn or C∞ spaces will not
guarantee uniqueness of Ls,κ (u) = f in this case. Since u2 fails to be analytic at x = 0,
one way of obtaining uniqueness of solutions to Ls,κ (u) = f is to restrict to the space
of analytic solutions. However, assuming a solution u exists to (1.7) with f ≡ 1, we can

apply the Eq. (1.7), commuted with dk

dxk
, k = 0, . . . , n and n ∈ N0, to obtain

u(n+1)(0) = (−1)ns−(n+1)n!(n + 1)!,
which implies that u cannot be analytic at x = 0, so existence fails in the analytic
category. The behaviour of u(n)(0) in fact suggests instead the larger space of (σ, 2)-
Gevrey functions, with σ ∈ R>0, which are smooth functions such that moreover

sup
x∈[0,1]

∣
∣
∣
∣
dn

dxn
u

∣
∣
∣
∣ (x) ≤ Cσ−n(n!)2

18 In fact, if we replace s by 2s and κ by 2κc , the equation is precisely the equation satisfied by the spherical
mean of the radiation field on an exact de Sitter spacetime or the Minkowski spacetime, but with a reflecting
boundary condition at r = (1 + r−1c )−1 and r = 1, respectively; see (6.5).
19 When s ∈ −κN, both u1 and u2 are smooth and −κN may be thought of as regularity quasinormal

frequencies which are not scattering resonances. See also the discussion in Sect. 6 of [79].
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for all n ∈ N0 and for some constant C > 0.20

Indeed, u2 is not (σ, 2)-Gevrey if σ > |Re s| (see Lemma A.1. of [40]). Hence,
loosely speaking, the role of the exponent k in Ck spaces, that plays an important role in
the κ > 0 setting, is taken on by σ in the κ = 0 setting. Note that in the present paper it is
more convenient to work with an alternative notion of Gevrey functions, using L2-norms
rather than L∞-norms, see Sect. 3.

1.7. Main theorems. We state below rough versions of the main theorems of the paper:

Theorem 1 (Rough statement). The set of eigenvalues of the infinitesimal generator of
time-translations corresponding to the wave equation on extremal Reissner–Nordström,

A : H → H,

with H Hilbert spaces of initial data that are 2-Gevrey regular at infinity and at the
horizon and are supported on suitable asymptotically null hypersurfaces, is discrete
when restricted to the sector
{|arg(z)| < 2

3π} ⊂ C.

Remark 1.1. We do not expect the sector
{|arg(z)| < 2

3π
}
to be optimal. In the context

of a toy model equation, we in fact obtain a slightly larger sector in [40].

Theorem 2 (Rough statement). There exists subspaces Hres < H so that the union of
eigenvalues of operators of the form

A : Hres → Hres,

restricted to
{|arg(z)| < 2

3π
}
agree preciselywith poles of themeromorphic continuation

of the resolvent operator corresponding to the constant t foliation in this sector.

We refer to the eigenvalues of A : H → H in the sector
{|arg(z)| < 2

3π
}
as regu-

larity quasinormal frequencies and the eigenvalues of A : Hres → Hres as scattering
resonances, in analogy with the nomenclature introduced in the cosmological setting
in Sect. 1.4, and the corresponding eigenfunctions as regularity quasinormal modes and
resonant states, respectively. See also the more precise statements in Definitions 4.1 and
4.2.

Theorem 3 (Rough statement). For each regularity QNF s and corresponding QNM
ψ̂s in extremal Reissner–Nordström, there exists a sequence of sub-extremal Reissner–
Nordström–de Sitter spacetimes approaching extremal Reissner–Nordström with a cor-
responding sequence of regularity QNFs approaching s and regularity QNMs approach-
ing ψ̂s with respect to the norm on the Hilbert space H.

See Theorems 4.1, 4.2 and 4.4 for more precise versions of Theorems 1, 2 and 3,
respectively. Theorems 1 and 2 address the points (I) and (III)–(VI) in Sect. 1.3 and
Theorem 3 addresses (IX). In [40], we address additionally (VII) and (VIII).

Remark 1.2. Theorems 1 and 2 illustrate that we canmaintain the interpretation of quasi-
normal modes as eigenfunctions of A when � = 0, with the key difference with the
� > 0 setting being that we need to adapt out choice of function spaces by restricting to
suitablyGevrey regular functions at infinity and at the horizon; see Sect. 3. In fact, these
function spaces will allow us to simultaneously also consider the case of small � > 0
and derive estimates that are uniform in (small) �.

20 Note that a similar estimate with (n!)2 replaced by n! (1-Gevrey) would guarantee analyticity of u.
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Remark 1.3. Theorems 1 and 2 address the relation between Leaver QNFs and scattering
resonances (see Sects. 1.1.1 and 1.1.2) by presenting a “third” notion of regularity QNFs
as eigenvalues of the infinitesimal generator of time translations for the wave equation
on suitable Hilbert spaces (Theorem 1). By Theorem 2, scattering resonances form a
subset of the set of regularity QNFs. In [40], we show that, in the setting of a toy model
problem, Leaver QNFs also form a subset of the set of regularity QNFs. The present
paper and [40] therefore suggest that Leaver QNFs and scattering resonances can be
related via regularity QNFs, which would be a resolution to problem (VII).

Remark 1.4. Another consequenceofTheorems1 and2 is that the smoothmode solutions
with arbitrary frequencies s, which are mentioned in Sect. 1.5.2, do not play a role when
considering initial data with suitable Gevrey regularity at infinity and at the horizon in
the extremal setting. Moreover, we do not expect the Gevrey regularity condition at the
horizon to be necessary in the sub-extremal setting; instead, we expect it can be replaced
by finite Sobolev regularity at the horizon. Note that Gevrey regular data at infinity
include in particular data with finite Sobolev norms that are compactly supported.

If we restrict to solutions with a fixed angular frequency, we obtain an additional
statement which addresses (II) in Sect. 1.3.

Theorem 4 (Rough statement). If we restrict to a fixed angular frequency �, there exists
a radius δ� > 0 such that all the corresponding the regularity QNFs are supported
outside of the ball Bδ�

.

See Theorem 4.3 for more a precise statement.

Remark 1.5. While Theorem 4 guarantees that QNFs supported on a bounded set of
angular frequencies are supported away from the origin in the complex plane (when
restricted to an appropriate sector of the complex plane), it remains an open problem to
rule out an possible accumulation of QNFs at the origin as �→∞.

1.8. Overview of paper. We give in this section an overview of the remainder of the
paper.

• In Sect. 2, we introduce the necessary geometric notions and we set the notation
that is used in the rest of the paper.
• In Sect. 3, we introduce the main Hilbert spaces that play a role in the paper and we
define the precise notions of Gevrey regularity that we will use.
• Equipped with the notions and notation from Sects. 2 and 3, we then state precisely
the main theorems of the paper in Sect. 4.
• Before proving the theorems of Sect. 4, we present the structure of the main proofs
in Sect. 5, highlighting the main new ideas and techniques that are introduced in this
paper.
• In Sect. 6 we derive the main equations that we will use to prove estimates.
• In Sect. 7 we derive the necessary estimates in physical space that allow us to make
sense of the infinitesimal generator of time translations A on the desired Hilbert
spaces.
• In Sects. 8–10, we derive the main frequency space estimates of the paper.
• Weapply the estimates fromSects. 8–10 in Sect. 11 togetherwith functional analytic
arguments to arrive at the desired properties of A.
• Finally, we relate the eigenvalues of A to scattering resonances in Sect. 12.
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2. Geometric Preliminaries

In this section,we reviewelementaryproperties of the three-parameter family ofReissner–
Nordström–de Sitter spacetimes. We moreover introduce coordinate charts that will
allow us to treat uniformly spacetime backgrounds with non-negative cosmological con-
stants.

2.1. Reissner–Nordström(–de Sitter) spacetimes. We treat both the cases � > 0 and
� = 0. We start by considering the Lorentzian manifolds (M̃�, g�), with M̃� =
Rv × (r+, rc)r × S

2 and:

g� = −D(r)dv2 + 2dvdr + r2(dθ2 + sin2 θdϕ2),

where

D(r) = 1− 2M

r
+
e2

r2
− �

3
r2, (2.1)

M > 0, e ∈ R with |e| ≤ M , � > 0, and rc = rc(e, M,�) and r+ = r+(e, M,�) the
largest and second-largest roots of the quartic polynomial r2D(r), respectively, which
we will assume to be distinct; see Sect. 2.2 for further properties of the roots.

Given our choice of coordinates, it is immediate that we can embed M̃� into the
manifold-with-boundary M�,+ = Rv × [r+, rc]r × S

2, such that

∂M�,+ = H+ ∪ C−,

whereH+ = {r = r+} ⊂M�,+ is the future event horizon and C− = {r = rc} ⊂M�,+
is the past cosmological horizon; see Fig. 3. BothH+ and C− are null hypersurfaces and
Killing horizons with respect to the Killing vector field T = ∂v onM�,+. We moreover
take T to fix the time-orientation on M�,+.

Alternatively, we can introduce a coordinate u = v−2r∗ onM̃�, where dr
dr∗ = D(r),

and consider the coordinate chart (u, r, θ, ϕ) on M̃� = Ru × (r+, rc)r × S
2:

g� = −D(r)du2 − 2dudr + r2(dθ2 + sin2 θdϕ2).

Note thatwe can also introduce t = v+u
2 to coverM̃� with standard static coordinates

(t, r, θ, ϕ).
We can now embed M̃� into the manifold-with-boundaryM�,− = Ru×[r+, rc]r×

S
2, such that the boundary can be decomposed as follows:

∂M�,− = H− ∪ C+,
where H− = {r = r+} ⊂M�,− is the past event horizon and C+ = {r = rc} ⊂M�,−
is the future cosmological horizon. Both H+ and C− are null hypersurfaces and Killing
horizons with respect to the Killing vector field ∂u . Furthermore, ∂u = T on M̃�.

The main manifold under consideration in this paper is

M� = M̃� ∪H+ ∪ C+,
which cannot be covered by either a single (v, r) or (u, r) chart. See Fig. 3 for an
illustration.
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Fig. 3. APenrose diagrammatic representation of the embedding ofM̃� in the Reissner–Nordström–de Sitter
and Reissner–Nordström spacetimes in consideration

Now take� = 0. The corresponding two-parameter family of Lorentzian manifolds,
the Reissner–Nordström family (M̃0, g0) is defined as follows: M̃0 = Rv×(r+,∞)r×
S
2 and:

g0 = −D(r)dv2 + 2dvdr + r2(dθ2 + sin2 θdϕ2),

where

D(r) = 1− 2M

r
+
e2

r2
.

As above, we can extend M̃0 by embedding it into a manifold with boundary, working
in either (v, r) or (u, r) coordinates (defined as above, replacing rc with∞.) to obtain

M0 = M̃0 ∪H+.

In contrastwith the� > 0, the boundary ofM0 has only one connected component; there
is no cosmological horizon present. Formally, one may think of “{r = ∞}” as replacing
C+ above. This can be actually made precise by introducing a further extension ofM0;
see Sect. 2.3 for more details. See Fig. 3 for an illustration.

In fact, it is possible to extend M�,+ and M0,+ to r < r+. The additional region
in the extension is called the black hole region and it will not play a role in this paper.
Similarly, in the � > 0 case it is possible to extend M�,− to r > rc. The additional
region in this case is called the cosmological or expanding region.

2.2. Further properties of the metric. Let� > 0.We will denote l2 = 3
�
. Then it can be

shown that the polynomial r2D(r) has four roots r0 < 0 ≤ r− ≤ r+ ≤ rc, with r− = 0
if e = 0 and r− > 0 if e �= 0. The roots rc and r+ are the area radii at the cosmological
horizons C+ and C− and the event horizonsH+ andH−, respectively. If e �= 0, the root
r− corresponds to the area radius at the inner horizon. We may write

r2D(r) =− l−2(r − rc)(r − r+)(r − r−)(r − r0). (2.2)

By comparing (2.2) with (2.1), we obtain the following identities for rc, r+, r−, r0:

r0 =− (rc + r+ + r−),
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l2 = r2c + r2+ + r2− + r−r+ + r−rc + r+rc,

2M l2 = r2c (r+ + r−) + r2+(rc + r−) + r2−(r+ + rc) + 2rcr+r−,

e2l2 = (rc + r+ + r−)rcr+r−.

Using that the surface gravities corresponding to the cosmological horizon and event
horizon are given by κc = − 1

2D
′(rc) and κ+ = 1

2D
′(r+), respectively, we obtain:

κc = 1

2l2
1

r2c
(rc − r+)(rc − r−)(2rc + r+ + r−), (2.3)

κ+ = 1

2l2
1

r2+
(rc − r+)(r+ − r−)(2r+ + rc + r−). (2.4)

Let � = 0. Then the polynomial r2D(r) has three roots r0 < 0 ≤ r− ≤ r+ and

r0 =− (r+ + r−),

2M = r+ + r−,

e2 = r+r−.

Supposewefix e andM , then r+(e, M,�)→ r+(e, M, 0) and r−(e, M,�)→ r−(e, M, 0)
as l→∞. In particular, r+ and r− stay bounded as l→∞. Therefore

rc
l
→ 1

as � ↓ 0. It then follows that κc(e, M,�)→ 0 as � ↓ 0 and κ+(e, M,�)→ κ+(e, M)

as � ↓ 0.
The main spacetimes of interest in this paper are the extremalReissner–Nordström

spacetimes, which correspond to the limits � ↓ 0 and e2 ↑ M2. However, we will
consider the bigger Reissner–Nordström–de Sitter family (with suitably small κ+ and
κc) in order to arrive at the desired estimates in extremal Reissner–Nordström.

2.3. Conformal radial coordinates. Let us introduce the conformal radial coordinate
ρc = rc−r

rcr
, or equivalently, ρc = 1

r − 1
rc
. Then, dρc

dr = −r−2 and the metric g� takes
the following form in (u, ρc, θ, ϕ) coordinates:

g� = r2
(
−D(r)r−2du2 + 2dudρc + dθ2 + sin2 θdϕ2

)

with u ∈ R, ρc ∈ (0, rc−r+
rcr+

) and r = 1
ρc+r

−1
c
.

Using the expression for κc in (2.3), we can further write

Dr−2 = 2κcρc + (1− A(2)
rc )ρ2

c + A(3)
rc ρ3

c + A(4)
rc ρ4

c . (2.5)

where

A(2)
rc = 3l−2

[
rc(r+ + r−) + r2+ + r2− − r−1c r+r−(r+ + r−)

]
,

A(3)
rc = − (r+ + r−) + l−2(4rcr+r− + r3+ + r3− + 5r2+r− + 5r2−r+),

A(4)
rc = e2.
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Indeed, this follows from a Taylor expansion of Dr−2l2 in the variable ρc around ρc = 0,
using that Dr−2l2 is a polynomial in r−1 and therefore also in ρc:

Dr−2l2 = rc − r

r
(1− r+r

−1)(1− r−r−1)(1− r0r
−1)

= rcρc(1− r+r
−1)(1− r−r−1)(1 + (rc + r+ + r−)r−1)

= r−2c (rc − r−)(rc − r+)(2rc + r− + r+)ρc

+
(
r2c − 2r2− − 2r2+ + r−r+ − 2rc(r− + r+) + 3r−1c r−r+(r− + r+)

)
ρ2
c

+
(−rc(r− + r+)

2 − r2c (r− + r+) + 3r−r+(r− + r+)
)
ρ3
c + r−r+rc(rc + r− + r+)ρ

4
c

= 2κcl
2ρc + (1− A(2)

rc )l2ρ2
c + A(3)

rc l2ρ3
c + A(4)

rc l2ρ4
c .

From the above expression for (Dr−2)(ρc) it follows that by considering the conformal
metric ĝ� = r−2g� for � ≥ 0, we can embed the Lorentzian manifold (M̃�, ĝ�) into
the manifold-with-boundary (M̂�, ĝ�), with M̂� = Ru ×[0, rc−r+

rcr+
)ρc ×S

2. If � > 0,

we have that ∂M̂� = {ρc = 0} = C+. In the � = 0 case, we define

I+ := ∂M̂0 = {ρc = 0},

and we refer to I+ as future null infinity. Note that I+ is a degenerate Killing horizon,
i.e. it has vanishing surface gravity with respect to the conformal metric ĝ�.

In order to be able to treat the spacetime regions near H+ and C+ simultaneously,
we introduce another radial coordinate that plays a similar role to ρc. Let ρ+ = r−r+

r+r
, or

equivalently,ρ+ = 1
r+
− 1

r . Then,
dρ+
dr = r−2.We can change from (v, r, θ, ϕ) coordinates

to (v, ρ+, θ, ϕ) coordinates on M�,+ and then it is immediate that

∂M�,+ = H+ = {ρ+ = 0}

for both the � > 0 and � = 0 cases. Note that in this case there is no need to pass to a
conformal metric and extend the spacetime as the original metric g� is well-defined at
H+ when � ≥ 0.

Using the expression for κ+ in (2.4), we can write

Dr−2 = 2κ+ρ+ + (1− A(2)
r+ )ρ2

+ + A(3)
r+ ρ3

+ + A(4)
r+ ρ4

+, (2.6)

where

A(2)
r+ = 3l−2

[
r+(rc + r−) + r2c + r2− − r−1+ rcr−(rc + r−)

]
,

A(3)
r+ = (r+ + r−)− l−2

[
4rcr+r− + r3c + r3− + 5r2c r− + 5r2−rc

]
,

A(4)
r+ = e2.
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This follows from a Taylor expansion of Dr−2l2 in the variable ρ+ around ρ+ = 0, using
that Dr−2l2 is a polynomial in r−1 and therefore also in ρ+:

Dr−2l2 = − r − r+
r

(1− rcr
−1)(1− r−r−1)(1− r0r

−1)

= − r+ρ+(1− rcr
−1)(1− r−r−1)(1 + (r+ + r− + rc)r

−1)
= r−2+ (rc − r+)(r+ − r−)(2r+ + rc + r−)ρ+

+
(−2r2c − 2r2− + rcr− − 2(rc + r−)r+ + r2+

)
ρ2
+

+
(−3rcr−(rc + r−) + r+(rc − r−)2 + r2+(rc + r−)

)
ρ3
+ + rcr−r+(rc + r− + r+)ρ

4
+

= 2κ+l
2ρ+ + (1− A(2)

r+ )l2ρ2
+ + A(3)

r+ l2ρ3
+ + A(4)

r+ l2ρ4
+.

It is convenient to introduce the following modification of ρ+ and ρc. We will employ
the notation ρ when we do not discriminate between ρ+ and ρc. Let

ρ̃ = ρ

1− Mρ
.

Then

∂ρ = dρ̃

dρ
∂ρ̃ = 1

(1− Mρ)2
∂ρ̃ .

Furthermore,

ρ = ρ̃

1 + M ρ̃
.

Note in particular that ρ̃(0) = 0.

2.4. Foliations. We will construct a suitable spacelike hypersurface �0 inM�.
In order to avoid ambiguity when passing from (v, r) to (u, r) coordinates, we intro-

duce the following null vector fields:

L = T +
D

2
∂r ,

L = − D

2
∂r ,

L̂ = r2∂r ,

with respect to (v, r) coordinates. The vector fields L and L take the following form
when expressed in (u, r) coordinates:

L = D

2
∂r ,

L = T − D

2
∂r .

Let us also define the rescaled vector field

L̂ = −r2∂r .
Consider a piecewise smooth function hr+ : (r+, rc) → R, where rc ≤ ∞, satisfying
the following properties:
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(i) 0 ≤ hr+(r) ≤ 2
D(r) ,

(ii) |h+(r)| ≤ C0 in {r ≤ r+ + min{r+, rc−r+
2 }},

(iii) |r2(2D−1 − hr+)(r)| ≤ C0M2 in {r ≥ r+ + min{r+, rc−r+
2 }},

with C0 > 0 a numerical constant.
It will be useful to consider the following special choice of hr+ : take hr+ to be a

piecewise smooth function, with hr+(r) = 0 when r < r((ρ+)0), hr+(r) = 2D−1(r)
when r > r((ρc)0) and 0 < hr+(r) < 2D−1 smooth when r((ρ+)0) ≤ r ≤ r((ρ+)0).
Note that hr+ is therefore discontinuous at r = r((ρ+)0) and r((ρc)0), and it is smooth
everywhere else.

We define hrc(r) := 2D−1(r)− hr+(r) and introduce the vector field

Y = − 2

D
L + hr+T =

2

D
L − hrc T .

Note that the properties (i)–(iii) above imply that Y must be spacelike or null everywhere.
Let γ : (r+, rc)→ Rv × (r+, rc)r be the unique function that satisfies:

(a) limr↓r+ γ (r) = (v0, r+), with v0 > 0,
(b) d

dr γ (r) = Y .

Then (γ, θ0, ϕ0) defines an integral curve of Y inM� for each θ0 ∈ (0, π), ϕ0 ∈ (0, 2π)

that has a limit point (v0, r+, θ0, ϕ0) ∈ H+ in (v, r) coordinates.
The hypersurface �0 = γ × S

2 ⊂ M� is null or spacelike everywhere and has a
boundary that intersectsH+ at H+ ∩ {v = v0}.

Let us denote with v�0(r) the value of the v coordinate along �0 and u�0(r) the

value of the u coordinate along �0. By construction
dv�0
dr = hr+ .

Since u = v − 2r∗, we have that
du�0

dr
= hr+ − 2D−1 = −hc(r).

Let r0 < r+ be arbitrary. By property (i)–(iii) above, we can bound for all r ∈ (r0, rc):
|hc(r)| ≤ C(r0)M2r−2, for some constant depending on r0. After integrating in r from
r = r0 to r = rc or r = ∞, it therefore follows that u|�0 attains a finite value as r → rc
or r →∞. In other words, the curve (γ, θ0, ϕ0) has a limit point on C+ or I+.

We define a foliation�τ by flowing�0 along the integral curves of T , with T (τ ) = 1.
We denote

R =
⋃

τ∈[0,∞)

�τ .

See Fig. 2 for an illustration in the � = 0 setting.
By considering the extensions �̂τ of �τ in the larger manifold M̂� ∪H+, we can

moreover consider the region
R̂ =

⋃

τ∈[0,∞)

�̂τ .

We introduce the coordinate chart (τ, r, θ, ϕ) associated to the foliation �τ . In these
coordinates, we have that ∂τ = T and ∂r = Y .

We will also consider (τ, ρ̃+, θ, ϕ) coordinates. In these coordinates,

∂ρ̃+ = (1 + M ρ̃+)
−2∂ρ+ = (1 + M ρ̃+)

−2r2Y = (1 + M ρ̃+)
−2 L̂ + r2hr+(1 + M ρ̃+)

−2T .

(2.7)
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If instead we consider (τ, ρ̃c, θ, ϕ) coordinates, we can express

∂ρ̃c = (1 + M ρ̃c)
−2∂ρc = −(1 + M ρ̃c)

−2r2Y = (1 + M ρ̃c)
−2 L̂ + r2hrc (1 + M ρ̃c)

−2T .

(2.8)
Let us define ĥ = r2h(1 + M ρ̃)−2, where h = hr+ or h = hrc and ρ = ρ+ or ρ = ρc,
respectively.

Let (ρ+)0, (ρc)0 ∈ (0, rc−r+
rcr+

).Wedenote r((ρ+)0) = r |ρ+=(ρ+)0 , r((ρc)0) = r |ρc=(ρc)0

and assume (ρ+)0, (ρc)0 are chosen such that r((ρ+)0) < r((ρc)0).
Consider again the special choice of hr+ defined above: hr+(r) = 0 when r <

r((ρ+)0), hrc(r) = 0 when r > r((ρc)0) and 0 < hr+(r) < 2D−1 smooth when
r((ρ+)0) ≤ r ≤ r((ρ+)0).

With the above choice of hr+ , we can split

�τ = N τ ∪ Sτ ∪ Nτ ,

where N τ = �τ ∩ {r ≤ r((ρ+)0)} are ingoing null hypersurfaces, Nτ = �τ ∩ {r ≥
r((ρc)0)} are outgoing null hypersurfaces and Sτ = �τ ∩ {r((ρ+)0) ≤ r ≤ r((ρc)0)}
are spacelike.

2.5. Additional notation. For convenience, let us introduce the following notation: let
0 < (ρ+)0, (ρc)0 < rc−r+

rcr+
, then

R+
0 := r((ρ+)0),

Rc
0 := r((ρc)0).

Suppose ψ is a solution to the conformally invariant Klein–Gordon equation

�g�ψ = 1

6
R[g�]ψ = 2

3
�ψ = 2l−2ψ, (2.9)

where R[g�] is the Ricci scalar corresponding to the metric g�. Note that in the case
� = 0, (2.9) is simply the wave equation with respect to the Reissner–Nordströmmetric
g0.

We denote the components of the stress-energy tensor corresponding to (2.9) as
follows:

Tμν[ψ] = ∂μψ∂νψ − 1

2
gμν[(g−1)αβ∂αψ∂βψ + 2l−2ψ2]

and we denote with nτ the normal vector field to �τ and dμτ the induced volume form
on �τ . We also use the notation n�0 := n0 and dμ�0 := dμ0. Note that if �τ has an
null piece, we let dμτ = r2 sin θdθdϕ along the null piece and nτ = L if the null piece
is ingoing and nτ = L if it is outgoing.

3. Gevrey Regularity and Hilbert Spaces

In this section, we introduce a notion of Gevrey regularity andwe define themain Hilbert
spaces that will be relevant in the paper.
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Definition 3.1. Wedefine the (σ, 2)-Gevrey inner products 〈·, ·〉G2
σ, j,ρ0

with j = 0, 1, 2

on the space C∞((0, ρ0);C) with σ ∈ R>0 and ρ0 > 0 as follows: let f, g ∈
C∞((0, ρ0);C), then

〈 f, g〉G2
σ,0,ρ0

=
∞∑

n=0

σ 2n

n!2(n + 1)!2
∫ ρ0

0
∂nρ f ∂nρ g dρ,

〈 f, g〉G2
σ,1,ρ0

=
∞∑

n=0

σ 2n

n!2(n + 1)!2
∫ ρ0

0

[
∂nρ f ∂nρ g + ∂n+1ρ f ∂n+1ρ g

]
dρ,

〈 f, g〉G2
σ,2,ρ0

=
∞∑

n=0

σ 2n

n!2(n + 1)!2
∫ ρ0

0

[
∂nρ f ∂nρ g + ∂n+1ρ f ∂n+1ρ g + ρ4∂n+2ρ f ∂n+2ρ g

]
dρ.

We denote the corresponding norms by || · ||G2
σ,0,ρ0

, || · ||G2
σ,1,ρ0

, || · ||G2
σ,2,ρ0

, respectively.

We refer to functions f ∈ C∞((0, ρ0);C) with || f ||G2
σ,0,ρ0

< ∞ as (σ, 2)-Gevrey

functions on [0, ρ0].
Lemma 3.1. The spaces (G2

σ, j,ρ0
, 〈·, ·〉G2

σ, j,ρ0
), with j = 0, 1, 2, and

G2
σ, j,ρ0 :=

{
f ∈ C∞((0, ρ0);C) | || f ||G2

σ, j,ρ0
<∞

}
,

are Hilbert spaces.

Proof. It is straightforward to see that (G2
σ, j,ρ0

, 〈·, ·〉G2
σ, j,ρ0

) are well-defined inner prod-

uct spaces. We will show that every Cauchy sequence in G2
σ, j,ρ0

converges with respect
to || · ||G2

σ, j,ρ0
. We will consider the case j = 0. The cases j = 1, 2 can be treated

similarly. Let { fn} be a Cauchy sequence in G2
σ,0,ρ0

. By standard Sobolev embeddings

on (0, ρ0) and completeness of the Sobolev spaces HN , we must have that fn converges
in HN to a smooth function f , for any N ∈ N.

By the Cauchy property of { fn}, we have that for all ε > 0, there exists L > 0 such
that for all k > l > L and for any N ∈ N0:

N∑

n=0

σ 2n

n!2(n + 1)!2 ||∂
n
ρ ( fk − fl)||2L2(0,ρ0)

< ε.

Hence, by taking the limit k →∞ and using the convergence of { fn} in HN , we obtain
that for any N ∈ N0,

N∑

n=0

σ 2n

n!2(n + 1)!2 ||∂
n
ρ ( f − fl)||2L2(0,ρ0)

< ε.

We can now take the limit N → ∞ to obtain f − f� ∈ G2
σ,0,ρ0

, and we can conclude

that f ∈ G2
σ,0,ρ0

. ��
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Definition 3.2. Let 0 < ρ0 = (ρ+)0 = (ρc)0 < rc−r+
rcr+

, with rc < ∞ or rc = ∞. For
a function f ∈ C∞((r+, rc);C), we denote f+ = f |r∈(r+,R+

0 ) and fc = f |r∈(Rc
0,rc)

. We
introduce the following inner product on C∞((r+, rc);C): let f, g ∈ C∞((r+, rc);C),
then

〈 f, g〉σ,ρ0 := 〈r f+, rg+〉G2
σ,0,ρ0

+ 〈r fc, rgc〉G2
σ,0,ρ0

+ 〈 f, g〉L2[R+
0 ,Rc

0],

〈 f, g〉σ,1,ρ0 := 〈r f+, rg+〉G2
σ,1,ρ0

+ 〈r fc, rgc〉G2
σ,1,ρ0

+ 〈 f, g〉H1[R+
0 ,Rc

0],

〈 f, g〉σ,2,ρ0 := 〈r f+, rg+〉G2
σ,2,ρ0

+ 〈r fc, rgc〉G2
σ,2,ρ0

+ 〈 f, g〉H2[R+
0 ,Rc

0].

We denote the norms corresponding to 〈·, ·〉σ,ρ0 , 〈·, ·〉σ,1,ρ0 and 〈·, ·〉σ,2,ρ0 by || · ||σ,ρ0 ,|| · ||σ,1,ρ0 and || · ||σ,2,ρ0 , respectively. We then define the Hilbert spaces Hσ,ρ0 , Hσ,1,ρ0 ,
Hσ,2,ρ0 as the completions of the spaces

{ f ∈ C∞((r+, rc);C) | ||r f+||G2
σ,0,ρ0

+ ||r fc||G2
σ,0,ρ0

<∞},
{ f ∈ C∞((r+, rc);C) | ||r f+||G2

σ,1,ρ0
+ ||r fc||G2

σ,1,ρ0
<∞},

{ f ∈ C∞((r+, rc);C) | ||r f+||G2
σ,2,ρ0

+ ||r fc||G2
σ,2,ρ0

<∞}.

with respect to the norms || · ||σ,ρ0 , || · ||σ,1,ρ0 and || · ||σ,2,ρ0 , respectively.

Let � ∈ N0 and consider the projection operators

π� :L2(S2)→ L2(S2),

π� f = f� :=
�∑

m=−�

f�mY�m(θ, ϕ),

with f�m ∈ C and Y�m ,m = −�, . . . , � the spherical harmonics with angular momentum
�.

The operator π� is well-defined on the domains C∞(�0) and C∞(S0), and since it
is a bounded linear operator with respect to || · ||L2(�0)

and || · ||L2(S0), the following
extensions are also well-defined:

π� : L2(�0)→ L2(�0),

π� : L2(S0)→ L2(S0).

We use the notation π� both for the operator acting on L2(S2) and the extensions to
L2(�0) and L2(S0), for the sake of notational convenience.

Let us now introduce the sets of fixed angular momentum �:

V� = ker(π� − id)× ker(π� − id) ⊂ L2(�0)× L2(S0).

Note that ∂ϕY�m = imY�m . We denote moreover

V�m = (ker(π� − id)× ker(π� − id)) ∩ (ker(∂ϕ − im)× ker(∂ϕ − im)).
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Definition 3.3. Let�0 = N 0∪S0∪N0.We introduce the followingnormonC∞(�0;C)×
C∞(S0;C): let � ∈ C∞(�0;C) and � ′ ∈ C∞(S0;C). We denote with ψ the unique
solution to the wave equation satisfying ψ |�0 = � and Tψ |S0 = � ′. Then:

||(�,� ′)||2Hσ,ρ0
:=
∫

�0

T(T, n�0)[ψ] dμ�0

+
∞∑

�=0

[ �−1∑

n=1

σ 2n

�2n(� + 1)2n
(� + 1)4

∫

N0

|L̂n
(r��)|2 dωdρ+

+
�2�(� + 1)2�

�!2(� + 1)!2
∞∑

n=�

σ 2n

n!2(n + 1)!2 (n + 1)4
∫

N0

|L̂n
(r��)|2 dωdρ+

]

+
∞∑

�=0

[ �−1∑

n=1

σ 2n

�2n(� + 1)2n
(� + 1)4

∫

N0

|L̂n(r��)|2 dωdρc

+
�2�(� + 1)2�

�!2(� + 1)!2
∞∑

n=�

σ 2n

n!2(n + 1)!2 (n + 1)4
∫

N0

|L̂n(r��)|2 dωdρc

]

.

We denote with Hσ,ρ0 the completion of {( f, g) ∈ C∞(�0;C) × C∞(S0;C) | ||( f,
g)||Hσ,ρ0

< ∞} with respect to the norm ||(·, ·)||Hσ,ρ0
. Furthermore, Hσ,ρ0 is a Hilbert

space with respect to the natural choice of inner product.

In the proposition below, we state useful relations between the Hilbert spaces Hσ,i,ρ0 ,
with i = 0, 1, and Hσ,ρ0 .

Proposition 3.2. Let � ∈ N0.

(i) Let ��m ∈ Hσ,1,ρ0 and � ′�m ∈ L2[R+
0 , Rc

0] for all |m| ≤ �. Denote ��(r, θ, ϕ) =
∑�

m=−� ��m(r)Y�m(θ, ϕ) and � ′�(r, θ, ϕ) =∑�
m=−� � ′�m(r)Y�m(θ, ϕ). Then

(��,�
′
�) ∈ Hσ,ρ0 ∩ V�.

(ii) Let (��,�
′
�) ∈ Hσ,ρ0 ∩ V�. Then we can write

(��,�
′
�)(r, θ, ϕ) =

m=�∑

m=−�

(��m(r)Y�m(θ, ϕ),� ′�m(r)Y�m(θ, ϕ))

and we have that
��m ∈ Hσ,1,ρ0 and � ′�m ∈ L2[R+

0 , Rc
0].

Proof. The proof is a straightforward application of the definitions of Hσ,ρ0 , Hσ,ρ0 , and
Hσ,1,ρ0 . We use that the factor (n + 1)4 appearing in the infinite sums in the definition
of || · ||Hσ,ρ0

implies control over similar infinite sums with one additional ρ+ or ρc

derivative, but no factor (n + 1)4. This allows us to conclude that not only ��m ∈ Hσ,ρ0 ,
but in fact ��m ∈ Hσ,1,ρ0 . ��

We will moreover need the following Hilbert spaces in the case where κ+ and κc are
strictly positive. Let k ∈ N and define

H̃ k := L2((R+
0 , Rc

0)× S
2) ∩ Hk((r+, R

+
0 )× S

2) ∩ Hk((Rc
0, rc)× S

2),

H̃ k
2 := H2((R+

0 , Rc
0)× S

2) ∩ Hk((r+, R
+
0 )× S

2) ∩ Hk((Rc
0, rc)× S

2).
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4. Precise Statements of the Main Theorems

In this section, we state the main theorems of the paper. We make use of the notation
and concepts introduced in Sects. 2 and 3.

4.1. Construction of regularity quasinormal modes. We first provide a construction of
regularity quasinormal modes in the extremal Reissner–Nordström setting (as referred
to in Sect. 1.7) and describe their relation with the scattering resonances (cf. Approach
2 of Sect. 1.1).

Theorem 4.1. Assume that either κ+, κc > 0 or κ+ = κc = 0. Let σ ∈ R>0 and let
ρ0 > 0 be suitably small. Then the family of solution operators

S(τ ) : Hσ,ρ0 → Hσ,ρ0 ,

(ψ |�0 , Tψ |S0) �→ (ψ |�τ , Tψ |Sτ ),

with ψ the solution to (2.9) corresponding to initial data (ψ |�0 , Tψ |S0), define a C0-
semigroup and the corresponding infinitesimal generatorA : Hσ,ρ0 ⊇ Dσ (A)→ Hσ,ρ0

satisfies the following properties: let

�σ =
{
z ∈ C |Re z < 0, |z| < σ, 3(Im z)2 − 5(Re z)2 > σ 2

}
∪{z ∈ C|Re z ≥ 0, z �= 0} ⊂ C,

then

(i)
Spectpoint(A) ∩�σ = �σ

QNF

is independent of ρ0, with �σ
QNF ⊂ �σ ∩ {Re z < 0} a discrete set of eigenvalues

which moreover have finite multiplicity.
(ii) The set

�QNF :=
⋃

σ∈R>0

�σ
QNF ⊂

{

−Re z <
1

2
|z|
}

=
{

|arg(z)| < 2

3
π

}

,

is a discrete subset of
{|arg(z)| < 2

3π
}
(i.e. with accumulation points only possible

on the boundary of
{|arg(z)| < 2

3π
}
in C).

Theorem 4.1 follows from Corollary 11.10. See also Fig. 4 for a pictorial representation
of �σ .

Definition 4.1. We refer to the elements of�QNF as regularity quasinormal frequen-
cies and the corresponding eigenvectors as regularity quasinormal modes.

Theorem 4.2. Assume that either κ+, κc > 0 or κ+ = κc = 0, and consider the operator

Ls(ψ̂) = d2

dr2∗
(rψ̂)− s2rψ̂ + Dr−2 /̊�(rψ̂)− r−1DD′ · rψ̂ − 2l−2D · rψ̂,

with /̊�(·) = 1
sin θ

∂θ (sin θ∂θ (·)) + 1
sin2 θ

∂2ϕ(·) the standard Laplacian on the unit round
sphere.
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(i) Then for all Re s > 0 and any two smooth, compactly supported cut-off functions
χ, χ ′ : (r+, rc)r → R (with rc ≤ ∞), the inverse map

χ ′ ◦ R(s) ◦ χ := χ ′ ◦ L−1s ◦ χ : L2({t = 0})→ H2({t = 0})
defines a holomorphic family of bounded linear operators that admits a meromorphic
continuation to

{|arg(z)| < 2
3π
} ⊂ C with the set of poles �res

QNF satisfying

�res
QNF ⊆ �QNF .

(ii) For all σ ∈ R>0 and for ρ0 > 0 suitably small, there exist S(τ )-invariant subspaces
Hres

σ,ρ0
< Hσ,ρ0 such that the infinitesimal generators Ares corresponding to the

restricted operators S(τ ) : Hres
σ,ρ0

→ Hres
σ,ρ0

satisfy:

⋃

σ∈R>0

Spectpoint(Ares) ∩�σ = �res
QNF .

Theorem 4.2 follows from Propositions 12.2 and 12.3.

Definition 4.2. We refer to the regularity quasinormal modes that are elements of the
subspace Hres

σ,ρ0
as resonant states and the corresponding eigenvalues as scattering

resonances.

4.2. Further properties regarding the distribution of quasinormal frequencies. We state
here additional results regarding the distribution of regularity quasinormal modes and
their relation to regularity quasinormal modes in the setting of positive �.

Theorem 4.3. The following additional properties hold for �QNF:

(i) Let � ∈ N and denote with��
QNF the subset of�QNF corresponding to eigenvectors

in V�. Then
��

QNF = Spect(A|V�
),

i.e. A|V�
has a pure point spectrum. Furthermore, for all L > 0, there exists δL > 0

such that
L⋃

�=0
��

QNF ∩ {z ∈ C | |z| ≤ δL} = ∅.

(ii) Let K ⊂ {|arg(z)| < 2
3π
}
be a compact set. Then there exists L = L(K ) ∈ N such

that

ker(A|Hσ,ρ0
− s) =

L∑

�=0
π�

(
ker(A|Hσ,ρ0

− s)
)

for all σ ∈ R>0, for ρ0 > 0 suitably small and s ∈ �σ ∩ K.
(iii) The map s �→ (A|Hσ,ρ0∩V�

− s)−1 is meromorphic on �σ with the poles coinciding

with the elements of ��
QNF ∩�σ .

Theorem 4.3 is included in a combination of the results of Propositions 11.3, 11.5 and
refprop:relationAL.
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Remark 4.1. Theorem 4.3 illustrates that when restricting to fixed angular frequencies,
there are no regularity quasinormal frequencies near the zero frequency (when restricted
to
{|arg(z)| < 2

3π
}
). Furthermore, regularity quasinormal modes are supported on a

bounded set of angular frequencies.

Theorem 4.4. Let s∗ ∈ �QNF and let ψ̂s∗ a corresponding regularity quasinormal
mode. Then for any sequence of sufficiently small positive cosmological constants �n
approaching zero and charges en approaching M, there exists a corresponding sequence
of regularity quasinormal frequencies sn for the equation (2.9) and a corresponding
sequence of regularity quasinormal modes ψ̂n, such that for all suitably small ρ0 > 0:

sn → s∗,
||(ψ̂s∗)�m − (ψ̂n)�m ||σ,ρ0 → 0 for all � ∈ N and m ∈ Z, with |m| ≤ �.

Theorem 4.4 is a reformulation of Proposition 11.7.

Remark 4.2. Theorem 4.4 shows that for each extremal Reissner–Nordström regularity
quasinormal frequency, there is a corresponding converging sequence of sub-extremal
Reissner–Nordström–de Sitter regularity quasinormal frequencies.

5. Structure of Proofs and Main Ideas and Techniques

In this section we sketch the logic and structure of the proofs of the theorems stated in
Sect. 4 and we highlight the main new ideas and techniques that are introduced in this
paper.

5.1. Infinitesimal generators of time translations and resolvent operators. The theo-
rems in Sect. 4 are concerned with the operator A, which is a densely defined, closed,
unbounded operator that generates the time translation semigroup corresponding to a
mixed spacelike-null foliation of the spacetime (see Sect. 2.4). Rather than inferring
properties about the spectrum ofA by proving estimates forA directly, we first consider
the restrictionsA� = A|V�

to fixed spherical harmonic modes and use that the invertibil-
ity of A� − s is equivalent to the existence of the operator L̂−1s,� , which is the resolvent
operator corresponding to fixed spherical harmonic modes on a mixed spacelike-null
foliation. The precise definitions ofA� and L̂s,� and their relation are described in detail
in Sect. 7.

The equivalence of the invertibility of A� − s with the existence of L̂−1s,� can also
be easily seen when one considers (2.9) with respect to the Minkowski metric, i.e. the
standard wave equation, and investigates the existence of the standard resolvent operator
(�R3−s2)−1. In that case, the infinitesimal generator of time translationA corresponding
to a foliation by hypersurfaces of constant t (the standard time coordinate) is given by:

(A− s)

(
�

� ′
)

=
(
0 1
1 −s

)(−�R3 + s2 0
0 1

)(−1 0
−s 1

)(
�

� ′
)

.

Since the first and third matrix on the right-hand side above are clearly invertible, it
follows immediately that invertibility of A− s is related to existence of (�R3 − s2)−1,
which is the resolvent operator with respect to a foliation by t-level sets. This kind of
relation between A� and L̂s,� also plays a central role in the proof of Theorem B.

Note that in passing from A� − s to L̂s,�, we lose the simple dependence of the
operator on s but we gain the ability to apply Fredholm theory, see Sect. 5.2.
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5.2. Fredholm theory for resolvent operators. We will show that the operator

L̂−1s,� : Hσ,ρ0 → Hσ,ρ0

is compact and holomorphic in s, provided s lies in suitable sector of the complex plane
(depending on the choice of σ , but independent of ρ0), for sufficiently large � (or for
bounded � and sufficiently small |s|), which allows us to apply the Analytic Fredholm
Theorem to infer meromorphicity of L̂−1s,� for all �.21

As a corollary, we conclude that A� has a pure point spectrum in a suitable sector
including the imaginary axis and moreover, if we restrict to eigenvalues in any compact
subset, then all corresponding eigenfunctions of A must be supported on a bounded set
of angular frequencies, so the spectra of A� in fact determine fully the point spectrum
of A.

5.3. Key estimates. As described in the previous paragraphs, we reduce the problem
of characterizing the point spectrum of A to establishing compactness of the resolvent
operator L̂−1s,� for suitably large �. We establish compactness by showing that in fact

L̂−1s,�(Hσ,ρ0) ⊆ Hσ,ρ0,2

and using that Hσ,ρ0,2 can be compactly embedded in Hσ,ρ0 . The compactness of this
embedding follows from an analogue of the Rellich–Kondrachov theorem to the setting
of L2-based Gevrey norms.

The arguments discussed so far can bemostly considered “soft” (as they are primarily
variations of well-stablished results in functional analysis), and the “hard” part of the
proofs consists of proving the estimate:

||ψ̂ ||σ,ρ0,2 ≤ C�,s ||L̂s,�(ψ̂)||σ,ρ0 (5.1)

with a constant C�,s > 0. The estimate (5.1) is central to establishing existence and
compactness of L̂−1s,� . In fact, in order to prove Theorem 4.2, we need a refined version
of (5.1), where we keep more precise track of the �-dependence in the constant, but we
will ignore that point in the discussion in the present section.

We give an outline below of the main steps involved in obtaining (5.1). We will carry
out the discussion for the shifted operator Ls,κ,� := Ls,κ − �(� + 1) where Ls,κ is the
operator appearing in the toy model equation (1.7). The logic of the proof in the context
of the toy model is very similar to the real problem. The key difference that appears
when considering the true resolvent operator are discussed in Sect. 5.4 below.

(1) The resemblance of the operator L̂s,� to its toy model version Ls,κ=0,� applies only
in regions near the event horizon and infinity (where r is large or r is close to the
horizon radius M). These regions are both modelled by the interval [0, 1] in the toy
model problem. We consider dn

dxn (Ls,κ,�(u)) in [0, 1] with κ ≥ 0 and use (1.7) to
write:

d

dx

(
(κx + x2)u(n+1)

)
+(2nx+κn)u(n+1)+su(n+1) = (�(�+1)−n(n+1))u(n)+

dn

dxn
(Ls,κ,�(u)),

(5.2)

21 One should think of the �-dependent terms in L̂−1s,� as zeroth order terms with a favourable sign, cf. the
existence theory for solutions to uniformly elliptic PDE on compact domains, see for example Theorem 3 of
Sect. 6.2 in [39].
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with u(k) = dku
dxk

.
We take the square norm on both sides of (5.2) and integrate in x . In order to derive
the desired estimate, we need to absorb the term (�(� + 1) − n(n + 1))2|u(n)|2 that
appears with a bad sign in the estimate. Observe that this term vanishes when n = �.
Furthermore, when n > �, we can absorb it into the analogous estimate with n
replaced by n − 1, provided we multiply with appropriate n-dependent weights.
This observation motivates the following integration and summation over n:

N∞∑

n=�

σ̃ 2n|s|2n
n!2(n + 1)!2

∫ 1

0
[·] dx .

Indeed, such a summation allows us to absorb non-coercive terms, which arise by
taking the square norm of both sides of (5.2), into the estimates of either order
n−1 or n +1. The above summation moreover elucidates the relevance of L2-based
Gevrey regularity. In order for this procedure to work, it is in particular necessary
that Re s > − 1

2 |s| and we set σ = σ̃ |s|.
A caveat of the above summation procedure is that at the top order n = N∞ we

cannot absorb into order n = N∞+1. If we had assumed a priori the finiteness of the
Gevrey norm for u that we want to estimate, then these top order terms would vanish
in the limit N∞ →∞. We do not make such an a priori assumption, but instead, we
restrict to the case of positive κ and make use of the presence of a red-shift effect in
the problem when κ > 0 (using that κ plays the role of a surface gravity), which is
moreover stronger for larger values of n (this is known as the “enhanced red-shift
effect” and it also plays an important role in the proof of Theorem B), to absorb
the top order term, assuming N∞ > Nκ with Nκ → ∞ as κ ↓ 0. After closing
the estimate for κ > 0, we can then take the limit N∞ → ∞ on both sides of the
estimate to arrive at an L2-based Gevrey estimate for κ > 0 that is uniform in κ ,
without control of the lower order derivatives with 0 ≤ n ≤ �− 1.

(2) We control derivatives with 0 ≤ n ≤ �− 1 by modifying the estimates above with
suitable exponential weights so that we can control lower-order terms by higher-
order terms and boundary terms at x = 1 via “Carleman-type” estimates. It is im-
portant in this step that we can close the Gevrey estimates with n ≥ � independently
of the n ≤ �− 1 estimates (modulo boundary terms at x = 1). We can control the
boundary terms at x = 1 in terms of the lowest order derivatives: |u|2(1) (which
vanishes in the toy problem, by assumption) and | dudx |2(1), together with deriva-
tives of Ls,κ,�(u), by applying (5.2) repeatedly. As a result, the constant multiplying
| dudx |2(1) grows exponentially in �.

(3) In order to pass from L2-based Gevrey estimates to the toy model analogue of (5.1),
we need to estimate the | dudx |2(1) boundary term that is multiplied by a constant that
grows exponentially in �. In the real problem, this amounts to estimating boundary
terms along a large fixed constant r hypersurface and a constant r hypersurface
with r close to the horizon area radius M , which arise from restricting the Gevrey
estimates to the near-infinity and near-horizon regions, respectively.
We make use of a new type of degenerate elliptic estimate, with a degeneracy that
depends on �, to achieve the desired bounds. In the context of the toymodel problem,
we can write

xk
∣
∣
∣
∣
d

dx

(

(κx + x2)
du

dx

)

− �(� + 1)u

∣
∣
∣
∣

2

= xk
∣
∣
∣
∣s
du

dx
+ Ls,κ,�(u)

∣
∣
∣
∣

2
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for k ≥ 0. We arrive at a suitable degenerate elliptic estimate by integrating the
above equation over an interval [η, 1], where η > 0 is suitably small, integrating by
parts, and averaging out the x = η boundary terms with a suitable cut-off function.
We can then absorb the term proportional to xk |s|2| dudx |2 that appears on the right-
hand side into a term proportional to xk+2�(�+1)| dudx |2 that appears with a good sign
on the left-hand side, provided � is chosen suitably large depending on η and |s|.22

Furthermore, the degenerate elliptic estimate is only valid if 0 ≤ k � �. In other
words, for larger �, we can introduce a stronger degeneracy in the elliptic estimate
at x = 0. As a result, we can multiply the terms arising from the cut-off near x = η

with a factor that decays exponentially in �.
Let usmoreover note that physical space versions of the above degenerate elliptic

estimates also play a key role in deriving the leading-order behaviour (polynomial
tails) of ψ�; see the upcoming work [3].

(4) We couple the Gevrey estimates with the above degenerate elliptic estimates, ab-
sorbing the coupling terms by using that the exponentially decaying factor in � in
the elliptic estimates cancels out the exponentially growing factor in the Gevrey
estimates that appears in front of the boundary term. We arrive at the toy model
analogue of (5.1) with κ > 0, but C�,s still independent of κ .

(5) Using the uniformity in κ of the κ > 0 estimates, we can construct L−1s,κ=0,� and
establish its compactness as a limit of κ > 0 operators as κ ↓ 0.

5.4. Conservation laws for spherical harmonicmodes. Acrucial step in the above sketch
of the L2-based Gevrey estimates above is the vanishing of the term (�(� + 1) − n(n +
1))2|u(n)|2 when n = �. This is in fact a manifestation of a conservation law along null
infinity in Minkowski that is present in physical space. Indeed,

∂u

(
(r2∂v)

�+1(rψ�)
)
= 0

along I+ for solutions ψ� to (2.9) on Minkowski arising from suitable Cauchy initial
data that are supported on spherical harmonic modes with angular frequency �.

In Reissner–Nordström spacetimes, however, we generically have that

∂u

(
(r2∂v)

�+1(rψ�)
)
�= 0

along I+. Nevertheless, there are still conserved quantities present which are linear
combinations of (r2∂v)

n(rψ�) with n ≤ �. Hence, rather than considering derivatives of
the form (r2∂v)

n(rψ�), we need to modify the n-th order quantities in order to see the
conservation law, so that we can close the Gevrey estimates starting at n = �.

In the extremal Reissner–Nordström case, the required modification can be done
explicitly by an appropriate change of coordinates, see Sect. 6.4. Furthermore, there are
similar higher-order conserved quantities present along the event horizon. The price we
pay by carrying out the modification is that we have to deal with additional terms in the
modified higher-order equations that have to be absorbed appropriately. Nevertheless,
we arrive at L2-based Gevrey estimates that are similar to those that appear in the toy
model discussed above and the steps described in Sect. 5.3 still hold.

22 Alternatively, for any �, we can take |s| suitably small, depending on �, in order to close the Gevrey
estimates for small |s|. This approach is taken in Sect. 10.
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5.5. Eigenvalues for small � > 0 and M − e. An advantage of deriving estimates
that are uniform in the surface gravities κc, κ+, and are therefore valid not only for ex-
tremal Reissner–Nordström, but also for near-extremal Reissner–Nordström–de Sitter
spacetimes with small � > 0, where κ+, κc > 0, is that we obtain as a corollary the
convergence of regularity quasinormal frequencies (eigenvalues of A) for the confor-
mally invariant Klein–Gordon equation (2.9) as κ+ ↓ 0 and κc ↓ 0, which is the content
of Theorem 4.4.

6. Main Equations

In this section we write down the Eq. (2.9) in coordinates adapted to either the future
event horizon H+ or the future cosmological horizon C+, allowing us to easily take the
limit � ↓ 0 or M ↓ |e|.

In (τ, r, θ, ϕ) coordinates, (2.9) can be expressed as follows:

0 = 2(1− hr+D)∂r Tψ + r−2∂r (Dr2∂rψ)− hr+(2− hr+D)T 2ψ

+(2r−1 − r−2(Dr2hr+)′)Tψ + r−2 /̊�ψ − 2l−2ψ. (6.1)

6.1. Equation for the radiation field near the event horizon. It can easily be shown that
the Friedlander radiation field φ := r ·ψ corresponding to a solutionψ of (2.9) satisfies
the following equation in (v, r, θ, ϕ) coordinates:

2∂v∂rφ + ∂r (D∂rφ)− (r−1D′ + 2l−2)φ + r−2 /̊�φ = 0, (6.2)

where /̊� is the Laplacian with respect to the unit round sphere. Let us denote for con-
venience in this section ρ = ρ+. In (v, ρ, θ, ϕ) coordinates, (6.2) reduces to

2∂v∂ρφ + ∂ρ(Dr−2∂ρφ)− (r D′ + 2l−2r2)φ + /̊�φ = 0,

and hence,

2∂v∂ρφ + ∂ρ(Dr−2∂ρφ)− (2Mr−1 − 2e2r−2)φ + /̊�φ = 0,

where we used that
r D′ = 2Mr−1 − 2e2r−2 − 2l−2r2.

We can further write

2Mr−1 − 2e2r−2 = 2Mr−1+ − 2e2r−2+ + (4e2r−2+ − 2Mr−1+ )r+ρ − 2e2ρ2

= 2r+κ+ + 2l−2r2+ + (4e2r−2+ − 2Mr−1+ )r+ρ − 2e2ρ2

= B(0)
r+ + B(1)

r+ ρ + B(2)
r+ ρ2,

with coefficients

B(0)
r+ = 2κ+r+ + 2l−2r2+,

B(1)
r+ = (4e2r−2+ − 2Mr−1+ )r+,

B(2)
r+ = − 2e2.
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Recall from Sect. 2.3 that we can moreover write

Dr−2 = 2κ+ρ + (1− A(2)
r+ )ρ2 + A(3)

r+ ρ3 + A(4)
r+ ρ4,

where

A(2)
r+ = 3l−2

[
r−1+ (r+ − r−)(r2c + r−rc) + r+(r− + rc)

]
,

A(3)
r+ = − 2r− + l−2

[
(r+ − r−)r2c + (r2+ − r2−)rc + 2r3− + 3r2+r− + 3r2−r+

]
,

A(4)
r+ = − e2.

Combining the above equations, we arrive at the following equation for the radiation
field:

0 = 2∂v∂ρφ + ∂ρ

((
(1− A(2)

r+ )ρ2 + 2κ+ρ + A(3)
r+ ρ3 + A(4)

r+ ρ4
)

∂ρφ
)

− (B(0)
r+ + B(1)

r+ ρ + B(2)
r+ ρ2)φ + /̊�φ.

(6.3)

6.2. Equation for the radiation field near the cosmological horizon/future null infinity.
In (u, r, θ, ϕ) coordinates, the radiation field φ = r · ψ satisfies the equation

2∂u∂rφ − ∂r (D∂rφ) + (r−1D′ + 2l−2)φ − r−2 /̊�φ = 0. (6.4)

Let us denote for convenience in this section ρ = ρc. In (u, ρ, θ, ϕ) coordinates, (6.4)
reduces to

2∂u∂ρφ + ∂ρ(Dr−2∂ρφ)− (2Mr−1 − 2e2r−2)φ + /̊�φ = 0.

We can further write

2Mr−1 − 2e2r−2 = 2Mr−1c − 2e2r−2c − (4e2r−2c − 2Mr−1c )rcρ − 2e2ρ2

= − 2rcκc + 2l−2r2c − (4e2r−2c − 2Mr−1c )rcρ − 2e2ρ2.

Combining the above estimates, we arrive at

0 = 2∂u∂ρφ + ∂ρ

((
(1− A(2)

rc )ρ2 + 2κcρ + A(3)
rc ρ3 + A(4)

rc ρ4
)

∂ρφ
)

− (B(0)
rc + B(1)

rc ρ + B(2)
rc ρ2)φ + /̊�φ,

(6.5)

with coefficients

B(0)
rc = 2l−2r2c − 2κcrc,

B(1)
rc = − (4e2r−2c − 2Mr−1c )rc,

B(2)
rc = − 2e2,

where we used the following expression, derived in Sect. 2.3:

Dr−2 = 2κcρ + (1− A(2)
rc )ρ2 + A(3)

rc ρ3 + A(4)
rc ρ4,

where

A(2)
rc = 3l−2

[
rc(r+ + r−) + r2+ + r2− − r−1c r+r−(r+ + r−)

]
,

A(3)
rc = − (r+ + r−) + l−2(4rcr+r− + r3+ + r3− + 5r2+r− + 5r2−r+),

A(4)
rc = e2.
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6.3. Higher-order equations. In this section we consider the higher-order derivatives
∂nρcφ and ∂nρ+φ, with n ∈ N, and derive the corresponding higher-order equations. Ob-
serve first that we can write both (6.3) and (6.5) as follows

0 = 2T ∂ρφ + ∂ρ

((
(1− A2)ρ

2 + 2κρ + A3ρ
3 + A4ρ

4) ∂ρφ
)− (B0 + B1ρ + B2ρ

2)φ + /̊�φ,

(6.6)
for appropriate coefficients Ai ∈ R, with i = 2, 3, 4, and Bi ∈ R, with i = 0, 1, 2,
depending onM , e and�, with κ = κc or κ = κ+, depending on the choice of coordinate
ρ = ρc or ρ = ρ+.

Proposition 6.1. Denote φ(n) = L̂nφ or φ(n) = L̂
n
φ . Then for each n ∈ N0, φ(n)

satisfies the following equation:

0 = 2Tφ(n+1) +
(
(1− A2)ρ

2 + 2κρ + A3ρ
3 + A4ρ

4
)

φ(n+2)

+ 2(n + 1)

(

(1− A2)ρ + κ +
3

2
A3ρ

2 + 2A4ρ
3
)

φ(n+1)

+
[
n(n + 1)

(
1− A2 + 3A3ρ + 6A4ρ

2
)
− (B0 + B1ρ + B2ρ

2)
]
φ(n) + /̊�φ(n)

+ [(n + 1)n(n − 1) (A3 + 4A4ρ)− n(B1 + 2B2ρ)]φ(n−1)
+ [(n + 1)n(n − 1)(n − 2)A4 − n(n − 1)B2]φ(n−2).

(6.7)

Proof. It is convenient to work in (u, ρ) or (v, ρ) coordinates in which

φ(n) = ∂nρφ.

The equation follows by a simple induction argument, using (6.6), we have that for
n = 0:

0 = 2T ∂ρφ +
(
(1− A2)ρ

2 + 2κρ + A3ρ
3 + A4ρ

4
)

∂2ρφ + 2

(

(1− A2)ρ + κ +
3

2
A3ρ

2 + 2A4ρ
3
)

∂ρφ

− (B0 + B1ρ + B2ρ
2)φ + /̊�φ.

In the inductive step, we apply the following identities:

(n + 1)n + 2(n + 1) = (n + 2)(n + 1),

(n + 1)n(n − 1) + 3(n + 1)n = (n + 2)(n + 1)n,

(n + 1)n(n − 1)(n − 2) + 4(n + 1)n(n − 1) = (n + 2)(n + 1)n(n − 1).

��

6.4. Higher-order conservation laws. Thehigher-order equations derived inProposition
6.1 have to be modified in order to use them in the Gevrey estimates of Sect. 9. In this
section we carry out the required modification and we show that conservation laws arise
for the modified higher-order quantities alongH+ and I+ when � = 0 and |e| = M . In
order to see the conservation laws, we need to restrict to the projections ψ� = π�(ψ) of
solutions ψ to (2.9), i.e. solutions satisfying /̊�ψ� = −�(� + 1)ψ� (see Sect. 3).

The key goal of this section is to derive equations for modified higher-order
quantities, which give rise to conservation laws, whilst keeping track of the precise
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dependence of constants on the order of differentiation and the surface gravities κ+,
κc. This is achieved in Lemma 6.2. It is only at this part of the paper where extremality
of the spacetime in the � = 0 limit is fundamentally used via smallness of both κc and
κ+.23

In the discussion below, we will simultaneously investigate spacetimes regions near
H+ or C+ (I+ when� = 0), by working with the coordinate ρ, where ρ = ρ+ or ρ = ρc,
respectively.

In order to obtain the conservation law in the � = 0 case, no modification is required
of φ(n). We consider (6.7) with n = 0 and immediately see that the quantity

lim
r→∞ ∂ρcφ0(τ, r, θ, ϕ)

is independent of τ in the limit � ↓ 0 and moreover,

lim
r↓r+

∂ρ+φ0(τ, r, θ, ϕ)

is independent of τ when both � ↓ 0 and |e| → M .
Now consider � > 0 and (6.7) with n = �. When n = �, we see that

lim
r→∞ ∂�+1

ρ φ�(τ, r, θ, ϕ)

is independent of τ in the limit � ↓ 0 if M = 0. However, this conservation law fails to
hold when M > 0.

In order to derive conservation laws in the M > 0 case when � ↓ 0 and |e| → M ,
we introduce the quantity � := w(ρ)−1φ, where the weight function w will be chosen
appropriately. Let us consider (6.7) with n = 0 and an additional inhomogeneous term
f on the left-hand side. We express this equation in terms of � as follows:

f = 2T ∂ρφ + ∂ρ

(
Dr−2∂ρ(w�)

)− (B0 + B1ρ + B2ρ
2)w� + w /̊��

= 2T ∂ρφ + w−1∂ρ

(
Dr−2w2∂ρ�

)
+
[
(Dr−2w′)′w−1 − (B0 + B1ρ + B2ρ

2)
]
w� + w /̊��

and hence,

w−1 f = 2Tw−1∂ρφ + w−2∂ρ

(
Dr−2w2∂ρ�

)

+
[
(Dr−2w′)′w−1 − (B0 + B1ρ + B2ρ

2)
]
� + /̊��.

(6.8)

We now choosew so that the factor in front of the zeroth-order term� vanishes when
κc = κ+ = 0. We first define constants Ã3, Ã4, B̃1 and B̃2 that satisfy:

Dr−2 = ρ2(1− Mρ)2 + 2κρ + A2ρ
2 + Ã3ρ

3 + Ã4ρ
4,

B0 + B1ρ + B2ρ
2 = 2Mρ(1− Mρ) + B0 + B̃1ρ + B̃2ρ

2.

Note that Ã3, Ã4, B̃1 and B̃2 vanish when κc = κ+ = 0 and A2 and B0 also vanish when
κc = κ+ = 0.

Let w be a solution to the following differential equation:

(ρ2(1− Mρ)2w′)′ = 2Mρ(1− Mρ)w.

23 Although one could in principle try to derive an analogue of Lemma 6.2 near I+ or C+, which is useful
even when κ+ is not small.
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Then w(ρ) must be of the form

w(ρ) = C1(ρ − Mρ2)−1 + C2(1− Mρ)−1,

for some constants C1 ∈ R and C2 ∈ R.
We set C1 = 0 and C2 = 1 to obtain:

w(ρ) = (1− Mρ)−1.

Note that w(0) = 1.
We now recall the coordinate ρ̃ introduced in Sect. 2.3:

ρ̃ = ρ

1− Mρ
.

Then

∂ρ = dρ̃

dρ
∂ρ̃ = 1

(1− Mρ)2
∂ρ̃ = w2∂ρ̃

Furthermore,

ρ = ρ̃

1 + M ρ̃

and we can express

w(ρ) = ρ̃

ρ
= 1 + M ρ̃.

By the above observations, we can rewrite (6.8) as follows:

w−1 f = 2Tw∂ρ̃φ + ∂ρ̃

(
Dr−2(1− Mρ)−4∂ρ̃�

)
+ /̊�� +

[
w−1∂ρ((ρ2(1− Mρ)2

+ 2κρ + A2ρ
2 + Ã3ρ

3 + Ã4ρ
4)∂ρw)− (2Mρ(1− Mρ) + B0 + B̃1ρ + B̃2ρ

2)
]
�

= 2T (1 + M ρ̃)∂ρ̃φ + ∂ρ̃

(
ρ̃2∂ρ̃�

)
+ ∂ρ̃

(
(2κρ + A2ρ

2 + Ã3ρ
3 + Ã4ρ

4)(1− Mρ)−4∂ρ̃�
)
+ /̊��

+
[
w−1∂ρ(M(1− Mρ)−2(2κρ + A2ρ

2 + Ã3ρ
3 + Ã4ρ

4))− (B0 + B̃1ρ + B̃2ρ
2)
]
�.

We can express:

(2κρ + A2ρ
2 + Ã3ρ

3 + Ã4ρ
4)(1− Mρ)−4 = 2κ

ρ̃4

ρ3 + A2
ρ̃4

ρ2 + Ã3
ρ̃4

ρ
+ Ã4ρ̃

4

= 2κρ̃(1 + M ρ̃)3 + A2ρ̃
2(1 + M ρ̃)2 + Ã3ρ̃

3(1 + M ρ̃) + Ã4ρ̃
4.

Furthermore, we can express

w−1∂ρ(M(1− Mρ)−2(2κρ + A2ρ
2 + Ã3ρ

3 + Ã4ρ
4))− (B0 + B̃1ρ + B̃2ρ

2)

= M(1 + M ρ̃)∂ρ̃

(
2κρ̃(1 + M ρ̃) + A2ρ̃

2 + Ã3ρ̃
3(1 + M ρ̃)−1 + Ã4ρ̃

4(1 + M ρ̃)−2
)

−
(
B0 + B̃1ρ̃(1 + M ρ̃)−1 + B̃2ρ̃

2(1 + M ρ̃)−2
)

= 2Mκ(1 + M ρ̃)(1 + 2M ρ̃) + 2MA2ρ̃(1 + M ρ̃) + M Ã3(3ρ̃
2 − M ρ̃3(1 + M ρ̃)−1)

+ M Ã4(4ρ̃
3(1 + M ρ̃)−1 − 2M ρ̃4(1 + M ρ̃)−2)

−
(
B0 + B̃1ρ̃(1 + M ρ̃)−1 + B̃2ρ̃

2(1 + M ρ̃)−2
)
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to obtain:

(1 + M ρ̃)−1 f = 2T (1 + M ρ̃)∂ρ̃φ + ∂ρ̃

(
ρ̃2∂ρ̃�

)
+ ∂ρ̃

(
(2κρ̃(1 + M ρ̃)3

+ A2ρ̃
2(1 + M ρ̃)2 + Ã3ρ̃

3(1 + M ρ̃) + Ã4ρ̃
4)∂ρ̃�

)
+ /̊��

+
[
2Mκ(1 + M ρ̃)(1 + 2M ρ̃) + 2MA2ρ̃(1 + M ρ̃) + M Ã3(3ρ̃

2

+ M Ã4(4ρ̃
3(1 + M ρ̃)−1 − 2M ρ̃4(1 + M ρ̃)−2)

− M ρ̃3(1 + M ρ̃)−1)− (B0 + B̃1ρ̃(1 + M ρ̃)−1 + B̃2ρ̃
2(1 + M ρ̃)−2

) ]
�.

(6.9)
Recall now that

φ = (1 + M ρ̃)�.

Define moreover f(0) = (1 + M ρ̃)−1 f , then we can write

f(0) = 2T (1 + M ρ̃)2∂ρ̃� + 2M(1 + M ρ̃)T� + ∂ρ̃

(
ρ̃2∂ρ̃�

)

+ ∂ρ̃

([
2κρ̃(1 + M ρ̃)3 + A2ρ̃

2(1 + M ρ̃)2 + Ã3ρ̃
3(1 + M ρ̃) + Ã4ρ̃

4] ∂ρ̃�
)
+ /̊��

+
[
2Mκ(1 + M ρ̃)(1 + 2M ρ̃) + 2MA2ρ̃(1 + M ρ̃) + M Ã3(3ρ̃

2 − M ρ̃3(1 + M ρ̃)−1)

+ M Ã4(4ρ̃
3(1 + M ρ̃)−1 − 2M ρ̃4(1 + M ρ̃)−2)

− (B0 + B̃1ρ̃(1 + M ρ̃)−1 + B̃2ρ̃
2(1 + M ρ̃)−2

) ]
�.

(6.10)

Lemma 6.2. Define

�(0) :=�,

�(n) := ∂nρ̃�,

f(n) := ∂nρ̃ ((1 + M ρ̃)−1 f ),

where ∂ρ̃ is defined with respect to the coordinates (v, ρ̃+, θ, ϕ) or (u, ρ̃c, θ, ϕ).
Let 0 < ρ0 < rc−r+

rcr+
and restrict to the region {ρ < ρ0}. Then there exist functions

Fn,k, F̃n,k : [0, ρ̃0] → R for all n ∈ N and k ∈ N with k ≤ n + 2 such that

f(n) = 2(1 + M ρ̃)2T�(n+1) + 4

(

n +
1

2

)

M(1 + M ρ̃)T�(n) + 2n2M2T�(n−1)

+ [2κρ̃ + ρ̃2(1 + Fn,n+2)]�(n+2) + 2(n + 1)[ρ̃ + κ + ρ̃Fn,n+1]�(n+1)

+
[
n(n + 1) + /̊�

]
�(n) +

n∑

k=1

(n + 1)!
(k − 1)!M

n−k Fn,k�(k)

+
n∑

k=0

n!(n − k + 1)

k! Mn−k F̃n,k�(k),

(6.11)
with Fn,k, F̃n,k satisfying:

||Fn,k ||L∞([0,ρ0]) + ||F̃n,k ||L∞([0,ρ0]) ≤ C0(κ+ + κc), (6.12)

with C0 > 0 a constant that is independent of n, k, κ+, κc.
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Proof. Wewill obtain (6.12) by acting with ∂n
ρ̃
on both sides of (6.10). First of all, recall

that the constants A2, Ã3, Ã4, B0, B1, B2 can all be bounded by κ+ + κc
Then, observe that the factors in the terms on the first two lines on the right-hand side

of (6.10) are polynomials in ρ̃. Acting with ∂n
ρ̃
therefore results straightforwardly in the

terms on the first two lines on the right-hand side of (6.12) and
[
n(n + 1) + /̊�

]
�(n).

This determines in particular Fn,n+2 and Fn,n+1, which are simply polynomials in ρ̃.
Furthermore, after acting with ∂n

ρ̃
on the terms with polynomial factors in ρ̃ and ap-

plying the Leibniz rule, the terms involving κ, A2, Ã3, Ã4 generate also terms involving
�(k), n − 2 ≤ k ≤ n that can be grouped as follows:

n∑

k=n−2

(n + 1)!
(k − 1)!M

n−k Fn,k�(k).

We are left with applying ∂n
ρ̃
to the term of the form [. . .]� on the right-hand side of

(6.10). This term also involves factors of the form (1 + M ρ̃)−m multiplying �, so when
we act with ∂n

ρ̃
we will see derivatives of the form �(k) for all 0 ≤ k ≤ n. It therefore

remains to show that the factors in front of�(k) do not grow too fast in n, so as to respect
the behaviour stated in (6.12).

We will need to use that, after applying the Leibniz rule, we have:

∂
j
ρ̃
((1 + M ρ̃)−m) = (−1) j ( j + m − 1)!M j

(1 + M ρ̃) j+1(m − 1)! .

The terms that will lead to the largest growth in n are therefore terms involving factors
(1 + M ρ̃)−m with the largest values of m. In the case under consideration, these will
terms of the form:

∂nρ̃

(
(1 + M ρ̃)−2�

)
=

n∑

k=0

n!
k!(n − k)!∂

n−k
ρ̃

(
(1 + M ρ̃)−2

)
�(k)

=
n∑

k=0

n!
k!
[

(−1)n−kMn−k

(1 + M ρ̃)n−k+1
· (n − k + 1)!

(n − k)!
]

�(k)

=
n∑

k=0
(n − k + 1)

n!
k!

(−1)n−kMn−k

(1 + M ρ̃)n−k+1
�(k).

We can similarly decompose nl ρ̃l∂n−l
ρ̃

((1 +M ρ̃)−2�) as sum over �(k) to group all the

terms coming from ∂ρ̃ acting on ρ̃4(1 + M ρ̃)−2� as:

n∑

k=0

n!(n − k + 1)

k! Mn−k F̃n,k�(k).

The remaining terms in [. . .]� on the right-hand side of (6.10) can be dealt withmutatis
mutandis to conclude that (6.11) holds. ��
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Note that by Lemma6.2, it follows immediately that for� corresponding to a solution
ψ� to (2.9) on extremal Reissner–Nordström (κ+ = κc = 0), the quantity

�(�+1) + 2

(

� +
1

2

)

M�(�) + �2M2�(�−1)

is conserved in τ along I+ (when ρ = ρc) or H+ (when ρ = ρ+).

6.5. Fixed-frequency operators. We consider solutions ψ to (2.9) that take on the fol-
lowing form:

ψ(τ, r, θ, ϕ) = esτ
�∑

m=−�

ψ̂�m(r)Y�m(θ, ϕ).

For the sake of convenience, we will suppress the m and � in the subscript of ψ̂�m .
Furthermore, we denote �̂ := (1 + M ρ̃)−1rψ̂ and φ̂ = rψ̂ .

Then we use (6.1) to obtain the following ODE for ψ̂ :

0 = 2(1− hr+D)s∂r ψ̂ + r−2∂r (Dr2∂r ψ̂) + [(2r−1 − r−2(Dr2hr+)′)s
−hr+(2− hr+D)s2]ψ̂ − r−2�(� + 1)ψ̂ − 2l−2ψ̂. (6.13)

Let us furthermore define the higher-order quantities �̂(n) as follows:

�̂(n) := (∂ρ̃ − sĥ)n�̂,

where we recall that ĥ = r2h(1+M ρ̃)−2, with either h = hr+ or h = hrc = 2D−1−hr+ ,
and where ∂ρ̃ is defined with respect to the coordinates (τ, ρ̃, θ, ϕ).

Recall from Lemma 6.2 the two different definitions of �(n) corresponding to the
choices ρ = ρ+ and ρ = ρc, expressed in a coordinate invariant way:

�(n) = ((1 + M ρ̃+)
−2 L̂)n�,

�(n) = ((1 + M ρ̃c)
−2 L̂)n�.

By (2.7) and (2.8), we can write both of these as:

�(n) = (∂ρ̃ − ĥT )n�.

We can therefore conclude that

(�(n))�m(τ, r) = esτ �̂(n)(r),

with ∂ρ̃ defined with respect to the coordinates (τ, ρ̃, θ, ϕ).
Then, (6.7) reduces to

0 = 2sφ̂(n+1) +
(
(1− A2)ρ

2 + 2κρ + A3ρ
3 + A4ρ

4
)

φ̂(n+2)

+ 2(n + 1)

(

(1− A2)ρ + κ +
3

2
A3ρ

2 + 2A4ρ
3
)

φ̂(n+1)

[
n(n + 1)

(
1− A2 + 3A3ρ + 6A4ρ

2
)
− (B0 + B1ρ + B2ρ

2)
]
φ̂(n) − �(� + 1)φ̂(n)

+ [(n + 1)n(n − 1) (A3 + 4A4ρ)− n(B1 + 2B2ρ)] φ̂(n−1)

+ [(n + 1)n(n − 1)(n − 2)A4 − n(n − 1)B2] φ̂
(n−2)

(6.14)
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and (6.11) reduces to

0 = 2(1 + M ρ̃)2s�̂(n+1) + 4

(

n +
1

2

)

M(1 + M ρ̃)s�̂(n) + 2n2M2s�̂(n−1)

+ [2κρ̃ + ρ̃2(1 + Fn,n+2)]�̂(n+2) + 2(n + 1)(ρ̃ + κ + ρ̃Fn,n+1)�̂(n+1)

+ [n(n + 1)− �(� + 1)] �̂(n) +
n∑

k=1

(n + 1)!
(k − 1)!M

n−k Fn,k�̂(k)

+
n∑

k=0

n!(n − k + 1)

k! Mn−k F̃n,k�̂(k).

Equation (6.13) motivates the study of the differential operator L̂s,�,κ , which is defined
as follows:

r−2 L̂s,�,κ (ψ̂) := 2(1− hr+D)s∂r ψ̂ + r−2∂r (Dr2∂r ψ̂) + [−hr+(2− hr+D)s2

+ (2r−1 − r−2(Dr2hr+)′)s]ψ̂ − (r−2�(� + 1) + 2l−2)ψ̂,

= 2(1− hr+D)sr−1∂r (rψ̂) + r−2∂r (Dr2∂r ψ̂) + [−hr+(2− hr+D)s2

− (h+D)′s]ψ̂ − (r−2�(� + 1) + 2l−2)ψ̂.

(6.15)
We moreover have the following relation

(∂ρ̃ − sĥ)n(r3(1 + M ρ̃)−1r−2 L̂s,�,κ (ψ̂)) = 2(1 + M ρ̃)2s�̂(n+1)

+ 4

(

n +
1

2

)

M(1 + M ρ̃)s�̂(n) + 2n2M2s�̂(n−1)

+ [2κρ̃ + ρ̃2(1 + Fn,n+2)]�̂(n+2) + 2(n + 1)(ρ̃ + κ + ρ̃Fn,n+1)�̂(n+1)

+ [n(n + 1)− �(� + 1)] �̂(n) +
n∑

k=1

(n + 1)!
(k − 1)!M

n−k Fn,k�̂(k)

+
n∑

k=0

n!(n − k + 1)

k! Mn−k F̃n,k�̂(k).

(6.16)

Note that the operator L̂s,�,κ depends on the choice of hypersurface �, i.e. the choice
of hr+!

Suppose
r(1 + M ρ̃)−1 L̂s,�,κ (ψ̂) = f,

then we denote
fn := (∂ρ̃ − sĥ)n( f ). (6.17)

7. The Solution Operator Semigroup

In this section, we will derive physical space estimates involving Gevrey norms, which
will allow us to define the time-translation operator S(τ ) on the Hilbert space Hσ,ρ0 (see
Sect. 3). In particular, we establish propagation of Gevrey regularity nearH+ and C+ or
I+.

Here, we will fix �0 to be a mixed spacelike-null hypersurface of the form �0 =
N 0 ∪ S0 ∪ N0 by choosing hr+ = 0 for r ≤ R+

0 and hrc = 0 for r ≥ Rc
0, see Sect. 2.4.
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Proposition 7.1. Letψ ∈ C∞(R̂;C) be a solution to (2.9). Let σ > 0. Then, for ρ = ρ+
or ρ = ρc and ρ0 > 0 suitably small, there exist constants B,C > 0, independent of σ ,
such that for all τ1 > 0 and N∞ ∈ N

∫

�τ=τ1

T(T, n�τ=τ1
)[ψ] dμτ=τ1

+
∞∑

�=0

[ �−1∑

n=0

σ 2n

�2n(� + 1)2n
(� + 1)4

∫ ρ0

0

∫

S2
|(φ�)(n)|2(τ1, ρ, θ, ϕ) dωdρ

+
�!2(� + 1)!2
�2�(� + 1)2�

N∞∑

n=�

σ 2n

n!2(n + 1)!2 (n + 1)4
∫ ρ0

0

∫

S2
|(φ�)(n)|2(τ1, ρ, θ, ϕ) dωdρ

]

≤ CeBστ1

∞∑

�=0

[ �−1∑

n=0

σ 2n

�2n(� + 1)2n
(� + 1)4

∫ ρ0

0

∫

S2
(φ�)(n)|2(0, ρ, θ, ϕ) dωdρ

+
�!2(� + 1)!2
�2�(� + 1)2�

N∞∑

n=�

σ 2n

n!2(n + 1)!2 (n + 1)4
∫ ρ0

0

∫

S2
|(φ�)(n)|2(0, ρ, θ, ϕ) dωdρ

]

+ CeBστ1

∫

�τ=0
T(T, n�τ=0)[ψ] dμτ=0.

(7.1)

Proof. In the notation below, we will suppress the subscript � in ψ� and φ�. The higher-
order quantities φ(n) satisfy (6.7). Multiplying both sides of (6.7) with φ(n+1) and taking
the real part of the resulting equation, gives:

0 = T (|φ(n+1)|2) + 1

2

(
(1− A2)ρ

2 + 2κρ + A3ρ
3 + A4ρ

4
)

∂ρ(|φ(n+1))|2)

+
1

2
(r2h)

(
(1− A2)ρ

2 + 2κρ + A3ρ
3 + A4ρ

4
)
T (|φ(n+1)|2)

+ 2(n + 1)

(

(1− A2)ρ + κ +
3

2
A3ρ

2 + 2A4ρ
3
)

|φ(n+1)|2

+
[
n(n + 1)

(
1− A2 + 3A3ρ + 6A4ρ

2
)
− (B0 + B1ρ + B2ρ

2)
]
Re (φ(n)φ(n+1))

+Re ( /̊�φ(n)φ(n+1)) + [(n + 1)n(n − 1) (A3 + 4A4ρ)

−n(B1 + 2B2ρ)]Re (φ(n−1)φ(n+1))

+ [(n + 1)n(n − 1)(n − 2)A4 − n(n − 1)B2]Re (φ(n−2)φ(n+1)).

(7.2)
We apply the Leibniz rule to rewrite:

1

2

(
(1− A2)ρ

2 + 2κρ + A3ρ
3 + A4ρ

4
)

∂ρ(|φ(n+1))|2)

= ∂ρ

(
1

2

(
(1− A2)ρ

2 + 2κρ + A3ρ
3 + A4ρ

4
)
|φ(n+1))|2

)

−
[

(1− A2)ρ + κ +
3

2
A3ρ

2 + 2A4ρ
3
]

|φ(n+1))|2.
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We now invoke the assumption /̊�ψ = −�(� + 1)ψ and integrate the above equation in⋃
τ∈[0,τ1]�τ ∩{ρ ≤ ρ0}, with τ1 > 0 arbitrarily large, and we apply a weighted Young’s

inequality to the terms involving φ(k) with k ≤ n to obtain the following estimate for
n ≥ 1: let ε, σ > 0, then

∫ ρ0

0

∫

S2

[

1 +
1

2
r2h
(
(1− A2)ρ

2 + 2κρ + A3ρ
3 + A4ρ

4
)]

|φ(n+1)|2(τ1, ρ, θ, ϕ) dωdρ

+
1

2

(
(1− A2)ρ

2
0 + 2κρ0 + A3ρ

3
0 + A4ρ

4
0

) ∫ τ1

0

∫

S2
|φ(n+1))|2(τ, ρ0, θ, ϕ) dωdτ

+ 2(n + 1)
∫ τ1

0

∫ ρ0

0

∫

S2

(

(1− A2)ρ + κ +
3

2
A3ρ

2 + 2A4ρ
3

− 1

2
(n + 1)−1

[

(1− A2)ρ + κ +
3

2
A3ρ

2 + 2A4ρ
3
])

|φ(n+1)|2 dωdρdτ

≤
∫ ρ0

0

∫

S2

[

1+
1

2
r2h
(
(1−A2)ρ

2+2κρ+A3ρ
3+A4ρ

4
)]

|φ(n+1)|2(0, ρ, θ, ϕ) dωdρ

+ Cε−1σ
∫ τ1

0

∫ ρ0

0

∫

S2
|φ(n+1)|2 dωdρdτ

+ εσ−1
∫ τ1

0

∫ ρ0

0

∫

S2
max{�2(� + 1)2, n2(n + 1)2}|φ(n)|2

+ M2[(n − 1)2n2(n + 1)2 + n2]|φ(n−1)|2
+ M4[(n − 2)2(n − 1)2n2(n + 1)2 + n2(n − 1)2]|φ(n−2)|2 dωdρdτ,

(7.3)
where we introduced appropriate factors of M on the right-hand side to ensure that the
constants C, ε > 0 can be taken to be dimensionless and σ > 0 has the same dimension
as M−1. Note that all the terms appearing on the left-hand side are non-negative definite
when ρ0 is chosen sufficiently small, using moreover that κ ≥ 0 has a good sign and
that A2 → 0 when κ → 0.24

For n = 0 we instead multiply both sides of (6.7) with χφ(1), where χ is a non-
negative smooth cut-off function, such that χ(ρ) = 1 in ρ ≤ ρ0 and χ(ρ) = 0 for
2ρ0 < ρ < rc−r+

rcr+
, and we integrate in the larger region ρ ≤ 2ρ0. We assume ρ0 is

sufficiently small so that 2ρ0 < 1
2ρ0 +

1
2
rc−r+
rcr+

. This generates additional terms with a
factor ∂ρχ , which are supported in compact regions of r , away from rc and r+.

Furthermore, we do not apply Young’s inequality to estimate the integral of the terms
Re ( /̊�φχφ(1)) and Re (−B0φχφ(1)) on the right-hand side of (7.2), and we instead
estimate

∫

S2
Re (( /̊�− B0)φ(0)χφ(1)) dω =

∫

S2
−1

2
∂ρ(χ | /̊∇φ|2 + B0χ |φ|2) + hr2χT (| /̊∇φ|2 + B0|φ|2)

+
1

2

dχ

dr
(| /̊∇φ|2 + B0|φ|2) dω,

24 One can also first set M = 1, carry out the computation, and then place appropriate powers of M in front
of the terms on the right-hand side to ensure that the dimensions of all the terms in the inequality are the same.
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where the terms involving T on the right-hand side vanish for ρ ≤ ρ0 since h = 0 for
ρ ≤ ρ0. We do apply Young’s inequality and then a Hardy inequality (A.1) to estimate

∫ τ1

0

∫ 2ρ0

0

∫

S2
χ |B1ρ + B2ρ

2||�(φ(1)φ)| dωdρdτ ≤
∫ τ1

0

∫ 2ρ0

0

∫

S2
ερχ |φ(1)|2 dωdρdτ

+ Cε−1
∫ τ1

0

∫ 2ρ0

0

∫

S2
(B2

1ρ0 + B2
2ρ

2
0 )χ |φ|2 dωdρdτ

≤
∫ τ1

0

∫ 2ρ0

0

∫

S2
(ε + Cε−1ρ2

0 )ρχ |φ(1)|2 dωdρdτ

+ Cε−1
∫ τ1

0

∫ 2ρ0

ρ0

∫

S2
|φ|2 dωdρdτ,

where ε > 0 can be taken arbitrarily small, and ρ0 is chosen suitably small such that
Cε−1ρ0 < ε.

We then obtain

∫ 2ρ0

0

∫

S2
χ

[

1 +
1

2
r2h
(
(1− A2)ρ

2 + 2κρ + A3ρ
3 + A4ρ

4
)]

|φ(1)|2(τ1, ρ, θ, ϕ) dωdρ

+ 2
∫ τ1

0

∫ 2ρ0

0

∫

S2
χ

(

(1− A2 − ε)ρ + κ +
3

2
A3ρ

2 + 2A4ρ
3

− 1

2

[

(1− A2)ρ + κ +
3

2
A3ρ

2 + 2A4ρ
3
])

|φ(1)|2 dωdρdτ

≤
∫ 2ρ0

0

∫

S2
χ

[

1+
1

2
r2h
(
(1− A2)ρ

2+2κρ+A3ρ
3+A4ρ

4
)]

|φ(1)|2(0, ρ, θ, ϕ) dωdρ

+ Cε−1
∫ τ1

0

∫ 2ρ0

ρ0

∫

S2
|φ|2 + | /̊∇φ|2 dωdρdτ

+ C
∑

τ ′=0,τ1

∫ 2ρ0

ρ0

∫

S2
(|φ|2 + | /̊∇φ|)|τ=τ ′ dωdρ.

(7.4)

We will now consider the higher-order quantities φ(n) and treat the cases n ≤ � and
n ≥ � + 1 separately.

Case 1 n ≤ � − 1 Take ρ0 suitably small and consider the following weighted
summation over n:

�−1∑

n=0

σ 2n

�2n(� + 1)2n
[·] .



Quasinormal Modes in Extremal Reissner–Nordström Spacetimes 1439

We apply (7.3) and (7.4) to obtain:

∫ ρ0

0

∫

S2

�−1∑

n=0

σ 2n

�2n(� + 1)2n
|φ(n+1)|2(τ1, ρ, θ, ϕ) dωdρ

≤ Cε−1σ
∫ τ1

0

∫ ρ0

0

∫

S2

�−1∑

n=0

σ 2n

�2n(� + 1)2n
|φ(n+1)|2(τ, ρ, θ, ϕ) dωdρdτ

+ C
∫ ρ0

0

∫

S2

�−1∑

n=0

σ 2n

�2n(� + 1)2n
|φ(n+1)|2(0, ρ, θ, ϕ) dωdρ

+ Cε−1
∫ τ1

0

∫ 2ρ0

ρ0

∫

S2
|φ|2 + | /̊∇φ|2 dωdρdτ

+ C
∑

τ ′=0,τ1

∫ 2ρ0

ρ0

∫

S2
(|φ|2 + | /̊∇φ|)|τ=τ ′ dωdρ.

(7.5)

Case 2 n ≥ � Take ρ0 suitably small and consider the following weighted summation
over n:

�!2(� + 1)!2
�2�(� + 1)2�

N∞∑

n=�

σ 2n

n!2(n + 1)!2 [·] ,

where N∞ is arbitrarily large.
We apply (7.3) (when � ≥ 1) and (7.4) (when � = 0) to obtain

∫ ρ0

0

∫

S2

N∞∑

n=�

σ 2n

n!2(n + 1)!2 |φ(n+1)|2(τ1, ρ, θ, ϕ) dωdρ

≤ Cε−1σ
∫ τ1

0

∫ ρ0

0

∫

S2

N∞∑

n=�

σ 2n

n!2(n + 1)!2 |φ(n+1)|2(τ, ρ, θ, ϕ) dωdρdτ

+ C
∫ ρ0

0

∫

S2

N∞∑

n=�

σ 2n

n!2(n + 1)!2 |φ(n+1)|2(0, ρ, θ, ϕ) dωdρ

+ εσ−1
∫ τ1

0

∫ ρ0

0

∫

S2

N∞∑

n=�

σ 2n

n!2(n + 1)!2
[
(n + 1)2n2|φ(n)|2

+ M2[(n + 1)2n2(n − 1)2 + n2]|φ(n−1)|2
+ M4[(n + 1)2n2(n − 1)2(n − 2)2 + n2(n − 1)2]|φ(n−2)|2

]
dωdρdτ

+ Cε−1
∫ τ1

0

∫ 2ρ0

ρ0

∫

S2
|φ|2 + | /̊∇φ|2 dωdρdτ

+ C
∑

τ ′=0,τ1

∫ 2ρ0

ρ0

∫

S2
(|φ|2 + | /̊∇φ|)|τ=τ ′ dωdρ.
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Given the choice of summation over n, we can group the terms on the right-hand side
with a factor ε > 0 with terms lower in the summation to obtain:

∫ ρ0

0

∫

S2

N∞∑

n=�

σ 2n

n!2(n + 1)!2 |φ(n+1)|2(τ1, ρ, θ, ϕ) dωdρ

≤ Cε−1σ
∫ τ1

0

∫ ρ0

0

∫

S2

N∞∑

n=�

σ 2n

n!2(n + 1)!2 |φ(n+1)|2(τ, ρ, θ, ϕ) dωdρdτ

+ C
∫ ρ0

0

∫

S2

N∞∑

n=�

σ 2n

n!2(n + 1)!2 |φ(n+1)|2(0, ρ, θ, ϕ) dωdρ

+ Cεσ−1(σ 2 + σ 4 + σ 6)

∫ τ1

0

∫ ρ0

0

∫

S2

N∞−1∑

n=�−3

σ 2n

n!2(n + 1)!2 |φ(n+1)|2 dωdρdτ

+ Cε−1
∫ τ1

0

∫ 2ρ0

ρ0

∫

S2
|φ|2 + | /̊∇φ|2 dωdρdτ

+ C
∑

τ ′=0,τ1

∫ 2ρ0

ρ0

∫

S2
(|φ|2 + | /̊∇φ|)|τ=τ ′ dωdρ.

We can rewrite the above expression further to obtain:

�!2(� + 1)!2
�2�(� + 1)2�

∫ ρ0

0

∫

S2

N∞∑

n=�

σ 2n

n!2(n + 1)!2 |φ(n+1)|2(τ1, ρ, θ, ϕ) dωdρ

≤ C(ε−1σ + εσ 5)
�!2(� + 1)!2
�2�(� + 1)2�

∫ τ1

0

∫ ρ0

0

∫

S2

N∞∑

n=�

σ 2n

n!2(n + 1)!2 |φ(n+1)|2(τ, ρ, θ, ϕ) dωdρdτ

+ C
�!2(� + 1)!2
�2�(� + 1)2�

∫ ρ0

0

∫

S2

N∞∑

n=�

σ 2n

n!2(n + 1)!2 |φ(n+1)|2(0, ρ, θ, ϕ) dωdρ

+ Cε(σ + σ 5)
σ 2(�−1)

�2(�−1)(� + 1)2(�−1)
∫ τ1

0

∫ ρ0

0

∫

S2
|φ(�)|2(τ, ρ, θ, ϕ) dωdρdτ

+ Cε(σ + σ 5)
σ 2(�−2)

�2(�−2)(� + 1)2(�−2)
∫ τ1

0

∫ ρ0

0

∫

S2
|φ(�−1)|2(τ, ρ, θ, ϕ) dωdρdτ

+ Cε(σ + σ 5)
σ 2(�−3)

�2(�−3)(� + 1)2(�−3)
∫ τ1

0

∫ ρ0

0

∫

S2
|φ(�−2)|2(τ, ρ, θ, ϕ) dωdρdτ

+ Cε−1
∫ τ1

0

∫ 2ρ0

ρ0

∫

S2
|φ|2 + | /̊∇φ|2 dωdρdτ + C

∑

τ ′=0,τ1

∫ 2ρ0

ρ0

∫

S2
(|φ|2 + | /̊∇φ|)|τ=τ ′ dωdρ.

(7.6)
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We can combine (7.6) with (7.5) to group the last three spacetime integrals on on the
right-hand side of (7.6) with the terms on the right-hand side of (7.5) and obtain:

�−1∑

n=0

σ 2n

�2n(� + 1)2n

∫ ρ0

0

∫

S2
|φ(n+1)|2(τ1, ρ, θ, ϕ) dωdρ

+
�!2(� + 1)!2
�2�(� + 1)2�

N∞∑

n=�

σ 2n

n!2(n + 1)!2
∫ ρ0

0

∫

S2
|φ(n+1)|2(τ1, ρ, θ, ϕ) dωdρ

≤ C
�−1∑

n=0

σ 2n

�2n(� + 1)2n

∫ ρ0

0

∫

S2
|φ(n+1)|2(0, ρ, θ, ϕ) dωdρ

+ C
�!2(� + 1)!2
�2�(� + 1)2�

N∞∑

n=�

σ 2n

n!2(n + 1)!2
∫ ρ0

0

∫

S2
|φ(n+1)|2(0, ρ, θ, ϕ) dωdρ

+ Cε−1σ
�−1∑

n=0

σ 2n

�2n(� + 1)2n

∫ τ1

0

∫ ρ0

0

∫

S2
|φ(n+1)|2(τ, ρ, θ, ϕ) dωdρ

+ C(ε−1σ + εσ 5)
�!2(� + 1)!2
�2�(� + 1)2�

∫ τ1

0

∫ ρ0

0

∫

S2

N∞∑

n=�

σ 2n

n!2(n + 1)!2 |φ(n+1)|2(τ, ρ, θ, ϕ) dωdρdτ

+ Cε−1
∫ τ1

0

∫ 2ρ0

ρ0

∫

S2
|φ|2 + | /̊∇φ|2 dωdρdτ + C

∑

τ ′=0,τ1

∫ 2ρ0

ρ0

∫

S2
(|φ|2 + | /̊∇φ|)|τ=τ ′ dωdρ.

We then apply a standard Grönwall estimate to obtain

�−1∑

n=0

σ 2n

�2n(� + 1)2n

∫ ρ0

0

∫

S2
|φ(n+1)|2(τ1, ρ, θ, ϕ) dωdρ

+
�!2(� + 1)!2
�2�(� + 1)2�

N∞∑

n=�

σ 2n

n!2(n + 1)!2
∫ ρ0

0

∫

S2
|φ(n+1)|2(τ1, ρ, θ, ϕ) dωdρ

≤ CeB(σ+σ 5)τ1

[ �−1∑

n=0

σ 2n

�2n(� + 1)2n

∫ ρ0

0

∫

S2
|φ(n+1)|2(0, ρ, θ, ϕ) dωdρ

+
�!2(� + 1)!2
�2�(� + 1)2�

N∞∑

n=�

σ 2n

n!2(n + 1)!2
∫ ρ0

0

∫

S2
|φ(n+1)|2(0, ρ, θ, ϕ) dωdρ

+
∫ τ1

0

∫ 2ρ0

ρ0

∫

S2
|φ|2 + | /̊∇φ|2 dωdρdτ +

∑

τ ′=0,τ1

∫ 2ρ0

ρ0

∫

S2
(|φ|2 + | /̊∇φ|)|τ=τ ′ dωdρ

]

,

(7.7)
with B > 0 a suitably large constant.

It remains to bound the integrals supported in ρ0 ≤ ρ ≤ 2ρ0. This can be done by
applying a standard T -energy boundedness estimate (see for example [10] in the extremal
Reissner–Nordström setting) and a Grönwall inequality, together with the fundamental
theorem of calculus to estimate integrals of |φ|2 in terms of the T -energy.
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By relabelling the summation variable, we then conclude that:

∫

�τ=τ1

T(T, n�τ=τ1
)[ψ] dμτ=τ1 + σ 2

�−1∑

n=1

σ 2n

�2n(� + 1)2n
(� + 1)4

∫ ρ0

0

∫

S2
|φ(n)|2(τ1, ρ, θ, ϕ) dωdρ

+ σ 2 �!2(� + 1)!2
�2�(� + 1)2�

N∞∑

n=�

σ 2n

n!2(n + 1)!2 (n + 1)4
∫ ρ0

0

∫

S2
|φ(n)|2(τ1, ρ, θ, ϕ) dωdρ

≤ CeB(σ+σ 5)τ1

[

σ 2
�−1∑

n=1

σ 2n

�2n(� + 1)2n
(� + 1)4

∫ ρ0

0

∫

S2
|φ(n)|2(0, ρ, θ, ϕ) dωdρ

+ σ 2 �!2(� + 1)!2
�2�(� + 1)2�

N∞∑

n=�

σ 2n

n!2(n + 1)!2 (n + 1)4
∫ ρ0

0

∫

S2
|φ(n)|2(0, ρ, θ, ϕ) dωdρ

+
∫

�τ=0
T(T, n�τ=0 )[ψ] dμτ=0

]

.

��
Remark 7.1. The estimate in Proposition 7.1 cannot be made uniform in time τ1 without
losing the uniformity in κ . This is because, in the case for extremal Reissner–Nordström,
for each � the terms with n ≥ � + 2 on the left-hand side. will grow polynomially in τ

when κ+ = 0 or κc = 0. This is a manifestion of the Aretakis instability, discovered in
[10,11], together with its analogue along null infinity [7].

Definition 7.1. For ρ0 > 0 suitably small, the solution operator corresponding to (2.9)
is the bounded linear operator

S(τ ) : Hσ,ρ0 → Hσ,ρ0

(�,� ′) �→ (ψ |�τ , Tψ |Sτ ),

where ψ is the unique solution to (2.9) corresponding to initial data (�,� ′). By Propo-
sition 7.1, the above definition makes sense.

By Proposition 7.1, there exist constants B,C > 0 independent of κ+, κc and τ such
that:

||S(τ )||2 ≤ CeBστ . (7.8)

Theorem 7.2. The family of solution operators S(τ ) from Definition 7.1 define a C0-
semigroup on Hσ,ρ0 .

Proof. We omit the proof as it follows directly from the proof of Theorem 3.16 of
[79] combined with (7.8). We can apply (7.8) because initial data (�,� ′) with r� ∈
C∞(�̂,C) and � ′ ∈ C∞(S,C) lead to unique solutions ψ ∈ C∞(R̂,C) of (2.9), since
the equivalent equations (6.3) and (6.5) have coefficients in C∞(R̂,C), so standard
local-in-time energy estimates apply.

To obtain strong continuity, we first make the slight abuse of notation: ||ψ |τ ||Hσ,ρ0
=

||S(τ )(�,� ′)||Hσ,ρ0
, with ψ the solution to (2.9) arising from initial data (�,� ′). Then

it follows from a Minkowski inequality that

||S(τ1)(�,� ′)− (�,� ′)||Hσ,ρ0
≤
∫ τ1

0
||Tψ |τ ||Hσ,ρ0

dτ ≤ CeBστ1τ1||Tψ |0||Hσ,ρ0
.
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For general (�,� ′) ∈ Hσ,ρ0 , ||Tψ |0||Hσ need not be finite, since it involves derivatives
of (�,� ′). But if we assume that (�,� ′) ∈ Hσ ′,ρ0 ∩ C∞(�0), with σ ′ > σ , then it
follows that ||Tψ |0||Hσ,ρ0

is finite, so ||S(τ1)(�,� ′) − (�,� ′)||Hσ,ρ0
→ 0 as τ1 ↓ 0.

Convergence in the general case then follows from a standard approximation argument,
using that Hσ ′,ρ0 is dense in Hσ,ρ0 if σ ′ > σ , which in turn follows from considering
convolutions with appropriate Gaussian mollifiers, which have sufficiently large Gevrey
regularity. ��
Definition 7.2. Let

Dσ (A) :=
{

(�,� ′) ∈ Hσ,ρ0

∣
∣
∣ lim

τ↓0
S(τ )(�,� ′)− (�,� ′)

τ
exists in Hσ,ρ0

}

and

A : Hσ,ρ0 ⊇ Dσ (A)→Hσ,ρ0

(�,� ′) �→ lim
τ↓0

S(τ )(�,� ′)− (�,� ′)
τ

.

We refer to (Dσ (A),A) as the infinitesimal generator of the semigroup S(τ ) and to
Dσ (A) as the domain of A.

Theorem 7.3. The infinitesimal generator (Dσ (A),A) satisfies the following proper-
ties:

(i) Dσ (A) is dense in Hσ,ρ0 .
(ii) (Dσ (A),A) is a closed operator
(iii) There exists B > 0 such that the resolvent (A− s)−1 : Hσ,ρ0 → Dσ (A) exists and

is a bounded linear operator for Re(s) > B.

Proof. The statements (i)–(iii) are standard properties of strongly continuous semi-
groups, see for example Theorem 2 in Sect. 7.4 of [39] and Theorem 11.6.1 of [47]. The
statement (iii) follows by invoking additionally (7.8). ��

Consider the differential operator L̂s,�,κ . We can take as the domain of L̂s,�,κ to be
the function space Dσ (L̂s,�,κ ) defined as the closure of

{ f ∈ C∞((r+, rc);C) | || f ||Hσ,ρ0
+ ||L̂s,�,κ ( f )||Hσ,ρ0

<∞}

under the norm || · ||Hσ,ρ0
+ ||L̂s,�,κ (·)||Hσ,ρ0

.
We define the following restricted operators:

A� = A|Dσ (A)∩V�
: Dσ (A) ∩ V� → Hσ,ρ0 ∩ V�.

Proposition 7.4. Let κ+ ≥ 0 and κc ≥ 0.

(i) The map
(A� − s)−1 : Hσ,ρ0 ∩ V� → Dσ (A) ∩ V�

is a well-defined bounded linear operator and is the inverse of A� − s if and only if

L̂−1s,�,κ : Hσ,ρ0 → Dσ (L̂κ,�,s)

exists as a bounded operator with Dσ (L̂s,�,κ ) ⊂ Hσ,1,ρ0 .
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(ii) Let (�,� ′) ∈ ker(A−s), with (A−s) : Dσ (A)→ Hσ,ρ0 and assume that (A�−s)−1
exists as well-defined bounded operator for all � ≥ L. Then

π≥L(�) = π≥L(� ′) = 0.

Proof. Observe that we can rearrange (2.9) to obtain:

hr+(2− hr+D)T 2ψ = 2(1− hr+D)r−1∂r T (rψ) + r−2∂r (Dr2∂rψ)

− (h+D)′Tψ − (r−2 /̊� + 2l−2)ψ
= − hr+(2− hr+D)P1(Tψ) + r−2∂r (Dr2∂rψ)

+ (r−2 /̊�− 2l−2)ψ,

where P1 is the following operator:

P1 = − 1

hr+(2− hr+D)

(
2(1− hr+D)r−1∂r (r ·)− (h+D)′(·)

)
.

Similarly, we can rearrange (6.6) to write

T ∂ρφ = −1

2
∂ρ(Dr−2∂ρφ) +

1

2
(B0 + B1ρ + B2ρ

2)φ − 1

2
/̊�φ,

and hence,

Tφ|Nτ (τ, ρ, θ, ϕ) = Tφ|S(τ, r((ρc)0), θ, ϕ)− 1

2

∫ ρ

ρ0

[
∂ρ(Dr−2∂ρφ)

−(B0 + B1ρ + B2ρ
2)φ + /̊�φ

]
(τ, ρ′, θ, ϕ) dρ′.

By using that � = ψ |� and � ′ = Tψ |S , we find an explicit expression forA, by using
that A = T = ∂τ if we use the wave equation (2.9) to write T , which acts on ψ , as an
operator acting on initial data (�,� ′) in the following way:

A
(

�

� ′
)

= T

(
�

� ′
)

=
(
Tψ |�0

T 2ψ |S0
)

=
(

�̃

�̃ ′
)

,

where

�̃|S =� ′,

r�̃|N = r� ′(r((ρc)0), θ, ϕ)− 1

2

∫ ρ

ρ0

[
∂ρ(Dr−2∂ρ(r�))

−(B0 + B1ρ + B2ρ
2)r� + /̊�(r�)

]
|N (ρ′, θ, ϕ) dρ′,

�̃ ′ = − P1(�
′)+ 1

hr+(2− hr+D)
r−2∂r (Dr2∂r�)+

1

hr+(2− hr+D)
(r−2 /̊�− 2l−2)�.

So if we instead denote

(A− s)

(
�

� ′
)

=
(

�̃

�̃ ′
)

,
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we can express:

�̃|S =� ′ − s�|S,
r�̃|N = − sr�|N + r� ′(r((ρc)0), θ, ϕ)− 1

2

∫ ρ

ρ0

[
∂ρ(Dr−2∂ρ(r�))

−(B0 + B1ρ + B2ρ
2)r� + /̊�(r�)

]
(ρ′, θ, ϕ) dρ′,

�̃ ′ = − P1(�
′) + 1

hr+(2− hr+D)
r−2∂r (Dr2∂r�|S)

+
1

hr+(2− hr+D)
(r−2 /̊�− 2l−2)�|S − s� ′.

We can further rewrite the above expressions for the restriction A� − s by making
use of the operators L̂s,�,κ (acting on the ��m part of ��) :

�̃|S =� ′ − s�|S,
r�̃|N = − sr�|N + r� ′(r((ρc)0), θ, ϕ)

− 1

2

∫ ρ

ρ0

[
r L̂s,�,κ (�)|N − 2s∂ρ(r�)|N

]
(ρ′, θ, ϕ) dρ′,

�̃ ′ = 1

hr+(2− hr+D)
r−2 L̂s,�,κ (�)|S + s(P1 + s)(�)|S − (P1 + s)(� ′).

Note in particular that it’s possible to write the above relations on S in matrix form:

(
�̃|S
�̃ ′
)

=
(
0 1
1 −(P1 + s)

)(− 1
hr+ (2−hr+D)

r−2 L̂s,�,κ 0
0 1

)(−1 0
−s 1

)(
�|S
� ′
)

.

We can formally invert the above matrix to obtain

(
�|S
� ′
)

=
(−1 1
−s −0

)(−hr+(2− hr+D)r2 L̂−1s,�,κ 0
0 1

)(
P1 + s 1
1 0

)(
�̃|S
�̃ ′
)

.

We moreover have that

�|N = − 2(r L̂s,�,κ )−1(∂ρ(r�̃|N ))|N .

The above expressions constitute a formal definition for (A� − s)−1, where we identify
the functions on S and N with their trivial extensions to � in order to act with L̂−1s,�,κ .

We immediately see that (A�−s)−1 is awell-definedboundedoperator iff L̂−1s,�,κ exists

as a bounded operator withDσ (L̂s,�,κ ) ⊂ Hσ,1,ρ0 . The identities (A�−s)◦(A�−s)−1 =
idHσ,ρ0

and (A� − s)−1 ◦ (A� − s) = idDσ (A�) then follow immediately.

In order to prove (ii) we observe that we can decompose � = ∑∞
�=0 π�(�) and

� ′ =∑∞
�=0 π�(�

′) and (π�(�), (π�(�)) ∈ ker(A� − s). ��
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8. Degenerate Elliptic Estimates

In this section we will derive two degenerate elliptic estimates, which are each valid
for either small |s| or large angular momentum �. The purpose of these estimates is
to control H2-norms of ψ̂ away from H+ and C+ or I+, in contrast with the Gevrey
estimates of Sect. 9, which are restricted to suitably small neighbourhoods of H+ and
C+ or I+ and involve higher-order Sobolev norms. The degenerate elliptic estimates and
Gevrey estimates are coupled. In order to make the coupling constant sufficiently small
in the degenerate elliptic estimates below, we will make use of either the smallness of
|s| (Proposition 8.1) or largeness of � (Proposition 8.2).

Proposition 8.1. Let κc, κ+ ≥ 0 and let ρ0 > 0 and ε > 0 be arbitrarily small. Then
there exists a constant s0 > 0 and constants C,Cε > 0 that are independent of s, κ+
and κc, such that for all � ∈ N and s ∈ C such that (1 + �(� + 1))−1(|s| + M |s|2) < s0:

∫ rc

r+
M2r−2|∂r (Dr2∂r ψ̂)|2+D|∂r φ̂|2+Mr−3

√
D|φ̂|2 + DM2(�(� + 1) + 2r2l−2)|∂r ψ̂ |2

+ [�(� + 1)r−2 + M2�2(� + 1)2r−4]|φ̂|2 dr
≤ C |s|

∑

�∈{+,c}

∫ ρ0

0
(M + |s|M2 + ε)|φ̂|2 + M2(M + |s|M2)|φ̂(1)|2 dρ�

+ Cε

∫ rc

r+
|L̂s,�,κ (ψ̂)|2 dr.

(8.1)

Proof. We rewrite the equation L̂s,�,κ (ψ̂) = f̃ , see (6.15), in terms of φ̂ = rψ̂ instead
of ψ̂ : obtain:

2s(1− hr+D) ∂r φ̂ + ∂r (D∂r φ̂)− r−2(2Mr−1 − 2e2r−2)φ̂ − r−2�(� + 1)φ̂

−(hr+(2− hr+D)s2 + (h+D)′s)φ̂ = r−1 f̃ ,

We multiply both sides by −φ, take the real part and rearrange terms to obtain:

−φ̂∂r (D∂r φ̂) + 2r−4(Mr − e2)|φ̂|2 + �(� + 1)r−2|φ̂|2

= 2(1− hr+D)Re (s∂r φ̂φ̂)−Re (r−1 f̃ φ̂)

−Re (hr+(2− hr+D)s2 + (h+D)′s)|φ̂|2.
Integrating over [r+, rc) with rc < ∞ or rc = ∞ and using that the corresponding
boundary terms vanish, we obtain after applying Young’s inequality on the right-hand
side: ∫ rc

r+
D|∂r φ̂|2 + 2r−4(Mr − e2)|φ̂|2 + �(� + 1)r−2|φ̂|2 dr

≤|s|M
∫ rc

r+
r−2|φ̂|2 + M−2r2|∂r φ̂|2 dr

+ ε

∫ rc

r+
r−2|φ̂|2 dr + Cε

∫ rc

r+
| f̃ |2 dr,
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where Mr − e2 ≥ 0, since r ≥ r+ ≥ M and |e| ≤ M . Indeed we have that D(M) ≤
e2

M2 − 1 ≤ 0 and D(r) ≥ 0 for all r ≥ r+, so r+ ≥ M .
From (6.15) it follows that we can alternatively write:

r−1 f̃ = 2(1− hr+D)s∂r (rψ̂) + r−1∂r (Dr2∂r ψ̂) + [−hr+(2− hr+D)s2 − (h+D)′s]rψ̂
− r−1(�(� + 1) + 2r2l−2)ψ̂.

(8.2)
We moreover denote

r−1F := −2(1− hr+D)s∂r (rψ̂) + [hr+(2− hr+D)s2 + (h+D)′s]rψ̂ + r−1 f̃ ,

then
r−1∂r (Dr2∂r ψ̂)− r−1(�(� + 1) + 2r2l−2)ψ̂ = r−1F. (8.3)

so after taking the square norm on both sides and apply the Leibniz rule several times,
we obtain

r−2|∂r (Dr2∂r ψ̂)|2 + (4r2l−4 + �2(� + 1)2r−2 + 4�(� + 1)l−2)|ψ̂ |2

− 2∂r ((�(� + 1)r−2 + 2l−2)Re (Dr2∂r ψ̂ψ̂)

+ 2D(�(� + 1) + 2r2l−2)|∂r ψ̂ |2 − 4�(� + 1)Dr−1Re (∂r ψ̂ψ̂)

= r−2|F |2.
We can estimate

4�(� + 1)Dr−1|∂r ψ̂ ||ψ̂ | ≤ 2D�(� + 1)|∂r ψ̂ |2 + 2�(� + 1)Dr−2|ψ̂ |2,
so, using moreover that the total derivative term vanishes after integration, we can finally
conclude that

∫ rc

r+
D|∂r φ̂|2 + 2r−4(Mr − e2)|φ̂|2 + �(� + 1)r−2|φ̂|2 dr

+ M2
∫ rc

r+
r−2|∂r (Dr2∂r ψ̂)|2 + D(�(� + 1) + 2r2l−2)|∂r ψ̂ |2

+ (4r2l−4 + �2(� + 1)2r−2 + 4�(� + 1)l−2)|ψ̂ |2 dr
≤ C

∫ rc

r+
r−2|F |2 + | f̃ |2 dr + M |s|

∫ rc

r+
r−2|φ̂|2 + M−2r2|∂r φ̂|2 dr

+ ε

∫ rc

r+
r−2|φ̂|2 dr

≤ C
∫ rc

r+
| f̃ |2 dr + max{|s|M, |s|2M2}

∫ rc

r+
r−2|φ̂|2 + M−2r2|∂r φ̂|2 dr

+ ε

∫ rc

r+
r−2|φ̂|2 dr.

For M |s|(1+�(�+1))−1 suitably small compared to Mρ0 and ε > 0 appropriately small,
we can absorb the terms involving φ̂ and ∂r φ̂ in the integrals restricted to (R0

+, R
0
c ) on
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the right-hand side into left-hand side. We are then left with

∫ rc

r+
D|∂r φ̂|2 + 2r−4(Mr − e2)|φ̂|2 + �(� + 1)r−2|φ̂|2 dr

+ M2
∫ rc

r+
r−2|∂r (Dr2∂r ψ̂)|2 + D(�(� + 1) + 2r2l−2)|∂r ψ̂ |2

+ (4r2l−4 + �2(� + 1)2r−2 + 4�(� + 1)l−2)|ψ̂ |2 dr
≤ C

∫ rc

r+
| f̃ |2 dr + C

∑

�∈{+,c}

∫ ρ0

0
(M |s| + |s|2M2 + ε)|φ̂|2

+ M2(|s|M + |s|2M2)|φ̂(1)|2 dρ�.

��
Proposition 8.2. Fix 0 < ρ0 = (ρ+)0 = (ρc)0 < rc−r+

rcr+
. Let K ∈ N, K ≥ 2. Let

κ+, κc > 0 be suitably small compared to ρ0 and K . Consider a smooth function g :
[r+, rc] → R≥0 which satisfies:

g(r) =
{

1 for R+
0 ≤ r ≤ Rc

0,

M2ρc(r)ρ+(r) for r ≤ r(( 12ρ+)0) and r ≥ r( 12 (ρc)0).

Furthermore, let χ : [r+, rc] → R≥0 be a cut-off function supported in [r( 1
2K (ρ+)0),

r( 1
2K (ρc)0)] such that χ(r) = 1 for all r ∈ [r( 1

K (ρ+)0), r(
1
K (ρc)0)].

Then there exists a constant c0 > 0 depending only on χ , such that for

k2 ≤ c0M
3ρ3

0�(� + 1)

and

�(� + 1)"|s|2(1 + M2|s|2)K 2ρ−20 (8.4)

we have that for all κ+, κc suitably small compared to �:

∫ r( 1
2K (ρc)0)

r( 1
2K (ρ+)0)

gkD2(�(� + 1)+2r2l−2)|∂r (χψ̂)|2+r−2gk(�(� + 1) + 2r2l−2)2Dχ2|ψ̂ |2 dr

≤ C(ρc)
−2
0 (KM−1(ρc)−10 )−k

∫ 1
K (ρc)0

1
2K (ρc)0

|φ̂|2 + |∂ρφ̂|2 dρc

+ C(ρ+)
−2
0 (KM−1(ρ+)−10 )−k

∫ 1
K (ρ+)0

1
2K (ρ+)0

|φ̂|2 + |∂ρφ̂|2 dρ+

+ C
∫ r( 1

2K (ρc)0)

r( 1
2K (ρ+)0)

gkDr−2χ2|L̂s,�,κ (ψ̂)|2 dr,
(8.5)

where C > 0 is a constant that is independent of �, κ+ and κc.
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In particular, for any constant K0 > 0, and � satisfying (8.4) with K replaced by K0,
we can estimate

∫ Rc
0

R+
0

r−2|∂r (Dr2∂r ψ̂)|2 + D2(�(� + 1) + 2r2l−2)|∂r ψ̂ |2

+ Dr−2(�(� + 1) + 2r2l−2)2|ψ̂ |2 dr

≤ K−�
0

∫ (ρc)0

0
|φ̂|2 + |∂ρφ̂|2 dρc + K−�

0

∫ (ρ+)0

0
|φ̂|2 + |∂ρφ̂|2 dρ+

+ C
∫ Rc

0

R+
0

Dr−2|L̂s,�,κ (ψ̂)|2 dr + C
∫ (ρc)0

0
|r L̂s,�,κ (ψ̂)|2 dρc

+ C
∫ (ρ+)0

0
|r L̂s,�,κ (ψ̂)|2 dρ+,

(8.6)

with C > 0 a constant depending in particular on K0, but independent of �.

Remark 8.1. It is important that the coupling constant K−�
0 on the right-hand side of

(8.6) depends exponentially on � and moreover K0 can be chosen arbitrarily large if �

is taken appropriately large, because of the competition with an exponentially growing
constant on the right-hand side of (9.19) in Corollary 9.8.

Proof of Proposition 8.2. Let f̃ = L̂s,�,κ (ψ̂). We denote

r−1F := −2(1− hr+D)s∂r (rψ̂) + [hr+(2− hr+D)s2 + (h+D)′s]rψ̂ + r−1 f̃ .

By (6.15), we have that

r−1∂r (Dr2∂r ψ̂)− r−1(�(� + 1) + 2r2l−2)ψ̂ = r−1F. (8.7)

Then, by applying (8.7), we can estimate, for 0 < η < 1 arbitrarily small,

r−2|∂r (Dr2∂r ψ̂)|2 ≥ (1− η)r−2(�(� + 1) + 2r2l−2)2|ψ̂ |2 − Cηr
−2|F |2, (8.8)

with Cη > 0 an appropriately large numerical constant depending on η > 0.
Let g : (r+, rc)→ R>0 be a smooth weight function that we will specify below. Then

we can take the square norm of both sides of (8.7), multiply both sides by the weight
function Dgk and apply (8.8) to arrive at the following inequality:

(2− η) Dgkr−2(�(� + 1) + 2r2l−2)2|ψ̂ |2 − 2Re (r−2Dgk∂r (Dr
2∂r ψ̂)(�(� + 1) + 2r2l−2)ψ̂)

≤ Cηr
−2Dgk |F |2,

where k ∈ N0.
By applying the Leibniz rule, we can further estimate

−2Re (r−2Dgk∂r (Dr
2∂r ψ̂)(�(� + 1) + 2r2l−2)ψ̂) = −2∂r

(
Re
(
r−2Dgk Dr2∂r ψ̂(�(� + 1) + 2r2l−2)ψ̂

))

+ 2gk D2(�(� + 1) + 2r2l−2)|∂r ψ̂ |2 + 2kgk−1g′D2Re
(
∂r ψ̂

(
�(� + 1) + 2r2l−2

)
ψ̂
)

+ [2D′D(�(� + 1) + 2r2l−2)− 4�(� + 1)D2r−1]gkRe (∂r ψ̂ψ̂).

(8.9)
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We now take the weight function g to satisfy the following properties: g(r) = 1 for
R+
0 ≤ r ≤ Rc

0 and g(r) = M2ρc(r)ρ+(r) for r ≤ r(( 12ρ+)0) and r ≥ r( 12 (ρc)0), so that
g′(r) = 0 for R+

0 ≤ r ≤ Rc
0 and g′(r) = −M2r−2(ρ+ − ρc) for r ≤ r(( 12ρ+)0) and

r ≥ r( 12 (ρc)0).
Note that

∣
∣
∣−2kgk−1g′D2Re

(
∂r ψ̂(�(� + 1) + 2r2l−2)ψ̂

)∣
∣
∣

≤ (2− 2η)gk(�(� + 1) + 2r2l−2)2Dr−2|ψ̂ |2 + k2

(2− 2η)�(� + 1)
Dr−2|g−1∂ρg|2gk D2�(� + 1)|∂r ψ̂ |2,

where ∂ρ = ∂ρ+ in the region r ≤ R+
0 and ∂ρ = ∂ρc in the region r ≥ Rc

0.
By using standard properties of cut-off functions, we can infer that there exists a

c0 > 0 depending only on the choice of cut-off function appearing in the construction
of g, such that

Dr−2|g−1∂ρg|2 ≤ c−10 ρ−30 .

Given ε′ > 0 arbitrarily small, we can moreover estimate
∣
∣
∣
[
2D′D(�(� + 1)+2r2l−2)−4�(� + 1)D2r−1

]
gkRe

(
∂r ψ̂ψ̂

)∣
∣
∣≤2ε′D2gk�(�+1)|∂r ψ̂ |2

+ ε′D2gk(�(� + 1) + 2r2l−2))|∂r ψ̂ |2 + ε′−1

�(� + 1)
· gk(�(� + 1) + 2r2l−2)2r−2D2|ψ̂ |2

+
ε′−1

�(� + 1)
· gk(�(� + 1) + 2r2l−2)2(r D′)2r−2|ψ̂ |2.

Note that we canwrite D′r = (Dr−2)′r3+2D, and using (2.6), we can therefore estimate

(r D′)2 ≤ 2r2|∂ρ+(Dr
−2)|2 + 8D2

≤ Cr2ρ2
+ + Cκ+ρ+r

2 + Cκ2
+r

2.

The above estimate holds also with ρ+ and κ+ replaced with ρc and κc, so we can then
estimate:

(r D′)2 ≤ CD + C(κ2
+ + κ2

c )r2.

Now assume k2 ≤ c0M3ρ3
0�(� + 1) and choose η, ε′ > 0 appropriately small and �

appropriately large. We then combine the above estimates to obtain:

gk Dr−2(�(� + 1) + 2r2l−2)2|ψ̂ |2 + gkD2(�(� + 1) + 2r2l−2)|∂r ψ̂ |2 + total derivative

≤ CDr−2gk |F |2 + C(κ2
+ + κ2

c )�−2 · gk(�(� + 1) + 2r2l−2)2|ψ̂ |2.
(8.10)

Rather than integrating (8.10) directly from r+ to rc, we will first introduce a cut-off
function χ : [r+, rc] → R. Let K ∈ N, K ≥ 2. Take the cut-off function χ to satisfy:

χ(r) ≥ 0 for all r ∈ [r+, rc],
χ(r) = 0 if r ≤ r

(
1

2
K−1(ρ+)0

)

or r ≥ r

(
1

2
K−1(ρc)0

)

,

χ(r) = 1 if r(K−1(ρ+)0) ≤ r ≤ r(K−1(ρc)0).
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If we replace ψ̂ in the above estimates by χ · ψ̂ , then we have to replace r−1F by

χ · r−1F − χ ′′Drψ̂ − r−1∂r (Dr2)χ ′ψ̂ − 2Drχ ′∂r ψ̂,

and we can apply (8.10) to obtain

gk Dr−2(�(� + 1) + 2r2l−2)2χ2|ψ̂ |2 + gk D2(�(� + 1) + 2r2l−2)|∂r (χψ̂)|2 + total derivative

≤ CDr−2χ2gk |F |2 + CD(D|χ ′′|2 + r−2|χ ′|2)gk |φ̂|2 + CDr−2|χ ′|2gk |∂ρφ̂|2
+ Cχ2(κ2

+ + κ2
c )�−2 · gk(�(� + 1) + 2r2l−2)2|ψ̂ |2.

(8.11)
We have that

χ2Dr−2|F |2 ≤ CDr2|s|2|∂r (χψ̂)|2 +C(|χ ′|2r2 + 1)(|s|2 +M2|s|4)D|ψ̂ |2 +CDr−2χ2| f̃ |2.
If

�(�+1)"|s|2(1+M2|s|2)max

{

(D−1r2)
(
1

2
K−1 (ρ+)0

)

, (D−1r2)
(
1

2
K−1(ρc)0

)}

,

(8.12)
then we can use that the cut-off χ allows us to restrict r ∈ [r ( 12K−1(ρ+)0

)
,

r
( 1
2K

−1(ρc)0
)] in order to absorb part of the |F |2 term into the left-hand side of (8.11)

to be left with

gkr−2(�(� + 1) + 2r2l−2)2Dχ2|ψ̂ |2 + gkD2(�(� + 1) + 2r2l−2)|∂r (χψ̂)|2
+ total derivative

≤ CDr−2χ2| f̃ |2 + CD(D|χ ′′|2 + r−2|χ ′|2)|φ̂|2 + CDr−2|χ ′|2|∂ρφ̂|2
+ Cχ2(κ2

+ + κ2
c )�−2 · gk(�(� + 1) + 2r2l−2)2|ψ̂ |2.

(8.13)

Finally, we integrate (8.13) over [r(( 12K−1(ρ+)0)), r(( 12K−1(ρc)0))] and use that we
can bound

Dr−2|χ ′|2 + D2|χ ′′|2 � r−4 + κ+ρ
−1
+ r−4 + κcρ

−1
c r−4 + κ2

+ρ−2+ r−4 + κ2
c ρ−2c r−4

to obtain
∫ r( 1

2K (ρc)0)

r( 1
2K (ρ+)0)

gk D2(�(� + 1) + 2r2l−2)|∂r (χψ̂)|2 + r−2gk(�(� + 1) + 2r2l−2)2Dχ2|ψ̂ |2 dr

≤ C(ρc)
−2
0 (KM−1ρ−10 )−k

∫ 1
K (ρc)0

1
2K (ρc)0

|φ̂|2 + |∂ρφ̂|2 dρc

+ C(ρ+)
−2
0 (KM−1ρ−10 )−k

∫ 1
K (ρ+)0

1
2K (ρ+)0

|φ̂|2 + |∂ρφ̂|2 dρ+

+ C
∫ r( 1

2K (ρc)0)

r( 1
2K (ρ+)0)

gk Dr−2χ2| f̃ |2 dr,

where C is a constant that depends on K but is independent of � and κ+, κc are chosen
suitably small, depending on ρ0 and K . We conclude that (8.5) holds.
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In order to prove (8.6), we first observe that K > 0 can be taken arbitrarily large
[provided � is taken suitably large according to (8.12)] sowe simplymake the integration
interval on the left-hand side of (8.5) smaller and the integration interval on the right-
hand side larger, and we use that g ≡ 1 on [R+

0 , Rc
0]. Finally, we can include the term

r−2|∂r (Dr2∂r ψ̂)|2 that appears on the left-hand side of (8.6) by applying additionally
(8.2). ��

9. Main Gevrey Estimates

In this section, we prove the key estimate of the paper, namely a L2-based Gevrey
estimate nearH+ and C+ or I+ under the assumption of suitably large angularmomentum
�.

Theorem 9.1. Let ψ̂ ∈ C∞([r+, rc]). Fix σ ∈ R>0, � ∈ N0 and (ρ+)0 = (ρc)0 = ρ0 >

0. Let κ+ = κc = κ > 0 or let κ = 0 and assume additionally that ψ̂ ∈ Hσ,2,ρ0 . Let
s ∈ �σ ⊂ C, where

�σ =
{
z ∈ C |Re z < 0, |z| < σ, 3(Im z)2 − 5(Re z)2 > σ 2}∪{z ∈ C|Re z ≥ 0, |z| > 0}.

Then for all ρ0 > 0 suitably small, there exist λ0 ∈ N suitably large such that for
all λ ≥ λ0 and for κ suitably small depending on � and λ, we can find constants
C�,λ,Cs,ρ0 > 0, such that we can estimate

∫ Rc
0

R+
0

|ψ̂ |2 + |∂r ψ̂ |2 + |∂2r ψ̂ |2 dr

+
1

C�,λ

∞∑

n=0

σ 2n

(n + 1)!2n!2 n
2(n + 1)2

∫ (ρ+)0

0
|∂nρ+(rψ̂)|2 + ρ4|∂n+1ρ+

(rψ̂)|2 dρ+

+
1

C�,λ

∞∑

n=0

σ 2n

(n + 1)!2n!2 n
2(n + 1)2

∫ (ρc)0

0
|∂nρc (rψ̂)|2 + ρ4|∂n+1ρc

(rψ̂)|2 dρc

≤ Cs,ρ0

∫ Rc
0

R+
0

|Ls,�+λ,κ (ψ̂)|2 dr + Cs,ρ0

∞∑

n=0

σ 2n

(n + 1)!2n!2
∫ (ρ+)0

0
|∂nρ+(r Ls,�+λ,κ (ψ̂))|2 dρ+

+ Cs,ρ0

∞∑

n=0

σ 2n

(n + 1)!2n!2
∫ (ρc)0

0
|∂nρc (r Ls,�+λ,κ (ψ̂))|2 dρc.

(9.1)

For the convenience of the reader, we provide an outline of the main steps involved
in the proof of Theorem 9.1.
Outline of the proof of Theorem 9.1:

Step 1 We restrict to a single region of the form {r ≤ R+
0 } or {r ≥ Rc

0}, with ρ0 :=
(ρ+)0 = (ρc)0, where 0 < ρ0 < rc−r+

rcr+
will be chosen suitably small, and we

derive estimates for themodified quantity �̂(n) in terms of fn , which is defined in
(6.17) and appears on the left-hand side of (6.16).We start by proving degenerate
H2-type estimates for all n ≥ � (see Proposition 9.2). These can be viewed as
the main (fixed-frequency) vector field multiplier estimates in the near-horizon
regions.



Quasinormal Modes in Extremal Reissner–Nordström Spacetimes 1453

Step 2 We consider the estimates from Proposition 9.2 and sum over n, starting from
n = � with appropriate n-dependent weights that allow us to absorb terms into
(lower) n− k-order or (higher) n + k-order estimates with k > 0 and we use the
non-degeneracy of the wave operator away from the horizons to express the sum
over the boundary terms at ρ = ρ0 in terms of �̂(ρ0) and �̂(1)(ρ0) (see Lemma
9.4 and Proposition 9.5).

Step 3 We increase the summation from n ≥ � to n ≥ 0 (see Proposition 9.6).
Step 4 We show that for s ∈ �σ all but the top order terms on the left-hand side of

Proposition 9.6 are non-negative definite (see Lemma 9.7) and show that we can
moreover absorb the top order terms if we assume κ > 0, making use of the
enhanced red-shift effect (see Corollary 9.8).

Step 5 We couple the estimate from Corollary 9.8 to the estimates in Proposition 8.2 in
order to get rid of the ρ = ρ0 boundary terms (see Proposition 9.9).

Step 6 We finish the proof of Theorem 9.1 by converting the estimates for the modified
higher-order quantities �̂(n) from Proposition 9.9 into estimates for ∂nρ φ̂ (see
Corollary 9.10).

Proposition 9.2. Let s �= 0. For all ε > 0, there exist � ∈ N0 and ρ0, γ satisfying

M−1ρ̃−10 " max{1, γ } and γ" (M−1|s|−1 + M |s|),

such that the following estimates hold when κc + κc � (� + 1)−1. Let � ≤ n ≤ 2�, then
for all α, β, ν > 0, μ ∈ [0, 1] and �̂ ∈ C∞([0, ρ̃0])

∫ ρ̃0

0
(1− μν−1(1 + M ρ̃)4 − ε)(2κρ̃ + ρ̃2)2e2γ M

√
�(�+1)ρ̃ |�̂(n+2)|2 dρ̃

+
∫ ρ̃0

0

(

1− 4β−1
(
max{−Re (s), 0}

|s|
)2
− νμ− ε

)

|2s|2e2γ M
√

�(�+1)ρ̃ |�̂(n+1)|2 dρ̃

+
∫ ρ̃0

0
(4− β − α(1− μ)− ε)(n + 1)2(ρ̃ + κ)2e2γ M

√
�(�+1)ρ̃ |�̂(n+1)|2 dρ̃

−
∫ ρ̃0

0

|2s|2σ̃ 2

(n + 1)2(n + 2)2
· α−1σ̃−2(1− μ)(n + 2)2(1 + M ρ̃)4(ρ̃2 + 2κρ̃)e2γ M

√
�(�+1)ρ̃ |�̂(n+1+1)|2 dρ̃

−
∫ ρ̃0

0

[n(n + 1)− �(� + 1)]2
|2s|2σ̃ 2 (1 + ε)̃σ 2|2s|2e2γ M

√
�(�+1)ρ̃ |�̂(n−1+1)|2 dρ̃

≤ Cε(� + 1)−3
n∑

k=1
γ

1
2 (n−k) (n + 1)!2

(k − 1)!2 e
2γ M

√
�(�+1)ρ̃0 |�̂(k)|2(ρ̃0)

+ Cε(� + 1)−1
n∑

k=0
γ

1
2 (n−k) n!2

k!2 e
2γ M

√
�(�+1)ρ̃0 |�̂(k)|2(ρ̃0) + Cε

∫ ρ̃0

0
e2γ M

√
�(�+1)ρ̃ | fn |2 dρ̃,

with Cε > 0 a constant that is independent of �.
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Let n > 2�, then

∫ ρ̃0

0
(1− μν−1(1 + M ρ̃)4 − ε)(2κρ̃ + ρ̃2)2e2γ M

√
�(�+1)ρ̃ |�̂(n+2)|2 dρ̃

+
∫ ρ̃0

0

(

1−4β−1
(
max{−Re (s), 0}

|s|
)2
−νμ−ε

)

|2s|2e2γ M
√

�(�+1)ρ̃ |�̂(n+1)|2 dρ̃

+
∫ ρ̃0

0
(4− β − α(1− μ)− ε)(n + 1)2(ρ̃ + κ)2e2γ M

√
�(�+1)ρ̃ |�̂(n+1)|2 dρ̃

−
∫ ρ̃0

0

|2s|2σ̃ 2

(n + 1)2(n + 2)2
· α−1σ̃−2(1− μ)(n + 2)2

× (1 + M ρ̃)4(ρ̃3 + 2κρ̃2)e2γ M
√

�(�+1)ρ̃ |�̂(n+1+1)|2 dρ̃

−
∫ ρ̃0

0

[n(n + 1)− �(� + 1)]2
|2s|2σ̃ 2 (1 + ε)̃σ 2|2s|2e2γ M

√
�(�+1)ρ̃ |�̂(n−1+1)|2 dρ̃

− C
∫ ρ̃0

0
σ̃ 4n−4 n

2(n + 1)2 · (n − 1)2n2

|2s|4σ̃ 4 |2s|2|e2γ M
√

�(�+1)ρ̃�̂(n−2+1)|2 dρ̃

− C(� + 1)−2
n−1∑

k=2�+1

∫ ρ̃0

0
σ̃ 2(n−k+1)|2s|2(n−k) (n − 2�)k!2

n!2

×
[

(n + 1)!2n!2
k!2(k − 1)!2

1

|2s|2(n−k+1)σ̃ 2(n−k+1)

]

· |2s|2e2γ M
√

�(�+1)ρ̃ |�̂(k−1+1)|2 dρ̃

− Cγ−2(� + 1)−2
∫ ρ̃0

0

(n + 1)!2
(2�)!2 e2γ M

√
�(�+1)ρ̃ |2s|2|�̂(2�+1)|2 dρ̃

≤ Cε(� + 1)−3
2�∑

k=1
γ

1
2 (2�−k) (n + 1)!2

(k − 1)!2 e
2γ M

√
�(�+1)ρ̃0 |�̂(k)|2(ρ̃0)

+ Cεγ
−1(� + 1)−3(n + 2)2

2�∑

k=0
γ

1
2 (2�−k) n!2

k!2 e
2γ M

√
�(�+1)ρ̃0 |�̂(k)|2(ρ̃0)

+ Cε

∫ ρ̃0

0
e2γ M

√
�(�+1)ρ̃ | fn|2 dρ̃,

with C,Cε > 0 constants that are independent of �.

Remark 9.1. Given an arbitrary choice of α, β, μ, ν, the first three integrals on the left-
hand sides of both estimates in Proposition 9.2 need not be non-negative definite. We
will later fix these parameters (Lemma 9.7), so that under suitable restrictions on s ∈ C,
we obtain non-negative definiteness.

We will make frequent use of the lemma below that shows that we can absorb lower
order derivatives terms with respect to ρ̃ into higher order derivatives by introducing
suitable exponential weights in ρ̃ at the expense of introducing additional boundary
terms on the right-hand side of the relevant estimates.
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Lemma 9.3. Let M, γ > 0 and consider a function h ∈ C1([0, ρ̃0]).
∫ ρ̃0

0
e2γ M

√
�(�+1)ρ̃ |h|2 dρ̃ +

1

γ M
√

�(� + 1)
|h|2(0)

≤ 1

M2γ 2�(� + 1)

∫ ρ̃0

0
e2γ M

√
�(�+1)ρ̃ |∂ρ̃h|2 dρ̃ +

1

γ M
√

�(� + 1)
e2γ M

√
�(�+1)ρ̃0 |h|2(ρ̃0).

(9.2)

Proof. We can expand

∂ρ̃(eγ M
√

�(�+1)ρ̃h) = eγ M
√

�(�+1)ρ̃∂ρ̃h + γ M
√

�(� + 1)eγ M
√

�(�+1)ρ̃h.

Hence,

e2γ M
√

�(�+1)ρ̃ |∂ρ̃h|2 = |∂ρ̃(eγ M
√

�(�+1)ρ̃h)|2 + γ 2M2�(� + 1)e2γ M
√

�(�+1)ρ̃ |h|2
− ∂ρ̃(γ M

√
�(� + 1)e2γ M

√
�(�+1)ρ̃ |h|2).

and after integrating, we obtain

∫ ρ̃0

0
γ 2M2�(� + 1)e2γ M

√
�(�+1)ρ̃ |h|2 dρ̃ + γ M

√
�(� + 1)|h|2(0)

≤
∫ ρ̃0

0
e2γ M

√
�(�+1)ρ̃ |∂ρ̃h|2 dρ̃ + γ M

√
�(� + 1)e2γ M

√
�(�+1)ρ̃0 |h|2(ρ̃0).

��
Proof of Proposition 9.2. We first of all rearrange (6.16) as follows:

2(1 + M ρ̃)2s�̂(n+1) + [2κρ̃ + ρ̃2](∂ρ̃ − sĥ)�̂(n+1) + 2(n + 1)(ρ̃ + κ)�̂(n+1)

+
n�∑

k=1

(n + 1)!
(k − 1)!M

n−k Fn,k�̂(k) +
n�∑

k=0

n!(n − k + 1)

k! Mn−k F̃n,k�̂(k) = Gn

(9.3)
with n� = min{n, 2�} and
Gn := fn − [n(n + 1)− �(� + 1)]�̂(n) − (4n + 2)M(1 + M ρ̃)s�̂(n) − 2n2M2s�̂(n−1)

− ρ̃2Fn,n+2�̂(n+2) − 2(n + 1)ρ̃Fn,n+1�̂(n+1)

if n ≤ 2� and

Gn := fn − [n(n + 1)− �(� + 1)]�̂(n) − (4n + 2)M(1 + M ρ̃)s�̂(n) − 2n2M2s�̂(n−1)

− ρ̃2Fn,n+2�̂(n+2) − 2(n + 1)ρ̃Fn,n+1�̂(n+1) +
n∑

k=2�+1

(n + 1)!
(k − 1)!M

n−k Fn,k�̂(k)

+
n∑

k=2�+1

n!(n − k + 1)

k! Mn−k F̃n,k�̂(k)

if n > 2�.



1456 D. Gajic, C. Warnick

We take the square norm of both sides of the Eq. (9.3) and then multipy by an
exponential weight function to obtain the equation:

e2γ M
√

�(�+1)ρ̃
∣
∣
∣
∣2(1 + M ρ̃)2s�̂(n+1) + [2κρ̃ + ρ̃2](∂ρ̃ − sĥ)�̂(n+1)

+ 2(n + 1)(ρ̃ + κ)�̂(n+1) +
n�∑

k=1

(n + 1)!
(k − 1)!M

n−k Fn,k�̂(k)

+
n�∑

k=0

n!(n − k + 1)

k! Mn−k F̃n,k�̂(k)

∣
∣
∣
∣

2

= e2γ M
√

�(�+1)ρ̃ |Gn|2,
where γ > 0 is a dimensionless constant that will be chosen suitably large.

We can split up the left-hand side above as follows:

e2γ M
√

�(�+1)ρ̃
∣
∣
∣2(1 + M ρ̃)2s�̂(n+1) + [2κρ̃ + ρ̃2](∂ρ̃ − sĥ)�̂(n+1)

+ 2(n + 1)(ρ̃ + κ)�̂(n+1) +
n�∑

k=1

(n + 1)!
(k − 1)!M

n−k Fn,k�̂(k)

+
n�∑

k=0

n!(n − k + 1)

k! Mn−k F̃n,k�̂(k)

∣
∣
∣
2 =

4∑

i=0
Ji ,

where

J0 := |2s|2(1 + M ρ̃)4e2γ M
√

�(�+1)ρ̃ |�̂(n+1)|2 + (2κρ̃ + ρ̃2)2e2γ M
√

�(�+1)ρ̃ |�̂(n+2)|2
+ 4(n + 1)2(ρ̃ + κ)2e2γ M

√
�(�+1)ρ̃ |�̂(n+1)|2

and

J1 := 4Re (2s)(n + 1)(1 + M ρ̃)2(ρ̃ + κ)e2γ M
√

�(�+1)ρ̃ |�̂(n+1)|2,
J2 := 2(n + 1)(ρ̃ + κ)[2κρ̃ + ρ̃2]e2γ M

√
�(�+1)ρ̃∂ρ̃ (|�̂(n+1)|2)

− 2(n + 1)Re (2s)ĥ(ρ̃ + κ)[2κρ̃ + ρ̃2]e2γ M
√

�(�+1)ρ̃ |�̂(n+1)|2,
J3 := 2(1 + M ρ̃)2[2κρ̃ + ρ̃2]e2γ M

√
�(�+1)ρ̃Re (2s�̂(n+1)�̂(n+2)),

J4 := e2γ M
√

�(�+1)ρ̃

∣
∣
∣
∣
∣

n�∑

k=1

(n + 1)!
(k − 1)!M

n−k Fn,k�̂(k) +
n�∑

k=0

n!(n − k + 1)

k! Mn−k F̃n,k�̂(k)

∣
∣
∣
∣
∣

2

+ 2e2γ M
√

�(�+1)ρ̃Re

[( n�∑

k=1

(n + 1)!
(k − 1)!M

n−k Fn,k�̂(k) +
n�∑

k=0

n!(n − k + 1)

k! Mn−k F̃n,k�̂(k)

)

·

·
(
2(1 + M ρ̃)2s�̂(n+1) + [2κρ̃ + ρ̃2]�̂(n+2) + 2(n + 1)(ρ̃ + κ)�̂(n+1)

) ]

.

Step 1: Estimating J1–J3. We will first estimate J1. Let us first suppose Re (s) ≥ 0.
Then J1 has a good sign. Now suppose Re (s) < 0. Then we introduce the parameter
β > 0 and apply Young’s inequality to estimate:
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|J1| ≤ β(n + 1)2(1 + M ρ̃)4(ρ̃ + κ)2e2γ M
√

�(�+1)ρ̃ |�̂(n+1)|2

+4β−1
( |Re (2s)|

|2s|
)2
|2s|2e2γ M

√
�(�+1)ρ̃ |�̂(n+1)|2.

Consider J2. We integrate by parts (using that �̂ is smooth at ρ = 0):

∫ ρ̃0

0
J2 dρ = 2(n + 1)(ρ̃ + κ)[2κρ̃ + ρ̃2]e2γ M

√
�(�+1)ρ̃ |�̂(n+1)|2

∣
∣
∣
ρ̃=ρ̃0

−
∫ ρ̃0

0
(n + 1)[4κ2 + 12κρ̃ + 6ρ̃2]e2γ M

√
�(�+1)ρ̃ |�̂(n+1)|2

− 4γ M
√

�(� + 1)(n + 1)(ρ̃ + κ)[2κρ̃ + ρ̃2]e2γ M
√

�(�+1)ρ̃ |�̂(n+1)|2
− 2(n + 1)Re (2s)ĥ(ρ̃ + κ)[2κρ̃ + ρ̃2]e2γ M

√
�(�+1)ρ̃ |�̂(n+1)|2 dρ̃.

Note in particular that we can absorb the second term in the integral on the RHS into
J0, provided γ M#ρ̃−10 .

Furthermore, using that � < n, we can estimate the third and fourth terms by:

∫ ρ̃0

0
ε(n + 1)2(ρ̃ + κ)2e2γ M

√
�(�+1)ρ̃ |�̂(n+1)|2 dρ̃,

where ε > 0 here can be taken suitably small, using that γ M#ρ̃−10 and κ � (� + 1)−1,
where we will take � arbitrarily large.

Now consider J3. We introduce a parameter μ ∈ [0, 1] and split:

|J3| ≤ 2|2s|(1 + M ρ̃)2[2κρ̃ + ρ̃2]e2γ M
√

�(�+1)ρ̃ |�̂(n+1)||�̂(n+2)|
= (1− μ)2|2s|(1 + M ρ̃)2[2κρ̃ + ρ̃2]e2γ M

√
�(�+1)ρ̃ |�̂(n+1)||�̂(n+2)|

+ μ2|2s|(1 + M ρ̃)2[2κρ̃ + ρ̃2]e2γ M
√

�(�+1)ρ̃ |�̂(n+1)||�̂(n+2)|.
Subsequently, we introduce another parameter α > 0 in order to estimate the term with
a factor 1− μ via Young’s inequality:

2(1− μ)|2s|(1 + M ρ̃)2[2κρ̃ + ρ̃2]e2γ M
√

�(�+1)ρ̃ |�̂(n+1)||�̂(n+2)|
≤ α(1− μ)(n + 1)2(ρ̃2 + 2κρ̃)e2γ M

√
�(�+1)ρ̃ |�̂(n+1)|2

+
|2s|2σ̃ 2

(n + 1)2(n + 2)2
· α−1σ̃−2(1− μ)(n + 2)2

× (1 + M ρ̃)4(ρ̃2 + 2κρ̃)e2γ M
√

�(�+1)ρ̃ |�̂(n+1+1)|2.

(9.4)

Furthermore, we introduce the parameter ν > 0 in order to further estimate the term
with a factor μ via another application of Young’s inequality:

2μ|2s|(1 + M ρ̃)2[2κρ̃ + ρ̃2]e2γ M
√

�(�+1)ρ̃ |�̂(n+1)||�̂(n+2)|
≤ νμ|2s|2e2γ M

√
�(�+1)ρ̃ |�̂(n+1)|2 + μ

ν
(1 + M ρ̃)4(2κρ̃ + ρ̃2)2e2γ M

√
�(�+1)ρ̃ |�̂(n+2)|2.
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Step 2: Estimating J4. We consider J4. We apply Young’s inequality with suitable
weights to obtain

J4 ≥− ε

n�∑

k=0
γ−

1
2 (n�−k) J0 − Cε−1

n�∑

k=1
γ

1
2 (n�−k) (n + 1)!2

(k − 1)!2

× M2(n−k)|Fn,k |2e2γ M
√

�(�+1)ρ̃ |�̂(k)|2

− Cε−1
n�∑

k=0
γ

1
2 (n�−k) n!2

k!2 (n − k + 2)2M2(n−k)|F̃n,k |2e2γ M
√

�(�+1)ρ̃ |�̂(k)|2.

Let 1 ≤ k ≤ n�. We will ignore the |Fn,k |2 and |F̃n,k |2 factors for now. Then we can
apply Lemma 9.3 to estimate:

∫ ρ̃0

0

(n + 1)!2
(k − 1)!2 e

2γ M
√

�(�+1)ρ̃ |�̂(k)|2 dρ̃

≤ Cγ−2
∫ ρ̃0

0

(n + 1)!2
(k + 1− 1)!2 e

2γ M
√

�(�+1)ρ̃ (|�̂(k+1)|2 + ĥ2|s|2|�̂(k)|2) dρ̃

+
C

γ (�(� + 1))
1
2

(n + 1)!2
(k − 1)!2 e

2γ M
√

�(�+1)ρ̃0 |�̂(k)|2(ρ̃0),

(9.5)

and then we can absorb the ĥ2|s|2|�̂(k)|2 term appearing in the integrand on the right-
hand side into the left-hand side, for γ suitably large.

Similarly, we have that for all 0 ≤ k ≤ n�:

∫ ρ̃0

0

n!2
k!2 (n − k + 2)2e2γ M

√
�(�+1)ρ̃ |�̂(k)|2 dρ̃

≤ Cγ−2
∫ ρ̃0

0

n!2
(k + 1)!2 (n − (k + 1) + 2)2

×
[

(n − k + 2)2

(n − (k + 1) + 2)2

]

e2γ M
√

�(�+1)ρ̃ |�̂(k+1)|2 dρ̃

+
C

γ (�(� + 1))
1
2

n!2
k!2 (n − k + 2)2e2γ M

√
�(�+1)ρ̃0 |�̂(k)|2(ρ̃0).

(9.6)

By repeatedly applying the estimate (9.5) n� − k + 1 times, we obtain the following
estimate for �̂(k) with 1 ≤ k ≤ n�:

∫ ρ̃0

0
γ

1
2 (n�−k) (n + 1)!2

(k − 1)!2 e
2γ M

√
�(�+1)ρ̃ |�̂(k)|2 dρ̃

≤ |s|−2Cn�−kγ−2γ−
3
2 (n�−k)

∫ ρ̃0

0
|s|2 (n + 1)!2

n�!2 e2γ M
√

�(�+1)ρ̃ |�̂(n�+1)|2 dρ̃

+
C

(�(� + 1))
1
2

γ
1
2 (n�−k)

n�∑

m=k
γ−1−2(m−k) (n + 1)!2

(m − 1)!2 e
2γ M

√
�(�+1)ρ̃0 |�̂(m)|2(ρ̃0),
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where C > 0 is a constant independent of γ , �. If we take γ suitably large compared to
C , then we can sum over k to obtain:

n�∑

k=1

∫ ρ̃0

0
γ

1
2 (n�−k) (n + 1)!2

(k − 1)!2 e
2γ M

√
�(�+1)ρ̃ |�̂(k)|2 dρ̃ ≤ C |s|−2γ−2

×
∫ ρ̃0

0

(n + 1)!2
n�!2 e2γ M

√
�(�+1)ρ̃ |s|2|�̂(n�+1)|2 dρ̃

+
C

γ (� + 1)

n�∑

k=1
γ

1
2 (n�−k) (n + 1)!2

(k − 1)!2 e
2γ M

√
�(�+1)ρ̃0 |�̂(k)|2(ρ̃0).

We can similarly apply (9.6) n�− k + 1 times. Before we do that, we observe that for
all 0 ≤ k ≤ n�

(n − k + 2)2

(n − (k + 1) + 2)2
=
(

1 +
1

n − (k + 1) + 2

)2
≤ 4.

Hence,

∫ ρ̃0

0
γ

1
2 (n�−k) n!2

k!2 (n − k + 2)2e2γ M
√

�(�+1)ρ̃ |�̂(k)|2 dρ̃

≤ Cn�−k |s|−2γ−2γ− 3
2 (n�−k)

∫ ρ̃0

0

n!
(n� + 1)!2 (n − (n� + 1) + 2)2

× e2γ M
√

�(�+1)ρ̃ |s|2|�̂(n�+1)|2 dρ̃

+
C

(�(� + 1))
1
2

γ
1
2 (n�−k)

n�∑

m=k
γ−1−2(m−k) n!

2

m!2 (n − m + 2)2

× e2γ M
√

�(�+1)ρ̃0 |�̂(m)|2(ρ̃0).

Therefore, we can sum over k to obtain:

n�∑

k=0

∫ ρ̃0

0
γ

1
2 (n�−k) n!2

k!2 (n − k + 2)2e2γ M
√

�(�+1)ρ̃ |�̂(k)|2 dρ̃

≤ Cγ−2|s|−2 n!2
(n� + 1)!2 (n − (n� + 1) + 2)2

∫ ρ̃0

0
e2γ M

√
�(�+1)ρ̃ |2s|2|�̂(n�+1)|2 dρ̃

+ Cγ−1(� + 1)−1(n + 2)2
n�∑

k=0
γ

1
2 (n�−k) n!2

k!2 e
2γ M

√
�(�+1)ρ̃0 |�̂(k)|2(ρ̃0).

We moreover have that |Fn,k |2 + |F̃n,k |2 ≤ C(κ2
+ + κ2

c ), so in order to ensure that
the integrals appearing in the estimates above can be absorbed into J0, we will take
κ+, κc � (� + 1)−1. We can then conclude that for ε > 0 arbitrarily small and |s| > 0,
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there exists a γ"M−1|s|−1 suitably large such that: for n ≤ 2� (n� = n)
∫ ρ̃0

0
J4dρ̃ ≥ −

∫ ρ̃0

0
ε J0dρ̃ − Cεγ

−1(� + 1)−3

×
n∑

k=1
γ

1
2 (n−k) (n + 1)!2

(k − 1)!2 e
2γ M

√
�(�+1)ρ̃0 |�̂(k)|2(ρ̃0)

− Cεγ
−1(� + 1)−1

n∑

k=0
γ

1
2 (n−k) n!2

k!2 e
2γ M

√
�(�+1)ρ̃0 |�̂(k)|2(ρ̃0)

and for n > 2� (n� = 2�)
∫ ρ̃0

0
J4dρ̃ ≥ −

∫ ρ̃0

0
ε J0 dρ̃

− C |s|−2γ−2(� + 1)−2
∫ ρ̃0

0

(n + 1)!2
(2�)!2 e2γ M

√
�(�+1)ρ̃ |2s|2|�̂(2�+1)|2 dρ̃

− Cεγ
−1(� + 1)−3

2�∑

k=1
γ

1
2 (2�−k) (n + 1)!2

(k − 1)!2 e
2γ M

√
�(�+1)ρ̃0 |�̂(k)|2(ρ̃0)

− Cεγ
−1(� + 1)−3(n + 2)2

2�∑

k=0
γ

1
2 (2�−k) n!2

k!2 e
2γ M

√
�(�+1)ρ̃0 |�̂(k)|2(ρ̃0).

Step 3: Estimating Gn . Estimate first of all
∣
∣
∣
∣
∣

n−1∑

k=2�+1

[
(n + 1)!
(k − 1)!M

n−k Fn,k +
n!
k! (n − k + 1)Mn−k F̃n,k

]

�̂(k)

∣
∣
∣
∣
∣

2

≤ C(n − 2�)
n−1∑

k=2�+1

(
(n + 1)!2
(k − 1)!2 M

2(n−k)(|Fn,k |2 + |F̃n,k |2
))

|�̂(k)|2.

We can therefore apply a suitably weighted Young’s inequality in the n > 2� case:
for ε > 0 arbitrary small, we have that there exists a constant Cε > 0, such that

|Gn|2 ≤ (1 + ε)[n(n + 1)− �(� + 1)]2|�̂(n)|2 + Cε(n + 1)2n2(|Fn,n|2 + |F̃n,n|2)|�̂(n)|2
+ Cε(n + 1)2|s|2|�̂(n)|2 + Cεn

4|s|2|�̂(n−1)|2
+ Cε ρ̃

4|Fn,n+2|2|�̂(n+2)|2 + Cε(n + 1)2ρ̃2|Fn,n+1|2|�̂(n+1)|2

+ Cε(n − 2�)
n−1∑

k=2�+1

(n + 1)!2
(k − 1)!2 M

2(n−k)(|Fn,k |2 + |F̃n,k |2)|�̂(k)|2

+ Cε | fn|2,
whereas in the n ≤ 2� terms we obtain the same inequality, but without the terms
depending on Fn,k and F̃n,k with 2� + 1 ≤ k ≤ n on the right-hand side .

First of all, we rewrite

(1+ ε)[n(n +1)−�(�+1)]2|�̂(n)|2 = [n(n + 1)− �(� + 1)]2
|2s|2σ̃ 2 (1+ ε)̃σ 2|2s|2|�̂(n−1+1)|2.
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We refer to the proof of Proposition 9.5 for the motivation to include the factor σ̃ 2 above.
Similarly, we have that for n > 2�

Cε(n + 1)2n2|Fn,n|2|�̂(n)|2 ≤ C σ̃ 2(κ2
+ + κ2

c )
n2(n + 1)2

|2s|2σ̃ 2 |2s|2|�̂(n−1+1)|2,

Cε(n + 1)2|s|2|�̂(n)|2 = Cεn
−2σ̃ 2|2s|2 n

2(n + 1)2

|2s|2σ̃ 2 |2s|2|�̂(n−1+1)|2,

Cεn
4|s|2|�̂(n−1)|2 ≤ Cεn

−4σ̃ 4|2s|2 n
2(n + 1)2 · (n − 1)2n2

|2s|2σ̃ 4 |2s|2|�̂(n−2+1)|2

and, for 2� + 1 ≤ k ≤ n,

M2(n−k)(|Fn,k |2 + |F̃n,k |2) (n + 1)!2
(k − 1)!2 (n − 2�)|�(k)|2

≤ CM2(n−k)(κ2
+ + κ2

c )̃σ 2(n−k+1)|2s|2(n−k) (n − 2�)k!2
n!2

×
[

(n + 1)!2n!2
k!2(k − 1)!2 σ̃−2(n−(k−1))|2s|−2(n−(k−1))

]

·|2s|2|�(k−1+1)|2.
If n ≤ 2�, we instead apply Lemma 9.3 to estimate:
∫ ρ̃0

0
n4|s|2e2γ M

√
�(�+1)ρ̃ |�̂(n−1)|2 dρ̃ ≤ C

γ 2 n
2
∫ ρ̃0

0
|s|2e2γ M

√
�(�+1)ρ̃ |�̂(n)|2 dρ̃

+
C

(�(� + 1))
1
2 γ

n4|s|2e2γ M
√

�(�+1)ρ̃0 |�̂(n−1)|2(ρ̃0).

and
∫ ρ̃0

0
n2|s|2e2γ M

√
�(�+1)ρ̃ |�̂(n)|2 dρ̃ ≤ C

γ 2

∫ ρ̃0

0
|s|2e2γ M

√
�(�+1)ρ̃ |�̂(n+1)|2 dρ̃

+
C

(�(� + 1))
1
2 γ

n2|s|2e2γ M
√

�(�+1)ρ̃0 |�̂(n)|2(ρ̃0).

Step 4: Putting everything together. We combine the above estimates to obtain the
following estimate: let ε > 0 be arbitrarily small, then there exist γ suitably large with

M−1ρ̃−10 "γ"(M−1|s|−1 + M |s|),
and moreover M−1ρ̃−10 "1, such that for n ≤ 2�:

∫ ρ̃0

0
(1− μν−1(1 + M ρ̃)4 − ε)(2κρ̃ + ρ̃2)2e2γ M

√
�(�+1)ρ̃ |�̂(n+2)|2 dρ̃

+
∫ ρ̃0

0

(

1− 4β−1
(
max{−Re (s), 0}

|s|
)2
− νμ− ε

)

|2s|2e2γ M
√

�(�+1)ρ̃ |�̂(n+1)|2 dρ̃

+
∫ ρ̃0

0
(4− β − α(1− μ)− ε)(n + 1)2(ρ̃ + κ)2e2γ M

√
�(�+1)ρ̃ |�̂(n+1)|2 dρ̃
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−
∫ ρ̃0

0

|2s|2σ̃ 2

(n + 1)2(n + 2)2
· α−1σ̃−2(1− μ)(n + 2)2(1 + M ρ̃)4

× (ρ̃2 + 2κρ̃)e2γ M
√

�(�+1)ρ̃ |�̂(n+1+1)|2 dρ̃

−
∫ ρ̃0

0

[n(n + 1)− �(� + 1)]2
|2s|2σ̃ 2 (1 + ε)̃σ 2|2s|2e2γ M

√
�(�+1)ρ̃ |�̂(n−1+1)|2 dρ̃

≤ Cε(� + 1)−3γ−1
n∑

k=1
γ

1
2 (n−k) (n + 1)!2

(k − 1)!2 e
2γ M

√
�(�+1)ρ̃0 |�̂(k)|2(ρ̃0)

+ Cεγ
−1(� + 1)−1

n∑

k=0
γ

1
2 (n−k) n!2

k!2 e
2γ M

√
�(�+1)ρ̃0 |�̂(k)|2(ρ̃0)

+ Cε

∫ ρ̃0

0
e2γ M

√
�(�+1)ρ̃ | fn|2 dρ̃.

Let n > 2�, then

∫ ρ̃0

0
(1− μν−1(1 + M ρ̃)4 − ε)(2κρ̃ + ρ̃2)2e2γ M

√
�(�+1)ρ̃ |�̂(n+2)|2 dρ̃

+
∫ ρ̃0

0

(

1−4β−1
(
max{−Re (s), 0}

|s|
)2
−νμ−ε

)

|2s|2e2γ M
√

�(�+1)ρ̃ |�̂(n+1)|2 dρ̃

+
∫ ρ̃0

0
(4− β − α(1− μ)− ε)(n + 1)2(ρ̃ + κ)2e2γ M

√
�(�+1)ρ̃ |�̂(n+1)|2 dρ̃

−
∫ ρ̃0

0

|2s|2σ̃ 2

(n + 1)2(n + 2)2
· α−1σ̃−2(1− μ)(n + 2)2(1 + M ρ̃)4

× (ρ̃2 + 2κρ̃)e2γ M
√

�(�+1)ρ̃ |�̂(n+1+1)|2 dρ̃

−
∫ ρ̃0

0

[n(n + 1)− �(� + 1)]2
|2s|2σ̃ 2 (1 + ε)̃σ 2|2s|2e2γ M

√
�(�+1)ρ̃ |�̂(n−1+1)|2 dρ̃

− C
∫ ρ̃0

0
σ̃ 4n−4 n

2(n + 1)2 · (n − 1)2n2

|2s|4σ̃ 4 |2s|2|e2γ M
√

�(�+1)ρ̃�̂(n−2+1)|2 dρ̃

− C(� + 1)−2
n−1∑

k=2�+1

∫ ρ̃0

0
σ̃ 2(n−k+1)|2s|2(n−k) (n − 2�)k!2

n!2

×
[

(n + 1)!2n!2
k!2(k − 1)!2

1

|2s|2(n−k+1)σ̃ 2(n−k+1)

]

× |2s|2e2γ M
√

�(�+1)ρ̃ |�(k−1+1)|2 dρ̃

− Cγ−2|s|−2(� + 1)−2
∫ ρ̃0

0

(n + 1)!2
(2�)!2 e2γ r+

√
�(�+1)ρ̃ |2s|2|�̂(2�+1)|2 dρ̃

≤ Cεγ
−1(� + 1)−3

2�∑

k=1
γ

1
2 (2�−k) (n + 1)!2

(k − 1)!2 e
2γ M

√
�(�+1)ρ̃0 |�̂(k)|2(ρ̃0)
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+ Cεγ
−1(� + 1)−3(n + 2)2

2�∑

k=0
γ

1
2 (2�−k) n!2

k!2 e
2γ M

√
�(�+1)ρ̃0 |�̂(k)|2(ρ̃0)

+ Cε

∫ ρ̃0

0
e2γ M

√
�(�+1)ρ̃ | fn|2 dρ̃.

��
In order to estimate the boundary terms at ρ̃ = ρ̃0 that appear on the right-hand side

of the inequalities in Proposition 9.2, will will make use of the non-degeneracy of the
wave equation at ρ̃ = ρ̃0 (away from the horizons) in the form of the following lemma:

Lemma 9.4. There exists a constant A > 0 such that for all 2 ≤ n ≤ 2�, we can
estimate

|�̂(n)(ρ̃0)| ≤ An ρ̃
−2(n−1)
0 (� + 1)n(|�̂|(ρ̃0) + |�̂(1)|(ρ̃0))

+
n−2∑

k=0
An−2−k ρ̃−2(n−2)−2+2k0 (� + 1)n−2−k | fk |(ρ̃0). (9.7)

Proof. We will prove (9.7) by induction. The n = 2 case follows immediately from
(6.16) with n = 0. Now suppose (9.7) holds for all 2 ≤ n ≤ N . We will show that then
(9.7) must also hold for n = N + 1.

Observe first of all that for all 2 ≤ n ≤ 2�, we have that

|n(n + 1)− �(� + 1)| ≤ 3�(� + 1).

By (6.16) with n = N − 1, we have that there exists a constant C > 0 independent
of N and � such that

|�̂(N+1)(ρ̃0)| ≤ CM−1N ρ̃−20 |�̂(N )|(ρ̃0) + C�(� + 1)ρ̃−20 |�̂(N−1)|(ρ̃0)

+ C(κ+ + κc)ρ̃
−2
0

[
N−1∑

k=1

N !
(k − 1)!M

n−k |�̂(k)|(ρ̃0)

+
N−1∑

k=0

(N − 1)!(N − k)

k! Mn−k |�̂(k)|(ρ̃0)
]

+ C ρ̃−20 | fN−1|.

(9.8)

Note that by applying (9.7) with n = N and n = N − 1, we obtain

CM−1N ρ̃−20 |�̂(N )|(ρ̃0) + C�(� + 1)ρ̃−20 |�̂(N−1)|(ρ̃0)
≤ (2CM−1AN + CAN−1)ρ̃−2N0 (� + 1)N+1(|�̂|(ρ̃0) + |�̂(1)|(ρ̃0))

+ (CM−1A−1 + CA−2)
N−2∑

k=0
AN−1−k ρ̃−2(N−1)−2+2k0 (� + 1)N−1−k | fk |(ρ̃0).

Similarly, using Stirling’s formula to obtain

N !
(k − 1)! ≤ 2N−k+1(� + 1)N−k+1,
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we can estimate

C(κ+ + κc)ρ̃
−2
0

N−1∑

k=1

N !
(k − 1)!M

n−k |�̂(k)|(ρ̃0) ≤ C(κ+ + κc)ρ̃
−2
0

×
N−1∑

k=1
2N−k+1(� + 1)N+1−kMn−k |�̂(k)|(ρ̃0)

≤ C(κ+ + κc)(� + 1)N+1AN+1ρ̃−2N0

[
N−1∑

k=1
ρ̃
2(N−k)
0

(
2

A

)N−k+1]
(|�̂|(ρ̃0) + |�̂(1)|(ρ̃0))

+ C(κ+ + κc)(� + 1)N+1AN+1ρ̃−2N0

N−1∑

k=1
ρ̃
2(N−k)
0

(
2

A

)N−k+1

×
k−2∑

m=0
A−2−m ρ̃2+2m

0 (� + 1)−2−m | fm |(ρ̃0))

≤ 1

2
AN+1(� + 1)N+1ρ̃−2N0 (|�̂|(ρ̃0) + |�̂(1)|(ρ̃0)) + 1

2
AN+1ρ̃−2N0 (� + 1)N−1

×
N−2∑

k=0
A−2−k ρ̃2+2k

0 (� + 1)−k | fk |(ρ̃0),

for ρ̃0 suitably small and A chosen suitably large, where we used the convergence of
the geometric series. The remaining term on the right-hand side of (9.8) involving �̂(k)
can be estimated similarly.

By taking the dimensionless constant A · M suitably large compared to the dimen-
sionless constant C > 0 that appears in the expressions above (and is independent of
ρ−10 , N and �), and by combining the above estimates, we obtain (9.7) for n = N + 1,
thereby concluding the induction argument. ��
Proposition 9.5. For all ε > 0, there exist constants B,C, γ > 0 depending on |s|M,
such that for γ"(|s|−1M−1 + |s|M), ρ−10 M−1"max{γ, 1} and �"1, we can estimate
for N∞ > 2� arbitrarily large:

�!(� + 1)!
N∞∑

n=�

|2s|2n σ̃ 2n

(n + 1)!2n!2
∫ ρ̃0

0
(1− μν−1(1 + M ρ̃)4 − ε)(2κρ̃ + ρ̃2)2

× e2γ M
√

�(�+1)ρ̃ |�̂(n+2)|2 dρ̃ + �!(� + 1)!
N∞∑

n=�

|2s|2n σ̃ 2n

(n + 1)!2n!2 ·

·
∫ ρ̃0

0

(

1− 4β−1
(
max{−Re (s), 0}

|s|
)2
− νμ− (1 + ε)̃σ 2 − ε

)

× |2s|2e2γ M
√

�(�+1)ρ̃ |�̂(n+1)|2 dρ̃

+ �!(� + 1)!
N∞∑

n=�

|2s|2n σ̃ 2n

(n + 1)!2n!2
∫ ρ̃0

0
(4− β − (α + α−1σ̃−2)(1− μ)− ε)



Quasinormal Modes in Extremal Reissner–Nordström Spacetimes 1465

× (n + 1)2(ρ̃ + κ)2e2γ M
√

�(�+1)ρ̃ |�̂(n+1)|2 dρ̃

− �!(� + 1)!
∫ ρ̃0

0

|2s|2N∞ σ̃ 2N∞

(N∞ + 1)!2N∞!2
|2s|2

(N∞ + 1)2
· 5α−1(1− μ)

× (1 + M ρ̃)4ρ̃2e2γ M
√

�(�+1)ρ̃ |�̂(N∞+2)|2 dρ̃

≤ CB2�ρ̃−8�0 |2s|�e2γ M
√

�(�+1)ρ̃0
[
|�̂|2(ρ̃0) + |�̂(1)|2(ρ̃0)

]

+ CB2�ρ̃−8�0 |2s|�e2γ M
√

�(�+1)ρ̃0
2�−2∑

k=0
A−4−4k ρ̃4+4k

0 (� + 1)−2k | fk |2(ρ̃0)

+ C�!(� + 1)!
N∞∑

n=�

|2s|2n σ̃ 2n

(n + 1)!2n!2
∫ ρ̃0

0
e2γ M

√
�(�+1)ρ̃ | fn|2 dρ̃. (9.9)

Proof. We will sum the inequalities appearing in Proposition 9.2 over n with the fol-
lowing summation weights:

�!(� + 1)!
N∞∑

n=�

|2s|2n σ̃ 2n

(n + 1)!2n!2
[
·
]
,

where N∞ will be taken suitably large and the value of σ̃ will be determined later.
Before we carry out the summation, we will first apply Lemma 9.4 to estimate further

the boundary terms at ρ̃ = ρ̃0 that appear in the inequalities of Proposition 9.2.
By Lemma 9.4, we have that there exists a constant B > 0 such that for all 0 ≤ k ≤

min{n, 2�},

(n + 1)!2
(k − 1)!2 γ

1
2 (n�−k)e2γ M

√
�(�+1)ρ̃0 |�̂(k)|2(ρ̃0)

≤Bk ρ̃−4k0 (n + 1)!2
(

� + 1

k + 1

)2(k+1)
γ

1
2 (n�−k)e2γ M

√
�(�+1)ρ̃0

·
[

|�̂|2(ρ̃0) + |�̂(1)|2(ρ̃0) +
k−2∑

m=0
A−4−4m ρ̃4+4m

0 (� + 1)−2m | fm |2(ρ̃0)
]

.

Note that
(

�+1
k+1

)2(k+1)
attains its maximum when �+ 1 = e(k + 1) so by redefining B we

can write

(n + 1)!2
(k − 1)!2 γ

1
2 (n�−k)e2γ M

√
�(�+1)ρ̃0 |�̂(k)|2(ρ̃0) ≤ Bk ρ̃−4k0 (n + 1)!2γ 1

2 (n�−k)e2γ M
√

�(�+1)ρ̃0 ·

·
[

|�̂|2(ρ̃0) + |�̂(1)|2(ρ̃0) +
k−2∑

m=0
A−4−4m ρ̃4+4m

0 (� + 1)−2m | fm |2(ρ̃0)
]

.
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And hence,

�!(� + 1)!
N∞∑

n=�

n�∑

k=0

|2s|2n σ̃ 2n

(n + 1)!2n!2
(n + 1)!2
(k − 1)!2 γ

1
2 (n�−k)e2γ M

√
�(�+1)ρ̃0 |�̂(k)|2(ρ̃0)

≤ �!(� + 1)!e2γ M
√

�(�+1)ρ̃0
N∞∑

n=�

|2s|2n σ̃ 2n

n!2 γ
1
2 n�

n�∑

k=0
Bk ρ̃−4k0 γ−

1
2 k ·

·
[

|�̂|2(ρ̃0) + |�̂(1)|2(ρ̃0) +
k−2∑

m=0
A−4−4m ρ̃4+4m

0 (� + 1)−2m | fm |2(ρ̃0)
]

≤ �!(� + 1)!e2γ M
√

�(�+1)ρ̃0
N∞∑

n=�

|2s|2n σ̃ 2n

n!2 Bn� ρ̃
−4n�

0 ·

·
n�∑

k=0
B−k ρ̃4k

0 γ
1
2 k
[
|�̂|2(ρ̃0) + |�̂(1)|2(ρ̃0)

+
2�−2∑

m=0
A−4−4m ρ̃4+4m

0 (� + 1)−2m | fm |2(ρ̃0)
]

≤ C�!(� + 1)!e2γ M
√

�(�+1)ρ̃0
N∞∑

n=�

|2s|2n σ̃ 2n

n!2 Bn� ρ̃
−4n�

0 ·

·
[
|�̂|2(ρ̃0) + |�̂(1)|2(ρ̃0)

+
2�−2∑

m=0
A−4−4m ρ̃4+4m

0 (� + 1)−2m | fm |2(ρ̃0)
]

≤ CB2�|2s|4�ρ̃−8�0 e2γ M
√

�(�+1)ρ̃0
[
|�̂|2(ρ̃0) + |�̂(1)|2(ρ̃0)

]

+ CB2�|2s|4�ρ̃−8�0 e2γ M
√

�(�+1)ρ̃0
2�−2∑

k=0
A−4−4k ρ̃4+4k

0 (� + 1)−2k | fk |2(ρ̃0).

We can analogously estimate the remaining boundary terms.
We now take the sum over n of the equations in Proposition 9.2 with � suitably large.

We will then see, in particular, the following double summation if n > 2�:

(� + 1)−2
N∞∑

n=2�+1

n−1∑

k=2�+1

∫ ρ̃0

0
M2(n−k)σ̃ 2(n−k+1)|2s|2(n−k) (n − 2�)k!2

n!2

·
[
|2s|2(k−1)σ̃ 2(k−1)

k!2(k − 1)!2
]

· |2s|2e2γ M
√

�(�+1)ρ̃ |�̂(k−1+1)|2 dρ̃

=(� + 1)−2
N∞∑

k=2�+1

N∞∑

n=k+1
M2(n−k)σ̃ 2(n−k+1)|2s|2(n−k) (n − 2�)k!2

n!2
∫ ρ̃0

0

[
|2s|2(k−1)σ̃ 2(k−1)

k!2(k − 1)!2
]

· ·|2s|2e2γ M
√

�(�+1)ρ̃ |�̂(k−1+1)|2 dρ̃.
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We further estimate the factor:

N∞∑

n=k+1
M2(n−k)σ̃ 2(n−k+1)|2s|2(n−k) (n − 2�)k!2

n!2

≤ σ̃ 2
∞∑

m=1
σ̃ 2mM2m |2s|2m (m + k − 2�)k!2

(m + k)!2

≤ C σ̃ 2
∞∑

m=0

1

(m + 1)2
≤ C σ̃ 2,

for � is sufficiently large compared to M |s| and σ̃ .
Now, in view of the chosen summation, the termswith a negative sign on the left-hand

sides of the inequalities in Proposition 9.2 at order n can be directly absorbed into the
terms with a positive sign in the inequalities in Proposition 9.2 at one order higher or
lower, i.e. with n replaced by either n−1 or n+1. Note that when n = �, only absorption
into the estimates at order n + 1 is necessary.

The absorption into the inequalities with n replaced by n + 1 is no longer possible at
top order, i.e. when n = N∞. In that case, we moreover apply a slight variation of the
estimates in the proof of Proposition 9.2: we do not apply (9.4), but we estimate instead:

2(1− μ)|2s|(1 + M ρ̃)2[2κρ̃ + ρ̃2]e2γ M
√

�(�+1)ρ̃ |�̂(N∞+1)||�̂(N∞+2)|
≤ α(1− μ)(n + 1)2(ρ̃2 + κ2)e2γ M

√
�(�+1)ρ̃ |�̂(N∞+1)|2

+ 5
|2s|2

(N∞ + 1)2
· α−1(1− μ)(1 + M ρ̃)4ρ̃2e2γ M

√
�(�+1)ρ̃ |�̂(N∞+2)|2.

Let ε > 0 and � appropriately large, then we can group the remaining terms in the
summation of the equations in Proposition 9.2 to obtain (9.9). ��
Remark 9.2. It is important to note that no terms involving �̂(n) with n ≤ � appear on
the right-hand side of (9.5) apart from the n = 0 and n = 1 boundary terms. Hence, the
n ≥ � estimates are only coupled via the lowest order boundary terms at ρ = ρ0. This
makes it considerably easier to add estimates for the n ≤ � terms; see Proposition 9.6
below.

Proposition 9.6. For all ε > 0, there exist a constant C > 0, with C independent of �,
such that forγ"(|s|−1M−1+|s|M),ρ−10 M−1"max{γ, 1}, �"1andκc+κ+ � (�+1)−1,
we can estimate for N∞ > 2� arbitrarily large:

�∑

n=0

|2s|2n σ̃ 2n

(�(� + 1))n−1

∫ ρ̃0

0
e2γ M

√
�(�+1)ρ̃ |�̂(n)|2 dρ̃

+�!(� + 1)!
N∞∑

n=�

|2s|2n σ̃ 2n

(n + 1)!2n!2
∫ ρ̃0

0
(1− μν−1(1 + M ρ̃)4 − ε)(2κρ̃ + ρ̃2)2

×e2γ M
√

�(�+1)ρ̃ |�̂(n+2)|2 dρ̃ + �!(� + 1)!
N∞∑

n=�

|2s|2n σ̃ 2n

(n + 1)!2n!2 ·
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·
∫ ρ̃0

0

(

1− 4β−1
(
max{−Re (s), 0}

|s|
)2
− νμ− (1 + ε)̃σ 2 − ε

)

×|2s|2e2γ M
√

�(�+1)ρ̃ |�̂(n+1)|2 dρ̃ + �!(� + 1)!
N∞∑

n=�

× |2s|2n σ̃ 2n

(n + 1)!2n!2
∫ ρ̃0

0
(4− β − (α + α−1σ̃−2)(1− μ)− ε)

×(n + 1)2(ρ̃ + κ)2e2γ M
√

�(�+1)ρ̃ |�̂(n+1)|2 dρ̃

−�!(� + 1)!
∫ ρ̃0

0

|2s|2N∞ σ̃ 2N∞

(N∞ + 1)!2N∞!2
|2s|2

(N∞ + 2)2
· 5α−1(1− μ)

×(1 + M ρ̃)4ρ̃2e2γ M
√

�(�+1)ρ̃ |�̂(N∞+2)|2 dρ̃

≤ CB2�ρ̃−8�0 |2s|4�e2γ M
√

�(�+1)ρ̃0
[
|�̂|2(ρ̃0) + |�̂(1)|2(ρ̃0)

]

+CB2�ρ̃−8�0 |2s|4�e2γ M
√

�(�+1)ρ̃0
2�−2∑

k=0
B−2n ρ̃4n

0 |2s|−2n(� + 1)−2k | fk |2(ρ̃0)

+C�!(� + 1)!
N∞∑

n=�

|2s|2n σ̃ 2n

(n + 1)!2n!2
∫ ρ̃0

0
e2γ M

√
�(�+1)ρ̃ | fn|2 dρ̃. (9.10)

Proof. We apply Lemma 9.3 � + 1− n times to estimate for all 0 ≤ n ≤ �

∫ ρ̃0

0
e2γ M

√
�(�+1)ρ̃ |2s|2n σ̃ 2n|�̂(n)|2

(�(� + 1))n−1
dρ̃ ≤ C |2s|2n σ̃ 2n(Mγ )−2(�+1−n)(�(� + 1))−�

×
∫ ρ̃0

0
e2γ M

√
�(�+1)ρ̃ |�̂(�+1)|2 dρ̃

+ C(Mγ )−1(�(� + 1))−
1
2 |2s|2n σ̃ 2n

×
�∑

k=n
(Mγ )−2(k−n)(�(� + 1))−(k−1)e2γ M

√
�(�+1)ρ̃0 |�̂(k)|2(ρ̃0).

After summing over n, and using that �"Mγ |2s|, we obtain

�∑

n=0
|2s|2n σ̃ 2n

�∑

k=n
(Mγ )−2(k−n)(�(� + 1))−(k−1)e2γ M

√
�(�+1)ρ̃0 |�̂(k)|2(ρ̃0)

≤
�∑

n=0
(Mγ )−2n(�(� + 1))1−n

[
n∑

k=0
|2s|2k σ̃ 2k(Mγ )2k

]

e2γ M
√

�(�+1)ρ̃0 |�̂(n)|2(ρ̃0)

≤
�∑

n=0

|2s|2n σ̃ 2n

(�(� + 1))n−1
e2γ M

√
�(�+1)ρ̃0 |�̂(n)|2(ρ̃0)
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and hence,

�∑

n=0

|2s|2n σ̃ 2n

(�(� + 1))n−1

∫ ρ̃0

0
e2γ M

√
�(�+1)ρ̃ |�̂(n)|2 dρ̃

≤ C(M |2s|σ̃ γ )−2 |s|
2(�+1)σ̃ 2(�+1)

(�(� + 1))�

∫ ρ̃0

0
e2γ M

√
�(�+1)ρ̃ |�̂(�+1)|2 dρ̃

+ C(Mγ )−1(�(� + 1))
1
2

�∑

n=0

|2s|2n σ̃ 2n

(�(� + 1))n
e2γ M

√
�(�+1)ρ̃0 |�̂(n)|2(ρ̃0).

By Lemma 9.4 we have that there exists a constant B > 0 such that

(Mγ )−1(�(� + 1))
1
2

�∑

n=0

|2s|2n σ̃ 2n

(�(� + 1))n
e2γ M

√
�(�+1)ρ̃0 |�̂(n)|2(ρ̃0)

≤ (Mγ )−1(�(� + 1))
1
2 max
0≤n≤�−2{B

2n ρ̃−4n0 |2s|2n}(|�̂|2(ρ̃0) + |�̂(1)|2(ρ̃0))

+ (Mγ )−1(�(� + 1))
1
2 B2�ρ̃−4�0 |2s|2�

×
�−2∑

n=0
B−2n ρ̃4n

0 |2s|−2n(�(� + 1))−2(n+2)| fn|2(ρ̃0).

By combining the above results with the estimates in Proposition 9.5, we obtain
(9.10). ��

In order to ensure that the terms on the left-hand side of (9.10) are positive-definite
for κ and α suitably small, we need to impose several compatibility conditions on the
parameters α, β, μ, ν, σ̃ .

For the sake of convenience, we introduce the notation ς := |Re (s)|2
|s|2 .WhenRe (s) <

0, the compatibility conditions are: if μ > 0, then

0 < μ < ν, (9.11)

4− α(1− μ)− β − σ̃−2α−1(1− μ) > 0, (9.12)

1− 4β−1ς − σ̃ 2 − μ2 > 0. (9.13)

If Re (s) ≥ 0, we instead obtain:

μ < ν, (9.14)

4− α(1− μ)− β − σ̃−2α−1(1− μ) > 0, (9.15)

1− μ2 > 0. (9.16)

Note that if we take μ = 0, we can omit the parameter ν in the above expressions.

Lemma 9.7. (i) There exist α, β, μ, ν and σ̃ 2 satisfying (9.11), (9.12) and (9.13) if and
only if, whenRe (s) < 0, we have that |Re s| < 1

2 |s|, or equivalently |arg(s)| < 2
3π .
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Fig. 4. An example of a domain �σ , which is represented by the shaded region in the figure. The points
satisfying Re (s) = − 1

2 |s| are represented by the two dashed lines in the left half-plane in the picture

(ii) Fix the product σ := 2σ̃ |s| ∈ R. Then, there exist α, β, μ, ν satisfying (9.11), (9.12)
and (9.13) if and only if, when Re s < 0, we have that:

|s|2 < σ 2,

3|Im s|2 − 5|Re s|2 > σ 2.

If we denote

�σ :=
{
(x, y) ∈ C | x<0, x2 + y2 < σ 2, 3y2 − 5x2 > σ 2

}
∪ {(x, y) ∈ C |x ≥ 0,

(x, y) �= (0, 0)} ⊂ C

then

⋃

σ∈R>0

�σ =
{

(x, y) ∈ C |x < 0, x2 <
1

4
(x2 + y2)

}

∪ {(x, y) ∈ C |x ≥ 0,

(x, y) �= (0, 0)}

(iii) Fix s ∈ {− 1
2 |s| ≤ Re s ≤ 0}. There exist α, β, μ, ν and σ̃ 2 satisfying (9.11), (9.12)

and (9.13) if

1

4
< σ̃ 2 <

3

4
− 2

( |Re s|
|s|

)2
.
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Proof. There exist α, β, μ such that (9.12) and (9.13) hold if and only if

1

(4− β)(1− μ)−1α − α2 < σ̃ 2 < 1− 4β−1ς − μ2.

As a first step, we minimise the lower bound for σ̃ 2 in α. It it easy to see that it is
minimized if

α = 1

2
(4− β)(1− μ)−1,

so with this choice of α, we obtain

4(1− μ)2

(4− β)2
< σ̃ 2 < 1− 4β−1ς − μ2. (9.17)

We now assume Re (s) < 0. We can find a σ̃ 2 satisfying (9.17) if and only if

4ς < 2(2− b)
[
1− μ2 − (1− μ)2b−2

]
,

where 2b := 4− β.
Now, we will find a μ ∈ [0, 1] such that

1− μ2 − (1− μ)2b−2

is maximized.
Equivalently, we would like

−2μ + 2(1− μ)b−2 = 0

which is the case when

μ = b−2

1 + b−2
= 1

1 + b2
.

Using the above choice of μ, we are left with

4ς < 2(2− b)

[

1− 1

(1 + b2)2
− b4

b2(1 + b2)2

]

= 2(2− b)b2

1 + b2
,

We have that
d

db

(
2(2− b)b2

1 + b2

)

= −2b(b − 1)(b2 + b + 4)

(b2 + 1)2
,

with b ≤ 2. The above expression must attain a maximum when b ∈ (0, 2) at b = 1 and
we can conclude that

4ς < 1,

or equivalently, we need to restrict

|Re s| < 1

2
|s|,

after taking β = 2, μ = 1
2 and α = 2.

Now assume Re s ≥ 0. Then we can take μ = 0, β = 0 and α = 2, and (9.15)
reduces to:

σ̃ 2 >
1

4
,
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so no restriction on the allowed values of s is required in this case. We have established
(i).

We now turn to (ii). Fix σ ∈ R>0. Suppose Re (s) < 0. From the above, we can
moreover infer that with the choice α = 2, μ = 1

2 and b = 1, we have that

1

4
< σ̃ 2 <

3

4
− 2ς. (9.18)

Hence, if we fix σ 2 = σ̃ 2|2s|2, we have that
|s|2 < σ 2,

3|Im s|2 − 5|Re s|2 > σ 2.

The statements in (ii) and (iii) now follow immediately. ��
Remark 9.3. The choice of domains�σ inLemma9.7 is sufficient for foliating {Re (z) >
1
2 |z|}, but it is not optimally chosen. One can for example show that all values of s the
subset {|z| > S} ∩ {Re (z) > −C0}, with arbitrary C0 > 0 and S > 0 suitably large can
be arranged to satisfy (9.11), (9.12) and (9.13) with a single choice of σ .

Corollary 9.8. Fix σ ∈ R>0 and let s ∈ �σ ⊂ C. Assume that κc + κ+ � (� + 1)−1.
Then there exist M ρ̃0, γ, L > 0 suitably large depending on s, and constants A,C > 0,
depending on s, M ρ̃0 and γ , such that for all � ≥ L and N∞ > 2�:

�∑

n=0

|2s|2n σ̃ 2n

(�(� + 1))n−1

∫ ρ̃0

0
e2γ M

√
�(�+1)ρ̃ |�̂(n)|2 dρ̃

+ �!(� + 1)!
N∞∑

n=�

|2s|2n σ̃ 2n

(n + 1)!2n!2
∫ ρ̃0

0
(2κρ̃ + ρ̃2)2e2γ M

√
�(�+1)ρ̃ |�̂(n+2)|2 dρ̃

+ �!(� + 1)!
N∞∑

n=�

|2s|2n σ̃ 2n

(n + 1)!2n!2
∫ ρ̃0

0
[|2s|2 + (n + 1)2(ρ̃ + κ)2]e2γ M

√
�(�+1)ρ̃ |�̂(n+1)|2 dρ̃

− C�!(� + 1)!
∫ ρ̃0

0

|2s|2N∞ σ̃ 2N∞

(N∞ + 1)!2N∞!2
|2s|2

(N∞ + 1)2
ρ̃2e2γ M

√
�(�+1)ρ̃ |�̂(N∞+2)|2 dρ̃

≤ A�e2γ M
√

�(�+1)ρ̃0
[
|�̂|2(ρ̃0) + |�̂(1)|2(ρ̃0)

]

+ A�
�−1∑

n=0

|2s|2n σ̃ 2n

(�(� + 1))n−1

∫ ρ̃0

0
e2γ M

√
�(�+1)ρ̃ | fn|2 dρ̃ + A��!(� + 1)!

×
N∞∑

n=�

|2s|2n σ̃ 2n

(n + 1)!2n!2
∫ ρ̃0

0
e2γ M

√
�(�+1)ρ̃ | fn|2 dρ̃.

(9.19)

Proof. We apply Lemma 9.7 to conclude that we can choose α, β, μ, ν such that the
constants in front of all but the final integral on the left-hand side of (9.10) are positive,
provided s ∈ �σ . Then we estimate the boundary terms involving fn on the right-hand
side of (9.10) in terms of integral norms by applying a standard Sobolev inequality. ��
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Remark 9.4. It is important to note that the constants appearing in the estimate (9.19)
depend exponentially on �. The growth of the constants in � turns out to be sufficiently
slow so as to allow for a coupling of (9.19) with the estimate (8.5) in Proposition 8.2 in
order to convert (9.19) into a global estimate; see Proposition 9.9 below.

Proposition 9.9. Let � ∈ N and assume κ+, κc > 0 and κ++κc � (�+1)−1. Fix σ ∈ R>0
and let s ∈ �σ ⊂ C. If � is suitably large, there exist constants Cρ̃0,s > 0 and A > 0
that are independent of κ+, κc, � and Nκ+,κc ∈ N, such that

∫ Rc
0

R+
0

(1 + �2(� + 1)2)|ψ̂ |2 + (1 + �(� + 1))|∂r ψ̂ |2 + |∂2r ψ̂ |2 dr

+ A−�
∑

�∈{+,c}

�∑

n=0

Mn

(� + 1)2(n−1)

∫ ρ̃0

0
e2γ M

√
�(�+1)ρ̃ |�̂(n)|2 dρ̃�

+ A−��!(� + 1)!
∑

�∈{+,c}

N∞∑

n=�

|2s|2n σ̃ 2n

(n + 1)!2n!2
∫ ρ̃0

0
(|2s|2 + (n + 1)2ρ̃2

� )

× e2γ M
√

�(�+1)ρ̃ |�̂(n+1)|2 + ρ̃4
�e

2γ M
√

�(�+1)ρ̃0 |�̂(n+2)|2 dρ̃�

≤ Cρ̃0,s

∫ Rc
0

R+
0

| f̃ |2 dr + Cρ̃0,s

∑

�∈{+,c}

�∑

n=0

Mn

(� + 1)2n

∫ ρ̃0

0
e2γ M

√
�(�+1)ρ̃ | fn|2 dρ̃�

+ Cρ̃0,s�!(� + 1)!
∑

�∈{+,c}

N∞∑

n=�

|2s|2n σ̃ 2n

(n + 1)!2n!2
∫ ρ̃0

0
e2γ M

√
�(�+1)ρ̃0 | fn|2 dρ̃�,

(9.20)
for all N∞ ≥ Nκ+,κc .

Furthermore, if κ+ = κc = 0 and we make the a priori assumption ψ̂ ∈ Hσ,2,ρ0 , then
the above estimate holds with N∞ replaced by∞.

Proof. We first use that for κ > 0, we can absorb the non-positive definite integral on
on the left-hand side of (9.19) into the second integral on the left-hand side, provided
N∞ is taken suitably large, depending on the value of κ . This is a manifestation of the
red-shift effect along the horizons.

Then we apply the fundamental theorem of calculus to estimate for both ρ̃ = ρ̃c and
ρ̃ = ρ̃+:

|�̂|2(ρ̃0) + |�̂(1)|2(ρ̃0) � C(ρ̃0)[|ψ̂ |2(ρ̃0) + |∂r ψ̂ |2(ρ̃0)]
� C(ρ̃0)

∫ r((ρ̃c)0)

r((ρ̃+)0)
|ψ̂ |2 + |∂r ψ̂ |2 + |∂2r ψ̂ |2 dr.

In order to obtain (9.20), we estimate the RHS above by applying (8.6) and using that
K0 can be taken arbitrarily large compared to the constant A on the RHS of (9.19)
so that we can subsequently absorb the terms on the RHS of (8.6) involving φ̂ and ∂ρφ̂

into the LHS of (9.19). Note that we require in particular �(� + 1) to grow as |s| ↓ 0.
When κ = 0, the non-positive definite integral on on the left-hand side of (9.19)

vanishes as N∞ →∞ if we assume that ||ψ̂ ||σ,2 <∞. ��
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Corollary 9.10. Let � ∈ N and assume κ+, κc > 0 and κ+ +κc � (�+1)−1. Fix σ ∈ R>0
and let s ∈ �σ ⊂ C. If � is suitably large, there exist constants Cs,ρ0 ,C� > 0 that are
independent of κ+, κc, withCs,ρ0 moreover independent of �, and Nκ+,κc that does depend
on κ+, κc , such that:

∫ Rc
0

R+
0

(1 + �2(� + 1)2)|ψ̂ |2 + (1 + �(� + 1))|∂r ψ̂ |2 + |∂2r ψ̂ |2 dr

+ C−1�

∑

�∈{+,c}

N∞∑

n=0

|2s|2n σ̃ 2n

(n + 1)!2n!2 (n + 1)2n2
∫ ρ0

0
|∂nρ�

(rψ̂)|2 + ρ4
� |∂n+1ρ�

(rψ̂)|2 dρ�

≤ Cs,ρ0

∫ Rc
0

R+
0

| f̃ |2 dr + C�

∑

�∈{+,c}

N∞∑

n=0

|2s|2n σ̃ 2n

(n + 1)!2n!2
∫ ρ0

0
|∂nρ�

(r f̃ )|2 dρ�.

(9.21)
for all N∞ ≥ Nκ+,κc .

Furthermore, if κ+ = κc = 0 and we make the a priori assumption ψ̂ ∈ Hσ,2,ρ0 , then
the above estimate holds with N∞ replaced by∞.

Proof. We can immediately rewrite (9.20) to obtain

∫ Rc
0

R+
0

(1 + �2(� + 1)2)|ψ̂ |2 + (1 + �(� + 1))|∂r ψ̂ |2 + |∂2r ψ̂ |2 dr

+ A−�
∑

�∈{+,c}

N∞∑

n=0

|2s|2n σ̃ 2n

(n + 1)!2n!2 (n + 1)2n2
∫ ρ̃0

0
|�̂(n)|2 + ρ̃4|�̂(n+1)|2 dρ̃�

≤ Cρ̃0,s

∫ Rc
0

R+
0

| f̃ |2 dr + C�

∑

�∈{+,c}

N∞∑

n=0

|2s|2n σ̃ 2n

(n + 1)!2n!2
∫ ρ̃0

0
| fn|2 dρ̃�.

Observe that

�̂(n) = ((1− Mρ)2∂ρ − sĥ)n(rψ̂),

fn = ((1− Mρ)2∂ρ − sĥ)n((1− Mρ)r3 f̃ ),

with ρ = ρc or ρ = ρ+ and ĥ = ĥc or ĥ = ĥ+, respectively.

Using analyticity of ĥ as a function of ρ in [0, ρ0] and the rapid growth in n of the
denominators in the summation factors, the estimate (9.21) then follows in a straight-
forward manner. ��

We will additionally need a slight variation of (9.21) when investigating the conver-
gence of resolvent operators with κ > 0 as κ ↓ 0; see

Proposition 9.11. Let � ∈ N and assume κ+, κc > 0 and κ+ + κc � (� + 1)−1. Fix
σ ∈ R>0 and let s ∈ �σ ⊂ C. If � is suitably large, there exist constants Cs,ρ0 ,C� > 0



Quasinormal Modes in Extremal Reissner–Nordström Spacetimes 1475

that are independent of κ+, κc and Nκ+,κc that does depend on κ+, κc , such that

∫ Rc
0

R+
0

(1 + �2(� + 1)2)|ψ̂ |2 + (1 + �(� + 1))|∂r ψ̂ |2 + |∂2r ψ̂ |2 dr

+ C−1�

∑

�∈{+,c}

N∞∑

n=0

|2s|2n σ̃ 2n

(n + 1)!2n!2 n
2
∫ ρ0

0
|∂nρ�

(rψ̂)|2 + ρ4
� |∂n+1ρ�

(rψ̂)|2 dρ�

≤ Cs,ρ0

∫ Rc
0

R+
0

| f̃ |2 dr + Cs,ρ0

∑

�∈{+,c}

N∞∑

n=0

|2s|2n σ̃ 2n

(n + 1)!2n!2
∫ ρ0

0
(n + 1)−2|∂nρ�

(r f̃ )|2 dρ�.

(9.22)
for all N∞ ≥ Nκ+,κc .

Proof. Observe that the difference between (9.21) and (9.22) amounts to an additional
factor (n + 1)−2 in the summation over n. We arrive at by repeating the arguments in
this section, employing instead the summation

�!(� + 1)!
N∞∑

n=�

|2s|2n σ̃ 2n

(n + 1)!2n!2 (n + 1)−2
[
·
]
.

We omit the details of this procedure. We remark that the main difference is that will

see in particular additional factors of (n+1)2

n2
appearing when trying to absorb terms into

estimates of order n + 1 or n − 1, but we use that

(n + 1)2

n2
= 1 + O(n−1)

so the procedure of absorbing terms poses no problem provided � is taken suitably
large. ��

10. Additional Gevrey Estimates for Low Frequencies

In this section we obtain additional Gevrey estimates that are only valid for bounded
0 ≤ � ≤ L and for correspondingly small values of |s|, cf. the estimates in Sect. 9,
where |s| > 0 is allowed to be arbitrary large, but we need to assume � is suitably large.

Theorem 10.1. Let L ∈ N0, σ ∈ R>0 and ρ0 > 0. Assume that κ+ = κc = κ > 0
and 0 ≤ � ≤ L. Let s ∈ �σ ∩ {|s| < s0} for a given positive constant s0. If s0 is
chosen suitably small and ρ0 > 0 is a suitably small constant, both independent of κ ,
then we can find a constant Cs,L > 0 that is also independent of κ , such that for all
ψ̂ ∈ C∞([r+, rc]) we can estimate
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∫ Rc
0

R+
0

|ψ̂ |2 + |∂r ψ̂ |2 + |∂2r ψ̂ |2 dr +
∞∑

n=0

σ 2n

(n + 1)!2n!2 n
2(n + 1)2

×
∫ (ρ+)0

0
|∂nρ+(rψ̂)|2 + ρ4

+|∂n+1ρ+
(rψ̂)|2 dρ+

+
∞∑

n=0

σ 2n

(n + 1)!2n!2 n
2(n + 1)2

∫ (ρc)0

0
|∂nρc(rψ̂)|2 + ρ4

c |∂n+1ρc
(rψ̂)|2 dρc

≤ Cs,L

∫ Rc
0

R+
0

|Lκ,s,�(ψ̂)|2 dr + Cs,L

∞∑

n=0

σ 2n

(n + 1)!2n!2
∫ (ρ+)0

0
|∂nρ+(r Ls,�,κ (ψ̂))|2 dρ+

+ Cs,L

∞∑

n=0

σ 2n

(n + 1)!2n!2
∫ (ρc)0

0
|∂nρc(r Ls,�,κ (ψ̂))|2 dρc.

(10.1)

We will prove the theorem via several propositions which play a similar role to the
propositions of Sect. 9.

Proposition 10.2. Let L ∈ N0 and assume that � ≤ L. Let σ, α, β, μ, ν ∈ R and let
ε > 0 be arbitrarily small. Then there exist integers 0 < NL ,ε < N∞ = N∞(κ) and
constants ρ0 = ρ0(L) > 0 suitably small and Cε,L > 0, such that

N∞∑

n=0

|2s|2n σ̃ 2n

(n + 1)!2n!2
∫ ρ0

0
(1− μν−1)

(
(1− A2)ρ

2 + 2κρ + A3ρ
3 + A4ρ

4)2 e2Mγρ |φ̂(n+2)|2 dρ

+
N∞∑

n=0

|2s|2n σ̃ 2n

(n + 1)!2n!2
∫ ρ0

0

(

1− 4β−1
(
max{−Re (s), 0}

|s|
)2
− (1 + ε)σ−2 − ε − νμ

)

|2s|2e2Mγρ |φ̂(n+1)|2 dρ

+
N∞∑

n=0

|2s|2n σ̃ 2n

(n + 1)!2n!2
[ ∫ ρ0

0
(4− β − α(1 + A2 + ε(1 + κ))(1− μ)− α−1(1 + A2 + ε(1 + κ))σ−2(1− μ))·

· (n + 1)2
(
(1− A2)

2ρ2 + κ2 + 2(1− A2)κρ + O(ρ3) + κO(ρ2) + κ2O(ρ)
)
e2Mγρ |φ̂(n+1)|2 dρ

−
∫ ρ0

0
(n + 1)[6(1− A2)

2ρ2 + 4κ((1− A2)
2 + κ) + (1 + |s|)O(ρ3

0 ) + κ(1 + |s|)O(ρ0)]e2Mγρ |φ̂(n+1)|2 dρ
]

− C
∫ ρ0

0

|2s|2N∞ σ̃ 2N∞

(N∞ + 1)!2N∞!2
|2s|2

(N∞ + 2)2
· α−1(1− μ)(ρ3 + 2κρ2)|φ̂(N∞+2)|2 dρ

+
N∞∑

n=0

|2s|2n σ̃ 2n

(n + 1)!2n!2 (n + 1)[2ρ3
0 (1− A2)

2 + 4κ((1− A2)
2 + κ)ρ0 + O(ρ4

0 ) + κO(ρ2
0 )]e2Mγρ |φ̂(n+1)|2

∣
∣
∣
ρ=ρ0

≤ Cε,L

NL ,ε∑

n=0
|φ̂(n)|2(ρ0) + Cε,L

N∞∑

n=0

|2s|2n σ̃ 2n

(n + 1)!2n!2
∫ ρ0

0
e2Mγρ |∂nρ (r f̃ )|2 dρ.

(10.2)

Proof. We consider the inhomogeneous version of (6.14) and split

2sφ̂(n+1) +
(
(1− A2)ρ

2 + 2κρ + A3ρ
3 + A4ρ

4
)

φ̂(n+2) + 2(n + 1)

×
(

(1− A2)ρ + κ +
3

2
A3ρ

2 + 2A4ρ
3
)

φ̂(n+1)

= r Ls,�,κ (ψ̂)−
[
n(n + 1)

(
1− A2 + 3A3ρ + 6A4ρ

2
)
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−(B0 + B1ρ + B2ρ
2)
]
φ̂(n) + �(� + 1)φ̂(n)

− [(n + 1)n(n − 1) (A3 + 4A4ρ)− n(B1 + 2B2ρ)] φ̂(n−1)

− [(n + 1)n(n − 1)(n − 2)A4 − n(n − 1)B2] φ̂
(n−2).

Subsequently, we square both sides and multiply them by e2Mγρ , with γ > 0 an L-
dependent constant that will be chosen suitably large. Then we integrate over [0, ρ0] as
in the proof of Proposition 9.2, but with �̂ replaced by φ̂ (which satisfies a significantly
simpler equation) and ρ̃0 replaced by ρ0.

We first restrict to the case n ≥ NL ,ε > 2� suitably large depending on ε > 0 because
in this case, we have that

[n(n + 1)− �(� + 1)]2 = n2(n + 1)2 − 2n(n + 1)�(� + 1) + �2(� + 1)2 < n2(n + 1)2

so the �2(� + 1)2|φ̂(n)|2 term forms no problem. We sum over NL ,ε ≤ n ≤ N∞ with the
same weights as in Proposition 9.6. We require here that ρ0# 1

γ M .
We can estimate the n ≤ NL ,ε terms simply by repeatedly applying Lemma 9.3 as in

the proof of Proposition 9.5. The weights in the summation over 0 ≤ n ≤ NL ,ε do not
matter as we are assuming � ≤ L and we do not keep track of the precise L dependence
of the constants. ��
Proposition 10.3. Let L ∈ N0 and σ ∈ R>0. Let s ∈ �σ with |s| ≤ s0. Assume that
κ+, κc > 0. Then there exists Nκ+,κc > 0, s0 = s0(L) > 0, (ρ+)0, (ρc)0 > 0 suitably
small, and CL ,s > 0, where CL ,s > 0 remains bounded as |s| → 0, such that under the
restriction 0 < |s| ≤ s0 and 0 ≤ � ≤ L:

∫ Rc
0

R+
0

|ψ̂ |2 + |∂r ψ̂ |2 + |∂2r ψ̂ |2 dr

+
∑

�∈{+,c}

N∞∑

n=0

|2s|2n σ̃ 2n

(n + 1)!2n!2
∫ ρ0

0
(|2s|2 + (n + 1)2ρ2

� + 1)e2γ Mρ |φ̂(n+1)|2 dρ�

≤ CL ,s

∫ Rc
0

R+
0

| f̃ |2 dr + CL ,s

∑

�∈{+,c}

N∞∑

n=0

|2s|2n σ̃ 2n

(n + 1)!2n!2
∫ ρ0

0
e2γ Mρ |∂nρ (r f̃ )|2 dρ�,

(10.3)
for all N∞ ≥ Nκ+,κc .

Proof. First we apply the analogues of the estimates in Lemma 9.4 with �̂ replaced by
φ̂ to estimate the boundary terms on the right-hand side of (10.2) by φ̂(ρ0) and φ̂(1)(ρ0).
We then repeat the proof of Corollary 9.8, using Proposition 10.2 instead of Proposition
9.6. Finally, we proceed as in the proof of Proposition 9.9, applying (8.1) in place of
(8.6), taking |s| to be suitably small (depending onCL ) so that the terms on the right-hand
side of (8.1) can be absorbed. ��

11. Quasinormal Modes as Eigenfunctions

In this section, we apply the estimates of Theorem 9.1 to construct the resolvent operator
L̂−1s,�,0 on an appropriate Hilbert space and derive compactness properties.
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11.1. Definition of the resolvent operator. We start by investigating the invertibility of
L̂s,�,κ with κ > 0. In this case, the main required properties, which involve estimates
that are not uniform in κ , are adaptations of the estimates in [79] and are derived in the
setting of the present paper in Appendix B.

Theorem 11.1. Fix �, λ ∈ N0 and κ > 0. Let s ∈ C and k ∈ N0. We define Dk(L̂s,�,κ )

as the closure of { f ∈ π�(C∞([r+, rc] × S
2;C)) | || f ||H̃ k + ||L̂s,�,κ ( f )||H̃ k <∞} with

respect to the graph norm
|| · ||H̃ k + ||L̂s,�,κ (·)||H̃ k .

Then, for all k ∈ N, the map

L̂s,�,κ : Dk(L̂s,�,κ )→ π�(H̃
k)

is a densely defined, closed linear operator.
Moreover, there exists kκ ∈ N, independent of � and λ, such that the following

dichotomy holds.

(1) Either
L̂−1s,�+λ,κ : π�+λ(H̃

kκ )→ Dkκ (L̂s,�+λ,κ ) ⊂ π�+λ(H̃
kκ+1
2 )

is a well-defined bounded linear operator,
(2) or the equation

L̂s,�+λ,κ (ψ̂) = 0

admits non-trivial solutions ψ̂ ∈ Dkκ (L̂s,�+λ,κ ).

Proof. Since κ > 0, we can apply the techniques developed in [79]. Since [79] deals
with asymptotically anti de Sitter spacetimes, we include the main estimates in the
setting of the present paper in Appendix B. In particular, Proposition B.5 together with
Rellich–Kondrachov implies that L̂−1s,�+λ,κ is well-defined for suitably large λ (depending
on k and κ). We conclude the proof by applying the Analytic Fredholm Theorem as in
Theorem 4.9 of [79]. ��

We now apply Corollary 9.10 to derive estimates for L̂−1s,�+λ,κ that are uniform in κ ,
after restricting to suitable subspaces.

Proposition 11.2. Fix σ ∈ R>0 and � ∈ N. Then for all s ∈ �σ , there exist λ0 ∈ N and
κ0 > 0 independent of � and s� > 0 dependent on � such that for all 0 < κ ≤ κ0 and
either λ ≥ λ0 or |s| ≤ s� the inverse map

L̂−1s,�+λ,κ : Hσ,ρ0 → Dσ (L̂s,�+λ,κ ) ⊆ Hσ,2,ρ0 .

is a well-defined bounded linear operator and there exists a constant C�,λ,s > 0 such
that the operator norm can be bounded:

||L̂−1s,�+λ,κ ||Hσ,ρ0→Hσ,2,ρ0
≤ C�,λ,s .

Proof. Let κ > 0. First suppose for our choice of s, we are in case (1) of Theorem 11.1.
Suppose f ∈ Hσ,ρ0 and consider g = f · Y�+λ,0. Then g ∈ π�+λ(H̃ kκ ) for all κ > 0, so
the restriction

L̂−1s,�+λ,κ : Hσ,ρ0 → Dσ (L̂s,�+λ,κ )
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is well-defined. Then we can apply Corollary 9.10 and take the limit N∞ → ∞ to
conclude that there exists κ0 > 0 and ρ0 > 0 suitably small, such that for all 0 ≤ κ ≤ κ0
and f̃ ∈ Hσ,ρ0

||L̂−1s,�+λ,κ ( f̃ )||σ,2,ρ0 ≤ C�,λ,s || f̃ ||σ,ρ0 ,

so Dσ (L̂s,�+λ,κ ) ⊆ Hσ,2,ρ0 and ||L̂−1s,�+λ,κ ||Hσ,ρ0→Hσ,2,ρ0
≤ C�,λ,s .

Now suppose we are in case (2) of Theorem 11.1. Let L̂s,�+λ,κ ψ̂ = 0. Then we can
apply Corollary 9.10 to conclude that ψ̂ = 0, which is a contradiction. ��

Finally, we use the uniform estimates from Proposition 11.2 to construct L̂−1s,�+λ,0 as
a limit of a sequence of resolvent operators with strictly decreasing κ > 0.

Proposition 11.3. Fix σ ∈ R>0 and let s ∈ �σ . Let �, λ ∈ N0 and consider the linear
operator

L̂s,�+λ,0 : Dσ (L̂s,�+λ,0)→ Hσ,ρ0 .

Let κ0, λ0, s� be the constants from Proposition 11.2 and let {κn}n∈N be a sequence
of positive numbers such that |κn| < κ0 and κn → 0. Let λ ≥ λ0 or |s| ≤ s�. Then the
sequence of linear operators

{
L̂−1s,�+λ,κn

: Hσ,ρ0 → Dσ (L̂s,�+λ,κn ) ⊂ Hσ,2,ρ0

}

n∈N

has a subsequence that converges in the Banach space of bounded linear operators
B(Hσ,ρ0 , Hσ,ρ0) to

L̂−1s,�+λ,0 : Hσ,ρ0 → Dσ (L̂s,�+λ,0) ⊆ Hσ,2,ρ0 ,

which is the inverse of L̂s,�+λ,0 and there exists a constant C�,λ,s > 0 such that

||L̂−1s,�+λ,0||Hσ,ρ0→Hσ,2,ρ0
≤ C�,λ,s .

Proof. We establish first the existence of a limit of L̂−1s,�+λ,κn
with respect to strong

operator convergence. Let s ∈ �σ . By openness of �σ , there exist σ2 > σ1 > σ such
that s ∈ �σ1 ∩ �σ2 . Hence, for all f ∈ Hσ2,ρ0 , L̂

−1
s,�+λ,κn

( f ) is a bounded sequence
with respect to || · ||σ2,2,ρ0 . Since Hσ2,ρ0 � Hσ1,ρ0 by Lemma 11.4 below, there exists a
subsequence of {L̂−1s,�+λ,κn

( f )} that converges with respect to || · ||σ1,2,ρ0 . We denote the

limit by ψ̂ . We moreover have that

Ls,�+λ,0(ψ̂) = (Ls,�+λ,0 − Ls,�+λ,κn )(ψ̂) + Ls,�+λ,κn (ψ̂ − ψ̂n) + f,

||(Ls,�+λ,0 − Ls,�+λ,κn )(ψ̂)||σ,ρ0 ≤ κn
∑

�∈{+,c}

[
||ψ̂ ||σ,ρ0 + ||r−1∂ρ�(rψ̂)||σ,ρ0

+||ρr−1∂2ρ�
(rψ̂)||σ,ρ0

]
,

||Ls,�+λ,κn (ψ̂ − ψ̂n)||σ,ρ0 ≤
∑

�∈{+,c}

[
||ψ̂ − ψ̂n||σ,ρ0 + ||r−1∂ρ�(rψ̂ − rψ̂n)||σ,ρ0

+ ||ρr−1∂2ρ�
(rψ̂ − rψ̂n)||σ,ρ0

]
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where the norms on the right-hand side go to zero as n → ∞ after passing to a
subsequence if we take σ1 > σ , since Hσ1,ρ0 � Hσ,ρ0 and we obtain

Ls,�+λ,0(ψ̂) = f.

This provides a definition of L−1s,�+λ,0 : Hσ2,ρ0 → Hσ,2,ρ0 . By density of Hσ2,ρ0 in Hσ,ρ0 ,

we can extend L−1s,�+λ,0 to Hσ,ρ0 . Furthermore, by Corollary 9.10 we have that

||L̂−1s,�+λ,0||Hσ,ρ0→Hσ,2,ρ0
≤ C�,λ,s .

Nowwewill show that in fact L̂−1s,�+λ,κn
in the sense of uniform operator convergence.We

will show that L̂−1s,�+λ,κn
form a Cauchy sequence in the Banach space B(Hσ,ρ0 , Hσ,ρ0).

We can express

L̂−1s,�+λ,κn
− L̂−1s,�+λ,κm

= L̂−1s,�+λ,κm
◦ (L̂s,�+λ,κm − L̂s,�+λ,κn ) ◦ L̂−1s,�+λ,κn

.

Note that

||(L̂s,�+λ,κm − L̂s,�+λ,κn )( f )||σ,ρ0 � |κn − κm |
∑

�∈{+,c}

[
||ψ̂ ||σ,ρ0 + ||r−1∂ρ�(rψ̂)||σ,ρ0

+||r−1ρ∂2ρ�
(rψ̂)||σ,ρ0

]

with ψ̂ = L̂−1s,�+λ,κn
( f ).However,we cannot control ||r−1ρ∂2ρ�

(rψ̂)||σ,ρ0 with ||ψ̂ ||σ,2,ρ0
(which we control by || f ||σ,ρ0 using Corollary 9.10).

Instead consider a slightly weaker norm of (L̂s,�+λ,κm − L̂s,�+λ,κn )( f ), where the
terms in the sum defining the norms come with an extra factor (n +1)−2. We will denote
the relevant weaker norms by || · ||σ,ρ0,w and || · ||σ,2,ρ0,w. Then we have that

||r−1ρ∂2ρ�
(rψ̂)||σ,ρ0,w + ||r−1∂ρ�(rψ̂)||σ,ρ0,w ≤ C ||ψ̂ ||σ,2,ρ0 ≤ C || f ||σ,ρ0 .

From Proposition 9.11, it moreover follows that

||(L̂−1s,�+λ,κm
(g)||σ,2,ρ0,w ≤ C ||g||σ,ρ0,w,

so we obtain:

||(L̂−1s,�+λ,κn
− L̂−1s,�+λ,κm

)( f )||σ,2,ρ0,w ≤ C |κn − κm | · || f ||σ,ρ0 .

Finally, we observe that:

||(L̂−1s,�+λ,κn
− L̂−1s,�+λ,κm

)( f )||σ,ρ0 ≤ C ||(L̂−1s,�+λ,κn
− L̂−1s,�+λ,κm

)( f )||σ,2,ρ0,w

≤ C |κn − κm | · || f ||σ,ρ0 .

The convergence of {κn} ensures that indeed {L̂−1s,�+λ,κn
} is Cauchy in the Banach

space B(Hσ,ρ0 , Hσ,ρ0) and therefore converges. By uniqueness of limits, the limit is
L−1s,�+λ,0. ��
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11.2. Fredholm theory. In this sectionweestablish compactness of the operator L−10,�+λ,s ,
which allows us to apply the Analytic Fredholm Theorem in order to obtain information
about the boundedness properties of L−1s,�,0 (with λ = 0).

Lemma 11.4. Let σ ∈ R>0. The following embeddings hold

Hσ,2,ρ0 ⊂ Hσ,1,ρ0 � Hσ,ρ0 , (11.1)

Hσ ′,ρ0 � Hσ,ρ0 if σ ′ > σ. (11.2)

Proof. Wewill only prove (11.1) as the proof of (11.2) proceeds very similarly. Consider
a sequence { fn} in Hσ,1,ρ0 , such that || fn||σ,1,ρ0 = 1. We will show that there exists a
subsequence that converges with respect to ||·||σ,ρ0 . First of all, by || fn||σ,1,ρ0 = 1, given
any N ∈ N, we can use standard Sobolev inequalities to estimate for all 0 ≤ k ≤ N

||r fn||Ck+1([0,(ρ+)0]) + ||r fn||Ck+1([0,(ρc)0]) ≤ CN ,

where theCk-norm is taken with respect to the ρ+ and ρc coordinates. Hence, by Arzelà–
Ascoli, there exists for all N ∈ N0 a subsequence { fn j } satisfying the following Cauchy
property: for all ε′ > 0, there exists a K > 0 such that for allm > l > K and 0 ≤ k ≤ N :

||r fnm − r fnl ||Ck ([0,(ρ+)0]) + ||r fnm − r fnl ||Ck ([0,(ρc)0]) < ε′.

We moreover have that

∑

�∈{+,c}

∞∑

j=N

σ 2 j

j !2( j + 1)!2
∫ (ρ�)0

0
|∂ j

ρ�
(r fnk − r fnl )|2 dρ� ≤ 1

N 2(N + 1)2
|| fnk − fn�

||2σ,ρ0,1

≤ 2

N 2(N + 1)2
.

Hence, for any ε > 0, there exists N > 0 suitably large such that

|| fnk − fnl ||G2
σ,0,ρ0

≤ Cε′ + 2

N 2(N + 1)2
<

ε

2
.

We moreover have that
|| fnk ||H1[R+

0 ,Rc
0] ≤ 1,

so by Rellich–Kondrachov, there exists a further subsequence { fnkm } that is Cauchy with
respect to the L2[R+

0 , Rc
0]-norm. We can conclude from all the above that { fnkm } is a

Cauchy sequence with respect to || · ||σ,ρ0 and must therefore converge. ��
Proposition 11.5. Let σ ∈ R>0 and let κ0 be the constant from Proposition 11.2. Then
for all 0 ≤ κ ≤ κ0

L̂−1s,�,κ : Hσ,ρ0 → Hσ,2,ρ0

is holomorphic for all s ∈ �σ \�σ,�,ρ0
QNF , with�

σ,�,ρ0
QNF ⊂ �σ a discrete set. Furthermore, if

s ∈ �
σ,�,ρ0
QNF then ker L̂s,�,κ = 0 is finite dimensional and L̂s,�,κ ψ̂ = f admits a solution

if and only if f ∈ (coker L̂s,�,κ )⊥ with coker L̂s,�,κ < Hσ,ρ0 and dim coker L̂s,�,κ =
dim ker L̂s,�,κ .
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Proof. Let s ∈ �σ . By Proposition 11.3 and Lemma 11.4

B(s) := λ(λ + 1)L̂−1s,�+λ,κ = (L̂s,�,κ − λ(λ + 1)id)−1 : Hσ,ρ0 → Hσ,ρ0

is a well-defined compact operator when λ ≥ λ0. Furthermore, one can easily verify
that

B(s′)− B(s)

s − s′
( f ) = λ(λ + 1)(L̂s,�+λ,κ )−1

[
r2hr+(2− hr+D)P1(r(L̂s,�+λ,κ )−1( f ))

− (s + s′)r2hr+(2− hr+D)(L̂s,�+λ,κ )−1( f )
]
,

with P1 defined in Proposition 7.4. Since (L̂s,�+λ,κ )−1( f ) ∈ Hσ,2,ρ0 , it follows that

lims′→s
B(s′)−B(s)

s−s′ is a bounded linear operator for all s ∈ �σ , and hence s �→ B(s) is
analytic.

We can relate the existence of L̂−1s,�,κ : Hσ,ρ0 → Hσ,ρ0 to the invertibility of 1+ B(s).

Indeed, one may easily verify that ψ̂ ∈ Hσ,ρ0 satisfies

L̂s,�,κ (ψ̂) = f ⇐⇒ (1 + B(s))(ψ̂) = (L̂s,�+λ,κ )−1( f ).

Since there exists s ∈ �σ (with Re (s) > 0) such that (L̂s,�,κ )−1 is well-defined by
Theorem 7.3 and Proposition 7.4, we can apply the Analytic Fredholm Theorem (see
for example Theorem 7.92 of [70]) to conclude that (id + B(s))−1 : Hσ,ρ0 → Hσ,ρ0 is

holomorphic for all s ∈ �σ \�σ,�,ρ0
QNF , where�

σ,�,ρ0
QNF ⊂ �σ is a discrete set. Furthermore,

if s ∈ �
σ,�,ρ0
QNF , then the space of solutions L̂s,�,κ (ψ̂) = 0 is finite dimensional.

By the above, we have that if s /∈ �
σ,�,ρ0
QNF , then ψ̂ = L̂−1s,�,κ ( f ) ∈ Hσ,ρ0 . Since we

can moreover express ψ̂ = L̂−1s,�+λ,κ ( f + λ(λ + 1)ψ̂), we can take λ suitably large and

apply Propositions 11.2 and 11.3 to conclude that ψ̂ ∈ Hσ,2,ρ0 . ��

11.3. Convergence of quasinormal modes as κ ↓ 0. The proposition below is a variation
of the proof of Theorem 7.92 of [70], utilising the uniform convergence of L−1κ,�+λ,s as
κ ↓ 0 that is established in Proposition 11.3.

Proposition 11.6. Let σ ∈ R>0 and denote

Aκ,s := λ(λ + 1)(L̂s,�+λ,κ )−1 : Hσ,ρ0 → Hσ,ρ0 ,

with κ ≥ 0 and s ∈ �σ . Suppose that

ker(1− A0,s∗) �= ∅
for some s∗ ∈ �σ .

Then there exists a sequence {κn} in R>0 and {sn} in C, such that κn → 0, sn → s∗
and

ker(1− Aκn ,sn ) �= ∅.
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Proof. By Proposition 11.3, there exists a suitably small κ0 > 0 and a neighbourhood
Us∗ ⊂ �σ of s∗, such that for all s ∈ Us∗ and 0 ≤ κ ≤ κ0,

||Aκ,s − A0,s∗ || ≤
1

4
.

Since A0,s∗ is compact, there exists an N ∈ N and a linear operator of rank N , B :
Hσ,ρ0 → Hσ,ρ0 , such that

||B − A0,s∗ || ≤
1

4
.

We therefore have that for all s ∈ Us∗ , we can estimate

||B − Aκ,s || ≤ 1

2
.

Since Aκ,s is analytic in s, we use the convergence of the appropriate Neumann series to
conclude that the operator (1−(Aκ,s−B))−1 exists and is also analytic in s. Furthermore,
we have that for all K � Us∗

sup
s∈K
||(1− (Aκ,s − B))−1 − (1− (A0,s − B))−1|| → 0

as κ ↓ 0.
We define the linear operator

Fκ(s) := B ◦ (1− (Aκ,s − B))−1 : Hσ,ρ0 → Hσ,ρ0

so that we can write

1− Aκ,s = (1− Fκ(s)) ◦ (1− (Aκ,s − B)).

We have that 1− Aκ,s is invertible if and only if 1− Fκ(s) is invertible.
Note that Fκ(s) is an operator of rank N that is analytic in s and for all K � Us∗

sup
s∈K
||Fκ(s)− F0(s)|| → 0

as κ ↓ 0.
By the finite rank property, there exists a basis {ei } of B(Hσ,ρ0) with 1 ≤ i ≤ N and

analytic functions fκ,i : Us∗ → Hσ,ρ0 , with 1 ≤ i ≤ N , such that for all v ∈ Hσ,ρ0 ,

Fκ(s)v =
N∑

i=1
〈 fκ,i , v〉ei .

Define Mi j;κ(s) := 〈 fκ,i , e j 〉, 1 ≤ i, j ≤ N and denote with Mκ(s) the corresponding
N × N matrix. Then Mi j;κ(s) is analytic in s and for all K � Us∗ , sups∈K |Mi j;κ(s)−
Mi j;0(s)| → 0 as κ ↓ 0.

We can conclude that 1− Fκ(s) and therefore 1− Aκ,s is invertible if and only if

det(1− Mκ(s)) = 0.

Since, det(1 − M0(s∗)) = 0 by assumption, we can take {κn}n∈N to be any sequence
converging to 0 with |κn| < κ0 for all n ∈ N and use the above properties of Mi j;κ(s) to
apply Hurwitz’s theorem, see for example Theorem 2.5 in Sect. 7.2 of [26], and conclude
that there exists a corresponding sequence {sn} in Us∗ such that sn → s∗ and

det(1− Mκn (sn)) = 0.

��
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Wewill use the above convergenceproperty of the quasinormal frequencies associated
to κ > 0 to derive an improved regularity property of the κ = 0 quasinormal modes.

Proposition 11.7. Let σ ∈ R>0 and let ψ̂s∗;0,� ∈ ker L̂s∗,�,0, with s∗ ∈ �σ , κ = 0 and
angular frequency �. Then there exists a sequence

ψ̂sn;κn ,� ∈ ker L̂sn ,κn ,�

with κn → 0 and sn → s∗ such that

||ψ̂s∗;0,� − ψ̂sn;κn ,�||σ,ρ0 → 0

for all ρ0 > 0 suitably small, as n→∞.

Proof. Define A := λ(λ + 1)(Ls∗,�+λ,0)
−1. By Proposition 11.6, for every sequence

{κn} in R>0, such that κn → 0 as n → ∞, there exists a sequence {sn} in C such that
sn → s∗ as n → ∞. Furthermore, if we define An := λ(λ + 1)(Lsn ,κn ,�+λ)

−1, then
ker(1− An) �= ∅ and

||A − An|| → 0

as n → ∞. Hence, assuming without loss of generality that ||ψ̂s∗;0,�||σ = 1, we can
apply Lemma A.1 to obtain a subsequence ψ̂snk ;κnk ,� ∈ ker(1− Ank ) such that

||ψs∗;0,� − ψsnk ;κnk ,�||σ → 0

as k →∞. ��
Proposition 11.8. Let σ ∈ R>0 and let ψ̂s∗;0,� ∈ ker L̂s∗,�,0 ⊂ Hσ,ρ0 with s∗ ∈ �σ .
Then

ψ̂s∗;0,� ∈ Hσ ′,ρ0

for all
1

4
|s∗|2 < σ ′2 <

3

4
|s∗|2 − 2|Re (s∗)|2. (11.3)

Proof. ByProposition11.7, there exists a sequence ψ̂sn ;κn ,� ∈ Hσ,ρ0 , such that ||ψ̂sn;κn ,�−
ψ̂s∗;0,�||σ → 0 as n→∞ and

Lκn ,�+λ,sn ,(ψ̂sn;κn ,�) = λ(λ + 1)ψ̂sn;κn ,�.

Let us assume,without loss of generality, thatσ ′ satisfies (11.3) andσ ′ > σ . ByCorollary
9.10, we can estimate

∫ rc

r+
(|ψ̂sn ;κn ,�|2 + |∂r ψ̂sn ;κn ,�|2)r2 dr +

∑

�∈{+,c}

N∞∑

m=0

|2sn |2m σ̃ ′2mn
(m + 1)!2n!2m

2(m + 1)2
∫ ρ0

0
|(rψ̂sn ;κn ,�)(m)|2 dρ�

≤ C�,λ,sn

∫ rc

r+
|ψ̂sn ;κn ,�|2r2 dr + C�,λ,sn

×
∑

�∈{+,c}

N∞∑

m=0

|2sn |2m σ̃ ′2mn
(m + 1)!2m!2

∫ ρ0

0
|(rψ̂sn ;κn ,�)(m)|2 dρ�,

(11.4)
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for all N∞ > Nκn , where |sn|σ̃ ′n := σ ′n , with

1

4
|sn|2 < σ ′2n <

3

4
|sn|2 − 2|Re (s∗)|2.

Since sn → s∗, there exists N0 = N0(σ
′) ∈ N such that for all n ≥ N0, we can

fix σ ′n = σ ′. Furthermore, as the constant C�,λ,sn does not diverge as sn → s∗, we can
replace it by a constant that is independent of n.

There exists M∞ suitably large depending on � and λ, so that we can absorb all terms
on the right-hand side of (11.4) withm > M∞ into the left-hand side, making use of the
additional factor m2(m + 1)2 that appears on the left-hand side, provided we take N∞
to be suitably large. We obtain:

∫ rc

r+
(|ψ̂sn ;κn ,�|2 + |∂r ψ̂sn ;κn ,�|2)r2 dr +

∑

�∈{+,c}

N∞∑

m=0

(2σ ′)2m

(m + 1)!2n!2m
2(m + 1)2

∫ ρ0

0
|(rψ̂sn ;κn ,�)(m)|2 dρ�

≤ C�,λ,s∗

∫ rc

r+
|ψ̂sn ;κn ,�|2r2 dr + C�,λ,s∗ ×

∑

�∈{+,c}

M∞∑

m=0

(2σ ′)2m

(m + 1)!2m!2
∫ ρ0

0
|(rψ̂sn ;κn ,�)(m)|2 dρ�.

By taking the limit N∞ →∞ on the left-hand side, we therefore obtain that

||ψ̂sn;κn ,�||σ ′,ρ0 ≤ C ||ψ̂sn;κn ,�||σ,ρ0 ,

for some constant C = C(�, λ, s∗, σ ′, σ ) > 0. Since ψ̂sn;κn ,� is a convergent sequence
in Hσ,ρ0 , we can conclude that ψ̂sn;κn ,� is a uniformly bounded sequence in Hσ ′,ρ0 By
considering the difference ψ̂sn;κn ,� − ψsn′ ;κn′ ,�, with n > n′ and using that

L̂κn ,�+λ,sn ,(ψ̂sn ;κn ,� − ψsn′ ;κn′ ,�) = λ(λ + 1)(ψ̂sn ;κn ,� − ψsn′ ;κn′ ,�) + (L̂κn ,�+λ,sn − L̂κ ′n ,�+λ,s′n )ψsn′ ;κn′ ,�

and κn ↓ 0, sn → s∗, it is straightforward to apply the above estimates to the difference
ψ̂sn;κn ,�−ψ̂sn′ ;κn′ ,� in order to show that {ψ̂sn;κn ,�} is also a Cauchy sequencewith respect
to the Hσ ′,ρ0 norm, so the corresponding (unique) limit must satisfy: ψ̂s∗;0,� ∈ Hσ ′,ρ0 .��

In the following proposition, we investigate the dependence of �
σ,�,ρ0
QNF on the choice

of ρ0.

Proposition 11.9. Consider ρ0 and ρ′0 suitably small so that Proposition 11.5 can be

applied to define �
σ,�,ρ0
QNF and �

σ,�,ρ′0
QNF . Then

�
σ,�,ρ0
QNF = �

σ,�,ρ′0
QNF .

Proof. Assume without loss of generality that ρ′0 > ρ0. Let ψ̂s∗;0,� ∈ Hσ,ρ0 . Then we
use that, as in the proof of Proposition 11.8, there exists a sequence ψ̂sn;κn ,� ∈ Hσ,ρ0 ,
such that ||ψ̂sn;κn ,� − ψ̂s∗;0,�||σ → 0 as n→∞ and

Lκn ,�+λ,sn ,(ψ̂sn;κn ,�) = λ(λ + 1)ψ̂sn;κn ,�.
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Similarly, we have that

∫ rc

r+
(|ψ̂sn ;κn ,�|2 + |∂r ψ̂sn ;κn ,�|2)r2 dr +

∑

�∈{+,c}

N∞∑

m=0

(2σ)2m

(m + 1)!2n!2m
2(m + 1)2

∫ ρ′0

0
|(rψ̂sn ;κn ,�)(m)|2 dρ�

≤ C�,λ,s∗

∫ rc

r+
|ψ̂sn ;κn ,�|2r2 dr + Cγ,|s|,�

×
∑

�∈{+,c}

M∞∑

m=0

(2σ)2m

(m + 1)!2m!2
∫ ρ′0

0
|(rψ̂sn ;κn ,�)(m)|2 dρ�.

In order to conclude that the term in the sum on the right-hand side is finite, we split the
integral over [0, ρ′0] into an integral over [0, ρ0] and (ρ0, ρ

′
0]. The integral over [0, ρ′0]

is finite since ψ̂sn;κn ,� ∈ Hσ,ρ0 . In order to conclude that the remaining integral is finite,
we use the equation Lκn ,�,sn ,(ψ̂sn;κn ,�) = 0 (and commute with ∂mρ ) to control all higher-

order derivatives. Hence, ψ̂sn;κn ,� ∈ Hσ,ρ′0 . It follows straightforwardly that the limit

ψ̂s∗;0,� must also be an element of Hσ,ρ′0 . ��
By Proposition 11.9, we can unambiguously denote

�
σ,�
QNF = �

σ,�,ρ0
QNF ,

omitting ρ0 in the superscript.

Corollary 11.10. Let σ ∈ R>0 and consider A : Hσ,ρ0 ⊇ D(A)→ Hσ,ρ0 .

(i) Then

Spect(A�) ∩�σ = Spectpoint(A�) ∩�σ = �
σ,�
QNF , (11.5)

Spectpoint(A) ∩�σ =�σ
QNF :=

⋃

�∈N0

�
σ,�
QNF , (11.6)

with �
σ,�
QNF ⊂ �σ the sets of isolated points from Proposition 11.5.

(ii) Define

�QNF :=
⋃

σ∈R>0

�σ
QNF ⊂

{

|arg(z)| < 2

3
π

}

,

then�QNF is a set of isolated points in
{|arg(z)| < 2

3π
}
(with possible accumulation

only on the boundary of
{|arg(z)| < 2

3π
}
in C).

(iii)
Spectpoint(A) ∩ {Re z ≥ 0} = ∅.

(iv) For all � ∈ N0 there exists δ� > 0 such that�σ,�
QNF ∩{|z| < δ�} = ∅, i.e. the elements

of �σ,�
QNF do not accumulate at the origin.

Proof. First, consider part (i) of the proposition. By Proposition 7.4 combined with
Proposition 11.5, we immediately obtain (11.5). We moreover obtain

⋃

�∈N0

�
σ,�
QNF ⊆ Spectpoint(A) ∩�σ ,
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since Spectpoint(A�)∩�σ ⊂ Spectpoint(A�). Suppose s ∈ Spectpoint(A). Let (�,� ′) ∈
ker(A−s) be initial data, then the corresponding solutionψ is of the formψ(τ, r, θ, ϕ) =
ψ̂(r, θ, ϕ)esτ and we can decompose ψ̂ =∑�∈N0

ψ̂� with L̂s,�,0(ψ̂�) = 0. By Proposi-

tion 11.3, we have that there exists L > 0 such that for all � > L , L̂−1s,�,0 is well-defined,

so we must have that ψ̂ =∑L
�=0 ψ̂� and we can conclude that s ∈⋃L

�=0 �
σ,�
QNF so

⋃

�∈N0

�
σ,�
QNF ⊇ Spectpoint(A) ∩�σ .

Consider part (ii). Let s0 ∈ �σ
QNF for some σ ∈ R>0. Since �σ

QNF is a set of
isolated points by Proposition 11.5, there exists a neighbourhood Us0 of s0 such that

Us0 ∩�σ = {s0}. Suppose there exists s1 ∈ Us0 \ {s0} and � ∈ N, such that s1 ∈ �
σ ′,�
QNF

for some σ ′ ∈ R. Let ψ̂s1 ∈ ker L̂s1,�,0 ⊂ Hσ ′ . Since s1 ∈ �σ we can apply Proposition
11.8 to conclude that ψ̂s1 ∈ Hσ,ρ0 . But then s1 ∈ �σ

QNF , which is a contradiction. So
we can conclude that

⋃
σ∈R>0

�σ
QNF ∩Us0 = {s0}.

Consider now part (iii). Let Re (s) ≥ 0 and suppose (A − s)(�,� ′) = 0 with
(�,� ′) ∈ Hσ,ρ0 for some σ ∈ R>0. Then there exists a corresponding solution
ψ(τ, r, θ, ϕ) = esτ�(r, θ, ϕ) to (2.9). However, by an application of the degener-
ate energy estimates (see for example [10] for the relevant estimates in the extremal
Reissner–Nordström setting), it follows that the (degenerate) energy with respect to T
must decrease in time, which contradicts the supposed exponential growth or non-decay
in τ of the T -energy norm.

Finally, (iv) follows from Proposition 11.5 combined with Proposition 7.4. ��

12. Relation to the Scattering Resonances

In this section, we show that the “traditional” notion of quasinormal frequencies as
scattering resonances (with fixed angular frequency), defined as in Theorem A, but
in the setting of extremal Reissner–Nordström, can be interpreted as eigenvalues of
A. In fact, we determine the appropriate restriction to A, which guarantees that all
eigenvalues correspond to scattering resonances in a suitable subset of the complex
plane. Furthermore,we show thatwe canmake sense of scattering resonances in extremal
Reissner–Nordström without a restriction to fixed angular frequencies.

Let ψ be a solution to (2.9). Then we can express in (t, r, θ, ϕ) coordinates

D−1r−1
[
−∂2t (rψ) + (D∂r )

2(rψ) + Dr−2 /̊�(rψ)− (r−1DD′(r) + 2Dl−2)rψ
]
= 0.

(12.1)
We introduce the following fixed-frequency operator with Re s > 0:

L̂s,κ (ψ̂) = (D∂r )
2(rψ̂) + Dr−2 /̊�(rψ̂)− (s2 + r−1DD′(r) + 2Dl−2)rψ̂.

Let f ∈ L2({t = 0}), where L2({t = 0}) is definedwith respect to the natural volume
form on {t = 0} with respect to the induced metric, and denote the trivial extension as
follows: f : R→ R, f (t, r, θ, ϕ) := f (r, θ, ϕ). Then the map

Qs :L2({t = 0})→ L2(� \ (H+ ∪ C+)),
f �→ f est |�
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is well-defined and invertible. Furthermore, if χ, χ ′ : {t = 0} → R are smooth cut-off
functions that vanish near H+ and C+, then it follows immediately that

Qs ◦ χ : L2({t = 0})→ L2(�),

χ ′ ◦Q−1s ◦ χ : H2(�)→ H2({t = 0})
are bounded linear operators that are holomorphic in s.

Lemma 12.1. Let κc = κ+ = κ ≥ 0. Then we can express

DrL̂s,κ = Q−1s ◦ L̂s,�,κ ◦ Qs .

Let χ, χ ′ : {t = 0} → R be smooth cut-off functions that vanish nearH+ and C+ or I+.
Then we moreover have that for Re s > 0:

χ ′ ◦ Rκ(s) ◦ χ := χ ′ ◦ L̂−1s,κ ◦ χ

= χ ′ ◦ Q−1s ◦ (D−1r−1 L̂−1s,κ ) ◦ Qs ◦ χ : L2({t = 0})→ H2({t = 0})
is a bounded linear operator.

Proof. We first need to show that (r−2 L̂)−1s,κ : L2(�) → H1(�) is well-defined as a
bounded linear operator when Re s > 0. This is a standard result. By performing the
steps in the proof of Proposition B.1 with Re s > 0 and κ+, κc ≥ 0, it follows that

||ψ̂ ||H1(�) ≤ C ||r−2 L̂s,κ ψ̂ ||L2(�),

with C > 0 a constant that is independent of κ . We then apply similar steps to those in
Appendix B to construct L̂−1s,κ . In fact, the above estimate moreover implies that

||χ(r−2 L̂)−1s,κ ( f̃ )||H2(�) ≤ C || f̃ ||L2(�),

for a cut-off function χ that is supported away from r = r+ and r = rc or r = ∞. ��
Proposition 12.2. Let 0 ≤ κc = κ+ = κ < κ0, with κ0 > 0 suitably small. Then the
linear operator

χ ′ ◦ Rκ(s) ◦ χ : L2({t = 0})→ H2({t = 0})
can be meromorphically continued to {|arg(z)| < 2

3π} ⊂ C and the poles form a subset
of �QNF .

Proof. By Lemma 12.1, we have to prove that

χ ′ ◦ L̂−1s,κ ◦ χ : L2({t = 0})→ H2({t = 0})
can be meromorphically continued to {−Re s

|s| < 1
2 } ⊂ C. Note that we can express for

f ∈ L2({t = 0})
(χ ′ ◦ L̂−1s,κ ◦ χ)( f ) =

∑

�=0

∑

|m|≤�

(χ ′ ◦ L̂−1s,κ,� ◦ χ)( f�m)Y�m(θ, ϕ) (12.2)

when Re (s) > 0.
Let s ∈ �, with � ⊂ {−Re z

|z| < 1
2 , z �= 0} such that � ∩ {Re z ≤ 0} is compact.

Then, by Corollary 9.10 with ρ0 > 0 suitably small depending on χ and χ ′, there exists
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L = L(�) > 0 suitably large such that for all � ≥ L+1, (χ ′ ◦ L̂−1s,κ,�◦χ) is a holomorphic

operator from L2[r+, rc] to H2[r+, rc] and there exists C > 0 such that

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

∞∑

�=L+1

∑

|m|≤�

(χ ′ ◦ L̂−1s,κ,� ◦ χ)( f�m)Y�m(θ, ϕ)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
H2({t=0})

≤ C || f ||L2({t=0}.

Furthermore, by Proposition 11.5,

f �→
L∑

�=0

∑

|m|≤�

(χ ′ ◦ L̂−1s,κ,� ◦ χ)( f�m)Y�m(θ, ϕ)

is meromorphic on� as an operator from L2({t = 0}) to H2({t = 0}). We can conclude
that (12.2) is well-defined as a meromorphic operator from L2({t = 0}) to H2({t = 0})
when {−Re s

|s| < 1
2 } ⊂ C. ��

We would like to identify the poles of Rκ(s) with the eigenvalues of A, restricted to
a suitable subspace of Hσ,ρ0 . We introduce the following function space:

X = {S(τ )(�,� ′) | (�,� ′) ∈ (C∞c (�)× C∞(S)) ∩Hσ,ρ0 , τ ≥ 0
}
.

We denote with Hres
σ,ρ0

the closure of X under the norm on Hσ,ρ0 . Then, Hres
σ,ρ0

is the
smallest, closed subspace of Hσ,ρ0 that is invariant under S(τ ) and contains (C∞c (�)×
C∞(S)) ∩Hσ,ρ0 . Furthermore,

S(τ ) : Hres
σ,ρ0

→ Hres
σ,ρ0

is well-defined, by construction, and hence,

Ares : Dres
σ,ρ0

(A)→ Hres
σ,ρ0

is a densely defined closed operator with Dres
σ,ρ0

(A) ⊆ Hres
σ,ρ0

a dense subset.

We now denote with �
σ,res
QNF the subset of eigenvalues in �σ

QNF for A restricted to
Dres

σ,ρ0
(A). Moreover, we denote

�res
QNF =

⋃

σ∈R>0

�
σ,res
QNF ⊂ �QNF .

Proposition 12.3. Let κc = κ+ = κ ≥ 0 be suitably small. Then the poles of

χ ′ ◦ Rκ(s) ◦ χ : L2({t = 0})→ H2({t = 0})

for any choice of cut-off functions χ, χ ′ correspond precisely to elements of �res
QNF .
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Proof. Fix � ≥ 0, σ > 0 and ρ0 > 0 suitably small. In view of the fact that for s
in any compact neighbourhood in �σ , there exists an L ∈ N such that ker(A − s) ⊆
Hσ,ρ0 ∩

∑L
�=0 V�, combined with Proposition 11.9, it is sufficient to show that s is not

a pole of χ ′ ◦ Rκ,�(s) ◦ χ for all cut-off functions χ, χ ′ if and only if s /∈ �
σ,�,res
QNF for

all �. For the sake of convenience, we moreover restrict to functions in Vm� for a fixed
m ∈ Z with |m| ≤ � and we ignore their angular part.

We will use the following expressions, derived in the proof of Proposition 7.4:

(Ares
� − s)

(
�

� ′
)

=
(

�̃

�̃ ′
)

for (�,� ′), (�̃, �̃ ′) ∈ Hres
σ,ρ0

∩ Vm�, if and only if

L̂s,�,κ (�|S) = hr+(2− hr+D)r2
[
�̃ ′ + (P1 + s)(�̃|S)

]
,

� ′ = s�|S + �̃|S,
r L̂s,�,κ (�|N ) = − 2∂ρc(r�̃|N ),

r L̂s,�,κ (�|N ) = − 2∂ρ+(r�̃|N ).

Let (�̃, �̃ ′) ∈ (C∞c (�) ∩Hσ,ρ0 ∩ Vm�)× (C∞(S) ∩ Vm�) and suppose s is not a pole
of χ ′ ◦ Rκ,�(s) ◦ χ .

We define the following auxilliary function:

r f = r3hr+(2− hr+D)
[
�̃ ′ + (P1 + s)(�̃|S)

]
on S,

r f =− 2∂ρc(r�̃|N ) on N ,

r f =− 2∂ρ+(r�̃|N ) on N ,

then f ∈ L2
c(r+, rc)∩ Hσ,ρ0 . By the meromorphicity of L̂−1s,κ,�, there exists a neighbour-

hood Us of s such that for all s′ ∈ Us we can decompose

L̂−1s′,κ,�
= A(s′) +

N∑

k=1
(s − s′)−k Bk, (12.3)

where N ∈ N0, A(s), Bk : Hσ,ρ0 → Hσ,ρ0 are holomorphic linear operators. We
moreover have that Bk are finite rank operators that are independent of s′ (note that
Bk = 0 for all k if s /∈ �

σ,�
QNF ).

By Lemma 12.1, we can moreover express

χ ′D−1r−1 L̂−1s′,κ,�
( f ) = (Qs′ ◦ χ ′ ◦ Rκ(s′) ◦ χ ◦ Q−1s′ )( f ) (12.4)

with χ ′ an arbitrary smooth cut-off function and χ a smooth cut-off function such that
χ ≡ 1 on supp f . Since s is not a pole of χ ′ ◦ R(s′) ◦ χ by supposition, we have that
χ ′ ◦ R(s′) ◦ χ is uniformly bounded in s′ provided Us is suitably small, so we can
multiply both sides of (12.4) by (s − s′)k with 1 ≤ k ≤ N and take the limit s′ → s to
conclude that χ ′Bk( f ) = 0 for all k. Since χ ′ was chosen arbitrarily, we must in fact
have that f ∈ ker Bk for all k and hence f ∈ Ran(L̂s,κ,�) = (coker L̂s,κ,�)

⊥.
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Defining � ′ = s�|S + �̃|S , with � = A(s)( f ), we can therefore conclude that
(Ares

� − s)(�,� ′) = (�̃, �̃ ′) ∈ (C∞c (�) ∩ Hσ,ρ0 ∩ Vm�) × (C∞(S) ∩ Hσ,ρ0 ∩ Vm�),
with (�,� ′) uniquely determined, and since (Ares

� − s) commutes with S(τ ):

(Ares
� − s)−1 : Ran(Ares

� − s) ⊃ X ∩ V� → Dres
σ,ρ0

(A)

is well-defined.
By the closedness of Ran(L̂s,κ,�) = (coker L̂s,κ,�)

⊥ it follows that for any s ∈ �σ ,
Ran(Ares

� − s) is closed. SinceAres
� − s trivially commutes with S(τ ) we moreover have

that Ran(Ares
� − s) is S(τ )-invariant. We therefore obtain the following identity:

Ran(Ares
� − s) = Hres

σ,ρ0
∩ V�, (12.5)

since Hres
σ,ρ0
∩V� is the smallest closed, S(τ )-invariant subspace of Hσ,ρ0 ∩V� containing

(C∞c (�) ∩Hσ,ρ0 ∩ Vm�)× (C∞(S) ∩Hσ,ρ0 ∩ Vm�). Since X is dense in Hres
σ,ρ0

and the
inverse is well-defined on X , we must have that ker(Ares

� − s) = {0} and Spect(Ares
� ) ∩

Us = ∅. We conclude that s /∈ �
res,σ,�
QNF .

In order to conclude the proof, we need to show that if s /∈ �
res,σ,�
QNF , then s is not a

pole of Rκ,�(s) for any choice of cut-off functions χ, χ ′. By (12.3) and (12.4), we have
that if s /∈ �

res,σ,�
QNF , then χ ′ ◦ Rκ,�(s) ◦χ is a bounded operator on Hσ,ρ0 . We can take ρ0

to be suitably small, depending on the choice of χ, χ ′ to conclude that χ ′ ◦ Rκ,�(s) ◦ χ

is a bounded operator on L2(r+, rc), from which it follows that s cannot be a pole. ��
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Appendix A. Basic Lemmas

Lemma A.1. Let H be a complex Hilbert space and let (An)n∈N be a sequence of
compact operators on H such that there exists a compact operator A on H with

An → A

with respect to the operator norm, as n→∞. Assume moreover that

ker(1− An) �= ∅ and dim ker(1− An) <∞ for all n ∈ N.

Let x ∈ ker(1− A), with ||x || = 1. Then there exists a subsequence xnk ∈ ker(1− Ank )

such that
||x − xnk || → 0

as k →∞.

http://creativecommons.org/licenses/by/4.0/
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Proof. Denote V = ker(1− A) and let n ∈ N0. Consider the eigenspaces Vn := ker(1−
An). Let Nn := dim Vn and {en,m} an orthonormal basis for Vn , with 1 ≤ m ≤ Nn .
Let x ∈ V . Then we can decompose

x =
Nn∑

m=0
〈x, en,m〉en,m + yn,

with yn ∈ V⊥n . Let xn :=∑Nn
m=0〈x, en,m〉en,m .

We can rearrange terms and use that x ∈ V and xn ∈ Vn to obtain

yn = x − xn
= Ax − Anxn
= Ayn + (A − An)xn .

Note that
1 = ||x ||2 = ||xn||2 + ||yn||2,

so
||(An − A)xn|| ≤ ||An − A|| → 0

as n → ∞. Furthermore, {yn} is a bounded sequence, so by compactness of A, there
exists a subsequence {ynk } and y ∈ H such that

||Aynk − y|| → 0

as k →∞. Since yn = Ayn+(A−An)xn by the above,we can conclude that ||ynk−y|| →
0 and Ay = y, so y ∈ V .
By compactness of An , we can moreover conclude that Ran (1 − A†

nk ) is closed in H
and

ynk ∈ V⊥nk = Ran (1− A†
nk ).

Hence, there exists znk ∈ H such that

ynk = (1− A†
nk )znk = (1− A†)znk + (A − Ank )

†znk .

We have that ||1− A†
nk || ≥ ||1− A†|| − ||A†− A†

nk || → ||1− A†|| as k →∞. Without
loss of generality, A �= 1, so ||1− A†|| > 0 and there exists a constant C > 0 such that

||zn,k || ≤ C

||1− A†|| ||ynk || ≤
C

||1− A†|| .

and therefore, (A − Ank )
†zn,k → 0 as k →∞. We therefore have that

y = lim
k→∞(1− A†)znk ,

so by closedness of Ran (1− A†), we must have that

y ∈ Ran (1− A†) = V⊥.

Since we also showed that y ∈ V , we must have that y = 0 and

||x − xnk || → 0

as k →∞. ��
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Lemma A.2. (Hardy inequalities). Let q ∈ R \ {−1}. Let f : [a, b] → R be a C1

function with a, b ≥ 0. Then

∫ b

a
xq f 2(x) dx ≤ 4(q + 1)−2

∫ b

a
xq+2

∣
∣
∣
∣
d f

dx

∣
∣
∣
∣

2

dx + 2bq+1 f 2(b), for q > −1,
(A.1)

∫ b

a
xq f 2(x) dx ≤ 4(q + 1)−2

∫ b

a
xq+2

∣
∣
∣
∣
d f

dx

∣
∣
∣
∣

2

dx + 2aq+1 f 2(a), for q < −1.
(A.2)

Proof. See for example the proof of Lemma 2.2 in [7]. ��

Appendix B. Red-Shift Estimates in Reissner–Nordström–de Sitter

In this section,we include various estimateswhich arenot uniform in the surface gravities
κ+ and κc. These are small variations of the estimates derived in [79] that fundamentally
rely on the red-shift effect along both the event and cosmological horizon, and that we
include for completeness.
Consider the operator

L̂s,κ : Dk(L̂s,κ )→ H̃ k,

with Dk(L̂s,κ ) the closure of C∞([r+, rc] × S
2) under the graph norm || f ||H̃ k + ||L̂s,κ

( f )||H̃ k . By construction, (Dk(L̂s,κ ), L̂s,κ ) is a closed, densely defined operator.

Proposition B.1. Let κ+ = κc = κ , s ∈ C and k ∈ N0 such that Re (s) > −κ( 12 + k).
For suitably small (ρ0)+ > 0, (ρ0)c > 0 and λ > 0 suitably large, there exists a constant
C = C(s, λ, κ+, κc) > 0 such that

||ψ̂ ||H2([R+
0 ,Rc

0]×S2) + ||ψ̂ ||Hk+1([r+,R+
0 ]×S2) + ||ψ̂ ||Hk ([Rc

0,rc]×S2)
≤ C ||(L̂s,κ − λ(λ + 1))(ψ̂)||L2([(R+

0 ,Rc
0]×S2) + C ||(L̂s,κ − λ(λ + 1))(ψ̂)||Hk ([r+,R+

0 ]×S2)
+ C ||(L̂s,κ − λ(λ + 1))(ψ̂)||Hk([Rc

0,rc]×S2).

Proof. We multiply Eq. (6.14) with inhomogeneity ∂nρ (r f̃ ) by ∂ρφ̂(n) = (φ̂(n+1) −
sĥφ̂(n)) to obtain

Re
(
∂ρφ̂(n)∂

n
ρ (r f̃ )

)
= 2(Re (s) + (n + 1)κ + O(ρ))|φ̂(n+1)|2

+ (κρ + O(ρ2))∂ρ(|φ̂(n+1)|2) +Re (O(1)φ̂(n)φ̂(n+1))

1

2
�(� + 1)∂ρ(|φ(n)|2) +Re (O(1)φ̂(n−1)φ̂(n+1))

+Re (O(1)φ̂(n−2)φ̂(n+1)),

where the big O notation indicates the behaviour of factors as ρ → 0 andwe do not keep
track of dependence on n and s. We integrate the above equation on [0, ρ0] to obtain the
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following estimate for ρ0 suitably small:
∫ ρ0

0
(Re (2s) + (n + 1)κ)|φ̂(n+1)|2 dρ + κρ0|φ̂(n+1)|2(ρ0) + �(� + 1)|φ̂(n)|2(0)

≤ C
∫ ρ0

0
(|φ̂(n)| + |φ̂(n−1)| + |φ̂(n−2)|)|φ̂(n+1)| dρ

+ C�(� + 1)|φ̂(n)|2(ρ0) + Cκρ0|φ̂(n)|2(ρ0) + C
∫ ρ0

0
|∂nρ (r f̃ )||φ̂(n+1)| dρ.

We apply a Hardy inequality, see Lemma A.2, to estimate further:

∫ ρ0

0
(Re (2s) + (n + 1)κ − ε)|φ̂(n+1)|2 dρ ≤ C

2∑

k=0
|φ̂(n−k)|2(ρ0) + C�(� + 1)|φ̂(n)|2(ρ0)

+ Cε−1
∫ ρ0

0
|∂nρ (r f̃ )|2 dρ.

We can sum over n to obtain for Re s > −(n + 1
2 )κ:

n∑

k=0

∑

k1+k2=k

∫ ρ0

0
(�(� + 1))k2(|φ̂(k1+1)|2 + |φ̂(k1)|2) dρ

≤ C�(� + 1))n+1|φ̂(0)|2(ρ0) + Cε−1
n∑

k=0

∑

k1+k2=k

∫ ρ0

0
(�(� + 1))k2 |∂k1ρ (r f̃ )|2 dρ,

with C a constant independent of �. We can estimate the boundary term at ρ = ρ0 using
(8.1) and by taking � suitably large, we are left with

∫ Rc
0

R+
0

|∂2r ψ̂ |2 + |∂r ψ̂ |2 + (1 + �2(� + 1)2)|ψ̂ |2 dr

+
∑

�∈{+,c}

n+1∑

k=0

∑

k1+k2=k

∫ (ρ0)�

0
(�(� + 1))k2 |φ̂(k1)|2 dρ�

≤ C
∫ rc

r+
| f̃ |2 dr +

n∑

k=0

∑

k1+k2=k

∫ ρ0

0
(�(� + 1))k2 |∂k1ρ (r f̃ )|2 dρ.

��
From Proposition B.1, it follows immediately that:

Corollary B.2. For suitably large λ > 0, L̂s,κ − λ(λ + 1) : Dk(L̂s,κ ) → H̃ k is an
injective linear operator with a closed range and Dk(L̂s,κ ) ⊆ H̃ k+1

2 .

We now consider the adjoint operator of L̂s,κ .

Lemma B.3. The linear operator

L̂†
s,κ := L̂−s,κ : Dk(L̂†

s,κ )→ H̃ k,



Quasinormal Modes in Extremal Reissner–Nordström Spacetimes 1495

with Dk(L̂†
s,κ ) the closure of

{ f ∈ C∞([r+, rc] × S
2)
∣
∣ ∂kr f (r+) = ∂kr f (rc) = 0 for all k ∈ N0}

under the graph norm || f ||H̃ k + ||Ls,κ ( f )||H̃ k , is the adjoint of L̂s,κ with respect to H̃ k .

Proof. See Lemma 4.5 of [79]. ��
Proposition B.4. Let κ+ = κc = κ and Re (s) > 1

2κ . For suitably small (ρ0)+ > 0,
(ρ0)c > 0 and λ > 0 suitably large, there exists a constant C = C(s, λ, κ) > 0 such
that

||ψ̂ ||H̃1
2
≤ C ||(L̂†

s,κ − λ(λ + 1))(ψ̂)||H̃0 . (A.3)

Furthermore, for k ∈ N0 and Re (s) < ( 12 + k)κ , there exist (ρ0)+ > 0, (ρ0)c > 0
suitably small, λ > 0 suitably large and a constant C = C(s, λ, κ, k) > 0 such that

||ψ̂ ||H̃ k+1
2
≤ C ||(L̂†

s,κ − λ(λ + 1))(ψ̂)||H̃ k . (A.4)

Proof. In order to prove (A.3), we proceed as in the proof of Proposition B.1 for n = 0,
with s replaced by −s but we multiply the equation with ∂ρφ̂ rather than −∂ρφ̂.
We obtain (A.4) by repeating exactly the proof of Proposition B.1 with s replaced by
−s. ��
Proposition B.5. Let k ∈ N0 andRe (s) > −( 12 + k)κ . Then, for λ ∈ N0 suitably large,
the operator

L̂s,κ − λ(λ + 1) : Dk(L̂s,κ )→ H̃ k

is invertible and
Dk(L̂s,κ ) ⊂ H̃ k+1

2 .

Proof. We first investigate the existence and uniqueness of solutions to

(L̂s,κ − λ(λ + 1))(ψ̂) = f̃ , (A.5)

with f̃ ∈ C∞([r+, rc] × S
2). Uniqueness follows from Corollary B.2. Furthermore,

given any k ∈ N, L̂s,κ − λ(λ + 1) : Dk(L̂s,κ ) → H̃ k is a closed operator with closed
range providedRe (s) > −( 12 +k)κ . Hence, by a standard functional analytic argument,
see for example Lemma 4.4 of [79],

(L̂s,κ−λ(λ+1))(Dk(L̂s,κ )) = H̃ k if L̂†
s,κ−λ(λ+1) : Dk(L̂†

s,κ )→ H̃ k is injective.

By Proposition B.4, injectivity of the adjoint holds for all s ∈ C provided we restrict
to k ≥ 1.
Since f̃ ∈ C∞([r+, rc] × S

2), we can take k ≥ 1 and conclude that for Re (s) >

−( 12 + k)κ , (A.5) admits a solution in Dk(L̂s,κ ). Hence,

(L̂s,κ − λ(λ + 1))−1 : C∞([r+, rc] × S
2)→ Dk(L̂s,κ )

is well-defined if Re (s) > −( 12 + k)κ with k ≥ 1 and λ is suitably large. By Corollary
B.2 we in fact have that for all k ≥ 0 andRe (s) > −( 12 + k)κ and λ > 0 suitably large

||(L̂s,κ − λ(λ + 1))−1( f̃ )||H̃ k+1
2
≤ C || f̃ ||H̃ k ,
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so for all k ≥ 0, (L̂s,κ − λ(λ + 1))−1 admits a unique extension as an operator from H̃ k

to Dk(L̂s,κ ), provided Re (s) > −( 12 + k)κ , and moreover we have that

Dk(L̂s,κ ) ⊂ H̃ k+1
2 .

It immediately follows that the extended operator must be the inverse of L̂s,κ − λ

(λ + 1). ��
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