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Abstract—Psychological distress is a significant and growing issue in society. In particular, depression and anxiety are leading causes
of disability that often go undetected or late-diagnosed. Automatic detection, assessment, and analysis of behavioural markers of
psychological distress can help improve identification and support prevention and early intervention efforts. Compared to modalities
such as face, head, and vocal, research investigating the use of the body modality for these tasks is relatively sparse, which is partly
due to the limited available datasets and difficulty in automatically extracting useful body features. To enable our research, we have
collected and analyzed a new dataset containing full body videos for interviews and self-reported distress labels. We propose a novel
approach to automatically detect self-adaptors and fidgeting, a subset of self-adaptors that has been shown to correlate with
psychological distress. We perform analysis on statistical body gestures and fidgeting features to explore how distress levels affect
behaviors. We then propose a multi-modal approach that combines different feature representations using Multi-modal Deep Denoising
Auto-Encoders and Improved Fisher Vector Encoding. We demonstrate that our proposed model, combining audio-visual features with
detected fidgeting behavioral cues, can successfully predict depression and anxiety in the dataset.
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1 INTRODUCTION

P Sychological distress and mental disorders are signif-
icant threats to global health [1].1 According to the

World Health Organization (WHO), an estimated 450 mil-
lion people around the world suffer from neuropsychiatric
conditions [3], with depression and anxiety being the most
common mental disorders [4]. Despite existing strategies for
the treatment of distress, such as depression, it is estimated
that nearly two-thirds of people suffering distress have
never received help from a health professional [5]. Early
detection of distress is consistently noted as a key factor
in treatment and positive outcomes [6], [7]. Early detection
requires an ongoing assessment to identify distress when
it begins. Self-evidently, ongoing assessment at scale is
prohibitive when performed manually. As such, automatic
detection of signs of psychological distress or specific mental
disorders is an active area of research [8], [9].

Mental health assessments are largely based on self-
reports and health workers’ subjective observations. Au-
tomated detection of behavioural markers of distress, for
instance based on video data, can also help add greater
objectivity and complement these assessments, supporting
health professionals in decision-making. Such automated
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1. This work is an extension of the work in [2], originally published
in the proceedings of the IEEE International Conference on Automatic
Face and Gesture Recognition (FG) 2020

analysis might be particularly helpful for early clinicians
or lay health workers without extensive training in psychi-
atry. Automated video analysis is also relevant in remote
monitoring and assessment of individuals at risk [10]. Since
the COVID-19 pandemic, telepsychiatry has seen an expo-
nential growth, and automated analysis can help address
long-standing concerns about the ability of health profes-
sionals to pick up subtle behavioural signs remotely e.g.
during a video call [11]. In addition to supporting clinicians,
visualizations of the analysis can be fed-back to participants
and used for structured self-reflection during a therapeutic
session [12].

Currently, the most effective automated distress de-
tection approaches utilize multi-modal machine learning.
These modalities include facial, head, eye, linguistic (tex-
tual), vocal, and body.

There are significant challenges to body modality re-
search, particularly within automatic distress detection, in-
cluding the lack of relevant data, the inability to share much
of the data, and the difficulty in gathering such data. Specifi-
cally, the combination of full-body data (either sensor-based
or video-based) with psychological distress labels is rare.
Compounding this rarity is the private and sensitive nature
of the data, which means such datasets are rarely shared
publicly.

Body expressions, and especially self-adaptors, have
been shown to be correlated with human affect, depression
and psychological distress [13], [14], [15], [16], [17]. Self-
adaptors are self-comforting gestures, including any kind of
touching on other parts of the body, either dynamically or
statically [18], [19]. Fidgeting, a subset of self-adaptors, is the
act of moving about restlessly, playing with one’s fingers,
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hair, or personal objects in a way that is not peripheral or
nonessential to ongoing tasks or events [20]. Patients with
depression often engage in self-adaptors [21]. Fidgeting is
a sign of attention-deficit and hyperactivity disorder, also
exhibited by individuals with autism [22]. With manually
annotated data, Scherer et al. [23] reported a longer average
duration of self-adaptors as well as fidgeting for distressed
participants, while hand-tapping was reported to correlate
with depression and anxiety [19].

More recent advances in the state-of-the-art for pose
estimation [24] enable accurate pose data on a broader set
of datasets and thus open the door for new approaches for
body expression analysis and broader incorporation of body
features in multi-modal systems.

In this paper, we propose to use a hierarchical model
to automatically detect self-adaptors as well as fidgeting,
which has been shown to be predictive of psychological
distress. We analyzed body gestures and self adaptors in a
dataset of video recordings that we collected, concentrating
on symptoms of depression and anxiety because these are
the most common mental disorders [4]. We then present two
methods to explore the body modality (especially fidgeting):
First with a statistical linearity analysis with traditional
linear regression, and second with a deep-learning-based
pipeline. In the second method, a Multi-modal Deep Denois-
ing Auto-Encoder (multi-DDAE) is utilized for encoding
per-frame features. Improved Fisher Vector encoding [25] is
then used to generate per-sample representation. Finally, we
demonstrate that these features are discriminative in psy-
chological distress detection. We refer to psychological dis-
tress as a state of emotional suffering, including symptoms
of anxiety, depression and psychological stress [26], varying
from normal adjustment issues to diagnosable mental health
conditions [27].

The contributions of this paper can be summarized as
follows:

1) We introduce a new audio-visual dataset containing
recordings of non-clinical interviews along with distress
labels from established psychological evaluation question-
naires.

2) We propose a hierarchical model for automatic detec-
tion of self-adaptors (including fidgeting) from visual data
and evaluate our approach on a publicly available fidgeting
dataset with manual labels.

3) We present a statistical analysis of a set of statistical
body gesture features as well as specific fidgeting features
extracted from the body modality data and explore how
distress levels affect participants’ behavior in our dataset.

4) As proof of concept, we implement a multi-modal
feature fusion framework to perform distress classification
and demonstrate the importance of self-adaptors features,
specifically fidgeting, in predicting symptoms of depression
and anxiety.

2 RELATED WORK

In this section, we focus on related work on automatic de-
tection of signs of psychological distress, including studies
that focus on separate modalities and multi-modal fusion
frameworks.

2.1 Facial and head modality

Facial Action Coding System (FACS) [28] has long been used
to taxonomize human facial movements by their appearance
on the face, which yields the concept of Facial Action Units
(AUs). For example, the Audio/Visual Emotion Challenge
(thereafter AVEC) used AUs features as a basic descriptor
for its psychological distress detection tasks.

A big body of literature has been developed to ana-
lyze facial expressions and the head modalities in the con-
text of depression and psychological distress. For example,
Yang et al. [29] proposed a “Histogram of Displacement
Range (HDR)”, which is a measurement of the amount
of facial landmark movements to predict depression. Joshi
et al. [30] presented a categorization analysis framework
which consists of “bag of facial dynamics” and “histogram
of head movements”. Dibeklioğlu et al. [31] [32] feature-
engineered dynamic representation (e.g., velocity, accelera-
tion, and standard deviation of motion) for facial landmark
movement and head motion and used them in a multi-
modal system to detect depression in a dataset of clinical
interviews.

Psychomotor retardation refers to a slowing-down of
thought and a reduction of physical movements in an in-
dividual. Sobin et al. [33] demonstrated the correlation be-
tween psychomotor retardation and depression. Syed et al.
[34] handcrafted descriptors using craniofacial movements
in order to capture the psychomotor retardation, and then
made predictions of depression.

Some other features such as lower emotional expressiv-
ity [35], eye lid movement [34], reduced gaze activity [36]
[37], and averted gaze [35] have been also used as predictive
features of depression.

2.2 Audio modality

Acoustic features of speech can be predictive of distress
irrespective of the speech content [38], [39]. For example,
Ozdas et al. [38] assessed the risk of suicide by detecting
the fluctuations in the fundamental frequency of people’s
speech. Dibeklioğlu et al. [31] explored the use of vocal
prosody for depression detection. Similarly, Syed et al. [34]
investigated the use of turbulence in speech patterns.

Besides, in AVEC challenges, low-level descriptors of
voice signals, such as Mel-frequency Cepstral Coefficients
(MFCCs), are provided, leading to many multi-modal meth-
ods incorporating these acoustic features for distress and
mental illness detection [29], [40].

2.3 Body modality

A few previous studies attempted to include the body
modality in their models to predict psychological distress,
mostly by extracting generic features from the video record-
ings related to the body. For example, Joshi et al. [30]
computed Histogram of Gradients (HOGs) and Histogram
of Optical Flow (HOFs) around the generic Space-Time
Interest Points (STIPs) extracted from the videos, and then
generated a “Bag of Body Dynamics” feature that was used
for depression classification. Some of the multi-modal work
presented in the AVEC challenges [40], [41], [42], [43] utilize
the low-level descriptors of visual signals (such as latent
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CNN layer activation of ResNet [44] and VGGNet [45]) to
predict on psychological distress.

More recent works also investigate the specific move-
ment of body parts. In the past few years, the skeletal
models, either using RGB such as OpenPose [24] or RGBD
such as Microsoft Kinect SDK skeleton tracker2, have gained
popularity for action recognition tasks and were used to
generate more dedicated and explainable features (rather
than those global generic descriptors such as STIPs) using
the motions of specific body parts by feature engineering
[18], [46]. For example, Jaiswal et al. [46] extracted head
movements using Kinect and performed multi-modal clas-
sification with other audiovisual features to predict Atten-
tion Deficit Hyperactivity Disorder (ADHD) and Autism
Spectrum Disorder (ASD). Though promising, the related
work using such skeletal models on detecting psychological
distress is still sparse.

In terms of automatic detection of self-adaptors, the only
previous work that attempted to detect fidgeting behavior
was presented by Mahmoud et al. [18]. They developed a
multi-modal framework for automatic detection of descrip-
tors of rhythmic body movement by extracting Speeded-Up
Robust Features (SURFs) interest points around Microsoft
Kinect pose points and then detected rhythmic behaviors
from analyzing the trajectories of the interest points. How-
ever, there are two limitations in their proposed automated
system when applied to distress detection: 1) The dataset
they used was based on acted data, so the behavior detected
is not natural. For example, in more real interview scenarios,
participants do not always fidget with a rhythmic pattern.
2) The trajectory data was noisy, and their method could not
sufficiently handle the complexity of the detected body sig-
nal. As such, they were only able to achieve 59% recognition
on their acted dataset.

2.4 Multi-modal Learning

Since psychological distress is expressed through all modal-
ities, many of the state-of-the-art models that predict signs
of psychological distress proposed multi-modal approaches
[29], [40], [40], [41], [42], [43], [47], [48], combining low-level
features extracted from the face, speech, and text, which
are usually the features publicly available for the datasets.
By only working with extracted features, most of these
works focused on exploiting the given features, instead
of analyzing the behavioral cues (e.g., specific gestures) of
psychological distress. For example, the winner of AVEC
2019 [42] proposed multi-layer attention fusion frameworks,
but they did not explore the psychological basis of their
models’ decisions due to the lack of access to the raw data.

3 DATASET

In this section, we describe the data collection, experimental
design, and general characteristics of our collected dataset.
This dataset is designed to enable investigation of the body
modality for use in automatic detection of distress.

2. https://developer.microsoft.com/en-us/windows/kinect/

3.1 Overview and design

Participants were recruited through the University of Cam-
bridge email lists, student social media groups, and paper
fliers posted around the town. We aimed to balance the
sample with regards to distress levels, such that the database
includes participants at the two distinct ends of the distress
spectrum. To identify participants with high versus low lev-
els of distress, we conducted an online screening with a total
106 people who signed up for the study. Participants com-
pleted standardized measures of depression (PHQ-8 [49],
[50]) and anxiety (GAD-7 [51]), as well as demographics. In
the selection, we balanced the participants according to the
public norm shown in Table 2 (e.g., for depression, above
6.63 is marked as high, otherwise low). Given potential
gender differences in nonverbal communication [52], we
also balanced the final sample with regards to gender within
each distress group3. From the initial screening, 35 were
invited to the face to face session, including 18 with high
distress and 17 with low distress.

The participants completed the same measures of de-
pression and anxiety immediately before the interview. This
was meant to provide an assessment of distress closer in
time to the interview and to increase the psychological
salience of this information during the interview.

We adopted a data collection methodology inspired by
the DAIC dataset collection method [53], which consists of
a human interviewer asking a series of open-ended conver-
sational questions to elicit naturalistic behavior. The inter-
views were performed by a computer science researcher
based on peer-support interview questions collected from
the university support services. To achieve the conversa-
tional interview dynamic the interviewer asks general ques-
tions regarding the participant’s life and further encourages
the participant to elaborate. For example, the interviewer
would ask “can you tell me about one time in your life
you were particularly happy?” and then ask some follow up
questions regarding the example the participant provided.
The interviewer was blind to the distress level of partici-
pants during the interview.

To keep behaviors naturalistic, participants were not
aware of the main goal of the study, which is an automatic
analysis of behavioral cues. Instead, they were told that
the experiment aimed at building models that can help in
mental well-being. This ensured that their behavior would
be as natural as possible. All participants got debriefed
of the main aim of the data collection at the end of the
session. Participants were not informed of the results of
their questionnaires, and all of them were handed a small
booklet with the list of peer support and mental well-being
services provided by the university. It is worth mentioning
that the interviewer was blind to whether participants were
from high or low distress groups in order not to affect
their behavior. They were also instructed to limit their body
and facial expressions throughout the interview and keep
their sitting posture constant through all the interviews in

3. Non-binary/other was given as an option in the registration form.
A number of people registered with this option. However, none of those
people met the distress level criteria and were thus not selected for an
interview.
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Label Range Mean Covariance
with Depression

Distress
Depression 0–19 7.43 -

Anxiety 0–19 7.00 86.15%
Perceived stress 1–30 18.17 84.00%

Somatic symptoms 1–27 9.06 74.16%

Personality
Extraversion 3–31 16.37 -30.49%

Agreeableness 12–34 25.67 -42.21%
Openness 7–39 27.29 4.29%

Neuroticism 1–31 16.86 80.00%
Conscientiousness 10–36 21.46 -46.41%

Demographic
Gender 18 M & 17 F 9.47%

Age 18–52 25.40 -11.09%

TABLE 1
Descriptive statistics regarding the questionnaire and

demographic results within the dataset. This table
demonstrates there are no confounding correlations with the

depression label.

order to avoid any changes in participants’ behavior due to
mimicry effect [54].

The dataset is labeled with participant responses to self-
evaluation questionnaires right before the interview for
assessing distress and personality traits, as well as demo-
graphic labels such as gender. The distress questionnaires
include PHQ-8 for depression, GAD-7 for anxiety, SSS-
8 [55] for somatic symptoms, and PSS [56] for perceived
stress. Personality traits are measured using the Big Five
Inventory [57]. In sum, each participant provided responses
to 5 questionnaires, in which PHQ-8 and GAD-7 were
measured twice, both at registration and before the face-
to-face session.

As a result, the dataset includes videos of fully natural
non-acted expressions, including facial expressions, body
motion, gestures, and speech.

3.2 Preliminary Analysis
We collected videos of 35 interviewed participants with
a total video duration of 07:50:08 (hours:minutes:seconds).
Descriptive statistics regarding the questionnaire and demo-
graphic results within the dataset are provided in Table 1.
Covariance is presented as normalized covariance values,
also known as the correlation coefficient.

Confounding Correlations
We assessed confounding correlations based on the depres-
sion label, as much of the related work focuses on depres-
sion. While the distress measures, anxiety, perceived stress,
and somatic stress, were found to be strongly correlated
with depression, the personality measures have below 50%
covariance with the exception of neuroticism, which is a
trait characterized by negative emotionality, with an 80% co-
variance. The demographic measures, gender, and age were
negligibly correlated, with 9.47% and -11.09% covariance,
respectively. Finally, the interview duration was found to
be not correlated with any questionnaire result (less than
25% covariance with all labels). Thus, we can be confident
that there are no confounding correlations with personality
scores or demographics.

Published Norms
A comparison of the mean values for distress and personal-
ity measures between our dataset and the published norms
is presented in Table 2. While there are differences, the
measures are generally in line with the published norms.
The dataset has a substantially higher mean perceived stress
score, but only slightly higher mean scores for anxiety
and depression. Depression, extraversion, and neuroticism
measures are particularly close to their published norms.
While the dataset mean for agreeableness and openness are
substantially higher than the published norms (over 10%
over the technical range for those measures).

Label Mean Norm Source

Distress
Depression 7.43 6.63 Ory et al. [58]

Anxiety 7.00 5.57 Spitzer et al. [51]
Perceived stress 18.17 12.76 Cohen et al. [56]

Somatic symptoms 9.06 12.92 Gierk et al. [55]

Personality
Extraversion 16.37 16.36 Srivastava et al. [59]

Agreeableness 25.67 18.64 Srivastava et al. [59]
Openness 27.29 19.61 Srivastava et al. [59]

Neuroticism 16.86 16.08 Srivastava et al. [59]
Conscientiousness 21.46 18.14 Srivastava et al. [59]

TABLE 2
Comparison of the mean questionnaire values within our dataset to the

published norms. This shows that the population distribution, with
regards to these distress and personality measures, is generally in line

with the broader population.

3.3 Remarks
Participants completed the PHQ-8 and GAD-7 question-
naires twice: during registration and with the interview
process. These questionnaires are temporal; specifically, they
relate to the participant’s mental state in the past two
weeks. Given this, some difference between registration and
interview results was expected.

With the exception of a small number of outliers, partic-
ipants were generally consistent in self-evaluation between
registration and interview. PHQ-8 responses had a mean
difference of 0.89, while GAD-7 responses had a mean
difference of 0.63. As a result, we took the most recent
response to self-evaluation questionnaires as the label for
each participant’s video recording.

The dataset features, labels and/or videos will be shared
with the research community on a case-by-case basis by
request.

4 METHOD

We used our collected dataset to study body gestures and
self-adaptors. In this section, we demonstrate two different
methods to analyze the body modality within the context of
psychological distress. As a first step, we extract the most
common audio-visual features. Then we describe a set of
generic statistical body features that we extract to analyze
general body gesture movement. To look specifically for
self-adaptors, we then present an automatic approach to
extract self-adaptors and fidgeting behavior in our dataset.
We then perform a feature-based statistical analysis on
the extracted body features - both generic and fidgeting
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features to understand what features are generally corre-
lated with distress classification. Lastly, we move on to
propose a multi-modal approach to demonstrate further the
effectiveness of body modality, where we incorporate and
analyze the co-occurrence of multiple modalities to make
predictions.

4.1 Audiovisual Feature Extraction

4.1.1 Visual Features

For each video, we used state-of-the-art tools, OpenPose [24]
and OpenFace 2.2 [60], to extract body pose features, facial
Action Units (AUs), and gaze directions.

However, OpenPose and OpenFace do not take into ac-
count the consistency of the keypoints across time, causing
the keypoints to usually fluctuate highly in many parts,
introducing noise to the real continuous face and body
motion. Besides, there are some frames where OpenPose
or OpenFace fail to extract all pose points or gaze fea-
tures, respectively. To overcome these problems, we infer
the missing data via Cubic Spline Interpolation across the
whole sequence. We then smooth the data using a Savitzky-
Golay filter [61] (window length is 11 and the order of the
polynomial is 3).

4.1.2 Audio Features

Speaker diarization involves partitioning an audio stream
into homogeneous segments according to the speaker’s
identity. In order to distinguish the speech of the in-
terviewer and the participant, we use the open-source
Speaker-Diarization project [62] which utilizes an Un-
bounded Interleaved-State Recurrent Neural Network (UIS-
RNN) [63], to extract speaker identities with respect to the
time axis. We then conduct a manual check to assign correct
diarization labels to the participant and the interviewer. We
also use pyAudioAnalysis [64] to extract MFCCs.

4.2 Generic Body Features

To explore the body modality, we extract and analyze the
set of generic statistical features that describe the body
movements.

4.2.1 Feature Extraction

Two kinds of statistical features are computed and extracted:
global features and localized features. In the global features,
we care about the overall statistics of motion, while in the
localized features (features that are within specific body
parts, such as head, hands, and legs), we are interested in
the statistics of the motion within the body parts, which we
refer to as “localization”. Our notation is summarized in
Table 3.

We define a “gesture” as a period of sustained movement
within a body localization. For example, waving hands is a
gesture within “Hn (hand)” localization, and shaking legs
continuously will register a gesture in “L (Legs)” localiza-
tion.

To detect gestures within a localization, we scan the
video using a sliding window method.

First, the per-frame absolute movement (L2 distance) is
calculated for each pose point. The value is then averaged
by the number of pose points in the localization. Formally,

Ft =
1

|P |
∑
p∈P
||Pp,t − Pp,t−1||2 (1)

where Pp,t is the position vector of pose point p at time
t, and Ft is the averaged per-frame movement across all
points. P are the collection of pose points in this localization.

Second, a sliding window is applied such that a small
number of frames do not have a disproportionate effect on
the detection. This process can be expressed by:

Wi =
1

l

t<i×(l+1)∑
t=i×l

Ft (2)

where Wi is the windowed average at window index i, l is
the length of the window, and Ft is the average movement
at frame t, from Equation 1. We experimentally chose l = 10,
i.e. a second of movement is represented by 3 windows.

Third, the window moves until an average movement
above a threshold is found, which is considered the be-
ginning of the gesture. The gesture continues until n = 3
consecutive windows (30 frames, approximately 1 sec) are
found below the movement threshold, which is thus consid-
ered the end of the gesture.

Localization Abbr.

Overall O

Hands Hn

Head He

Legs L

Feature Abbr.

O
ve

ra
ll

Average Frame Movement FM

Proportion of total Movement
occurring during a Gesture GM

Average Gesture Surprise GS

Average Gesture movement
standard Deviation GD

Number of Gestures GN

Lo
ca

li
ze

d

Average Length of Gesture GL

Average per-frame
Gesture movement GA

Total movement in Gestures GT

Average Gesture Surprise GS

Number of Gestures GN

TABLE 3
Feature notation Abbrs. of BodyGesture.

Table 3 lists the set of body features we extract. Below we
explain how we define each of these features for the overall
body. Similarly, the localized features can be calculated for
every localization/body part.

• Average frame movement - the per-frame average
movement (moving distance) of every pose point of
the body. This is the only feature that is not based on
detected gestures.

• Total movement - the sum of the absolute movements
of all points within the sliding window.

• Proportion of total movement occurring during a ges-
ture - the proportion of total movement that occurred
while a gesture is happening (within some localiza-
tions).
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• Average gesture surprise - defined as “fraction of
frames with no gesture happening” ÷ “number of
gestures”.
For example, if two gestures occurred within a sample
such that 80% of the sample duration had no ges-
ture occurring, the average gesture surprise would be
80%

2
= 40%. Whereas, if there were 100 gestures, the

average surprise is 0.8%, even though both samples had
the same proportion without any gesture occurring.
This matches the intuition that each gesture within
100 evenly spaced gestures would be unsurprising as
they were regularly occurring, whereas the 2 evenly
spaced gestures would be surprising because nothing
was happening in between.

• Average gesture movement standard deviation - the
standard deviation of per-frame movement within a
gesture is averaged across all detected gestures. This
is intended to indicate the consistency of movement
intensity through a gesture.

• Number of gestures - the total number of detected
gestures across all tracked localizations.

4.2.2 Feature Processing
All the movement data is extracted from smoothed Open-
Pose data described in Section 4.1.1. As described in Ta-
ble 3, there are 5 Overall features (O-FM/GM/GS/GD/GN)
and 15 localized features (Hn/He/L each followed by
-GL/GA/GT/GS/GN). All these body gesture features are
concatenated (thereafter marked as BodyGesture, which
has a feature vector of length 20 for each participant) and all
features are normalized such that the length of the sample
does not affect the results.

Sum-based features (e.g., gesture length, gesture count,
total movement, etc.) are normalized against the total num-
ber of frames in the sample. Gesture average features, such
as gesture surprise, are again normalized against the total
number of gestures.

4.3 Self-adaptors and Fidgeting Features

In addition to the generic body features, we were inter-
ested in analyzing the self-adaptors and fidgeting behavior.
In this section, we present our fidgeting detection sys-
tem in three subsections. We start by exploring the self-
adaptors/fidgeting encoding and the overall hierarchical
design. Then we show the methods of building the two
essential detectors of our hierarchical model in the following
two subsections. For each detector, we demonstrate the
detector’s design, and then present the labeling strategy
which provides reliable labels for training and evaluation.
In order to validate the effectiveness of our automated
fidgeting detection approach before moving onto distress
classification, we evaluate our model thoroughly both on an
acted dataset and on our newly collected dataset of natural
expressions.

4.3.1 Overall Design and Encoding
Given the lack of broad agreement on the definition of
fidgeting so far, we utilize a two-step hierarchical model
to identify fidgeting. The overall hierarchical design of

Fig. 1. Hierarchical self-adaptor/fidgeting detection workflow. (1) First,
detect hand/leg location; (2) Classify motion within each sliding window
using DYNAMIC/STATIC Classifier ; (3) Finally, combine location and
motion to give high-level fidgeting event. The figure shows the detection
of H2H (Hand to hand) fidget. The same principle applies to other fidgets.

Self-adaptors Description

H2H Hand to Hand
H2A Hand to Arm
H2L Hand to Leg
H2F Hand to Face
HF Hand Free (when not belong to any

of above)
L2G Both Legs on Ground
L2L Leg on the other Leg (crossed legs)

Action Events Description

DYNAMIC Moving obviously
STATIC No obvious movement is observed

Fidgeting Type Combination

CHF (Cross Hand Fidgeting) H2H + DYNAMIC

SHF (Single Hand Fidgeting) {H2A, H2L, H2F, H2F} + DYNAMIC
SHF-L (to Leg only) H2L + DYNAMIC
SHF-F (to Face only) H2F + DYNAMIC
SHF-A (to Arm only) H2A + DYNAMIC

LFF (Leg/Feet Fidgeting) {L2G, L2L} + DYNAMIC

TABLE 4
Self-adaptor and fidgeting encoding book

our self-adaptor/fidgeting detector is presented in Fig. 1
and the encoding scheme is shown in Table 4. We first
identify self-adaptors, which we define as low-level location
events (e.g. H2H, H2F as in Table 4). Secondly, action events
(i.e. DYNAMIC, STATIC) of hand/leg are classified by the
DYNAMIC/STATIC Classifier. Fidgeting is then defined as a
combination of low-level self-adaptors and action events.
Specifically, we define three types of fidgeting: cross hand
fidgeting, single-hand fidgeting, and leg/feet fidgeting.

4.3.2 Self-adaptor Detector

4.3.2.1 Design: Each body location is represented
using a bounding box. Self-adaptors are defined as overlap-
ping bounding boxes. We represent the hand and face using
the smallest rectangular box bounding all corresponding
hand or face keypoints. The long sides of bounding boxes
for the forearms, upper arms, lower legs, and upper legs
are aligned with the connection between two joints from
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OpenPose, while the width is a free parameter tuned for the
best detection performance.

First, H2H self-adaptor events are detected (i.e., when the
two hands’ bounding boxes overlap). Then all other hand-
based self-adaptor events are detected, for all segments of
the video not containing H2H segments.

All self-adaptors, except for H2F, must be longer than
100 frames (around 4 seconds with the frame rate of 26).
This reduces the noise from detected self-adaptor events.

4.3.2.2 Labeling and Evaluation: In order to vali-
date our self-adaptor detector, we manually labeled 4 par-
ticipants’ videos, a total duration of 59 minutes. The inter-
labeler agreement between 3 annotators was checked using
Krippendorff’s alpha. Each frame was labeled with one of
the self-adaptor codes from Table 4. Within these videos,
participants perform different self-adaptors and each event
has a minimum total duration of 5 minutes, with the excep-
tion of H2F which is less frequent in contrast to others.

As shown in Table 5, the Krippendorff’s alpha agree-
ment for left-hand location is 0.823, for right-hand location
is 0.888 and for leg location is 1.00. This suggests good
agreement between the annotators and, thus, the reliability
of the labels. The results show that our design that utilizes
OpenPose and the interactions between bounding boxes is
able to detect self-adaptor with excellent overall precision,
and especially for the H2H, H2F, L2L and L2G events, the
detector reached a very high accuracy. Note that, ‘NA’ in
Table 5 means that there is no corresponding gestures in the
evaluation set of 4 labelled participants.

Hand Self-adaptors (left/right)

Precision Recall F1 Score

H2H 1.00/1.00 0.99/0.99 1.00/1.00
H2A 1.00/NA 0.64/NA 0.79/NA
H2L 0.96/0.88 0.86/0.82 0.91/0.85
H2F NA/1.00 NA/1.00 NA/1.00
HF 0.63/0.83 0.99/0.98 0.77/0.90

Alpha Score: 0.823/0.888

Leg Location

Precision Recall F1 Score

L2L 1.00 1.00 1.00
L2G 1.00 1.00 1.00

Alpha Score: 1.000

TABLE 5
Self-adaptor Detection Evaluation

4.3.3 Fidgeting Detector
4.3.3.1 Design: As shown in Fig. 1, the DY-

NAMIC/STATIC Classifier operates on extracted optical flow
from a sliding window across the video (size 100 frames,
step 50 frames). To classify the action (DYNAMIC/STATIC),
hand movements (especially fingers) and leg movements
require optical flow to obtain smooth trajectories, given
OpenPose estimations become unreliable when hands inter-
sect or are occluded. We thus initialize the optical flow with
the OpenPose estimations at the beginning of each slice.

We choose Fast Fourier Transform (FFT), standard devi-
ation (STD), and mean values (MEAN) of point trajectories
as our input features (in this case, number of trajectories
is 2 × number of keypoints as we have 2-D data for each
keypoint). For fidgeting, we are more interested in the

cyclic motion with a frequency ranging from 0.5Hz to 2.5Hz
[18]. Therefore, we extracted the spectrum data within the
range [0.5, 2.5] Hz. As we analyze slices of length 100, the
dimension of FFT spectrum data that is within [0.5, 2.5] Hz
is always fixed at 41× number of trajectories. An FFT feature
of length 41 is obtained by averaging over FFT values of
trajectories that have the same frequency. As for the STD
and MEAN features, we simply calculate along the time axis
and give a vector with a length of the number of trajectories
for each feature.

4.3.3.2 Labeling and Evaluation: To train and eval-
uate the DYNAMIC/STATIC Classifiers, accurate labeling is
required. Three classifiers are required to cover the three
categories of detected self-adaptors: {H2H}, {H2A, H2L, H2F,
HF}, and {L2G, L2L}.

We labelled DYNAMIC/STATIC on each of the three cat-
egories. We randomly sampled and labeled approximately
30% of slices for each category in every video.

Two researchers labeled the data independently. As
shown in Table 6, we first manually dropped the slices
with a wrong category label (e.g. a slice is detected as
H2H while it’s in fact not). The number of slices that have
a correct category label is shown as “Correct”. Secondly,
we labeled DYNAMIC/STATIC and dropped the slices that
lack a consensus between two researchers. The number of
slices with an agreement is shown as “Agreed”. The high
percentage of both “Correct” and “Agreed” suggests the
good performance of our self-adaptor detection and also the
high reliability of action labels.

Category Total Correct Agreed

BOTH: H2H 3962 3922 (99%) 3793 (96%)
LEFT:{H2A, H2L, H2F, HF} 1614 1566 (97%) 1539 (96%)
RIGHT:{H2A, H2L, H2F, HF} 1620 1588 (98%) 1563 (96%)
{L2G, L2L} 6536 6536 (100%) 6196 (95%)

TABLE 6
Hand/Leg action labelling overview. The values in the table are the

number of slices generated by the sliding window.

Having reliable slice labels, we then partitioned partici-
pants into 5 folds and performed slice-level cross-validation.
For evaluation, we calculated accuracy, F1 score, and their
respective standard deviations.

Category Acc. Acc. Std. F1 F1 Std.

BOTH: H2H 0.833 0.019 0.834 0.019
LEFT:{H2A, H2L, H2F, HF} 0.884 0.025 0.884 0.026
RIGHT:{H2A, H2L, H2F, HF} 0.895 0.026 0.894 0.026
{L2G, L2L} 0.875 0.022 0.871 0.021

TABLE 7
DYNAMIC/STATIC Classifier evaluation (LEFT means left hand, RIGHT

means right hand, BOTH means both hands)

As shown in Table 7, the detector achieved generally
high accuracy and F1 score with low standard deviations.
Though the hand actions are difficult even for researchers to
label, the detector can successfully classify more than 80%
of slices.

4.4 Feature encoding

This section describes how we encoded low-level frame-
level features described in Sec 4.1 and 4.3 in prepara-
tion for the final prediction step. The generic statistical



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Feature Group Dimension Description

BodyGesture 20× 1 Body Gesture Statistical Features
Fidget 9×N Fidget feature & Speaking array

Fidget_pure 8×N Fidget feature only
Gaze 8×N Gaze direction
AUs 35×N Action Units

MFCCs 13×N Acoustic features

TABLE 8
Feature Groups. N is number of frames in each recording of

participants.

BodyGesture will not need to be encoded since it rep-
resents global statistical features rather than time-series
features.

4.4.1 Fidgeting features processing

Having extracted low-level features from each frame, we
combine them to form high-level descriptors of fidgeting
behavior (CHF, SHF, and LFF as shown in Table 4). The
Fidget_pure feature group is formed by {HCF, SHF-L(left
hand), SHF-L(right hand), SHF-A(left hand), SHF-A(right
hand), SHF-F(left hand), SHF-F(right hand), LFF}. The
Fidget_pure group is combined with a participant speak-
ing feature array to form the full fidget feature group,
enabling us to investigate whether fidgeting and speaking
co-occurrence is relevant. This participant speaking feature
array indicates whether the participant is speaking during
a frame. This is calculated using the previously described
diarization data.

After all the feature extraction, we have several feature
groups shown in Table 8.

4.4.2 Per-frame representation

In order to capture more useful feature representations and
reduce the dimensionality, and inspired by our previous
work [65], different modalities are combined using a Multi-
modal Deep Denoising Auto-Encoder (multi-DDAE). As
shown in Fig. 2, each modality is encoded through a dense
layer and then all are concatenated to yield the last shared
dense layer which provides the representation we use. The
shared layer is then inversely decoded to generate each
modality. We optimized the hyper-parameters of the auto-
encoder via several experiments so that the dimensions of
hidden layers are {0.5d, 0.25d, 0.5d} where d represents the
input dimension of each node, and the noise applied at the
input is 0.1 Gaussian noise. The training optimization target
is the joint Mean Square Error (MSE) of the MSEs of the
feature group at each node (later we fixed the loss weights
to be 0.35 for the fidget feature group while 0.1 for others,
as we are more interested in fidgeting in our experiments).

4.4.3 Whole video representation

Due to varying lengths of the videos, it’s necessary to
unify the dimensionality of the per-video representation.
Though Fisher Vector was originally proposed to aggregate
visual features [25], it has become popular in social signal
processing such as bipolar disorder [66] and depression
recognition [67]. Inspired by these applications, we apply a
Gaussian Mixture Model to cluster similar per-frame repre-
sentations and then use an Improved Fisher Vector encoding
to obtain a fixed-length representation. As a result, the
feature is transformed from num_frames × feature_dim
to 2× GMM_Kernel_num× feature_dim.

Feature Set F1-Score

O-FM 34.43%
BodyGesture 66.81%
Searched BodyGesture 82.70%
Fidget_pure 49.60%
Searched [BodyGesture, Fidget_pure] 83.38%

TABLE 9
Results of linear regression threshold classification on body gesture

statistical features and fidget features. [A, B] represents a
concatenation of feature vector A and B.

4.5 Classification of signs of distress
We apply a Random Forest to select important features
from the per-video representation. The selected features are
used by the classifier. We experiment with two classifiers:
1) a logistic regression-based classifier (LR) using a binary
threshold of 0.5; 2) a Multi-Layer Perception (MLP) with two
softmax outputs for binary classification (number of layers
are shown in Fig. 2).

As the available samples are limited and the useful
features vary across individual differences, label smooth-
ing [68] is applied to the MLP model in order to further
boost the performance. More formally:

L new = L× (1− s) +
s

n
(3)

where L is the one-hot label at softmax outputs, s is the
smoothing parameter, and n is the number of classification
classes. For example, when smoothing is 0.2, the one-hot
label {0, 1} will become {0.1, 0.9}, which lowers the confi-
dence on training samples but reduces overfitting.

5 STATISTICAL ANALYSIS OF BODY GESTURE

To better understand the effect of different body-related
features, before moving to deep multimodal learning, we
deploy a simple linear regression model to perform statis-
tical analysis on the body gesture features (BodyGesture
from Sec. 4.2) and fidgeting features (Fidget_pure from
Sec. 4.4). The aim of this section is to shed some light on the
effect of different movements of every part of the body and
its correlation with depression.

5.1 Experimental Setup
Fidgeting features from Fidget_pure is processed by av-
eraging along the time axis (9×N to 9× 1) to match the di-
mension of other features in BodyGesture (20×1). Report-
ing notation is defined as “[localization]-[feature
type][linear polarity]”. Localization and feature
type token mappings are provided in Table 3. Polarity is
defined below:
• “+/¬”: A greater value (e.g. more activity) contributing

to a positive/negative classification
• “/”: A near-zero coefficient in linear model.
• “?”: The polarity is observed inconsistent in different

folds of cross-validation.
With the linear model, we perform 3-fold cross-

validation on depression labels, which is more reliable than
normal train-valid-test split for our small dataset. Cross-
validation also provides more confidence about the polarity
of each feature, as only the features that show consistent
polarity across all folds will be marked. All results are cal-
culated as the mean of 3-fold cross-validation results. All ex-
periments and cross-validation are participant-independent.
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Fig. 2. Multi-modal fusion & classification pipeline. The dashed arrow represents a fully connected neural network between dense layers. Pose
estimation, gaze, Action Units, and MFCC data are extracted from videos. Fidget features are computed using the method described in Section 4.
(1) All features are fed into a Multi-modal Deep Denoising Auto-Encoder (multi-DDAE) to generate a compact per-frame encoded representation.
(2) These per-frame features are then compressed into a whole video representation using a Gaussian Mixture Model (GMM) and Fisher Vector
combination. (3) Random Forest feature selection is performed. (4) Finally, a classifier predicts a given label. We experiment with two classifiers, a
logistic regression classifier and a Multi-layer Perception.

5.2 Results and Discussion

As shown in Table 9, with only the global movement (O-FM),
the F1 score is only 34.43%. This means that measuring
the quantity of global motion in the body is not a good
indicator of depression. While when combining all body
gesture statistical features, the classifier achieves 66.81% F1
score.

Note that all body gesture statistical features include a
large set of features representing statistics of different body
parts as well as global body motion, as explained in Sec.
4.2. In order to filter out this large feature set, we performed
an exhaustive feature search to obtain the combination of
features that gives the best performance, represented in
Table 9 as “Searched BodyGesture”. It reaches a good F1
score at 82.70%.

As shown in Table 9, when we combine specific
fidgeting features (Fidget_pure) with BodyGesture,
and perform feature search on the concatenated feature,
the F1-score reaches the best at 83.38%. The resulted
best feature combination includes: {O-FM?, O-GM+,
O-GN?, Hn-GN?, Hn-GS¬, He-GL+, He-GN+,
He-GT+, He-GA+, He-GS+, L-GL+, L-GN+, L-GA+,
SHF-L(Right)+, SHF-A(Right)+, SHF-F(Right)+,
SHF-F(Left)+}. Looking deeply into this list of features
we could infer some interesting insights into the overall
body movements in our dataset, which we explain below.

For example, the O-GM+ token suggests that more move-
ment within gestures relative to all other movement is
indicative of depression, and especially, total movement
within head gestures (He-GT+) is positively correlated with
depression. The localized features suggest that the length
of gestures in the head and legs (He-GL+, L-GL+) is cor-
related with depression. It’s clear that gesture statistics in
hands (Hn-*) are generally not interesting in prediction,
while the classifier pays more attention to head and leg mo-
tions. However, Hn-GS¬ suggests that more regular (thus
less surprising) hand gestures (e.g. constant fidgeting) show
a positive contribution to depression.

We can also conclude that a higher quantity of right hand
fidgeting on the leg, arm, and face (SHF-*(Right)+) have

a positive contribution to the higher depression level, and
left hand fidgeting on the face (SHF-F(Left)+) is also pos-
itively correlated with high depression level. The difference
in left and right arise from the fact that most participants are
right-handed and thus their left hands exhibit less useful
motions that are predictive of depression. This conclusion
is not surprising, as, in our observations, people perform
hand to hand fidgeting regardless of their depression label.
Combining the results from above, we can conclude that, in
our dataset, more regular hand gestures and more fidgeting
on the leg, arm, and face are indicative of depression.
Depressed participants also have exhibit frequent motions
in the head and leg region.

6 EVALUATION OF MULTIMODAL DEEP LEARNING

In this section, we evaluate and demonstrate the valid-
ity and potential of fidgeting features as complementing
modality with other features to predict the signs of psycho-
logical distress.

First, we present some baseline distress classification
results on our dataset. Next, we present results for our full
multi-modal classifier pipeline, where we investigate the
effects of hyper-parameters on the performance given the
small size of our dataset. Finally, we apply our automatic
fidgeting detection approach to a publicly available dataset
[18] to demonstrate its accuracy and generalisability beyond
our dataset.

As in Sec. 5, all results are calculated as the mean of
3-fold cross-validation results. All experiments and cross-
validation are participant-independent.

6.1 Baselines
As a baseline, we used Gaussian kernel Support Vector
Machines (SVMs) classifiers applied on each individual
feature group used in our multi-modal model (listed in
Table 8). Unlike in Sec. 5, non-linearity can be considered
in these baseline models. They are evaluated for a binary
depression label and a binary anxiety label. These models
provide a simple and common baseline for our dataset.
For the baseline SVM, we use the mean value for each



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Fig. 3. Effects of label smoothing. In general, smoothing can boost
performance. (error bar extends by the standard deviation in either side
and best performance in bold)

feature over the whole sample, thus providing a normalized
representation with mean values of all the features. Results
are presented in Fig. 5.

These baseline models demonstrate two points: first, the
behaviors we are attempting to classify in our dataset are
complex; and second, our fidgeting features by themselves
are not trivially predictive of distress, but rather require
learned representations.

6.2 Multi-modal distress classification
As presented in the previous baseline section, single modal-
ities are not enough to capture the complexity of signs of
psychological distress. Therefore we experiment with our
proposed multi-modal classification framework. We encode
different modalities through multi-DDAE and Improved
Fisher Vector encoding (Sec. 4.4), and classify distress labels
using either LR or MLP classifier after Random Forest
feature selection (Sec. 4.5).

In Fig. 5, we present the best performance of different
feature group combinations using our multi-modal fusion
framework. We use a Random Forests (RF) for feature selec-
tion. As RFs take in labels to find the most discriminative
features, this feature selection is only performed on the
training set and selected features are then applied to the
test set, which prevents label leaking.

6.2.1 Effects of some hyper-parameters
As shown in Fig. 3, when other hyperparamters are fixed,
label smoothing makes great effects on classification perfor-
mance. Fig. 3 presents the great effect of label smoothing
on classification performance when other hyperparameters
are fixed. Though some turbulences exist, the performance
increases with higher label smoothing but starts to decrease
when smoothing is too much. This is intuitively reasonable
because when smoothing is above 0.5, there is less allowed
space for model to learn features well. The results in Fig. 3
shows that label smoothing parameter at 0.4 generally pro-
vides good performance, and thus we fixed this value in all
following experiments.

We test different numbers of features selected by RF
(RF num), and different GMM kernel sizes. Fig. 4 shows
that the performance is generally worse when RF num is
low (< 100) as it results in insufficient information with
most of the features unselected. However, when RF num is

Fig. 4. Effects of hyper-parameters. Red denotes models incorporating
fidget features and blue for non-fidget models. In general, models with
fidget features perform better. (Error bars are not shown for better
visualization; best performance of each model is in bold). RF+number
denotes the number of features selected by Random Forest.

Fig. 5. Effects of feature groups and ablation analysis (error bars extend
by the standard deviation in either side; best performance is in bold).

high (≥ 250), redundant features bias the classifier, decreas-
ing performance.

Using 32 GMM kernels achieves better performance than
16 kernels. We hypothesize that this improvement stems
from incorporating more GMM components for clustering
similar per-frame features. More kernels enable more clus-
ters and thus more predictive features. However, when
kernel size is above 32, the fitting score is large (in GMM
lower is better) and therefore increasing beyond 32 will not
further improve performance.

6.2.2 Effects of feature groups
From Fig. 5, it is clear that fidget features improve most
configurations’ performance, but performance decreases
marginally without the participant speaking event (pre-
sented as “Pure Fidgeting” in figure). Therefore, we can
conlude that the co-occurrence of speaking and fidgeting
is beneficial for distress detection.

6.2.3 Ablation Analysis
Fig. 5 also demonstrates our ablation studies to help us
analyze the important factors in distress classification. We
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remove one or two feature groups from our framework and
conduct the same experiments.

Without MFCCs features, the performance generally
doesn’t drop too much in depression and even increases in
anxiety. This suggests that MFCCs are not very important in
depression and even distractive in anxiety detection.

AUs have long been proved to be predictive of distress,
and, as expected, we see a significant performance reduction
when omitting them.

It is interesting to note that fidgeting, with the LR con-
figuration, does not consistently improve performance, but
in anxiety, it always boosts the classification performance.
Therefore, we conclude that fidgeting is certainly important
in anxiety, but is also predictive in depression when com-
bined with other feature configuration.

6.3 Fidget detector cross-dataset validation
To further validate our automatic fidgeting detection ap-
proach, we evaluate it on a publicly available dataset from
Mahmoud et al. [18] that has videos of fidgeting behavior
along with manual fidgeting labels.

In this dataset, actors perform specific fidgets. While
these fidgets are overemphasized compared to natural fid-
gets, their core movement is similar.

Segments of the video containing fidgeting are man-
ually labeled in an action-exclusive manner. That is, the
co-occurrence of fidgeting is not labeled. Given this, we
measure the accuracy of our approach in two phases: first,
we check that fidgeting, regardless of location, is detected
during the periods of manually labeled fidgeting; and sec-
ond, we calculate the recall for location-specific fidgeting.
Precision would not make sense for location-specific fidget-
ing, because the detected location may also be fidgeting,
while the ground truth only considers one location.

Detected fidgeting segments shorter than 100 frames are
excluded to reduce noise. As shown in Table 10, the recall of

Step 1: Detect fidget only

Fidget Precision Recall F1-Score Support

0 0.51 0.49 0.50 29440
1 0.79 0.80 0.80 69517

Step 2: Detect specific fidgeting
(evaluated with recall)

Fidget type Recall Support

leg 0.784 32430
hand to face 0.865 10594
hand to arm 0.787 12794
hand cross 0.768 13699

TABLE 10
Results of fidget detection on Mahmoud et al.’s dataset [18]. Support

refers to the total number of samples.

the non-fidget label is around 50%, but this is due to the fact
that the labels are generally assigned to a long continuous
segment and do not accurately reflect the actions occurring
per-frame. However, the recall of the fidget label is good,
achieving 80%.

Our fidgeting detection approach outperforms the state-
of-the-art presented by Mahmoud et al. [18] for each fidget
type, achieving a recall above 75% for all fidgeting types.

7 CONCLUSION

In this paper, we conducted a pioneering research on auto-
matic detection of body gesture descriptors as a subset of be-
havioural markers of psychological distress that can be used
in integrated tools to complement experts’ assessment and
support health professionals. We introduced a novel audio-
visual distress dataset comprising recorded interviews and
distress labels based on psychological questionnaires, where
we investigated the relationship between body gestures and
psychological distress.

We then presented an automated self-adaptor and fid-
geting detection approach to extract different fidgeting be-
haviors trained on real interview videos. Our approach
outperformed the state-of-the-art method when evaluated
on a manually-labeled publicly-available fidgeting dataset.
It was also successful in detecting fidgeting behaviour in
our newly collected dataset of natural expressions.

Statistical analysis with a large set of generic gesture
features was carried out, providing interesting insights into
the effect of different generic body movements and their
correlation with depression levels.

We also presented a deep learning approach for psy-
chological distress detection that doesn’t require a feature
search and utilizes the co-occurrence of different multi-
modal features. The system successfully detected depression
and anxiety with around 80% F1-scores, and an ablation
study has been carried out demonstrating the great value
of fidgeting behavior descriptors in predicting signs of
psychological distress.

8 LIMITATIONS AND FUTURE WORK

Despite the limitation of the small dataset we used, our
work demonstrate the importance of the fidgeting features
as a complementary modality for classification and predic-
tion of psychological distress.

In our multi-modal classification experiments, we
treated all fidgeting features as a whole. For future work, it
will be interesting to evaluate the importance of each fidget
behavior (e.g., hand to arm fidget and hand to hand fidget).
In our work, we only focused on depression and anxiety
disorders. However, our automatic approach to detecting
self-adaptors and fidgeting opens the door for more work to
explore the presence of these non-verbal behaviors and mea-
sure them quantitatively in other psychological disorders.
The code and pre-trained models for our fidgeting detection
system are already available to the research community at
Github4, which enables further research in this field.
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