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Abstract 23 

Candidatus Ornithobacterium hominis has been detected in nasopharyngeal microbiota 24 

sequence data from around the world. This report provides the first description of culture 25 

conditions for isolating this bacterium. The availability of an easily reproducible culture 26 

method is expected to facilitate deeper understanding of the clinical significance of this 27 

species. 28 

 29 

Manuscript text  30 

Candidatus Ornithobacterium hominis (OH) is a bacterium that has been detected in 31 

nasopharyngeal microbiota sequence data from around the world but has never been cultured 32 

(Salter et al., 2019; Salter et al., 2017). This bacterium is of growing interest as polymerase 33 

chain reaction (PCR)-based studies found that OH was prevalent and persistent in the 34 

nasopharynx of a paediatric population at high-risk of respiratory infection (Salter et al., 35 

2019; Salter et al., 2017). Additionally, the closest known relative of OH is Ornithobacterium 36 

rhinotracheale; a respiratory pathogen of birds (Zahra et al., 2013). These observations 37 

prompt research to understand the pathogenic potential and clinical significance of OH. 38 

Although genomes can be derived from metagenomic data, OH isolates are needed to deepen 39 

understanding of the bacterium’s role in human respiratory infections. The aim of this study 40 

was to determine culture conditions for recovery of OH isolates. 41 

 42 

The study was approved by the Human Research Ethics Committee of the Northern Territory 43 

Department of Health and Menzies School of Health Research (Approval number: 0785). 44 

Culture was performed using biobanked nasopharyngeal swabs that were collected from four 45 

Australian children (age 1-2 years) immediately prior to bronchoscopy for investigation for 46 

chronic suppurative lung disease (Marsh et al., 2016). The swabs had been stored in skim 47 



 

3 

 

milk-tryptone-glucose-glycerol broth (STGGB) at -80°C for up to 10 years and had two 48 

freeze-thaw cycles prior to OH culture. These swabs were selected as all were OH-positive 49 

by 16S rRNA gene sequencing at 5-55% relative abundance (Marsh et al., 2016).  50 

 51 

Ten microlitres of the STGGB swab media was inoculated onto Tryptic Soy Agar with 5% 52 

Sheep Blood (TSA), Horse Blood Columbia agar (HBA), Chocolate agar and Brain Heart 53 

Infusion agar (BHI). The plates were incubated aerobically, microaerophillically (Campygen, 54 

Oxoid) and anaerobically (Anaerogen, Oxoid) at 35°C for up to five days. Aerobic culture 55 

was also performed in the presence of a wet sponge to provide increased humidity (Mayahi et 56 

al., 2016). Oxidase testing was done using oxidase test strips (Oxoid). Tributyrin hydrolysis 57 

was determined using Catarrhalis discs (Remel). Production of β-lactamase was determined 58 

using nitrocefin (Oxoid). 59 

 60 

Primary cultures were reviewed for colonies resembling O. rhinotracheale (van Empel and 61 

Hafez, 1999). Colonies of oxidase-positive, Gram-negative pleomorphic bacilli were 62 

screened using PCR targeting OH-specific regions of the 16S rRNA and toxA genes, as 63 

described previously (Salter et al., 2019). PCR-positive isolates were confirmed using 64 

genome sequencing. Genomes were assembled de novo using the Microbial Genome 65 

Assembly Pipeline (MGAP) v1.0 (https://github.com/dsarov/MGAP---Microbial-Genome-66 

Assembler-Pipeline) (Chapple et al., 2016). OH identification was confirmed where isolates 67 

had >96% average nucleotide identity (Kim et al., 2014; Richter and Rossello-Mora, 2009) 68 

when compared to draft OH genomes OH-22767 (GenBank accession 69 

NZ_UNSC00000000.1) and OH-22803 (GenBank accession UNSD00000000.1). Both draft 70 

genomes were derived from metagenomic analysis of nasopharyngeal swabs from Thai 71 

children (Salter et al., 2019) . Isolate genomes were mapped against the draft OH genomes 72 

https://github.com/dsarov/MGAP---Microbial-Genome-Assembler-Pipeline
https://github.com/dsarov/MGAP---Microbial-Genome-Assembler-Pipeline
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using the Synergised Pipeline for Analysis of Next Generation Sequencing Data in Linux 73 

(SPANDx) v3.2.1 (Sarovich and Price, 2014) , which wraps Burrows-Wheeler Aligner (Li 74 

and Durbin, 2009), Sequence Alignment/Map (SAM) tools (Li et al., 2009), Picard Tools and 75 

Genome Analysis Tool Kit (McKenna et al., 2010). Genomes were aligned using draft OH 76 

genome OH-22803 as the reference with an O. rhinotracheale genome (ORT-UMN 88, 77 

GenBank accession CP006828.1) included as an outgroup. Maximum parsimony 78 

phylogenomic trees were generated using Phylogenetic Analysis Using Parsimony (PAUP) 79 

v4.0a153 (Swofford, 1998) and visualised using FigTree 80 

(http://tree.bio.ed.ac.uk/software/figtree/). Bootstrapping was performed in PAUP with 1000 81 

replicates. Lipopolysaccharide comparisons were generated using Easyfig (Sullivan et al., 82 

2011). The OH isolate genomes are available from the Sequence Read Archive (SRA; 83 

BioProject number: PRJNA510696). 84 

 85 

OH was successfully cultured from all four swabs. Primary isolation was challenging due to 86 

substantial overgrowth by other taxa (Figure 1). Of the conditions tested, optimal primary 87 

culture was achieved using TSA incubated in a microaerophilic atmosphere at 35°C for up to 88 

five days. OH also grew on HBA, Chocolate agar and BHI; however, isolates were not 89 

consistently recovered from these media. Aerobic growth was possible but required 90 

additional humidity (e.g. incubating plates in a box containing a wet sponge). 91 

 92 

Under microaerophilic conditions, OH colonies were pleomorphic, glistening, grey and 93 

concave. Colonies ranged in size from 1-3 mm after 48-120 hours incubation. All isolates 94 

were pleomorphic Gram-negative bacilli. Consistent with the phenotype predicted by the 95 

draft genomes (Salter et al., 2019), OH isolates were oxidase-positive, catalase-negative and 96 

all produced β-lactamase. All isolates also hydrolysed tributyrin. Some pure isolates 97 

http://tree.bio.ed.ac.uk/software/figtree/
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produced two colony morphologies (Figure 1D). This phenotype is suggestive of small-cell 98 

variants (Zahra et al., 2013) as both colony types were positive by OH 16S rRNA and toxA 99 

PCR. 100 

 101 

The OH isolate genomes had average nucleotide identity of 97.86-98.23% with draft 102 

genomes OH-22803 and OH-22767, indicating that they are members of the same species. 103 

Phylogenomic analysis demonstrating the high similarity between the Australian isolates and 104 

draft OH genomes from Thailand is shown in Figure 2. All isolate genomes contained distinct 105 

lipopolysaccharide (LPS) biosynthesis clusters which differed to those of the draft genomes 106 

(Figure 3). β-lactamase production was associated with mobile genetic elements that were 107 

different in each isolate and occurred at different loci. All isolates also had genes encoding 108 

efflux pumps associated with multi-drug resistance. 109 

 110 

In summary, following identification of OH in silico, we now report culture conditions for its 111 

propagation. Of the conditions tested, optimal growth was achieved using TSA with 112 

incubation for up to five days in a microaerophilic atmosphere; conditions which are not part 113 

of standard culture used to recover respiratory pathogens from nasopharyngeal swabs (Satzke 114 

et al., 2013). Primary isolation was challenging due to extensive overgrowth by other flora. 115 

We recommend OH-specific PCRs (Salter et al., 2019) are used to confirm isolate identity. 116 

The OH colonial morphology was similar to that reported previously for O. rhinotracheale 117 

(van Empel and Hafez, 1999), including growth of multiple colony morphologies suggestive 118 

of small-cell variants (Zahra et al., 2013). The significance of this observation is unknown; 119 

however, small-cell variants of other bacteria (e.g. Staphylococcus aureus) have been 120 

associated with poorer clinical outcomes in patients with respiratory disease (Wolter et al., 121 

2013). Association of β-lactamase genes with multiple mobile genetic elements indicates that 122 
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OH β-lactam resistance has been acquired through several independent events. Heterogeneity 123 

among the LPS cluster is suggestive of multiple capsular types, consistent with observations 124 

from earlier DNA-based studies (Salter et al., 2019; Salter et al., 2017). The availability of an 125 

easily reproducible culture method is expected to facilitate deeper understanding of the 126 

clinical significance of OH.  127 
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 184 

Figure 1: Ca. Ornithobacterium hominis colony morphology 185 

A) Primary isolation of Ca. O. hominis isolate 903C1 on TSA after 120 hours aerobic 186 

incubation in the presence of a wet sponge. Arrow indicates a Ca. O. hominis colony. 187 

B) Purified Ca. O. hominis isolate 903C1 after 120 hours microaerophillic incubation on 188 

TSA. Pure culture of this strain produced a uniform colony size. 189 

C) Primary isolation of Ca. O. hominis isolate 902C1 on TSA after 120 hours 190 

microaerophillic incubation. Arrow indicates a Ca. O. hominis colony. 191 

D) Purified Ca. O. hominis isolate 902C1 after 120 hours microaerophillic incubation on 192 

TSA. Pure culture of this isolate producted two colony morphotypes. 193 

 194 

Figure 2: Phylogenomic analysis of the Ca. Ornithobacterium hominis isolates 195 

A midpoint-rooted maximum parsimony tree was constructed based on 764 biallelic single 196 

nucleotide polymorphisms (SNPs) orthologous to the four Australian Ca. O. hominis isolates 197 

(900C2, 902C1, 903C1 and 916C1); two previously reported draft Ca. O. hominis genomes 198 

from Thailand (OH-22767 and OH-22803); and an O. rhinotracheale outgroup (ORT-UMN 199 

88). Bar indicates a distance of 50 SNPs. 200 
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 201 

Figure 3: Comparison of Ca. Ornithobacterium hominis lipopolysaccharide biosynthesis 202 

loci.  203 

A tblastx alignment of the lipopolysaccharide biosynthesis clusters in the four Australian OH 204 

isolates compared to draft genomes OH-22767 and OH-22803 derived from Thailand(2). 205 
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