1	Exploratory analysis of pre and postoperative risk stratification tools to identify acute
2	kidney and myocardial injury in patients undergoing surgery for chronic subdural
3	haematoma
4	
5	Daniel James Stubbs ¹ (FRCA), Benjamin M Davies ² (MRCS), Rowan Burnstein ³ (PhD), Alexis J
6	Joannides ⁴ (PhD) , Ari Ercole ^{,2} (PhD)
7	
8	1: Wellcome Trust Research Fellow & Honorary Specialist Registrar, University of
9	Cambridge, Division of Anaesthesia 3: Consultant, University of Cambridge, Division of
10	Anaesthesia,
11	2: Clinical Research Fellow & Specialist Registrar, 4: NIHR Brain Injury MedTech Co-
12	operative, Department of Clinical Neurosciences, University of Cambridge
13	
14	Corresponding author: Daniel James Stubbs dis225@cam.ac.uk
15	
16	Short title: Towards risk prediction in chronic subdural haematoma
17	
18	
19	Sources of support:
20	
21	DJS is supported by a Wellcome Trust Clinician PhD Fellowship, overarching grant number
22	grant:204017/Z/16/Z.
23	
24	The research was supported by the National Institute for Health Research (NIHR) Brain
25	Injury MedTech Co-operative based at Cambridge University Hospitals NHS Foundation
26	Trust and University of Cambridge. The views expressed are those of the author(s) and not
27	necessarily those of the NHS, NIHR or the Department of Health and Social Care.
28	
29	
30	
31	Conflicts of interest:
32	
33	All authors assert no conflict of interest
34	
35	Previous presentation:
36	
37	Elements of this work were previously presented at the SBNS/NACCS Brain Injury Day, Royal
38	Geographical Society, London, 6 th December 2019
39	
40	
41	
42	
43	
44	
45	
46	
47	

48 To the Editor

49

Perioperative statistical risk stratification is widespread. Such tools inform intraoperative
 and postoperative care as part of the National Emergency Laparotomy Audit (NELA)¹.

52

53 Patients with chronic subdural haematomas (cSDH) are often elderly with significant 54 comorbidity². Despite this, there is a paucity of literature pertaining to risk stratification 55 models in this cohort³. At our centre, as part of a multidisciplinary improvement initiative 56 (the 'Improving Care in Elderly Neurosurgery Initiative' (ICENI)⁴) (Project ID:PRN7705) we 57 demonstrated a significant association between postoperative complications and length of 58 stay². As a further analysis within this cohort of operated cSDH, we explore the potential of 59 using retrospective electronic health record (EHR) data to generate prognostic statistical 60 models for the identification of two end-organ complications (myocardial injury -troponin 61 above the upper limit of normal and acute kidney injury (AKI) –a rise in serum creatinine of 62 \geq 1.5 times baseline). Outcomes were chosen based on data availability and veracity as 63 well as clinical relevance. The integrated nature of our EHR permitted incorporation of 64 variables reflecting intraoperative management. This enabled an exploratory analysis of 65 models that, analogous to NELA, could be used preoperatively and updated postoperatively. 66 67 Logistic regression models were built using variables available prior to (age, American

68 society of Anesthesiologists (ASA) score, creatinine, antithrombotic use, inter-hospital

69 transfer, pre-operative physiological state, and comorbidities), and end of (opioid dose,

70 length of wait, time with mean arterial pressure, (MAP) <80mmHg, time with end tidal

71 carbon dioxide (ETCO₂) outside of 3-5kPa, and volatile *v* intravenous anaesthetic

72 maintenance), surgery. Physiological state was encapsulated on each admission day using

the electronic postoperative morbidity score (ePOMS)⁵(details in *supplemental digital content*). Full details of variable generation are published elsewhere². Missing data was

content). Full details of variable generation are published elsewhere². Missing data was
 handled by multiple imputation⁶. This was used in two ways. Firstly, *m=40* imputed datasets

76 were formed to permit univariable screening (carrying forward all with p < 0.2) and

77 sequential simplification of the multivariable model using pooled likelihood ratio tests (LRT).

These models were subsequently internally validated using k-fold (k=10) cross-validation

vsing a 'fold then impute' strategy to minimise bias⁷. Model building and LRT results are in

80 Supplemental Digital Content. All analysis was conducted in R v3.5.3⁸.

81

82 This study utilised a previously identified, retrospective cohort of 531 consecutive cases of 83 primary operation for cSDH between October 2014 and January 2019, with appropriate 84 outcome data². 53 individuals suffered myocardial injury, 24 AKI. 69 had at least one 'end-85 organ' complication. After multivariable model building (See Supplemental Digital Content 86 Figure S2) an admission model containing ASA, an indicator of tertiary transfer, anti-87 thrombotic use, and admissions ePOMS score was formed (Model 1 in Table 1). These were 88 supplemented with significant day of surgery variables and the process repeated. The 89 resulting model contained ASA, tertiary transfer, anti-thrombotic use, day of surgery 90 ePOMS, intraoperative fentanyl dose, and time out of ETCO₂ range (Model 2 in Table 1). 91 Models yielded AUCs of 0.81(SD=0.01) and 0.85 (SD=0.01) after cross-validation 92 (Supplemental Digital Content Figures S3 and S4).

93

94 Our work, despite being a single centre study and lacking external validity, demonstrates the 95 possibility of using routinely-collected data to generate statistical models for the 96 identification of postoperative complications after cSDH surgery. The retrospective nature 97 of our data and the limitations of diagnostic and operative coding in cSDH² means we have 98 not been able to include all potentially relevant explanatory variables (e.g. severity of cSDH). 99 This is one of many challenges in developing prognostic models in cSDH. For instance, the apparent protective association for transferred patients reflects right censoring, due to the 100 absence of complication data after discharge from our centre. Improved data linkage 101 102 between centres is required to accurately generate models to predict complications in such 103 patients. 104 105 Our pre-surgery model could be calculated in any centre as the increment in discriminatory 106 performance in model 2, although statistically significant, is likely clinically unimportant. For 107 example, the apparent protective association with fentanyl dose could be identifying a 108 subset of patients, deemed able to tolerate higher doses by their anaesthetist. The 109 increased odds seen with variation in ETCO₂ could represent patients with low cardiac 110 output or raised intracranial pressure (requiring hyperventilation). 111 112 Further work in larger cohorts, with appropriately linked outcome data, is required to 113 validate our approach and build on the exploratory analysis reported here to determine 114 clinical utility. 115 116 Acknowledgements 117 118 This research was funded, in whole or in part, by the Wellcome Trust, Grant number: 119 204017/Z/16/Z. A CC BY or equivalent licence is applied to the Author Accepted 120 Manuscript (AAM) arising from this submission, in accordance with the grant's open access conditions. 121 122 123 **Supplemental Digital Content Files** 124 125 File 1: Supplementary Word File (.docx) 126 127 File 2: Supplementary Figure 2 (.pdf) 128 129 File 3: Supplementary Figure 3 (.pdf) 130 131 File 4: Supplementary Figure 4 (.pdf) 132 133 References 134 National Emergency Laparotomy Audit Risk Tool [Internet]. [cited 2020 Oct 22]. Available 1. 135 from: https://data.nela.org.uk/riskcalculator/ 136 Stubbs DJ, Davies BM, Bashford T, et al. Identification of factors associated with morbidity 2. 137 and postoperative length of stay in surgically managed chronic subdural haematoma using electronic 138 health records: a retrospective cohort study. BMJ Open 2020; 10: e037385. doi. 139 org/10.1136/bmjopen-2020-037385 140

 The 'Improving Care in Elderly Neurosurgery Initiative' (ICENI) [Internet]. [cited 2020 Dec 4] Available from: https://www.improving-care.in/neurosurgery Stubbs DJ, Bowen JL, Furness RC, et al. Development and Validation of an Electronic Postoperative Morbidity Score. Anesth Anolg 2019; 129: 935-942. doi.org/10.1213/ANE.000000000003953 Sterne JAC, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiologic and clinical research: Potential and pitfalls. <i>BMJ</i> 2009; 339: 157–60. doi.org/10.1136/bmi.b2393 Wahl S, Boulesteix AL, Zierer A, Thorand B, Avan de Wiel M. Assessment of predictive performance in incomplete data by combining internal validation and multiple imputation. BMC Med Res Methodol; 2016; 16: 1–18. doi.org/10.1186/s12874-016-0239-7 R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2013. Foundation for Statistical Computing; 2013. 	141 3. 142 Ch 143 <u>dc</u> 144	Kwon CS, Al-Awar O, Richards O, Izu A, Lengvenis G. Predicting Prognosis of Patients with Chronic Subdural Hematoma: A New Scoring System. <i>World Neurosurg</i> ; 2018; 109 : e707–14. loi.org/10.1016/j.wneu.2017.10.058
 6. Sterne JAC, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiologic and clinical research: Potential and pitfalls. <i>BMJ</i> 2009; 339: 157–60. doi.org/10.1136/bmj.b2393 7. Wahl S, Boulesteix AL, Zierer A, Thorand B, Avan de Wiel M. Assessment of predictive performance in incomplete data by combining internal validation and multiple imputation. BMC Med Res Methodol; 2016; 16: 1–18. doi.org/10.1186/s12874-016-0239-7 8. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2013. 162 163 164 165 166 167 170 171 172 173 174 175 176 177 178 181 	145 4. 146 147 5. 148 Pc 149 <u>dc</u> 150	 The 'Improving Care in Elderly Neurosurgery Initiative' (ICENI) [Internet]. [cited 2020 Dec 4]. Available from: https://www.improving-care.in/neurosurgery Stubbs DJ, Bowen JL, Furness RC, et al. Development and Validation of an Electronic Postoperative Morbidity Score. <i>Anesth Analg</i> 2019; 129: 935-942. <u>Addition of Constant Analy 2019</u>
 7. Wahl S, Boulesteix AL, Zierer A, Thorand B, Avan de Wiel M. Assessment of predictive performance in incomplete data by combining internal validation and multiple imputation. BMC Med Res Methodol; 2016; 16: 1–18. <u>doi.org/10.1186/s12874-016-0239-7</u> 8. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2013. 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 	150 151 6. 152 an 153 154	5. Sterne JAC, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological ind clinical research: Potential and pitfalls. <i>BMJ</i> 2009; 339 : 157–60. doi.org/10.1136/bmj.b2393
159 8. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R 160 Foundation for Statistical Computing; 2013. 161 162 163 164 164 165 165 166 166 167 168 169 170 171 171 172 173 174 175 176 176 177 177 178 179 180 181 1	155 7. 156 pe 157 M 158	Wahl S, Boulesteix AL, Zierer A, Thorand B, Avan de Wiel M. Assessment of predictive berformance in incomplete data by combining internal validation and multiple imputation. BMC Aed Res Methodol; 2016; 16: 1–18. doi.org/10.1186/s12874-016-0239-7
182 183 184 185 186 187 188 189	159 8. 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 190	Accore Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2013.

192	Exploratory analysis of pre and postoperative risk stratification tools to identify acute
193	kidney and myocardial injury in patients undergoing surgery for chronic subdural
194	haematoma.
195	
196	Stubbs DJ, Davies BM, Burnstein R, Joannides A, Ercole A
197	
198	Contents:
199	
200	1) Cohort details and missing data
201	2) Calculation of an electronic postoperative morbidity score (ePOMS)
202	3) Approach to the handling of missing data
203	4) Univariable screening
204	5) Model building process (incl. excluded variables and <i>p</i> values)
205	6) R Code (github link)
206	
207	
208	Section 1: Cohort details and missing data
209	
210	Full details of patterns of missing data and the cohort's characteristics have been previously
211	published and are available here and summarised briefly below.
212	
213	Of note in our previously published study one patient had missing formal discharge data
214	(and thus an inaccurate length of stay). In this study we had necessary laboratory results
215	(and thus outcome data) to include them, giving us a total cohort of <i>n</i> = 531.

216

Variable	Median [IQR]
Age years	77 [69-84]
${\bf Creatinine} \ \mu \textit{mol/l}$	73 [61-89]
	n (%)
Male	376 (70.8)
$\mathbf{ASA} \geq 3$	271 (61.0)*
Cognitively Impaired	$270 (54.5)^*$
Admission GCS 15	342 (64.4)
Admission Motor Score 6	490 (92.3)
$\mathbf{mRS} \ge 2$	$105 (31.0)^*$
${f Anticoagulants}/{f Antiplatelets}$	233 (43.9)
CVS Disease	239 (45.0)
Heart Failure	101 (19.0)
Airways Disease	75 (14.1)

217

218 ASA = American society of anesthesiologists score, GCS = Glasgow Coma Scale, mRS = Admission Modified

Rankin Score, CVS = Cardiovascular, Motor score refers to score on the motor (movement) component of the

220 GCS. * indicates that value is calculated only on those with recorded values (see missing data)

221 222

222

224	Four variables had missing data;
225	• Baseline creatinine (<i>n</i> = 46 - 8.7%)
226	• Cognitive status ($n = 36 - 6.8\%$),
227	• ASA score (<i>n</i> = 87 - 16.1%),
228	• mRS (<i>n</i> = 192 - 36.2%)
229	Patterns of missing data:
230	• mRS alone (<i>n</i> = 133 – 25.0%)
231	• ASA alone $(n = 46 - 8.7\%)$
232	 Creatinine + mRS (n = 13 – 2.4%)
233	• Creatinine alone $(n = 10 - 1.9\%)$
234	• Cognitive status + mRS ($n = 10 - 1.9\%$
235	• Cognitive Status alone $(n = 9 - 1.7\%)$
236	• Creatinine + ASA $(n = 6 - 1.1\%)$
237	• Cognitive status, creatinine, mRS $(n = 5 - 0.9\%)$
238	• Cognitive status + creatining $(n = 4 - 0.8\%)$
239	• Cognitive status + creatinine + ASA $(n - 3 - 0.0\%)$
240	• Cognitive status + $\Delta S\Delta$ + mRS ($n = 3 = 0.0\%$)
241	• Cognitive status + ASA + mRS + Creatinine $(n = 2 - 0.4\%)$
243	• Cognitive status + ASA ($n = 1 - 0.2\%$)
244	
245	
246	
247	
248	
249	
250	
251	
252	
253	
254	
255	

256 Section 2: Calculation of an electronic postoperative morbidity score (ePOMS)

257

258

Domain	Diagnostic Criteria	Notes
Respiratory	Need for supplementary oxygen	
Cardiovascular	HR >100 SBP <100 Positive Troponin test	
Neurological	Need for nurse special	Nurse special used as surrogate for confusion/delirium
	Motor/Verbal Score worse than referral*	Motor/Verbal Score refers to specific domains of the GCS
	Focal neurology*	Documented mismatch between left/right sided arm/leg strength at any stage
Renal	Rise in creatinine to ≥ 1.5 x baseline	Baseline creatinine taken as last recorded creatinine prior to surgery.
GI	Anti-emetic administered	Anti-emetic defined by following WHO ATC codes: a04**, a03fa01, r06ae03, n05ad08
Pain	Need for IV opioids or local anaesthetic infusion	Drugs identified by following WHO ATC codes: n02aa01i, n02ab03i, n01bb01
Recurrence [%]	Reoperation	EPOMS originally identifies severe wound infection by need for further surgery. In this context reoperation for the same procedure is being used to iden- tify re-accumulation of cSDH
Infection	Temperature $\geq 38^{\circ}$ C Receiving Antibiotics	Antibiotics defined by following WHO ATC codes: j01**
Haematological	Transfused with blood product	Including red cells, platelets, FFP, cryo- precipitate

259 HR = Heart Rate, SBP = Systolic blood pressure, GCS = Glasgow Coma Scale, GI =

260 Gastrointestinal system, WHO ATC = World Health Organisation Anatomical therapeutic

chemical classification, IV = intravenous, FFP = fresh frozen plasma. If multiple potential

criteria are listed then an individual scores if any of these are met % In the original EPOMS

263 score this would correspond to the 'wound' category. * Indicates additional criterion

included in this variant from previously published[1]. ** indicates that all drugs below this

265 *level of ATC code were included*

Stubbs DJ, Bowen JL, Furness RC, Gilder FJ, Romero-Ortuno R, Biram R, Menon DK,
 Ercole A (2019) Development and Validation of an Electronic Postoperative Morbidity
 Score. Anesth Analg 129(4):935–942

- 282
- 283 Supplementary Figure S1: Approach to the handling of missing in data in model building
- (A1-A2) and in combination with *k-fold* cross validation for internal validation of
 generated model.
- 286
- 287 For assessment between exposures (variables) and outcome of interest, missing baseline
- variables were imputed using `multiple imputation using chained equations' (MI with CE)
- 289 (A1). These results were compared to complete cases results for each analysis (A2). A
- 290 distinct approach was used to allow internal validation of final multivariable models. This
- was done with k=10 fold cross-validation. The dataset was split into test/train folds (**B1**),
- test folds were then individually imputed (B2), before being recombined (B3). Fold indices

- 293 created in **B1** were use d to perform cross validation forming sequential training (green
- rows) and test (grey row) datasets.
- 295
- 296

297 Section 4: Univariable screening

298

	OR	95% Lower	$95\% \ \mathrm{Upper}$	p
Age per year	1.002	0.982	1.024	0.819
Male versus Female	0.641	0.378	1.086	0.099
ASA2 All versus ASA 1	0.848	0.097	7.373	0.881
ASA3	3.126	0.405	24.137	0.275
ASA4	13.260	1.612	109.067	0.017
ASA5	0.832	0.000	3.000	0.999
$mRS \ 1 \ All \ versus \ mRS \ 0$	1.042	0.500	2.171	0.913
mRS 2	1.337	0.524	3.407	0.544
mRS 3	1.846	0.674	5.056	0.234
mRS 4	0.892	0.259	3.071	0.856
Tertiary transfer versus direct admission	0.340	0.161	0.720	0.005
Cognitive Impairment	3.005	1.640	5.506	< 0.001
M6 on admission versus any other motor score	0.244	0.121	0.493	$<\!0.001$
GCS 15 on admission versus any other GCS	0.396	0.237	0.661	< 0.001
Creatinine per 20µmol/l	1.127	1.020	1.269	0.031
History of CVS Disease	2.410	1.426	4.072	0.001
Anticoagulant on admission	4.359	2.468	7.699	$<\!0.001$
Airways Disease	2.755	1.516	5.008	0.001
Heart Failure	1.920	1.083	3.404	0.026
Admission EPOMS per 1 domain increase	1.513	1.290	1.775	< 0.001
DOS EPOMS per 1 domain increase	1.668	1.379	2.017	$<\!0.001$
Pre-op Deterioration	0.613	0.367	1.023	0.062
Length of Wait per hour	1.005	1.000	1.011	0.069
Op Time per 10 min	1.062	1.001	1.127	0.057
Volatile anaesthetic versus TIVA	0.964	0.579	1.606	0.889
Fentanyl dose per 25 mcg	0.839	0.758	0.928	< 0.001
Time MAP not 80mmHg per 10 min	0.961	0.886	1.041	0.346
Time CO2 not 3-5kPa per 10 min	1.293	1.116	1.509	0.001

- 299 Supplementary Table S1: Pooled univariable analysis for the identification of end-organ 300 complications (myocardial infarction or acute kidney injury) in a cohort of 531 cases of 301 operated chronic subdural haematoma. Analysis conducted across m = 40 multiply imputed 302 datasets. ASA = American Society of Anesthesiologists score, CO2 = End Tidal Carbon Dioxide 303 tension, CVS = Cardiovascular System, DOS = Day of Surgery, EPOMS = Electronic 304 postoperative morbidity score, GCS = Glasgow Coma Scale, kPa = kilopascals, MAP = mean 305 arterial pressure, mcg = micrograms, min = minutes, M6 = Motor score of 6 on the Glasgow 306 coma scale, mRS = Modified Rankin Scale, TIVA = Total Intravenous Anaesthesia, Length of
- 307 wait = wait between admission and surgery.
- 308

309 Section 5: Model building process and results for identification of end-organ 310 complications:

- 311
- After a process of univariable screening, all variables with *p*<0.2 were carried forward to
- 313 multivariable model building. This was performed by pooling results across 40 multiply
- imputed datasets and compared to complete cases.
- 315

- Supplementary Figure S2 demonstrates model building process. After univariable testing a starting model formed from variables available to clinicians prior to surgery and the subsequent order of exclusion of variables using backwards step regression with a threshold for exclusion of p=0.05 on the pooled likelihood ratio test.

This final `pre-op model' (Model 1 in Table 1) was then further refined by the addition of

- information available at the conclusion of surgery (DOS = Day of Surgery variables) with an
- equivalent process of model refinement using backwards step regression. This resulted in a final `post-op model' (Model 2 in Table 2).

Both models were subsequently tested using internal validation with a distinct imputation method (see Supplementary Figure S1) and discrimination assessed using the area under the receiver operator characteristic curve (ROC) (Supplementary Material Figures S3 and S4)

- Section 6: R Code

Although data for this cannot be made available due to its potentially sensitive nature and origins within an approved service evaluation project we have made our analytical code available on GitHub <u>here</u>.

Supplementary Figure S2:	Martine Contraction of Contraction	OR	95% Lower	95% Upper	р
Summary of Multivariable model b	^{uilding} Male	0.610	0.331	1.119	0.110
	ASA	1.670	0.953	2.926	0.073
	M6 on Admission	0.720	0.276	1.882	0.502
	GCS15 on Admission	0.747	0.388	1.439	0.383
Starting	Cognitive Impairment	1.727	0.810	3.682	0.157
Starting	CVS Disease	1.843	0.929	3.657	0.080
model:	Creatinine	1.127	0.961	1.321	0.090
	Airways Disease	1.580	0.758	3.290	0.221
	Heart Failure	0.769	0.359	1.645	0.497
	Anticoagulant	2.867	1.526	5.384	0.001
	Tertiary Transfer	0.455	0.168	1.230	0.120
	Admission ePOMS	1.256	1.048	1.506	0.014

Sequential removal of variables based on p

Variable removed	P prior to removal	P (LRT to previous)*
M6 on admission	0.502	0.501
Heart Failure	0.519	0.519
GCS15	0.222	0.195
Airways Disease	0.196	0.206
Male	0.114	0.144
Creatinine	0.130	0.150
Cognitive Concern	0.086	0.074
CVS Disease	0.069	0.066

ASA, Tertiary Transfer, Anticoagulation, Admission ePOMS carried forward

	OR 95	5% Lower 95	% Upper	р
ASA	1.890	1.107	3.225	0.022
Tertiary Transfer	0.304	0.116	0.796	0.015
Anticoagulant Use	3.450	1.793	6.637	< 0.001
Admission ePOMS	1.200	0.984	1.458	0.071
DOS ePOMS	1.300	1.035	1.630	0.024
Operation time (per 10 min)	1.020	0.944	1.104	0.603
Fentanyl dose (per 25mcg)	0.840	0.764	0.940	0.002
Time MAP <80mmHg (per 10 min)	0.949	0.856	1.053	0.325
Time outside of ETCO ₂ 3-5kPa (per 10 min)	1.308	1.072	1.594	0.008
Length of Wait (per hr)	1.005	0.999	1.011	0.120

Sequential removal of variables based on p

Variable removed	P prior to removal	P (LRT to previous)*
Operation time	0.603	0.599
Time MAP <80mmHg	0.399	0.388
Length of Wait	0.126	0.129
Admission ePOMS	0.120	0.116

Final model: ASA, Anticoagulant use, DOS ePOMS, Fentanyl dose, Time out of CO2 range, Tertiary Transfer.

Add in DOS variables: Supplementary Figure S3: Receiver Operator Characteristic (ROC) curve for model using admission variables

ROC curves generated by repeated cross-validation

- 371

Supplementary Figure S4: Receiver Operator Characteristic (ROC) curve for model using day-of-surgery variables

383