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Abstract

To survive, animals have to quickly modify their behaviour when the reward changes. The

internal representations responsible for this are updated through synaptic weight changes,

mediated by certain neuromodulators conveying feedback from the environment. In previ-

ous experiments, we discovered a form of hippocampal Spike-Timing-Dependent-Plasticity

(STDP) that is sequentially modulated by acetylcholine and dopamine. Acetylcholine facili-

tates synaptic depression, while dopamine retroactively converts the depression into poten-

tiation. When these experimental findings were implemented as a learning rule in a

computational model, our simulations showed that cholinergic-facilitated depression is

important for reversal learning. In the present study, we tested the model’s prediction by

optogenetically inactivating cholinergic neurons in mice during a hippocampus-dependent

spatial learning task with changing rewards. We found that reversal learning, but not initial

place learning, was impaired, verifying our computational prediction that acetylcholine-mod-

ulated plasticity promotes the unlearning of old reward locations. Further, differences in neu-

romodulator concentrations in the model captured mouse-by-mouse performance variability

in the optogenetic experiments. Our line of work sheds light on how neuromodulators enable

the learning of new contingencies.

Author summary

Reversal learning likely involves changes in synaptic connections, a neural mechanism

known as synaptic plasticity, so old information can be updated. We previously discov-

ered that acetylcholine, an important neuromodulator in the brain, changes synaptic con-

nections in a way that favours reversal learning. Specifically, acetylcholine weakens active

synapses in brain slices, but these synapses can later be strengthened by a reward signal.

Based on this result in slices, we used a computational model to propose a behavioural

function for the action of acetylcholine on synaptic connections. In the model, acetylcho-

line would weaken synaptic connections associated with an old reward, allowing an agent
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to quickly learn a new reward location. We tested this hypothesis here by silencing acetyl-

choline neurons in mice while they navigated a maze for food rewards. These animals

were able to learn the location of the first food reward, but were impaired when the reward

was shifted to a new location. The behavioural results of this study suggest that acetylcho-

line indeed facilitates reversal learning, which the computational model attributes to a

weakening of synaptic connections that do not lead to reward. Taken together, our experi-

mental and computational work show how synaptic strength changes, gated by neuromo-

dulators, affect learning behaviour.

Introduction

When the environment changes and previous reward associations no longer hold, an animal

must quickly adapt its behaviour to maximize reward. The learning rules in the brain responsi-

ble for updating action-outcome contingencies in such situations are not fully understood.

Traditional forms of Hebbian plasticity [1, 2], including spike-timing-dependent-plasticity

(STDP) [3–7], change synaptic weights based on the joint activation of pre- and post- synaptic

neurons alone. They do not account for behavioural learning paradigms that require external

feedback. Synaptic plasticity that is regulated by neuromodulators [8–11] provides a mecha-

nism to incorporate behaviourally relevant information into synaptic changes, and at the

appropriate time. Neuromodulatory signals are released in response to certain salient events

(e.g. reward discovery or reward removal) and gate plasticity, depressing or potentiating

recently active synapses responsible for the outcome, changing behaviour in a task relevant

way [12].

Previous studies have examined either how neuromodulators regulate hippocampal plastic-

ity [13–16] or how they affect behavioural functioning [17–19], but not together. Our work

seeks to connect synaptic level changes to behaviour. Using experimental and computational

means, we investigate the mechanisms through which neuromodulated-plasticity in the hippo-

campus influences reward learning. In our previous study, we uncovered in the hippocampus

a form of neuromodulated synaptic plasticity that depends on the sequential modulation of

two neuromodulators, acetylcholine (ACh) and dopamine (DA) [20]. The presence of acetyl-

choline produced synaptic depression during an STDP induction protocol in hippocampal

slices. Adding dopamine after the induction protocol, within a time window of up to a minute,

converted the acetylcholine-facilitated depression into potentiation. We termed this sequen-

tially neuromodulated plasticity (sn-Plast), and formalized it as a learning rule [21]. Under the

sn-Plast rule, a symmetric STDP window changes synaptic weights according to spike coinci-

dences, irrespective of timing order, and the neuromodulator determines the sign of the weight

change. Tonically-released acetylcholine depresses synapses, while a subsequent phasic dopa-

mine signal retroactively converts depression into potentiation, through an eligibility trace

that tracks active synapses. We hypothesized that this learning rule would be functionally

important, since dopamine has been associated with reward expectation [22–25] and acetyl-

choline with exploration [26, 27], surprise and novelty [28–30]. To test the behavioural impli-

cations of our synaptic plasticity findings, we implemented sn-Plast in a spiking neural

network model for reward-based navigation. Our simulations showed that sn-Plast agents

unlearnt a previously rewarded location more quickly to find a new reward [20, 21]. This was

because during exploration, cholinergic-facilitated depression weakened synapses and state-

action associations that no longer led to the reward.
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In this study, we performed the behavioural experiments to verify predictions from the sn-

Plast model and previous slice experiments. Cholinergic neurons were optogenetically inacti-

vated in mice during a hippocampus-dependent spatial navigation task assessing reversal

learning. We show that the model captures the selective deficit in reversal learning caused by

the optogenetic manipulation, and explains inter-individual variability in performance. These

results further demonstrate that the sequential neuromodulation of STDP by acetylcholine

and dopamine facilitates the learning of a new reward location.

Results

Silencing cholinergic neurons selectively impairs reversal learning but not

initial place learning, as predicted by the sn-Plast model

In our previous study, the sn-Plast model [20] predicted that suppressing cholinergic depres-

sion would impair reversal learning, without affecting initial place learning. To test this on a

behavioural task, we implanted ChAT�ArchT mice with an optic fibre above the medial sep-

tum (S1 Fig) to target cholinergic neurons. During the task, mice received either light stimula-

tion (light-on ACh-suppressed group, n = 21) or no light stimulation (light-off control group,

n = 16). To control for the potential effects of light and heat, 8 ChAT-Cre mice were implanted

and light-stimulated in the same way, but received viral injections without the optogenetic

construct (GFP control group). The task was a modified dry version of the the Morris water

maze task assessing spatial learning, and had two stages. At the start of each trial, two food

wells were placed in the inner section of two quadrants opposite each other in a circular open-

field arena; one was baited with a food reward. Mice begun each trial facing outwards, pseudo-

randomly in either of the other two quadrants. In the initial learning stage, mice were trained

for 8 days, with 10 trials each day, to find the baited well based on visual cues. After mice had

learnt to locate the first baited well in the initial learning stage, the wells were switched to test

reversal learning. In this reversal learning stage, mice had to navigate to the quadrant opposite

the previously baited location for the reward, and were trained for a further 12 days (Fig 1A).

Performance was measured by the percentage of correct trials per day (Fig 1B). Only mice that

reached and maintained an 80% daily success rate (threshold to ascertain successful task acqui-

sition [31, 32]) at the end of initial learning were included in the analyses. Experimental and

control groups attained an 80% daily success rate within the same time frame in the initial

learning stage (Fig 1C, F(2,42) = 0.38, p = 0.69), but not in the reversal learning stage (F(2,42) =

4.70, p = 0.014). Further analysis with Tukey’s pairwise comparison test showed that the light-

on ACh-suppressed group took significantly longer to reach 80% success than the light-off

(t(42) = −2.8, p = 0.008, d = −0.92) and the GFP with light stimulation (t(42) = −2.14, p = 0.04,

d = −0.89) control groups. Notably, at the end of the reversal stage, all control mice (light-off

and GFP) had attained the 80% criterion, while five light-on (ACh-suppressed) mice failed to

reach this threshold, indicating much poorer reversal learning. To further quantify the beha-

vioural effect of the cholinergic inactivation on individual mice, across successive trials and

task stages, we fit a fixed-effects logistic regression to the outcome of each trial (0—no reward;

1—reward found). Regressors predicting the probability of reward discovery were experimen-

tal group type (0—light-on; 1—light-off; 2—GFP), task stage (0—initial learning; 1—reversal

learning) and trial number. Interaction terms between group type and task stage, and between

task stage and trial number were also included (Eq 1). The coefficients of the interaction terms

for each control group by task stage were significant (light-off by stage, z = 4.19, p< 0.0001;

GFP by stage, z = 4.14, p< 0.0001). This indicates that the performance difference between the

control (either light-off or GFP) and light-on (ACh-suppressed) groups was greater in the

reversal learning stage, compared to the between-group difference in the initial learning stage.
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Hence, mice receiving light-induced cholinergic inactivation learnt the location of the first

baited food well as quickly as controls, but learnt the newly baited location more slowly. Taken

together, these results reveal a selective impairment in reversal learning caused by the optogen-

etically-induced cholinergic inactivation, consistent with the predictions of our computational

model [20].

Reducing acetylcholine in the sn-Plast model qualitatively accounts for

behavioural results at the group-level

To understand the synaptic mechanisms underlying the behavioural effect, we simulated the

spatial learning task with our spiking neural network model endowed with sn-Plast. The sn-

Plast model provides a mechanistic explanation linking the gating of plasticity by neuromodu-

lators to changes in learning behaviour. It explicitly models how acetylcholine weakens the

synapses between place and action cells that are no longer relevant to the current context, to

facilitate the learning of new rewards. As in our previous computational study [20], the feed-

forward synaptic weights between place cells (encoding position) and action cells (encoding

velocity) of the network were updated according to the sn-Plast learning rule. During explora-

tion of the virtual environment, acetylcholine depressed active synapses. Whenever the agent

located the baited food well, a phasic dopaminergic signal was delivered at the end of that trial

Fig 1. Inactivating cholinergic neurons affects reversal learning. (A) Schematic of the task paradigm. Mice were first trained to locate a

baited food well in an open-field (initial learning stage). After 8 days of training, the location of the baited well was shifted to the opposite

quadrant, and training proceeded for another 12 days (reversal learning stage). Mice received 10 trials each day. (B) Learning performance

across days, averaged over number of mice in each group (GFP control, n = 8; Light-off control, n = 16; Light-on, n = 21). Error bars show

SEM. GFP mice were tested in a separate cohort of mice with 5 light-on (ACh-suppressed) mice, and under-performed slightly in the initial

learning stage. However their performance was similar to light-off controls in the reversal learning stage, which indicated they had

successfully acquired the task. (C) Number of days taken for mice to reach and maintain an 80% success rate.

https://doi.org/10.1371/journal.pcbi.1009017.g001
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to retroactively potentiate the synapses that participated in reward discovery, through an eligi-

bility trace (Fig 2A). In reality, extensive training with cued rewards decreases the magnitude

of the dopamine signal [33, 34]. However, for simplicity and our present purposes of testing

the sn-Plast rule, we assumed that reward would consistently trigger the same amplitude of

dopamine response. Future slice experiments could investigate how dopamine release with

behaviourally relevant dynamics interacts with cholinergic-induced plasticity.

To simulate cholinergic neurons in mice (light-on group) being optogenetically inactivated

during the task, we reduced the amount of acetylcholine, controlled by the parameter ηACh,
released in the model. ηACh scales the amplitude of the STDP window (Fig 2B), causing greater

depression at higher amounts. Reducing acetylcholine in the model reproduced the selective

behavioural impairment in the reversal learning stage (Fig 2C). The policy preference map

(Fig 2D) shows that with less acetylcholine to depress place-action synapses that are no longer

relevant, unlearning the old reward occurs more slowly.

Heterogeneity in learning across mice

To examine behavioural variability among mice, we included subject-specific intercepts and

subject-specific slopes in the logistic regression fit to the experimental data (Fig 3A and S2 Fig

and Eq 2). The intercept reflects the probability of success on the first trial (baseline perfor-

mance), and the slope reflects the rate of learning across trials. Having subject-specific terms

describes how the performance of individual mice deviates from the group-level regression

line (Fig 3B). Including these terms in the logistic regression decreased the Akaike Information

Criterion (fixed-effects only, 8779; with subject-specific terms, 8526) and significantly

improved the fit to experimental data (χ2 = 257, p< 0.0001), showing that learning perfor-

mance was indeed highly varied across mice. Examining the number of days taken to reach an

80% success rate in each task stage also revealed different learning patterns. While some mice

performed consistently across the two task stages, others learnt the reward location in one task

stage (initial or reversal learning) faster than they did in the other (Fig 3C).

We asked whether differences in neuromodulator concentrations could explain the beha-

vioural variability in mice. ηACh, controlling the magnitude of cholinergic-induced depression

during exploration, and ηDA, controlling dopaminergic-induced potentiation following a

reward, were the only two parameters allowed to vary in the model—all other parameters were

left unchanged from previous papers [20, 35]. Although dopamine neurons were not optogen-

etically targeted in this experiment, ηDA was not constrained as we were agnostic about innate

dopamine concentrations across mice, and because cholinergic activity may modulate dopa-

mine release [36–38].

Our simulations across a wide range of parameter value combinations show that acetylcho-

line and dopamine affect the two task stages differently (S3 Fig). In general, overall task acqui-

sition (initial and reversal learning) improves with more dopamine. On the other hand,

reversal learning is more sensitive to acetylcholine and shows a nonlinear relationship with

increasing concentration. For a given concentration of dopamine, increasing acetylcholine to a

moderate level (ηACh/ηDA< 0.4) improves reversal without influencing initial learning. How-

ever, at high acetylcholine concentrations not tested in our previous work, the cumulative

effect of cholinergic-induced depression over the duration of the trial impairs task acquisition,

and the weights quickly saturate at their minimum limits. While acetylcholine persists

throughout the trial and affects synapses at each time step, the dopaminergic signal is released

only transiently after reward discovery. Hence at high acetylcholine concentrations, the dopa-

mine signal is not enough to potentiate relevant synapses, and the agent cannot learn either

reward location. These simulation results show that the time course and amounts of the two
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Fig 2. Reducing acetylcholine in the sn-Plast model qualitatively accounts for the behavioural data. (A) The sn-Plast learning rule

governing synaptic weight changes in the model. STDP changes synaptic weights (W) as a function of the time difference between pre- and

postsynaptic spikes (Δt). The STDP windows are symmetric, and the sign of the weight change is determined by the neuromodulator.

Acetylcholine is present during exploration, biasing STDP towards synaptic depression. When a reward is encountered, a phasic

dopaminergic signal is released, which potentiates active synapses through an eligibility trace. The model consists of a one-layer network of

place cells, representing the agent’s position, projecting to a ring network of recurrently connected action neurons coding for the direction

taken by the agent. Connections between action neurons with similar tuning are excitatory (blue), but are inhibitory otherwise (red). The

weights between place cells and action cells are modified according to the sn-Plast learning rule. (B) Learning rate parameters which control

the STDP window amplitude. (C) Reducing acetylcholine in the model (ηACh = 0.000345 to ηACh = 0.000184, at ηDA = 0.00115) impairs

reversal learning, reproducing learning curves similar to group performance of control and light-on mice as shown in Fig 1B. (D) Policy

preference map at different stages of the task for parameters used in C. Blue filled circle indicates the location of the reward in the open
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neuromodulators determine the balance between cholinergic-depression and dopaminergic-

potentiation, such that acetylcholine affects learning performance in a nonlinear way. Mea-

surements of acetylcholine in vivo could constrain parameter values to physiological concen-

trations, and establish the regime and boundary conditions in which acetylcholine operates.

To fit the model to each mouse, we performed a grid search over 51 levels of ηACh × 11 levels

of ηDA, iterating the model 100 times across all parameter settings (ηACh, ηDA). For each itera-

tion, we compared learning performance between the mouse and the agent by calculating the

root mean square error (RMSE) of the percentage of successful trials per day. The daily success

rate, rather than the outcome of each trial, was compared because performance could fluctuate

through the course of the day, over the ten trials. For each mouse, model fitting yielded a set of

100 fitted parameters and of 100 simulated behavioural data curves, which were averaged for

the final parameter estimate and performance curve respectively (S4–S7 Figs).

Model parameters fit to individual mice reproduced behavioural outcomes in the experi-

ment (S8 Fig). Comparing the number of days for agents to reach an 80% success rate (after

averaging the set of 100 simulated behavioural data curves obtained for each mouse) revealed a

significant learning stage-by-group interaction (F(2,84) = 3.14, p = 0.048). Post-hoc compari-

sons revealed that the difference between control and light-on agents was larger during rever-

sal learning, compared to the between-group difference during initial learning (light-off vs

light-on, p = 0.037; GFP vs light-on, p = 0.05). To test for a between-group difference in per-

formance across trials and task stages, we applied the same fixed-effects logistic regression

used for the experimental data analysis (Eq 1) to each simulated behavioural dataset. In 81/100

iterations, parameters fit to light-off mice produced performance that was significantly differ-

ent to that produced by parameters fit to light-on mice, and only in the reversal learning stage.

This number was 71/100 comparing the GFP-control and the light-on groups. Hence, hetero-

geneity in neuromodulatory levels in the model can account for the diversity in learning

behaviours that mice exhibit.

Contrary to our expectation, fitted acetylcholine values between control and light-on

groups were not significantly different (Kruskal-Wallis test, χ2 = 1.59, p-value = 0.45). We had

hypothesized that light-on mice would have lower estimated levels of ηACh, since cholinergic

neurons were optogenetically silenced in these subjects. The absence of a detectable difference

in parameters between groups could stem from either the model fitting process or having a

small subject pool with high variability. However, ηACh and ηDA could reliably be recovered

from simulated data, suggesting that the lack of difference was not a problem of parameter

identifiability (S9 Fig). To test how likely it was to detect between-group differences in parame-

ter values for the subject pool size of this study, we sampled parameters from a constrained

parameter space where reversal performance improves linearly with increasing acetylcholine.

16 sets of parameters were drawn for light-off mice, and 8 sets for GFP controls. 21 sets were

drawn from a parameter space of reduced acetylcholine, for the light-on mice receiving

cholinergic inactivation. This sampling process was repeated 1000 times (S10 Fig). In 566 of

1000 of these samples, ηACh was significantly lower in the light-on group. Almost half the sam-

ples had no significant difference in ηACh between groups, even after constraining the parame-

ter space such that increasing acetylcholine enhances reversal learning. Hence fitting a larger

cohort of mice might be needed to uncover meaningful differences in estimated neuromodula-

tor values.

maze. Vector fields (by averaging the synaptic weights from each place cell to the action neurons) represent the agent’s policy preference

map across days. The effect of reducing acetylcholine in the model is evident during the early phase of reversal learning (days 4 and 8

shown); reducing acetylcholine slows unlearning of the old reward location.

https://doi.org/10.1371/journal.pcbi.1009017.g002
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Fig 3. Heterogeneity in learning across mice. (A) Mixed-effects logistic regression fit to the experimental data. The five regressors used to

predict the probability of a mouse locating the reward on each trial: group type (GFP, light-off or light-on), stage (initial learning or reversal

learning), trial number, and interactions between the variables. Unique slopes and intercepts were estimated for all mice, which produced

individual predictions shown in B. Asterisks indicate significant terms. (B) Estimated probability of individual mice locating the correct well

on each day, after fitting the mixed-effects logistic regression to the data. (C) Types of learning behaviours in mice. Some mice were slower in

the initial learning stage (� 6 days to attain 80%) than they were at reversal learning. Others were slower in the reversal learning stage (� 8

days to attain 80%) than they were at initial learning. There were also mice that performed consistently well (fast learning and reversal) or

poorly (slow learning and reversal) across the two task stages. (D) Examples of model fits to individual mice. The sn-Plast model was fit to

each mouse by comparing the RMSE of the percentage of correct trials across days between the mouse (filled circles) and the agent. This was

repeated for each iteration of the model, producing 100 parameter estimates for each mouse. Simulated behavioural data across the 100 best

fit estimates were then averaged to yield the performance curve (overlaid line). Error bars represent SEM. (inset) Final parameter estimate (x-

coordinate, ηDA; y-coordinate, ηACh). Colours of the subject labels indicate the type of learning behaviour as described in C.

https://doi.org/10.1371/journal.pcbi.1009017.g003
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Certain aspects of behavioural variability, such as a marked discrepancy between initial

learning and reversal learning performance, were not captured by the current model. To inves-

tigate how inconsistency across task stages influences parameter values, we fit the model to

each task stage separately, to either initial learning or reversal learning data. ηACh fit to the

reversal stage was lower than initial learning estimates (S11 Fig) for most slow reversal learners

(� 8 days to reach 80%), as was expected if reversal learning requires acetylcholine. Three

light-on mice (“53BR”, “J2” and “R5”, S7 Fig) were the exception; they had the highest ηACh
estimates in the group but were the slowest at reversal learning. Despite attaining the mini-

mum 80% criterion during initial learning, they did not show a strong preference for the old

reward on the first day of reversal learning and their performance remained at chance after. In

contrast, simulated agents that acquired the task would initially persist in visiting the old

reward location, before unlearning it. Hence certain learning behaviours seen in mice are not

yet well explained by the model. Besides between-stage variation, there were between-day fluc-

tuations or signs of “forgetting” (“J1” and “J9”, S6 Fig; “R5”, “Q1, and “J2”, S7 Fig). Such fluctu-

ations could reflect daily shifts between learning and unlearning, mediated by temporal

changes in dopaminergic and cholinergic activity. In contrast, neuromodulator amplitudes in

the current model remain constant throughout the simulated task. Finally, the model does not

account for the effects of consolidation, affective factors such as motivation/impulsivity (per-

haps related to velocity of the agent, S12 Fig), attention, or an initial left/right preference.

Endogenous dopamine and the type of learning behaviour also affect the comparison of

estimated ηACh between control and light-on groups. There was a significant effect of estimated

ηDA (F(1,41) = 42.56, p< 0.0001) on ηACh, suggesting an interaction between the two neuromo-

dulators. Whether mice were slow at reversal learning also influenced ηACh (F(1,41) = 4.7,

p = 0.036). These factors could confound between-group comparisons of parameter estimates.

It would be necessary to incorporate additional factors into the model, for ηACh estimates to

quantitatively reflect the effects of optogenetic silencing of cholinergic neurons. Nevertheless,

the model was flexible in reproducing the between-subject variability in learning performance

and the reversal learning impairment of light-on mice. Overall, our current results show a

good correspondence between the sn-Plast model and experimental observations at the beha-

vioural level.

Discussion

Our previous experiments in mouse hippocampal slices revealed a temporally sequenced neu-

romodulation of STDP (sn-Plast); dopamine converted cholinergic-facilitated depression into

potentiation even one-minute after the plasticity induction protocol. Based on these slice

experiments alone, we had made an extrapolation from synapses to behaviour, predicting that

acetylcholine-facilitated depression would aid the unlearning of old reward locations. We then

simulated reward-based navigation with a computational model implementing the newly dis-

covered sn-Plast rule and showed that acetylcholine would enhance an agent’s ability to learn a

new reward [20]. The new behavioural results of this study have verified the predictions of our

model. We showed here that inactivating cholinergic neurons does not affect initial learning of

rewards—it impairs learning only in the second stage of the task, when the reward is shifted to

a new location. The selective effect on reversal learning, rather than an overall learning deficit,

suggests that acetylcholine performs a unique computational function in learning new contin-

gencies. Specifically, acetylcholine extinguishes state-action associations that do not culminate

in reward.

The sn-Plast model, conceived before the behavioural experiments, accommodated inter-

individual diversity in learning behaviours and explained the performance of ACh-suppressed
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mice. Reducing acetylcholine in the model reproduced qualitatively the reversal learning

impairment of the light-on mice at the group level. Fitting parameters to individual mice pro-

duced behavioural data that recovered the effect of silencing cholinergic neurons on reversal

learning. Nonetheless, we do not suppose the model to be the only explanation for reversal

learning and credit assignment, nor do we rule out other models. For example the Rescorla-

Wagner model [39] also explains initial acquisition and subsequent extinction, but at a beha-

vioural level. Our model extends observations from hippocampal slices to the open-field maze

by proposing cholinergic-mediated depression as a synaptic mechanism for reversal learning.

In the model, acetylcholine weakens the synapses between place and action cells that are irrele-

vant to the current context. This allows connections for the new reward to be strengthened by

dopamine acting through an eligibility trace. Hence the sn-Plast model explicitly links the gat-

ing of neuromodulators to changes in learning behaviour, unlike a classical conditioning

model. Other work modelled hippocampal memory-guided navigation [40–43], but using var-

ious versions of conventional reinforcement learning. Our results with the sn-Plast rule give

new insight into hippocampus-dependent goal-directed spatial navigation.

Just two parameters—acetylcholine and dopamine—were varied for model-fitting, to avoid

introducing additional assumptions beyond the scope of the slice experiments which moti-

vated this study. Although our behavioural results showed that inactivating cholinergic neu-

rons with optogenetics impaired reversal learning, estimated acetylcholine values between

control and light-on groups did not differ significantly, possibly due to the small number of

mice in this study. Hence at present the model is not able to definitively and quantitatively

attribute reversal learning deficits to reduced acetylcholine in individual mice. Other factors

may also be involved. Attention [30], motivation [44], innate biases and offline consolidation

during sleep [45–47] all modulate learning, but are not yet controlled for in the model. Incor-

porating these effects into the model could more fully capture the complexity and heterogene-

ity of individual learning profiles in a small cohort of mice, and reflect underlying

neuromodulator levels.

The dynamics and temporal profile of neuromodulatory signals present avenues for future

research. We modelled neuromodulator release and activity after our slice experiment proto-

col, which used bath-applied acetylcholine followed by dopamine. Ambient levels of acetylcho-

line were simulated during agent exploration, followed by a reliable release of dopamine if the

reward was found. Hence the model maintains a constant level of acetylcholine throughout the

task, and reward delivery invariably produces a stable dopaminergic response. In reality, the

release profiles of these neuromodulators are complex; they vary across behavioural states in

the animal and play different roles. A study which implanted electrochemical biosensors for

acetylcholine in mPFC and dHPC in mice recorded tonic release during maze training, and

phasic release at reward delivery locations on a spatial working memory task [48]. An exten-

sion of the model could allow acetylcholine release to be modulated by familiarity with the cur-

rent task demands and environment, rather than to continuously depress synapses throughout

the task. The mechanism by which such a dynamic signal would coordinate learning warrants

more research, as there are different forms of acetylcholine-modulated plasticity. The precise

timing [49], temporal profile and concentration [14] of acetylcholine release influence the

strength, duration and polarity of plasticity, through different pathways, cholinergic receptor

subtypes (on pre- or post-synaptic neurons and on astrocytes), and interneuron activity [17,

50], which will have have different implications for learning. Dopaminergic activity dynamics

could also be further developed in the model. It is known that the dopamine signal decreases

with extensive training with cued rewards [33, 34], and is instead elicited maximally when

reward is unexpected, coding for a reward prediction error [22, 23]. In previous simulations

[21], we tested two feedback signals resembling the reward prediction error and compared
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agent performance to that under the sn-Plast learning rule. One was a dynamic reward signal

which tracked reward history and was maximally activated when rewards were surprising

(either encountered or omitted suddenly). The other was a negative feedback signal delivered

when the expected reward was omitted, and depressed synapses retroactively through an eligi-

bility trace. It would be possible to extend our model to study how cholinergic depression

interacts with a prediction error signal, instead of the stable reward signal currently incorpo-

rated, to affect exploration and performance.

To more truly understand the orchestrated activity of acetylcholine and dopamine during

behavioural learning and under the optogenetic intervention, it would be important to directly

measure the two neuromodulators in vivo. Given that the cholinergic system modulates dopa-

mine activity and release [36–38, 51], light-induced cholinergic inactivation could change

dopamine concentrations, and consequently parameter estimates. It was difficult to make con-

clusions about the absolute acetylcholine values in this study, and more clarity on the operat-

ing regime of acetylcholine is needed. Our simulation results show a nonlinear relationship

between acetylcholine and task performance. Increasing acetylcholine improves reversal learn-

ing, but only at low to moderate concentrations. Beyond these levels, cholinergic-depression

begins to dominate synaptic changes and saturate the weights, hindering learning in both task

stages. New advancements in genetically encoded fluorescent sensors for acetylcholine [52]

and red-shifted sensors for dopamine [53, 54] enable simultaneous monitoring of the dynam-

ics of the two neuromodulators during behaviour. Such technologies could provide temporally

precise readouts to inform model parameters.

We believe our research contributes new understanding of the computational function of

neuromodulated-plasticity [55–57] in reward learning. The work has spanned synaptic and

behavioural levels, and has benefitted from the synergism between experimentation and

modelling. Electrophysiological slice recordings inspired a new synaptic learning rule in a

model which in turn motivated behavioural experiments. Behavioural results here have con-

firmed modelling predictions about the computational role of acetylcholine for new contin-

gencies, although we cannot exclude other effects of acetylcholine. Finally, model-fitting and

analyses explained individual learning behaviours, reproducing the behavioural effect of light-

induced cholinergic inactivation as a result. Future work to extend the model and to monitor

neuromodulator release would permit the interpretation of individual performance in terms

of exact parameter estimates, completing the chain.

Materials and methods

Ethics statement

All animal experiments were conducted under the U.K. Animals (Scientific Procedures) Act

1986 Amendment Regulations 2012 following ethical review by the University of Cambridge

Animal Welfare and Ethical Review Body (AWERB) under a Home Office project licence

(PPL 7008892) and personal licences held by the authors.

Behavioural experiments

Animals. Mice in the light-off and light-on groups were ChAT-Ai40D mice, the offspring

of the ChAT-IRES-Cre line (Jackson Laboratories, stock #006410) crossed with the Ai40D line

(Jackson Laboratories, stock #021188) bearing a Cre-dependent, enhanced GFP (eGFP)-tagged

Archaerhodopsin-3 (ArchT) fusion protein. ChAT-Ai40D mice express ArchT in all choliner-

gic cells. For GFP-controls, ChAT-IRES-Cre mice were injected with AAV9-hsyn-GFP-WPR

viral molecules. Mice were housed in polycarbonate cages of 2–10 animals and had access to

food and water ad libitum, except when on food restriction during behavioural testing.
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Holding facilities were maintained at approximately 22 ˚C, 60–70% humidity, and with a 12

hour light/12 hour dark cycle.

Optogenetic manipulations. ArchT was excited using a yellow-green laser-light from a

solid-state laser diode (561 nm; Laser 2000) that collimated into an aperture-matched fibre-

optic patch cord (DoriLenses). The light output was adjusted to 26 ± 1 mW at the fibre tip. A

mono fibre-optic cannula (4 mm long, 200 μm diameter, 0.22 NA; Doric Lenses) was posi-

tioned above the medial septum (AP, + 1 mm; ML, 0 mm; DV, −3.55 mm) of mice (> 6 weeks

old). During behavioural testing, a patch cord was used to connect the laser to the cannula via

a cubic zirconia sleeve. The optic fibre positioning and expression of ArchT were confirmed

using immunohistochemistry. At the end of the behavioural testing, mice were deeply anaes-

thetized using pentobarbital and perfused with PFA (4%). After cryopreservation in sucrose

(30%), 40–60 μm slices of medial septum and hippocampus were obtained.

Immunohistochemistry. Sections were rinsed for 6 × 5 minutes in phosphate-buffered

saline (PBS) and incubated for 1 hour in a blocking solution comprising of PBS with 0.3% (w)

Triton X-100 and 5% (w) donkey serum (Abcam) containing 1% (w/v) bovine serum (Sigma).

They were then incubated for 15 hours at 4 ˚C in blocking solution containing chicken anti-

GFP (1:1000, AB13970, Abcam) and goat anti-ChAT (1:500, AB144, Milipore) antibodies. The

sections were then rinsed for 6 × 5 minutes in (PBS), then incubated for 2 hours in blocking

solution containing goat anti-chicken Alexa Fluor 488 (1:1000, 11039, Life technologies) and

donkey anti-goat Alexa Fluor 594 (1:1000, AB150132, Abcam) at room temperature. After

6 × 5 minutes rinse, the sections were mounted in Fluoroshield with DAPI (Sigma). Fluores-

cence images to verify expression of the eYFP/GFP tag and to visualise ChAT labelled neurons

were taken with a Leica microsystems SP8 confocal microscope using a 10× and 20× lens and

acquired with Leica Microscope Imaging Software.

Behavioural task. The open-field maze was a green circular board of 110 cm diameter,

bordered by a white 1 cm-high wall. The field was divided into quadrants which were then fur-

ther divided into an outer and inner zone at 55 cm from the centre of the circular field. The

testing room was lit with dimmed white light and had painted black and white visual cues

around the maze. Two plastic food wells (1.5 cm high) were positioned at the centre of two

opposing inner zones, but only one was baited with sweetened condensed milk food reward.

Target zone designations were counterbalanced such that approximately equal proportions of

each experimental group were assigned to each zone. Mice began the task facing outwards in

the outer zone, either to the left or right of the baited quadrant. Each mouse received ten trials

per day, for 8 and 12 consecutive days for the initial learning and reversal learning stages

respectively. On the last day of the initial learning stage, the food reward was given after the

mice had entered the inner section of the target quadrant as a control for mice locating reward

by odour. On each day, they had five starts from the left of the target quadrant and five starts

from the right in a pseudorandom order with no more than three consecutive starts from the

left or right. Mice were immediately removed from the testing arena if they approached the

empty well, or if they remained stationary for more than 1 minute or if they exceeded 2 min-

utes without solving the task. If mice reached the correct well, mice were allowed to consume

the food reward and were removed from the testing arena as soon as they moved away from

the food well. Between each trial, the open field was rotated 90˚ clockwise or anti-clockwise to

ensure that intra-maze cues were not used to solve the task.

Behavioural analysis. To quantify the effect of optogenetic manipulation on learning per-

formance, we fit a fixed-effects logistic regression to the outcome of each trial, yijk, equal to 1 if

the correct well was found and 0 otherwise. The probability of mouse i locating the correct

well on trialj (j = 1.1, 1.2, . . . for trial 1 on day 1, trial 2 on day 1) during task stagek (0 for
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initial-learning and 1 for reversal-learning) is:

Prðyijk ¼ 1Þ ¼ logit� 1 ðb0 þ b1 � groupi þ b2 � trialj þ b3 � stagek

þ b4 � trialj � stagek þ b5 � groupi � stagekÞ
ð1Þ

where groupi is the experimental group indicator, indicating whether the mouse was a GFP-

control, light-off control or light-on (receiving optogenetic silencing) animal.

The parameter β0 is the overall intercept, β1 the overall effect of optogenetic light-induced

silencing, β2 the change in the logit probability of finding the reward due to an additional trial,

and β3 describes the overall effect of stage (switching from initial learning to reversal learning).

Two-way interactions of variables trialj and groupi with stagek were included, to allow for the

effects of the experimental group and trial to vary between the two stages of the experiment.

The coefficient of interest was β5, associated with the groupi � stagek interaction. If the optoge-

netic manipulation affected performance in the reversal stage but not in the initial learning

stage, we would expect the β5 coefficient to be significant.

To describe behavioural variability among mice, we included subject-specific terms in a

mixed-effects logistic regression. A unique intercept, b0i was estimated for each mouse. For-

mally, this is a subject-specific deviation from the fixed intercept, β0. We also considered sub-

ject-specific slopes for trial, represented by b4i.

Prðyijk ¼ 1Þ ¼ logit� 1 ðb0 þ b1 � groupi þ b2 � trialj þ b3 � stagek

þ b4 � trialj � stagek þ b5 � groupi � stagek

þ b0i þ b4i � trialjÞ

ð2Þ

Each predictor was added sequentially and included if it was significant when the larger

model (with the additional term) was compared to the smaller model using an ANOVA.

All analysis was done in R. The regressions were fit using the glm() (fixed-effects only, Eq

1) or the glmer() (mixed-effects, Eq 2) function with family = “binomial” from the lme4 pack-

age. Significance of regression coefficients were tested using the Wald test (in the summary()

function). To test if experimental condition had an effect on the number of days for mice (or

the simulated agent) to reach an 80% rate of success during reversal, we used the Aligned Rank

Transform for nonparametric factorial ANOVAs from the ARTool package. Post-hoc pairwise

comparisons were conducted using the contrasts() function from the emmeans package.

Experimental data used for the analysis can be downloaded from https://github.com/

gawygawy/snPlast.

Computational modelling

Spiking neural network model. The navigation model is based on a one-layer network

[35] and has previously been presented in [20] and [21]. All parameters were left at their origi-

nal values, other than ηACh and ηDA which were varied during model-fitting.

The place cells in the input layer code for the position of the agent in the environment.

They project to the output layer of action neurons. Each one of the action neurons represents a

different direction. Lateral connectivity in this layer ensures that action neurons compete with

each other in a winner-take-all scheme. Their activity is then used to determine the action (i.e.

direction and velocity) to take at every instant.

Place cells. The position of the agent at time t is described by the two-dimensional vector

of its Cartesian coordinates, x(t). 121 place cells are aligned to the grid coordinates of a circle

with radius 6.1 a.u., and the spacing between them is σ = 0.4. The spiking activity of place cell i
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is modelled as an inhomogeneous Poisson process, with rate l
pc
i ðxðtÞÞ defined as follows:

l
pc
i ðxðtÞÞ ¼ �lpc exp �

jjxðtÞ � xijj
2

s2

� �

: ð3Þ

The firing rate l
pc
i is a function of the distance of the agent from the place cell centre xi. It is

at its maximum, �lpc ¼ 400 Hz, when the agent is located exactly in xi and it decreases as it

moves away. This mechanism simulates a place field in a 2D environment, which allows for an

accurate representation of the position of the agent in the environment.

Action neurons. Place cells constitute the input to the network, and they all project to all

action neurons with weights wfeed. These feed-forward weights are initialized to win = 2 and

bounded between wmin = 1 and wmax = 3. Action neurons are also connected with each other

through synaptic weights wlat. The neurons are modelled using the simplified Spike Response

Model [58], where the membrane potential of neuron j is given by:

ujðtÞ ¼
X

i

X

�t i2F
pc
i ;t>t̂ j

wfeedji � �ðt � �t iÞ þ
X

k;k6¼j

X

�t k2Fak ;t>t̂ j

wlatjk � �ðt � �tkÞ

þwYðt � t̂ jÞ exp ð�
t � t̂ j
tm
Þ;

where χ = −5 mV scales the refractory period, t̂ j is the last postsynaptic spiking time and � is

the EPSP described by the kernel �ðtÞ ¼ �0
tm � ts

e
� t
tm � e

� t
ts

� �
YðtÞ; with Θ(t) being the Heaviside

step function, τm = 20 ms, τs = 5 ms, �0 = 20. Fpci and Fak are sets containing respectively �t i and

�tk, the arrival times of all spikes fired by place cell i and action neuron k. Spiking behaviour is

stochastic and follows an inhomogeneous Poisson process with parameter λj(uj(t)), which

depends on the membrane potential at time t. In particular,

ljðujðtÞÞ ¼ l0 exp
ujðtÞ � y
Du

� �

; ð4Þ

where λ0 = 60 Hz is the maximum firing rate, Δu = 2mV regulates randomness of the spiking

behaviour and θ = 16 mV is a constant parameter.

Action neurons represent different directions in the Cartesian plane. Specifically, each

action neuron j represents direction aj, where aj = a0(sin(θj), cos(θj)), with yj ¼
2jp
N , N = 40 and

a0 = 0.08. The lateral connectivity between action neuron k and action neuron j is defined as

follows

wlatjk ¼
w�
N
þ wþ

f ðj; kÞ
N

; ð5Þ

where w− = −300, w+ = 100 and f is a lateral connectivity function, which is symmetric, positive

and increases monotonically with the similarity of the actions. In particular, f(j, k) = (1 − δjk)
eψcos(θj − θk), with ψ = 20. Neurons therefore excite each other when they have a similar tuning,

and depress otherwise. This ensures that only a few similarly tuned action neurons are active

at any given time, making the trajectory of the agent smooth and consistent.

Action selection. The action selection process determines the decision to take, based on

the firing rates of the action neurons. The activity of action neuron j is approximated by filter-

ing spike train Yj with kernel γ:

rjðtÞ ¼ ðYj � gÞðtÞ; ð6Þ
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where Yj ¼
P

�t j2Faj
dðt � �t jÞ and gðtÞ ¼ e

� t
tg � e

� t
ng

tg � ng
YðtÞ; with τγ = 50 ms and νγ = 20 ms. Actions are

taken continuously, at every timestep t. The action selection process thus determines a(t), the

action to take at time t.
If each action neuron j represents direction aj and has an estimated firing rate ρj(t), then the

action a(t) is the average of all the directions encoded, weighted by their respective firing rates

aðtÞ ¼
1

N

X

j

rjðtÞaj; ð7Þ

where N = 40 is the total number of action neurons. This decision making mechanism allows

the agent to move in any direction, making the action space effectively continuous.

Navigation. Once action a(t) has been determined, the update for the position of the

agent is

DxðtÞ ¼

aðtÞ; if xðtþ 1Þ within the boundaries:

aðtÞ � 2 aðtÞ �
xðtÞ
jjxðtÞjj

� �
xðtÞ
jjxðtÞjj

otherwise:

8
><

>:

The agent therefore normally moves with instantaneous velocity a(t). If the agent encoun-

ters the boundary of the arena, its direction vector is reflected in the opposite direction. To

avoid large boundary effects, the feed-forward weights between place cells on the boundaries

and action neurons that code for a direction aj outside of the arena are set to zero.

The agent is free to explore the environment for a maximum duration of Tmax = 15 s. If it

finds the reward at a time trew< Tmax, the trial is terminated earlier, precisely at time t = Trew
+ 300 ms. The extra time mimics consummatory behavior, navigation is thus paused during

this interval (i.e. place cells activity is set to zero). If the agent encounters the wrong well, the

trial is terminated immediately. The effect of the inter-trial interval is modelled by resetting all

activity in the action and place cells, but not in the weights.

Simulation of the open-field spatial learning task. The model was run for 8 × 10 = 80

trials to simulate training for ten trials/day over 8 days of initial place learning, and for

12 × 10 = 120 trials to simulate ten trials/day over 12 days of reversal learning. The two well

locations were simulated as two circles placed opposite to each other in the inner quadrants of

the circular field centered at c1 = (−0.43, 0.43) and c2 = (0.43, −0.43) with radius r1 = 0.3. For

the first 80 trials, c1 was the location of the baited well, and in the next 120 trials, the baited

well was at c2. The agent began each trial from the outer quadrants of the field, to the left (-1.6,

-1.2) or right (1.6, 1.2) of the baited quadrants in a random order.

Sequentially neuromodulated plasticity (sn-Plast). The synaptic weights between place

cells and action neurons play a fundamental role in defining a policy for the agent. Plasticity is

essential for the agent to learn to navigate the open field and is implemented in a way that fol-

lows the experimental results presented in Brzosko et al. 2015 and 2017 [16, 20]. The synaptic

changes combine the modified STDP rule and an eligibility trace that allows for delayed

updates. The total weight update is

DwjiðtÞ ¼ ZA
��X

�t i2F
pc
i

X

�t j2Faj

Wð�t j � �t iÞ
�
� c
�
ðtÞ;

ð8Þ

where η is the learning rate, A emulates the effect of the different neuromodulators,W is the

STDP window and ψ is the eligibility trace. Fpci and Faj are sets containing respectively �t i and �t j,
the arrival times of all spikes fired by place cell i and action neuron j.
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The basic STDP window is

WðxÞ ¼ e�
jxj
t ; ð9Þ

with τ = 10 ms. This function is always symmetric and positive, but the sign of the final weight

change is determined by the neuromodulators at the synapse:

A ¼

� 1 � DA; þACh

0 � DA; � ACh

1 þDA;�ACh:

8
>>><

>>>:

ð10Þ

Dopamine is assumed to be released simultaneously in all synapses whenever a reward is

delivered. All weight changes are gated by neuromodulation (A = 0 when all neuromodulators

are absent). The learning rate η also depends on neuromodulators:

Z ¼

ZACh � DA; þACh

0 � DA; � ACh

ZDA þDA;�ACh:

8
>>><

>>>:

ð11Þ

The weight change due to STDP is convoluted with an eligibility trace ψ, modelled as an

exponential decay cðtÞ ¼ e� a
t
teYðtÞ, with τe = 2 s and

a ¼

(
1 þDA

0 � DA:
ð12Þ

The eligibility trace keeps track of the active synapses and allows for a delayed update of the

synaptic strength. Variable α in the exponent acts as a flag and ensures that the eligibility trace

is active with dopamine only (α = 1).

Grid search. We varied ηDA from 7.5 × 10−4 to 2.75 × 10−3 in steps of 2 × 10−4. At every

level of ηDA, ηACh was varied such that the ratio of ηACh:ηDA increased from 0 to 1, in steps of

0.02. This produced 561 combinations of the 2 parameters. We ran 100 iterations at each

parameter setting.

Model fitting and parameter estimation. The fit of the model for a particular combina-

tion of parameter values at each iteration, yn ¼ ðZ
ACh
n ; ZDAn Þ, was quantified using the RMSE,

comparing the percentage of successful trials per day. The best fit parameters were averaged

across the 100 iterations to yield estimates of ηACh and ηDA for each mouse.

Supporting information

S1 Fig. Immunostaining of light-activated archaerhodopsin (ArchT) in a coronal slice of

the medial septum. (A) Selective expression of ArchT-eGFP in cholinergic neurons in ChA-

T-Ai40D (choline acetyltransferase-Cre transgenic line) mice. DAPI (blue), ChAT (red) and

eGFP-(green)-positive immunostaining. Scale bar: 40μm. (B) Histological reconstructions of

the location of the implanted optic fibers.

(TIF)

S2 Fig. Unique intercepts and slopes estimated for each mouse by fitting a logistic regres-

sion to the behavioural data. A mixed effects logistic regression (Fig 3A; Eq 2) was used to

predict the probability of a mouse locating the reward on each trial. For each mouse, a unique
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intercept (baseline performance on day 1) and slope (overall rate of learning across trials) were

estimated. Shown here are the subject-specific deviations from the group-level intercepts and

slopes.

(TIF)

S3 Fig. Effect of acetylcholine and dopamine levels on learning behaviour in the model. (A)

Heat map showing the number of days to reach an 80% success rate during the initial learning

and reversal learning stages, for different combinations of acetylcholine (shown as a ratio of

ηACh/ηDA at each level of ηDA) and dopamine values. Darker shades indicate poorer perfor-

mance. Note how for ηACh/ηDA< 0.4, increasing ηACh quickens reversal learning, with little

effect on initial learning. (B) Predicted probability of the agent locating the correct well during

initial learning and reversal learning, at different levels of acetylcholine. At low levels of acetyl-

choline, the lack of cholinergic-facilitated depression causes the agent to persist in a previously

learnt path and slows reversal learning. On the other hand, very strong cholinergic depression

relative to dopaminergic potentiation hinders the acquisition of the task as relevant synapses

are only weakly potentiated, and the agent learns poorly.

(TIF)

S4 Fig. Estimated ηACh and ηDA in mice from model-fitting. Parameter estimates (boot-

strapped mean and confidence intervals) of mouse-specific acetylcholine and dopamine levels

for the three groups, overlaid on the heatmap of simulated performance as shown in S3 Fig.

(TIF)

S5 Fig. Model fits to individual mice in the control GFP group. Model fits to individual

mice in the GFP group. Each panel displays data from a single mouse. Panels are ordered

according to the number of days taken to reach 80% performance during reversal, from the

fastest (top left) to slowest (bottom right) performers. Points in each panel are the percentage

of correct trials across days (8 days of initial learning followed by 12 of reversal learning).

Overlaid is the model fit (line)—performance of the agent (averaging over 100 fits for each

mouse). Error bars represent SEM. (inset) Parameter estimate (x-coordinate, ηDA; y-coordi-

nate, ηACh) when the model was fit either to initial learning (grey shaded area) or to reversal

learning data. Lines connecting the estimates show how the values of neuromodulators change

across the two task stages.

(TIFF)

S6 Fig. Model fits to individual mice in the control light-off group. Model fits to individual

mice in the light-off group. Each panel displays data from a single mouse. Panels are ordered

according to the number of days taken to reach 80% performance during reversal, from the

fastest (top left) to slowest (bottom right) performers. Points in each panel are the percentage

of correct trials across days (8 days of initial learning followed by 12 of reversal learning).

Overlaid is the model fit (line)—performance of the agent (averaging over 100 fits for each

mouse). Error bars represent SEM. (inset) Parameter estimate (x-coordinate, ηDA; y-coordi-

nate, ηACh) when the model was fit either to initial learning (grey shaded area) or to reversal

learning data. Lines connecting the estimates show how the values of neuromodulators change

across the two stages of the task. Note how mouse “J9” did not show a strong preference for

the old reward location on the first day of reversal, and was slow in reversal learning, but had

high estimated ηACh.
(TIFF)

S7 Fig. Model fits to mice receiving optogenetic inactivation of cholinergic neurons (light-

on, ACh-suppressed). Model fits to individual mice in the light-on group. Each panel displays
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data from a single mouse. Panels are ordered according to the number of days taken to reach

80% performance during reversal, from the fastest (top left) to slowest (bottom right) perform-

ers. Points in each panel are the percentage of correct trials across days (8 days of initial learn-

ing followed by 12 of reversal learning). Overlaid is the model fit (line)—performance of the

agent (averaging over 100 fits for each mouse). Error bars represent SEM. (inset) Parameter

estimate (x-coordinate, ηDA; y-coordinate, ηACh) when the model was fit either to initial learn-

ing (grey shaded area) or to reversal learning data. Lines connecting the estimates show how

the values of neuromodulators change across the two stages of the task. Subjects “J2”, “53BR”,

and “R5” did not show a strong preference for the old reward location on the first day of rever-

sal, and were unable to learn the second reward location. Estimated ηACh in these subjects was

high despite the poor reversal learning performance.

(TIFF)

S8 Fig. Behaviour reproduced from parameters fitted to individual mice. The model was fit

to individual mice by selecting the set of parameters with the lowest RMSE for each iteration

of model simulation. Parameters and agent behaviour (percentage of successful trials per day)

were averaged across 100 iterations to yield final estimates for each mouse. This process of

model-fitting reproduced the two behavioural measures in the experiment. (A) Successful tri-

als across days averaged over number of fitted subjects in each group. As described in the main

text, applying the logistic regression from the experimental data analysis revealed a selective

effect of group-type only in the reversal learning stage (GFP vs light-on, 71 out of 100 model

iterations; light-off vs light-on, 81 out of 100 model iterations). (B) Comparison of the number

of days to attain and maintain an 80% success rate. The difference between control and light-

on groups was larger in the reversal stage compared to the between-group differences in the

initial learning stage.

(TIF)

S9 Fig. Parameter recovery. To establish parameter identifiability, we fit the model to 200

agents simulated from randomly-drawn parameter sets in the grid search. The estimated

parameters are plotted against the values of the true parameters. Dotted line is the line of

unity.

(TIF)

S10 Fig. Testing group differences in acetylcholine values in simulated draws. (A) Sets of

parameters for the number of mice in the control groups (GFP, 8; light-off, 16) were drawn

from the parameter space bordered in the solid black outline. 21 sets for light-on mice were

drawn from an area (dashed outline) with reduced acetylcholine. (B) Group differences in

parameter values were tested using the Kruskal-wallis test. Shown here are the results for 10

samples.

(TIF)

S11 Fig. Parameter estimates across initial and reversal learning. Here the model was fitted

separately to data in each task stage, to see how well acetylcholine and dopamine values corre-

late across initial (points in grey area) and reversal learning. For most slow reversers (bottom

panels), there appears to be a reduction in acetylcholine across initial and reversal learning.

However, three light-on mice which did not show a strong preference for the old reward loca-

tion on the first day of the reversal had high estimated ηACh. These trends are also shown

matched to individual mice in the inset panels of S5–S7 Figs.

(TIF)

PLOS COMPUTATIONAL BIOLOGY The functional role of sequentially neuromodulated plasticity in behavioural learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009017 June 10, 2021 18 / 22

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009017.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009017.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009017.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009017.s011
https://doi.org/10.1371/journal.pcbi.1009017


S12 Fig. Effect of agent speed on performance. The effect of increasing agent speed on initial

learning and reversal learning, at different acetylcholine levels, when ηDA = 0.00135.

(TIF)
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35. Frémaux N, Sprekeler H, Gerstner W. Reinforcement learning using a continuous time actor-critic

framework with spiking neurons. PLoS Computational Biology. 2013; 9(4). https://doi.org/10.1371/

journal.pcbi.1003024 PMID: 23592970

36. Cachope R, Mateo Y, Mathur BN, Irving J, Wang HL, Morales M, et al. Selective activation of cholinergic

interneurons enhances accumbal phasic dopamine release: Setting the tone for reward processing.

Cell Reports. 2012; 2(1):33–41. https://doi.org/10.1016/j.celrep.2012.05.011 PMID: 22840394

37. Patel JC, Rossignol E, Rice ME, MacHold RP. Opposing regulation of dopaminergic activity and explor-

atory motor behavior by forebrain and brainstem cholinergic circuits. Nature Communications. 2012;

3:1–10. https://doi.org/10.1038/ncomms2144 PMID: 23132022

38. Bortz DM, Grace AA. Medial septum differentially regulates dopamine neuron activity in the rat ventral

tegmental area and substantia nigra via distinct pathways. Neuropsychopharmacology. 2018; 43

(10):2093–2100. https://doi.org/10.1038/s41386-018-0048-2 PMID: 29654260

39. Rescorla RA, Wagner AR. A theory of pavlovian conditioning: variations in the effectiveness of rein-

forcement and nonreinforcement. In: Black AH, Prokasy WFE, editors. Classical Conditioning II: Cur-

rent Research and Theory. New York: Appleton-Century-Crofts; 1972. p. 64–99.

40. Foster DJ, Morris RGM, Dayan P. A model of hippocampally dependent navigation, using the temporal

difference learning rule. Hippocampus. 2000; 10(1):1–16. https://doi.org/10.1002/(SICI)1098-1063

(2000)10:1%3C1::AID-HIPO1%3E3.0.CO;2-1 PMID: 10706212

41. Samsonovich AV, Ascoli GA. A simple neural network model of the hippocampus suggesting its path-

finding role in episodic memory retrieval. Learning and Memory. 2005; 12(2):193–208. https://doi.org/

10.1101/lm.85205 PMID: 15774943

42. Matsumoto J, Makino Y, Miura H, Yano M. A computational model of the hippocampus that represents

environmental structure and goal location, and guides movement. Biological Cybernetics. 2011; 105

(2):139–152. https://doi.org/10.1007/s00422-011-0454-6 PMID: 21845399

43. Geerts JP, Chersi F, Stachenfeld KL, Burgess N. A general model of hippocampal and dorsal striatal

learning and decision making. Proceedings of the National Academy of Sciences of the United States of

America. 2020; 117(49):31427–31437. https://doi.org/10.1073/pnas.2007981117 PMID: 33229541

44. Pennartz CMA, Ito R, Verschure PFMJ, Battaglia FP, Robbins TW. The hippocampal-striatal axis in

learning, prediction and goal-directed behavior. Trends in Neurosciences. 2011; 34(10):548–559.

https://doi.org/10.1016/j.tins.2011.08.001 PMID: 21889806
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