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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:The speed of muscle contraction is related to body size; muscles in larger species contract

at slower rates. Since contraction speed is a property of the myosin isoform expressed in a

muscle, we investigated how sequence changes in a range of muscle myosin II isoforms

enable this slower rate of muscle contraction. We considered 798 sequences from 13 mam-

malian myosin II isoforms to identify any adaptation to increasing body mass. We identified

a correlation between body mass and sequence divergence for the motor domain of the 4

major adult myosin II isoforms (β/Type I, IIa, IIb, and IIx), suggesting that these isoforms

have adapted to increasing body mass. In contrast, the non-muscle and developmental iso-

forms show no correlation of sequence divergence with body mass. Analysis of the motor

domain sequence of β-myosin (predominant myosin in Type I/slow and cardiac muscle)

from 67 mammals from 2 distinct clades identifies 16 sites, out of 800, associated with body

mass (padj < 0.05) but not with the clade (padj > 0.05). Both clades change the same small

set of amino acids, in the same order from small to large mammals, suggesting a limited

number of ways in which contraction velocity can be successfully manipulated. To test this

relationship, the 9 sites that differ between human and rat were mutated in the human

β-myosin to match the rat sequence. Biochemical analysis revealed that the rat–human

β-myosin chimera functioned like the native rat myosin with a 2-fold increase in both motility

and in the rate of ADP release from the actin–myosin crossbridge (the step that limits con-

traction velocity). Thus, these sequence changes indicate adaptation of β-myosin as spe-

cies mass increased to enable a reduced contraction velocity and heart rate.

Introduction

Proteins can adapt over time, tuning their function to the specific needs of the organisms in

which they are expressed. That is, the same protein expressed in different organisms

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001248 June 10, 2021 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Johnson CA, McGreig JE, Jeanfavre ST,

Walklate J, Vera CD, Farré M, et al. (2021)
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(orthologues) may have distinct properties to better suit the needs of each organism. This is

well established for muscle contraction where the maximum shortening velocity, V0, is a prop-

erty of the myosin isoform expressed in the tissue. V0 varies more than 5-fold for muscles

expressing the same myosin isoform in different mammals. For example, the V0 of rat and

human Type I/β-cardiac myosin (hereafter referred to as β-myosin) are 1.42 and 0.33 μm s−1

half sarcomere−1, respectively [1]. Across a range of mammals, V0 for each muscle myosin iso-

form is inversely related to the size of the mammal; larger mammals have slower contracting

muscles [1,2]. This can most commonly be observed in cardiac tissue where heart rate (related

to the contraction velocity, see below) varies widely and is slower for larger mammals [3].

Since V0 is a property of the myosin isoform expressed in the tissue, there are expected to be

changes in the myosin sequence that have resulted in a myosin with the needed velocity. However,

changes in sequence may be occurring for reasons other than adjusting the velocity. Here, we ask

if it is possible to define which sequence changes tune V0 for an individual myosin isoform.

Several attempts have been made to identify the sequence changes associated with changes

in the myosin isoforms and the associated changes in shortening velocity. These used the rela-

tively small numbers of sequences available at the time or considered the differences between

paralogues of muscle myosin IIs. The studies focused on nonconservative substitutions in

sequence [4] or on the variable surface loops [2,5] and identified areas of interest, but did not

locate specific residues nor how they might influence contraction velocity. Large numbers of

mammalian myosin sequences are now available from various genome projects. Using this

large data set, we test the hypothesis that muscle myosin-II isoforms from mammals have

adaptations in protein sequence associated with mean body mass and V0.

We have examined 798 mammalian myosin II sequences, from 13 myosin II isoforms and

find that the myosin isoforms found in adult sarcomeric muscle (Type II fast muscle isoforms

IIa, IIb, and IIx and β; see Table 1 for definition of isoforms) have a much higher variation in

sequence than the non-muscle myosins (non-muscle A [NMA] and non-muscle B [NAU : PleasenotethatNMBhasbeendefinedasnon � muscleBinthesentenceWehaveexamined798mammalian::::Pleasecheckandcorrectifnecessary:MB]).

This is consistent with an adaptation of contraction velocity to body mass occurring only in

the adult muscle myosins and not in the non-muscle cellular myosin which are unaffected by

overall species size.

We go on to examine in greater detail the sequence differences within the more widely

studied mammalian β-myosin (MYH7, expressed in slow Type I and cardiac muscle) to estab-

lish if it is possible to define a relationship between amino acid sequence and velocity of con-

traction. We examine 67 mammalian β-myosin sequences from 2 clades and identify a group

of 16 amino acids which have the strongest association with the size of the mammal and not

the clade. Four are in the hypervariable regions (Loop2 and the N-terminus). Of the 12

remaining amino acids, 9 differ between human and rat β-myosin. We test our hypothesis that

these 9 residues influence V0 through the construction and subsequent biochemical characteri-

sation of a rat–human β-myosin chimera (hereafter referred to as chimera) in which the 9 rat

residues are exchanged into the human β-myosin.

Results

All myosin II isoforms contain a motor domain and a tail domain. The N-terminal globular

motor domain (approximately 800 amino acids) contains all of the requirements for motor

activity, while the carboxyl-terminalAU : PleasenotethatasperPLOSstyle; thetermcarboxyl � terminalshouldbeusedwhenitfunctionsasanadjectiveinasentence:tail domain (approximately 1,200 amino acids, almost

entirely a single α helix) drives dimerisation and assembly into myosin filaments. Here, we

focus on the motor domain but also report a summary of a similar analysis of the tail domain.

Our analysis considered 13 different mammalian myosin II isoforms (Table 1), the 5 main

adult sarcomeric muscle isoforms (3 fast muscle—IIa, IIb, and IIx and 2 cardiac isoforms, α
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and β, also known as the slow skeletal isoform), 2 relatively rare adult sarcomeric forms (extra-

ocular and slow tonic), 2 developmental isoforms (perinatal and embryonic), a smooth muscle

isoform, and 3 non-muscle isoforms (NMA, NMB, and non-muscle C [NAU : PleasenotethatNMChasbeendefinedasnon � muscleCinthesentenceOuranalysisconsidered13different::::Pleasecheckandcorrectifnecessary:MC]). The non-mus-

cle isoforms provide a negative control, as they act only at the cellular level and are therefore

unlikely to be influenced by body mass. We identified all available complete myosin II

sequences of these 13 myosin isoforms (see Materials and methods; S2 Table). This resulted in

a total of 798 sequences, with an average of 61 sequences per isoform (range 41 to 74

sequences; Table 1).

Adaptation of the myosin II motor domain to increasing body mass

To consider how the motor domain of myosin II isoforms may have adapted to increasing

body mass, we investigated whether there was a correlation between sequence divergence and

body mass. Mass values were collected from the literature, and we report the arithmetic mean

of the range of values reported for each species. The range of masses covers more than 6 orders

of magnitude from 6 g to 10,000 kg (S1 Table). Being one of the smallest species, the mouse

was selected as a reference. The sequence identity of each other species with the mouse

sequence was plotted against the species body mass (see Fig 1, Table 1, and S1 Fig). The analy-

sis can alternatively be done using the myosin sequence from largest species, but this is not

always the same for each myosin II data set. We therefore used the commonly available mouse

sequences throughout. Sequence identity rather than conservation was used because within

each myosin isoform, a low level of divergence was expected (>95% identity). As such, even

conservative changes of amino acids that tune the function of the protein may be relevant to

adaptation to body mass. For example, a 2-fold change in a rate constant that controls shorten-

ing velocity would according to transition state theory require only a change of the order of 1

kcal/mol in the activation energy. This is comparable to a single hydrogen bond or van der

Waals interaction (see S1 Text and [6,7]).

Table 1. Myosin II isoforms considered.

Gene name Heavy chain Muscle type Isoform Short name No complete sequences Motor Tail

Major adult sarcomeric muscle myosins R2 Gradient (%/log(kg)) R2 Gradient (%/log(kg))

MYH1 MyHC-1 Fast Skeletal IIb IIb 51 0.48 −0.52 ± 0.20 0.58 −0.75 ± 0.12

MYH2 MyHC-2 Fast Skeletal IIa IIa 77 0.44 −0.53 ± 0.10 0.35 −0.43 ± 0.11

MYH4 MyHC-4 Fast Skeletal IID/X IIx 41 0.84 −0.84 ± 0.11 0.85 −0.68 ± 0.09

MYH6 MyHC-6 Cardiac α-cardiac α 65 0.3 −0.36 ± 0.29 0.35 −0.31 ± 0.11

MYH7 MyHC-7 Cardiac/slow β-cardiac β 67 0.63 −0.72 ± 0.11 0.03 −0.06 ± 0.16

Specialist adult sarcomeric myosins

MYH13 MyHC-13 Fast Extraocular EXOC 60 0.18 −0.32 ± 0.10 0.21 −0.72 ± 0.2

MYH7b MyHC-7b Slow Slow tonic SlowT 72 0.05 −0.08 ± 0.06 0.03 −0.063 ± 0.06

Developmental muscle isoforms

MYH3 MyHC-3 Developmental Embryonic EMB 60 0.13 −0.09 ± 0.04 0.22 −0.31 ± 0.12

MYH8 MyHC-8 Developmental Perinatal PERI 54 0.01 −0.04 ± 0.11 0.21 −0.28 ± 0.12

Non sarcomeric myosins

MYH9 MyHC-9 Non-muscle Non-muscle A NMA 59 0.03 −0.033 ± 0.036 0.14 −0.14 ± 0.06

MYH10 MyHC-10 Non-muscle Non-muscle B NMB 69 0.11 0.042 ± 0.022 0.09 −0.08 ± 0.05

MYH11 MyHC-11 Smooth muscle Smooth muscle SM 71 0.52 −0.37 ± 0.07 0.08 −0.17 ± 0.09

MYH14 MyHC-14 Non-muscle Non-muscle C NMC 52 0.10 −0.21 ± 0.11 0.203 −0.65 ± 0.35

MyHC 13 and 7b are labelled “sAU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:pecialised” because unlike the other sarcomeric forms they are not found alone in a specific muscle type but only in combination with

other isoforms.

https://doi.org/10.1371/journal.pbio.3001248.t001
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In Fig 1, the sequence identity versus mass is plotted for 4 representative myosin motor

domains: the slow/cardiac β-myosin, the fast muscle IIx, the non-muscle IIa, and the embry-

onic isoforms. Plots for the other 9 isoforms are presented in S1 Fig. The plots in Fig 1 show

that both adult sarcomeric forms β and IIx have a strong correlation with body mass (R2 = 0.63

Fig 1. Sequence Identity (%ID) vs. Mass (kg) for myosin II motor domains. (A–D) Sequence Identity (%ID) vs.

Mass (kg) for the motor domains of 4 myosin II isoforms: EMB, NMA, β-myosin, and IIx. Symbols indicate the clade

that each species belongs to: grey squares (Euarchontoglires), black triangles (Laurasiatheria), and clear circles

(Afrotheria and Metatheria). Each plot has been fitted with a robust linear regression. Sequence identity is pairwise to

the mouse. The R2 value and slope are shown on each plot. (E) The relationship between body mass and sequence

divergence for the 13 myosin II motor domains. Values above the bar are the R2 values. The error bars show the error

of the gradient. Raw data files are available at Figshare. EAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutFigs1and3andTable3:Pleaseverifythatallentriesarecorrect:MB, embryonic; NMA, non-muscle A; NMB, non-muscle B;

NMC, non-muscle C.

https://doi.org/10.1371/journal.pbio.3001248.g001
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and 0.838, respectively) with gradients of −0.72 and −0.84 percent divergence per log kg. The

data for all 13 isoforms are summarised in Fig 1E and Table 1. Based on the rate of divergence

with body mass, the 13 myosin II isoforms form 3 groups. The first group with gradients

>0.5% per log kg body mass contains 4 of the 5 main adult sarcomeric muscle isoforms, IIb, β,

IIa, and IIx isoforms, with the IIb isoform plots showing a wider scatter in data as indicated in

the 20% to 40% error in the gradient value. For a myosin motor domain of approximately 800

amino acids, a gradient of>0.5% per log kg body mass means >4 amino acids change for each

10-fold increase in body mass. At the other extreme, 5 of the isoforms (slow tonic, embryonic,

perinatal, NMA, and NMB) exhibit little divergence of sequence and no correlation with body

mass (slope < 0.1, R2 < 0.13), i.e., <1 amino acid per log kg increase in mass.

TAU : PleasecheckwhethertheeditstothesentenceTheremaining4isoforms:::arecorrect; andprovidecorrectwordingifnecessary:he remaining 4 isoforms (α-myosin, smooth muscle, extraocular, and NMC) are interme-

diate between the 2 groups with a lower rate of sequence divergence with body mass (−0.21 to

−0.36) with only the smooth muscle isoform having an R2 > 0.3 (0.498). Note the very large

scatter in the data for α-cardiac myosin (S1D Fig gradient −0.36 ± 0.29).

A similar range of gradients (−0.75 to −0.05) and R2 values (0.85 to 0.016) were observed

for the tail domains, but only the adult sarcomeric myosins had R2 values greater than 0.3

(Table 1, S1 Fig), and for these sarcomeric myosins, the gradients and R2 values were similar

for the motor and tail domains. An intriguing exception was the β-myosin isoform, where

there was no correlation between size and sequence variation in the tail (gradient −0.06%/log

(kg), R2 0.03), showing that the tail is far more highly conserved than the motor and more

highly conserved than for other sarcomeric myosin tail domains.

Given that there may be some error associated with the species body mass, we tested what

effect this may have on the results of this analysis. To do this, we randomly modified the body

mass of each species such that they were varied in the range 80% to 120% of the average value

being used. This was repeated 1,000 times, each time reperforming the analysis. Our results

demonstrate that the results are stable to such errors (S1 Table).

Species and gene trees were generated for the sarcomeric myosin isoforms (Fig 2A, S6 Fig).

To exclude the possibility that the observations for adult sarcomeric myosins could simply be

the result of phylogenetic relationships between the sequences, we used Felsenstein’s phyloge-

netically independent contrasts (PICs; [8]) method to exclude the phylogenetic relationship as

a factor for the correlation between sequence divergence and body mass. For β-myosin, we still

observe a significant correlation (p = 0.06 × 10−4). For the other 3 main adult isoforms (IIa,

IIb, and IIx) where a significant correlation had been observed, only IIx was significant

(p = 0.009), while IIa and IIb were not (p = 0.54 and 0.1, respectively). We also performed the

equivalent analysis for the tail domain data (S1 Table) and observed a p-value of 0.29 for the β-

myosin, indicating that variation in the tail domain is explained by phylogenetic relationships.

Adaptation of the β-myosin motor domain to reduce contraction velocity

as species size increased

Of the adult sarcomeric myosin isoforms, β-myosin is unique as it is the only slow muscle

myosin, and it is expressed in few tissues, primarily slow, Type 1 muscle, and in cardiac muscle

(it is the dominant isoform expressed in the ventricle the heart of mammals larger than 1 kg),

and, as result of both of these, it performs the same specific function in different species. The

other striated muscle isoforms are expressed in multiple tissues and may be involved in multi-

ple different functions.

The negative correlation between species heart rate and body mass is well established across

a wide range of species [3]. Given our observation that β-myosin shows a strong association of

sequence change with body mass, it is possible that there has been selection pressure on this

PLOS BIOLOGY Sequence changes that adjust myosin II muscle contraction velocity

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001248 June 10, 2021 5 / 24

https://doi.org/10.1371/journal.pbio.3001248


isoform to enable a change in contraction velocity, which is associated with the change in

heart rate as body mass has increased. However, the observation of small correlation between

sequence and body mass for the α isoform implies that this relationship between body mass

and sequence, if present, is less dominant for α than for β. It is possible that the role of β as the

only slow skeletal muscle isoform is more significant in defining the relationship to body mass

than its role in cardiac muscle. This would make it similar to the fast skeletal muscle isoforms

(IIa, IIb, and IIx) which show strong dependence of sequence on body mass.

In addition, the rate constant controlling ADP release is easily measured for β-myosin and

limits contraction velocity for this isoform (Table 2 and references therein). Therefore, all fur-

ther analyses focus on variation in β-myosin.

The location of sequence changes in the motor and tail domains were examined to evaluate

if particular structural features of the domains are especially variable (Fig 3). For each residue,

Fig 2. Residue mass transition plots for 4 representative amino acid sites. (A) Species tree of organisms used in this analysis is shown, with the amino acids present

in each species at the 4 sites and the mass of the organism displayed adjacent to it. Darker reds in the mass column are indicative of a greater mass value. In this tree,

species from the Euarchontoglires clade are highlighted blue, and species from Laurasiatheria are highlighted pink. (B) Binomial regression mapping the transition of

the most frequent amino acid at positions in the motor region of β-myosin to the second most frequent amino acid at that position. The residue numbering is that of

the human β-cardiac myosin. The blue squares are Euarchontoglires, and the triangles are Laurasiatheria. The p-value with each plot arises from a test of the null

hypothesis that amino acid type is unrelated to mass. Raw data files are available at Figshare.

https://doi.org/10.1371/journal.pbio.3001248.g002
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we considered the frequency of the consensus amino acid (black lines) and the number of dif-

ferent amino acids present at each position (red lines). In the β-myosin motor domain, of the

800 amino acids, 632 were totally conserved, and a further 114 sites were highly conserved

(i.e., fewer than 4/67 species have a different amino acid; for 69 of these sites, only 1 species

had a different amino acid). These changes occurred in so few species that no conclusions

could be drawn about the driver for these changes. For 52 positions, the consensus amino acid

was present in less than 90% of the sequences, thus these positions with more frequent alter-

nate amino acids are of greater interest (highlighted in Fig 3 by crossing the dotted line).

The sequence variations are scattered throughout the motor both within and outside the

major functional regions of the motor domain with no identifiable pattern to the location of

the changes (Fig 3). High levels of variation are found in the N-terminal domain [1–59] and

near the surface loops, Loop 1 (near residue 210) and Loop 2 (near 630). These loops are

known to be hypervariable across the larger myosin family.

The 52 common sites of variation between species were of interest to compare with amino

acids in human β-myosin implicated in myopathies (hypertrophic cardiomyopathies [HCMs],

dilated cardiomyopathies [DCMs], and other cardiomyopathies as orange, magenta, and green

dots in Fig 3 [14]). More than half the sites in the motor domain (approximately 500/800) have

been found to have mutations linked to myopathies, but only 20 out of the 52 sites identified

to differ among mammals are common between the 2 groups. Of these, only 1 E44D shares the

same mutation; in all other cases, the substituted amino acid is different. Thus, there is no sim-

ple correlation between the 2 groups of positions with changed sequences. This is illustrated by

the converter domain (710 to 778, region k in Fig 3), which is enriched in myopathy mutations

(59 reported mutations at 35 sites in the 68 residues of the converter domain), but there are

very few sequence changes between species in this region with only 1 position that differs in

more than 2 species (Gly747, replaced by Ser in 7 species).

Further, analysis of gnomAD [15] revealed that there is very little variation in β-myosin

within healthy human populations (Fig 3), thus suggesting that the sequence is highly con-

strained within human but varies between species. This constraint in humans for the MYH7

gene has been analysed in several papers and in databases [16].

Table 2. The relationship between the predicted and measured parameters for 4 slow/beta cardiac myosin isoforms.

Slow muscle/β-cardiac myosin Measured Predicted τ (sec)

k-ADP (s−1) V0 (μm/sec/half sarcomere) τADP = 1/k-ADP (msec) τVo = d/V0 (msec) Ratio

τADP/τVo

Rat 119 1.42 8.4 7.04 1.19

Rabbit 63 0.67 15.9 14.9 1.06

Human 30�AU : Pleaseprovideafootnoteforthedesignator � inTable2:0.33 33 30.3 1.08

Cow 27 0.27 37 37.0 1.00

In terms of the actin myosin crossbridge cycle, the dominant model proposes that the maximum velocity (V0) is limited by the lifetime of the strongly attached force

holding state (τ), the “detachment limited model” ([9], V0 = d/τ, where d is the working stroke of the crossbridge; assumed here to be 5 nm [7]). For the mammalian, β-

myosin isoform, it is well established that τ is defined by the rate constant controlling ADP release k-ADP = 1/τ [10–12]. Thus, values of k-ADP measured using myosin

motor domains isolated from β-cardiac/slow muscle of a mammal predict remarkably accurately the maximum shortening velocity of a muscle fibre taken from the

same tissues.

Experimental data were collected at 100 mM KCl and 12˚C.

k-ADP values for bovine, rabbit, and human are from Deacon et al. [10], the rat from this study. � the value for human k-ADP at 12˚C, was estimated from an Arrhenius

plot of values between 20 and 10˚C. These values are consistent with rat and porcine β data collected using the 2-headed myosin fragment, heavy meromyosin carried

out at 100 mM KCl and 15˚C.

Vo data for rat, rabbit, and human are from Pellegrino et al. [1], and bovine is from Toniolo et al. [13].

https://doi.org/10.1371/journal.pbio.3001248.t002
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Distinguishing between variation due to clade and body mass in β-myosin. Change in

sequence can be driven by several things. Here, we identified positions of variation that are

associated with body mass and also compared this to variation that is clade specific between

Fig 3. Location of human variation, cardiomyopathy-associated variants, and non-conserved residues for the β
isoform. Blue lines show the frequency of missense variation present in the gnomAD. Circles indicate the residue

position of variants associated with cardiomyopathy (HCMs in orange, DCMs in magenta, and other in green [14]).

Black lines show the frequency with which the consensus amino acid occurs at each residue position in the sequence.

Red lines show the number of different amino acids occurring at that position in the sequence (minimum 1). The

dashed grey lines indicate the position at which more than 10% of sequences contain an alternate amino acid. Key

functional areas of the sequence as listed Motor domain: a. N-terminus 1–36, b. SH3 domain 37–75, c. Loop 1 201–

215, d. Drosophila exon 7 region 300–335, e. Loop 4 368–372, f. Helix-O 426–440, g. Relay helix/loop, h. Loop 3 558–

573, i. Loop 2 615–637, j. SH helices 680–707, k. Converter 710–778, l. IQ 781–810. B. Tail. S2, subfragment 2 coiled-

coil; LMM, light meromyosin filament forming region. Raw data files are available at Figshare. DCM, dilated

cardiomyopathy; gnomAD, Genome Aggregation Database; HCM, hypertrophic cardiomyopathy.

https://doi.org/10.1371/journal.pbio.3001248.g003
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the 2 main clades present in the data set (Euarchontoglires and Laurasiatheria). Of the 67 com-

plete sequences examined, about half were Euarchontoglires (32, e.g., rodents and primates)

with a mass range of 0.011 to 140 kg, and half were Laurasiatheria (30, e.g., bats, ungulates, and

cetaceans) with a mass range of 0.0069 to 42,500 kg.

The 52 sites of variation that occur in>10% of species were analysed to distinguish between

changes that correlated with clade and those that correlated with body mass as illustrated in

Fig 2 for 4 sites with the remaining plots in S2 Fig. At most positions (41/52), only 2 residues

were observed at each specific site; in the small number of positions (11/52) with multiple

amino acids, only the 2 most frequent residues were considered. The identity of the 2 most fre-

quent amino acids were coded as 0 and 1 (with the amino acid more frequently present in

smaller species as 0), and a logistic regression model was fitted with log(mass) as the explana-

tory variable (Fig 2, S2 Fig; see Materials and methods) to model the transition between resi-

dues. For the 4 positions present in Fig 2, 2 had a strong correlation with species body mass

(the amino acid common in small mammals is given first) A326P and I349M; (padj << 0.01.

Note the adjusted 1% significance threshold is p = 1.92 × 10−4 and the 5% significance thresh-

old is p = 9.62 × 10−4. padj will be used to indicate the adjusted significance threshold), and

each has a distinct midpoint mass for the transition between the 2 amino acids. In contrast,

I125V has a low association with mass (padj > 0.05), and M77L has an intermediate association

(padj approximately 0.05); however, both M77L and V125I have a strong association with the

clade (Fig 4). This is highlighted in Fig 2A where the 4 sequence positions are mapped against

the species tree; L77 and I125 are found almost exclusively in Laurasiatheria. In contrast, it is

clear from Fig 2A that the variation at positions 326 and 349 is not explained by the phyloge-

netic relationships, with the 2 different amino acids spread across the 2 clades.

Overall, only 12 sites had a very strong association with clade (padj� 0.01), and a further 2

were significant at the 5% level (padj� 0.05; Fig 4A). Some of these residues occur in 2 groups;

1 group in the N-terminal region (4, 11, 52, 77, 110, and 125) and 4 residues near surface loop

2 (610, 616, 627, and 629). The remaining 4 are at D208E, E509T, T585I, and I684M. A total of

20 positions were strongly associated (padj� 0.01) with body mass, and a further 4 were associ-

ated at padj� 0.05 (Fig 4B). Moreover, 9 positions were associated with both clade and body

mass (Fig 4C), which is likely to represent that the very largest mammals (body mass > 500

kg) in the data set are all Laurasiatheria (S5 Fig).

A total of 12 of the 24 sites associated with body mass occur in the known hypervariable

regions, 4 in the N-terminal region (11, 15, 52, and 65, bold residues also occur in the clade

list), 1 in loop 1 (D208E), and a further 6 occur in or near loop 2 (607, 610, 616, 627, 629, and

631)) and 1 at I684M. The remaining 12 sites group into 3 sets of 4, most with padj� 0.01 (col-

oured in Figs 4 and 5). Comparing the strength of association between clade and body mass,

these 12 sites are strongly associated with body mass but not with clade (Fig 4C). Hence, we

propose that these 12 positions are likely to be important in determining the β-myosin velocity

of contraction. At 8 of the 12 positions, only 2 amino acids are observed, one position contains

3 amino acids, although the third is only present once (residue 366). Multiple amino acids [4–

7] were observed at the remaining 3 positions. For 2 of the positions, 421 and 424, this reflects

a subset of the species from one clade having an alternate amino acid in some of the larger spe-

cies (see S3 Fig).

The first group of residues is in a region 331 to 371 (orange residues in Figs 4–6). One resi-

due, 366, is just before the actin-binding loop known as the cardiomyopathy loop. The remain-

ing 3 residues are adjacent to the region of Drosophila myosin II coded by exon 7 (and the

“linker region”). This region is one of 4 exons in the single myosin II gene of Drosophila which

are alternately spliced to generate all isoforms of myosin II in Drosophila [20]. We have previ-

ously shown [21] that the alternatively spliced forms of this region alter ADP release in the
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Drosophila myosin. The second set (426 to 439; residues magenta in Figs 4–6) is in a long helix

(Helix-O) in the upper 50-kDa domain that links the cardiomyopathy loop to the nucleotide

binding pocket (via switch 2). The third region (560 to 587; residues red in Figs 4 and 5) is in

the lower 50-kDa domain and residue 553 forms part of the helix–loop–helix actin-binding

motif, while 573 and 569 are part of actin-binding loop 3. The last residue 580 is on the β-

strand that follows loop 3. Thus, 4 of the 12 residues are in or close to actin-binding loops, 3

are close to a region known to influence ADP binding (the region coded by exon 7), and 4 are

on the helix that links the actin-binding site to the nucleotide pocket. It is therefore possible

that many of these residues could influence how actin binding leads to displacement of ADP.

Comparing the myopathy mutations listed by Parker and Peckham [14], 6 mutations occur

in the 16 sites we found to be associated with mass (padj < 0.05) but not with clade. Each of

these myopathy sites have a different substitution to the one found across mammals except

Fig 4. Residue mass change association with mass, clade, and each other. The association of each residue with clade

(A), mass (B), and the association of the p-values of clade vs. mass (C) are plotted. Moreover, 1% and 5% significance

thresholds are shown with the Bonferroni adjusted lines (blue and grey). The 3 groups of residues investigated are

highlighted in orange, purple, and red and labelled with the human residue numbering in each plot. Raw data files are

available at Figshare.

https://doi.org/10.1371/journal.pbio.3001248.g004

Fig 5. Location of residues switched in the chimera. Structure of human β-myosin (homology model based on Protein Databank ID 6FSA).

The actin-binding site is highlighted in brown, exon 7 in blue, the nucleotide binding site in marine blue, and the converter region in yellow. The

3 groups of residues investigated are highlighted and labelled in orange (326, 343, 349, and 366), purple (421, 424, 430, and 434), and red (553,

569, 573, and 580) in each plot, and those that were switched are underlined. The structure shown represents one of the known conformations

adopted by myosin during the turnover of ATP and is shown to illustrate the relative position of the residues of interest in relation to, e.g., actin-

and ADP-binding sites. Since the residues highlighted are not directly coupled to ADP binding, it is likely that the stability of specific

conformations and/or the transition (activation barrier) between conformations are affected by the sequence changes. For a review of the myosin

motor domain structure, see [17,18], and for a broader discussion of activation barriers and conformational changes, see S1 Text and [19]. The

table indicates the details about the 3 groups of variable residues, the adjusted probability (padj) of association with clade or mass, the log(mass) at

the midpoint of the transition of the regression line between the 2 amino acids, and the range (10%–90%) over which the transition occurs.

https://doi.org/10.1371/journal.pbio.3001248.g005
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Fig 6. Residue mass transition plots. Overlapping binomial regression mapping the transition of the most frequent amino acid at

positions in the motor region of β-myosin to the second most frequent amino acid at that position for the 12 residues of interest. The

3 groups of residues investigated are highlighted and labelled in orange (326, 343, and 366), purple (421, 424, 430, and 434), and red

(553 and 573) in each plot. The residues in black are residues of interest, but were not mutated (349, 569, and 580). The table shows
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R434K. Of the 6 sites, ClinVar [22] lists only A326P as a potential cardiomyopathy mutation.

The others are classified as benign or of uncertain significance.

Experimental testing of the computational predictions. We have previously expressed

the motor domain of human β-myosin in mouse C2C12 muscle cells and isolated the protein

using His tags attached to the co-expressed human light chain. This is currently the only way

to express mammalian striated muscle myosin motors domains but is complex and time

consuming and yields just a few mg of protein [21,23,24]. To test the hypothesis that the

highlighted group of 12 residues is responsible for a significant part of the adjustment of ADP

release rate constant, we generated a chimeric human-rat β-myosin motor domain in which

the region containing the 9 positions (of the 12) that vary between human and rat was replaced

with the amino acid sequence present in rat (A326S, S343P, L366Q, I421A, T424I, A430S,

R434K, F553Y, and P573Q—human residue number and amino acid listed first). The other 3

positions are the same in rat and human (349, 569, and 580). At residue 421, we replaced Ile

with Ala as present in rat, although Ser is present in most of the smallest mammals (see

S5 Fig).

As shown in Table 2, the velocity of contraction for β-cardiac/Type I slow muscle fibres in

rat and humans differ by a factor of approximately 4. Given that these residues have a range of

transition masses (see Fig 6 and Discussion section), the hypothesis is that each of these 9 resi-

dues will contribute a fraction of the difference between the rat and human β-myosin ADP

release rate constant, and, hence, velocity. With all 9 residues changed, our prediction was that

the differences in the rate constant would be large enough to be easily detectable.

The S1 fragment of human β-myosin and the chimera was expressed in C2C12 cells and

purified with the human essential light chain attached. Few details of the kinetic characterisa-

tion of the rat β-myosin S1 have been published [16]. The rat β-myosin S1 was therefore puri-

fied from rat soleus muscle to use as a comparator for the chimera. S4 Fig shows the

SDS-PAGE of all 3 proteins used in this study and demonstrates that all 3 proteins are pure

and contain the appropriate light chains.

As a test of the functions of the chimeric protein, the ATP-induced dissociation of the chi-

mera from pyrene labelled actin was monitored and compared to the recombinant human and

the native rat S1. A typical transient is presented (inset in Fig 7B), and the observed amplitude

of the signal change was the same for all 3 proteins. The similarity of observed amplitudes of

the pyrene signal changes for the chimera, human, and native rat proteins indicates that the

chimera binds actin and releases it on ATP binding as for the human and rat S1. This is consis-

tent with the chimera being a fully folded and active protein. A plot of the observed rate con-

stant (kobs) versus [ATP] gives a straight line which defines the apparent second-order rate

constant for the reaction (Fig 7B, Table 3) and appears the same for all 3 proteins. The

observed rate constant of this reaction has been defined for many myosins and has 2 compo-

nents, kobs = [ATP] K’1k’+2. The reaction is sensitive to both the affinity of ATP for the com-

plex (K’1) and the efficiency with which ATP induced a major conformational change in the

myosin (k’+2). This involves the closure of switches 1 and 2 onto the ATP and the opening of

the major cleft in the actin-binding site of myosin. The absence of any change in K’1k’+2 is con-

sistent with a well-preserved nucleotide pocket and a preserved communication pathway

between the ATP binding pocket and the actin-binding site.

The affinity of ADP for actin.S1 was measured in a competition assay with ATP (Fig 7C),

and the affinity of ADP for the rat actin.S1 complex (14 μM) was 2.3-fold weaker than for the

the mass and residues for species at different weights, where the bat and cow are from the clade Laurasiatheria, and the other species

are from Euarchontoglires clade. Raw data files are available at Figshare.

https://doi.org/10.1371/journal.pbio.3001248.g006
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Fig 7. In vitro analysis of the chimera, rat and human β-S1 proteins. (A) Histogram of in vitro velocity of 100

rhodamine-labelled phalloidin actin filaments moving over human β-S1 or chimera S1. The solid line shows the data

fitted to a single Gaussian curve. The mean velocity for the human β-S1 was 0.49 ± 0.028 μm s−1 and for the chimera,

0.90 ± 0.015 μm s−1. (B) The effect of ATP concentration on kobs for ATP-induced dissociation of pyrene-actin.S1. The

gradient generates a second-order rate constant of ATP binding; the values for the 3 proteins are highlighted next to

the plot. Inset shows an example transient of 50 nM pyrene actin-chimera S1 mixed with 20 μM ATP, resulting in a

fluorescence change of 26%. (C) Plot of relative observed rate constant dependence on [ADP] for the ATP-induced

dissociation of pyrene-actin.S1. A total of 50 nM pyrene-actin.S1 was mixed with 10 μM ATP and varying [ADP] (0–

100 μM). Numbers indicate the values of ADP affinity for acto.S1, KADP, for the 3 proteins. (D) To measure k+ADP,

ADP is displaced from pyrene-actin.S1.ADP complex by an excess of ATP. A total of 2 mM ATP was mixed with 250

nM S1 which was preincubated with 500 nM pyrene-actin and 100 μM ADP. k+ADP values for the 3 proteins are given

in 7D. Inset showing data on a longer log timescale showing the slow phase components of the transients. The average

values from 3 independent measurements for experiments shown in B, C, and D are summarised in Table 3. Raw data

files are available at Figshare. The inset shown in Fig 7D, a complication of the ADP displacement measurement, is that

ADP displacement from human β-myosin occurs in 2 phases (fast and slow). The fast phase corresponds with ADP

released at the end of the normal ATPase cycle, while the slow phase is a trapped ADP which is released much slower

and at a much slower rate than the overall cycling. This is therefore a dead-end side branch of the pathway commonly

seen in slow muscle and non muscle myosins [11,24,25]. The fraction of ADP trapped in this way is characteristic of

each myosin. The rat β-myosin S1 has no apparent slow phase, the human has approximately 10% of ADP released in

the slow phase, while the chimera has a larger fraction (approximately 40%) of the total ADP released in the slow

phase. The role of the substituted amino acids in the slow phase requires further study, but the reader is referred to the

literature for a broader study of this phenomena.

https://doi.org/10.1371/journal.pbio.3001248.g007

Table 3. Comparison of ATP and ADP binding parameters of native rat S1 and the C2C12 cell–expressed human β-myosin and chimera S1.

Rat native S1 Chimera S1 Human S1 Chimera/rat ratio Chimera/human ratio

ATP binding to A.S1 (μM−1s−1) 5 ± 0.16 4.5 ± 0.2 4.4 ± 0.3 0.9 1.02

ADP affinity to A.S1 (μM) 14 ± 0.09 14 ± 0.14 6.1 ± 0.7 1 2.3

ADP release from A.S1.ADP (s−1) 107.2 ± 7.3 100.7 ± 4.2 59 ± 3.3 0.94 1.71

Motility (μm.s−1) NA 0.90 ± 0.221 0.49 ± 0.129 NA 1.84

Errors reported are SEM, except for motility, which is the HWHM of the normal distribution.

Data are from 3 separate preparation of protein from either different cell pellets (expressed protein) or different soleus muscles from the rat. Experimental conditions

were 25 mM KCl, 20˚C.

HWHM, half width at half maximum; SEM, standard error of the mean.

https://doi.org/10.1371/journal.pbio.3001248.t003
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human wild-type (WTAU : PleasenotethatWThasbeendefinedaswild � typeinthesentenceTheaffinityofADPforactin:S1was::::Pleasecheckandcorrectifnecessary:) protein (6.3 μM). These values are consistent with published values

[26]. The chimera was distinct from the human S1 and indistinguishable from the rat S1. To

confirm this result, the ADP release rate constant was measured directly by displacing ADP

from actin.S1.ADP through addition of an excess of ATP. The results (Fig 7D) for human and

rat S1 are again consistent with published values with ADP, leaving the rat complex at approxi-

mately twice the rate of the human complex (107 versus 59 s−1). The chimera was indistin-

guishable from the rat S1. As predicted, the amino acids introduced into the human β-myosin

motor domain weaken ADP affinity for actin–myosin by accelerating ADP release to make the

human β-myosin S1 behave like the rat β-myosin S1.

Motor activity of the recombinant human β-myosin S1 and the chimera protein was mea-

sured using an in vitro motility assay (Fig 7A, S1 Video). This assay determines the myosin-

mediated velocities of fluorescent actin filaments moving on a nitrocellulose-coated slide sur-

face. The human WT β-myosin moved actin at a velocity of 0.49 μm.s−1, at 20˚C. For the chi-

mera, the mean filament velocity was almost 2-fold faster than human WT at 0.9 μm.s−1,

which is consistent with the approximately 2-fold increase in ADP release-rate data. Our

human S1 velocity was similar to the 0.612 μm.s−1 value reported by Ujfalusi and colleagues,

which was measured at 23˚C [27]. A similar velocity of 0.378 μm.s−1 was reported for full

length human-β myosin at 25˚C and a velocity of 0.624 μm.s−1 for the rat. This gives a rat/

human ratio of 1.65, very similar to our chimera/human ratio (1.84). The motility assay was

not performed for the rat S1 as we do not have an expression system for the protein. The native

rat S1 has only a single light chain and lacks a tag to attach the protein to the surface. The rat

protein will not therefore give a valid comparable measurement. However, it is known from

the literature (Table 2 and references therein) that the rat protein moves 3 to 5 times faster

than the human protein, depending upon the exact measurement conditions.

Discussion

The well-established observation that the muscles of large mammals contract at slower speeds

than small mammals [28] and that the maximum contraction velocity is a property of the myo-

sin isoforms expressed in the muscle [1] led us to ask if it is possible to define which amino

acid changes are responsible for the change in contraction velocity. Our analysis of a large

number of myosin II sequences indicates that adult sarcomeric myosins have a larger variation

in sequence than 2 of the non-muscle myosins (or developmental striated muscle myosin iso-

forms), which are expected to be independent of species size. Furthermore, there appears to be

a correlation between size difference and sequence difference.

Examination of 67 mammalian β-myosin sequences identified sequence changes at 12 sites,

which had a high correlation with species size and little correlation with clade. Fig 6 plots the

probability of transition versus species mass for each of these sites and indicates that there is a

distinct midpoint of transition for each site as shown in Fig 5B. Reading the mass of a given

species on the x-axis allows the probability of each site having the amino acid associated with

small or large species to be estimated. The trend in midpoint values implies that there is a dis-

tinct order in which the amino acids at the 12 sites change as the species mass increases from

the smallest to the largest. Furthermore, the order in which the sequence changes is similar for

both clades. This is illustrated for 7 species in Fig 6B where the 7 sites are shown in the order

of the midpoint mass of the transition. The sites change from yellow to blue as the species

mass increases in the order expected. A similar plot for all 67 species is given in S5 Fig and

shows the same phenomena but, as might be expected, with more scatter in the data.

Our analysis suggests that there are reasons to believe that the sequence of the motor

domain is changing with the mass of the species. Before considering the sequence changes in
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the motor domain of β-myosin in more detail, it is useful to consider why contraction velocity

and specifically the maximum velocity is an important factor in defining muscle performance.

The central role of V0 in muscle physiology

The maximum contraction velocity of a muscle, V0, is a key attribute of muscle contraction

that plays a significant role in defining both the force–velocity relationship, power output, and

the efficiency of muscle contraction [4, 5]. V0, one part of the force–velocity relationship of a

muscle, as empirically defined by Hill in 1938, is a fundamental property which underpins

both the power output (power = force × velocity) and the contraction velocity at which power

and efficiency of contraction are maximum, normally considered the optimal working condi-

tions for a muscle. Power and efficiency are fundamental parameters that define the movement

of an animal and crucially the output of the heart. In contrast to V0, which varies more than

10-fold for different myosin isoforms [29], the maximum force a myosin can generate varies

relatively little between myosin isoforms when assessed at the single molecule level or in the

muscle sarcomere [5,29]. Maximum velocity is therefore a central parameter that plays a sig-

nificant role in defining both the force–velocity relationship, power output, and the efficiency

of muscle contraction.

There are strong theoretical arguments and experimental evidence that ADP release is the

event in the crossbridge cycle that defines the maximum velocity of contraction in β-myosin

(Table 2). We need to understand how the rate of ADP release is adjusted to match the physio-

logical requirements.

How does the location of the 12 residues in the motor domain influence

ADP release, and, hence, V0?

The sites identified are not directly linked to the ADP binding pocket, and this is not a surprise

since the same pocket binds ATP and compromising ATP binding is likely to be detrimental

to myosin function. TAU : PleasecheckwhethertheeditstothesentenceThisillustratestheprobleminmodifyingmyosin:::arecorrect; andprovidecorrectwordingifnecessary:his illustrates the problem in modifying myosin; the mutation should

affect only ADP release and not any other event in the cycle, which, it is assumed, are opti-

mised to make efficient use of the energy of ATP hydrolysis.

Some loops on myosin’s surface are known to be variable across myosin in general, and sur-

face loop 1 has been shown to modulate ADP release in some myosins (scallop muscle myosin

II and smooth muscle myosin II have an alternate splice in this region [29,30], and smooth

muscle myosin, Dictyostelium myosin II, and human myosin 1b have been modified to

explore the role of variations in this region [31–33]). Loop 1 does show some variations here,

but this has no correlation with size. Note that the rat and cow share identical sequences in this

region.

Myosin is a coordinated mechanical system with each part of the structure able to sense

allosteric changes across the structure as a whole—as illustrated by the many mutations in β-

myosin that have been explored. Each mutation can have multiple effects on the cycle as a

whole. Thus, in principle, mutations anywhere in the motor domain could influence ADP

release, but the system is tightly constrained because ADP release must be modulated without

a negative effect elsewhere in the cycle. There will be a limited number of ways in which this

can be achieved. The evidence from Fig 6 is that a solution to this problem exists, and both

clades have found the same solution.

Drosophila has multiple isoforms of muscle myosin II (flight, cardiac, leg, embryonic mus-

cle, etc.), and all of these isoforms are encoded by a single gene. Alternate splicing of 4 regions

of the motor domain results in the expression of each different isoform. One of these regions is

coded by exon 7, which has been shown to modulate ADP release, and this region overlaps
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with some of the mutations highlighted here. Thus, different routes to modulating ADP release

are possible, and it is intriguing that Drosophila and mammals use the same region. To define

exactly how the set of 12 sites identified here can modulate, ADP release and V0 will require

more detailed molecular structures and detailed molecular dynamics.

One question about the relationship between myosin sequence and mammal size is whether

such a correlation is seen with any other sarcomeric protein. It is of course impossible to be

definitive about this, but examination of the other major sarcomeric proteins actin, tropomyo-

sin, and the 3 troponin components (I, T, and C) reveals no such correlation. In fact, actin and

tropomyosin are among the most conserved eukaryotic proteins showing little variation

among mammals or indeed vertebrates [34,35]. Troponins do have a higher degree of variation

than actin or tropomyosin, but we found no evidence of a correlation between sequence

and mammal size. There has been a report of a correlation in the size of repetitive Pro-Ala

rich regions in myosin binding protein C [36] and in myosin light chain 1 [37], but these

have, to date, only considered a small number of species and include a broader data set of

vertebrates.

In conclusion, we have used a computational approach to identify variation in β-myosin

that is associated with increasing body mass, which would have a role in reducing heart rate.

The experimental characterisation of the chimeric human-rat β-myosin demonstrates that

these residues do indeed control the rate of ADP, the rate limiting step in the myosin cycle,

and thus are likely to have adapted to enable the slower heart rate required in larger animals as

they have evolved from small to large (Copes Law; [38,39]).

Materials and methods

Protein sequences were extracted from RefSeq [40] and UniProt [41] as listed in S2 Table. To

ensure that each sequence corresponded to the specific myosin isoform, we used both the Uni-

Prot and eggNOG [42] annotations and for the model species available in APPRIS [43]

selected the principal isoform. Isoform determination was also checked with the gene tree (S6

Fig) of all sequences. There were 15 sequences in which eggNOG gave a different assignment

to UniProt (6 NMA, 7 α, and 1 IIa); these are described in S1 Text.

Incomplete sequences were excluded from our analysis because sequence gaps could have a

major effect on the sequence comparison for such closely related isoforms.

For each isoform, the protein sequences were divided into the Motor (1–800, β-myosin

numbering) and Tail (842 to 1,936) regions. For each region of each myosin, the sequences

were aligned using Clustal Omega [35]; the resulting multiple sequence alignment was used to

construct a percentage identity matrix between the species. Sequence identity was used rather

than sequence similarity as we are considering small changes (>93% identity and >98% simi-

larity) within the isoform and substitutions that would normally be classed as similar (e.g.,

aspartate to glutamate) may be relevant.

The masses of each species were extracted from a wide range of information sources and

are listed in S2 Table. Where the literature provides a range of adult body masses, the arithme-

tic mean was selected. To compare sequence divergence against either evolutionary time or

animal body mass, the relevant matrices were plotted against each other. Amino acid

sequences for the β-myosin motor from 67 different mammalian species comprised organisms

from the clades Euarchontoglires [31], Laurasiatheria [29], Metatheria [4], and Afrotheria [1].

Protein sequence divergence was plotted against the species mass. A robust regression was

fitted to reduce the weighting of the outliers. This was done by minimising absolute difference

rather than squared distance, which should reduce the amount of under- and overestimation

in value difference caused by the square.
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Residues associated with cardiomyopathies were obtained from Parker and Peckham [14]

and compared to the residues associated with body mass by considering exact matches to resi-

dues associated with cardiomyopathy. These were grouped into HCM, DCM, and other.

Phylogenetic independent contrasts

Two statistical methods were used to create phylogenetic trees, maximum likelihood (ML),

and Bayesian inference methods, using programmes Randomised Axelerated Maximum Like-

lihood (RAxML) [44] and Bayesian Evolutionary Analysis Sampling Trees (BEAST) and its

corresponding user interface BEAUtI [45], to increase reliability as species sequence identity is

high. The RaxML trees were generated using the CIPRES Science Gateway [46]. TreeAnnota-

tor [45] was then used to generate a consensus tree for each set of 10,000 trees produced by

BEAST. Monodelphis domestica (opossum) was selected as an outgroup. The ML and Bayesian

trees were compared using Compare2Trees [47], with black nodes on the trees indicating

branches where the 2 trees disagree. Trees were drawn using FigTree [48].

PICs [8] were performed using the ape [49] and phytools [50] packages in R. This analysis

used species trees generated from TimeTree from the species present in our analyses for the β,

α, IIa, IIb, and IIx isoforms.

Statistical analysis

For each position in the alignment that had more than 1 amino acid present, species masses were

compared between the 2 highest frequency amino acids at that position using the Mann–Whitney

U test, a nonparametric 2-sample test. Multiple testing was accounted for by applying the Bonfer-

roni correction. To avoid very imbalanced comparisons, the analysis was not run if the frequency

of the second amino acid was less than 10% of the frequency of the most frequent one. Where

more than 2 amino acids were present at an alignment position, only the 2 most frequent amino

acids were considered. See S3 Fig for details of sites with more than 2 amino acids.

Alignment positions were divided into 3 groups: those with an adjusted p-value (padj) less than

0.01 (with Bonferroni correction applied this is equivalent to a p-value of p = 9.50x10-04), those with

0.01< padj< 0.05 (5% significance threshold equivalent to p = 9.6x10-4), and those with a padj>0.05.

In addition, the 2 highest frequency amino acids were coded as 0 and 1, and a logistic regression

model was fitted with log(mass) as the explanatory variable (Fig 3, S2 Fig). In order to overlay these

residue plots, as the coding of the amino acids as 0 and 1 was arbitrary, it was done in such a way

that the slope of the fitted logistic regression line was positive (Fig 3). The value of mass at which the

2 amino acids were predicted to be equally likely to occur was estimated from the regression line.

For each alignment position, a 2 × 2 table was constructed, classifying the species by amino

acids present (most frequent and second most frequent) and clade. FisherAU : PleasenotethatasperPLOSstyle; testsshouldnotbeinpossessiveform:exact test was used

to test whether these 2 factors were associated. The residue and −log10 of the p-value from the

Fisher exact test were plotted to identify residues for which the amino acid variation was likely

to have resulted from clade-associated changes. The residue and −log10 of the p-value from the

Mann–Whitney U test were also plotted to determine when residue variation was likely attrib-

uted to mass changes. Finally, the −log10 p-values obtained from both tests were plotted against

each other. For each of these plots, lines at positions of the Bonferroni adjusted p-values 0.01

and 0.05 were added to assess the confidence in each residues association with mass or clade.

All statistical analyses were run in R [51].

Molecular biology of the chimera

A pUC19 plasmid containing the human β-myosin motor domain gene was digested with NsiI

and NgoMIV to excise DNA encoding for residues 310 to 599 of the human β-myosin. This
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region was replaced with a complementary pair of synthetic oligos encoding for the same region,

but with the 9 amino acid substitutions listed (Ala326Ser, Ser343Pro, Leu366Gln, Ile421Ala,

Thr424Ile, Ala430Ser, Arg434Lys, Phe553Tyr, and Pro573Gln). The subsequent clone was con-

firmed by sequencing. This chimera gene was cloned into a pShuttle CMV vector to allow recom-

binant replication-deficient adenovirus production, as previously described [10].

Protein purification

The chimera and the human β-myosin motor domains (known as subfragment 1 or S1) were

expressed and purified as descried previously [25]. Briefly, the adenoviruses were used to infect

C2C12 myotubes in culture and resulted in overexpression of recombinant myosin proteins.

The heavy chains (residues 1–842) were co-expressed in C2C12 myotubes with His-tagged

human ventricular essential light chain. The recombinant proteins also carried the endogenous

mouse regulatory light chain (MLC3). This is homologous to subfragment 1, S1, generated by

proteolytic digestion of myosin. For motility assays, the heavy chain was additionally tagged

with an 8 residue (RGSIDTWV) carboxyl-terminal extension. Cell pellets were homogenised

in a low salt buffer and centrifuged, and the supernatants were purified by affinity chromatog-

raphy using a HisTrap HP 1 ml column. The proteins were then dialysed into the low salt

experimental buffer (25 mM KCl, 20 mM MOPS, 5 mM MgCl2, 1mM DTT, pH 7.0).

The SNAP-PDZ18 affinity tag used for in vitro motility measurements were purified as

described in [52,53]. SNAP-PDZ18 was expressed through a pHFT2 expression vector, and the

plasmid transformed into Escherichia coli BL21 DE3 cells. The protein was purified using

nickel affinity chromatography and dialysed in PBS.

Actin was prepared from rabbit muscle as described by [54]. The actin was labelled with

pyrene at Cys-374 as described in [55]. When used at sub-micromolar concentrations, the

actin was stabilised by incubation in a 1:1 mixture with phalloidin.

Rat β-myosin S1 was prepared from soleus muscle which was dissected immediately post-

mortem and stored on ice. The muscle was homogenised into Guba-Straub buffer and left to

stir for 30 minutes. After centrifugation at 4,600 Revolutions per Minute (RPM) for 30 minutes

at 4˚C, the supernatant was subject to myosin precipitation as described in [56]. The resulting

myosin was digested with 0.1-mg chymotrypsin per ml of solution and left to stir for 10 min-

utes exactly, at room temperature. To stop the digestion, 0.5 mM phenylmethylsulfonyl fluo-

ride (PMSF) was added and the solution left to stir for 10 minutes. The digested myosin

solution was dialysed into the low salt experimental buffer overnight (25 mM KCl, 20 mM

MOPS, 5 mM MgCl2, 1mM DTT, pH 7.0). Precipitated myosin and light meromyosin was pel-

leted and removed via centrifugation at 12,000 RPM for 10 minutes, with the supernatant con-

taining the purified soleus S1. SDS gels of the purified protein were run and compared to the

expressed human β-myosin and chimera S1.

Stopped-flow spectroscopy

Kinetic measurements for S1 of chimera, human β-myosin, and rat soleus myosin were per-

formed as described previously [25,57,58]. Solutions were buffered with 25 mM KCl, 20 mM

MOPS, 5 mM MgCl2, 1 mM DTT at pH 7.0, and measurements were conducted at 20˚C on a

High-Tech Scientific SF-61 DX2 stopped-flow system. Traces were analysed in Kinetic Studio

(TAU : PleaseprovidethemanufacturerlocationforTgKScientificinthesentenceTraceswereanalysedinKineticStudio::::gK Scientific, Bradford-on-Avon, UK) and Origin.

In vitro motility assay

Motility assays were performed essentially as described previously [53,59]. Briefly, flow cham-

bers were constructed with coverslips coated with nitrocellulose mounted on glass slides.
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Reagents were loaded in the following order: (1) SNAP-PDZ18 affinity tag; (2) BSA to block the

surface from nonspecific binding; (3) S1 of human β-myosin or the chimera with an 8-amino

acid carboxyl-terminal affinity clamp; (4) BSA to wash the chamber; (5) rhodamine–phalloidin-

labelled rabbit actin; (6) an oxygen-scavenging system consisting of 5 mg/ml glucose, 0.1 mg/ml

glucose oxidase and 0.02 mg/ml catalase 7; 2 mM ATP. Partially inactivated myosin heads in S1

preparations were removed by incubating with a 10-fold molar excess of actin and 2 mM ATP

for 15 minutes, then sedimentation at 100,000 RPM for 15 minutes. Supernatant was collected

containing active myosin heads. All solutions were diluted into 25 mM imidazole, 25 mM KCl,

4 mM MgCl2, 1 mM EGTA, 1 mM DTT, pH 7.5. Actin filaments were detected using a wide-

field fluorescence imaging system (described in [60]) with UAPON 100XOTIRF NA lens

(OAU : PleaseprovidethemanufacturerlocationforOlympusinthesentenceActinfilamentsweredetectedusinga::::lympus, Hamburg, Germany) and QuantEM emCCD camera (PhotometricsAU : PleaseprovidethemanufacturerlocationforPhotometricsinthesentenceActinfilamentsweredetectedusinga::::, Arizona, USA).

The system was controlled and data analysed using Metamorph software (Molecular Devices,

Sunnyvale, USA). Assays were performed at 20˚C and were repeated with 3 fresh protein prepa-

rations, with at least 3 movies of 30 second duration, recorded at a rate of 0.46 seconds per

frame. Individual velocities were determined from motile filaments that demonstrated a smooth

consistent movement over 10 frames (4.6 seconds). A total of 100 individual measured velocities

were used to calculate the mean velocity for each recombinant myosin.

Supporting information

S1 Text. Results discussing the assignment of isoforms to myosin sequences and why con-

servative amino acid changes are potentially important in tuning muscle contraction

velocity.

(PDF)

S1 Fig. Mass vs. sequence identity plots. The motor and tail domains have been analysed sep-

arately. The grey squares are Euarchontoglires, the black triangles are Laurasiatheria, and the

open circles are the Afrotheria and Metatheria groups. Each plot has been fitted with a robust

linear regression. Sequence identity is pairwise to the mouse. The R2 value and slope gradient

are shown on each plot. Raw data files are available at Figshare.

(PDF)

S2 Fig. Residue mass transition plots. Binomial regression mapping the transition of the

most frequent amino acid at positions in the motor region of β-myosin to the second most fre-

quent amino acid at that position. The residue numbering is that of the human β-myosin, as

oppose to the alignment position. The black squares are Euarchontoglires, and the triangles

are Laurasiatheria. The p-value with each plot indicate the probability that the transition of the

amino acids is not a result of change in mass. AliPos refers to positions in the sequence align-

ment that are not present in human β-myosin. Raw data files are available at Figshare.

(PDF)

S3 Fig. Highly variable residue mass vs. amino acid frequencies. Residues which had more

than 2 sites of variation, with the third most frequent amino acid being close in frequency to

the second most common amino acid. The black squares are Euarchontoglires, and the trian-

gles are Laurasiatheria. The residue numbering is that of human β-cardiac myosin. Raw data

files are available at Figshare.

(PDF)

S4 Fig. SDS-PAGE of the 3 protein preparations. (A) Recombinant human β-S1 with 2 light

chains. (B) Native rat β-S1 and recombinant chimera S1 with 2 light chains.

(PDF)
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S5 Fig. Distribution of amino acids at 12 positions. This table shows the amino acids that

occurs in each of the 12 residues, those predicted to be assocaited with mass and that are of

interest, in each species, sorted by mass. Yellow background is the predominant amino acid in

small mammals. Blue background is the predominant amino acid in large mammals. The

clades Laurasiatheria, Euarchontoglires, Metatheria, and Afrotheria are represented by the let-

ter L, E, M, and A, respectively.

(PDF)

S6 Fig. Tree of all myosin isoforms. ML phylogenetic tree generated for all myosin isoforms.

Isoforms are labelled according to the key. Zoomed in sections show the α and β regions, and

the NMA and NMB regions. Bootstrap values for the isoform branches are shown adjacent to

the bars identifying each isoform. ML, maximum likelihood.

(PDF)

S7 Fig. Phylogenetic (gene) trees for sarcomeric isoforms. Phylogenetic trees for IIa, IIb, IIx,

α, and β isoforms motor and tail domains.

(PDF)

S8 Fig. Phylogenetic (species) trees for sarcomeric isoforms. Phylogenetic trees for IIa, IIb,

IIx, α, and β species generated from TimeTree.

(PDF)

S1 Table. Mass bootstrapping for each myosin isoform. The mass of species for each isoform

was randomised 1,000 times at 0.8–1.2 times the mass value for each given species. This table

shows the range of values produced from this analysis. The values for the motors are shown in

A and values for the tails in B.

(PDF)

S2 Table. Accession numbers for isoforms considered.

(XLS)

S1 Video. In vitro motility of WT and chimeric beta-myosin. WT, wild-type.

(MOV)
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